
 

 
 
 

Page 1 of 59  

 
 
 

Vision SDK  

(v03.xx) 

Development Guide 

 

 



 

 
Page 2 of 59  

IMPORTANT NOTICE 

 

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to 
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant 
information to verify, before placing orders, that information being relied on is current and complete. All 
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, 
including those pertaining to warranty, patent infringement, and limitation of liability. 

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with 
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems 
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily 
performed, except those mandated by government requirements. 

Customers are responsible for their applications using TI components. 

In order to minimize risks associated with the customer’s applications, adequate design and operating 
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards. 

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent 
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or 
other intellectual property right of TI covering or relating to any combination, machine, or process in which such 
products or services might be or are used. TI’s publication of information regarding any third party’s products or 
services does not constitute TI’s approval, license, warranty or endorsement thereof. 

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without 
alteration and is accompanied by all associated warranties, conditions, limitations and notices.  Representation 
or reproduction of this information with alteration voids all warranties provided for an associated TI product or 
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use. 

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for 
that product or service voids all express and any implied warranties for the associated TI product or service, is 
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. 

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.  
www.ti.com/sc/docs/stdterms.htm 

Mailing Address: 

Texas Instruments 
Post Office Box 655303 

Dallas, Texas 75265 

 

Copyright © 2017, Texas Instruments Incorporated 



 

 
Page 3 of 59  

TABLE OF CONTENTS 

IMPORTANT NOTICE ................................................................................................... 2 

1 Introduction ................................................................................................. 5 

2 Use Case Development ................................................................................. 6 

2.1 Example use case ............................................................................................. 6 

2.2 Chain Creation ................................................................................................. 7 

2.3 Starting Execution of Chain ............................................................................. 10 

2.4 Stopping and Deletion of Chain ........................................................................ 11 

2.5 Build the new usecase file ............................................................................... 11 

3 Link Development ...................................................................................... 13 

3.1 What is a Link ................................................................................................ 13 

3.2 Link Files ....................................................................................................... 13 

3.3 Creating public header file ............................................................................... 14 

3.4 Creating private header file ............................................................................. 14 

3.5 Creating task file ............................................................................................ 14 

3.6 Creating driver file ......................................................................................... 15 

3.7 Initializing link ............................................................................................... 16 

4 Algorithm Link Development ...................................................................... 17 

4.1 Algorithm Link Design Overview ....................................................................... 17 

4.2 Algorithm Link Skeleton .................................................................................. 17 

4.3 Algorithm Link Plug-In Development ................................................................. 18 

4.4 Algorithm Link Plug-In Integration .................................................................... 23 

4.5 Directory Structure and Make File Changes ........................................................ 25 

5 Porting Vision SDK ..................................................................................... 26 

5.1 Using custom memory map ............................................................................. 26 

5.2 Support for custom core selection .................................................................... 26 

5.3 Support for custom board................................................................................ 26 

5.4 Support for different video capture device ......................................................... 26 

5.5 Support for different LCD ................................................................................ 27 

5.6 Specifying custom core frequencies to BIOS ...................................................... 27 

5.7 Using custom PLL and clock settings ................................................................. 27 

6 Boot time optimizations on TDA3X ............................................................. 28 

6.1 Usecase supported for fast boot demonstration .................................................. 28 

6.2 Optimizations challenges ................................................................................. 28 

6.3 Techniques for boot time optimization (Framework level) .................................... 28 

6.4 Steps to convert a usecase into fast boot usecase .............................................. 33 

7 Power Optimization in Vision SDK .............................................................. 35 

7.1 Putting CPUs to Low Power when not used ........................................................ 35 

7.2 Limp Home Mode ........................................................................................... 38 

7.3 DSP and EVE run time off and on ..................................................................... 42 

7.4 Reading Power State and Clock Frequency of the system .................................... 45 

8 Memory Allocation ..................................................................................... 46 

8.1 External Buffer Memory Allocation .................................................................... 47 



 

 
Page 4 of 59  

8.2 Internal Buffer Memory Allocation .................................................................... 48 

8.3 IPC Notify Memory ......................................................................................... 49 

8.4 Temporary Scratch memory for algorithms ........................................................ 50 

8.5 Memory for Remote Log, Link Statistics, Interprocessor communication, 
VPDMA Descriptors ......................................................................................... 51 

8.6 Memory for BIOS Objects ................................................................................ 51 

8.7 Known issues and limitations for Static memory allocation system ....................... 52 

9 Surround view use-case using TIDA00455/OV490..................................... 53 

10 Usage of Windowed Watchdog Timer feature in TDA3x .............................. 54 

10.1 RTI link – Summary........................................................................................ 54 

10.2 WWDT expiry handling .................................................................................... 54 

10.3 RTI link – Task description .............................................................................. 54 

10.4 WWDT configuration and reconfiguration ........................................................... 55 

11 Usage of filesystem with Vision SDK .......................................................... 56 

11.1 Features ....................................................................................................... 56 

11.2 Known Limitations .......................................................................................... 56 

11.3 Integration Details ......................................................................................... 56 

11.4 Using FAT filesystem ...................................................................................... 57 

12 Frequently Asked Questions ....................................................................... 58 

13 Revision History ......................................................................................... 59 

 

 

  



 

 
Page 5 of 59  

1 Introduction 

Vision Software Development Kit (SDK) is a multi-processor, multi-channel software 

development platform for TI family of ADAS SoCs. The software framework allows 

users to create different ADAS application data flows involving video capture, video 

pre-processing, video analytics algorithms, and video display.  

 

This document explains procedure for following 

1. To develop a use case application using Vision SDK 

2. To develop a new algorithm link 

 

This document assumes that the reader is familiar with basics of links and chains 

architecture used in Vision SDK. 

 

While describing the procedure to develop a use case, as an example, a simple use 

case is presented. This use case is available as an example in Vision SDK release 

package. 

 

While describing the procedure to develop and integrate an algorithm link, as an 

example, two simple algorithms are presented. These algorithms are available as 

examples in Vision SDK release package. 

 

 

 

 

  



 

 
Page 6 of 59  

2 Use Case Development 

By use case, we mean the application which connects the links to form a chain and 

hence build a system. 

2.1 Example use case 

 

 

 

The example use case shown above consists of image capture (on IPU), followed by 

an algorithm (on DSP) and then followed by display (on IPU) of the image. For 

simplicity the example algorithm is chosen to be of a frame copy from one buffer to 

another.  

For the purpose of capture and display the corresponding links on M4 are used.  

For the frame copy algorithm, the corresponding algorithm link on DSP is chosen. 

Since the use case spans across two different cores, IPC links are chosen for data 

exchange between cores. In general, a pair of IPC links (IPC-IN/IPC-OUT) is required 

to enable the data flow across a CPU boundary. 

 

Main implementation of this use case is present in file  

\vision_sdk\apps\src\rtos\usecases\vip_single_cam_frame_copy\chains_vipSingleCa

meraFrameCopy.c 

 

 

Rest of this document explains various steps involved in building a use case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Page 7 of 59  

2.2 Chain Creation 

Use case in also referred to as a chain. Creation of a chain comprises of creation and 

connection of links. Following are the sub steps involved in creation of a chain. 

 

2.2.1 Directory Structure 

It is recommended to follow below directory structure for better clarity and 

modularity of the code base. 

 

Create a directory, named as per the new use case (say ” new_usecase” ), under  

\vision_sdk\apps\src\rtos\usecases\ 

 

Create a new source file (.c), named as per the new use case, under 

\vision_sdk\apps\src\rtos\usecases\new_usecase\ 

 

Refer the chains_vipSingleCameraFrameCopy.c under 

 “\vision_sdk\apps\src\rtos\usecases\vip_single_cam_frame_copy” as reference. 

 

For example, in case of “vip_single_cam_frame_copy”, use case is implemented in 

function Chains_vipSingleCameraFrameCopy() in file chains_vipSingleCameraFrameCopy.c 

2.2.2 Generating the use-case using the use-case gen tool 

Refer to docs\VisionSDK_UsecaseGen_Overview.pdf and 

docs\VisionSDK_UsecaseGen_UserGuide.pdf  for using the use-case generation tool. 

 

Basic steps are, 

1. Write the use-case in a .txt file,  

example, chains_vipSingleCameraFrameCopy.txt 

2. Run the tool to generate the use-case file as shown in below example, 

> \vision_sdk\build\rtos\scripts\vsdk_win32.exe –img –file 

chains_vipSingleCameraFrameCopy.txt 

3. This will generate the files chains_vipSingleCameraFrameCopy_priv.c, 

chains_vipSingleCameraFrameCopy_priv.h 

4. Write the remaing portion of the use-case, ex, 

chains_vipSingleCameraFrameCopy.c 

5. Compile and run the use-case 

2.2.3 Setting of Link ID 

 

NOTE: Setting of link ID code is generated by the use-case gen tool, this 

section can be referred for informational purposes only. 

 

Each link in the chain has a unique link ID. First step in chain creation is to assign 

link Ids for all the links present in the use case. 

 



 

 
Page 8 of 59  

For example use case, setting of link Id is handled in function 
chains_vipSingleCameraFrameCopy_SetLinkId () [chains_vipSingleCameraFrameCopy_priv.c] 

 

For links which can execute on a particular CPU core only, the Link Id value is just 

defined by a macro. Ex: For capture link which is present only on M4 core, the link Id 

is as follows, 

pObj->captureLinkId = SYSTEM_LINK_ID_CAPTURE; 

 

Refer file, \vision_sdk\links_fw\include\link_api\system_linkId.h for the available 

links 

 

For common links, which can execute on any CPU core, the link Id value depends on 

the processor core on which the link will run and the functionality of the link. 

Ex: For IPC In Link which runs on a given CPU, the link Id is obtained as a function of 

both the proc Id and the link functionality as follows -   

pObj->ipcInLink_CPU_Id = SYSTEM_MAKE_LINK_ID(pObj->algLinkProcId, SYSTEM_LINK_ID_IPC_IN_0); 

 

2.2.4 Default Setting of Link parameters 

 

NOTE: Default Setting of Link parameters code is generated by the use-case 

gen tool, this section can be referred for informational purposes only. 

 

Typically, each link will have certain default values for creation time parameters. 

Setting of these default values can be done by calling the parameter init functions 

provided by Vision SDK (Ex: CaptureLink_CreateParams_Init() function performs default 

parameter initialization for capture link)  

Function calls to all the default parameter value initialization can be seen in function 
chains_vipSingleCameraFrameCopy_ResetLinkPrms () [chains_vipSingleCameraFrameCopy_priv.c] 

 

 

2.2.5 Setting of Link parameters 

The default Parameter values can be modified here as needed by the use case. 

 

This is done in function 
chains_vipSingleCameraFrameCopy_SetAppPrms()[chains_vipSingleCameraFrameCopy.c]  

 

This step need to be done for each link individually, if usecase demands different set 

of values compared with the default values.   

 

The use-case gen tool also generates code to set parameters for some links, so these 

need not be done by the user. The links for which the parameters are generated by 

the use-case gen tool are, 

- DUP 

- MERGE 



 

 
Page 9 of 59  

- IPC OUT 

- IPC IN 

 

This is done in function chains_vipSingleCameraFrameCopy_SetPrms() 

[chains_vipSingleCameraFrameCopy_priv.c] 

 

2.2.6 Connecting Links 

 

NOTE: Connecting links code is generated by the use-case gen tool, this 

section can be referred for informational purposes only. 

 

This step configures the connection between several links in the desired manner. 

This is nothing but creating the desired chain. 

 

For example use case, connecting links is done in function  

chains_vipSingleCameraFrameCopy_ConnectLinks () [chains_vipSingleCameraFrameCopy_priv.c] 

 

Connecting a link to its previous and next link is by programming values of input and 

output queue parameters, which are part of Link create parameters. 

 

In example use case, connecting algorithm link to its previous link (IPC in link) and 

next link (IPC out link) is done as follows: 

        pObj->algLinkCreatePrms.inQueParams.prevLinkId = pObj->ipcInLink_CPU_Id; 

        pObj->algLinkCreatePrms.inQueParams.prevLinkQueId = 0; 

        pObj->algLinkCreatePrms.outQueParams.nextLink = pObj->ipcOutLink_CPU_Id; 

  

2.2.7 Link creation 

 

NOTE: Link creation code is generated by the use-case gen tool, this section 

can be referred for informational purposes only. 

 

Links are created using System_linkCreate() API, which takes in link Id, create time 

parameters and size of create time params structure as arguments.  Resources and 

memory allocation is done in this step. 

 

For example use case, link creation calls are present in function  

chains_vipSingleCameraFrameCopy_Create() [chains_vipSingleCameraFrameCopy_priv.c] 

 

Ex: Creation of capture link is done as follows  

    status = System_linkCreate(pObj->captureLinkId, &pObj->capturePrm, sizeof(pObj->capturePrm)); 

 

Note:  



 

 
Page 10 of 59  

1. Typically, every link takes a few input side create time parameters from the 

previous link. For example, there would be certain create time parameters, like 

input color format, input video frame data format, input frame resolution, input 

pitch  etc., which are actually controlled by the previous link.  These parameters 

are not exposed for user configuration.  These common parameters of the links, 

previous link (output) and current link (input) need to be exactly the same. 

Programming these on both links explicitly could be errors prone and redundant.  

In order to avoid this, these parameters are programmed for the output side of 

first (previous) link in the chain and subsequent (next) link in the chain pick the 

parameters by querying their previous link. This querying of the previous link 

happens during create phase. For the query to be successful, previous link needs 

to be successfully created before creating the current link. Hence creation of 

the links should be done from source (first) link to destination (last) link 

of chain in the order, the same direction as data/frames would flow. This 

link create order is a hard requirement. 

2. Memory and other resources needed for operation of a link will be requested by 

the links themselves to the resource manager present in Vision SDK. Use case 

need not be concerned about this request and grant. However, some parameters 

which control these requests will be link create time parameters and they need to 

be set up appropriately by the use case at creation phase. For Ex: Number of 

output buffers for a given link will typically be a create time parameter, which 

needs to be set up by use case. 

 

With this step creation of a chain is complete 

 

 

2.3 Starting Execution of Chain 

 

NOTE: Starting Execution of Chain code is generated by the use-case gen 

tool, this section can be referred for informational purposes only. 

 

To start execution of chain, all the links in the chain need to be started.  

 

For example use case, starting the chain is implemented in the function  

chains_vipSingleCameraFrameCopy_Start() [chains_vipSingleCameraFrameCopy_priv.c] 

 

Execution of a link is started by calling the API System_linkStart() which takes in link 

Id as the argument. 

 

Ex: Staring display link is accomplished as follows, 

status = System_linkStart(pObj->displayLinkId); 

 

With this step, the entire chain would begin execution. 

