
Event-Driven

Microservices
The Architect’s Guide to Building a Responsive,
Elastic and Resilient Microservices Architecture

Text copyright © Solace

All rights reserved. No part of this work may be reproduced, or stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, or otherwise without permission from Solace.

For inquiries about permissions, contact:

Solace

535 Legget Drive, 3rd Floor

Ottawa, Ontario K2K 3B8

Canada

Phone: +1 613-271-1010

Web: solace.com

“If we are to exponentially

increase agility through

microservices, we need to

replace our static, stove-piped,

monolithic thinking.

JONATHAN SCHABOWSKY

https://solace.com/

5 Event-Driven Microservices

TABLE OF CONTENTS

Introduction .1

The Service Decomposition Paradox .3

The Integration Conundrum .5

The Incredible Dancing Microservices .6

The Copernican Shift to Events .7

Realizing the Agility Provided by a Modern Central Nervous System9

Think Event-Driven and Choreograph Service Execution9

Embrace Eventual Consistency . 10

Databases + CQRS . 12

Integrate Event-Driven Architecture . 13

Utilize Events to the UI . 15

Events as the Cornerstone of DR . 15

Use Vendor Agnostic Standard API or Wireline Protocols for Events 16

Overcoming the Barriers Between You and Event-Driven Microservices . . . 17

Conclusion . 20

About Solace . 21

1 Event-Driven Microservices

INTRODUCTION

Many organizations migrate to microservices architecture for one reason: Agility. The
ability to very quickly create and modify components in a way that offers bottom line
business value is mission critical in a world where your competitors are a click away
and time to market is everything. But the speed with which you develop components
is just one piece of the puzzle.

How quickly can you integrate them with
the rest of your system? How completely
can you embrace innovative new
techniques and technologies?

For your microservices initiative to be
successful, your organization must
realize that agility hinges on a holistic
approach leveraging practices such as CI/
CD, automated infrastructure, DevOps
and agile development. An average
microservices architect combines these
concepts into a lean, mean development
machine. A great microservices architect
goes beyond that by appreciating and
finding ways to overcome the undeniable
– but predictable – pitfalls that accompany
highly distributed systems.

The key to ensuring a microservice
initiative’s success is appreciating the

significant risks or barriers to agility:

• Brittleness of distributed processing;

• Ecosystem integration challenges; and,

• A lack of service harmony.

If we don’t respect the realities of
distributed systems, we will repeat the
failures of the past, like the SOA hype of
the 2000s. Fortunately, there is one really
powerful way to compensate for these
realities: event-driven (also called reactive)
architecture.

Jonathan Schabowsky, a senior architect
in Solace’s Office of the CTO, will explain
the massive benefits of combining event-
driven architecture and microservices,
starting with the fact that decomposing
applications, while in many ways beneficial,
can make life a little more complicated.

“Application leaders engaged

in digital transformation

initiatives must add ‘event

thinking’ to their technical,

organizational and cultural

strategies.

YEFIM NATIS
GARTNER

Source: Gartner “Business Events, Business Moments and Event Thinking in Digital
Business,” 4 August 2017, Yefim Natis

3 Event-Driven Microservices

THE SERVICE DECOMPOSITION PARADOX
The theory of microservices is simple:
achieve better agility, scalability and
reusability by breaking monolithic
applications into small, purpose-specific
microservices.

The real-world implementation of
microservices is, as always, more
complicated than that. This is in large part
because of the fallacies of distributed
computing – a set of false assumptions
that programmers and architects make
when they enter the world of distributed
applications. This list was written in 1994
by L. Peter Deutsch and others at Sun
Microsystems, but it holds true today.

THE FALLACIES OF DISTRIBUTED
COMPUTING

• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology doesn’t change.

• There is one administrator.

• Transport cost is zero.

• The network is homogeneous.

While all of these fallacies are relevant,
those in bold are of special importance
to the world of microservices. The smaller

you make each microservice, the larger
your service count, the more the fallacies
of distributed computing impact stability
and user experience/system performance.
This makes it mission critical to establish
an architecture and implementation that
minimizes latency while handling the
realities of network and service outages.

