” Allied Vision

vilrmbBA

Vimba

Vimba C++ Manual

” Allied Vision Legal Notice

Legal Notice

Trademarks

Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are
brands protected by law.

Warranty

The information provided by Allied Vision is supplied without any guarantees or warranty whatsoever,
be it specific or implicit. Also excluded are all implicit warranties concerning the negotiability, the
suitability for specific applications or the non-breaking of laws and patents. Even if we assume that the
information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual
property. It is not permitted to copy or modify them for trade use or transfer, nor may they be used on
websites.

Allied Vision Technologies GmbH 09/2017

All rights reserved.
Managing Director: Mr. Frank Grube
Tax ID: DE 184383113

Headquarters:

Taschenweg 2a

D-07646 Stadtroda, Germany
Tel.: +49 (0)36428 6770

Fax: +49 (0)36428 677-28
e-mail: info@alliedvision.com

Vimba C++ Manual 1.7 2

mailto:info@alliedvision.com

”A”led VISIOI’] Contents

Contents

1 Contacting Allied Vision 11
2 Document history and conventions 12
2.1 Documenthistory 13
2.2 Conventionsusedinthismanual 13
221 Styles . . e 14

2.2.2 Symbols e 14

3 General aspects of the API 15
4 APl Usage 17
4.1 APIVersion 18
4.2 APIStartup and Shutdown 18
4.3 Shared Pointers 18
431 Generalaspects. 18

4.3.2 Replacing the shared pointer library 19

4.4 Listing available cameras 20
4.5 Openingandclosingacamera 23
4.6 Accessing Features e 25
4.7 Image Capture (API) and Acquisition (Camera), 28
4.7.1 Image Capture and Image Acquisition 29

4.7.2 Asynchronous image acquisition - overview 29

4.7.3 ImageCapture e 31

4.7.4 ImageAcquisition 34

4.8 UsingEvents e 37
4.9 Saving and loading settings 41
410 Triggering Cameras o i i e e 42
4.10.1 Externaltriggero 42

4.10.2 Trigger over Ethernet —Action Commands 44

4.11 Additional configuration: Listing Interfaces 47
4.12 Troubleshooting 48
4.12.1 GigEcameras e 48

4.12.2 USBcameras 48

4.12.3 Goldeye CLcameras v v i it e 48

413 Error Codes 49

5 Function reference 50
5.1 VimbaSystem 51
5.1.1 Getlnstance() 51

5.1.2 QueryVersion() e 51

Vimba C++ Manual 1.7 3

”A”led VISIOI’] Contents

5.2

53

54

55

5.6

5.1.3 Startup() 51
5.1.4 Shutdown() e 51
5.1.5 Getinterfaces() 52
5.1.6 GetinterfaceByID() 52
5.1.7 OpeninterfaceByID() 53
5.1.8 GetCameras()o 53
5.1.9 GetCameraByID() 53
5.1.10 OpenCameraByID() 54
5.1.11 RegisterCameralListObserver() 55
5.1.12 UnregisterCameralistObserver() 55
5.1.13 RegisterinterfacelistObserver() 55
5.1.14 UnregisterinterfaceListObserver() 56
5.1.15 RegisterCameraFactory() 56
5.1.16 UnregisterCameraFactory() 56
Interface 57
521 0pen() e 57
522 Close() e 57
523 GetID() . . ., 57
524 GetType() e 58
525 GetName() e 58
5.2.6 GetSerialNumber() 58
5.2.7 GetPermittedAccess() 58
FeatureContainer e e e 60
5.3.1 FeatureContainer constructor 60
5.3.2 FeatureContainer destructor 60
5.3.3 GetFeatureByName() 60
5.3.4 GetFeatures() 60
[RegisterDevice e 61
5.4.1 ReadRegisters() 61
5.4.2 ReadRegisters() 61
5.4.3 WriteRegisters() 61
5.4.4 WriteRegisters()o 62
5.45 ReadMemory() e 62
5.4.6 ReadMemory() e 63
5.4.7 WriteMemory() 63
5.4.8 WriteMemory() 63
lInterfacelistObserver. e 65
5.5.1 InterfacelistChanged() 65
5.5.2 lInterfacelistObserver destructor 65
[CameralistObserver e 66
5.6.1 CameralistChanged() 66

Vimba C++ Manual 1.7 .

”A”led VISIOI’] Contents

5.7

5.8

5.9

5.10

5.6.2 ICameralistObserver destructor 66
[FrameObserver 67
5.7.1 FrameReceived() 67
5.7.2 IFrameObserver destructor 67
[FeatureObserver 68
5.8.1 FeatureChanged() 68
5.8.2 IFeatureObserver destructor 68
[CameraFactory e 69
5.9.1 CreateCamera() 69
5.9.2 ICameraFactory destructor 69
Camera e 70
5.10.1 Cameraconstructor 70
5.10.2 Cameradestructor 70
5.10.3 0pen() e 70
5.10.4 Close() e 71
5.10.5 GetID() .« . o o e, 71
5.10.6 GetName() e 71
5.10.7 GetModel() 72
5.10.8 GetSerialNumber() 72
5.10.9 GetInterfacelD() 72
5.10.10 GetInterfaceType() o 72
5.10.11 GetPermittedAccess() 73
5.10.12 ReadRegisters() e 73
5.10.13 ReadRegisters() 73
5.10.14 WriteRegisters() e 74
5.10.15 WriteRegisters() 74
5.10.16 ReadMemory() 74
5.10.17 ReadMemory() e 75
5.10.18 WriteMemory() 75
5.10.19 WriteMemory() e 75
5.10.20 AcquireSinglelmage() 76
5.10.21 AcquireMultiplelmages() L 76
5.10.22 AcquireMultiplelmages() 77
5.10.23 StartContinuousimageAcquisition() 77
5.10.24 StopContinuousimageAcquisition() oL 78
5.10.25 AnnounceFrame() e 78
5.10.26 RevokeFrame() 78
5.10.27 RevokeAllFrames() 79
5.10.28 QueueFrame() 79
5.10.29 FlushQueue() 79
5.10.30StartCapture() 80

Vimba C++ Manual 1.7 5

”A”led VISIOI’] Contents

5.11

5.12

5.10.31EndCapture() 80
5.10.32 SaveCameraSettings() 80
5.10.33 LoadCameraSettings() e 81
5.10.34 LoadSaveSettingsSetup() 81
Frame e 82
5.11.1 Frameconstructor 82
5.11.2 Frameconstructor 82
5.11.3 Framedestructor 82
5.11.4 RegisterObserver() 82
5.11.5 UnregisterObserver() 83
5.11.6 GetAncillaryData() 83
5.11.7 GetAncillaryData() 83
5.11.8 GetBuffer() e 83
5.11.9 GetBuffer() e 84
5.11.10Getimage() 84
5.11.11Getimage() e 84
5.11.12 GetReceiveStatus() 84
5.11.13 GetimageSize() oo 85
5.11.14 GetAncillarySize() 85
5.11.15 GetBufferSize() 85
5.11.16 GetPixelFormat() 85
S.AL17GetWidth() . o o o o o 86
51118 GEtHEIGht() « .« v o v v o e e e 86
5.11.19 GEtOMSetX() .« o o o o 86
5.11.20GetOffsetY() e 86
5.11.21 GetFramelD() 87
5.11.22 GetTimeStamp() 87
Feature e 88
512.1 GetValue() e 88
5.12.2 GetValue() . . o o o, 88
5.12.3 GetValue() e 88
5.12.4 GetValue() e 88
5.12.5 GetValue() . . o o o 89
5.12.6 GetValue() e 89
5.12.7 GetValues() e 89
5.12.8 GetValues() e 89
5.12.9 GetEntry() e 90
5.12.10GetEntries() 90
5.12.11GetRange() e 90
5.12.12 GetRange() e 90
5.12.13SetValue() 91

Vimba C++ Manual 1.7 6

”A”led VISIOI’] Contents

5.13

5.12.14SetValue() . o o o, 91
5.12.15SetValue() e 91
5.12.16SetValue() e 91
5.12.17SetValuel) . o o o 91
5.12.18SetValue() e 92
5.12.19HasIncrement()o 92
5.12.20 GetIncrement() 92
5.12.21 Getlncrement() e 92
5.12.22IsValueAvailable() 93
5.12.23IsValueAvailable()o 93
5.12.24RunCommand() e 93
5.12.25IsCommandDone() 94
5.12.26GetName() e 94
5.12.27 GetDisplayName() 94
5.12.28 GetDataType() o 94
5.12.29GetFlags() e 94
5.12.30 GetCategory() 95
5.12.31 GetPollingTime() o 95
5.12.32GetUnit() 95
5.12.33 GetRepresentation() 95
5.12.34 GetVisibility() 96
5.12.35GetToolTip() e 96
5.12.36 GetDescription() 96
5.12.37 GetSFNCNamespace() 96
5.12.38 GetAffectedFeatures() 96
5.12.39 GetSelectedFeatures() L 97
5.12.401sReadable() e 97
5.12.41IsWritable() 97
5.12.42 IsStreamable() 97
5.12.43 RegisterObserver() 98
5.12.44 UnregisterObserver() 98
EnumEntry . . . L e e 99
5.13.1 EnuméEntry constructor 99
5.13.2 EnumEntry constructor 99
5.13.3 EnuméEntry copy constructoro 99
5.13.4 EnuméEntry assignment operator Lo 99
5.13.5 EnumEntry destructor 99
5.13.6 GetName() 100
5.13.7 GetDisplayName() 100
5.13.8 GetDescription() e 100
5.13.9 GetTooltip() 100

Vimba C++ Manual 1.7 7

” Allied Vision oo

5.14

5.13.10GetValue() . . o o 100
5.13.11 GetVisibility() 101
5.13.12 GetSNFCNamespace() v . v v v it e 101
AncillaryData e 102
5141 Open() e e 102
5.14.2 ClOSE() « + v v, 102
5.14.3 GetBuffer() o 102
5.14.4 GetBuffer() e 102
5.14.5 GetSIiZe() .« o o o, 103

Vimba C++ Manual 1.7 8

” Allied Vision List of Tables

List of Tables

00 N O LD W N

Basic functions of a shared pointerclass, 20
Basic functions of the Cameraclass 22
Functions for reading and writinga Feature 25
Functions for accessing static propertiesof aFeature 27
Basic features found onallcameras 28
Struct VmbFeaturePersistSettings_t 41
Basic functions of Interfaceclass 47
Error codes returned by Vimba 49

Vimba C++ Manual 1.7 9

” Allied Vision Listings

Listings

1 Shared Pointers L 19
2 Get Cameras e 21
3 Open Camera v v v e e e e e e e 23
4 OpenCameraby IP e 24
5 Closingacamera e e e 24
6 Readingacamerafeatureo 26
7 Writing features and running command features 26
8 Simple streaming 30
9 Streaming e e 35
10 Getting notified aboutanewframe L 36
11 Getting notified about cameralistchanges, 38
12 Getting notified about featurechanges 39
13 Getting notified about cameraevents 40
14 Externaltrigger 43
15 ActionCommands 45
16 GetlInterfaces 47

Vimba C++ Manual 1.7 10

” Allied Vision

1 Contacting Allied Vision

Vimba C++ Manual 1.7

Connect with Allied Vision by function

https://www.alliedvision.com/en/meta-header/contact

Find an Allied Vision office or distributor

https://www.alliedvision.com/en/about-us/where-we-are

Email

info@alliedvision.com
support@alliedvision.com

Telephone

EMEA: +49 36428-677-0

The Americas: +1 978-225-2030
Asia-Pacific: +65 6634-9027
China: +86 (21) 64861133

Headquarters

Allied Vision Technologies GmbH
Taschenweg 2a

07646 Stadtroda

Germany

Tel: +49 (0)36428 677-0

Fax: +49 (0)36428 677-28
President/CEO: Frank Grube

Registration Office: AG Jena HRB 208962

1 Contacting Allied Vision

11

https://www.alliedvision.com/en/meta-header/contact
https://www.alliedvision.com/en/about-us/where-we-are
mailto:info@alliedvision.com
mailto:support@alliedvision.com

” Allied Vision

2 Documenthistory and conventions

This chapter includes:

2.1 Document historyo 13
2.2 Conventions used in this manual 13
221 Styles 14
222 Symbols 14

Vimba C++ Manual 1.7 12

” Allied Vision

2 Document history and conventions

2.1 Document history

Version

1.0
11

1.2
1.3
14

15

15

1.6

1.7

Date

2012-11-16
2013-03-05

2013-06-18
2014-07-10
2015-11-09

2016-02-27

2017-04-05

2017-05-01

September 2017

Changes

Initial version

Minor corrections, added info about what functions can be called in
which callback

Small corrections, layout changes
Appended the function reference, re-structured and made corrections

Corrected GigE events, added USB compatibility, renamed several Vimba
components and documents ("AVT” no longer in use), links to new Allied
Vision website

Added Goldeye CL compatibility, changed supported operating systems,
several minor changes, new document layout

Addded chapter Triggering cameras (including Action Commands),
changed the position of camera.FlushQueue(), several minor
changes, updated document layout

Addded chapter Triggering cameras (including Action Commands),
changed the position of camera.FlushQueue(), several minor
changes, updated document layout

Added chapter Asynchronous image acquisition - overview, added infor-
mation to chapter Trigger over Ethernet — Action Commands, updated
Troubleshooting, section Goldeye CL cameras, some minor changes

2.2 Conventions used in this manual

To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

Vimba C++ Manual 1.7

13

” Allied Vision

2.2.1 Styles

Style

Emphasis
Publication title
Web reference
Document reference
Output

Input

Feature

Function

Programs, or highlighting important things
Publication titles

Links to web pages

Links to other documents

Outputs from software GUI

Input commands, modes

Feature names

2.2.2 Symbols

9

&
v/

Vimba C++ Manual 1.7

Practical Tip

Safety-related instructions to avoid malfunctions

Instructions to avoid malfunctions

Further information available online

2 Document history and conventions

Example
Emphasis
Title

Link
Document
Output
Input

Feature

14

”Alhed V|S|On 3 General aspects of the API

3 General aspects of the AP

Vimba C++ APl is an object-oriented APl that enables programmers to interact with Allied Vision cameras
independent of the interface technology (Gigabit Ethernet, USB, 1394, Goldeye CL cameras). It utilizes
GenlCam transport layer modules to connect to the various camera interfaces and is therefore generic.