 

Note:  



 

 
Page 11 of 59  

Typically, you can start the destination link before the source link.  The link start 

order is exactly reverse of the link create order.  Again, this is not a hard 

requirement, but good to follow this guideline   

 

2.4 Stopping and Deletion of Chain 

 

NOTE: Stopping and Deletion of Chain code is generated by the use-case gen 

tool, this section can be referred for informational purposes only. 

 

Once the chain has started execution, it can be stopped either based on a user input 

Or based on a timer. 

 

For example use case, stopping and deleting chain is implemented in functions  

chains_vipSingleCameraFrameCopy_Stop() [chains_vipSingleCameraFrameCopy_priv.c] 

chains_vipSingleCameraFrameCopy_Delete() [chains_vipSingleCameraFrameCopy_priv.c] 

 

Stopping and deleting a chain essentially involves stopping and deleting each link 

present in the chain. They are accomplished using functions  System_linkStop() and 

System_linkDelete(), which take in link Id as the argument. 

 

Ex: Stopping and deleting algorithm link is done as follows 

status = System_linkStop(pObj->algLinkId);  

status = System_linkDelete(pObj->algLinkId);         

         

Note:  

1. Stopping of links should follow the same order as create order. So stopping 

should happen from first to last link. Again, this is not a hard requirement, but 

good to follow this guideline 

2. Deletion can be done in any order. 

3. Memory and other resources used by the link for its operation will be released by 

the links automatically during delete phase. 

 

 

2.5 Build the new usecase file 

Create a new make file (SRC_FILES.MK), under 

\vision_sdk\apps\src\rtos\new_usecase\ 

This make file will include the new use case file into the build flow.  Without this the 

newly created use case file will not get complied and linked 

 

Refer the SRC_FILES.MK file under “vip_single_cam_frame_copy” for details/help 

 

The “Makefile” of \vision_sdk\apps\ also need to be modified, by adding include path 

for the new usecase 



 

 
Page 12 of 59  

 

For example use case, “vip_single_cam_frame_copy”, the below line is added, 

include $(MODULE_SRC_BASE_PATH)/rtos/usecases/vip_single_cam_frame_copy 

/SRC_FILES.MK  

  



 

 
Page 13 of 59  

 

3 Link Development 

3.1 What is a Link 

VISION SDK is be based on the “Links and Chains” framework. A link is the basic 

processing block in a video data flow. A link consists of a OS thread coupled with a 

message box, implemented using OS semaphores. The message box associated with 

a link allows user application as well as other links to talk to that link. The link 

implements a specific interface which allows other links to directly exchange video 

frames and/or bit streams with the link. 

For more information on Links, please refer to vision sdk architecture document 

under feature specific documents. 

Link development involves in creating a few set of files and adding these files into 

the make file. Although it’s not mandatory to develop links in this way, it is quite 

recommended so as to keep the interfaces clean and easy to understand code flow. 

3.2 Link Files 

Any link is spread across multiple files. It is important for a developer to have an 

understanding of what each files contains. This greatly helps in developing links as 

well as understanding links developed by others. The following table gives a brief of 

each file 

 

S.No File Name Location Description Comments 

1 <link_name>Link.h 

(ex: captureLink.h) 

\vision_sdk\links_fw\include

\link_api 

Public 

Interface 

File for Link 

This file 

consists of 

all 

user/applic

ation level 

configurati

on related 

to the link 

2 <link_name>Link_pri

v.h 

(ex: 

captureLink_priv.h) 

\vision_sdk\links_fw\src\rto

s\links_<prcoc_name>\<lin

k_name>\ 

Private 

Interface 

file for link 

This file 

consists of 

all 

macros/inc

ludes/funct

ion API 

specific to 

the link. 

User/applic

ation need 

not care 

about this 

file 

3 <link_name>_tsk.c 

(ex: 

captureLink_tsk.c) 

\vision_sdk\links_fw\src\rto

s\links_<prcoc_name>\<lin

k_name>\ 

Task file 

which waits 

for 

commands 

This file 

calls driver 

specific API 

to achieve 



 

 
Page 14 of 59  

to be 

received 

from 

application 

or other 

links 

a particular 

task 

4 <link_name>_drv.c 

(ex: 

captureLink_drv.c) 

\vision_sdk\links_fw\src\rto

s\links_<prcoc_name>\<lin

k_name>\ 

Driver 

specific API 

are 

implemente

d in this file 

 

 

3.3 Creating public header file 

Every link can be configured through the application/user. Generally a set of link 

create parameters are encapsulated in an object and these can be passed when 

creating link. 

It is up to the developer to provide the necessary configurability to the link. A 

developer can expose all configurable parameters of the link in an object and pass it 

while creating link. Also, input/output queue information is also encapsulated in this 

object. 

 

For example, In Dup Link, the number of output queues is a configurable parameter 

and is passed through application.   

 

3.4 Creating private header file 

The private header file for the link consists of link specific macros and data 

structures. Developer can add data structures for the link, generally termed as 

<link_name>Obj. 

 This object consists of all information of the link. Some standard contents of 

this object are, 

 

S.No Name Description 

1 Create arguments Needed by link to refer to the previous and next link 

information 

2 Link Info Current link information 

3 Previous Link Info Previous link Information 

4 System Buffers This is optional. If the link needs to exchange data with 

other links, these are used. Also payload for these 

buffers should also be created. 

 

3.5 Creating task file 

Every link has an associated task file. The task file acts like a state machine. This 

task file always runs in an infinite loop waiting for commands from either top level 



 

 
Page 15 of 59  

application or from any other link, generally from a previous link. The task file also 

has the “init” call which actually registers this link in the framework. This init has to 

be called at the start up sequence of the framework and this has to be called on all 

the cores on which this link will be used. 

For Example, Dup Link is a generic link which can be used on any core where 

multiple duplicate output data paths of video is needed from a single input data path. 

Such a link is needed on any processing core, so it’s “init” call has to be called on all 

needed cores. 

Every link has a specific functionality and hence commands to the link may vary from 

link to link. The following lists the standard commands that most of the links 

support, 

 

1. SYSTEM_CMD_CREATE :  

 This must be the first command to the link. A link upon receiving this 

command initializes all link related data structures. All profiling variables like 

frames received, frames processed, latency are initialized. Apart from these, if 

the link interacts with the hardware using driver calls, then all driver related 

initializations are also done in this call. Generally, this is done through the 

standard FVID2 Interface. Please refer to the capture link for more 

information. 

2. SYSTEM_CMD_START : 

 This command is optional. Not every link needs an explicit start 

command. Generally drivers need explicit start command to start the 

underlying hardware. In such cases, using the standard the FVID2 interface, 

start command is issued to the driver. 

3. SYSTEM_CMD_NEW_DATA : 

 Application or previous link posts this command whenever new data is 

available to this link. Upon receiving this command, the link will process data 

and puts in the output queue of next link and signals the next link about the 

availability of data. The processing of data is very much specific to the link 

and greatly differs from link to link. 

4. SYSTEM_CMD_STOP : 

 Same as start command, this command is also optional. 

5. SYSTEM_CMD_DELETE : 

 Delete command must de-initialize all the data structures that have 

been initialized in the create call. Any memory allocations done have to be 

freed up in this call. After this call, the task associated with this link also gets 

deleted. Thus, no other commands to the link can be further issued. 

 

3.6 Creating driver file 

Generally most links interact with the hardware to achieve a particular task. For 

example, VPE link interacts with the hardware to resize an image, to convert de-

interlaced video to progressive video. All these functions are implemented by the 

BSP drivers and can be accessed through the standard FVID2 interface. These 

functions are called from the task file. See captureLink_drv.c file for sample driver 

file implementation. 

  



 

 
Page 16 of 59  

3.7 Initializing link 

As stated earlier in section 2.4, all links must be registered in the framework before 

they can be used. Some connector links like Dup Link, Null Link, Sync Link etc can be 

run on any core, while links like capture link, VPE link etc can be run on a specific 

core (here, they can be run on only IPU1-0). For a link to be able to be created on a 

core,  

1. It should be registered with the framework. The following sample code shows 

how to register DUP link(s) with the framework. 

 
1. for(dupId = 0; dupId < DUP_LINK_OBJ_MAX; dupId++)   
2. {   
3.         pObj = &gDupLink_obj[dupId];   
4.    
5.         memset(pObj, 0, sizeof(*pObj));   
6.    
7.         pObj->tskId = SYSTEM_MAKE_LINK_ID(procId,   
8.                                           SYSTEM_LINK_ID_DUP_0 + dupId);   
9.    
10.         linkObj.pTsk = &pObj->tsk;   
11.         linkObj.linkGetFullBuffers = DupLink_getFullBuffers;   
12.         linkObj.linkPutEmptyBuffers = DupLink_putEmptyBuffers;   
13.         linkObj.getLinkInfo = DupLink_getLinkInfo;   
14.    
15.         System_registerLink(pObj->tskId, &linkObj);   
16.    
17.         sprintf(tskName, "DUP%u", (unsigned int)dupId);   
18.    
19.         /*  
20.          * Create link task, task remains in IDLE state.  
21.          * DisplayLink_tskMain is called when a message command is received.  
22.          */   
23.         status = Utils_tskCreate(&pObj->tsk,   
24.                                  DupLink_tskMain,   
25.                                  DUP_LINK_TSK_PRI,   
26.                                  gDupLink_tskStack[dupId],   
27.                                  DUP_LINK_TSK_STACK_SIZE, pObj, tskName);   
28.    
29.         UTILS_assert(status == SYSTEM_LINK_STATUS_SOK);   
30. } 

 
 

2. The above code should be called from the startup sequence of the core on 

which it is intended to run. The ‘DupLink_init()’ is called from 

‘System_initLinks()’ and ‘DupLink_deInit()’ is called from 

‘System_deInitLinks()’. The System_initLinks() and System_deInitLinks() are 

defined in the 

\vision_sdk\links_fw\src\rtos\links_common\system\system_initDeinitLinks.c 

file which is common for all the cores. 

The ‘DupLink_init()’ and ‘DupLink_deInit()’ are called under ‘#ifdef 

links_common_dup’, and this compile flag is defined only when the DUP link 

code is compiled for the core which is calling the System_initLinks() and 

System_deInitLinks() functions. 

 

 



 

 
Page 17 of 59  

4 Algorithm Link Development 

In order to integrate an algorithm into Vision SDK framework, it is required to 

develop an algorithm link. Once algorithm link is developed, it can be used like any 

other link in the use case. This chapter describes the procedure to develop an 

algorithm link.  

 

4.1 Algorithm Link Design Overview 

To enable easy and fast development of algorithm links, the link is designed to 

consist of two portions - Skeleton and plug-in functions  

1. Skeletal part of algorithm link:  

a. Comprises of portions of algorithm link implementation, which are 

common across algorithms  

b. Takes care of generic aspects of link implementation like link creation, link 

state machine, communication with other links etc.  

c. Provided by TI as part of Vision SDK framework 

2. Plug-In Functions:  

a. Comprises of functions which cater to algorithm dependent functionality  

b. Needs to be written, specific to the algorithm being integrated  

 

Skeletal code implementation and communication API is kept same independent of 

the processing core (EVE/DSP/A15/M4). Skeletal code shall call the plug-in functions 

based on the state of the algorithm link. Plug-in functions have the implementation 

to create and use the actual algorithm functions (Provided by the algorithm 

provider). Plug-In functions can interact with algorithm functions via iVision or any 

other interface. 

 

With above design, development of a new algorithm link essentially means 

development of the plug-in functions and their integration. 

 

4.2 Algorithm Link Skeleton 

This section provides information about file organization of algorithm link skeletal 

portion, which is provided by TI. This understanding is necessary for algorithm plug 

in development 

 

S.

No 

File Name Location Descripti

on 

Comments 

1 algorithmLink.h \vision_sdk\links_fw\include\link

_api 

Interface 

File for 

Algorith

m Link 

Developer 

needs to 

add 

algorithm 

Id for a 

specific 

core in 

this file 



 

 
Page 18 of 59  

2 algorithmLink_algPl

uginSupport.h 

\vision_sdk\links_fw\include\link

_api 

Interface 

file for 

plug-in 

functions 

to 

interact 

with 

Algorith

m Link 

Developer 

need not 

modify 

this file at 

all 

3 algorithmLink_algPl

uginSupport.c 

\vision_sdk\links_fw\src\rtos\lin

ks_common\algorithm 

Impleme

ntation 

file of the 

above 

Developer 

need not 

modify 

this file at 

all 

4 algorithmLink_cfg.h \vision_sdk\links_fw\src\rtos\lin

ks_common\algorithm 

Private 

API/data 

structure

s for 

Algorith

m Link 

Developer 

may 

modify 

this to 

increase/d

ecrease 

number of 

algorithm 

link 

instances 

on a core. 

5 algorithmLink_cfg.c \vision_sdk\links_fw\src\rtos\lin

ks_common\algorithm 

Configura

tion for 

Algorith

m Link 

 

6 algorithmLink_priv.

h 

\vision_sdk\links_fw\src\rtos\lin

ks_common\algorithm 

Algorith

m Link 

private 

header 

file 

User need 

not modify 

this file at 

all 

7 algorithmLink_tsk.c \vision_sdk\links_fw\src\rtos\lin

ks_common\algorithm 

Algorith

m Link 

impleme

ntation 

file 

User need 

not modify 

this file at 

all 

8 App_init_<CORE> \vision_sdk\apps\src\common\a

pp_init 

Applicati

on Init 

code 

Add 

algorithm 

plug-in init 

call in 

these files. 

 

4.3 Algorithm Link Plug-In Development 

List of plug in functions which are typically needed for an algorithm are as follows: 



 

 
Page 19 of 59  

  

 

Rest of this section describes several aspects of algorithm plug-in development 

 

4.3.1 Algorithm ID 

Each algorithm is identified by a unique id which we call as Algorithm Id. An 

algorithm can run on any of the cores depending on the requirements of the 

algorithm. This is specific to the algorithm and Vision SDK does not restrict algorithm 

to run on a specific core.  

 

Developer need to add a new algorithm Id to the specific core on which the algorithm 

is meant to run. This has to added in the file algorithmLink.h present at the following 

location, 

\vision_sdk\links_fw\include\link_api 

 

For example, Color To Gray algorithm is meant to run on DSP, so we add an enum in 

AlgorithmLink_DspAlgorithmId. 

 

4.3.2 Input and Output Queues 

Like any other link, algorithm link can have multiple input and output queues. The 

number of queues and their properties would depend on the nature of the algorithm.  

Plug-In function AlgorithmLink_AlgPluginCreate() need to convey this information to the 

skeleton via AlgorithmLink_queueInfoInit() API, by populating the 

AlgorithmLink_InputQueueInfo and AlgorithmLink_OutputQueueInfo 

 

4.3.3 Input and Output Buffers 

Like any other link, input buffers for an algorithm link shall come in from previous 

link, which provides input for algorithm link. Output buffers need to be owned by the 

algorithm link (Except for the case of In-place computations). Hence 

AlgorithmLink_AlgPluginCreate() needs to create the output buffers needed for the algorithm. 