Much of the tooling related to
microservices involve the use of CI/
CD, automated infrastructure, DevOps
and agile software development. A
great example would be Pivotal Cloud
Foundry, which gives developers an easy
way to create, test, deploy and update
microservices using modern, cloud-native
techniques.

The challenge is that microservices require
connectivity/data in order to perform their
roles and provide business value, and
data acquisition/communication has been
largely ignored, so much so that the tooling
has severely lagged behind. For example,
API management/gateway products only
support synchronous, request/reply
exchange patterns, which exacerbates the
challenges of distributed computing. And
they don’t have the ability to integrate with
or acquire data from legacy systems.

At the same time, eventing/messaging
tools have been stuck in the antiquated,
non-agile world too, being incompatible

with many of the guiding principles of
microservices such as DevOps and self-
service. But it’s eventing/messaging that
best deals with the idiosyncrasies of
distributed computing and is the key to
unlocking the potential of microservices
architecture.

As services become smaller and their
purpose more singular, the potential for
reusability increases, but that’s contingent
on the ability for services to collaborate.

In the days of SOA, you’d create massive
monolithic services that directly
implemented all facets of the use case as
a set of services orchestrated using BPEL
engines or an ESB. They weren’t reusable
and were difficult to scale because ESBs/
BPEL orchestration moved too much
logic into the network, leading to “dumb
endpoints and smart pipes” that were
expensive, complex and nearly impossible
to troubleshoot.

Today, we recognize that the way to go is
small, single-in-purpose microservices and
a “smart endpoints, dumb pipes” approach
to connectivity and communications. But
that lingering question persists:

How can we enable service collaboration
in order to offer business value without
falling back to those failed monolithic or
orchestration techniques?

DID YOU KNOW ?

83% of enterprise workloads will be

in the cloud by 2020, according to

the Cloud Vision 2020 survey from

LogicMonitor

“Eventing/messaging tools have

been stuck in the antiquated,

non-agile world. Many are

incompatible with the guiding

principles of microservices, such

as DevOps.”

TWEET

https://solace.com/
https://ctt.ac/84im5
https://ctt.ac/84im5

5 Event-Driven Microservices

THE INTEGRATION CONUNDRUM

Because all microservices need data for
processing, and since 12-Factor Apps
are stateless, data needs to come from
somewhere. Acquiring data for greenfield
systems is easy, but microservices almost
always come to be as a side effect of digital
transformation, modernization or the need
to build new capabilities at a more rapid
pace. So you’re almost always dealing with
an ecosystem of legacy systems; some will
be modernized, others will remain as is for
the foreseeable future.

The existing business ecosystem is
the unavoidable burden that most
businesses must deal with when they
start their microservices journey. Most
existing systems live on premises, while
microservices live in private and public
clouds. The ability for data to transit the
often unstable and unpredictable world of
wide area networks (WANs) is tricky and
time consuming. Then we need to factor
for the emergence of and specialization
caused by IoT, mobile devices and big data.
The volume and variety of these systems
results in a very large upfront risk to
microservices initiatives.

When you add it all up, there are
impedance mismatches everywhere you
look:

1. Updates to legacy systems are slow, but
microservices need to be fast and agile;

2. Legacy systems use old communication
mediums, but microservices use modern
open protocols and APIs;

3. Legacy systems are nearly always on
premise and at best use virtualization,
but microservices rely on clouds and
IaaS abstraction;

4. IoT systems use highly specialized
protocols, but most microservices APIs
and frameworks don’t natively support
them; and,

5. Mobile devices may use REST but also
require asynchronous communication,
but most API gateways only support
synchronous RESTful interactions.

How can an organization resolve all of
these mismatches?

THE INCREDIBLE DANCING MICROSERVICES

As I described earlier, the smaller the
service, the less value it discretely
offers the end user – value comes from
orchestration. Historically, orchestration
was handled by a central component like
BPEL engines or ESBs, or, these days, API
gateways.

I’ll use a musical analogy to explain the
problem with that approach.

Most composers create music by trial and
error (just like a software developer). Their
output? Musical scores containing sheets
of music which will be played by each
instrument. For this analogy each musician
is like a microservice. If the composer
is writing for a heavy metal band, there
are only a few instruments (guitar, bass,
drummer, vocalist) and a conductor isn’t
needed.