Is this the best API for you?

Vimba C++ APl has an elaborate class architecture. It is designed as a highly efficient and sophisticated
API for advanced object-oriented programming including the STL (standard template library), shared
pointers, and interface classes. If you prefer an API with less design patterns, we recommend the Vimba
C API. For more information about design patterns, we recommend the book ”"Design Patterns.
Elements of Reusable Object-Oriented Software.”

The Vimba Manual contains a description of the APl concepts. To fully
understand the API, we recommend reading the Vimba Manual first.
-

Compatibility

To ensure backward compatibility, the C++ API release build is compatible with Visual Studio 2010. If you
use a higher version, we recommend you to rebuild the C++ APl by compiling the source files with your
Visual Studio version. You can also use other IDEs that implement the C++98 standard (ISO/IEC
14882:1998) if you compile the C++ API source files with these IDEs.

Vimba C++ API provides release and debug build DLL files. If you build your
application in debug mode, use the debug DLL file VimbaCPPd.dlI.
-

Shared pointers

Vimba C++ APl makes intense use of shared pointers to ease object lifetime and memory allocation.
Since some C++ runtime libraries don’t provide them, this Vimba APl is equipped with an own
implementation for Shared Pointers, which can be exchanged with your preferred shared pointer
implementation (see chapter Replacing the shared pointer library), for example, std: : shared_ptr,
boost: :shared_ptr, or QSharedPointer from the Qt library.

Entry point
The entry point to Vimba C++ APl is the VimbaSystem singleton. The VimbaSystem class allows both to
control the API’s behavior and to query for interfaces and cameras.

Vimba C++ Manual 1.7 15

”A”ied ViSiOn 3 General aspects of the API

C++ API diagram

Figure 1 shows a simplified C++ APl UML diagram. To ease understanding the concept, only the most
important items are listed. For classes that you access through their pointers, the diagram shows these
pointers instead of the corresponding class names.

VimbaSystem

Startup()

Shutdown()

GetCameras()

GetCameraByID()
OpenCameraByID()
RegisterCameralistObserver()
UnregisterCameralListObserver()

CameraPtr

Open()

Close()

GetFeatures()
GetFeaturesByName()
AnnounceFrame()
RevokeFrame()
CueFrame()
FlushFrame()

FeaturePtr FramePtr
GetValue() Getlmage()
SetValue() RegisterObserver()
RunCommand()

RegisterObserver()
UnregisterObserver()

Figure 1: Simplified Vimba C++ API diagram

Vimba C++ Manual 1.7 16

” Allied Vision

4 APlUsage

This chapter includes:

4.1 APl Version 18
4.2 APl Startup and Shutdown 18
4.3 Shared Pointers 18
431 General aspects 18
4.3.2 Replacing the shared pointer library 19
4.4 Llisting available cameras 20
4.5 Opening and closing a camera 23
4.6 Accessing Features 25
4.7 Image Capture (APl) and Acquisition (Camera) 28
4.7.1 Image Capture and Image Acquisition 29
4.7.2 Asynchronous image acquisition - overview . . . 29
4.7.3 Image Capture 31
4.7.4 Image Acquisition 34
48 Using Events. 37
4.9 Saving and loading settings 41
4.10 Triggering cameras 42
4.10.1 External trigger 42
4.10.2 Trigger over Ethernet — Action Commands . . . 44
4.11 Additional configuration: Listing Interfaces 47
4.12 Troubleshooting 48
4.12.1 GigE cameraso 48
4.12.2 USB cameras 48
4.12.3 Goldeye CL cameras 48
4.13 Error Codes 49

Vimba C++ Manual 1.7 17

KY nlied Vision o AP e

The entry point to Vimba C++ APl is the VimbaSystem singleton. To obtain a
reference to it, call the static function VimbaSystem: : GetInstance. All
- Vimba C++ classes reside in the namespace AVT: : VmbAPI, so employ the using

declaration using AVT: :VmbAPI.

4.1 API Version

Even if new features are introduced to Vimba C++ API, your software remains backward compatible. Use
VimbaSystem: : QueryVersion to check the version number of Vimba C++ API.

4.2 APl Startup and Shutdown

In order to start and shut down Vimba C++ API, use these paired functions:

e VimbaSystem: :Startup initializes Vimba API.
e VimbaSystem: :Shutdown shuts down Vimba APl and destroys all used objects in the API (when
all observers have finished execution).

VimbaSystem: : Startup and VimbaSystem: : Shutdown must always be paired. Calling the pair
several times within the same program is possible, but not recommended.

Successive calls of VimbaSystem: : Startup or VimbaSystem: : Shutdown are ignored and the first
VimbaSystem: : Shutdown after a VimbaSystem: : Startup will close the API.

Always shut down the APl when your application closes. Shutting down the API
is necessary under all circumstances to unload the transport layers. If they still
are loaded although the application is closed, they access invalid memory.

4.3 Shared Pointers

4.3.1 General aspects

A shared pointer is an object that wraps any regular pointer variable to control its lifetime. Besides
wrapping the underlying raw pointer, it keeps track of the number of copies of itself. By doing so, it
ensures that it will not release the wrapped raw pointer until its reference count (the number of copies)
has dropped to zero. A shared pointer automatically deletes the wrapped pointer when the last shared
pointer to it is destroyed. Though giving away the responsibility for deallocation, the programmer can
still work on the very same objects.

Vimba C++ Manual 1.7 18

” Allied Vision 4 APl Usage

Listing 1: Shared Pointers

{
// This declares an empty shared pointer that can wrap a pointer of
// type Camera
CameraPtr spil;
// The reset member function tells the shared pointer to
// wrap the provided raw pointer
// spl now has a reference count of 1
spl.reset(new Camera());
{
// In this new scope we declare another shared pointer
CameraPtr sp2;
// By assigning spl to it the reference count of both (!) is set to 2
sp2 = spil;
}
// When sp2 goes out of scope the reference count drops back to 1
X

// Now that spl has gone out of scope its reference count has dropped
// to O and it has released the underlying raw pointer on destruction

Shared pointers (or smart pointers in general) were not part of the C++ standard library until C++11. For
example, the first version of Microsoft’s C++ standard library implementation that supports shared
pointers is included in Visual Studio 2010.

Because of the mentioned advantages, Vimba C++ APl makes heavy use of shared pointers while not
relying on a specific implementation.

4.3.2 Replacing the shared pointer library

Although it is best practice to use the predefined shared pointer type, you can replace it with a different
pointer type from libraries like Qt or Boost. In order to ease this exchange, the Vimba C++ source files
include the header file UserSharedPointerDefines.h. This header file also lists the needed macros and
typedefs.

Additionally, Table 1 lists macros covering the basic functionality that Vimba expects from any shared
pointer. Since a shared pointer is a generic type, it requires a template parameter. That is what the
various typedefs are for. For example, the CameraPtr is just an alias for

AVT: :VmbAPI: :shared_ptr<AVT::VmbAPI::Camera>.

To replace the shared pointers, follow these steps:

1. Add UserSharedPointerDefines.h by adding the define USER_SHARED_POINTER to your compiler
settings.

2. Add your shared pointer source files to the Vimba C++ API project.

3. Define the macros and typedefs as described in the header UserSharedPointerDefines.h.

4. Recompile Vimba C++ API.

Vimba C++ Manual 1.7 19

KY nlied Vision o AP e

Macro Example Purpose

SP_DECL(T) std::shared_ptr<T> Declares a new shared pointer

SP_SET(sp, rawPtr) sp.reset(rawPtr) Tells an existing shared pointer to
wrap the given raw pointer

SP_RESET(sp) sp.reset() Tells an existing shared pointer to de-
crease its reference count

SP_ISEQUAL(sp1,sp2) (spl==sp2) Checks the addresses of the wrapped
raw pointers for equality

SP_ISNULL(sp) (NULL==sp) Checks the address of the wrapped

raw pointer for NULL

SP_ACCESS(sp) sp.get() Returns the wrapped raw pointer
SP_DYN_CAST(sp, T) std::dynamic_pointer_cast<T>(sp) A dynamic cast of the pointer

Table 1: Basic functions of a shared pointer class

Vimba now is ready to use the added shared pointer implementation without changing its behavior.
Within your own application, you can employ your shared pointers as usual. Note that your application
and Vimba must refer to the same shared pointer type.

If you want your application to substitute its shared pointer type along with

Vimba, feel free to utilize the macros listed in Table 1 in your application as well.
-—
-

4.4 Listing available cameras

@ For a quick start, see ListCameras example of the Vimba SDK.
-

VimbaSystem: : GetCameras enumerates all cameras recognized by the underlying transport layers.
With this command, the programmer can fetch the list of all connected camera objects. Before opening
cameras, camera objects contain all static details of a physical camera that do not change throughout
the object’s lifetime such as:

e (CameralD
e Camera model
e Name or ID of the connected interface (for example, the network or 1394 adapter)

Vimba C++ Manual 1.7 20

KY nlied Vision o AP e

The order in which the detected cameras are listed is determined by the order of camera discovery and
therefore not deterministic. Normally, Vimba recognizes cameras in the following order: USB - 1394 -
GigE - Camera Link. However, this order may change depending on your system configuration and the
accessories (for example, hubs or long cables).

GigE cameras

For GigE cameras, discovery has to be initiated by the host software. This is done automatically if you
register a camera list observer with the Vimba System (of type ICameralistObserver). In this case,
a call to VimbaSystem: : GetCameras or VimbaSystem: : GetCameraByID returns immediately.

If no camera list observer is registered, a call to VimbaSystem: : GetCameras or

VimbaSystem: : GetCameraByID takes some time because the responses to the initiated discovery
command must be waited for.

USB and 1394 cameras

Changes to the plugged cameras are detected automatically. Consequently, any changes to the camera
list are announced via discovery events and the call to VimbaSystem: : GetCameras returns
immediately.

See Listing 2 for an example of getting the camera list.

Listing 2: Get Cameras

std::string name;
CameraPtrVector cameras;
VimbaSystem &system = VimbaSystem::GetInstance();

if (VmbErrorSuccess == system.Startup())
{
if (VmbErrorSuccess == system.GetCameras(cameras))
{
for (CameraPtrVector::iterator iter = cameras.begin();
cameras.end () != iter;
++iter)
{
if (VmbErrorSuccess == (xiter)->GetName(name))
{
std::cout << name << std::endl;
}
}
}
}

Goldeye CL cameras
The Camera Link specification does not support plug & play or discovery events. To detect changes to
the camera list, call VimbaSystem: : Shutdown and VimbaSystem: : Startup consecutively.

The Camera class provides the member functions listed in Table 2 to obtain information about a camera.

Notifications of changed camera states

For being notified whenever a camera is detected, disconnected, or changes its open state, use
VimbaSystem: :RegisterCameralist0Observer (GigE, USB, and 1394 only). This call registers a
camera list observer (of type ICameralListObserver) with the Vimba System that gets executed on the
according event. The observer function to be registered has to be of type ICameralListObserverx.

Vimba C++ Manual 1.7 21

” Allied Vision

Function (returning VmbErrorType)

GetID(std::string&) const

GetName(std::string&) const

GetModel(std::string&) const

GetSerialNumber(std::string&) const

4 APl Usage

Purpose

The unique ID
The name
The model name

The serial number

GetPermittedAccess(VmbAccessModeType&) const The mode to open the camera

GetInterfaceID(std::string&) const

The ID of the interface the camera is con-
nected to

Table 2: Basic functions of the Camera class

@ VimbaSystem: : Shutdown blocks until all callbacks have finished execution.
-

Functions that must not be called within your camera list observer:

Vimba C++ Manual 1.7

VimbaSystem:
VimbaSystem:
VimbaSystem:
VimbaSystem:
VimbaSystem: :
VimbaSystem:

:Startup
:Shutdown
:GetCameras
:GetCameraByID

RegisterCameralistObserver

:UnregisterCameralistObserver

Feature: :SetValue
Feature: :RunCommand

22

KY nlied Vision o AP e

4.5 Opening and closing a camera

A camera must be opened to control it and to capture images.

Call Camera: : Open with the camera list entry of your choice, or use function

VimbaSystem: : OpenCameraByID with the ID of the camera. In both cases, also provide the desired
access mode for the camera.

Vimba API provides several access modes:

e VmbAccessModeFull - read and write access. Use this mode to configure the camera features and
to acquire images (Goldeye CL cameras: configuration only)

e VmbAccessModeConfig - enables configuring the IP address of your GigE camera

e VmbAccessModeRead - read-only access. Setting features is not possible. However, for GigE
cameras that are already in use by another application, the acquired images can be transferred to
Vimba API (Multicast).

An example for opening a camera retrieved from the camera list is shown in Listing 3.

Listing 3: Open Camera

CameraPtrVector cameras;
VimbaSystem &system = VimbaSystem::GetInstance();

if (VmbErrorSuccess == system.Startup())
{
if (VmbErrorSuccess == system.GetCameras(cameras))
{
for (CameraPtrVector::iterator iter = cameras.begin();
cameras.end () !'= iter;
++iter)
{
if (VmbErrorSuccess == (xiter)->0Open(VmbAccessModeFull))
{
std::cout << "Camera opened" << std::endl;
}
}
}
¥

Vimba C++ Manual 1.7 23

” Allied Vision 4 APl Usage

Listing 4 shows how to open a GigE camera by its IP address. Opening the camera by its serial number
or MAC address is also possible.

Listing 4: Open Camera by IP

CameraPtr camera;
VimbaSystem &system = VimbaSystem::GetInstance();

if (VmbErrorSuccess == system.Startup())
{
if (VmbErrorSuccess == system.OpenCameraByID("192.168.0.42",
VmbAccessModeFull,
camera))
{

std::cout << "Camera opened" << std::endl;
}
}

Listing 5 shows how to close a camera using Camera: :Close.

Listing 5: Closing a camera

// the "camera" object points to an opened camera

if (VmbErrorSuccess == camera.Close())
{

std::cout << "Camera closed" << std::endl;
}

Vimba C++ Manual 1.7 24

KY nlied Vision o AP e

4.6 Accessing Features

@ For a quick start, see ListFeatures example of the Vimba SDK.

GenlCam-compliant features control and monitor various aspects of the drivers and cameras. For more
details on features, see (if installed):

e GigE Features Reference (GigE camera features)

e USB Features Reference (USB camera features)

e Vimba 1394 TL Features Manual (1394 camera and TL features)

e Goldeye G/CL Features Reference,
https://www.alliedvision.com/en/support/technical-documentation.html

e Vimba Manual (Vimba System features)

There are several feature types which have type-specific properties and allow type-specific functionality.
Vimba API provides its own set of access functions for each of these feature types.

Table 3 lists the Vimba APl functions of the Feature class used to access feature values.

Type Set Get Range/Increment
Enum SetValue(string) GetValue(string&) GetValues(StringVector&)
SetValue(int) GetValue(int&) GetValues(IntVector&)

GetEntry(EnumEntry&) GetEntries(EntryVector&)
Int SetValue(int) GetValue(int&) GetRange(int&, int&)
GetIncrement(int&)
Float SetValue(double) GetValue(double&) GetRange (double&, double&)
GetIncrement(double&)

String SetValue(string) GetValue(string&)

Bool SetValue(bool) GetValue(bool&)
Command RunCommand() IsCommandDone (bool&)
Raw SetValue(uchar) GetValue(UcharVector&)

Table 3: Functions for reading and writing a Feature

With the member function GetValue, a feature’s value can be queried.

With the member function SetValue, a feature’s value can be set.

Integer and double features support GetRange. These functions return the minimum and maximum
value that a feature can have. Integer features also support the GetIncrement function to query the
step size of feature changes. Valid values for integer features aremin <= val <= min +
[(max-min)/increment] * increment (the maximum value might not be valid).

Vimba C++ Manual 1.7 25

https://www.alliedvision.com/en/support/technical-documentation.html

KY nlied Vision o AP e

Enumeration features support GetValues that returns a vector of valid enumerations as strings or
integers. These values can be used to set the feature according to the result of IsValueAvailable. If
a non-empty vector is supplied, the original content is overwritten and the size of the vector is adjusted
to fit all elements. An enumeration feature can also be used in a similar way as an integer feature.

Since not all the features are available all the time, the current accessibility of features may be queried
via methods IsReadable () and IsWritable (), and the availability of Enum values may be queried
with functions IsValueAvailable(string) or IsValueAvailable(int).

With Camera: : GetFeatures, you can list all features available for a camera. This list remains static
while the camera is opened. The Feature class of the entries in this list also provides information about
the features that always stay the same for this camera. Use the following member functions of class
Feature to access them:

For an example of reading a camera feature, see Listing 6.

Listing 6: Reading a camera feature

FeaturePtr feature;
VmbInt64_t width;

if (VmbErrorSuccess == camera->GetFeatureByName("Width", feature)
{
if (VmbErrorSuccess == feature->GetValue(width))
{
std::out << width << std::endl;
¥
¥

As an example for writing features to a camera and running a command feature, see Listing 7.

Listing 7: Writing features and running command features

FeaturePtr feature;

if (VmbErrorSuccess == camera->GetFeatureByName("AcquisitionMode", feature)
{
if (VmbErrorSuccess == feature->SetValue("Continuous"))
{
if (VmbErrorSuccess == camera->GetFeatureByName ("AcquisitionStart",
feature))
{
if (VmbErrorSuccess == feature->RunCommand())
{
std::out << "Acquisition started" << std::endl;
}
}
}
}

Table 5 introduces the basic features of all cameras. A feature has a name, a type, and access flags such
asread-permitted and write-permitted.

Vimba C++ Manual 1.7 26

” Allied Vision

Function (returning VmbErrorType)

GetName(std::string&)
GetDisplayName(std::string&)

GetDataType(VmbFeatureDataType&)

GetFlags(VmbFeatureFlagsType&)

GetCategory(std::string&)

GetPollingTime(VmbUint32_t&)
GetUnit(std::string&)

GetRepresentation(std::string&)

GetVisibility(VmbFeatureVisibilityType&)

GetToolTip(std::string&)
GetDescription(std::string&)

GetSFNCNamespace(std::string&)
GetAffectedFeatures(FeaturePtrVector&)

GetSelectedFeatures(FeaturePtrVector&)

4 APl Usage

Purpose

Name of the feature
Name to display in GUI

Data type of the feature. Gives information
about the available functions for the feature. See
table 3

Static feature flags, containing information
about the actions available for a feature and
how changes might affect it. Read and Write
flags determine whether get and set functions
might succeed. Volatile features may change
with every successive read. When writing
ModifyWrite features, they will be adjusted to
valid values

Category the feature belongs to, used for struc-
turing the features

The suggested time to poll the feature
The unit of the feature, if available

The scale to represent the feature, used as a hint
for feature control

The audience the feature is for

Short description of the feature, used for bubble
help

Description of the feature, used as extended ex-
planation

The SFNC namespace of the feature
Features that change if the feature is changed

Features that are selected by the feature

Table 4: Functions for accessing static properties of a Feature

To get notified when a feature’s value changes use Feature: :RegisterQObserver (see chapter
Using Events). The observer to be registered has to implement the interface IFeatureObserver. This
interface declares the member function FeatureChanged. In the implementation of this function, you
can react on updated feature values as it will get called by Vimba API on the according event.

9,

Vimba C++ Manual 1.7

VimbaSystem: : Shutdown blocks until all callbacks have finished execution.

27

” Allied Vision

Feature Type Access

AcquisitionMode Enumeration R/W

AcquisitionStart ~ Command

AcquisitionStop Command

PixelFormat Enumeration R/W
Width Uint32 R/W
Height Uint32 R/W
PayloadSize Uint32 R

4 APl Usage

Description

The acquisition mode of the camera. Values: Continu-
ous, SingleFrame, MultiFrame.

Start acquiring images.
Stop acquiring images.

The image format. Possible values are e.g.: MonoS,
RGB8Packed, YUV411Packed, BayerRGS, ...

Image width, in pixels.
Image height, in pixels.

Number of bytes in the camera payload, including the
image.

Table 5: Basic features found on all cameras

Functions that must not be called within the feature observer:

¢ VimbaSystem:
¢ VimbaSystem:
¢ VimbaSystem:
¢ VimbaSystem:
¢ VimbaSystem:
¢ VimbaSystem:

:Startup

:Shutdown

:GetCameras

:GetCameraByID
:RegisterCameralistObserver
:UnregisterCameralistObserver

e Feature::SetValue

e Feature: :RunCommand

4.7 Image Capture (API) and Acquisition

(Camera)

image acquisition.

1Q)

The Vimba Manual describes the principles of synchronous and asynchronous

examples of the Vimba SDK.

@ For a quick start, see SynchronousGrab, AsynchronousGrab, or VimbaViewer
-

Vimba C++ Manual 1.7

28

” Allied Vision 4 APl Usage

4.7.1 Image Capture and Image Acquisition

Image capture and image acquisition are two independent operations: Vimba API captures images, the
camera acquires images.

To obtain an image from your camera, setup Vimba API to capture images before starting the acquisition
on the camera:

Make Vimba aware of Start the capture Hand buffers over
Prepare image acquisition buffers engine to Vimba
camera.AnnounceFrame() camera.StartCapture() camera.QueueFrame()
) . Run camera
Start image acquisition command feature

AcquisitionStart

|mage IS Wlthln Requeue frame
callback function camera.QueueFrame()

Run camera command

Stop image acquisition feature
AcquisitionStop

Stop the capture engine Flush the capture queue Revoke all frames
camera.EndCapture() camera.FlushQueue() camera.RevokeAllFrames()

Clean up

Figure 2: Typical asynchronous application using Vimba CPP

use. We recommend using the convenience functions for projects where quick
and easy programming is more important than best performance of your vision
application.

@ Vimba C++ API provides convenience functions, which are optimized for ease of
-

4.7.2 Asynchronous image acquisition - overview

Listing 8 is a minimalistic example of asynchrounous image acquisition. For details, see the following
chapters.

Vimba C++ Manual 1.7 29

” Allied Vision 4 APl Usage

Listing 8: Simple streaming
#include "Vimba.h"

namespace AVT {
namespace VmbAPI {

// Constructor for the FrameObserver class
FrameObserver::FrameObserver (CameraPtr pCamera) : IFrameObserver (pCamera){}

// Frame callback notifies about incoming frames
void FrameObserver::FrameReceived(const FramePtr pFrame)

{
// Send notification to working thread
// Do not apply image processing within this callback (performance)
// When the frame has been processed, requeue it
m_pCamera->QueueFrame (pFrame) ;

}

void Vimba::RunExample(void)
{
VmbInt64_t nPLS; // Payload size value
FeaturePtr pFeature; // Generic feature pointer
VimbaSystem &sys = VimbaSystem::GetInstance(); // Create and get Vimba singleton
CameraPtrVector cameras; // Holds camera handles
CameraPtr camera;
FramePtrVector frames(15); // Frame array

// Start the API, get and open cameras
sys.Startup();

sys.GetCameras (cameras) ;

camera = cameras [0];
camera->0pen(VmbAccessModeFull);

// Get the image size for the required buffer

// Allocate memory for frame buffer

// Register frame observer/callback for each frame

// Announce frame to the API

camera->GetFeatureByName ("PayloadSize", pFeature);

pFeature->GetValue (nPLS);

for (FramePtrVector::iterator iter=frames.begin(); frames.end()!=iter; ++iter)

{
(*iter) .reset (new Frame(nPLS));
(xiter)->RegisterObserver (IFrameObserverPtr (new FrameObserver (camera)));
camera->AnnounceFrame (*xiter) ;

}

// Start the capture engine (API)
camera->StartCapture () ;
for (FramePtrVector::iterator iter=frames.begin(); frames.end()!=iter; ++iter)
{
// Put frame into the frame queue
camera->QueueFrame (*iter);

Vimba C++ Manual 1.7 30

” Allied Vision 4 APl Usage

// Start the acquisition engine (camera)
camera->GetFeatureByName ("AcquisitionStart", pFeature);
pFeature->RunCommand () ;

// Program runtime, e.g., Sleep(2000);

// Stop the acquisition engine (camera)
camera->GetFeatureByName ("AcquisitionStop", pFeature);
pFeature->RunCommand () ;

// Stop the capture engine (API)

// Flush the frame queue

// Revoke all frames from the API

camera->EndCapture () ;

camera->FlushQueue () ;

camera->RevokeAllFrames () ;

for (FramePtrVector::iterator iter=frames.begin(); frames.end()!=iter; ++iter)

{
// Unregister the frame observer/callback
(xiter)->UnregisterObserver ();

}

camera->Close () ;

sys.Shutdown(); // Always pair sys.Startup and sys.Shutdown

}
}} // namespace AVT::VmbAPI

4.7.3 Image Capture

To enable image capture, frame buffers must be allocated and the APl must be prepared for incoming
frames. This is done in convenience function Camera: : StartContinuousAcquisition

(Camera: :StopContinuousAcquisition stops acquisition). Note that these convenience functions
perform all steps listed in Figure 2 for each single image. Therefore, they do not provide best
performance if your vision application requires frequently starting and stopping image acquisition. In
this case, it is unnecessary to prepare image acquisisition and to clean up for each image. Instead, you
can prepare image acquisition once, toggle between the start and stop functions, and clean up after
your images are captured.

Asynchronous image capture step by step:

1. Open the camera as described in chapter Opening and closing a camera.

Query the necessary buffer size through the feature PayloadSize (A)". Allocate frames of this size.(B)
Announce the frames (1).

Start the capture engine (2).

Queue the frame you have just created with Camera: : QueueFrame, so that the buffer can be
filled when the acquisition has started (3).

The APl is now ready. Start and stop image acquisition on the camera as described in

chapter Image Acquisition.

vk W

The bracketed tokens in this chapter refer to Listing 9.

Vimba C++ Manual 1.7 31

KY nlied Vision o AP e

6. Register a frame observer (C) that gets executed when capturing is complete.

The frame observer has to be of type IFrameObserver. Within the frame observer, queue the
frame again after you have processed it.

7. Stop the capture engine with Camera: :EndCapture.

8. Call Camera: :FlushQueue to cancel all frames on the queue. If the APl has done the memory
allocation, this memory is not released until RevokeAl1Frames, RevokeFrame, EndCapture, or
Close functions have been called.

9. Revoke the frames with Camera: :RevokeAllFrames to clear the buffers.

To synchronously capture images (blocking your execution thread), follow these steps:

1. Open the camera as described in chapter Opening and closing a camera.
2. How you proceed depends on the number of frames and the performance you need:

* Asingle frame: You can use the convenience function Camera: : AcquireSingleImage to
receive one image frame. If your application requires a low CPU load or exact triggering, we
recommend a different approach: Set the feature AcquisitionMode to SingleFrame and run
the command AcquisitionStart (see chapter Image Acquisition).

e Multiple frames: You can use the convenience function
Camera: :AcquireMultipleImages to receive several image frames (determined by the
size of your vector of FramePtrs). If your application requires a low CPU load or exact
triggering, we recommend a different approach: Set the feature AcquisitionMode to
MultiFrame or Continuous and run the command AcquisitionStart (see chapter Image
Acquisition).

To assure correct continuous image capture, use at least two or three frames. The appropriate number
of frames to be queued in your application depends on the frames per second the camera delivers and
on the speed with which you are able to re-queue frames (also taking into consideration the operating
system load). The image frames are filled in the same order in which they were queued.

Always check that Frame: : GetReceiveStatus returns
VmbFrameStatusComplete when a frame is returned to ensure the data is
- .
- valid.

Vimba C++ Manual 1.7 32

” Allied Vision

Vimba C++ Manual 1.7

Functions that must not be called within the frame observer:

VimbaSystem: :Startup
VimbaSystem: : Shutdown
VimbaSystem: :OpenCameraByID

Camera:
Camera:
Camera:
Camera:
Camera:
Camera:
Camera:
Camera:
Camera:
Camera:
Camera:

:Open

:Close

:AcquireSinglelImage
:AcquireMultipleImages
:StartContinuousImageAcquisition
:StopContinuousImageAcquisition
:StartCapture

:EndCapture

:AnnounceFrame

:RevokeFrame

:RevokeAllFrames

4 APl Usage

33

KY nlied Vision o AP e

4.7.4 Image Acquisition

If you have decided to use one of the convenience functions Camera: : AcquireSingleImage,
Camera: :AcquireMultipleImages, or Camera: :StartContinuousImageAcquisition, no
further actions have to be taken.

Only if you have setup capture step by step as described in chapter Image Capture, you have to start
image acquisition on your camera:

1. Set the feature AcquisitionMode (e.g., to Continuous).
2. Runthe command AcquisitionStart (4).

To stop image acquisition, run command AcquisitionStop.

Listing 9 shows a simplified streaming example (without error handling).

Vimba C++ Manual 1.7 34

” Allied Vision 4 APl Usage

Listing 9: Streaming

VmbErrorType err; // Every Vimba function returns an error code that

// should always be checked for VmbErrorSuccess
VimbaSystem &sys; // A reference to the VimbaSystem singleton
CameraPtrVector cameras; // A list of known cameras

FramePtrVector frames(3); // A list of frames for streaming. We chose
// to queue 3 frames.
IFrameObserverPtr pObserver (new MyFrameObserver ()); // Our implementation
// of a frame observer
FeaturePtr pFeature; // Any camera feature
VmbInt64_t nPLS; // The payload size of one frame

sys = VimbaSystem::GetInstance ();

err = sys.Startup():

err = sys.GetCameras(cameras);

err = cameras[0]->0pen(VmbAccessModeFull);

err = cameras[0]->GetFeatureByName("PayloadSize", pFeature); (a)
err = pFeature->GetValue(nPLS) (4)
for (FramePtrVector::iterator iter = frames.begin();
frames.end() != iter;
++iter)
{
(*iter).reset(new Frame(nPLS)); (B)
err = (*iter)->RegisterObserver(pObserver)); (C)
err = cameras [0]->AnnounceFrame(*xiter); (1)
}
err = cameras[0]->StartCapture(); (2)
for (FramePtrVector::iterator iter = frames.begin();
frames.end() != iter;
++iter)
{
err = cameras[0]->QueueFrame(*iter); (3)
}
err = GetFeatureByName("AcquisitionStart", pFeature); (4)
err = pFeature->RunCommand () ; (4)

// Program runtime

// When finished, tear down the acquisition chain, close the camera and Vimba

err = GetFeatureByName("AcquisitionStop", pFeature);
err = pFeature->RunCommand () ;

err = cameras [0]->EndCapture();

err = cameras[0]->FlushQueue();

err = cameras[0]->RevokeAllFrames();

err = cameras[0]->Close();

err = sys.Shutdown();

Vimba C++ Manual 1.7 35

” Allied Vision 4 APl Usage

Listing 10: Getting notified about a new frame
// 1. define observer that reacts on new frames
class FrameObserver : public IFrameObserver
{
public:
// In your contructor call the constructor of the base class
// and pass a camera object

FrameObserver (CameraPtr pCamera) : IFrameObserver(pCamera)
{
// Put your initialization code here
}
void FrameReceived(const FramePtr pFrame)
{
VmbFrameStatusType eReceiveStatus;
if (VmbErrorSuccess == pFrame->GetReceiveStatus(eReceiveStatus))
{
if (VmbFrameStatusComplete == eReiveStatus)
{
// Put your code here to react on a successfully received frame
3
else
{
// Put your code here to react on an unsuccessfully received frame
}
}
// When you are finished copying the frame, re-queue it
m_pCamera->QueueFrame (pFrame);
}
};
{

VmbErrorType res;
FramePtr pFrame;
CameraPtr pCamera;

// 2. Register the observer before queuing the frame
res = pFrame.RegisterObserver(IFrameObserverPtr(new FrameObserver(pCamera)));

Vimba C++ Manual 1.7 36

KY nlied Vision o AP e

4.8 Using Events

Events serve a multitude of purposes and can have several origins: The Vimba System, an Interface, and
cameras.

In Vimba, notifications are issued as a result to a feature invalidation of either its value or its state.
Consequently, to get notified about any feature change, register an observer of the desired type
(ICameralistObserver, IInterfacelListObserver, or IFeatureObserver) with the appropriate
RegisterXXXObserver method (RegisterCameraList0Observer,
RegisterInterfacelistObserver, or RegisterObserver), which gets called if there is a change to
that feature.

Three examples are listed in this chapter:

e Camera list notifications
e Tracking invalidations of features
e Explicit camera event features

See Listing 11 for an example of being notified about camera list changes (GigE, USB, and 1394 only).

Vimba C++ Manual 1.7 37

” Allied Vision 4 APl Usage

Listing 11: Getting notified about camera list changes

// 1. define observer that reacts on camera list changes
class CamObserver : public ICameralistObserver
{
public:
void CameraListChanged(CameraPtr pCam, UpdateTriggerType reason)
{
// Next to the camera pointer a reason why the observer's function was triggered
// is passed in. Possible values are:
// UpdateTriggerPluggedIn (0), a new camera was discovered
// UpdateTriggerPluggedOut (1), a known camera disappeared from the bus
// UpdateTriggerOpenStateChanged (3), a known camera was opened or closed
// by another application
if (UpdateTriggerPluggedIn == reason || UpdateTriggerPluggedOut == reason)
{
// Put your code here to react on the changed camera list
// E.g., by sending a Windows event message or
// triggering a Qt or boost signal to update your view
}
else
{

// React on a changed open state

}
};

VmbErrorType res;
VimbaSystem &sys = VimbaSystem::GetInstance();
FeaturePtr pFeature;

// 2. Register the observer; automatic discovery for GigE is turned on
res = sys.RegisterCameralistObserver(ICameralistObserverPtr(new CamObserver()));

Vimba C++ Manual 1.7 38

” Allied Vision 4 APl Usage

See Listing 12 for an example of being notified about feature changes.

Listing 12: Getting notified about feature changes

// 1. define observer

class WidthObserver : public IFeatureObserver
{
public:
void FeatureChanged (const FeaturePtr &feature)
{
if (feature != NULL)
{

VmbError_t res;
std::string strName("");

res = feature->GetDisplayName (strName) ;
std::cout << strName << " changed" << std::endl;

// 2. register the observer for that event
res = GetFeatureByName("Width", pFeature);
res = pFeature->RegisterObserver (IFeatureObserverPtr(new WidthObserver ()));

// as an example, binning is changed, so the observer will be run
res = GetFeatureByName("BinningHorizontal", pFeature);
pFeature->SetValue (8);

}

GigE cameras additionally provide the Camera events feature. Camera events (for changed camera
states) are also handled with the same mechanism of feature invalidation. See Listing 13 for an example.
For more details about camera events, see (if installed) Gigk Features Reference.

Vimba C++ Manual 1.7 39

” Allied Vision 4 APl Usage

Listing 13: Getting notified about camera events

// 1. define observer

class EventObserver : public IFeatureObserver
{
public:
void FeatureChanged (const FeaturePtr &feature)
{
if (feature != NULL)
{

VmbError_t res;
std::string strName("");

res = feature->GetDisplayName (strName) ;
std::cout "Event " << strName << " occurred" << std::endl;

// 2. register the observer for the camera event
res = GetFeatureByName("EventAcquisitionStart", pFeature);
res = pFeature->RegisterObserver(IFeatureObserverPtr(new EventObserver()));

// 3. select "AcquisitionStart" (or a different) event
res = GetFeatureByName("EventSelector", pFeature);
res = pFeature->SetValue("AcquisitionStart");

// 4. switch on the event notification (or switch it off with "Off")

res = GetFeatureByName("EventNotification", pFeature);
res = pFeature->SetValue("On");

Vimba C++ Manual 1.7 40

KY nlied Vision o AP e

4.9 Saving and loading settings

Additionally to the user sets stored inside the cameras, you can save the feature values as an XML file to
your host PC. For example, you can configure your camera with Vimba Viewer, save the settings as a file,
and load them with Vimba API. To do this, use the functions LoadCameraSettings and
SaveCameraSettings.

@ For a quick start, see example LoadSaveSettings.
-

To control which features are saved, use either the function LoadSaveSettingsSetup or the struct
listed in Table 6. Note that saving and loading all features including look-up tables may take several
minutes. You can manually edit the XML file if you want only certain features to be restored.

Struct entry Purpose

VmbFeaturePersist_t persistType Controls which features are saved. Valid values are:
e VmbFeaturePersistAll: Save all features to XML, in-
cluding look-up tables
e VmbFeaturePersistStreamable: Save only features
marked as streamable, excluding look-up tables
e VmbFeaturePersistNoLUT: Default, save all features
except look-up tables

Vmbuint32_t maxIterations Number of iterations. LoadCameraSettings iterates
through all given features of the XML file and tries
to set each value to the camera. Because of com-
plex feature dependencies, writing a feature value may
impact another feature that has already been set by
LoadCameraSettings. To ensure all values are written as
desired, the feature list can be looped several times, given
by this parameter. Default value: 5, valid values: 1...10

Table 6: Struct VmbFeaturePersistSettings_t

Vimba C++ Manual 1.7 41

” Allied Vision 4 APl Usage

4.10 Triggering cameras

Before triggering, startup Vimba and open the camera(s).

To easily configure the camera’s trigger settings, use Vimba Viewer and
save/load the settings.

9
9

4.10.1 External trigger

The following code snippet shows how to trigger your camera with an external device.

Vimba C++ Manual 1.7 42

” Allied Vision

Listing 14: External trigger

// Startup Vimba, get cameras and open cameras as usual

// Trigger cameras according to their interface
// Configure trigger input line and selector, switch trigger on

(*iter)->GetInterfaceType(pinterface);

switch(pinterface)

{

case VmbInterfaceEthernet:
(*iter)->GetFeatureByName("TriggerSelector", pFeature);
pFeature->SetValue("FrameStart");
(*iter)->GetFeatureByName("TriggerSource", pFeature);
pFeature->SetValue("Linel");
(*iter)->GetFeatureByName("TriggerMode", pFeature);
pFeature->SetValue("On");
break;

case VmbInterfaceUsb:
(*iter)->GetFeatureByName("LineSelector", pFeature);
pFeature->SetValue("LineO");
(*iter)->GetFeatureByName("LineMode", pFeature);
pFeature->SetValue("Input");
(*iter)->GetFeatureByName("TriggerSource", pFeature);
pFeature->SetValue("LineO");
(*iter)->GetFeatureByName("TriggerMode", pFeature);
pFeature->SetValue("On");
break;

case VmbInterfaceFirewire:
(*iter)->GetFeatureByName("LineSelector", pFeature);
pFeature->SetValue("LineO");
(*iter)->GetFeatureByName("LineMode", pFeature);
pFeature->SetValue("Input");
(*iter)->GetFeatureByName("LineRouting", pFeature);
pFeature->SetValue("Trigger");
(*iter)->GetFeatureByName("TriggerSelector", pFeature);
pFeature->SetValue("ExposureStart");
(*iter)->GetFeatureByName("TriggerSource", pFeature);
pFeature->SetValue("InputLines");
(*iter)->GetFeatureByName("TriggerMode", pFeature);
pFeature->SetValue("On");
break;

Vimba C++ Manual 1.7

4 APl Usage

43

KY nlied Vision o AP e

4.10.2 Trigger over Ethernet — Action Commands

Triggering via the AcquisitionStart command (see chapter Image Acquisition) is supported by all
cameras. However, it is less precise than triggering with an external device connected to the camera’s
I/O port.

Selected GigE cameras with the latest firmware additionally support Action Commands. With Action
Commands, you can broadcast a trigger signal simultaneously to multiple Gigk cameras via Gigk cable.
Action Commands must be set first to the camera(s) and then to the Vimba API, which sends the Action
Commands to the camera(s). As trigger source, select ActionO or Action1.

ActionControl parameters
The following ActionControl parameters must be configured on the camera(s) and then on the host PC.

e ActionDeviceKey must be equal on the camera and on the host PC. Before a camera accepts an
Action Command, it verifies if the received key is identical with its configured key. Note that
ActionDeviceKey must be set each time the camera is opened.

Range (camera and host PC): 0 to 4294967295

e ActionGroupKey means that each camera can be assigned to exactly one group for Action0O and a
different group for Actionl. All grouped cameras perform an action at the same time. If this key is
identical on the sender and the receiving camera, the camera performs the assigned action.
Range (camera and host PC): 0 to 4294967295

* ActionGroupMask serves as filter that specifies which cameras within a group react on an Action
Command. It can be used to create sub-groups.

Range (camera): 0 to 4294967295
Range (host PC): 1 to 4294967295

Executing the API feature ActionCommand sends the ActionControl parameters to the cameras and
triggers the assigned action, for example, image acquisition. Before an Action Command is executed,
each camera validates the received ActionControl parameter values against its configured values. If they
are not equal, the camera ignores the command.

More information
For more information about Action Commands, see:

¢ The ActionCommands programming example of the Vimba SDK

¢ The application note Trigger over Ethernet - Action Commands

¢ Action Commands as camera features are described in the Gigk Features Reference.

e Action Commands as Vimba features are listed in the Vimba Manual.

e Listing 15 shows how to send out an Action Command to all connected cameras via all known
Gigabit Ethernet interfaces.

Vimba C++ Manual 1.7 44

https://www.alliedvision.com/fileadmin/content/documents/products/cameras/various/appnote/GigE/Action-Commands_Appnote.pdf

” Allied Vision 4 APl Usage

Listing 15: Action Commands

// Additionally to this code snippet:
// Configure the trigger settings and add image streaming

int deviceKey = 11, groupKey = 22, groupMask = 33;
FeaturePtr feature;

// Startup Vimba
VimbaSystem& system = VimbaSystem::GetInstance();
system.Startup () ;

// Get cameras
CameraPtrVector cameras;
system.GetCameras (cameras);

for(int i=0; i<cameras.size(); ++i)
{
// Open camera
CameraPtr camera = cameras.at(i);
camera->0pen();

// Set Action Command to camera
camera->GetFeatureByName ("ActionDeviceKey", feature);
feature->SetValue (deviceKey);

camera->GetFeatureByName ("ActionGroupKey", feature);
feature->SetValue (groupKey);

camera->GetFeatureByName ("ActionGroupMask", feature);
feature->SetValue(groupMask);
}

// Set Action Command to camera
camera->GetFeatureByName ("ActionDeviceKey", feature);
feature->SetValue(deviceKey);
camera->GetFeatureByName ("ActionGroupKey", feature);
feature->SetValue(groupKey);
camera->GetFeatureByName ("ActionGroupMask", feature);
feature->SetValue(groupMask);

// Set Action Command to Vimba API
system->GetFeatureByName ("ActionDeviceKey", feature);
feature->SetValue (deviceKey);
system->GetFeatureByName ("ActionGroupKey", feature);
feature->SetValue (groupKey);
system->GetFeatureByName ("ActionGroupMask", feature);
feature->SetValue(groupMask);

// Send Action Command

system->GetFeatureByName ("ActionCommand", feature)
feature->RunCommand () ;

Vimba C++ Manual 1.7 45

” Allied Vision 4 APl Usage

for(int i=0; i<cameras.size(); ++i)

{
// Close camera
CameraPtr camera = cameras.at(i);
camera->Close () ;

}

// Shutdown Vimba
system.Shutdown () ;

Vimba C++ Manual 1.7 46

KY nlied Vision o AP e

4.11 Additional configuration: Listing
Interfaces

VimbaSystem: : GetInterfaces enumerates all Interfaces (GigE, USB, or 1394 adapters, or Camera
Link frame grabbers) recognized by the underlying transport layers.
See Listing 16 for an example.

Listing 16: Get Interfaces

std::string name;
InterfacePtrVector interfaces;
VimbaSystem &system = VimbaSystem::GetInstance();

if (VmbErrorSuccess == system.Startup())
{
if (VmbErrorSuccess == system.GetInterfaces(interfaces))
{
for (InterfacePtrVector::iterator iter = interfaces.begin();
interfaces.end() != iter;
++iter)
{
if (VmbErrorSuccess == (xiter)->GetName(name))
{

std::cout << name << std::endl;
}
}
}
}

The Interface class provides the member functions to obtain information about an interface listed in
Table 7.

Function (returning VmbErrorType) Purpose

GetID(std::string&) const The unique ID

GetName(std::string&) const The name

GetType(VmbInterfaceType&) const The camera interface type
GetSerialNumber (std::string&) const The serial number (not in use)

GetPermittedAccess(VmbAccessModeType&) const The mode to open the interface

Table 7: Basic functions of Interface class

Static features that do not change throughout the object’s lifetime such as ID and Name can be queried
without having to open the interface.

To get notified when an Interface is detected or disconnected, use

VimbaSystem: :RegisterInterfacelListObserver (see Chapter Using Events). The observer to be
registered has to implement the interface IInterfaceListObserver. This interface declares the

Vimba C++ Manual 1.7 47

KY nlied Vision o AP e

member function InterfaceListChanged. In your implementation of this function, you can react on
interfaces being plugged in or out as it will get called by Vimba API on the according event.

4.12 Troubleshooting
4,12.1 Gigk cameras

Make sure to set the PacketSize feature of GigE cameras to a value supported by your network card. If
you use more than one camera on one interface, the available bandwidth has to be shared between the
cameras.

¢ GVSPAdjustPacketSize configures GigE cameras to use the largest possible packets.
¢ DeviceThroughputLimit (legacy term:StreamBytesPerSecond) enables to configure the individual
bandwidth if multiple cameras are used.
e The maximum packet size might not be available on all connected cameras. Try to reduce the
packet size.
Further readings:

The GigE Installation Manual provides detailed information on how to configure your system.

4.12.2 USB cameras

Under Windows, make sure the correct driver is applied. For more details, see Vimba Manual, chapter
Vimba Driver Installer.

To achieve best performance, see the technical manual of your USB camera, chapter Troubleshooting:
https://www.alliedvision.com/en/support/technical-documentation.html

4.12.3 Goldeye CL cameras

¢ The pixel format, all features affecting the image size, and DeviceTapGeometry must be identical in
Vimba and the frame grabber software.

e Make sure to select an image size supported by the frame grabber.

¢ The baud rate of the camera and the frame grabber must be identical.

Vimba C++ Manual 1.7 48

https://www.alliedvision.com/fileadmin/content/documents/products/cameras/various/installation-manual/GigE_Installation_Manual.pdf
https://www.alliedvision.com/en/support/technical-documentation.html

” Allied Vision

4.13

4 APl Usage

Error Codes

All Vimba API functions return an error code of type VmbErrorType, which, for the sake of simplicity
and uniformity, are the same as for the underlying C API.
Typical errors are listed with each function in chapter Function reference. However, any of the error

codes listed in Table 8 might be returned.

Error Code

VmbErrorSuccess
VmbErrorInternalFault
VmbErrorApiNotStarted

VmbErrorNotFound

VmbErrorBadHandle
VmbErrorDeviceNotOpen
VmbErrorInvalidAccess
VmbErrorBadParameter
VmbErrorStructSize
VmbErrorMoreData
VmbErrorWrongType

VmbErrorInvalidValue

VmbErrorTimeout
VmbErrorOther
VmbErrorResources
VmbErrorInvalidCall
VmbErrorNoTL
VmbErrorNotImplemented
VmbErrorNotSupported

VmbErrorIncomplete

Vimba C++ Manual 1.7

Value

-12
-13
-14
-15
-16
-17
-18
-19

Description

No error
Unexpected fault in Vimba or driver
Startup was not called before the current command

The designated instance (camera, feature, etc.) cannot be
found

The given handle is not valid

Device was not opened for usage

Operation is invalid with the current access mode

One of the parameters is invalid (usually an illegal pointer)
The given struct size is not valid for this version of the API

More data available in a string/list than space is provided

Wrong feature type for this access function

The value is not valid; either out of bounds or not an incre-
ment of the minimum

Timeout during wait

Other error

Resources not available (e.g., memory)

Call is invalid in the current context (e.g. callback)
No transport layers are found

API feature is not implemented

API feature is not supported

A multiple registers read or write is partially completed

Table 8: Error codes returned by Vimba

49

”A”led V|S|On 5 Function reference

5 Function reference

In this chapter you can find a complete list of all methods of the following classes/interfaces:
VimbaSystem, Interface, FeatureContainer, IRegisterDevice,
IInterfacelListObserver, ICameralistObserver, IFrameObserver, IFeatureObserver,
ICameraFactory, Camera, Frame, Feature, EnumEntryand AncillaryData.

Methods in this chapter are always described in the same way:

The caption states the name of the function without parameters

The first item is a brief description

The parameters of the function are listed in a table (with type, name, and description)
The return values or the returned type is listed

Finally, a more detailed description about the function is given

Vimba C++ Manual 1.7 50

”A”led V|S|On 5 Function reference

5.1 VimbaSystem
5.1.1 Getlnstance()

Returns a reference to the System singleton.

¢ VimbaSystem&

5.1.2 QueryVersion()

Retrieve the version number of VmbAPI.

Type Name Description

out VmbVersionInfo_t& version Reference to the struct where version information is copied
¢ VmbErrorSuccess: always returned

This function can be called at any time, even before the APl is initialized. All
other version numbers may be queried via feature access
-—
-ge

5.1.3 Startup()

Initialize the VmbAPI module.

¢ VmbErrorSuccess: If no error
¢ VmbErrorinternalFault: An internal fault occurred

On successful return, the APl is initialized; this is a necessary call. This method
must be called before any other VmbAPI function is run.
-
=

5.1.4 Shutdown()

Perform a shutdown on the APl module.

¢ VmbErrorSuccess: always returned

@ This will free some resources and deallocate all physical resources if applicable.
-
-

Vimba C++ Manual 1.7 51

”A"led V|S|On 5 Function reference

5.1.5 GetInterfaces()

List all the interfaces currently visible to VmbAPI.

Type Name Description

out InterfacePtrVector& interfaces Vector of shared pointer to Interface object

¢ VmbErrorSuccess: If no error

e VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorStructSize: The given struct size is not valid for this API version

¢ VmbErrorMoreData: More data were returned than space was provided

¢ VmbErrorinternalFault: An internal fault occurred

the vector provided. If the vector is not empty, new elements will be appended.

@ All the interfaces known via a GenTL are listed by this command and filled into
- Interfaces can be adapter cards or frame grabber cards, for instance.

5.1.6 GetlnterfaceBylD()

Gets a specific interface identified by an ID.

Type Name Description

in const char* pID The ID of the interface to get (returned by GetInterfaces())

out InterfacePtr& pinterface Shared pointer to Interface object

¢ VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadParameter: "pID” is NULL.

e VmbErrorStructSize: The given struct size is not valid for this API version

¢ VmbErrorMoreData: More data were returned than space was provided

pointer provided. Interface can be an adapter card or a frame grabber card, for

@ An interface known via a GenTL is listed by this command and filled into the
- instance.

Vimba C++ Manual 1.7 52

”A"led V|S|On 5 Function reference

5.1.7 OpenlinterfaceBylD()

Open an interface for feature access.

Type Name Description

in const char* pID The ID of the interface to open (returned by Getinterfaces())

out InterfacePtr& plnterface A shared pointer to the interface

e VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorNotFound: The designated interface cannot be found

¢ VmbErrorBadParameter: "pID” is NULL.

An interface can be opened if interface-specific control is required, such as I/0
pins on a frame grabber card. Control is then possible via feature access
- methods.

5.1.8 GetCameras()

Retrieve a list of all cameras.

Type Name Description

out CameraPtrVector& cameras Vector of shared pointer to Camera object

¢ VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorStructSize: The given struct size is not valid for this API version

¢ VmbErrorMoreData: More data were returned than space was provided

A camera known via a GenTL is listed by this command and filled into the
pointer provided.
-

5.1.9 GetCameraByID()

Gets a specific camera identified by an ID. The returned camera is still closed.

Vimba C++ Manual 1.7 53

”A"led V|S|On 5 Function reference

Type Name Description

in const char* plD The ID of the camera to get

out CameraPtr& pCamera Shared pointer to camera object

e VmbErrorSuccess: If no error

e VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadParameter: "pID” is NULL.

e VmbErrorStructSize: The given struct size is not valid for this API version

¢ VmbErrorMoreData: More data were returned than space was provided

pointer provided. Only static properties of the camera can be fetched until the
camera has been opened. ”"pID” might be one of the following: ”169.254.12.13"
for an IP address, “000F314C4BE5” for a MAC address or “DEV_1234567890”
for an ID as reported by Vimba

@ A camera known via a GenTL is listed by this command and filled into the
-

5.1.10 OpenCameraBylD()

Gets a specific camera identified by an ID. The returned camera is already open.

Type Name Description

in const char* pID The unique ID of the camera to get
in VmbAccessModeType eAccessMode The requested access mode

out CameraPtr& pCamera A shared pointer to the camera

e VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorNotFound: The designated interface cannot be found

¢ VmbErrorBadParameter: "pID” is NULL.

on a frame grabber card. Control is then possible via feature access methods.
"pID” might be one of the following: “169.254.12.13” for an IP address,
”000F314C4BES” for a MAC address or "DEV_1234567890” for an ID as
reported by Vimba

@ A camera can be opened if camera-specific control is required, such as I/0 pins
-
—

Vimba C++ Manual 1.7 54

”Alhed V|S|On 5 Function reference

5.1.11 RegisterCameralistObserver()

Registers an instance of camera observer whose CameralistChanged() method gets called as soon as a
camera is plugged in, plugged out, or changes its access status

Type Name Description

in const ICameralistObserverPtr& pObserver A shared pointerto an object derived from
ICameralistObserver

¢ VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: "pObserver” is NULL.
¢ VmbErrorinvalidCall: If the very same observer is already registered

5.1.12 UnregisterCameralistObserver()

Unregisters a camera observer

Type Name Description

in const ICameralistObserverPtr& pObserver A shared pointerto an object derived from
ICameralistObserver

e VmbErrorSuccess: If no error
¢ VmbErrorNotFound: If the observer is not registered
¢ VmbErrorBadParameter: "pObserver” is NULL.

5.1.13 RegisterinterfaceListObserver()

Registers an instance of interface observer whose InterfacelListChanged() method gets called as soon as
an interface is plugged in, plugged out, or changes its access status

Type Name Description

in const IInterfaceListObserverPtr& pObserver A shared pointer to an object derived
from linterfacelistObserver

e VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: "pObserver” is NULL.
¢ VmbErrorinvalidCall: If the very same observer is already registered

Vimba C++ Manual 1.7 55

”Alhed V|S|On 5 Function reference

5.1.14 UnregisterinterfacelistObserver()

Unregisters an interface observer

Type Name Description

in const IInterfaceListObserverPtr& pObserver A shared pointer to an object derived
from lInterfacelistObserver

e VmbErrorSuccess: If no error
¢ VmbErrorNotFound: If the observer is not registered
¢ VmbErrorBadParameter: "pObserver” is NULL.

5.1.15 RegisterCameraFactory()

Registers an instance of camera factory. When a custom camera factory is registered, all instances of
type camera will be set up accordingly.

Type Name Description

in const ICameraFactoryPtr& pCameraFactory A shared pointer to an object derived from
ICameraFactory

¢ VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: "pCameraFactory” is NULL.

5.1.16 UnregisterCameraFactory()

Unregisters the camera factory. After unregistering the default camera class is used.

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

”A”led V|S|On 5 Function reference

5.2 Interface
5.2.1 Open()

Open an interface handle for feature access.

e VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorNotFound: The designated interface cannot be found

An interface can be opened if interface-specific control is required, such as 1/0
pins on a frame grabber card. Control is then possible via feature access
- methods.

5.2.2 Close()

Close an interface.

e VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
e VmbErrorBadHandle: The handle is not valid

5.2.3 GetlD()

Gets the ID of an interface.

Type Name Description

out std::string& interfacelD The ID of the interface
¢ VmbErrorSuccess: If no error

@ This information remains static throughout the object’s lifetime
-
=

Vimba C++ Manual 1.7 57

”A"led V|S|On 5 Function reference

5.2.4 GetType()

Gets the type, e.g. FireWire, GigE or USB of an interface.

Type Name Description

out VmbInterfaceType& type The type of the interface
¢ VmbErrorSuccess: If no error

@ This information remains static throughout the object’s lifetime
-
g

5.2.5 GetName()

Gets the name of an interface.

Type Name Description

out std::string& name The name of the interface

e VmbErrorSuccess: If no error

5.2.6 GetSerialNumber()

Gets the serial number of an interface.

Type Name Description

out std::string& serialNumber The serial number of the interface

¢ VmbErrorSuccess: If no error

5.2.7 GetPermittedAccess()

Gets the access mode of an interface.

Vimba C++ Manual 1.7

58

”A"ied ViSion 5 Function reference

Type Name Description

out VmbAccessModeType& accessMode The possible access mode of the interface

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7 59

”Alhed V|S|On 5 Function reference

5.3 FeatureContainer
5.3.1 FeatureContainer constructor

Creates an instance of class FeatureContainer

5.3.2 FeatureContainer destructor

Destroys an instance of class FeatureContainer

5.3.3 GetFeatureByName()

Gets one particular feature of a feature container (e.g. a camera)

Type Name Description

in const char* name The name of the feature to get

out FeaturePtr& pFeature The queried feature

¢ VmbErrorSuccess: If no error
¢ VmbErrorDeviceNotOpen: Base feature class (e.g. Camera) was not opened.
¢ VmbErrorBadParameter: “"name” is NULL.

5.3.4 GetFeatures()

Gets all features of a feature container (e.g. a camera)

Type Name Description

out FeaturePtrVector& features The container for all queried features

¢ VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: “features” is empty.

@ Once queried, this information remains static throughout the object’s lifetime
-
=

Vimba C++ Manual 1.7 60

”Alhed V|S|On 5 Function reference

5.4 |RegisterDevice
5.4.1 ReadRegisters()

Reads one or more registers consecutively. The number of registers to be read is determined by the
number of provided addresses.

Type Name Description

in const Uint64Vector& addresses A list of register addresses

out Uint64Vector& buffer The returned data as vector

¢ VmbErrorSuccess: If all requested registers have been read

¢ VmbErrorBadParameter: Vectors “addresses” and/or "buffer” are empty.

¢ VmbErrorincomplete: If at least one, but not all registers have been read. See overload
ReadRegisters(const Uint64Vector&, Uint64Vector&, VmbUint32 t&).

5.4.2 ReadRegisters()

Same as ReadRegisters(const Uint64Vector&, Uint64Vector&), but returns the number of successful
read operations in case of an error.

Type Name Description
in const Uint64Vector& addresses A list of register addresses
out Uint64Vector& buffer The returned data as vector
out VmbUint32_t& completedReads The number of successfully read registers

¢ VmbErrorSuccess: If all requested registers have been read
* VmbErrorBadParameter: Vectors “addresses” and/or “buffer” are empty.
¢ VmbErrorincomplete: If at least one, but not all registers have been read.

5.4.3 WriteRegisters()

Writes one or more registers consecutively. The number of registers to be written is determined by the
number of provided addresses.

Vimba C++ Manual 1.7 61

”Alhed V|S|On 5 Function reference

Type Name Description

in const Uint64Vector& addresses A list of register addresses

in const Uint64Vector& buffer The data to write as vector

¢ VmbErrorSuccess: If all requested registers have been written

¢ VmbErrorBadParameter: Vectors “addresses” and/or “buffer” are empty.

¢ VmbErrorincomplete: If at least one, but not all registers have been written. See overload
WriteRegisters(const Uint64Vector&, const Uint64Vector&, VmbUint32_t&).

5.4.4 \WriteRegisters()

Same as WriteRegisters(const Uint64Vector&, const Uint64Vector&), but returns the number of
successful write operations in case of an error VmbErrorincomplete.

Type Name Description
in const Uint64Vector& addresses A list of register addresses
in const Uint64Vector& buffer The data to write as vector
out VmbUint32_t& completedWrites The number of successfully read registers

¢ VmbErrorSuccess: If all requested registers have been written
* VmbErrorBadParameter: Vectors “addresses” and/or “buffer” are empty.
¢ VmbErrorincomplete: If at least one, but not all registers have been written.

5.4.5 ReadMemory()

Reads a block of memory. The number of bytes to read is determined by the size of the provided buffer.

Type Name Description

in const VmbUint64_t& address The address to read from

out UcharVector& buffer The returned data as vector

¢ VmbErrorSuccess: If all requested bytes have been read

e VmbErrorBadParameter: Vector “buffer” is empty.

e VmbErrorincomplete: If at least one, but not all bytes have been read. See overload ReadMemory(
const VmbUint64_t&, UcharVector&, VmbUint32 t&).

Vimba C++ Manual 1.7 62

”Alhed V|S|On 5 Function reference

5.4.6 ReadMemory()

Same as ReadMemory(const Uint64Vector&, UcharVector&), but returns the number of bytes
successfully read in case of an error VmbErrorincomplete.

Type Name Description
in const VmbUint64_t& address The address to read from
out UcharVector& buffer The returned data as vector
out VmbUint32_t& sizeComplete The number of successfully read bytes

¢ VmbErrorSuccess: If all requested bytes have been read
e VmbErrorBadParameter: Vector “buffer” is empty.
¢ VmbErrorincomplete: If at least one, but not all bytes have been read.

5.4.7 WriteMemory()

Writes a block of memory. The number of bytes to write is determined by the size of the provided buffer.

Type Name Description

in const VmbUint64 t& address The address to write to

in const UcharVector& buffer The data to write as vector

¢ VmbErrorSuccess: If all requested bytes have been written

¢ VmbErrorBadParameter: Vector "buffer” is empty.

¢ VmbErrorincomplete: If at least one, but not all bytes have been written. See overload
WriteMemory(const VmbUint64_t&, const UcharVector&, VmbUint32 t&).

5.4.8 WriteMemory()

Same as WriteMemory(const Uint64Vector&, const UcharVector&), but returns the number of bytes
successfully written in case of an error VmbErrorincomplete.

Vimba C++ Manual 1.7 63

”Alhed V|S|On 5 Function reference

Type Name Description
in const VmbUint64_t& address The address to write to
in const UcharVector& buffer The data to write as vector
out VmbUint32_t& sizeComplete The number of successfully written bytes

¢ VmbErrorSuccess: If all requested bytes have been written
e VmbErrorBadParameter: Vector “buffer” is empty.
¢ VmbErrorincomplete: If at least one, but not all bytes have been written.

Vimba C++ Manual 1.7 64

”A"led V|S|On 5 Function reference

5.5 lInterfacelistObserver
5.5.1 InterfacelistChanged()

The event handler function that gets called whenever an linterfacelistObserver is triggered.

Type Name Description
out InterfacePtr pinterface The interface that triggered the event
out UpdateTriggerType reason The reason why the callback routine was triggered

5.5.2 lInterfacelistObserver destructor

Destroys an instance of class lInterfacelListObserver

Vimba C++ Manual 1.7 65

”A"led V|S|On 5 Function reference

5.6 ICameralistObserver
5.6.1 CameralistChanged()

The event handler function that gets called whenever an ICameralListObserver is triggered. This occurs
most likely when a camera was plugged in or out.

Type Name Description

out CameraPtr pCam The camera that triggered the event

out UpdateTriggerType reason The reason why the callback routine was triggered (e.g., a
new camera was plugged in)

5.6.2 ICameralistObserver destructor

Destroys an instance of class ICameralistObserver

Vimba C++ Manual 1.7 66

” Allied Vision

5.7 IFrameQObserver
5.7.1 FrameReceived()

The event handler function that gets called whenever a new frame is received

Type Name Description

in const FramePtr pFrame The frame that was received

5.7.2 IFrameQObserver destructor

Destroys an instance of class IFrameQObserver

Vimba C++ Manual 1.7

5

Function reference

67

” Allied Vision

5.8 |FeatureObserver
5.8.1 FeatureChanged()

The event handler function that gets called whenever a feature has changed

Type Name Description

in const FeaturePtr& pFeature The frame that has changed

5.8.2 IFeatureObserver destructor

Destroys an instance of class IFeatureObserver

Vimba C++ Manual 1.7

5

Function reference

68

” Allied Vision

5.9

|CameraFactory

59.1 CreateCamera()

Factory method to create a camera that extends the Camera class

Type
in const
in const
in const
in const
in const

char*

charx

charx*

charx*

charx

Name

pCameralD
pCameraName
pCameraModel
pCameraSerialNumber

pinterfacelD

in VmbInterfaceType interfaceType

in const

in const

charx

charx*

plnterfaceName

pInterfaceSerialNumber

in VmbAccessModeType interfacePermittedAccess

9,

59.2

5 Function reference

Description

The ID of the camera

The name of the camera

The model name of the camera
The serial number of the camera

The ID of the interface the camera is con-
nected to

The type of the interface the camera is con-
nected to

The name of the interface
The serial number of the interface

The access privileges for the interface

The ID of the camera may be, among others, one of the following:
”169.254.12.13”,7000f31000001”, a plain serial number: ”1234567890”, or the
device ID of the underlying transport layer.

|CameraFactory destructor

Destroys an instance of class Camera

Vimba C++ Manual 1.7

69

”A"led V|S|On 5 Function reference

5.10 Camera

5.10.1 Camera constructor

Creates an instance of class Camera

Type
in const
in const
in const
in const
in const

charx

char*

charx

charx

charx

Name Description

pID The ID of the camera

pName The name of the camera
pModel The model name of the camera

pSerialNumber The serial number of the camera

plnterfacelD The ID of the interface the camera is connected to

in VmbInterfaceType interfaceType The type of the interface the camera is connected to

9,

The ID of the camera may be, among others, one of the following:
”169.254.12.13”, 7000f31000001”, a plain serial number: ”1234567890”, or the
device ID of the underlying transport layer.

5.10.2 Camera destructor

Destroys an instance of class Camera

9,

Destroying a camera implicitly closes it beforehand.

5.10.3 Open()

Opens the specified camera.

Type

Name Description

in VmbAccessMode_t accessMode Access mode determines the level of control you have on

Vimba C++ Manual 1.7

the camera

70

”A"led V|S|On 5 Function reference

¢ VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorNotFound: The designated camera cannot be found

e VmbErrorinvalidAccess: Operation is invalid with the current access mode

A camera may be opened in a specific access mode. This mode determines the
level of control you have on a camera.
-
=

5.10.4 Close()

Closes the specified camera.

e VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command

callbacks are unregistered, the frame queue is cleared, and camera control is

@ Depending on the access mode this camera was opened in, events are killed,
-
- released.

5.10.5 GetlD()

Gets the ID of a camera.

Type Name Description

out std::string& cameralD The ID of the camera

¢ VmbErrorSuccess: If no error

5.10.6 GetName()

Gets the name of a camera.

Type Name Description

out std::string& name The name of the camera

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7 71

”Alhed V|S|On 5 Function reference

5.10.7 GetModel()

Gets the model name of a camera.

Type Name Description

out std::string& model The model name of the camera

¢ VmbErrorSuccess: If no error

5.10.8 GetSerialNumber()

Gets the serial number of a camera.

Type Name Description

out std::string& serialNumber The serial number of the camera

¢ VmbErrorSuccess: If no error

5.10.9 GetlnterfacelD()

Gets the interface ID of a camera.

Type Name Description

out std::string& interfacelD The interface ID of the camera

* VmbErrorSuccess: If no error

5.10.10 GetlInterfaceType()

Gets the type of the interface the camera is connected to. And therefore the type of the camera itself.

Type Name Description

out VmbInterfaceType& interfaceType The interface type of the camera

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7 72

”Alhed V|S|On 5 Function reference

5.10.11 GetPermittedAccess()

Gets the access modes of a camera.

Type Name Description

out VmbAccessModeType& permittedAccess The possible access modes of the camera

e VmbErrorSuccess: If no error

5.10.12 ReadRegisters()

Reads one or more registers consecutively. The number of registers to read is determined by the
number of provided addresses.

Type Name Description

in const Uint64Vector& addresses A list of register addresses

out Uint64Vector& buffer The returned data as vector

¢ VmbErrorSuccess: If all requested registers have been read

¢ VmbErrorBadParameter: Vectors “addresses” and/or "buffer” are empty.

¢ VmbErrorincomplete: If at least one, but not all registers have been read. See overload
ReadRegisters(const Uint64Vector&, Uint64Vector&, VmbUint32_ t&).

5.10.13 ReadRegisters()

Same as ReadRegisters(const Uint64Vector&, Uint64Vector&), but returns the number of successful
read operations in case of an error.

Type Name Description
in const Uint64Vector& addresses A list of register addresses
out Uint64Vector& buffer The returned data as vector
out VmbUint32_t& completedReads The number of successfully read registers

e VmbErrorSuccess: If all requested registers have been read
* VmbErrorBadParameter: Vectors “addresses” and/or “buffer” are empty.
¢ VmbErrorincomplete: If at least one, but not all registers have been read.

Vimba C++ Manual 1.7 73

”Alhed V|S|On 5 Function reference

5.10.14 WriteRegisters()

Writes one or more registers consecutively. The number of registers to write is determined by the
number of provided addresses.

Type Name Description

in const Uint64Vector& addresses A list of register addresses

in const Uint64Vector& buffer The data to write as vector

¢ VmbErrorSuccess: If all requested registers have been written

¢ VmbErrorBadParameter: Vectors “addresses” and/or “buffer” are empty.

¢ VmbErrorincomplete: If at least one, but not all registers have been written. See overload
WriteRegisters(const Uint64Vector&, const Uint64Vector&, VmbUint32_t&).

5.10.15 WriteRegisters()

Same as WriteRegisters(const Uint64Vector&, const Uint64Vector&), but returns the number of
successful write operations in case of an error.

Type Name Description
in const Uint64Vector& addresses A list of register addresses
in const Uint64Vector& buffer The data to write as vector
out VmbUint32_t& completedWrites The number of successfully read registers

¢ VmbErrorSuccess: If all requested registers have been written
¢ VmbErrorBadParameter: Vectors “addresses” and/or “buffer” are empty.
¢ VmbErrorincomplete: If at least one, but not all registers have been written.

5.10.16 ReadMemory()

Reads a block of memory. The number of bytes to read is determined by the size of the provided buffer.

Type Name Description

in const VmbUint64 _t& address The addressto read from

out UcharVector& buffer The returned data as vector

Vimba C++ Manual 1.7 74

”Alhed V|S|On 5 Function reference

¢ VmbErrorSuccess: If all requested bytes have been read

e VmbErrorBadParameter: Vector “buffer” is empty.

¢ VmbErrorincomplete: If at least one, but not all bytes have been read. See overload ReadMemory(
const VmbUint64_t&, UcharVector&, VmbUint32 t&).

5.10.17 ReadMemory()

Same as ReadMemory(const Uint64Vector&, UcharVector&), but returns the number of bytes
successfully read in case of an error VmbErrorincomplete.

Type Name Description
in const VmbUint64_t& address The address to read from
out UcharVector& buffer The returned data as vector
out VmbUint32_t& completeReads The number of successfully read bytes

¢ VmbErrorSuccess: If all requested bytes have been read
e VmbErrorBadParameter: Vector “buffer” is empty.
¢ VmbErrorincomplete: If at least one, but not all bytes have been read.

5.10.18 WriteMemory()

Writes a block of memory. The number of bytes to write is determined by the size of the provided buffer.

Type Name Description

in const VmbUint64_t& address The address to write to

in const UcharVector& buffer The data to write as vector
e VmbErrorSuccess: If all requested bytes have been written

¢ VmbErrorBadParameter: Vector “buffer” is empty.

¢ VmbErrorincomplete: If at least one, but not all bytes have been written. See overload
WriteMemory(const VmbUint64_t&, const UcharVector&, VmbUint32 t&).

5.10.19 WriteMemory()

Same as WriteMemory(const Uint64Vector&, const UcharVector&), but returns the number of bytes
successfully written in case of an error VmbErrorincomplete.

Vimba C++ Manual 1.7 75

”Alhed V|S|On 5 Function reference

Type Name Description
in const VmbUint64_t& address The address to write to
in const UcharVector& buffer The data to write as vector
out VmbUint32_t& sizeComplete The number of successfully written bytes

¢ VmbErrorSuccess: If all requested bytes have been written
e VmbErrorBadParameter: Vector “buffer” is empty.
¢ VmbErrorincomplete: If at least one, but not all bytes have been written.

5.10.20 AcquireSinglelmage()

Gets one image synchronously.

Type Name Description

out FramePtr& pFrame The frame that gets filled

in VmbUint32 t timeout The time to wait until the frame got filled

¢ VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: "pFrame” is NULL.
¢ VmbErrorTimeout: Call timed out

5.10.21 AcquireMultiplelmages()

Gets a certain number of images synchronously.

Type Name Description

out FramePtrVector& frames The frames that get filled

in VmbUint32_t timeout The time to wait until one frame got filled
@ The size of the frame vector determines the number of frames to use.
-

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7 76

”Alhed V|S|On 5 Function reference

¢ VmbErrorinternalFault: Filling all the frames was not successful.
¢ VmbErrorBadParameter: Vector “frames” is empty.

5.10.22 AcquireMultiplelmages()

Same as AcquireMultiplelmages(FramePtrVector&, VmbUint32_t), but returns the number of frames
that were filled completely.

Type Name Description
out FramePtrVector& frames The frames that get filled
in VmbUint32_t timeout The time to wait until one frame got filled
out VmbUint32_t& numFramesCompleted The number of frames that were filled com-
pletely
The size of the frame vector determines the number of frames to use. On
return, “numFramesCompleted” holds the number of frames actually filled.
-

¢ VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: Vector “frames” is empty.

5.10.23 StartContinuousimageAcquisition()

Starts streaming and allocates the needed frames

Type Name Description

in int bufferCount The number of frames to use

out const IFrameObserverPtr& pObserver The observer to use on arrival of new frames

e VmbErrorSuccess: If no error

¢ VmbErrorDeviceNotOpen: The camera has not been opened before

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadHandle: The given handle is not valid

¢ VmbErrorinvalidAccess: Operation is invalid with the current access mode

Vimba C++ Manual 1.7 77

”A"led V|S|On 5 Function reference

5.10.24 StopContinuousimageAcquisition()

Stops streaming and deallocates the needed frames

5.10.25 AnnounceFrame()

Announces a frame to the API that may be queued for frame capturing later.

Type Name Description

in const FramePtr& pFrame Shared pointer to a frame to announce

¢ VmbErrorSuccess: If no error

e VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadHandle: The given handle is not valid

e VmbErrorBadParameter: "pFrame” is NULL.

¢ VmbErrorStructSize: The given struct size is not valid for this version of the API

transport layer. The order in which the frames are announced is not taken in

@ Allows some preparation for frames like DMA preparation depending on the
- consideration by the API.

5.10.26 RevokeFrame()

Revoke a frame from the API.

Type Name Description

in const FramePtr& pFrame Shared pointer to a frame that is to be removed from the list of
announced frames

e VmbErrorSuccess: If no error

e VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadHandle: The given frame pointer is not valid

¢ VmbErrorBadParameter: "pFrame” is NULL.

¢ VmbErrorStructSize: The given struct size is not valid for this version of the API

@ The referenced frame is removed from the pool of frames for capturing images.
-

Vimba C++ Manual 1.7 78

”A"led V|S|On 5 Function reference

5.10.27 RevokeAllFrames()

Revoke all frames assigned to this certain camera.

e VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
e VmbErrorBadHandle: The given handle is not valid

5.10.28 QueueFrame()

Queues a frame that may be filled during frame capturing.

Type Name Description

in const FramePtr& pFrame A shared pointer to a frame

e VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command

e VmbErrorBadHandle: The given frame is not valid

¢ VmbErrorBadParameter: "pFrame” is NULL.

e VmbErrorStructSize: The given struct size is not valid for this version of the API

e VmbErrorinvalidCall: StopContinuousimageAcquisition is currently running in another thread

which the frames are filled is determined by the order in which they are
gueued. If the frame was announced with AnnounceFrame() before, the
application has to ensure that the frame is also revoked by calling
RevokeFrame() or RevokeAll() when cleaning up.

@ The given frame is put into a queue that will be filled sequentially. The order in
-

5.10.29 FlushQueue()

Flushes the capture queue.

¢ VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
e VmbErrorBadHandle: The given handle is not valid

in the input queue. After this call, no frame notification will occur until frames

@ All the currently queued frames will be returned to the user, leaving no frames
- are queued again.

Vimba C++ Manual 1.7 79

”Alhed V|S|On 5 Function referen

5.10.30 StartCapture()

Prepare the API for incoming frames from this camera.

e VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
e VmbErrorBadHandle: The given handle is not valid

¢ VmbErrorDeviceNotOpen: Camera was not opened for usage

e VmbErrorinvalidAccess: Operation is invalid with the current access mode

5.10.31 EndCapture()

Stop the API from being able to receive frames from this camera.

¢ VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadHandle: The given handle is not valid

Consequences of VmbCaptureEnd(): - The frame queue is flushed - The frame
callback will not be called any more
-

5.10.32 SaveCameraSettings()

Saves the current camera setup to an XML file

Type Name Description
in std::string pStrFileName xml file name
in VmbFeaturePersistSettings_t* pSettings pointer to settings struct

¢ VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
¢ VmbErrorBadHandle: The given handle is not valid

¢ VmbErrorinternalFault: When something unexpected happens in VimbaC function
¢ VmbErrorOther: Every other failure in load/save settings implementation class

Vimba C++ Manual 1.7

ce

80

”Alhed V|S|On 5 Function reference

5.10.33 LoadCameraSettings()

Loads the current camera setup from an XML file into the camera

Type Name Description
in std::string pStrFileName xml file name
in VmbFeaturePersistSettings_t* pSettings pointer to settings struct

e VmbErrorSuccess: If no error

¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
e VmbErrorBadHandle: The given handle is not valid

¢ VmbErrorinternalFault: When something unexpected happens in VimbaC function
¢ VmbErrorOther: Every other failure in load/save settings implementation class

5.10.34 LoadSaveSettingsSetup()

Sets Load/Save settings behaviour (alternative to settings struct)

Type Name Description

in VmbFeaturePersist_t persistType determines which feature shall be considered during
load/save settings

in VmbUint32_t maxlterations determines how many ’tries’ during loading feature
values shall be performed

in VmbUint32_t logginglLevel determines level of detail for load/save settings log-
ging

Vimba C++ Manual 1.7 81

” Allied Vision

511 Frame

5.11.1 Frame constructor

Creates an instance of class Frame of a certain size

Type Name Description

in VmbInt64_t bufferSize The size of the underlying buffer

5.11.2 Frame constructor

Creates an instance of class Frame with the given user buffer of the given size

Type Name Description

in VmbUchar_t* pBuffer A pointer to an allocated buffer

in VmbInt64_t bufferSize The size of the underlying buffer

5.11.3 Frame destructor

Destroys an instance of class Frame

5.11.4 RegisterObserver()

Registers an observer that will be called whenever a new frame arrives

Type Name Description

5

Function reference

in const IFrameObserverPtr& pObserver An object that implements the IObserver inter-

face
¢ VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: "pObserver” is NULL.
* VmbErrorResources: The observer was in use
As new frames arrive, the observer’s FrameReceived method will be called.
Only one observer can be registered.
-
—

Vimba C++ Manual 1.7

82

” Allied Vision

5.11.5 UnregisterObserver()

Unregisters the observer that was called whenever a new frame arrived

5.11.6 GetAncillaryData()

Returns the part of a frame that describes the chunk data as an object

Type Name Description

out AncillaryDataPtr& pAncillaryData The wrapped chunk data

¢ VmbErrorSuccess: If no error
e VmbErrorNotFound: No chunk data present

5.11.7 GetAncillaryData()

Returns the part of a frame that describes the chunk data as an object

Type Name Description

out ConstAncillaryDataPtr& pAncillaryData The wrapped chunk data

e VmbErrorSuccess: If no error
¢ VmbErrorNotFound: No chunk data present

5.11.8 GetBuffer()

Returns the complete buffer including image and chunk data

Type Name Description

out VmbUchar_t* pBuffer A pointer to the buffer

e VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

5

Function reference

83

” Allied Vision

5.11.9 GetBuffer()

Returns the complete buffer including image and chunk data

Type Name Description

out const VmbUchar_t* pBuffer A pointer to the buffer

¢ VmbErrorSuccess: If no error

5.11.10 Getlmage()

Returns only the image data

Type Name Description

out VmbUchar_t* pBuffer A pointer to the buffer

¢ VmbErrorSuccess: If no error

5.11.11 Getlmage()

Returns only the image data

Type Name Description

out const VmbUchar_t* pBuffer A pointer to the buffer

¢ VmbErrorSuccess: If no error

5.11.12 GetReceiveStatus()

Returns the receive status of a frame

Type Name Description

out VmbFrameStatusType& status The receive status

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

5

Function reference

84

”Alhed V|S|On 5 Function reference

5.11.13 GetlmageSize()

Returns the memory size of the image

Type Name Description

out VmbUint32_t& imageSize The size in bytes

¢ VmbErrorSuccess: If no error

5.11.14 GetAncillarySize()

Returns memory size of the chunk data

Type Name Description

out VmbUint32_t& ancillarySize The size in bytes

¢ VmbErrorSuccess: If no error

5.11.15 GetBufferSize()

Returns the memory size of the frame buffer holding both the image data and the ancillary data

Type Name Description

out VmbUint32_t& bufferSize The size in bytes

¢ VmbErrorSuccess: If no error

5.11.16 GetPixelFormat()

Returns the GenlCam pixel format

Type Name Description

out VmbPixelFormatType& pixelFormat The GenlCam pixel format

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

85

” Allied Vision

5.11.17 GetWidth()

Returns the width of the image

Type Name Description

out VmbUint32_t& width The width in pixels

¢ VmbErrorSuccess: If no error

5.11.18 GetHeight()

Returns the height of the image

Type Name Description

out VmbUint32_t& height The heightin pixels

¢ VmbErrorSuccess: If no error

5.11.19 GetOffsetX()

Returns the x offset of the image

Type Name Description

out VmbUint32_t& offsetX The x offset in pixels

¢ VmbErrorSuccess: If no error

5.11.20 GetOffsetY()

Returns the y offset of the image

Type Name Description

out VmbUint32_t& offsetY They offsetin pixels

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

5

Function reference

86

” Allied Vision

5.11.21 GetFramelD()

Returns the frame ID

Type Name Description

out VmbUint64_t& framelD The frame ID

¢ VmbErrorSuccess: If no error

5.11.22 GetTimeStamp()

Returns the time stamp

Type Name Description

out VmbUint64_t& timestamp The time stamp

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

5

Function reference

87

” Allied Vision

5 Function reference
5.12 Feature
5.12.1 GetValue()
Queries the value of a feature of type Vmbint64
Type Name Description
out VmbInt64_t& value The feature’s value
5.12.2 GetValue()
Queries the value of a feature of type double
Type Name Description
out double& value The feature’s value
5.12.3 GetValue()
Queries the value of a feature of type string
Type Name Description
out std::string& value The feature’s value
@ When an empty string is returned, its size indicates the maximum length
-

5.12.4 GetValue()

Queries the value of a feature of type bool

Type Name Description

out bool& value The feature’s value

Vimba C++ Manual 1.7

88

” Allied Vision

5.12.5 GetValue()

Queries the value of a feature of type UcharVector

Type Name Description

out UcharVector& value The feature’s value

5.12.6 GetValue()

Queries the value of a feature of type const UcharVector

Type Name Description

out UcharVector& value The feature’s value

out VmbUint32_ t& sizeFilled The number of actually received values

5.12.7 GetValues()

Queries the values of a feature of type Int64Vector

Type Name Description

out Int64Vector& values The feature’s values

5.12.8 GetValues()

Queries the values of a feature of type StringVector

Type Name Description

out StringVector& values The feature’svalues

Vimba C++ Manual 1.7

5

Function reference

89

” Allied Vision

5.12.9 GetEntry()

Queries a single enum entry of a feature of type Enumeration

Type Name Description

out EnumEntry& entry An enum feature’s enum entry

in const char* pEntryName The name of the enum entry

5.12.10 GetEntries()

Queries all enum entries of a feature of type Enumeration

Type Name Description

out EnumEntryVector& entries Anenum feature’s enum entries

5.12.11 GetRange()

Queries the range of a feature of type double

Type Name Description

out double& minimum The feature’s min value

out double& maximum The feature’s max value

5.12.12 GetRange()

Queries the range of a feature of type Vmbint64

Type Name Description

out VmbInt64_t& minimum The feature’s min value

out VmbInt64 t& maximum The feature’s max value

Vimba C++ Manual 1.7

5

Function reference

90

” Allied Vision

5.12.13 SetValue()

Sets the value of a feature of type VmbInt32

Type Name Description

in const VmbInt32_t& value The feature’s value

5.12.14 SetValue()

Sets the value of a feature of type VmblInt64

Type Name Description

in const VmbInt64_t& value The feature’s value

5.12.15 SetValue()

Sets the value of a feature of type double

Type Name Description

in const double& value The feature’svalue

5.12.16 SetValue()

Sets the value of a feature of type char*

Type Name Description

in const char* pValue The feature’svalue

5.12.17 SetValue()

Sets the value of a feature of type bool

Vimba C++ Manual 1.7

5

Function reference

91

” Allied Vision

Type Name Description

in bool value The feature’s value

5.12.18 SetValue()

Sets the value of a feature of type UcharVector

Type Name Description

in const UcharVector& value The feature’svalue

5.12.19 Haslncrement()

Gets the support state increment of a feature

Type Name Description

out VmbBool_t& incrementsupported The feature’s increment support state

5.12.20 GetIncrement()

Gets the increment of a feature of type VmblInt64

Type Name Description

out VmbInt64_t& increment The feature’sincrement

5.12.21 GetIncrement()

Gets the increment of a feature of type double

Type Name Description

out double& increment The feature’s increment

Vimba C++ Manual 1.7

5

Function reference

92

”Alhed V|S|On 5 Function reference

5.12.22 IsValueAvailable()

Indicates whether an existing enumeration value is currently available. An enumeration value might not
be selectable due to the camera’s current configuration.

Type Name Description

in const char* pValue The enumeration value as string

out bool& available True when the given value is available

e VmbErrorSuccess: If no error

¢ VmbErrorinvalidValue: If the given value is not a valid enumeration value for this enum
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command

e VmbErrorinvalidAccess: Operation is invalid with the current access mode

¢ VmbErrorWrongType: The feature is not an enumeration

5.12.23 IsValueAvailable()

Indicates whether an existing enumeration value is currently available. An enumeration value might not
be selectable due to the camera’s current configuration.

Type Name Description
in const VmbInt64_t value The enumeration value as int
out bool& available True when the given value is available

e VmbErrorSuccess: If no error

¢ VmbErrorinvalidValue: If the given value is not a valid enumeration value for this enum
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command

e VmbErrorinvalidAccess: Operation is invalid with the current access mode

¢ VmbErrorWrongType: The feature is not an enumeration

5.12.24 RunCommand()

Executes a feature of type Command

Vimba C++ Manual 1.7 93

” Allied Vision

5.12.25 IsCommandDone()

Indicates whether the execution of a feature of type Command has finished

Type Name Description

out bool& isDone True when execution has finished

5.12.26 GetName()

Queries a feature’s name

Type Name Description

out std::string& name The feature’s name

5.12.27 GetDisplayName()

Queries a feature’s display name

Type Name Description

out std::string& displayName The feature’s display name

5.12.28 GetDataType()

Queries a feature’s type

Type Name Description

out VmbFeatureDataType& dataType The feature’s type

5.12.29 GetFlags()

Queries a feature’s access status

Vimba C++ Manual 1.7

5

Function reference

94

” Allied Vision

Type Name Description

out VmbFeatureFlagsType& flags The feature’s access status

5.12.30 GetCategory()

Queries a feature’s category in the feature tress

Type Name Description

out std::string& category The feature’s position in the feature tree

5.12.31 GetPollingTime()

Queries a feature’s polling time

Type Name Description

out VmbUint32_t& pollingTime The interval to poll the feature

5.12.32 GetUnit()

Queries a feature’s unit

Type Name Description

out std::string& unit The feature’s unit

5.12.33 GetRepresentation()

Queries a feature’s representation

Type Name Description

out std::string& representation The feature’s representation

Vimba C++ Manual 1.7

5

Function reference

95

” Allied Vision

5.12.34 GetVisibility()

Queries a feature’s visibility

Type Name Description

out VmbFeatureVisibilityType& Vvisibility The feature’s visibility

5.12.35 GetToolTip()

Queries a feature’s tool tip to display in the GUI

Type Name Description

out std::string& toolTip The feature’s tool tip

5.12.36 GetDescription()

Queries a feature’s description

Type Name Description

out std::string& description The feature’sdescription

5.12.37 GetSFNCNamespace()

Queries a feature’s Standard Feature Naming Convention namespace

Type Name Description

out std::string& sFNCNamespace The feature’s SENC namespace

5.12.38 GetAffectedFeatures()

Queries the feature’s that are dependent from the current feature

Vimba C++ Manual 1.7

5

Function reference

96

”Alhed V|S|On 5 Function reference

Type Name Description

out FeaturePtrVector& affectedFeatures The features that get invalidated through the cur-
rent feature

5.12.39 GetSelectedFeatures()

Gets the features that get selected by the current feature

Type Name Description

out FeaturePtrVector& selectedFeatures The selected features

5.12.40 |IsReadable()

Queries the read access status of a feature

Type Name Description

out bool& isReadable True when feature can be read

5.12.41 IsWritable()

Queries the write access status of a feature

Type Name Description

out bool& isWritable True when feature can be written

5.12.42 IsStreamable()

Queries whether a feature’s value can be transferred as a stream

Type Name Description

out bool& isStreamable True when streamable

Vimba C++ Manual 1.7 97

”A"led V|S|On 5 Function reference

5.12.43 RegisterObserver()

Registers an observer that notifies the application whenever a features value changes

Type Name Description

out const IFeatureObserverPtr& pObserver The observer to be registered

¢ VmbErrorSuccess: If no error
e VmbErrorBadParameter: "pObserver” is NULL.

5.12.44 UnregisterObserver()

Unregisters an observer

Type Name Description

out const IFeatureObserverPtr& pObserver The observer to be unregistered

e VmbErrorSuccess: If no error
¢ VmbErrorBadParameter: "pObserver” is NULL.

Vimba C++ Manual 1.7 98

”Alhed V|S|On 5 Function reference

5.13 EnuméEntry

5.13.1 EnumeEntry constructor

Creates an instance of class EnumEntry

Type Name Description
in const char* pName The name of the enum
in const char* pDisplayName The declarative name of the enum
in const char* pDescription The description of the enum
in const char* pTooltip A tooltip that can be used by a GUI
in const char* pSNFCNamespace The SFNC namespace of the enum
in VmbFeatureVisibility_t visibility The visibility of the enum
in VmbInt64_t value The integer value of the enum

5.13.2 EnumkEntry constructor

Creates an instance of class EnumEntry

5.13.3 EnumeEntry copy constructor

Creates a copy of class EnumEntry

5.13.4 EnumEntry assignment operator

assigns EnumEntry to existing instance

5.13.5 EnumEntry destructor

Destroys an instance of class EnumEntry

Vimba C++ Manual 1.7 99

” Allied Vision

5.13.6 GetName()

Gets the name of an enumeration

Type Name Description

out std::string& name The name of the enumeration

5.13.7 GetDisplayName()

Gets a more declarative name of an enumeration

Type Name Description

out std::string& displayName The display name of the enumeration

5.13.8 GetDescription()

Gets the description of an enumeration

Type Name Description

out std::string& description The description of the enumeration

5.13.9 GetTooltip()

Gets a tooltip that can be used as pop up help in a GUI

Type Name Description

out std::string& tooltip The tooltip as string

5.13.10 GetValue()

Gets the integer value of an enumeration

Vimba C++ Manual 1.7

5

Function reference

100

”A"led V|S|On 5 Function reference

Type Name Description

out VmbInt64_t& value The integer value of the enumeration

5.13.11 GetVisibility()

Gets the visibility of an enumeration

Type Name Description

out VmbFeatureVisibilityType& value The visibility of the enumeration

5.13.12 GetSNFCNamespace()

Gets the standard feature naming convention namespace of the enumeration

Type Name Description

out std::string& sFNCNamespace The feature’s SFNC namespace

Vimba C++ Manual 1.7 101

”A"led V|S|On 5 Function reference

5.14 AncillaryData
5.14.1 Open()

Opens the ancillary data to allow access to the elements of the ancillary data via feature access.

e VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command

@ This function can only succeed if the given frame has been filled by the API.
-

5.14.2 Close()

Closes the ancillary data inside a frame.

¢ VmbErrorSuccess: If no error
¢ VmbErrorApiNotStarted: VmbStartup() was not called before the current command
e VmbErrorBadHandle: The given handle is not valid

After reading the ancillary data and before re-queuing the frame, ancillary data
must be closed.
-

5.14.3 GetBuffer()

Returns the underlying buffer

Type Name Description

out VmbUchar_t*& pBuffer A pointer to the buffer

¢ VmbErrorSuccess: If no error

5.14.4 GetBuffer()

Returns the underlying buffer

Vimba C++ Manual 1.7 102

” Allied Vision

Type Name Description

out const VmbUchar_ t*& pBuffer A pointer to the buffer

¢ VmbErrorSuccess: If no error

5.145 GetSize()

Returns the size of the underlying buffer

Type Name Description

out VmbUint32 t& size The size of the buffer

¢ VmbErrorSuccess: If no error

Vimba C++ Manual 1.7

5

Function reference

103

	Contacting Allied Vision
	Document history and conventions
	Document history
	Conventions used in this manual
	Styles
	Symbols

	General aspects of the API
	API Usage
	API Version
	API Startup and Shutdown
	Shared Pointers
	General aspects
	Replacing the shared pointer library

	Listing available cameras
	Opening and closing a camera
	Accessing Features
	Image Capture (API) and Acquisition (Camera)
	Image Capture and Image Acquisition
	Asynchronous image acquisition - overview
	Image Capture
	Image Acquisition

	Using Events
	Saving and loading settings
	Triggering cameras
	External trigger
	Trigger over Ethernet – Action Commands

	Additional configuration: Listing Interfaces
	Troubleshooting
	GigE cameras
	USB cameras
	Goldeye CL cameras

	Error Codes

	Function reference
	VimbaSystem
	GetInstance()
	QueryVersion()
	Startup()
	Shutdown()
	GetInterfaces()
	GetInterfaceByID()
	OpenInterfaceByID()
	GetCameras()
	GetCameraByID()
	OpenCameraByID()
	RegisterCameraListObserver()
	UnregisterCameraListObserver()
	RegisterInterfaceListObserver()
	UnregisterInterfaceListObserver()
	RegisterCameraFactory()
	UnregisterCameraFactory()

	Interface
	Open()
	Close()
	GetID()
	GetType()
	GetName()
	GetSerialNumber()
	GetPermittedAccess()

	FeatureContainer
	FeatureContainer constructor
	FeatureContainer destructor
	GetFeatureByName()
	GetFeatures()

	IRegisterDevice
	ReadRegisters()
	ReadRegisters()
	WriteRegisters()
	WriteRegisters()
	ReadMemory()
	ReadMemory()
	WriteMemory()
	WriteMemory()

	IInterfaceListObserver
	InterfaceListChanged()
	IInterfaceListObserver destructor

	ICameraListObserver
	CameraListChanged()
	ICameraListObserver destructor

	IFrameObserver
	FrameReceived()
	IFrameObserver destructor

	IFeatureObserver
	FeatureChanged()
	IFeatureObserver destructor

	ICameraFactory
	CreateCamera()
	ICameraFactory destructor

	Camera
	Camera constructor
	Camera destructor
	Open()
	Close()
	GetID()
	GetName()
	GetModel()
	GetSerialNumber()
	GetInterfaceID()
	GetInterfaceType()
	GetPermittedAccess()
	ReadRegisters()
	ReadRegisters()
	WriteRegisters()
	WriteRegisters()
	ReadMemory()
	ReadMemory()
	WriteMemory()
	WriteMemory()
	AcquireSingleImage()
	AcquireMultipleImages()
	AcquireMultipleImages()
	StartContinuousImageAcquisition()
	StopContinuousImageAcquisition()
	AnnounceFrame()
	RevokeFrame()
	RevokeAllFrames()
	QueueFrame()
	FlushQueue()
	StartCapture()
	EndCapture()
	SaveCameraSettings()
	LoadCameraSettings()
	LoadSaveSettingsSetup()

	Frame
	Frame constructor
	Frame constructor
	Frame destructor
	RegisterObserver()
	UnregisterObserver()
	GetAncillaryData()
	GetAncillaryData()
	GetBuffer()
	GetBuffer()
	GetImage()
	GetImage()
	GetReceiveStatus()
	GetImageSize()
	GetAncillarySize()
	GetBufferSize()
	GetPixelFormat()
	GetWidth()
	GetHeight()
	GetOffsetX()
	GetOffsetY()
	GetFrameID()
	GetTimeStamp()

	Feature
	GetValue()
	GetValue()
	GetValue()
	GetValue()
	GetValue()
	GetValue()
	GetValues()
	GetValues()
	GetEntry()
	GetEntries()
	GetRange()
	GetRange()
	SetValue()
	SetValue()
	SetValue()
	SetValue()
	SetValue()
	SetValue()
	HasIncrement()
	GetIncrement()
	GetIncrement()
	IsValueAvailable()
	IsValueAvailable()
	RunCommand()
	IsCommandDone()
	GetName()
	GetDisplayName()
	GetDataType()
	GetFlags()
	GetCategory()
	GetPollingTime()
	GetUnit()
	GetRepresentation()
	GetVisibility()
	GetToolTip()
	GetDescription()
	GetSFNCNamespace()
	GetAffectedFeatures()
	GetSelectedFeatures()
	IsReadable()
	IsWritable()
	IsStreamable()
	RegisterObserver()
	UnregisterObserver()

	EnumEntry
	EnumEntry constructor
	EnumEntry constructor
	EnumEntry copy constructor
	EnumEntry assignment operator
	EnumEntry destructor
	GetName()
	GetDisplayName()
	GetDescription()
	GetTooltip()
	GetValue()
	GetVisibility()
	GetSNFCNamespace()

	AncillaryData
	Open()
	Close()
	GetBuffer()
	GetBuffer()
	GetSize()