 

In some algorithms, it is possible that input and output buffers will have to be locked 

inside algorithm for more than one frame duration. In such cases the 

 
AlgorithmLink_AlgPluginCreate  

 

 
Plug in function which will perform algorithm instance creation  

 

 
AlgorithmLink_AlgPluginProcess  

 

 
Plug in function which will process new data. Internally it will call the 
process function of the algorithm  

 

 
AlgorithmLink_AlgPluginControl  

 

 
Plug in function which will perform Control (Configuration) of the 
algorithm. Internally it will call the control function of the algorithm.  

 

 
AlgorithmLink_AlgPluginStop  

 

 
Plug in function which will perform all functionality which needs to 
be done at the end of algorithm. Example: If any buffers are locked 
inside the algorithm, they can be flushed in this function.  

 

 
AlgorithmLink_AlgPluginDelete  

 

 
Plug in function which will perform algorithm instance deletion  

 



 

 
Page 20 of 59  

AlgorithmLink_AlgPluginProcess() plug in function needs to have a suitable API to communicate 

locking and freeing of buffers with the Algorithm.  

 

Following APIs shall be used by the Process plug-in function to exchange input and 

output buffers with skeleton / rest of the system: 

 

System_getLinksFullBuffers() To get input buffers from previous link 

AlgorithmLink_getEmptyOutputBuffer() To get free output buffers from 

previous link 

AlgorithmLink_putFullOutputBuffer() To pass on the output buffer, which is 

populated by the algorithm, onto next 

link 

AlgorithmLink_releaseInputBuffer() To release / free up Input buffer. This 

needs to be done when algorithm no 

longer needs this input buffer. Skeletal 

code shall internally pass on this buffer 

to previous link. 

AlgorithmLink_releaseOutputBuffer() To release / free up output buffer. This 

needs to be done when algorithm no 

longer needs this output buffer. 

 

There are two modes in which an algorithm link can operate based on how the input 

buffers are handled in the actual algorithm 

1. Non in Place mode: In this case output buffers are different from input 

buffers. And Input buffers are not modified by the algorithm 

2. In Place mode: In this case Input buffers are modified and hence same buffer 

will serve as output buffer to be passed on to next link.  

 

Vision SDK release package has example algorithms for both modes. 

 

Algorithm Mode Algorithm Name Description 

Non In Place Mode Frame Copy Input frames are 

duplicated and forwarded 

to the next link. Input 

frames are not modified. 

In Place Mode Color To Gray Input Frames are 

modified. The Chroma 

component of the frame is 

masked out to make the 

frame look gray. 

 

Algorithm link has functions to handle both mode of operations. During the create 

time of the plug-in, user has to set the mode of operation of the input and output 



 

 
Page 21 of 59  

queues. The following two sub sections explains how to set the modes for input and 

output queues for both modes. 

 

4.3.3.1 Non In Place Mode 

Let us consider Frame Copy Algorithm for Non In Place mode. In Frame Copy 

algorithm input buffers are not modified and output buffers are used. So we need the 

following mechanisms to manage input and output queues. 

1. Managing Input queues 

At the create time of the plug-in, we need to specify the mode of operation as 

ALGORITHM_LINK_QUEUEMODE_NOTINPLACE. The code snippet is shown 

below, 

 

1. AlgorithmLink_InputQueueInfo  inputQInfo;   
2. pInputQInfo.qMode  = ALGORITHM_LINK_QUEUEMODE_NOTINPLACE; 

 

 Since Input buffers are not modified, these can be released to the previous 

 link by calling AlgorithmLink_releaseInputBuffer. 

2. Managing Output queues 

At the create time of the plug-in, we need to specify the mode of operation as 

ALGORITHM_LINK_QUEUEMODE_NOTINPLACE. Along with the mode, we also 

need to specify the queue information. Other members of this structure are 

don’t care for Non In Place mode. The code snippet is given below, 

 

1. AlgorithmLink_OutputQueueInfo  outputQInfo;   
2. outputQInfo.qMode = ALGORITHM_LINK_QUEUEMODE_NOTINPLACE;   
3. outputQInfo.queInfo.numCh = numChannelsUsed;   
4.        
5.        
6. for(channelId = 0; channelId < numChannelsUsed; channelId++)   
7. {   
8.     memcpy((void *)&(outputQInfo.queInfo.chInfo[channelId]),   
9.            (void *)&(prevLinkInfo.queInfo[prevLinkQueId].chInfo[channelId]),   
10.            sizeof(System_LinkChInfo)   
11.           );   
12.    
13. } 

 

  

 

4.3.3.2 In Place Mode 

Let us consider Color To Gray algorithm for In Place mode of operation. In Color To 

Gray algorithm, input buffers are modified and output buffers are not created at all. 

Input buffers from the previous link are sent as output buffers to the next link. So 

we need the following mechanisms to manage input and output queues. 

1. Managing Input Queues 

At the create time of the plug-in, we need to specify the mode of operation as 

ALGORITHM_LINK_QUEUEMODE_INPLACE. The code snippet is shown below, 



 

 
Page 22 of 59  

 

1. AlgorithmLink_InputQueueInfo  inputQInfo;   
2. inputQInfo.qMode  = ALGORITHM_LINK_QUEUEMODE_INPLACE; 

Since the input buffer is modified and acts as the output buffer (which 

becomes input buffer to the next link), we cannot release this buffer to the 

previous link immediately. After the algorithm process call is finished we need 

to give this buffer to the next link by calling 

AlgorithmLink_putFullOutputBuffer. The code snippet is shown below, 

 

1. Alg_ColorToGrayProcess(algHandle,   
2.                        (UInt32 **)pSysVideoFrameBufferInput->bufAddr,   
3.                         pInputChInfo->width,   
4.                         pInputChInfo->height,   
5.                         pInputChInfo->pitch,   
6.                         dataFormat   
7.                         );   
8. status = AlgorithmLink_putFullOutputBuffer(pObj,   
9.                                            outputQId,   
10.                                            pSysBufferInput   
11.                                            );   
12. UTILS_assert(status == SYSTEM_LINK_STATUS_SOK); 

When the algorithm wants to give back buffers to the previous link, we must 

call AlgorithmLink_releaseInputBuffer. 

2. Managing output queues 

At the create time of the plug-in, we need to specify the mode of operation as 

ALGORITHM_LINK_QUEUEMODE_INPLACE. Along with the mode we also need 

to specify few other parameters that are important for INPLACE mode. The 

code snippet for Color To Gray algorithm is shown below, 

 

1. AlgorithmLink_OutputQueueInfo outputQInfo;   
2. outputQInfo.qMode = ALGORITHM_LINK_QUEUEMODE_INPLACE;   
3. outputQInfo.inputQId = 0;   
4. memcpy((void*)(&outputQInfo.inQueParams),   
5.        (void*)(&pColorToGrayCreateParams->inQueParams),   
6.         sizeof(outputQInfo.inQueParams)   
7.       ); 

 

4.3.4 Algorithm Internal Memory 

Algorithm might need some memory for its operation, which is internal to the 

algorithm. This memory might be present in DDR / OCMC / L2. Such memory 

requests for the algorithm needs to be catered to in create plug in function. 

Algorithm plugin can call mallocs as shown in example to obtain these memories 

from framework. Algorithm create plug-in can interact with Algorithm using any 

interface for these memory requests and grants. It is recommended to use 

XDAIS:memTab as the interface. 

 

All the memories requested during Create phase needs to be freed up in the delete 

plug-in function. 



 

 
Page 23 of 59  

 

4.3.5 Cache Operations 

In scenarios where buffers are touched by both CPU and DMA, there could be 

coherence issues. In order to avoid these issues, Cache invalidations / write backs 

might have to be used. BIOS based cache APIs can be used. These APIs can be 

called from algorithm plug-in OR directly from the algorithm itself.  

 

Following two APIs are typically used: 

Cache_inv() – To invalidate cache for a buffer 

Cache_wb() – To write back cache contents into DDR 

 

4.4 Algorithm Link Plug-In Integration 

As stated in the previous section algorithms are developed as plug-ins into the 

algorithm link. Following are the sub steps involved in developing a plug in and 

integrating it into the SDK. 

 

4.4.1 Creating public header file 

Once algorithm plug-in functions are implemented, an API to use the link needs to be 

defined. So we need to have a public header file which contains, 

1. Link API commands : Commands to control plugin behavior 

2. Create time parameters : Structure containing create time parameters. 

3. Control parameters : Structure containing control parameters 

4. Function that registers plugin functions into the function table 

 

Note: For create time parameters and control time parameters, the algorithm 

skeleton defines a base structure. This base structure can be extended with more 

elements to cater to the needs of particular algorithm. However, it is to be noted that 

the first member of the parameters structure must be AlgorithmLink_CreateParams 

for create time parameters and AlgorithmLink_ControlParams for control parameters 

. For example, create time parameters of Frame Copy algorithm is shown below, 

 



 

 
Page 24 of 59  

1. typedef struct   
2. {   
3.     AlgorithmLink_CreateParams baseClassCreate;   
4.     /**< Base class create params */   
5.     UInt32                    maxHeight;   
6.     /**< Max height of the frame */   
7.     UInt32                    maxWidth;   
8.     /**< max width of the frame */   
9.     UInt32                    numOutputFrames;   
10.     /**< Number of output frames to be created for this link per channel*/   
11.     System_LinkOutQueParams   outQueParams;   
12.     /**< Output queue information */   
13.     System_LinkInQueParams    inQueParams;   
14.     /**< Input queue information */   
15.     AlgorithmLink_CopyMode    copyMode;   
16.     /**< CPU or DMA mode of frame copy */   
17. } AlgorithmLink_FrameCopyCreateParams;   

 

 

4.4.2 Plugin Registration 

Once a plug-in is developed, it has to be registered with the framework. To register a 

plug-in, developer has to populate a set of function pointers so that appropriate 

functions can be called by the algorithm Link. Typically this registration is done in a 

separate function. Algorithm Id needs to be passed to AlgorithmLink_registerPlugin 

to register plug-in. 

In Color To Gray algorithm, this is done in AlgorithmLink_ColorToGray_initPlugin(). 

The code snippet is shown below, 

 



 

 
Page 25 of 59  

1. Int32 AlgorithmLink_ColorToGray_initPlugin()   
2. {   
3.     AlgorithmLink_FuncTable pluginFunctions;   
4.     UInt32 algId = (UInt32)-1;   
5.    
6.     pluginFunctions.AlgorithmLink_AlgPluginCreate =   
7.         AlgorithmLink_ColorToGrayCreate;   
8.     pluginFunctions.AlgorithmLink_AlgPluginProcess =   
9.         AlgorithmLink_ColorToGrayProcess;   
10.     pluginFunctions.AlgorithmLink_AlgPluginControl =   
11.         AlgorithmLink_ColorToGrayControl;   
12.     pluginFunctions.AlgorithmLink_AlgPluginStop =   
13.         AlgorithmLink_ColorToGrayStop;   
14.     pluginFunctions.AlgorithmLink_AlgPluginDelete =   
15.         AlgorithmLink_ColorToGrayDelete;   
16.    
17. #ifdef BUILD_DSP   
18.     algId = ALGORITHM_LINK_DSP_ALG_COLORTOGRAY;   
19. #endif   
20.    
21. #ifdef BUILD_ARP32   
22.     algId = ALGORITHM_LINK_EVE_ALG_COLORTOGRAY;   
23. #endif   
24.    
25. #ifdef BUILD_A15   
26.     algId = ALGORITHM_LINK_A15_ALG_COLORTOGRAY;   
27. #endif   
28.    
29.     AlgorithmLink_registerPlugin(algId, &pluginFunctions);   
30.    
31.     return SYSTEM_LINK_STATUS_SOK;   
32. } 

This function needs to be called at the initialization of Algorithm Link. So as to make 

this happen, developer needs to add a call to this function in 

AlgorithmLink_initAlgPlugins() located at the following location, 

 

\vision_sdk\links_fw\src\rtos\links_common\algorithm\algorithmLink_cfg.c 

 

4.5 Directory Structure and Make File Changes 

Plug-in related files have to be placed in proper locations so as to include in the 

build. Also make file changes have to be done. The below table gives the details of 

the location of files and corresponding make file changes, if any. 

 

S.No File Name Location MakeFile 

Change 

Needed 

(Yes/No) 

Location of 

MakeFile 

1 XxxxLink_algPl

ugin.c 

\vision_sdk\ap

ps\src\rtos\alg

_plugins\plugin

_name 

Yes \vision_sdk\ap

ps\src\rtos\alg

_plugins 

 



 

 
Page 26 of 59  

 

5 Porting Vision SDK 

The following sections cover different aspects related to porting Vision SDK to 

custom hardware.  

Please note that this section covers only information specific to Vision SDK. 

Individual components like SBL, BSP etc will need changes as part of the porting 

activity and these are not covered here. 

 

5.1 Using custom memory map 

Memory map for the Vision SDK is defined in the file \vision_sdk\apps\build\tda2xx 

/mem_segment_definition_<bios/linux>.xs 

 

Important things to pay attention to while porting the map file are: 

 DDR, OCMC & DSP/EVE SRAM sizes 

 Core specific code/data/vecs sizes 

 Size of the shared frame buffer pool 

 

DDR is divided into 2 sections: cached and non-cached. The cached part is used for 

frame buffer and core specific code/data and other sections. The non-cached part is 

used for Vision SDK log buffers, HDVPSS descriptors. 

 

5.2 Support for custom core selection 

The cores to be included can be controlled using the file vision_sdk/build/Rules.make 

Please modify the file by setting the core specific defines (PROC_DSP1_INCLUDE etc) 

to the appropriate value (yes/no). By default all cores (A15_0, IPU1_0, IPU1_1, 

DSP1, DSP2, EVE1, EVE2, EVE3 and EVE4) are enabled in the vision_sdk. 

 

5.3 Support for custom board 

For adding support for a new board, the board specific init, de-init and probe APIs 

need to be implemented. Please refer to the files \vision_sdk\apps\src\rtos\board folder for 

examples related to TI EVM. 

Once defined, these specific APIs can be invoked from the use case implementation 

(chain) based on the required configuration. 

 

5.4 Support for different video capture device 

For adding support for a different video capture device, the device specific create, 

delete & control APIs need to be implemented. Please refer to the files 

\vision_sdk\apps\src\rtos\devices folder for examples related to video sensor (OV10635) and 

HDMI receiver. 

Once defined, these specific APIs can be invoked from the use case implementation 

(chain) based on the required configuration. 