But a symphony orchestra consists of
around one hundred musicians playing a
wide range of instruments. In this instance,
they absolutely need a conductor to ensure
that every musician starts playing at the
right moment, stays on beat, speeds up
and slows down when necessary, plays
louder or softer.

Unfortunately, if the conductor can’t
communicate with the musicians – or
even just a section or potentially a single
musician – things will quickly fall apart

and the performance will suffer, if not be
ruined.

Dancing is different. A choreographer
listens to a song and creates a routine
based on events in the music. The dancers
may do completely different moves or
steps from each other, but as long as it was
choreographed together based on those
audio cues (or events) then the routine
will be a success. Even if someone messes
up by doing the wrong step or losing the
beat, the show can continue because each
dancer is listening to the music for their
specific event rather than being told what
to do by an orchestrator.

To bring it back to microservices, a given
microservice will perform a series of steps
within the code which is an example of
micro-orchestration. The input or output
of a microservice is a data event which has
domain significance. The key is that since
the microservice is merely producing an
event, it does not have knowledge of if or
when it will be processed. Other services
register their interest in an event or set of
events and react accordingly. Just like a
dancer executing the steps of the routine.
Ironically, the common enabling theme
between microservice execution and a
dance move is the event (data event or
audio event).

https://solace.com/

7 Event-Driven Microservices

THE COPERNICAN SHIFT TO EVENTS
FROM DATA-CENTRIC TO EVENT-CENTRIC IT PRIORITY – A COPERNICAN SHIFT

Copernicus was a Renaissance-era
mathematician and astronomer who
formulated a model of the universe that
placed the Sun rather than the Earth at
the center of the universe. Game-changing
stuff at the time.

Similar to the mistakes that astronomers
made before Copernicus, many architects
and technologists are obsessed with
the idea that data is the center of the

computing universe. This traditional
viewpoint is based on the belief that data
is job one, and that once it’s preserved
it will be viewed, updated and deleted
using command-style request/response
interactions.

The reason for this extreme focus on data is
simple: all interactions with databases are
performed by command-style interactions!
The problem with this viewpoint is that
enterprises end up making a bunch of
microservices with databases at their core,
leading to many stove-piped application
enclaves that can’t share data in a fast,
flexible manner. In other words, money
was spent to create a different type of
monolithic application, one that is doomed
to the same lack-of-agility fate.

So what should be at the center of the
microservices universe? That’s easy: Events.

“Similar to the mistakes that

astronomers made before

Copernicus, many architects and

technologists are obsessed with

the idea that data is the center of

the computing universe.”

TWEET

https://ctt.ac/ysqOd

If we are to exponentially increase agility
through microservices, we need to replace
our static, stove-piped, monolithic thinking
with a desire to get the right event to the
right service at the right time.

Consider your own body. We constantly
react to and act upon events that arrive via
our senses of touch, vision, taste, hearing
and smell. This events relay information
that’s stored in our memory, replayed in
our minds, and acted upon if necessary in
the form of some action that produces new
events for our universe to react to.

Thinking in an event-driven manner turns
organizations into a sensory element in the
universe of computing. New events sensed
by web/mobile applications, IoT sensors,
or legacy systems of record are forwarded
to the eventing/messaging platform which
distributes them to the microservices

platform. Just like how our sensory
system fires events to the central nervous
system for interpretation. In the world of
microservices, we need a central nervous
system that can:

• be receptive to different stimuli;

• provide fast, rock-solid reliable transport;
and,

• adapt to changes in event reception.

Not adopting event-driven thinking
will forestall the success of digital
transformation and microservices
initiatives by increasing costs and
decreasing productivity. So what are the
patterns and approaches that will enable
you and your organization to achieve
success with events at the center of your IT
universe?

https://solace.com/

9 Event-Driven Microservices

REALIZING THE AGILITY PROVIDED BY A
MODERN CENTRAL NERVOUS SYSTEM

THINK EVENT-DRIVEN AND CHOREOGRAPH
SERVICE EXECUTION

As Gartner states in their August 2017
report titled Business Events, Business
Moments and Event Thinking in Digital
Business, “Application leaders engaged
in digital transformation initiatives must
add ‘event thinking’ to their technical,

organizational and cultural strategies.”

That is a bold statement, but obviously I
couldn’t agree more. The goal of this paper,
after all, is to lay out the actionable steps
you must take to realize the agility of event-
driven microservices.

The first step towards adopting the event-
driven mindset is to change the way you
think about designing and architecting
solutions. Initially the tendency is to think
about all interactions between services
as a series in a sequence of request/
reply service calls. In fact, if you or your
team uses the terminology of “invoking,”
“requesting,” or “calling” then it is a sure
sign you are still thinking in the paradigm
of command style.

Instead, try these: “What events should my
service process?” and “What events will my
service emit?”

Once you adopt event-driven thinking, you
need to make the shift from orchestration
to choreography.

It is common for architects to think in
terms of “service A will call service B which
will call service C” and then implement that
model through a chain of invocations (a->b-
>c) or by creating an orchestrator service
such that x->a, then x->b, then x->c.

Both approaches will cause chaos when the
realities of distributed computing kick in,
especially when you start to scale.

The alternative is to follow the philosophy
of choreography. Going back to the analogy
of dance, services should react to changes
in their environment just like a dancer
reacts to musical cues. The benefits are
immense:

• Better agility. Agile development
teams are more independent and are
significantly less impacted by changes to
other services.

• Services are smaller/simpler. Each
service is not required to have complex
error handling for downstream service or
network failures.

• Less service coupling. Services have no
knowledge about the existence of other
services.

• Enables fine-grained scaling. Each
service can be independently scaled up
or down based on demand. This ensures
a good user experience and is less
wasteful of compute resources.

• Easy to add new services. Due to less
coupling, a new service can come online,
consume events and implement new
functionality without changes to any
other service.

This litany of benefits doesn’t come for
free; there is no such thing as a free lunch.

Consistency of state then becomes an
area of focus, because a service, being
temporarily down, means that the event
state changes may not be processed
immediately. Fundamentally, how do we
deal with this negative side effect?

EMBRACE EVENTUAL CONSISTENCY
Eventual consistency is the idea that
consistency will occur in the future, and it
means accepting that things may be out
of sync for some time. It’s a pattern and
concept that lets architects remove costly
XA transactions from the mix. It’s the job of
the eventing/messaging platform to ensure
that these domain change events are never

lost before being appropriately handled by
a service and acknowledged.

Some think the only benefit of eventual
consistency is performance, but the
real advantage is the decoupling of the
microservices since individual services are
merely acting upon events that they are
interested in.

https://solace.com/

11 Event-Driven Microservices

“The road to microservices is

paved with good intentions.

But more than a few teams are

jumping on the bandwagon

without analyzing their needs

first.
NATHANIEL T. SCHUTTA

DATABASES + CQRS

The thought process regarding using
events typically leads to an interesting
question: If data is no longer the center of
my universe, where do I now persist these
events?

Databases take our thinking back to
command (Create, Read, Update, Delete)
style interactions. The database dilemma is
extremely interesting, and using a pattern
called Command Query Responsibility
Segregation (CQRS) can provide large
benefits. The key is that CQRS is not an
architecture; it’s a simple pattern that can
help to enable event driven-architecture
since, yes, the events at the center of our
universe must be persisted somewhere.

Ultimately, that somewhere will be a
database for most cases.

So what is CQRS, exactly?

Let’s explore a trivial banking use case as
an example of what we are talking about
with CQRS. Traditionally we would have
an Account service deal with all account
interactions. Its API would be defined as:

AccountService

{

Public void createAccount(name)

Public Account getAccount(name)

Public void debitAccount(name,

amount)

Public void creditAccount(name,

amount)

Public AccountList

getInactiveAccounts()

Public AccountList

getOverdrawnAccounts()

}

The CQRS pattern simply separates this
single service into two different and
independently scalable services:

AccountChangeService

{

Public void createAccount(name,

acctMetadata)

Public void debitAccount(name,

amount)

Public void creditAccount(name,

amount)

}

And

AccountReaderService

{

Public Account getAccount(name)

Public AccountList

getInactiveAccounts()

Public AccountList

getOverdrawnAccounts()

}

https://solace.com/

13 Event-Driven Microservices

The execution of commands and queries
is fundamentally different. For example,
commands and queries are always
scaled differently because they occur at
different rates and have different overhead
penalties.