 



 

 
Page 27 of 59  

5.5 Support for different LCD 

For adding support for a different LCD, the LCD specific APIs need to be 

implemented. Please refer to the files \vision_sdk\apps\src\rtos\devices\lcd.c file for example. 

Once defined, these specific APIs can be invoked from the use case implementation 

(chain) based on the required configuration. 

5.6 Specifying custom core frequencies to BIOS 

API Utils_getClkHz() defined in utils.h is used to read PLL values and then tell BIOS about 

the core frequency that is programed. BIOS needs to be told exact frequency since it 

configures its timer based on this frequency. BIOS configuration is done in main() for 

the specific core via the API Utils_setCpuFrequency(). No action is needed from the user to 

configure BIOS when PLL settings are changed via SBL unless reference clock is 

changed. By default EVM uses 20Mhz reference clock. If custom board uses another 

reference clock then change in file utils_clk.c (\vision_sdk\links_fw\src\rtos\utils_common\src) #define 

UTILS_SYS_CLK1           (20*1000*1000) 

 

5.7 Using custom PLL and clock settings 

The PLL and clock settings for different peripherals can be modified as required 

(based on the input crystal frequency & specifications) either in the SBL (for out of 

box execution) or gel file (CCS based execution).  

 

Default frequency configurations used as part of vision sdk are captured in the data 

sheet. TI EVM uses the 20MHz input crystal.  

  



 

 
Page 28 of 59  

6 Boot time optimizations on TDA3X 

This chapter describes various techniques that can be applied through vision_sdk for 

optimizing boot time. This will be typically helpful for rear view camera systems. 

 

Vision SDK demonstrates boot times as low as 500 to 600 ms through example. 

6.1 Usecase supported for fast boot demonstration 

Users can refer to following usecase to tryout demo on fast boot 

 1 ch ISS capture (OV10640) + Object Detect + Display (LCD 10 inch) 

 

Path in vision_sdk –  

\vision_sdk\apps\src\rtos\usecases\fast_boot_iss_capture_isp_simcop_pd_display 

 

This is a special usecase which not listed in Run time Menu. For more details on h/w 

setup and how to run this usecase please refer VisionSDK_UserGuide_TDA3xx.pdf 

under vision_sdk\docs folder. 

For boot time numbers and time split since boot, please refer respective Data Sheet. 

6.2 Optimizations challenges  

There are multiple challenges when boot time needs to be reduced, few of them are 

mentioned below 

1. Dividing usecase Data Flow into parts and selectively bringing up s/w modules 

2. Delayed loading of CPUs/Cores 

3. Synchronization of lately loaded CPUs/cores with early loaded cores 

4. Seamlessly switching video data to lately loaded modules (without glitches on 

display) 

5. Reducing initialization time of modules in boot time path 

6. Compiler / linker optimizations 

7. Reducing image size  

8. Reducing sensor initialization time 

9. Identifying unnecessary delays and eliminating them 

10. Choosing boot medium 

6.3 Techniques for boot time optimization (Framework level) 

All of the challenges listed above cannot be addressed only through framework, we 

need support from all levels i.e. hardware, boot loader, frame work. This section in 

detail covers optimizations at framework level only and briefly introduces to other 

optimizations (e.g. h/w or boot loader optimizations). 

6.3.1 Gate Link 

This is a special link in vision_sdk with following features and functionalities  

• Gate link is like any other link in vision_sdk but with one input and one output queue 

always. 



 

 
Page 29 of 59  

• It acts as on/off switch, when the operation mode is “ON” it simply forwards buffers 

to next link, on the other hand it returns received buffers back to previous link if its 

“OFF”. 

• The default the operation mode of Gate Link instance is “OFF”. 

• The state can be changed by using a system command, while the data flow is 

running.  

• It does not own/manage any output buffer, based on state it will either forward or 

return data to next/previous link. 

• It ensures callbacks are forwarded to previous link of the GateLink while freeing 

buffers and to GateLink’s next Link while putting full buffers. 

 

6.3.1.1 Usage 

Essentially Gate Link allows dividing your data flow into two parts 

- UcEarly – Usecase that needs to come up first  

- UcLate – Usecase that has no implication on boot time and can be 

brought up late. 

Boot time optimization is one of the features that are implemented using Gate Link. 

This link can also be used to implement Power Management features as you can 

selectively turn on and off parts of the data flows. 

 

This link is supported through usecase generation tool and can be used in any 

usecase from vision_sdk 2.7 onwards as per need. 

 

6.3.1.2 Example  

Let’s look at example mentioned in section 6.1 and see how Gate Link can be used to 

achieve usecase division. 

Typical data flow for Object Detect usecase looks as mentioned in the figure below.  

Here, Capture and display is happening on IPU1_0 while processing will happen on 

DSPs or EVEs available in the system. 

If you need to have minimum POR to Display time, you can not waste time in 

creating other Links/modules which are not in the capture -> display path. 

 



 

 
Page 30 of 59  

 

Figure: Object Detect usecase without Gate Links 

 

User can segregate group of links that can be brought up first and group of link that 

can be brought up later. 

 

Figure below shows how Object Detect is divided into UcEarly and UcLate using 

Gate Link instances in between 

 

 

Figure: Object Detect usecase with Gate Links 

 



 

 
Page 31 of 59  

Idea here is, upon POR UcEarly (IPU1_0) executes and flashes up display with 

preview in less than 500 ms. In due course of time, IPU1_0 or master core 

application boot loads other cores and instantiates UcLate. As soon as UcLate is up 

and running, Gate Link instances are switched “ON” using a system command and 

then application switches channel at display showing algorithm output. 

 

Users can practically replace UcLate from above figure with any usecase of their 

choice to achieve fast boot. 

6.3.2 Selective loading and Power management of cores 

Users need to decide which cores need to boot first and which can be boot later. In 

TDA3X since IPU1_0 is a master core and owns capture and display subsystem this 

needs to come up first, in some cases CAN stack comes up on IPU1_1 and CAN 

response time needs to be minimal so IPU1_1 also comes up along with IPU1_0. 

This can be achieved by having two AppImages instead of one. 

 

AppImage_UcEarly_BE – contains IPU1_0 and IPU1_1 images 

AppImage_UcLate_BE – contains DSP1, DSP2 and EVE1 images 

 

This is achieved using a script file in vision_sdk 

MulticoreImageGen_tda3xx_fast_boot.sh or 

MulticoreImageGen_tda3xx_fast_boot.bat 

 

Upon POR, SBL picks up only AppImage_UcEarly_BE flashed into fixed offset (e.g. 

0x80000) in QSPI and loads IPU1_0 and IPU1_1. While AppImage_UcLate_BE is 

flashed on another location within QSPI known location to application (e.g. 

0xA80000). IPU1_0 application after capture + display usecase (UcEarly), parses this 

AppImage_UcLate_BE and boot loads slave cores using SBL lib. 

 

6.3.2.1 Delayed loading of slave cores using SBL lib 

Starterware bootloader (SBL) provides APIs which can be used to selectively load 

and run DSPs and EVEs from IPU. Application writers can choose to use those 

directly or call following sequence of functions through vision_sdk app which 

encapsulates SBL lib APIs 

…… 

       Utils_BootSlaves_Params bootParams; 

    ddrAddress = Utils_memAlloc(UTILS_HEAPID_DDR_CACHED_SR, 

MAX_UCLATE_IMAGE_SIZE, 4U); 

    Utils_bootSlaves_paramsInit(&bootParams); 

    bootParams.offset = IMAGE_UCLATE_OFFSET_QSPI; 

    bootParams.ddrAddress = (UInt32)(ddrAddress); 

    bootParams.useEdma = TRUE; 

    bootParams.loadCode = TRUE; 

    bootParams.maxDdrBuffSize = MAX_UCLATE_IMAGE_SIZE; 

    bootParams.enableCrc = TRUE; 

    bootParams.useEdma = TRUE; 



 

 
Page 32 of 59  

    Utils_bootSlaves(&bootParams); 

……… 

The Utils_bootSlaves() function ensures all slave cores are loaded and running as 

it would have been done by SBL with single AppImage!!! It also takes care of their 

power states and brings them to their respective main(). 

bootParams.offset tells the application where the AppImage_UcLate_BE is flashed 

in QSPI.  

bootParams.ddrAddress tells the DDR location where each core’s image is copied 

before parsing. 

bootParams.useEdma mentions which method to be used while copying sections after 

AppImage_UcLate_BE is parsed. If this is FALSE, IPU1_0 memcopies sections into 

respective load addresses otherwise it usecase EDMAs 

bootParams.maxDdrBuffSize tells the maximum available size of DDR buffer where 

each core’s image is copied before parsing. 

bootParams.enableCrc mentions whether CRC check should be done on the UC Late 

Multi-core application image. 

 

For more information on SBL lib APIs users can refer 

PROCESSOR_SDK_VISION_XX_XX_XX_XX\ti_components\drivers\pdk\packages\ti\b

oot\sbl_auto\sbl_lib\sbl_lib.h 

 

6.3.2.2 Syncing up with lately loaded cores 

Just by selectively loading cores will have them working separately but not together. 

To have them work together users need to sync them with already running cores 

(IPU1_0 and IPU1_1). 

 

vision_sdk provides a function Utils_syncSlaves() that synchronizes early and 

lately loaded cores for enabling their Inter Processor Communication. 

 

Important Note- If users are using Utils_bootSlaves() in the application to 

selectively boot load their cores they must use Utils_syncSlaves()followed by that 

to synchronize them. 

6.3.3 Seamless switch between UcEaly and UcLate 

This is very important from user experience perspective, there can be a noticeable 

glitch when display switches channels from UcEarly to UcLate, this can be mainly 

caused either by other tasks in the system e.g. GrpxSrc 

The task priority maters here, users must carefully choose lower priorities for tasks 

like GrpxSrc or  System tasks which don’t have much role to play after initialization. 

Using memcpy instead of edma to copy sections slave core’s memory can also 

partially attribute to this. 



 

 
Page 33 of 59  

6.3.4 Other Optimizations 

6.3.4.1 H/w changes 

VisionSDK_UserGuide_TDA3xx.pdf in detail explains h/w changes to support I2C at 

400KHz, if I2C is running at lower speed, it can attribute to higher / worst sensor 

initialization times.  

Users must ensure these changes are done on EVM before any s/w optimization is 

tried out 

 

6.3.4.2 Sensor initialization time 

Depending upon sensor chosen and I2C speed in the system this time varies 

drastically, it is left to users to optimize this but it contributes to almost 40% boot 

time for fast boot. 

 

Users should carefully choose only registers that are needed for sensor initialization 

for the chosen sensor and reduce I2C commands to minimal possible. This will 

reduce sensor initialization time and give better boot time. 

 

6.3.4.3 Boot media and image size  

To achieve fast boot usecase user needs to choose fastest media available on the 

board as boot media, e.g. QSPI for tda3x evm 

The image size is very subjective to application but it can be optimized by excluding 

modules that are of no relevance to user’s usecase. One thing that users need to 

ensure is time taken to read and write from boot media is as expected. 

e.g. If you are flashing image of size 4.5 MB to QSPI, IPU should practically get close 

to 30 MB/s speed for read, it should not take more than 160-170 ms to read this 

whole image into DDR. Users need to cross check this for their appImages. 

 

6.3.4.4 Compiler and linker optimizations 

Based on the type of master core and its compiler these options vary, users can look 

at rules_m4.mk to see compiler and linker options used for fast boot (e.g. –O3, --

ram_model etc). 

Users need to refer respective manuals for compiler and linkers to find more 

optimization options and use them carefully. 

 

6.4 Steps to convert a usecase into fast boot usecase 

1. Identify places in the usecase where GateLink instances need to be introduced 

into the data flow. 

a. Note: You need an addition Dup (logically after capture) and Merge link 

(before display) to separate UcLate from UcEarly, as shown in section 

6.3.1.2  

2. Create the chains_fastBoot_<new_usecase>.txt for input to usecase generation 

tool, refer example 

\vision_sdk\apps\src\rtos\usecases\fast_boot_iss_capture_isp_simcop_pd_displa

y\chains_fastBoot_issIspSimcop_pd_Display.txt 



 

 
Page 34 of 59  

3. Generate Usecase using usecase generation tool. Refer 

VisionSDK_UsecaseGen_Overview.pdf 

a. vsdk_linux.out –img –file chains_fastBoot_<new_usecase>.txt 

4. Manually modify generated chains_fastBoot_<new_usecase>_priv.c and 

chains_fastBoot_<new_usecase>_priv.h to split two functions as followed 

a. Split chains_fastBoot_<new_usecase>_Create() to 

chains_fastBoot_<new_usecase>_Create_UcEarly() and 

chains_fastBoot_<new_usecase>_Create_UcLate() 

b. Split chains_fastBoot_<new_usecase>_Start() to  

chains_fastBoot_<new_usecase>_Start_UcEarly() and 

chains_fastBoot_<new_usecase>_Start_UcLate() 

c. Move calls System_linkCreate/Start logically to respective UcEarly or 

UcLate functions 

d. Modify   chains_fastBoot_<new_usecase>.c (note this is not generated 

one) to split chains_fastBoot_<new_usecase>_StartApp() to split into  

chains_fastBoot_<new_usecase>_StartApp_UcEarly() and 

chains_fastBoot_<new_usecase>_StartApp_UcLate() 

Ensure functions newly create in 2.C above are called from respective 

StartApp_UcEarly() / StartApp_UcLate(). 

5. Refer 

\vision_sdk\apps\src\rtos\usecases\fast_boot_iss_capture_isp_simcop_pd_displa

y\chains_fastBoot_issIspSimcop_pd_Display.c 

to understand modifications needed in respective 

chains_fastBoot_<new_usecase>.c file 

a. Modify Chains_fastBoot<new_usecase>(), main usecase function to call 

i. newly created functions in 4 above 

b. Modify Chains_fastBoot<new_usecase>(), main usecase function to call  

i. Utils_bootSlaves() and Utils_syncSlaves()  

c. Add System commands to switch “ON” Gate Links for all the instances of 

gates in your usecase 

d. Add System command to switch display channel from preview to algorithm 

output 

6. Modify Chains_main() in \vision_sdk\apps\src\rtos\common\chains_main_bios.c 

to call Chains_fast<new_usecase>() with right parameters. 

  



 

 
Page 35 of 59  

7 Power Optimization in Vision SDK 

This section describes the ways in which the Vision SDK can be power optimized to 

make sure the thermal dissipation of the device is within the budget.  