So why should we combine event-driven
architecture with the simple CQRS pattern,
and what are the benefits?

Consider this: typically with databases you
start with a data design and data models.
The decisions in that design affect all
upstream services and processing because
it has to work within the constraints of
the data model. This thinking puts data
squarely into the center of the architecture
rather than the event.

If you separate command actions such as
create, update and delete from query, you
essentially have segregated events which
change domain state from the queries
which do not. It is these events which move
your thinking back into events being the

focus for the architecture and is also the
most natural way to model the domain.

The huge advantage is that you can easily
siphon these domain change events into
new microservices (easily adding new
capabilities and features) or into the
world of big data (where analytics can be
performed and new discoveries made).

An example of a new feature for our
bank example would be implementing
a marketing campaign for a new bank-
offered credit card. The use of EDA and
CQRS makes it easy to consume account
creation events and market the bank’s
credit card to the new customer based off
the acctMetadata (e.g. opening balance,
address, job, etc.).

What you do sacrifice with CQRS is
consistency, but you enhance both
performance and availability and, as
mentioned earlier, embracing eventual
consistency alleviates this concern for most
use cases.

INTEGRATE EVENT-DRIVEN ARCHITECTURE
The enterprise is chock-full of events and
data stores that contain game-changing
potential. It’s really important that you
not let the world outside of your event
driven-microservices architecture pull you
back into command-style interactions or
worse than that (shudder) batches. This

philosophy is straightforward for systems
and devices which are already event-
driven, but not so for database-centric
systems.

One way of helping microservices coexist
with the legacy world of data-centric
systems is to implement change data

capture (CDC) on the underlying databases.
An example of this technique with Oracle
databases is to leverage Golden Gate,
a CDC utility. As events occur they are
written to the database. By capturing these
changes and treating them as events you
can leverage them in our microservices
platform. This eliminates any impact on
existing systems, and the need to make
costly code changes. Most of the work
here is transforming CDC events into the
domain data structure.

It’s easier to integrate modern systems
and devices. For example, IoT devices
are inherently event-driven, social media
platforms are stream-enabled, and even
many JEE applications utilize message
driven beans (MDB) which can easily be
exploited. The key is to avoid allowing
integrations to lead you back into the non-
event-driven world.

DID YOU KNOW ?

By 2021, according to research from IDC,

enterprise apps will shift toward hyper-agile

architectures—80% of app development

will take place on cloud platforms using

microservices and functions, and 95% of new

microservices will be deployed in containers.

https://solace.com/

15 Event-Driven Microservices

UTILIZE EVENTS TO THE UI
Now that you understand the power
EDA can bring to backend microservices
processing architecture, you should
consider bringing that same power to the
user experience.

Let’s face it, while AJAX provides a user
experience that seems asynchronous to
the user, under the covers it’s just polling
web resources. If the polling interval is
too long, user experience suffers and they
cause unnecessary load on the system by
attempting to refresh.

Conversely, if the polling interval is
too short, the chance that an update
has actually occurred is low and again
resources are wasted. As more and more

users make use of this web application,
they will dramatically increase the traffic
hitting these update services (most
returning no new result) and cost the
business more money.

A better approach would be to use an
asynchronous protocol such as MQTT or
WebSocket. The web application opens
a connection, subscribes to the data the
user wants, and waits for events to stream
to the browser. User experience is better
because events are arriving in real-time,
and it will save your business money as
bandwidth and compute resources aren’t
wasted on pointless requests.

EVENTS AS THE CORNERSTONE OF DR
Let’s look at the airline industry for a prime
example of struggling to respond to IT
disasters.

Within the last few years, tens of thousands
of passengers have been stranded not
due to terrorism, geopolitics, or disease
outbreak, but by the cascading effect of
IT failures. In many of these cases, the

system was designed improperly. In others,
their disaster recovery systems were ill
conceived or took too long to do their
thing.

This relates directly to event-driven
microservices. Events can be easily
replicated to other active or disaster
recovery sites so systems are always in

USE VENDOR AGNOSTIC STANDARD API OR
WIRELINE PROTOCOLS FOR EVENTS

It may seem appealing to leverage cloud
provider eventing/messaging offerings
such as AWS’s SQS/SNS, Google Cloud Pub/
Sub, Azure Service Bus, or proprietary
solutions for event transport like Apache
Kafka, IBM MQ, and TIBCO EMS. There are
multiple problems with this approach:

• Lock-in. Problems arise when for
technical or business reasons you want
to move away from the solution. This
requires significant investment to undo
the mistake as nearly all services and
integrations are affected.

• Lack of APIs. One of the key benefits of
microservices is that it does not dictate
what programming language is used.
Proprietary APIs and wirelines typically
only support a small subset of languages,
thus limiting agility and choice.

• Inhibited Innovation. Another benefit
of microservices is the ability to use
new technologies and techniques as
industries and products evolve. Being
locked in to a vendor’s proprietary
APIs can mean that your locked out of
innovation since the cost to switch is
so high. Sounds like the problem with
monolith applications!

When choosing an implementation for your
eventing/messaging platform it’s important
to make sure it supports standard APIs like
Spring, JMS, NMS, Paho and Qpid and/or
wirelines such as MQTT and AMQP v1.0.

“The existing business ecosystem

is the unavoidable burden that

most businesses must deal

with when they start their

microservices journey.”

 TWEET

sync and ready for action. Historically, this
was done at a data store level where each
database type used its own replication
mechanism.

This was complex as it involved many
components and different strategies.
It was also really expensive because in

many cases the same event was stored
in multiple locations. A great side effect
of designing your system around events
instead of data is enabling your business
to continue executing through potentially
disastrous situations as though nothing
had happened.

https://solace.com/
https://ctt.ac/47nmU

OVERCOMING THE BARRIERS BETWEEN YOU
AND EVENT-DRIVEN MICROSERVICES
EDA has tremendous potential, as long
as architects and developers embrace
the mindset required for success.
The challenge is the lack of tooling
to implement EDA in the context of
microservices.

The tooling is not modern, performant,
open or stable. It also cannot be deployed

in the configuration dictated by business
requirements such as on premise and/
or in a variety of public clouds. They don’t
provide federation, synchronization or
recovery across wide area networks.
Finally, API management/gateway solutions
are simply not the right tools for event-
driven microservices. Here are 7 reasons
why:

DID YOU KNOW ?

67% of middleware respondents & 79%

of OpenShift respondents said that

microservices are being used to re-architect

existing applications as much as for brand

new projects, according to Red Hat’s 2017

Microservices Survey.

Lack of Modernization. Messaging itself has been around a long time.
Fifteen years ago, there was no agile development — waterfall ruled the
day and messaging infrastructure was managed by specialized teams.
Today, the concept of DevOps and its associated agility means that
developers cannot wait for messaging infrastructure to be installed,
configured and data made available. Everything must be automated,
DevOps-friendly and self-service. This means that while messaging is the
right tool, the tools are no longer compatible with the agility needs and
requirements of today. This is magnified by the promises of speed, scale
and the agility of microservices architecture.

High, Unpredictable Latency. As monolithic applications are broken
into discrete services there is a point where latency will increase and
performance will decrease, impacting user experience and your ability to
satisfy SLAs. The need for the eventing/messaging platform to be as low
latency as possible has direct implication on the ultimate success of the
implementation. When this occurs, the initial reaction is to reverse course
and construct larger, more monolithic, less reusable and agile services
to decrease network hops and thus latency. This step completely undoes
many benefits of microservices but, in many cases, the enterprise is locked
in due to proprietary APIs and wirelines and therefore takes the path of
least resistance.

Proprietary Protocols and APIs. Years ago there weren’t any standard
wirelines or protocols, so IBM, TIBCO and other enterprise messaging
companies implemented their own. Today, they do so because they
(correctly!) worry that open standards will increase competition and
enable their customers to easily abandon their product as competitors
innovate and differentiate their offerings. Most vendors implement, at
most, a single standard wireline or open API, thereby constraining the
languages in which microservices can be implemented and excluding the
larger ecosystem of events such as those from IoT devices. This reduces
the overall value and agility that microservices provide and results in
integration shims intended to unify data movement.