7.1 Putting CPUs to Low Power when not used 

Different CPUs in the system can be configured to go to their different low power 

modes when they have nothing to execute: 

1. A15 C0 to Retention (C1 is placed to forced off state from SBL) - 
\vision_sdk\links_fw\src\rtos\utils_common\src\utils_idle_a15.c 

2. M4 C0 and C1 (IPU) to Auto Clock Gate. - 
\vision_sdk\links_fw\src\rtos\utils_common\src\utils_idle_m4.c 

3. DSP 1 and DSP2 to Auto Clock Gate - 
\vision_sdk\links_fw\src\rtos\utils_common\src\utils_idle_c66x.c 

4. EVE 1/2/3/4 to ARP32  to Auto Clock Gate - 
\vision_sdk\links_fw\src\rtos\utils_common\src\utils_idle_arp32.c 

7.1.1 Setting up the CPUs for Low Power 

In order to place any of the cores in the desired low power mode when the CPU does 

not have anything to execute requires two steps: 

 Configuration of the PRCM and the subsystem to allow the subsystem to enter 

the desired power state when the CPU executes IDLE or WFI Instruction. 

(Utils_idlePrepare) 

 CPU executing the Idle/WFI instruction. (Utils_idleFxn) 

The Utils_idlePrepare function needs to be called before BIOS_Start to initialize 

the CPU correctly before the BIOS Scheduler schedules tasks on the CPU. 

The Utils_idleFxn function is registered with the BIOS scheduler as one of the Idle 

tasks. This is done in each of the CPUs BIOS Configuration Files in the directory 

\vision_sdk\links_fw\src\rtos\bios_app_common\<SOC>\<CPU CORE>. 

/* Add an idle thread 'Utils_idleFxn' that monitors interrupts. */ 

    var Idle = xdc.useModule("ti.sysbios.knl.Idle"); 

    Idle.addFunc('&Utils_idleFxn'); 

7.1.2 BIOS Tick and Time Stamp Provider Concerns 

When the CPU is placed into a low power mode when the Idle Task is hit the CPU 

clocks are gated which causes any BIOS tick clock or the Time stamp provider clocks 

to be gated if internal CPU Timers are used. The impact of this is that the 

Task_sleep(); and CPU Load calculation functionalities would be broken. In order to 

avoid this, the system level GP Timers can be used to provide BIOS Tick and Time 

Stamp Provider Proxy. This configuration as well can be placed in the CPU specific 

BIOS configuration file. An example configuration for A15 is as shown below. The 

portion highlighted in yellow configures GP Timer 2 for BIOS Ticks and the portion 

highlighted in green configures GP Timer 3 for Time Stamp Provider used for CPU 

Load calculation. 

 

/*********************************************** 

*           Timer Module Configuration         * 

***********************************************/ 

/* Assign GPTimer2 to be used for Timestamp */ 

/* Set to 1-ms Tick and Enable Wakeup for OVF interrupt */ 



 

 
Page 36 of 59  

var Timer = xdc.useModule('ti.sysbios.timers.dmtimer.Timer'); 

var timerParams = new Timer.Params(); 

timerParams.period = 1000; 

timerParams.twer.ovf_wup_ena = 1; 

timerParams.tiocpCfg.emufree = 1; 

timerParams.tsicr.posted = 0; 

/* Timer ID = 1 for GPTimer2 and input clock runs at 20 MHz */ 

Timer.intFreqs[1].hi = 0; 

Timer.intFreqs[1].lo = 20000000; 

Timer.create(1, '&mainA15TimerTick', timerParams); 

 

/* Assign GPTimer3 to be used for Timestamp */ 

/* Timer ID = 2 for GPTimer3 and input clock runs at 20 MHz */ 

var DMTimer = xdc.useModule('ti.sysbios.timers.dmtimer.Timer'); 

var timerParams2 = new DMTimer.Params(); 

timerParams2.tsicr.posted = 0; 

DMTimer.intFreqs[2].hi = 0; 

DMTimer.intFreqs[2].lo = 20000000; 

var DMTimestampProvider = 

xdc.useModule("ti.sysbios.timers.dmtimer.TimestampProvider"); 

DMTimestampProvider.timerId = 2; 

DMTimestampProvider.useClockTimer = false; 

var Timestamp = xdc.useModule("xdc.runtime.Timestamp"); 

Timestamp.SupportProxy = DMTimestampProvider; 

 

/* Indicate GPT2 & GPT3 are used */ 

var TimerSupport = 

xdc.useModule('ti.sysbios.family.shared.vayu.TimerSupport'); 

TimerSupport.availMask = 0x0006; 

 

The following Table defines which timers are used for which CPUs 

CPU TDA2xx Timers TDA2ex Timers TDA3xx Timers 

A15_0 GP Timer 2 and 3 GP Timer 2 and 3 NA 

IPU1_0 GP Timer 9 and 11 GP Timer 9 and 11 GP Timer 3 and 4 

IPU1_1 GP Timer 9 and 11 GP Timer 9 and 11 GP Timer 3 and 4 

DSP1 GP Timer 5 and 6 GP Timer 5 and 6 GP Timer 1 and 2 

DSP2 GP Timer 5 and 6 NA GP Timer 1 and 2 

EVE1 GP Timer 13 and 14 NA GP Timer 7 and 8 

EVE2 GP Timer 13 and 14 NA NA 

EVE3 GP Timer 13 and 14 NA NA 

EVE4 GP Timer 13 and 14 NA NA 

 

7.1.3 Disabling CPU Idle for Debug 

Optionally if one wants to disable the CPU Idle from making the CPUs go into their 

respective low power states one can configure vision_sdk/build/Rules.make to 

update the following build configuration to ‘no’ 

# 



 

 
Page 37 of 59  

# Used to enable or disable CPU idle functionality in SDK 

# By Default CPU idle is enabled 

# 

CPU_IDLE_ENABLED=yes 

 

ifeq ($(PROFILE),debug) 

CPU_IDLE_ENABLED=no 

endif 

For more information on the APIs used to achieve the CPU Idle functionality refer the 

ADAS Power Management Application Note. 

7.1.4 Knowing the time for which the CPU is in Idle 

With the goal of functional safety, it is often important to know the amount of time 

the CPU has been in low power. The state of the system, dependencies to different 

clock domains and pending interrupts on the CPU can disallow the CPU to go to low 

power mode.  

A mechanism has been designed to understand the time for which the CPU is in low 

power. This mechanism utilizes the COUNTER32K module which does not get clock 

gated when the CPU is in low power and an internal counter/timer. The internal 

counter or timer is chosen such that the counter/timer is within the CPU subsystem 

such that when the CPU is clock gated the counter/timer stops counting. 

 

The basic premise of the mechanism is as shown below: 

 

The code for the time difference calculation is given in the function Utils_idleFxn. 

 



 

 
Page 38 of 59  

7.2 Limp Home Mode 

When the temperature of the device becomes too high it is often required the 

software start taking steps to cool the device by making sure the power dissipation 

of the device is lowered. The Single Channel FC Analytics use case has been modified 

to showcase this feature of limp home mode which causes the capture FPS to drop to 

10 fps from the default 30 fps when the temperature hot event is hit and then again 

re-configure the fps to 30 fps when the device has cooled down and the thermal cold 

event is reached.  

7.2.1 Initializing the system for Limp Home Mode 

\vision_sdk\links_fw\src\rtos\utils_common\src\utils_temperature.c has the 

necessary API calls to configure the on chip temperature sensors to provide thermal 

alerts and read the current temperature. Essentially the Utils_tempConfigInit 

function configures the on chip BGAP Temperature sensors to provide a thermal hot 

event at 80 deg C (interrupt is generated when the chip temperature goes higher 

than 80 deg C) and a thermal cold event at 10 deg C (interrupt is generated when 

the chip temperature is lower than 10 deg C). The interrupt handler 

(Utils_tempBgapEventIsr) is also registered in this function which reads the status 

of the BGAP registers to find which temperature sensor has raised the thermal event. 

(There are 5 temperature sensors in TDA2xx and 1 in TDA3xx). 

Note: IPU Interrupt number 61 is used to register the Thermal event. 

 

The Utils_tempConfigInit function should be called from the Usecase initialization 

function (chains_vipSingleCameraAnalytics_tda2/3xx_StartApp). The application 

should also register the thermal handler in the System Link during application 

initialization. e.g. 

SystemLink_registerHandler(Chains_vipSingleCameraAnalyticsTda2/3xx_Even

tHandler); 

This handler is called when the thermal event is received and the ISR 

(Utils_tempBgapEventIsr) calls the System Call to invoke the thermal Handler. The 

flow is described in the subsection below. The calls for the Thermal system 

initialization and the system event handler registration can be seen in the files: 

 
apps/src/rtos/usecases/vip_single_cam_analytics_tda2xx/chains_vipSingle

CameraAnalytics_tda2xx.c 

 
apps/src/rtos/usecases/vip_single_cam_analytics_tda3xx/chains_vipSingle

CameraAnalytics_tda3xx.c 

7.2.2 Handling Thermal Events 

When a hot event occurs the Temperature ISR Utils_tempBgapEventIsr is called. 

This ISR determines which voltage domain has crossed the thermal threshold by 

reading the BGAP registers through the PMHAL APIs and then makes a system call 

which gives the voltage domain ID and the type of the thermal event (eg. 

HOT/COLD).  

System_linkControl(SYSTEM_LINK_ID_IPU1_0, 

                   UTILS_TEMP_CMD_EVENT_HOT,    /* Event Type */ 

                   &gUtils_tempObj[voltId].voltId, /* Voltage ID */ 

                   sizeof(pmhalPrcmVdId_t), 

https://gerrit01.dal.design.ti.com:8448/#/c/8946/1/examples/tda2xx/src/usecases/vip_single_cam_analytics_tda2xx/chains_vipSingleCameraAnalytics_tda2xx.c
https://gerrit01.dal.design.ti.com:8448/#/c/8946/1/examples/tda2xx/src/usecases/vip_single_cam_analytics_tda2xx/chains_vipSingleCameraAnalytics_tda2xx.c
https://gerrit01.dal.design.ti.com:8448/#/c/8946/1/examples/tda2xx/src/usecases/vip_single_cam_analytics_tda2xx/chains_vipSingleCameraAnalytics_tda2xx.c
https://gerrit01.dal.design.ti.com:8448/#/c/8946/1/examples/tda2xx/src/usecases/vip_single_cam_analytics_tda3xx/chains_vipSingleCameraAnalytics_tda3xx.c
https://gerrit01.dal.design.ti.com:8448/#/c/8946/1/examples/tda2xx/src/usecases/vip_single_cam_analytics_tda3xx/chains_vipSingleCameraAnalytics_tda3xx.c
https://gerrit01.dal.design.ti.com:8448/#/c/8946/1/examples/tda2xx/src/usecases/vip_single_cam_analytics_tda3xx/chains_vipSingleCameraAnalytics_tda3xx.c


 

 
Page 39 of 59  

                   FALSE); 

System_linkControl(SYSTEM_LINK_ID_IPU1_0, 

                   UTILS_TEMP_CMD_EVENT_COLD,     /* Event Type */ 

                   &gUtils_tempObj[voltId].voltId, /* Voltage ID */ 

                   sizeof(pmhalPrcmVdId_t), 

                   FALSE); 

The UTILS_TEMP_CMD_EVENT_HOT or UTILS_TEMP_CMD_EVENT_COLD is defined in the 

header file 

\vision_sdk\links_fw\src\rtos\utils_common\include\utils_temperature.h. 

The System Link call does not wait for an acknowledgement from the registered 

handler to ensure the Interrupt context is not maintained for a long time. 

 

Once the thermal handler 

Chains_vipSingleCameraAnalyticsTda2/3xx_EventHandler the function first 

checks which event type is it and then based on whether the event is a HOT or COLD 

one it calls the appropriate hot event handler 

(ChainsCommon_tempHotEventHandler) or cold event handler 

(ChainsCommon_tempColdEventHandler). These functions take in parameters of 

the captureLink ID and the pointer to the voltage domain ID which is sent by the 

temperature ISR.  These functions are defined in the file 

vision_sdk/apps/src/rtos/usecases/common/chains_common_fc_analytics.c.  

The hot or cold event handler in its current implementation only handles the thermal 

events generated by VD_CORE. This is sufficient while trying to implement thermal 

handling coarsely as the other temperature sensors are often +/- 5 deg C difference 

from the VD_CORE temperature.  

Based on the capture sensor the event handler decides the necessary frameSkipMask 

which is a capture driver parameter which decides which frames to drop to achieve 

the desired FPS of capture. For the frames which are skipped the VPDMA does not 

copy these frames to DDR. This is useful as the DDR IO power is saved as memory 

transactions are minimized by dropping frames at the capture thread.  

The CaptureLink_tsk has been modified to handle the requests from the thermal 

handler or any other handler to change the frame skip parameters on the fly. A new 

command CAPTURE_LINK_CMD_SET_FRAME_SKIP_MASK has been added to achieve this 

functionality defined in include/link_api/captureLink.h. A function 

CaptureLink_drvUpdateFrmSkip has been added to the file 

vision_sdk/links_fw/src/rtos/links_ipu/vip_capture/captureLink_drv.c to 

make the driver IOCTL call which updates the frameSkip parameter for all the 

capture streams and instances. 

 

The handler then modifies the thermal temperature thresholds by calling the 

Utils_tempChangeHotThreshold and Utils_tempChangeColdThreshold. The new 

threshold values can be determined by the application. As an example the thresholds 

in the current implementation has been changed to the current temperature + step 

size for the next hot event and current temperature – step size for the next cold 

event. This method of using the current temperature to generate the next thermal 

thresholds helps in tracking the temperature to handle events of slowly rising or 

falling ambient temperatures. The APIs Utils_tempChangeHotThreshold and 



 

 
Page 40 of 59  

Utils_tempChangeColdThreshold re-enable the thermal interrupt to service future 

thermal events. 

Note: Since the APIs Utils_tempChangeHotThreshold and 

Utils_tempChangeColdThreshold re-enable the IPU interrupts for thermal events it 

is essential to maintain a certain order of calling these APIs in the thermal event 

handlers to ensure we do not get false/double interrupts. For instance in the Hot 

event handler the change of thersholds should be HOT first then COLD to ensure the 

hot temperarture threshold is changed before the interrupt is enabled. In the case of 

the cold event handler the COLD threshold should be changed before hot. If the 

other way around is done the IPU may receive an extra interrupt which is caused by 

the interrupt being enabled but the temperature threshold being unchanged. 

When the Limp Home actions have been taken, it is important to notify the user 

regarding the state of the system (Limp Home or Not). The Handler also additionally 

updates the thermal state variable to indicate this by calling the function  

        Utils_tempUpdateAllVoltLimpHomeState(UTILS_TEMP_LIMP_HOME_ACTIVE); 

in the Hot event handler and calling the function 

        Utils_tempUpdateAllVoltLimpHomeState(UTILS_TEMP_LIMP_HOME_INACTIVE); 

in the Cold event Handler. 

 

Additionally the display is updated with the mode by sending a 

GRPX_SRC_LINK_CMD_PRINT_STRING message to the GRPX Link as below: 

 

snprintf(printPrms.stringInfo.string, 

                     sizeof(printPrms.stringInfo.string) - 1, 

                     "                      \n"); 

        printPrms.stringInfo.string[ 

sizeof(printPrms.stringInfo.string) - 1] = 0; 

        printPrms.duration_ms = LIMP_HOME_DISPLAY_DURATION_MS; 

        printPrms.stringInfo.fontType = LIMP_HOME_DISPLAY_FONTID; 

        printPrms.stringInfo.startX  = pObj->displayWidth/2 + 200; 

        printPrms.stringInfo.startY  = pObj->displayHeight-100; 

 

        status = System_linkControl(IPU1_0_LINK(SYSTEM_LINK_ID_GRPX_SRC_0), 

                           GRPX_SRC_LINK_CMD_PRINT_STRING, 

                           &printPrms, 

                           sizeof(printPrms), 

                           TRUE); 

7.2.3 Run-time configurability 

The use case menu has been modified to demonstrate the thermal management 

capability of the software. In the use case menu an extra option ‘t’ has been added 

as shown below: 

==================== 

 Chains Run-time Menu 

 ==================== 

  

 0: Stop Chain 

  

 p: Print Performance Statistics  

  

 t: Show Thermal Configuration Menu  



 

 
Page 41 of 59  

  

 Enter Choice: 

Once the ‘t’ option is chosen the following menu options are shown: 

============================== 

Thermal Management Description 

============================== 

 

The Thermal Management of the device involves reducing the power 

consumption when the temperature of the device becomes hotter than 

the desired THOT temperature. When the temperature becomes lower than 

TCOLD temperature the device power consumption can be restored. 

 

The control of power consumption is done by reducing the FPS of 

of the usecase by dropping frames in the capture thread. 

 

After every thermal event the temperature thresholds would be changed 

to make sure THOT and TCOLD are as below: 

 

     THOT Temperature    ------------------------ 

                                ^ 

                                | 

                            Step Size 

                                | 

                                V 

     Current Temperature ------------------------ 

                                ^ 

                                | 

                            Step Size 

                                | 

                                V 

     TCOLD Temperature    ------------------------ 

  

 ============================ 

 Thermal Menu Options: 

 ============================ 

  

 1: Change THOT Temperature 

 2: Change TCOLD Temperature 

 3: Show current THOT Temperature 

 4: Show current TCOLD Temperature 

 5: Change Threshold Step Size 

 6: Show Limp Home Status 

 x: Exit Thermal Menu 

 Enter Choice: 

 

This menu option allows the user to on the fly change the HOT and COLD thresholds, 

change the step size for the handler to change the thersholds when the thermal 

action is taken and also read the current hot and cold threshold and Limp Home 

status (ACTIVE/INACTIVE). 

Note: The current temperature is printed out in the “p: Print Performance 

Statistics” menu option. 

 



 

 
Page 42 of 59  

7.3 DSP and EVE run time off and on 

In order for the application to go into an analytics off low power mode where only 

the capture and display threads are running the DSP and EVE can be made to go to 

power domain off state at run time. Once the DSP and EVE are switched off and the 

application wants to restart the analytics the DSP and EVE has to be re-booted. A 

demonstration of the analytics off and on scenario has been integrated to the 

TDA3xx Fast boot use-case (Section 6).  

7.3.1 Usecase supported for DSP and EVE off and on 

Users can refer to following usecase to tryout demo for DSP and EVE off and on 

 1 ch ISS capture (OV10640) + Object Detect + Display (LCD 10 inch) 

 

Path in vision_sdk –  

\vision_sdk\apps\src\rtos\usecases\fast_boot_iss_capture_isp_simcop_pd_display 

 

This is a special usecase which not listed in Run time Menu. For more details on h/w 

setup and how to run this usecase please refer VisionSDK_UserGuide_TDA3xx.pdf 

under vision_sdk\docs folder. 

7.3.2 Optimization challenges  

There are multiple challenges when the DSP and EVE are switched off and have to be 

rebooted in between running the usecase: 

1. Dividing usecase Data Flow into parts and selectively putting down and bringing 

up s/w modules 

2. Avoiding code loading every time DSP and EVE need to be re-booted. 

3. Re-enabling IPC and re-Synchronization of DSP and EVE on re-boot. 

4. Seamlessly switching video data when DSP and EVE are switched off and re-

booted. 

5. Avoid On CPUs kept on from trying to access switched off CPUs. 

6. Ensure initialization state of global data structures for the DSP and EVE cores 

when re-booted. 

7. Ensure clean switch off and memory free of DSP and EVE usecase structures to 

avoid memory leak when DSP and EVE are switch off and then on again. 

7.3.3 Techniques for DSP and EVE power off and on (Framework Level) 

7.3.3.1 Usage of Gate Link 

The Gate Link shown in Section 6.3.1 was used to cleanly separate the data flow 

between the DSP and EVE operation and the capture and display threads to allow 

seamless switching between analytics on and analytics off state. The UCLate portion 

of the application was shut down and brought up when the DSP and EVE CPUs were 

powered off and re-booted. 

The key challenge addressed in repeated switching on and off the gate link was to 

ensure no buffers are held locked by the chains following the gate link before 

switching off the DSP and EVE. This was done by reading the bufCount of the 

GateLink and waiting for all the downstream chains after the GateLinks complete 

their task before switching off cores. This ensured no stale buffers are held by 

software components in UClate. 



 

 
Page 43 of 59  

In cases where there are two input gate links to the section being switched off and 

we are switching the gates in the order 1 followed by 2 as shown in the figure below, 

care should be taken especially in presence of a sync link which waits for the inputs 

from both the gate links. It could be possible that the buffer from Gate Link 2 passes 

through before Gate Link 2 is made off whereas the buffer from Gate Link 1 does not 

pass through. This leads to a situation where the sync link waits till a timeout value 

before discarding the buffer which has sneaked in while turning the gates off. A finite 

value of a timeout must be kept to avoid a deadlock situation where the sync keeps 

waiting infinitely for the second buffer and the logic to turn off the cores keep waiting 

for the sneaked in buffer to be free. 

 

 

Refer the functions:  

chains_fastBoot_switchDspEveOn and chains_fastBoot_switchDspEveOff  

in the file 

apps/src/rtos/usecases/fast_boot_iss_capture_isp_simcop_pd_display/chai

ns_fastBoot_dspEvePowerDown.c 

for the exact implementation to switch off the Gates, wait for the buffers to get freed 

and then stop and delete the late usecase. 

7.3.3.2 Handling CPU IPC 

While powering down EVE and DSP, the application must ensure the IPC is cleanly 

exited to allow re-attaching the IPC when the DSP and EVE are brought up.  The first 

step to do when the Gate links have been switched off and the late usecase 

components are stopped and deleted is to ensure the DSP and EVE application exit 

requests are placed. While exiting the DSP and EVE core application software the 

System_ipcDetach(); should be called which allows the IPC to detach cleanly between 

DSP  EVE, DSPIPU and EVEIPU. For the implementation of this function refer 

src/rtos/links_common/system/system_ipc_notify.c. The method to perform 

Ipc_detach is to perform the detach going from a higher value of PROC_ID to a lower 

value. 

Once the DSP and EVE applications have exited the IPU can detach the IPUDSP and 

IPUEVE IPC using the following sequence: 



 

 
Page 44 of 59  

cookie = Hwi_disable(); 

System_ipcNotifyDeInit(); 

System_ipcDetach(); 

System_ipcStop(); 

Hwi_restore(cookie); 

This sequence is shown in the function Utils_bootPowerDownSlaves in the file 
src/rtos/utils_common/src/tda3xx/utils_boot_slaves.c 

7.3.3.3 Turning off and turning on Cores 

The DSP and EVE CPUs are switched off and on using the PMLIB System Config APIs. 

A sample sequence for DSP1 being switched off is as shown below: 

if(System_isProcEnabled(SYSTEM_PROC_DSP1)) 

{ 

       do 

        { 

            pmlibSysConfigPowerStateParams_t inputTableDsp1[] = 

            {{PMHAL_PRCM_MOD_DSP1,        PMLIB_SYS_CONFIG_DISABLED}}; 

            status = PMLIBSysConfigSetPowerState(inputTableDsp1, (UInt32) 1, 

                                             PM_TIMEOUT_INFINITE, 

                                             NULL); 

            status = PMLIBSysConfigGetPowerState(PMHAL_PRCM_MOD_DSP1,    

                                                 &currentState, NULL); 

        } while ((PM_SUCCESS == status) &&  

     (PMLIB_SYS_CONFIG_DISABLED != currentState)); 

        if (PM_SUCCESS != status) 

        { 

           Vps_printf(" UTILS: BOOT SLAVES: Powering down DSP failed!!\n"); 

        } 

} 

7.3.3.4 Turning off commands from On CPUs to Off CPUs 

As an example to not allow the IPU to not communicate with the DSP and EVE while 

they are off the CPU load calculations are also switched off on the DSP and EVE side 

while they are off. This is specifically a key care about for EVE as the EVE subsystem 

mailbox is used for communication between IPU and EVE. If the EVE subsystem is off 

the mailbox inside the EVE subsystem is not accessible and can lead to a potential 

IPU crash if the IPU tried to access the register space while trying to communicate 

with EVE. 

The function chains_fastBoot_stopDspEveLoadCalculation was added to this 

effect. 

7.3.3.5 Compiler Options for DSP and EVE code 

When the DSP and EVE codes are not re-loaded from QSPI during re-boot there are 

some key care abouts to allow the DSP and EVE code to re-boot correctly. The 

assumption made here is that all the data structures stored in the DSP and EVE 

subsystem internal memories are scratch and do not require any reloading when the 

DSP and EVE are re-booted.  

Note: In the circumstance that the DSP and EVE have some important data in the 

internal memories that cannot be considered scratch, a save of these memories 

should be performed before switching off these cores and the contents should be 

restored once the subsystem is brought up. 

Global variables and structures often are initialized to a certain value and can be 

changed during the program execution. When the DSP and EVE are powered off stale 



 

 
Page 45 of 59  

state of the global variables are left behind which can cause undesired code behavior 

when the DSP and EVE codes are re-started. To ensure the global 

variables/structures are re-initialized to their desired state, the following compiler 

options were modified. 

DSP Linker Flags: build/rtos/makerules/rules_66.mk 

LNKFLAGS_INTERNAL_COMMON =  --reread_libs --warn_sections -q -e=_c_int00 --

silicon_version=6600 --rom_model --zero_init=off 

EVE Linker Flags: build/rtos/makerules/rules_arp32.mk 

LNKFLAGS_INTERNAL_COMMON = --warn_sections -q -e=_c_int00 --

silicon_version=arp32 -c -x --zero_init=off --rom_model 

 

Specifically for DSP the --dynamic flag was removed to allow creating cinit tables 

which hold the initialization .data section values and copy them to the actual .data 

section variable addresses before reaching the application main function. For more 

details refer the TMS320C6000 Assembly Language Tools User's Guide Literature 

Number: SPRU186W. 

7.4 Reading Power State and Clock Frequency of the system 

 

The power state of the modules and clock frequency of the clocks in the system can 

be read using the PM APIs. The file 

src/rtos/utils_common/src/utils_prcm_stats.c gives the functions which read 

the PRCM status using PM STW APIs. 

 

The functions help print the following information regarding PRCM and temperature: 

1. DPLL Configuration and Status : Utils_prcmPrintAllDpllValues() 

2. Voltage Values of different voltage rails: Utils_prcmPrintAllVoltageValues() 

3. Temperature of different voltage rails: Utils_prcmPrintAllVDTempValues() 

4. Parsed power state of each module in the system: 
Utils_prcmPrintAllModuleState() 

5. CPU clock frequencies : Utils_prcmPrintAllCPUFrequency() 

6. Peripheral Clock Frequencies: Utils_prcmPrintAllPeripheralsFrequency() 

7. PRCM Register Dump: Utils_prcmDumpRegisterData() 

 

 



 

 
Page 46 of 59  

8 Memory Allocation 

This section describes the different methods by which memory is allocated in the 

Vision SDK framework. The Vision SDK framework also support static memory 

allocation. This section also describes how users can configure their system for static 

memory allocation. 

Memory in Vision SDK framework is allocated for the following purposes 

Purpose Region in memory used for 

allocation 

Type of allocation 

(Dynamic, Static)  

External Buffer memory for 

storing algorithms results 

and/or HW engine results 

SR1_FRAME_BUFFER_MEM Dynamic (heap 

based) and/or Static 

Internal Buffer memory for 

storing algorithms results 

and/or HW engine results 

OCMC_RAM Dynamic (heap 

based) and/or Static 

Notify Shared region – ONLY 

used during Notify setup 

(IPC_Start()), not used later 

SR0 Dynamic (heap 

based)  

Temporary scratch memory in 

internal memory for algorithms 

results 

DMEM in EVE 

L2SRAM in DSP 

Dynamic (non-heap, 

linear allocation) 

Shared memory for remote core 

print logs  

REMOTE_LOG_MEM Static 

Shared memory for link 

statistics 

LINK_STATS_MEM Static 

Shared memory for inter 

processor communication 

SYSTEM_IPC_SHM_MEM Static 

VPDMA descriptor memory for 

VIP, VPE HW engines 

HDVPSS_DESC_MEM Static 

CPU specific memory for BIOS 

objects like semaphores, tasks, 

interrupts, clocks 

CPU specific data section Static 

The subsequent section provide more details on each type of memory allocation 

In the below description, 

<soc> = tda2xx, tda2ex, tda3xx 

<ddr_size> = 64mb, 256mb, 512mb, 1024mb 

<os_type> = bios, linux 

  



 

 
Page 47 of 59  

8.1 External Buffer Memory Allocation 

8.1.1 Location where memory is specified 

 The memory region used for external buffer memory allocation is specified via 

the below file 

o File: 

vision_sdk\apps\build\<soc>\mem_segment_definition_<os_type>.xs for 

TDA2XX/TDA2EX 

o  vision_sdk\apps\build\<soc>\mem_segment_definition_<ddr_size>.xs 

for TDA3X 

o Variable SR1_FRAME_BUFFER_SIZE 

 The heap is defined only on IPU1-0 CPU, all other CPUs send a command to IPU1-

0 to allocate memory. This is done internally inside the Utils_memAlloc APIs. 

8.1.2 API to allocate and free memory  

 Below APIs are used to allocate and free memory  

o FILE: \vision_sdk\links_fw\src\rtos\utils_common\include\utils_mem.h 

o API: 

 Utils_memAlloc() with heapId as UTILS_HEAPID_DDR_CACHED_SR 

 Utils_memFree() with heapId as UTILS_HEAPID_DDR_CACHED_SR 

 Utils_memGetHeapStats() with heapId as 

UTILS_HEAPID_DDR_CACHED_SR 

 Other APIs from this file are not recommended to be used by users and are used 

internally by the framework 

8.1.3 Changing the size of memory region 

 Modify region size in .xs file mentioned in section 8.1.1 

 Modify heap segment size #define in .h file mentioned in section 8.1.1 

8.1.4 Using static memory allocation 

 When a system wants to use static memory allocation and avoid this heap, it 

should set the size of this heap segment as 0 by modifying the #define in .h file 

mentioned in section 8.1.1 

 Define static memory objects (arrays, data structures) in IPU1-0 use-case file. 

Make sure the objects are placed in data section “.bss:heapMemDDR" via 

#pragma as shown in section 8.1.1 

 The links which support static memory allocation allow passing of memory region 

pointers from use-case file via System_LinkMemAllocInfo data structure 

 When creating a link from a use-case, user should now pass memory pointer 

allocated statically from use-case file. This prevents the link for allocating 

memory internally. Thus dynamic memory allocation is avoided 

o See capture link “captureLink.h” for example 

o See use-case “\vision_sdk\apps\src\rtos\usecases\vip_single_cam_view” 

for sample usage of passing user pointer to a link 

o NOTE: In the use-case the memory allocation is still done using 

Utils_memAlloc APIs. In a fully static memory system, this API wont be 

used by the user. 



 

 
Page 48 of 59  

 The links assert is the memory segment size passed to it is smaller than what is 

needs. In this case, it also reports the size required by the link. 

 When creating user specific AlgPlugins same mechanism should be used, i.e 

algorithm plugin should take memory pointer passed from use-case file rather 

than allocating memory internally. See “Capture” link for example 

 The below links support passing of user pointer from the use-case 

o Capture 

o IssCapture 

o IssM2mIsp 

o IssM2mSimcop 

o VPE 

o Algorithm Plugin: IssAewb 

o Algorithm Plugin: CRC 

 Other links and algorithm plugins are not modified to take user memory pointer 

as input. 

 

8.2 Internal Buffer Memory Allocation 

8.2.1 Location where memory is specified 

 The memory region used for buffer memory allocation is specified via the below 

file 

o File: 

vision_sdk\apps\build\<soc>\mem_segment_definition_<os_type>.xs for 

TDA2XX and TDA2EX 

o vision_sdk\apps\build\<soc>\mem_segment_definition_<ddr_size>.xs for 

TDA3XX 

o Variable OCMC1_SIZE 

 The heap from which memory is allocated is defined in file 

o FILE: vision_sdk\src\utils_common\src\utils_mem_ipu1_0.c 

 #pragma DATA_SECTION(gUtils_memHeapOCMC, 

".bss:heapMemOCMC") 

o FILE: vision_sdk\src\utils_common\include\utils_mem_cfg.h 

 #define UTILS_MEM_HEAP_OCMC_SIZE 

o This heap is placed in “OCMC” section via the IPU1-0 cfg file 

 FILE: vision_sdk\src\main_app\<soc>\ipu1_0\Ipu1_0.cfg 

 Program.sectMap[".bss:heapMemOCMC"]     = 

"OCMC_RAM"; 

 The heap is defined only on IPU1-0 CPU, all other CPUs send a command to IPU1-

0 to allocate memory. This is done internally inside the Utils_memAlloc APIs.  

8.2.2 API to allocate and free memory  

 Below APIs are used to allocate and free memory  

o FILE: \vision_sdk\links_fw\src\rtos\utils_common\include\utils_mem.h 

o API: 



 

 
Page 49 of 59  

 Utils_memAlloc() with heapId as UTILS_HEAPID_OCMC_SR 

 Utils_memFree() with heapId as UTILS_HEAPID_OCMC_SR 

 Utils_memGetHeapStats() with heapId as 

UTILS_HEAPID_OCMC_SR 

 Other APIs from this file are not recommended to be used by users and are used 

internally by the framework 

8.2.3 Changing the size of memory region 

 Modify region size in .xs file mentioned in section 8.1.1  

 Modify heap segment size #define in .h file mentioned in section 8.1.1 

8.2.4 Using static memory allocation 

 When a system wants to use static memory allocation and avoid this heap, it 

should set the size of this heap segment as 0 by modifying the #define in .h file 

mentioned in section 8.2.1 

 Define static memory objects (arrays, data structures) in IPU1-0 use-case file. 

Make sure the objects are placed in data section “.bss:heapMemOCMC" via 

#pragma as shown in section 8.2.1 

 Currently none of the links and algorithm plugins implemented by TI use OCMC 

memory, hence if user wants to statically allocate from OCMC memory they 

should pass the pointer to the OCMC memory as “create” parameters to the 

respective algorithm plugin that they have implemented.  

8.3 IPC Notify Memory 

8.3.1 Location where memory is specified 

 The memory used by Notify module of IPC package is specified in below files 

o FILE: 

vision_sdk\apps\build\<soc>\mem_segment_definition_<os_type>.xs for 

TDA2XX and TDA2EX 

o vision_sdk\apps\build\<soc>\mem_segment_definition_<ddr_size>.xs for 

TDA3XX 

o Variable SR0_SIZE 

 IPC and IPC Notify configuration is done in below file 

o FILE: vision_sdk\src\main_app\<soc>\cfg\IPC_common.cfg   

8.3.2 API to allocate and free memory  

 Users are recommended to not allocate memory from this region since this is 

dedicated for IPC Notify module 

8.3.3 Changing the size of memory region 

 Modify region size in .xs file mentioned in section 8.3.1 

8.3.4 Using static memory allocation 

 Currently SR0 is MUST for using IPC and IPC Notify module. It does some 

dynamic allocation from SR0 during Notify setup. This cannot be avoided. 



 

 
Page 50 of 59  

8.4 Temporary Scratch memory for algorithms 

8.4.1 Location where memory is specified 

 This memory region is applicable only for DSP and EVE 

 The memory region from which memory is allocated is defined in file 

o FILE: \vision_sdk\links_fw\src\rtos\utils_common\src\utils_mem.c 

 #pragma DATA_SECTION(gUtils_memHeapL2, ".bss:heapMemL2") 

o FILE: 

\vision_sdk\links_fw\src\rtos\utils_common\include\utils_mem_cfg.h 

 #define UTILS_MEM_HEAP_L2_SIZE 

o For DSP, this memory is placed in “L2SRAM” section via the DSP cfg file 

 FILE: 

\vision_sdk\links_fw\src\rtos\bios_app_common\<soc>\dsp<n>\D

sp<n>.cfg 

 Program.sectMap[".bss:heapMemL2"]             = "L2SRAM"; 

o For EVE, this memory is placed in “DMEM” section via the EVE cfg file 

 FILE: 

\vision_sdk\links_fw\src\rtos\bios_app_common\<soc>\eve<n>\E

ve<n>.cfg 

 Program.sectMap[".bss:heapMemL2"]             = "DMEM"; 

8.4.2 API to allocate and free memory  

 Below APIs are used to allocate and free memory  

o FILE: \vision_sdk\links_fw\src\rtos\utils_common\include\utils_mem.h 

o API: 

 Utils_memAlloc() with heapId as UTILS_HEAPID_L2_LOCAL 

 Utils_memFree() with heapId as UTILS_HEAPID_L2_LOCAL 

 Utils_memGetHeapStats() with heapId as 

UTILS_HEAPID_L2_LOCAL 

 Other APIs from this file are not recommended to be used by users and are used 

internally by the framework 

8.4.3 Changing the size of memory region 

 Modify heap segment size #define in .h file mentioned in section 8.4.1 

8.4.4 Using static memory allocation 

 This memory region does not contain a heap data structure. 

 Memory is allocated using a linear allocator, where in a “offset” is incremented 

each time Utils_memAlloc() is called. Utils_memFree() resets the “offset” to zero. 

 Each algorithm would typically reset the “offset” and use alloc APIs to get 

“offsets” into the memory region 

 Multiple algorithms would share the same memory region, hence all data in this 

region should be treated as “scratch” or temporary by algorithms. Contents of 

the memory would be lost when control switchs from one algorithms to another 

 In Vision SDK control would switch from one algorithm to another at buffer/frame 

processing boundary. 



 

 
Page 51 of 59  

8.5 Memory for Remote Log, Link Statistics, Interprocessor communication, 
VPDMA Descriptors 

8.5.1 Location where memory is specified 

 The memory region used for these sections are specified via the below file 

o File: 

vision_sdk\apps\build\<soc>\mem_segment_definition_<os_type>.xs for 

TDA2XX and TDA2EX 

o vision_sdk\apps\build\<soc>\mem_segment_definition_<ddr_size>.xs for 

TDA3XX 

o Variable “REMOTE_LOG_SIZE” for Remote Log memory 

o Variable “SYSTEM_IPC_SHM_SIZE” for interprocessor communication 

o Variable “LINK_STATS_SIZE” for Link Statistics 

o Variable “HDVPSS_DESC_SIZE” for VPDMA descriptors 

 The data structure definition is done in below files, 

o For Remote log memory 

 FILE: 

\vision_sdk\links_fw\src\rtos\utils_common\src\utils_remote_log_s

erver.c 

o For Interprocessor communication 

 FILE: 

\vision_sdk\links_fw\src\rtos\utils_common\system\system_ipc.c 

o For Link Statistics 

 FILE: 

\vision_sdk\links_fw\src\rtos\utils_common\src\utils_link_stats_col

lector.c 

o For VPDMA descriptors 

 Various files in PDK 

8.5.2 API to allocate and free memory  

Not applicable, since this is statically allocated memory and users cannot allocate 

memory from this region 

8.5.3 Changing the size of memory region 

 Modify #define in .c file mentioned in section 8.5.1 

8.5.4 Using static memory allocation 

 All memory in this region is static memory and cannot be dynamic  

8.6 Memory for BIOS Objects 

8.6.1 Location where memory is specified 

 The memory region used for these sections are specified via the below file 

o File: 

\ti_components\drivers\pdk\packages\ti\drv\vps\src\osal\tirtos\bsp_osal.

c 



 

 
Page 52 of 59  

o File: 

\ti_components\drivers\pdk\packages\ti\drv\vps\include\osal\bsp_osalCfg

.h 

8.6.2 API to allocate and free memory  

 See APIs defined in below file 

o FILE: 

\ti_components\drivers\pdk\packages\ti\drv\vps\include\osal\bsp_osal.h 

8.6.3 Changing the size of memory region 

 Modify #define in bspOsalCfg.h file mentioned in section 8.6.1 

8.6.4 Using static memory allocation 

 All memory in this region is static memory and cannot be dynamic  

8.7 Known issues and limitations for Static memory allocation system 

Below are the known issues and limitations in configuring the Vision SDK system in 

static memory allocation mode 

Limitation Cause Solution 

BspOsal_taskCreate() 
results in two “alloc” for 
“hook function” object 
alloc 

If any “hook function” is 
registered to task module, 
the memory for hook 
function object gets 
allocated using the default 
heap. 

 

By default in Vision SDK, 
task level load 
measurement is registered 
as a hook function  

Disable task, Hwi, Swi load measurement by 
making below change 

FILE: 
\vision_sdk\links_fw\src\rtos\bios_app_commo
n\<soc>\cfg\BIOS_common.cfg 

 

Load.swiEnabled   = false; 

Load.hwiEnabled   = false; 

Load.taskEnabled  = false; 

 

Note, in this case, task specific CPU load is 
invalid. However total CPU load measurement 
is still valid. 

Modules in 

vision_sdk\apps would 
use “alloc” 

Modules in vision_sdk\apps 

are not modified to remove 
dynamic memory alloc since 
this example code and is 
not expected to be used as-
is in customer products 

If customer plans to use code from this folder 

in end product then they need to modify to use 
static memory allocation 

NDK uses dynamic 
memory “alloc”’s 

NDK network stack does not 
support static memory 
allocation 

NDK can be disabled by making 
NDK_PROC_TO_USE=none in Rules.make 

IVA links used for video 

encode/decode use 
dynamic memory alloc 

IVA links do not support 

static memory allocation 

IVA can be disabled by making 

IVAHD_INCLUDE=no in Rules.make 

Ipc_start() results in 

memory “alloc” 

IPC module does not 

support static memory 
allocation 

None. All memory allocation happens before 

System_main() of Vision SDK framework is 
called. Later during run-time no alloc happens 

 



 

 
Page 53 of 59  

9 Surround view use-case using TIDA00455/OV490 

 

This use-case is used to demonstrate a prototype low-cost surround view platform 

using OV10640 cameras UB960 de-serializer hub chip and OV490 ISP. This platform 

reduces the overall system BOM by replacing the four de-serializers with one de-

serializer hub chip and using two ISPs (OV490) instead of four. 

Each OV10640 sends raw video of resolutions up to 1280x880. UB960 sends two 

CSI2 streams – each with two virtual channels of video data – to the two OV490s. 

Each OV490 then stitches the two video inputs horizontally and sends out 2560x880 

resolution to TDA2x.  

Video driver in VisionSDK captures the 2560x880 video. SPLIT link in VisionSDK 

provides splits one channel of 2560x880 into two channels of 1280x880 – this is 

done using address manipulation only without using any additional video buffer 

memory. 

Capture driver output – single channel 2560x880 (pitch = 2560) 

 

Split link output – two channels 1280x880 (pitch = 2560) 

 

 

Actual use-case uses only 2560x720 resolution as required by the surround view 

algorithm.  

CH1  
Buffer pointer 

CH2 
Buffer pointer 



 

 
Page 54 of 59  

10 Usage of Windowed Watchdog Timer feature in TDA3x 

TDA3x SoC consists of five RTI (Real Time Interrupt) modules, viz. RTI1 to RTI5. 

Each of these provides Windowed Watchdog Timer (WWDT) functionality. Please 

refer to TDA3x TRM for detailed description of this module. 

VisionSDK provides an example usage of RTI modules to monitor operation of 

different cores in the system. This is implemented in all single channel frame-copy 

use-cases (options 2/3/4 within the single channel use-case section). 

RTI-Link is implemented in the \vision_sdk\apps\src\rtos\modules\rti\src 

folder. The same code is used on all cores – core specific variations are handled run-

time by using the System_getSelfProcId()framework API.  

10.1 RTI link – Summary 

The basic idea of this link is to associate each core with a different RTI module. Each 

core must service the associated WWDT in a timely fashion. If this is not done, the 

RTI module can generate an interrupt or reset the SoC – this is user configurable. In 

the VisionSDK implementation of RTI-link, RTI modules are associated with different 

cores as follows: 

1. RTI2 -> IPU1-Core0 

2. RTI3 -> DSP1 

3. RTI4 -> DSP2 

4. RTI5 -> EVE 

This mapping is done using the gRtiLink_obj.procMap[] variable. 

The WWDT period can be configured only once after a cold-boot. RTI1 WWDT gets 

used during the boot-up process and is configured with a period of ~3min. Since this 

is not changeable, VisionSDK does not use the RTI1 module in the RTI-link. If the 

3min period is acceptable for some use-case, users can make use of this RTI1 

module as well. 

10.2 WWDT expiry handling 

If WWDT is not processed on time by DSP1/DSP2/EVE, the corresponding RTI 

modules are configured to generate an interrupt which is routed via the interrupt 

crossbar to all cores. This is treated as a core expiry event and IPU1-Core0 will reset 

the corresponding core in this case. Other cores detect this event and stop sending 

messages to the expired core to prevent a system hang. This mechanism allows 

users to execute use-cases which do not use this expired core safely. 

In case WWDT corresponding to IPU1-Core0 expires, the corresponding RTI module 

will generate a SoC Warm Reset. 

Refer to the function rti_registerInterrupts() for interrupt routing and 

rti_getCoreRtiReaction() RTI reaction configuration. 

10.3 RTI link – Task description 

rti_wwdtProcess() is the task associated with this link. The task is kept at lowest 

priority to minimize interference to the system.  

rti_setup() sets up each of RTI module. The default configuration for each WWDT 

is a period of 4 seconds (as set in rti_getCoreRtiTimeoutVal()) and a window size 

of 50% (as set in rti_getCoreRtiWindowSize()) 



 

 
Page 55 of 59  

The link is enabled or diasabled via the System_rtiEnableAll() or 

System_rtiDisableAll() API from the use-case. This function causes the link to 

start executing the rti_service() function. For a WWDT configuration with period of 4 

seconds and window size of 50% (2 seconds), this function will sleep for start the 

WWDT, sleep for 2 seconds, wake-up and service the WWDT. It will continue to do 

these actions in a loop until a System_rtiDisableAll()  function call occurs. 

When WWDT servicing and monitoring is disabled via System_rtiDisableAll(), 

WWDT expiry events continue to occur but are safely ignored by the framework. 

10.4 WWDT configuration and reconfiguration 

We support WWDT monitoring on a use-case basis. This requires multiple 

reconfigurations of the RTI modules. The WWDT counter cannot be stopped once it is 

started. To ensure correct reconfiguration, following sequence is followed. 

a. One-time configuration of clock source and timer period 

b. Set window size to required value 

c. Start WWDT counter 

d. Service WWDT within service window until WWDT servicing is requested to 

be stopped by use-case using the System_rtiDisableAll() 

e. Change Window size to 50% 

f. Wait for service window and service the WWDT. Change reaction type to 

interrupt immediately (outside service window) to ensure the change 

takes effect immediately. 

g. Sleep for 1ms and change window size to 100% to allow reconfiguration 

at any time in the future 

h. When a new System_rtiEnableAll()function call is made, change 

window size to the new requested window size. 

i. Clear older expiry events generated when WWDT was not being monitored 

and service the WWDT to ensure the new window size takes effect. 

j. Update the reaction type for WWDT expiry as required. 

k. Loop back to step d 

Refer to rti_setup() and rti_service() for more details. 

  



 

 
Page 56 of 59  

11 Usage of filesystem with Vision SDK 

FAT Filesystem can be used with MMC/SD as storage media with Vision SDK. 

This section describes the integration of FAT filesystem with Vision SDK 

11.1 Features 

 FAT FS implementation taken from http://elm-chan.org/fsw/ff/00index_e.html 

 Integrated with MMC/SD as storage media 

 Supports EDMA mode of operation of MMCSD. EDMA operates in interrupt mode. 

 Works on IPU1-0 

 Tested on TDA3x EVM and TDA2x EVM 

 Thread safe APIs when used via 

“\vision_sdk\links_fw\src\rtos\utils_common\include\file_api.h” 

11.2 Known Limitations 

NOTE: See “\ti_components\drivers\pdk\packages\ti\drv\stw_lld\fatlib\fatfs\ffconf.h” 

for config options used to configure the FAT filesystem.  

 Works on one partition only 

 Long filenames, Unicode char support not enabled 

 Run-time Card removal / insertion not supported. Card MUST be inserted before 

starting the application 

 Card formatting not supported 

 Date / time not supported 

 NDK/NSP is disabled when FAT FS is enabled. FAT FS is disabled when NDK/NSP 

is enabled. See Rules.make to enable NDK or FATFS. Do “gmake config” to 

confirm is FAT FS is enabled with current options specified in Rules.make 

11.3 Integration Details 

FAT FS integration involves below files 

File / Folder Purpose 

\ti_components\drivers\pdk\packa

ges\ti\drv\stw_lld\fatlib\fatfs 

FAT Filesystem code, taken from http://elm-

chan.org/fsw/ff/00index_e.html 

\ti_components\drivers\pdk\packa

ges\ti\drv\stw_lld\fatlib 

MMC SD driver used to integrate with FAT FS 

\ti_components\drivers\pdk\packa

ges\ti\drv\stw_lld\fatlib\fatlib_edm

a 

EDMA integration with MMCSD driver – ONLY 

used when Starterware ONLY examples are 

used. With Vision SDK the EDMA integration is 

in vision_sdk folder 

\vision_sdk\links_fw\src\rtos\utils_

common\include\file_api.h 

API user should use to do File IO 

\vision_sdk\links_fw\src\rtos\utils_

common\src\file_api.c 

File system, MMC SD init, board/pinmux, clock 

init for MMCSD and filesystem integration with 

Vision SDK 

\vision_sdk\links_fw\src\rtos\utils_ EDMA integration with Vision SDK 

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html


 

 
Page 57 of 59  

File / Folder Purpose 

common\src\file_api_dma.c 

 

11.4 Using FAT filesystem  

 Make sure FAT FS is enabled in \apps\configs\$(MAKECONFIG)\cfg.mk via 

FATFS_PROC_TO_USE variable. By default FATFS_PROC_TO_USE is set to 

ipu1_0 

o When NDK is enabled via NDK_PROC_TO_USE, FATFS gets disabled. 

\apps\configs\$(MAKECONFIG)\cfg.mk over rides the variable value 

o To confirm FAT FS is enabled, do “gmake config” and check if 

FATFS_PROC_TO_USE reflects the value set in 

\apps\configs\$(MAKECONFIG)\cfg.mk 

 Make sure SD card is inserted in the EVM before starting the application 

o Currently FAT FS with MMCSD is tested on TDA3x EVM and TDA2x EVM 

only 

 FAT FS and MMCSD is initialized by calling File_init() in ChainsCommon_Init() 

[\vision_sdk\apps\src\rtos\usecases\common\chains_common.c] 

o This called by default based on FATFS_PROC_TO_USE flag set in 

\apps\configs\$(MAKECONFIG)\cfg.mk 

 Use File IO APIs defined in file_api.h 

[\vision_sdk\links_fw\src\rtos\utils_common\include] to start using the 

filesystem in the SD card 

o See Utils_fileReadFile() and Utils_fileWriteFile() in file_api.c 

[\vision_sdk\links_fw\src\rtos\utils_common\src] for example usage of 

file IO APIs 

 Additional APIs of FAT FS not defined in file_api.h can be used via APIs 

defined in \ti_components\drivers\pdk\packages\ti\drv\stw_lld\fatlib\fatfs\ff.h 

o Note, however that these APIs wont be thread safe, so user to make 

sure these APIs are called from a single thread/task 

o For detailed API documentation of these APIs refer to http://elm-

chan.org/fsw/ff/00index_e.html 

 

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html


 

 
Page 58 of 59  

12 Frequently Asked Questions 

 

Q. How will I Know, which link can run on which processor core? 

A. There are certain links which can run on any core. These are called as common 

links and they are present in the folder \vision_sdk\links_fw\src\rtos\links_common.  

There are certain links which can run only on a particular processor core. These are 

present in core specific folders. Ex: \vision_sdk\links_fw\src\rtos\links_ipu consists 

of links which can run on IPU only. 

Q. How will I know if the steps during use case creation or execution happened 

successfully? 

A.  All the system APIs used will return status value. By examining the return status 

value, we can understand if a particular step happened successfully or not. 

Q. Why do we have single vs multi mailbox in Link Task?  

And, why do we enable multimbx on DSP and EVE but not IPU and A15? 

DSP and EVE mainly run algorithms. The algorithms don't really preempt until a 

frame processing is complete. On M4 and A15 where we use HWs like say VPE or 

Ethernet, while HW processes a frame, task can switch to some other work. So on 

DSP and EVE a single task is enough to handle all algos. MultiMbx is to use a single 

underlying task but multiple logical links on top. On EVE particularly we want algo 

stack to be in DMEM so using a single task to run multiple algos becomes very 

important since we have very limited DMEM. 

 

  



 

 
Page 59 of 59  

13 Revision History 

 

Version Date Revision History 

0.10 02 Oct 2013 First Draft  

0.11 09 Oct 2013 Reviewed and modified  

0.50 30 Oct 2013 Merged alg link and use 
case doc into one doc 

1.00 26 Feb 2014 Merged Link 
development guide 

1.01 4 Mar 2015 Updated to add details 
about use-case gen tool 

2.0 6 July 2015 Updated for Vision SDK 
v2.7. Added sections on 
fast boot in TDA3x, 
power optimization, 
memory allocation 

2.1 14 Oct 2015 Updated based on Vision 
SDK v2.8 features 

2.9 4 April 2016 Updates based on Vision 
SDK v2.9 features 

3.0 05
th

 July 2017 Updated for Vision SDK 
release 3.0 

3.1 4
th

 April 2018 Removed local 
hyperlinks 

 
 
 

««« § »»» 
 

 


	Vision SDK
	(v03.xx)
	Development Guide
	IMPORTANT NOTICE

	TABLE OF CONTENTS
	1 Introduction
	2 Use Case Development
	2.1 Example use case
	2.2 Chain Creation
	2.2.1 Directory Structure
	2.2.2 Generating the use-case using the use-case gen tool
	2.2.3 Setting of Link ID
	2.2.4 Default Setting of Link parameters
	2.2.5 Setting of Link parameters
	2.2.6 Connecting Links
	2.2.7 Link creation

	2.3 Starting Execution of Chain
	2.4 Stopping and Deletion of Chain
	2.5 Build the new usecase file

	3 Link Development
	3.1 What is a Link
	3.2 Link Files
	3.3 Creating public header file
	3.4 Creating private header file
	3.5 Creating task file
	3.6 Creating driver file
	3.7 Initializing link

	4 Algorithm Link Development
	4.1 Algorithm Link Design Overview
	4.2 Algorithm Link Skeleton
	4.3 Algorithm Link Plug-In Development
	4.3.1 Algorithm ID
	4.3.2 Input and Output Queues
	4.3.3 Input and Output Buffers
	4.3.3.1 Non In Place Mode
	4.3.3.2 In Place Mode

	4.3.4 Algorithm Internal Memory
	4.3.5 Cache Operations

	4.4 Algorithm Link Plug-In Integration
	4.4.1 Creating public header file
	4.4.2 Plugin Registration

	4.5 Directory Structure and Make File Changes

	5 Porting Vision SDK
	5.1 Using custom memory map
	5.2 Support for custom core selection
	5.3 Support for custom board
	5.4 Support for different video capture device
	5.5 Support for different LCD
	5.6 Specifying custom core frequencies to BIOS
	5.7 Using custom PLL and clock settings

	6 Boot time optimizations on TDA3X
	6.1 Usecase supported for fast boot demonstration
	6.2 Optimizations challenges
	6.3 Techniques for boot time optimization (Framework level)
	6.3.1 Gate Link
	6.3.1.1 Usage
	6.3.1.2 Example

	6.3.2 Selective loading and Power management of cores
	6.3.2.1 Delayed loading of slave cores using SBL lib
	6.3.2.2 Syncing up with lately loaded cores

	6.3.3 Seamless switch between UcEaly and UcLate
	6.3.4 Other Optimizations
	6.3.4.1 H/w changes
	6.3.4.2 Sensor initialization time
	6.3.4.3 Boot media and image size
	6.3.4.4 Compiler and linker optimizations


	6.4 Steps to convert a usecase into fast boot usecase

	7 Power Optimization in Vision SDK
	7.1 Putting CPUs to Low Power when not used
	7.1.1 Setting up the CPUs for Low Power
	7.1.2 BIOS Tick and Time Stamp Provider Concerns
	7.1.3 Disabling CPU Idle for Debug
	7.1.4 Knowing the time for which the CPU is in Idle

	7.2 Limp Home Mode
	7.2.1 Initializing the system for Limp Home Mode
	7.2.2 Handling Thermal Events
	7.2.3 Run-time configurability

	7.3 DSP and EVE run time off and on
	7.3.1 Usecase supported for DSP and EVE off and on
	7.3.2 Optimization challenges
	7.3.3 Techniques for DSP and EVE power off and on (Framework Level)
	7.3.3.1 Usage of Gate Link
	7.3.3.2 Handling CPU IPC
	7.3.3.3 Turning off and turning on Cores
	7.3.3.4 Turning off commands from On CPUs to Off CPUs
	7.3.3.5 Compiler Options for DSP and EVE code


	7.4 Reading Power State and Clock Frequency of the system

	8 Memory Allocation
	8.1 External Buffer Memory Allocation
	8.1.1 Location where memory is specified
	8.1.2 API to allocate and free memory
	8.1.3 Changing the size of memory region
	8.1.4 Using static memory allocation

	8.2 Internal Buffer Memory Allocation
	8.2.1 Location where memory is specified
	8.2.2 API to allocate and free memory
	8.2.3 Changing the size of memory region
	8.2.4 Using static memory allocation

	8.3 IPC Notify Memory
	8.3.1 Location where memory is specified
	8.3.2 API to allocate and free memory
	8.3.3 Changing the size of memory region
	8.3.4 Using static memory allocation

	8.4 Temporary Scratch memory for algorithms
	8.4.1 Location where memory is specified
	8.4.2 API to allocate and free memory
	8.4.3 Changing the size of memory region
	8.4.4 Using static memory allocation

	8.5 Memory for Remote Log, Link Statistics, Interprocessor communication, VPDMA Descriptors
	8.5.1 Location where memory is specified
	8.5.2 API to allocate and free memory
	8.5.3 Changing the size of memory region
	8.5.4 Using static memory allocation

	8.6 Memory for BIOS Objects
	8.6.1 Location where memory is specified
	8.6.2 API to allocate and free memory
	8.6.3 Changing the size of memory region
	8.6.4 Using static memory allocation

	8.7 Known issues and limitations for Static memory allocation system

	9 Surround view use-case using TIDA00455/OV490
	10 Usage of Windowed Watchdog Timer feature in TDA3x
	10.1 RTI link – Summary
	10.2 WWDT expiry handling
	10.3 RTI link – Task description
	10.4 WWDT configuration and reconfiguration

	11 Usage of filesystem with Vision SDK
	11.1 Features
	11.2 Known Limitations
	11.3 Integration Details
	11.4 Using FAT filesystem

	12 Frequently Asked Questions
	13 Revision History