1

2

3

https://solace.com/

19 Event-Driven Microservices

Poor Stability. No service will ever achieve 100% availability and no
system will operate perfectly at all times. Bugs within service, network
outages, and poison messages are all real examples of how services can
slow down or tax the microservices ecosystem. When these off-nominal
events occur, we as architects expect that our foundational services, such
as messaging, weather the storm, buffer the requests, and ensure no data
loss. It turns out the reality is that many messaging systems work well until
these scenarios occur. In other words, they let us down when the going
gets tough. Ironically, this is when we needed them the most!

Deployability Risk. The cloud providers all have messaging/eventing
platforms that can’t be deployed in their competitor’s clouds or on
premises where many businesses maintain core business functions.
Legacy messaging systems cannot easily be deployed into cloud
environments and some simply cannot because of their use of multicast.
Deployability is an important consideration given today’s climate of ever-
evolving cloud strategies. The pain to migrate can be large when the
decision to move towards hybrid and/or multi-cloud architectures arises.

WAN Weakness. The use of hybrid cloud and multi-cloud architectures
are extremely common for both economic and continuity of operations.
All of these strategies require events to be propagated across WANs in
a reliable, secure and performant way. Since legacy messaging products
were originally used in datacenter environments, they respond poorly to
the common WAN attributes of jitter and slow round-trip times.

API Management/Gateways - Wrong Tool. The API management/
gateway space is booming. This component is necessary because in many
cases B2B and web applications need to integrate using web-friendly APIs
such as REST/HTTP. These interactions, where they represent domain
change events, must be quickly transformed into events for downstream
processing. API management and gateways simply do not attempt to
enable the interactions between event-driven microservices, nor do
they enable many asynchronous protocols for streaming events to web
applications.

4

5

6

7

CONCLUSION
While event-driven microservices may
seem difficult initially, they are the future
of most microservices and IT strategies.
Choosing the right eventing/messaging
platform is one of the most critical steps
in the path to realizing the vast benefits of
microservices.

Architects and developers simply need
a platform that has been engineered to
thrive in today’s modern, rapidly-evolving

world. Engineered as a modern eventing
platform, Solace can be deployed in every
cloud and platform as a service, and can
easily span WANs. It supports DevOps
automation and provides an almost
completely self-service experience for
developers. Solace is the only stable and
performant solution that fits the unique
needs of microservices architects.

JONATHAN SCHABOWSKY is a senior architect in Solace’s Office of the CTO. His
expertise includes architecting large-scale, mission critical enterprise systems
in various domains, such as for the FAA, satellite ground systems (GOES-R) and
healthcare. Recently, Jonathan has been focused on the use of event-driven
architectures for microservices and their deployments into platform-as-a-services
(PaaS) running within public clouds.

https://solace.com/
https://www.linkedin.com/in/jonathan-schabowsky

ABOUT SOLACE
We are the creators of PubSub+, an advanced message broker that
can be used to create an event distribution mesh. As the only unified
message broker that supports publish/subscribe, queueing, request/
reply and streaming using open protocols and APIs across hybrid cloud
and IoT environments, we rapidly and reliably route information between
applications, devices and people across clouds. Established enterprises
such as SAP, Barclays and American Express as well as high-growth
companies such as VoiceBase and Jio use our smart data movement
technologies to modernize legacy applications and successfully pursue
analytics, hybrid cloud and Internet of Things strategies. Learn more at

solace.com.

R

A FEW OF OUR CUSTOMERS

OUR FEATURED PARTNERS

https://solace.com/

solace.com

https://solace.com/
https://solace.com/

	The Service Decomposition Paradox
	The Integration Conundrum
	The Incredible Dancing Microservices
	The Copernican Shift to Events
	Realizing the Agility Provided by a Modern Central Nervous System
	Think Event-Driven and Choreograph Service Execution
	Embrace Eventual Consistency
	Databases + CQRS
	Integrate Event-Driven Architecture
	Utilize Events to the UI
	Events as the Cornerstone of DR
	Use Vendor Agnostic Standard API or Wireline Protocols for Events
	Overcoming the Barriers Between You and Event-Driven Microservices
	Conclusion
	About Solace

	Button 3:

