

WTL
Developer’s Guide

By Eamon O’Tuathail (www.clipcode.biz)

This document is available under the
Creative Commons’ Public Domain Dedication

http://creativecommons.org/licenses/publicdomain/

WTL Developer’s Guide

Table Of Contents

CHAPTER 1
OVERVIEW OF WTL ... 4

OBJECTIVES ... 4
OVERVIEW .. 4
AIMS OF WTL .. 5
RELATIONSHIP BETWEEN WTL, ATL AND WIN32/WIN64 API .. 7
ALTERNATIVES TO WTL – ATL, MFC, VB, JAVA, DHTML OR … ... 10
INSTALLATION OF WTL .. 12
CONTENTS OF WTL’S INSTALLATION .. 15
POSSIBLE PROBLEMS WITH THE INSTALLATION .. 15
RESOURCES ... 19
TARGET AUDIENCE FOR THIS DEVELOPER’S GUIDE .. 20
CHAPTER CONTENTS ... 20

CHAPTER 2
WIN32 SDK WINDOWING ... 22

OBJECTIVES ... 22
FUNDAMENTAL WINDOWING CONCEPTS ... 22
MESSAGES .. 35
THREADS AND WINDOWING ... 37

CHAPTER 3
ATL WINDOWING ... 41

OBJECTIVES ... 41
OVERVIEW .. 41
WINDOWING WITH ATL ... 42
WINDOW CONSTRUCTION ... 44
MESSAGE MAPS .. 51
SUBCLASSING AND SUPERCLASSING ... 64
CCONTAINEDWINDOW ... 66
HIGHER-LEVEL UI ... 68
DIALOG BOXES .. 69
WINDOWING FOR ACTIVEX CONTROLS ... 73
ACTIVEX CONTROL CONTAINMENT .. 77

CHAPTER 4
WTL QUICK TOUR .. 86

OBJECTIVES ... 86
THE WTL DISTRIBUTION ... 86
TEMPLATES AND CLASSES .. 87
WHAT IS NOT IN WTL .. 95
DEVELOPMENT ISSUES .. 98
COMPLETE LIST OF MACROS USED IN WTL ... 103
DEBUGGING WITH WTL ... 105
 DETAILED COMPARISON BETWEEN MFC AND WTL .. 107
WTL’S CSTRING .. 116

CHAPTER 5
THE WTL APPWIZARD .. 119

OBJECTIVES ... 119
JUST SAY “HELLOWORLD” ... 119
MODAL DIALOG-BASED APPLICATION .. 119

2

WTL Developer’s Guide

DEFAULT PROJECT SETTINGS ... 122
SDI APPLICATION .. 124
MDI APPLICATION .. 130
MULTIPLE THREADS SDI .. 132
MODELESS DIALOG-BASED APPLICATION .. 140
APPLICATION FEATURES - ACTIVEX CONTROL HOSTING ... 141
APPLICATION FEATURES - ACT AS A COM SERVER ... 142
STEP 2 OF THE WTL APPWIZARD .. 152
THREADS WITH COM AND WINDOWING ... 161

CHAPTER 6
DIALOG BOXES AND CONTROLS .. 164

OBJECTIVES ... 164
INTRODUCTION ... 164
DIALOG BOXES IN WTL .. 166
DDX ... 171
WTL WRAPPERS FOR THE STANDARD CONTROLS .. 189
WTL WRAPPERS FOR COMMON CONTROLS .. 194

CHAPTER 7
GRAPHICAL PRIMITIVES .. 196

OBJECTIVES ... 196
OVERVIEW .. 196
GETTING STARTED WITH WTL GRAPHICS ... 201
WTL HELPER CLASSES – CSIZE, CPOINT AND CRECT ... 202
GDI OBJECTS AND HANDLE MANAGEMENT ... 206
DEVICE CONTEXT TEMPLATES ... 207
MANAGING ATTRIBUTES OBJECTS .. 209
LINES AND PENS .. 209
FILLED SHAPES AND BRUSHES ... 213
TEXT AND FONTS ... 215

CHAPTER 8
INTERNALS OF WTL .. 219

OBJECTIVES ... 219
OVERVIEW .. 219
HEADER FILES .. 219
CONTENTS OF EACH HEADER FILE ... 220

3

WTL Developer’s Guide

Chapter 1
Overview of WTL

Objectives
The objectives of this chapter are to:

• See where WTL fits into the “big picture” of VC++ development

• Examine its aims

• Contrast WTL with other UI development techniques

• Explain the installation of WTL

• Describe what is installed with WTL

• List the available development resources

• Describe the following chapters

Overview
In the past Visual C++ developers often choose MFC as it provided functionality in a
very wide range of technologies, while the template libraries covered limited areas.
More recently the range and quality of the template libraries have been improving and
now the template answer is more and more often chosen.

The design goal of ATL is to provide fast compact COM components. ISO C++’s STL
provides collections. The VC++ OLE DB Data Consumer and Provider Templates
provide database support. In contrast, MFC provides a single library of C++ classes,
which provide a reasonable range of features in COM creation, collection classes,
database classes and user interface.

Most advanced developers prefer the newer template-route to development. MFC is
monolithic, bulky, not very thread-friendly and, well, is basically old-fashioned! The
template approach is fast (when designed correctly), flexible, covers all the latest
techniques and for new development is definitely the way to go.

Up to now the one major problem for template enthusiasts was how to create the
graphical user interface. ATL does provide lightweight wrappers around Win32/64
windowing, but it certainly does not cover all UI needs. In the past, for anything other
than trivial UI, ATL developers had to resort to MFC UI programming or developing a
VB front-end to their ATL COM components, neither of which was totally satisfactory.

Enter the Windows Template Library. The WTL is an advanced set of wrappers and
productivity enhancement templates, which sit above the Win32/64 API, and provide

4

WTL Developer’s Guide

comprehensive support for a wide variety of graphical user interface requirements.
Keeping true to the template library tradition, WTL is small, ultra-fast and non-
intrusive. It covers the latest UI concepts. It works well with multithreading. You can
use WTL on its own or along with any combination of ATL, STL, VC++ Data
Templates, third-party template libraries and your own custom templates libraries,
incorporating just the features you need in each application. WTL usually has no
dependencies on external DLLs – you only need to ship to end-users the EXE for the
WTL application.

Aims of WTL
WTL is to the user interface what ATL is to COM or STL is to collections. Like its
cousins, WTL takes a little while to learn, but when mastered there is no better way of
developing the most advanced applications.

Essentially, WTL accomplishes three significant tasks:

• Providing an application framework

• Aggregating UI functionality

• Wrapping windowing controls, system dialogs and GDI objects

Let’s examine each of these.

Providing An Application Framework
WTL provides a lightweight yet comprehensive application framework, which
automatically furnishes applications based on it with many desirable facilities. The goal
is something less than the impenetrable MFC framework, and something easier than
starting to code WinMain manually.

WTL comes in the form of a series of C++ templates and a WTL AppWizard. The
AppWizard asks the application developer a few questions and then generates a VC++
project and application source code, much of which instantiates or derives from the
WTL templates and classes. In general, what application developers might wish to
change is in the AppWizard-generated application source code, and the “boiler-plate”
style code, which rarely needs to be changed, is inside the WTL templates. Where
necessary these templates may be derived from and custom functionality provided.

WTL has a class to manage a module (a DLL or EXE). This class is instantiated in the
AppWizard-generated application code and within the generated WinMain it is
initialized and terminated. A WTL application can optionally act as a COM server, thus
supporting programmable applications. WTL provides message-handling support and
includes message filtering and on-idle functionality. Change notifications from
WM_SETTINGCHANGE messages may be handled.

MFC provides a document-frame-view architecture. WTL does provide frames (i.e. a
top-level window, containing a menu bar, toolbar and statusbar) and views, but does not
support documents at all. The MFC approach often got in the way of more advanced
developers, and its documents were based on serialized binary data. In the modern
Internet-world, document formats based on XML/XSL are becoming popular and there

5

WTL Developer’s Guide

are demands for flexible storage mechanisms – it might not be the local hard disk;
documents might need to be stored using a variety of remoting architectures, such as
WebDAV or FTP. WTL provides no functionality regarding data formats or storage
mechanisms. Application developers will have to write their own code for these tasks,
e.g. using the fast Win32 APIs WriteFileGather / ReadFileScatter or an
XML parser.

WTL supports applications based on dialog-box, single document interface (SDI) or a
multi-document interface (MDI). For SDI, it also supports multi-threaded SDI, with one
thread per SDI window. It is expected that most advanced applications will use this
architecture (e.g. following the Word 2000 approach). WTL does not support a multi-
threaded MDI architecture with one thread per MDI child window. This is sensible, as
this avoids a variety of problems with the interaction between threads and MDI parent-
child windows.

Aggregating UI Functionality
WTL provides a range of “must-have” features for applications requiring a modern user
interface.

A frame window is provided which manages a rebar control containing a command bar
(enhanced menubar) and a toolbar, a status bar and one or more views. The views may
be based on a generic empty window, or on controls such as richedit, listview or
treeview. If more than one view is used, then the WTL splitter functionality can be
employed to render multiple views with a moveable splitter divider. The views can also
be scrolled. The status bar can be single-paned or multi-paned.

WTL does support traditional menu bars and toolbars, but its main menu presentation
concept is based around command bars. A command bar contains menus and toolbar
icons, and can be displayed and moved around within a rebar control. If a menu item
has the same command id as a toolbar icon, then when the menu is rendered the
equivalent icon is rendered next to each item. WTL supports neither docking nor
floating command bars. WTL’s command-bars are similar to those in Internet Explorer,
and not like the (much more desirable!) command-bars in Word 2000 or Visual Studio.
WTL does not support shortened menus based on usage-data (e.g. WORD-2000).

The concept of dynamic data exchange allows the transfer in both directions of values
between on-screen user interface controls and C++ data members. This functions quite
similarly to MFC’s DDX.

Dialog boxes may be created using ATL, including those, which support ActiveX,
control containment. Visual C++’s ResourceView can be used to layout standard
controls, common controls and ActiveX controls in the dialog resource template. The
ATL Window Message Handler Wizard can be used to map incoming messages for
these controls to message handlers.

WTL provides templates to manage property sheets and property page construction and
wizard construction.

Printing is supported through a printer device context, print preview, devmode handling
and print job management functionality.

6

WTL Developer’s Guide

Enhanced metafiles are supported using a special device context, file management and
enhanced metafile information classes.

Wrapping Windowing Controls, System Dialogs and GDI objects
ATL provides access to generic window functionality, but provides no special support
for windows based on different windows classes. Developers had to resort to manually
coding SendMessage calls as needed. So whether communicating with an edit or a
treeview control, they had to use ATL’s CWindow and call Win32’s SendMessage
with EM_LIMITTEXT or VM_SETITEM and ensure that the parameters were correct
for each message (no type checking was performed). When applications received them
they were in the raw format – wParam and lParam as sent on the message queue.
Applications needed code to convert these to appropriate data types; again making sure
the correct conversion was made for each message type.

Some ATL developers were using code extracted from the ATLCON sample, which
provide some wrappers for Windows UI elements. This has evolved into a full set of
comprehensive wrappers for all the standard and common window controls, the system
dialogs and all the GDI objects, and much more. There are WTL classes for edit,
button, listbox, treeview, listview etc. There are wrappers for the common file dialog,
the color dialog, the font selection dialog, etc. There are wrappers for the device
context, pen, brush, region, font etc.

In addition, a full set of message crackers is provided. Incoming messages are mapped
to message handlers. With ATL these message handlers were passed lParam and
wParam. With WTL’s message crackers, the message handlers’ input is specific to the
incoming message. For example, the handler for WM_LBUTTONDOWN is passed in a
CPoint parameter (CPoint is a WTL wrapper for the Win32 POINT structure –
WTL also has wrappers for such common structures). Note that the ATL Windows
Message Handler Wizard uses ATL’s raw message maps, not WTL’s message crackers.
It is likely wizard support will be improved in the next version of Visual C++.

Many developers choose to use MFC solely for its string-handling support. WTL
eliminates this need by providing its own implementation of CString, which is a
comprehensive clone of MFC’s CString. The string formats WTL’s CString
supports include ASCII, MBCS, UNICODE and Automation’s BSTR. It supports
conversions between all these formats. It supports string manipulation such as
concatenation, trimming and comparison. Its supports printf-like string formatting. It
supports flexible memory management.

Relationship Between WTL, ATL and Win32/Win64 API
WTL is based on ATL and Win32/Win64, and ATL is based on Win32/Win64. When
considering their relationships, we need to examine the source code view and the binary
deliverable view.

Source Code
The Win32/Win64 API is a set of thousands of C functions, covering a vast range of
topics – including two that interest us here, COM and windowing.

7

WTL Developer’s Guide

ATL is a set of C++ templates, which mostly are dedicated to COM programming, but
also include comprehensive low-level support for windowing functionality.

WTL is a set of C++ templates, which focus purely on higher-level windowing
functionality. WTL is independent of COM, but can be use along with COM in an
application. Provided you do not select the “Com Server” support in the WTL
AppWizard, then CoInitialize is not actually called.

WTL uses the ATL windowing services, so therefore to use WTL you must have access
to the ATL templates.

ATL makes calls to the Win32/Win64 API. WTL makes calls to the ATL templates and
the Win32/Win64 API. Your application code makes calls to WTL, ATL and the
Win32/Win64 API.

When you run the WTL AppWizard, it produces a number of source files, which
become part of your application source code. The generated source files make calls into
WTL and sets up the framework for the application.

WTL supports Windows 2000, Windows Me, Windows NT 4, Windows 98, Windows
95 OSR 2 and “Classic” Windows 95. WTL support of these is not of the “lowest
common denominator” variety. Instead it uses some #defines (e.g.
_RICHEDIT_VER, _WIN32_IE, _WIN32_WINNT and WINVER) to determine
which Win32/Win64 features to use. WTL does not auto-detect the installed versions of
the OS or Internet Explorer (e.g. it does not use the LoadLibrary /
GetProceAddress or GetVersionEx APIs). Instead, the application developer
must specify the #defines, and the application during compilation will assume they
are available on the client machine and will not run if absent.

As an example of this, take chevrons in menus. When a command-bar is shortened due
to a window resize and chevrons are not used, then the piece of the command-bars,
which are outside the windows boundaries, are unceremoniously cut off. These two

8

WTL

ATL

Win32/Win64 API

Your Application Code

WTL-AppWizard generated code

WTL Developer’s Guide

screen dumps are an example of a WTL application with a window in full size and
reduced – you note the help menu title and the paste toolbar icon are chopped in half.

The chevron is a symbol comprising two greater-than signs. When pressed, it displays a
pop-down menu containing the items, which have been chopped off the end of the
command-bar and toolbar due to resizing. Chevrons are supported if Internet Explorer 5
is included, and are not supported otherwise.

In a WTL application, if _WIN32_IE is set to 0x0500 or later (e.g. in stdafx.h) then
the chevron is displayed when needed. These two screen dumps show a WTL
application with a resized window, with the chevron not pressed and pressed.

Note that if Internet Explorer 5 or later is installed, but _WIN32_IE is not set as
0x0500 or later, then chevrons are not supported in the application, even though the
installed OS does support them.

WTL does not support PocketPC or X-Box, though it would be nice to see this in future
and there are no technical reasons preventing it. It does seem that WTL is prepared for
Win64, as consideration for 64-bit programming is obvious from some of the WTL
source files.

Binary Deliverable
ATL and WTL are delivered as a set of header files containing C++ templates. ATL
does also have a small number of C++ classes – and these may be used as a separate
DLL but the vast majority of application developers also include them in each project,
and with WTL applications this is also recommended. WTL does not have separate
DLL option. So as needed, the WTL C++ classes (there are a few of them) will be
included in each application.

When you compile a WTL application you will end up with an EXE or a DLL. That is
all you have to deliver to the end-user of the application. There are no dependencies on

9

WTL Developer’s Guide

external libraries, apart from OS libraries such as Kernel32.DLL, which are always
present (if not, then Windows itself would have problems starting).

One exception to this “no-dependencies” rule is if you need to use floating-point
numbers. If this is the case, then you will need to ship the C-Runtime Library (CRT).

Alternatives to WTL – ATL, MFC, VB, Java, DHTML or …
As an application developer, you will certainly find plenty of options available when
you need to construct a graphical user interface. No matter which you choose, you will
often get other developers saying “why did you not use <insert favorite UI toolkit name
here>, it is so much better, because of XYZ”. The development platforms wars will
continue for along time. What is noticeable is that there are multiple options now, more
than there were in the past and it is extremely likely to be the case well into the future.
At any one time there are some options, which are very popular, some becoming
popular and some waning in popularity. The best option for a particular project is
constantly in flux.

Issues to consider when selecting your UI development technology include:

• Quality of implementation (how well does it work)

• Ease of use (what do developers need to know)

• The development environment and third party products

• Available journals and books

• Industry knowledge (how many software houses use it)

• Future prospects (will it be here in three years’ time)

• The requirements of the project

• Your available development resources (e.g. what do your existing developers
know)

• Your access to new development resources (e.g. how easy is it to get developers
who knows a particular technology).

The ordering of the desirability of UI toolkits for one criterion might be the direct
opposite for another. For example, in terms of ease of programming, DHTML is easiest,
then VB and then one of the C++ options (which include use raw Win32 API, MFC,
ATL or WTL). In terms of pure functionality and performance, the C++ options are
best, then VB and then DHTML.

DHTML is the use of HTML, especially its forms capabilities, together with scripting,
to produce web-based user interface. As HTML offers fewer UI elements than Win32/
Win64, the user interface is much simpler (both in the positive and negative senses of
that word). For the general public, who has no interest in becoming techno-nerds (e.g.
they have mastered the channel selection and volume control buttons on their TV
remote control but would have difficulty explaining the other buttons), the vast array of

10

WTL Developer’s Guide

UI widgets in Win32 is a problem. They do not understand how they work. For them, it
needs to be much simpler and DHTML is ideal. There is less clutter on-screen. There
are fewer options. It is easy to navigate. However, if you need a UI to do something
more complex than just accepting name and address text fields, you can quickly get into
problems. It is possible to develop custom ActiveX controls and embed these within
DHTML pages. This makes sense in some cases but also moves back to Win32
programming, but it would not be as easy as developing complex applications fully in
Win32. DHTML does have problems when used to construct full UIs for complete
complex applications – the problems are not insurmountable – indeed it would be an
interesting project to tackle.

The latest trend is to use DHTML for desktop applications. The application hosts a
WebBrowser ActiveX control, and then it renders DHTML pages. These can for
example be stored as resources. To get remoting with UI toolkits other than DHTML,
one could consider the Windows Terminal Server option.

DHTML would be very suitable for content delivery (e.g. delivering training courses,)
but not that good at content creation (e.g. developing a training course editing suite),
which would require a more complex UI.

MFC and VB are excellent tools for user interface development if the design you
require closely matches that which these frameworks support well. However, if you
wish something even slightly out of the ordinary then using MFC or VB can involve
lots of unexpected twists and turns. It can take a considerable amount of work
manipulating MFC or VB to meet you specialist needs. MFC and VB also have the
major disadvantage of requiring a very large run-time (MFC DLLs and VBRUN).

MFC’s support for Active Document is absent from WTL.

ATL applications and components often need to display windows and dialog boxes.
Though it mainly concentrates on supporting COM, ATL does provide a good level of
windowing functionality. Windowing in ATL is not as easy to use as MFC or VB.
ATL’s approach is flexible and highly configurable, but for windowing it is too-low
level. If you are using ATL, and need windowing, then you should really move up to
WTL.

WTL is very new. Few developers know it. More mainstream development groups will
in due course follow the early adopters. Currently there are far more developers using
the other UI options. WTL documentation (apart from the document you are currently
reading) is very sketchy. All the other UI options are better documented. Any new
technology will suffer these disadvantages over established technologies.

Why Choose WTL?
WTL is much less cumbersome than MFC and the resulting applications are less
bloated. For advanced applications WTL gives you all the benefits of using the raw
Win32 APIs but saves you a lot of time.

The Win32 API can be used directly, but it has a bewildering range of seemingly
independent functions and sometimes it is difficult to determine how they fit together.
WTL provides more homogeneous access to the available functionality.

11

WTL Developer’s Guide

Template libraries in general are becoming increasingly popular because the method
that gets called is selected at compile time, rather than run-time, with benefits in terms
of efficiency and code size.

Installation of WTL
WTL is evolving rapidly and is likely to see changes in its delivery mechanism over
time.

Future Delivery Mechanism
It is likely that WTL will be folded into the Visual C++ product in the next release of
Visual Studio. Hence it probably will automatically be installed along with ATL, STL
and the Data Templates.

Current Installation Mechanism
Currently, WTL is released as part of the Microsoft Platform SDK (January 2000 or
later). Installation involves three manual steps; though it is likely these will be
automated in some future update.

First Step - Getting the Files
The first step is to get the relevant WTL files onto your hard disk. The Microsoft
Platform SDK is available as part of the MSDN Subscription (disk 3 in the
Development Platform set of CDs) or from the http://msdn.microsoft.com website. The
Platform SDK using the Microsoft Installer to put the select files on your hard disk.
You may choose to install/download the entire Platform SDK or subsections. The
Platform SDK is large – but contains lots of goodies and it is recommended that all
advanced developers have it fully installed on their hard-disks (we do all have 100GB+
hard-disks nowadays – don’t we). To get the WTL files onto your hard-disk you may
either install the whole Platform SDK or any selection of sections, provided they
include the “Windows Template Library”, which is located under the Source Code node
in the tree in the installation wizard.

The installed size of the WTL developer files is quite small – the exact size depends on
the sector sizes on your disk – on one demonstration machine it was only 1,276KB.
(Note that apps built with WTL can be tiny – even less than 25K). The WTL files will
be installed on your disk under <SDK>\Src\WTL, where <SDK> is the installation path
you provided (e.g. c:\Program Files\Microsoft Platform SDK).

12

WTL Developer’s Guide

Second Step – The WTL AppWizard
The second step is to move the WTL AppWizard to the appropriate location. You need
to manually move it from <SDK>\Src\WTL\AppWizard to <VC>\Common\MSDev98\
Template, where <VC> is the installation path of Visual C++. Note that to use WTL
you must have Visual C++ 6.0 installed. It is recommended, though not required, that
you also have service pack 3 for Visual C++ 6 installed.

When you now start Visual C++ and select New from the File menu, you will see a new
entry under the “projects” tab called ATL/WTL AppWizard.

When clicked, it displays an AppWizard, which lets you select a few options, and then
produces the initial project source files for you.

13

WTL Developer’s Guide

Third Step – Updating the Path
The third step is to set the path so that the compiler can find the WTL header files.

WTL is a template library consisting of C++ header files (there are no .cpp files). When
compiling, the compiler needs to be able to find these files. The files are located under
<SDK>\Src\WTL\include. One option would be to include the full pathname in your
application’s source files, to which most developers will respond in shock horror tones
(and they are quite right too!). The second option is to put them in a directory which is
already on the path – such as inside the ATL include directory. However, this is
changing directories associated with the development environment, and it is usually
best to leave them alone (but for here it will work). The third and recommended option
is to configure the Visual C++ compiler on each machine to look in the WTL directory
when searching for include files. This can be done by selecting the Options entry from
DevStudio’s Tools menu, then selecting the Directories tab, then selecting “Include
Files” from the “Show Directories For” drop-down list, and then append an entry
stating where the WTL files can be found. Do not forget to include the ‘include’ part of
the path.

14

WTL Developer’s Guide

The ordering of the WTL entry in this list of directories is not important.

Contents Of WTL’s Installation
The installation of WTL contains a top-level directory, <SDK>\Src\WTL\, and this in
turn contains a readme.txt, and three subdirectories, \Include, \Examples and
\AppWizard.

The readme.txt is the only documentation on WTL available currently from Microsoft –
and it is certainly sparse. It is about 6 pages in length, and briefly introduces WTL,
provides a list of files in the installation, and provides a one-line (!) description of each
template/class in WTL, and then mentions the WTL AppWizard.

The \AppWizard directory contains a single AWX file, and as we have seen this needs
to be manually copied to the VC++’s installation path.

The \Include directory contains 15 WTL header files – this directory can be considered
the core of WTL.

The \Examples directory contains three examples showing how to use WTL. They are:

• MTPad – Notepad using multiple threads

• MDIDocVw - Document View sample

• GuidGen – ATL implementation of GuidGen (calls the Win32 API
CoCreateGuid)

The MTPad sample is a SDI application that emulates Notepad.

The MDIDocVw shows how to use the MDI support and how frames and views
interact.

The GuidGen sample looks exactly like the GUIDGEN utility COM developers have
used for years. It uses a single dialog box class to manage the various UI features of
generating GUIDs.

As a test of the installation, it is recommended to load up one of the examples in
DevStudio, build it and run it.

Possible Problems with the Installation
There are a small number of common installation problems / questions. Here we will try
and provide appropriate answers.

I cannot find the WTL AppWizard.

You must first manually copy it to the appropriate location – it is not done
automatically during installation. Note that in DevStudio’s New Project dialog it is
called the ATL/WTL AppWizard.

The Examples GuidGen and MdiDocVw work fine, but MTPad compiles and links
OK, but crashes when it runs.

15

WTL Developer’s Guide

Tut, tut, tut: you are not reading the output from the Build!

When you compile stdatl.cpp, the following message is display in the Build tab of the
output window:

NOTE: WINVER has been defined as 0x0500 or
greater which enables Windows 2000
features.
Caution: When building applications with
WINVER set to 0x0500 or greater, the
resulting binary may not run as expected
on earlier platforms, such Windows NT 4.0
or Windows 95 & Windows 98
See the Platform SDK release notes for
more information.

What is happening is that stdatl.h in the MTPad example has WINVER set to 0x0500,
and this is used in various header files to determine if Windows 2000-specific material
should be included. The above comment is outputted due to some code in windows.h,
which checks WINVER and outputs the message if it is as 0x0500 or greater. This
means that MTPad will run fine on Windows 2000 but will fail on older OSes, such as
Windows NT4, where the problem will manifest itself as a failed ATLASSERT just
after a call to the Win32 API ::GetMenuItemInfo in the WTL header file
AtlCtrlw.h. You can comment out the block of code calling ::GetMenuItemInfo,
in which case the menu will not be displayed on Windows NT 4, but apart from that the
MTPad application will run correctly (it does have a toolbar for also accessing
commands). Alternatively, comment out the lines:

// #define WINVER 0x0500
// #define _WIN32_WINNT 0x0500
from stdatl.h file, and the application will then run on older OSes. Actually you really
only have to remove the WINVER define, and MTPad will then run fine, but it makes
sense to remove both: check out the MSDN article titled "Header File Conventions",
which states “In general, applications expected to run on Windows 95 should be built
without defining _WIN32_WINNT.”

In the MTPad example no Windows 2000-specific features are used, so these defines
are not needed. However, note that for some applications you will wish to use Windows
2000 features, and therefore will definitely wish to include these lines. You will need to
decide to either have a special code path in your application for older OSes, and another
for Windows 2000 and later OSes, or you will decide you will only run on Windows
2000 (for example, for other reasons it might be necessary – e.g. you are using the
thread pool functions which are exclusive to Windows 2000 or later). In the latter case
it would be a good idea at application startup to detect if the OS can run the application,
and if not to display a simple error message, rather than crashing mid-way through, as
in the case of the default MTPad on non-Windows 2000 OSes.

16

WTL Developer’s Guide

I have not added WTL’s include directory to DevStudio’s directory list, yet the
samples compile and run fine?

Yippee, it works, so what’s the problem! However, you are quite right to be concerned,
as such “magical” solutions often have a nasty way of coming back to haunt you with
difficult-to-detect problems (usually within a few hours of a your product’s release!).
The files must be coming from somewhere, but where?

Your first worry might be it is coming from either the Platform SDK’s own Include
directory or one of the include directories under VC++, such as ATL’s.

It is a worry because you might be getting an old version of the headers and you
definitely want the latest. Also, going forward, it is vital that you are sure which version
and the location of the header files you are using, as new releases of WTL are likely.
All members of a development team using code based on WTL should be building off
the same version of the WTL headers.

So you will start a search of your entire hard disk, looking for say, WTL’s “atlapp.h”
file. (All WTL’s header files are named beginning with “atl”, which provides a good
hint as to the likely packaging arrangements when Visual Studio 7 is launched).

You will not find the WTL files in any location other than <SDK>\Src\WTL\include.
What has happened with the examples is that per example, they have a relative include
path configured, pointing to the location of the WTL includes relative to the WTL
examples.

This solution is fine for the WTL examples, but it is highly unlikely that all your code
will be located under <SDK>\Src\WTL\examples, so you should follow the suggestion
of modifying DevStudio’s options as explained earlier. Also, it means that inside
DevStudio’s text editor, when you select a WTL header file in source code, right click,
and select Open Document <atlXXX.h>, that with the ..\..\include method the file will
not be displayed, but with the DevStudio’s options techniques it does work, and the
appropriate WTL header file is displayed.

17

WTL Developer’s Guide

The GUIDGEN and MTPAD examples do not use stdafx.cpp & stdafx.h

The title AFX is a historical naming artifact, and has no coding significance.

AFX started off as the project name for the earliest MFC project, before it was
christened MFC. The AFX name has survived through later MFC versions by being
embedded in the stdafx.cpp and stdafx.h files and is part of the name of certain MFC
global functions. By MFC tradition, stdafx.cpp contains boilerplate code which only
needs to be added once and stdafx.h contains includes of other framework header files,
general application header files and definitions of versions (e.g. WINVER). For each
project these files are slightly different, and therefore the files are part of the application
source files as opposed to the framework’s. Both files tend to be quite small. Most
developers know what should go in each.

Stdafx.cpp and stdafx.h are also traditionally the files used to manage precompiled
headers. One .cpp file (in this case stdafx.cpp) is selected for creating the PCH file

18

WTL Developer’s Guide

based on a selected header file (stdafx.h), and then all other files use the PCH, based on
the same header.

When ATL got started, it also used stdafx.cpp and stdafx.h for the same purposes,
though obviously their contents were quite different and contained absolutely no MFC
material.

Now with WTL, we also see the use of stdafx.cpp and stdafx.h in AppWizard generated
code. (Is AFX a virus or what!).

So, to return to the question, why do WTL’s examples MTPad and GuidGen not use
stdafx.cpp and stdafx.h? The answer is for no particular reason, but probably just that
the example developers wanted to break with Visual C++ tradition – the WTL
AppWizard has obviously much greater respect for our coding heritage. In brief, it does
not matter. So long as the appropriate WTL header get included and the pre-compiler
header files get set up correctly, you may choose any file names (it is suggested that you
use stdafx.[h/cpp], as that is what the WTL AppWizard uses).

Resources
WTL currently has few available resources, but this is likely to change shortly.

Development Tools
The Microsoft Platform SDK contains the WTL itself, and apart from that there are
currently no other development tools available. It is likely that many tool vendors who
currently based their products on MFC will migrate to WTL.

Internet Sites
Some Internet sites with interesting WTL material are:

• http://www.develop.com/dm/dev_resources.asp (very comprehensive)

• http://www.idevresource.com/wtl

• http://www.codeproject.com/wtl

• http://www.argsoft.com/Wtl/DocView.html

• http://www.sellsbrothers.com/tools/index.htm#wtl

Newsgroups and Discussion List
There are no newsgroups or discussion lists dedicated specifically to WTL
programming. However, those targeted at ATL have many WTL-related postings.

The best ATL discussion list is:

• http://discuss.microsoft.com/archives/atl.html

The best ATL newsgroup is:

• news://msnews.microsoft.com/microsoft.public.vc.atl

19

http://discuss.microsoft.com/archives/atl.html
http://www.sellsbrothers.com/tools/index.htm#wtl
http://www.argsoft.com/Wtl/DocView.html
http://www.codeproject.com/wtl
http://www.idevresource.com/com
http://www.develop.com/dm/dev_resources.asp

WTL Developer’s Guide

Books
Apart from the WTL Developer’s Guide which you are currently reading, there is no
other WTL book available. It is expected that most of the major software engineering
book publishers will provide books on WTL in the future as its popularity increases.

Many ATL books cover ATL windowing, and this is a crucial foundation for WTL. The
best ATL books are:

• “Professional ATL COM Programming”, Dr. Richard Grimes, Wrox Press,
1998, ISBN: 1-861001-40-1 (he also has a beginner’s guide and a reference
manual published with Wrox)

• “ATL Internals”, Brent Rector and Chris Sells, Addison-Wesley, 1999, ISBN:
0-201-69589-8

• “Creating Lightweight Components with ATL”, Jonathan Bates, SAMS, 1999,
ISBN: 0-672-31535-1 [interesting discussion of adding support for Active
Documents to ATL applications]

• “Inside ATL”, George Shepherd and Brad King, Microsoft Press, 1999,
1-57231-858-9

Journals
Visual C++ Developer Journal (http://www.vcdj.com) published an article on WTL in
its April 2000 issue.

Target Audience For This Developer’s Guide
This developer’s guide is aimed at experienced software developers who have a good
knowledge of C++ and some exposure to C++ templates, ATL, Win32 windowing and
MFC UI programming.

Chapter Contents
Chapter 2 – Win32 SDK Windowing reviews core concepts of Win32 windowing,
which must be clearly understood before moving on to ATL windowing and WTL.

Chapter 3 – ATL Windowing examines the functionality within ATL relating to
windowing. This includes constructing windows and dialogs, handling messages and
command processing through message maps and super/subclassing. WTL does not
replace this; rather it extends the range of functionality already available with ATL
windowing.

Chapter 4 – WTL Quick Tour provides an overview of developing with WTL. It
introduces the WTL build process, application architecture and describes a number of
development issues, such as CRT usage. It has a list of WTL’s templates and classes, a
description of WTL’s CString, and explains the macros used.

20

http://www.vcdj.com/

WTL Developer’s Guide

Chapter 5 – WTL AppWizard walks through the coded generated from the various
AppWizard options. This chapter examines each AppWizard option and analyses the
code changes that it effects.

Chapter 6 – Dialogs and Controls looks at how dialog boxes and their contents work
with WTL. It looks at how a variety of standard, common and ActiveX controls can be
used, along with common system dialogs and property pages. It looks at the message
crackers. It describes DDX, data validation and how to extend these.

Chapter 7 – Graphical Primitives looks at outputting graphics. It introduces the WTL
templates for GDI objects, such as CDC, CPen, CBrush, CFont, CBitmap,
CPalette and CRgn. It explains the role of CDC derivatives, for painting client-area
rendering, complete window rendering and enhanced metafiles.

Chapter 8 – Internals of WTL walks through the WTL header files and examines the
design for these templates.

Chapter 9 – Bugs and Suggestions lists known bugs in the current version of WTL and
makes some small and large suggestions above extending its capabilities.

21

WTL Developer’s Guide

Chapter 2
Win32 SDK Windowing

Objectives
The objectives of this chapter are to:

• Review the fundamentals of windowing concepts

• Introduce windowing terms

• Explain how the user interface is structured in the Windows OS

• Describe how the Windows OS handles concepts such as message queues,
subclassing, superclassing, the message loop and general windows management

• Examine how threads and windows interact

• Describe how graphics primitives work

Fundamental Windowing Concepts
WTL is built above ATL windowing, which in turn is built above Win32 SDK
windowing. Before exploring WTL, it is useful to review how windowing works within
the Windows family of operating systems, which we do in this chapter, and how ATL
handles windowing, which we will do in the next chapter. There are a number of
important Win32 concepts and if clearly understood they will facilitate understanding
why ATL and WTL are structured the way they are.

Types of Windows
At the most basic level, everything that appears on screen on a PC running the
Windows OS is either a window or a graphical primitive drawn within a window.
Win32 APIs are provided to create, manage and destroy windows and to render
graphics inside them. Each user interface construct lives within a separate window –
known as a control.

The end-user might think there are many types of windows – graphical output windows,
user interface standard controls (pushbutton, radio-button, etc.), common controls
(listview, treeview) and ActiveX controls. (A special case of ActiveX control, known as
windowless - can operate without its own window – it lives within the window of its
container). Fundamentally, they are all instances of windows that work according to the
same set of rules.

22

WTL Developer’s Guide

Hierarchies of Windows
Windows are arranged on screen in a hierarchy. The root desktop window is a listview
control, in large-icon mode. Applications’ top-level windows and their child windows
form nodes within this hierarchy, which is maintained by the OS.

When you create a window, you must specify its parent. The new window will be
located within the hierarchy under the node of the parent window. When a window is
destroyed, all its child windows are automatically destroyed.

Window Classes
A window class is a description of important aspects of how a window works. Each
window you create must be of a particular window class. The operating system provides
window classes for the standard controls, such as Button, Edit and List Box and the
common controls, such as listview, treeview and calendar picker.

A window class is registered using the Win32 RegisterClassEx function, and
unregistered using the UnregisterClass function.

ATOM RegisterClass(//Return is an Atom identifier for the class
 CONST WNDCLASS *lpWndClass // IN: pointer to window

 // class structure
);
BOOL UnregisterClass(//Return states whether it succeeded
 LPCTSTR lpClassName, // lpszClassName field from WNDCLASS
 HINSTANCE hInstance // handle to application instance
);
Sometimes a window class is referred to as a “template” for a window. In programming
terms, a window class is a Win32 structure (not a C++ class). The most important
aspect of a window class is the window procedure. Other aspects include an icon when
the application is minimized, background brush, default cursor and the hInstance of
the owner (EXE or DLL containing the WndProc). A process should create a window
class and then instantiate windows based on it.

typedef struct _WNDCLASS {
 UINT style; // Bitmask containing additional settings

 // (e.g. CS_NOCLOSE – Do not show CLOSE
 WNDPROC lpfnWndProc;//The windows procedure function
 int cbClsExtra; // Extra bytes for this class
 int cbWndExtra; // Extra bytes for each window
 HINSTANCE hInstance;// The instance handle of the EXE/DLL

// containing the window procedure
 HICON hIcon; // Icon for the class
 HCURSOR hCursor; // Cursor for the class
 HBRUSH hbrBackground; // How the background should
 // be drawn
 LPCTSTR lpszMenuName; // Resource name for the menu
 LPCTSTR lpszClassName; // Class name
} WNDCLASS, *PWNDCLASS;
Important styles include:

23

WTL Developer’s Guide

• CS_SAVEBITS – copy the pixels in a window before it is obscured, and
replace the pixels when the window becomes visible again (use for small
windows only)

• CS_NOCLOSE – Disable the close button on the window menu

• CS_CLASSDC – use a unique device context to be shared among all windows
of this class (NOT RECOMMENDED for multithreading)

• CS_OWNDC – use a unique device context for each window of this class

• CS_PARENTDC – enables a child window to draw into its parent (a common
DC from the system’s cache is used)

Extra application-specific bytes can be stored with the class (cbClsExtra) and each
window of the class (cbWndExtra)

The class name is used later when creating windows – as one argument to
CreateWindow[Ex] states the name of the window class that the new window should be
based upon.

The Window Procedure
Window messages are constantly being sent to windows to be processed, and they
handle these in a window procedure. This is a function specific to the application and
class that detects messages of relevance to the application and responds, usually by
calling another function within the application. Messages not of interest are forwarded
to the default handler (DefWindowProc). It is quite normal that multiple windows
could be based on the same window class, which means that multiple windows could
have their messages handled by the same window procedure (a HWND parameter
identifies the window to which the message refers).

The Window
Calling CreateWindowEx creates a window. The name of a window class that has
already been registered must be provided (this parameter may not be NULL).

HWND CreateWindow(
 LPCTSTR lpClassName, // Name of window class
 LPCTSTR lpWindowName, // Name of window, to appear in titlebar
 DWORD dwStyle, // Bitmask of style of window
 int x, // X&Y position of new window compared
 int y, // to parent window
 int nWidth, nHeight, // dimensions of window
 HWND hWndParent, // parent window
 HMENU hMenu, // menu handle
 HINSTANCE hInstance, // Module associated with the window
 LPVOID lpParam // custom data to be sent with WM_CREATE
);

24

WTL Developer’s Guide

25

Window X

STEP 1: Application provides a WndProc function

LRESULT CALLBACK MyWndProc(HWND hwnd,
UINT uMsg,WPARAM wParam,LPARAM lParam){
switch (uMsg) {
 case WM_CREATE:
 // …; return 0;

 case WM_PAINT:
 // …; return 0;

. . .

Atom table for registered window classes

MyFirstClassName Atom Identifier X

. . . Atom Identifier Y

. . . Atom Identifier Z

STEP 2: Application calls RegisterClassEx

Application fills in the WNDCLASSEX structure, including setting the class name to a
application-defined string (e.g. “MyFirstClassName”) and setting the WNDPROC field

to point to an application defined function (e.g. MyWndProc) whose signature is
WNDPROC – then the application calls RegisterClassEx to register it.

This results in an atom getting added to an atom table based and the class name, and
the system using the atom identifier to locate the window class for it

Window Class Stored
information for atom identfiier X

WndProc=ptr to MyWndProc

. . .

STEP 3: Application calls CreateWindowEx

Application calls CreateWindowEx and among it
parameters is the name of the window class to use

This results in a new window being created. Each
window has certain pieces of hidden data, one of
which is a pointer to a wndproc function. This is

initialized to point to the wndproc identified in the
window class

STEP 4: Messages are processed for window

When messages are received for a window, its ptr
to a wndproc is used to process the message

Ptr to
MyWndProc

WTL Developer’s Guide

Sub-Classing
When a window is created based on a window class, the window records a function
pointer to the window procedure specified in the window class. Subclassing is used to
modify the behavior of a class, without having to rewrite the class entirely, possibly
duplicating lots of code. Subclassing involves an application replacing the window
procedure of a window with a different window procedure, which can process some
messages it receives and pass them onto the original window procedure. This can be
used for window classes you write yourself or those which are provided by the
operating system for predefined controls.

Instance subclassing is used for a single instance of an existing window. This can be
done by calling SetWindowLong(GWL_WNDPROC) or
SetWindowLongPtr(GWL_WNDPROC) for an existing window (the difference

26

Atom table for registered window classes

MyFirstClassName Atom Identifier X

. . . Atom Identifier Y

. . . Atom Identifier Z

STEP 1: Application calls RegisterClassEx

Application calls RegisterClassEx as before

Window Class Stored
information for atom identfiier X

WndProc=ptr to MyWndProc

. . .

STEP 2A: Instance Subclassing

With instance subclassing, the window needs to be
created as before using CreateWindowEx. It

gets its wndproc from the registered wndproc value
for the window class

STEP 3A: Instance Subclassing

Then, to carry out instance subclassing, write a
separate window procedure (e.g.

mySecondWndProc) and then call
SetWindowLongPtr(GWL_WNDPROC,
mySecondWndProc); Note that the return

value from this call will the existing wndproc in
use. In the implementation of

mySecondWndProc, for certain messages one
could call myWndProc if desired).

Ptr to
MyWndProc

Ptr to
MySecondWndProc

WTL Developer’s Guide

between the functions is that SetWindowLong is compatible with Win32 only,
whereas SetWindowLongPtr is compatible with both Win32 and Win64, so it is
better to use SetWindowLongPtr).

Global subclassing is to replace the window procedure in the window class, which will
come into effect for all subsequent window creation based on that window class. This is
done by calling SetClassLongPtr(GCL_WNDPROC) to replace the window
procedure stored in the window class. All new windows created after this will new the
new windows procedure. Windows created before this will continue to use the initial
window procedure.

Super-Classing
Superclassing involves extending the functionality of a base window class. In the
superclass’ own window procedure, when it receives a message it may process it
directly or invoke the window procedure of the base class.

27

Atom table for registered window classes

MyFirstClassName Atom Identifier X

. . . Atom Identifier Y

. . . Atom Identifier Z

STEP 1: Application calls RegisterClassEx

Application calls RegisterClassEx as before

Window Class Stored
information for atom identfiier X

WndProc=ptr to MyWndProc

. . .

STEP 2A: Global Subclassing

With global subclassing,
SetClassLong(GCL_WNDPROC,

mySecondWndProc) is called, which replaces
the WndProc in the class information

STEP 3A: Creating the Window

All windows created subsequent to the call to
SetClassLongPtr(GCL_WNDPROC)

will use the new window procedure Ptr to
MySecondWndProc

Window Class Stored information
for atom identfiier X

WndProc=ptr to MySecondWndProc

. . .

WTL Developer’s Guide

This is used by calling GetClassInfo to retrieve information about the window
class of the base class, modify the data returned (such as the window procedure) and
then calling RegisterClassEx to register the superclass.

28

Atom table for registered window classes

MyFirstClassName Atom Identifier X

. . . Atom Identifier Y

. . . Atom Identifier Z

STEP 1: Application calls RegisterClassEx

Application calls RegisterClassEx as before

Window Class Stored
information for atom identfiier X

WndProc=ptr to MyWndProc

. . .

STEP 2: Retrieve Class Info

The application calls
GetClassInfoEx to retrieve

class information about a
named class

Atom table for registered window classes

MyFirstClassName Atom Identifier X

MySuperClass Atom Identifier Y

. . . Atom Identifier Z

Window Class Stored
information for atom identfiier X

WndProc=ptr to MyWndProc

. . . Window Class Stored information
for atom identfiier Y

WndProc=ptr to MySuperWndProc

. . .

STEP 4: The application creates windows

The application calls CreateWindowEx to
create a new window. It may use the window class

name of the original class or the superclass.

STEP 3: Fill in WNDCLASSEX and call
RegisterClassEx

The application creates a new WNDCLASSEX structure,
some of whose fields are set to the values retrieved in step 2,

and some which are new. The wnd procedure is new (e.g.
MySuperWndProc). Then it calls RegisterClassEx
to create a new window class. The application will keep a
record of the information from step 2, and it might use this
within the implementation of the new window procedure.

Ptr to
MySuperWndProc

WTL Developer’s Guide

You will often use subclassing and superclassing when trying to modify the behavior of
predefined windows controls, such as edit boxes and list boxes. Subclassing and
superclassing are allowed only within a process.

Message Queues
Each thread that invokes Win32 windowing functions has its own message queue. The
message queue of the thread in which a window is created is used to deliver messages
concerning that window to the application.

Message loop
Each thread that has a message queue should process incoming messages by means of a
message loop. This calls the GetMessage function, which blocks until a message
becomes available, and then calls DispatchMessage, which results in the
appropriate window procedure getting called.

 MSG msg;
 while (GetMessage(&msg, 0, 0, 0))
 DispatchMessage(&msg);
The message loop is also the basis of single-threaded apartments in COM. The idea is
that if a component is designed to be called from only has a single thread, and multiple
threads inside or outside the application wish to call it, a hidden window is created, and

29

Thread A
Thread B

Message Queue
for thread A Message Queue

for thread B

Window Y Window Z

Window X The messages for each window are queued
on the message queue of the thread in
which the call to CreateWindow was

called which created the window

WTL Developer’s Guide

all functions calls for a particular COM component are posted as messages to this
window. The object can then extract them one by one and process them.

Capture and Focus
Normally messages are sent to the window in which they occurred. For user input this is
the focus window. For mouse messages, many applications wish to detect the
corresponding mouse up message for every mouse down message they receive. Calling
SetCapture does this.

Window Styles (Traits)
Application developers may set a wide variety of window styles when creating windows
and these influences the look and behavior of the window. There are two types of styles
– standard styles (e.g. WS_CHILD, WS_CLIPCHILDREN, WS_VISIBLE) and
extended styles (e.g. WS_EX_PALETTEWINDOW, WS_EX_APPWINDOW,
WS_EX_CLIENTEDGE).

Another term for “window styles” used within WTL/ATL is “traits”.

Windows Properties
The operating system can maintain a set of named properties for each window. A
property name is defined by the application and the property value is a HANDLE,
usually a pointer to memory that the application allocates and fills in with data relevant
to the window.

Sample – WindowingWithSDK
This sample explores programming windowing concepts using raw Win32 calls. Later,
when we use ATL and WTL, it will be instructive to look back and see exactly how it
could be done manually with the SDK calls. The WindowingWithSDK workspace
contains five small projects.

The WindowsWithSDK project is a simple “Hello World” project, generated in
Developer Studio using the New Workspace command, then selecting Win32
Application, and then selecting “A typical “Hello World!” application”. The code is all
auto-generated by Developer Studio. It simply initializes a WNDCLASSEX structure and
calls RegisterClassEx to register the window class. Then it calls
CreateWindow to create a window based on the window class. It has a message loop
which processing messages, and forwards them to the widow procedure.

The InstanceSubclassing project was generated in the same way and modified to show
instance subclassing. An additional window procedure was written, called
MySubclassedWndProc. This processes WM_LBUTTONDOWN messages and
forwards all other calls to the original window procedure, using CallWindowProc.

LRESULT CALLBACK MySubclassedWndProc(HWND hWnd, UINT message, WPARAM
wParam, LPARAM lParam){

switch (message) {
case WM_LBUTTONDOWN:
OutputDebugString(
 TEXT("Mouse Down detected in subclassed WndProc\n"));

30

WTL Developer’s Guide

break;
default:

return CallWindowProc(MyWndProc, hWnd,
 message, wParam, lParam);
 }
 return 0;
}
The subclassing is put into effect by a call to SetWindowLongPtr, after first
creating the window.

hWnd = CreateWindow(szWindowClass, szTitle,
WS_OVERLAPPEDWINDOW,CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

SetWindowLongPtr(hWnd, GWL_WNDPROC,
(LONG_PTR)MySubclassedWndProc);

The GlobalSubclassing project changes the window procedure in the registered class.
The class is first registered as before. To change class settings with
SetClassLongPtr, an existing window based on that class must be used (which
indirectly provides access to the window class). This first window is created, and then
SetClassLongPtr is called to change the window procedure to use for all new
windows based on that class. (Note that the first window will continue to use the
original window procedure and is not affected by the call to SetClassLongPtr).

hWnd1 = CreateWindow(szWindowClass, szTitle,
WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

SetClassLongPtr(hWnd1, GCLP_WNDPROC,
(LONG_PTR)MySubclassedWndProc);

hWnd2 = CreateWindow(szWindowClass, szTitle,
WS_OVERLAPPEDWINDOW,CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

The SuperClassing project demonstrates superclassing of an existing window class. The
size field of the WNDCLASSEX is first correctly initialized. It extracts the window class
of an existing class by calling GetClassInfoEx. It copies certain fields to a new
WNDCLASSEX structure, and sets the window procedure to point to a new function.
Then it calls RegisterClassEx to register the new window class. In the window
procedure certain calls are forwarded to the original window procedure.

wcex_base.cbSize = sizeof(WNDCLASSEX);
GetClassInfoEx(hInstance, szWindowClass, &wcex_base);
CopyMemory(&wcex_superclass, &wcex_base, sizeof(WNDCLASSEX));

wcex_superclass.lpfnWndProc =
(WNDPROC)MySuperclassWndProc;
wcex_superclass.lpszClassName =
TEXT("SuperClassName");

RegisterClassEx(&wcex_superclass);
hWnd = CreateWindow(TEXT("SuperClassName"), szTitle,

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL, hInstance,
NULL);

The MessagesAndThreads project creates a window in the original thread and then
starts a new thread.

31

WTL Developer’s Guide

 hWnd = CreateWindow(szWindowClass, szTitle,
WS_OVERLAPPEDWINDOW,CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);

 HANDLE hMyThread;
 DWORD MyThreadID;
 hMyThread = CreateThread(NULL, 0,

 (LPTHREAD_START_ROUTINE) MyThreadStartProc, hInstance,
0, &MyThreadID);

In the new thread it creates a new window. Both threads maintain their own message
loop. The rule is that the thread in which the window was created is used to queue
messages concerning that window for the application. If one thread for example stopped
processing messages (e.g. put in a long call to Sleep), then the messages for the
windows created in that thread would not be processed.

DWORD MyThreadStartProc(LPVOID hInstance){
HWND hWnd;
MSG msg;
hWnd = CreateWindow(szWindowClass, szTitle,

WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0,
CW_USEDEFAULT, 0, NULL, NULL,

(HINSTANCE)hInstance, NULL);
ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);
// Main message loop:
while (GetMessage(&msg, NULL, 0, 0)) {
if (!TranslateAccelerator(msg.hwnd,

hAccelTable, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return 0;// thread functioned correctly

}

Messages
The messages that are placed on message queues are identified by integers, and contain
two parameters, wParam and lParam. The senders of messages could be the kernel
code that manages the desktop/keyboard/mouse, the implementation of window
controls, your application code or ActiveX controls. The recipient of messages is
usually the window procedure associated with the window in which the action that
precipitated the message occurred, but in some circumstances it can be the parent
window.

Message IDs
The Platform SDK defines a range of messages related to generic windows, which are
named WM_XXX. This will work with normal windows and the standard/common
controls, which based on normal windows. So when a mouse is moved inside a
window, the window procedure for that window gets a WM_MOUSEMOVE message. This
is the case for all messages that begin with WM_, with three exceptions. WM_COMMAND,
WM_NOTIFY and the various WM_CTLCOLORXXX messages are sent to the parent of
the window in which the action took place.

32

WTL Developer’s Guide

Applications can send custom messages for application-specific communication. Values
should be added to WM_USER to form a message id, and then the message sent to a
window. The window procedure for that window will extract the message, subtract
WM_USER and interpret the message.

To shut down an application, the WM_QUIT message is used.

Standard Controls vs. Common Controls
Windows provides a set of standard controls that are built into the kernel and are always
available. These are buttons, combo-boxes, edit, listbox, rich-edit, scroll-bar and static
control.

Note that the Rich-Edit control is a standard control, not a common control. In comes in
three versions, each with varying degrees of support for rich text. Version 1 is
supported in “classic” Windows 95 and all later OSes. Version 2 is supported with
Windows 98 and Windows NT 4 and later, and may be installed on Windows 95
manually. Version 3 is available with Windows 2000 and Windows Me.

Windows also provides more advanced controls, known as common controls, which are
available to applications if they call the Platform SDK APIs InitCommonControls
or InitCommonControlsEx and if the system DLL Comctl32.dll with the correct
version is available. “Classic” Windows 95 came with a core set of common controls,
such as treeview, listview, and property pages. Later versions of Comctl32.dll, such as
that delivered with IE 4 (version 4.71) contains additional controls, such as IPAddress,
DateTime Picker, and MonthCalendar. IE5 does not add additional common controls,
but it does add some new messages for existing controls (e.g. TVM_GETLINECOLOR
for a treeview).

Getting/Setting Information
There is no real API to these controls. Instead, application code can send message to
them to set data, get data and perform other actions. For example, to limit the number
of characters permitted in an edit-box, an application could send it an
EM_SETLIMITTEXT message, with the limit as the wParam. To retrieve this limit,
the application can send EM_GETLIMITTEXT and the limit will be the return value
from the SendMessage function.

Commands and Notifications
Applications often wish to use the standard and common controls and be informed of
some of the messages for these controls. We have seen that an application cans subclass
and superclass windows, including those used with these controls. In this way
application code, rather than the default window proc for these controls can get first
access to all the incoming messages and pass on any messages not of interest to the
default window procedure.

For specialist cases this is fine, but it is considerable amount of work when you have
many dialog boxes, and many controls inside each. In general, we wish to use the
controls “as supplied”. What would be nice is if the dialog box (the parent of theses
controls in the window hierarchy) would be told of significant actions inside the

33

WTL Developer’s Guide

controls, such as a click in a button or text entry in an edit-box. Luckily for all of use,
this is exactly how the OS behaves. It sends WM_COMMAND and WM_NOTIFY messages
to the parent window with a notification message stating what happened in the child.

For each standard and common control, the OS decides that the parent of a control
would be informed that certain ranges of actions have occurred. The control itself might
be receiving a WM_LBUTTONDOWN message, but it passes a WM_COMMAND message to
the parent, with a BN_CLICKED notification message inside it. The standard controls
and the Animation common control use WM_COMMAND. All the other common controls
use WM_NOTIFY.

Which Windows are in the Hierarchy
One good piece of advice when programming windowing code is to be clear in your
own mind the hierarchy with which you are working. It can be the case that there are
additional or fewer windows present than you actually think – and messages that are
sent to parent windows might end up going to windows that are not expecting them.
Two sample scenarios where this can occur concern ActiveX controls. Such controls
can be implemented as “windowless”, in which case the control itself does not have its
own window, rather it rendered in the window of the dialog. When controls are hosted
in a client development environment, a host window class can wrap them, which itself
manages a window for the site, and this site window is situated in the window hierarchy
below the dialog window (it is a child of the dialog window) and above the control
window (it is the control window’s parent).

Ample use of the Spy++ utility can help you clarify the hierarchy arrangements and
save many hours of debugging.

Threads and Windowing
Threads and windows interact at a variety of levels. It is important we have a clear
understanding of these interactions, to avoid a number of potential problems and to
optimize performance.

On Win32, there is one and only one type of thread. It executes user-interface and non-
user interface code alike inside a threadproc and functions called from the threadproc.
There is no such thing as a “user-interface thread” from an OS perspective. Where the
difference can arise is in application space because you as the application developer
have decided that some code with UI calls will execute in some particular threads, and
other code, without UI calls, will execute in different threads. It is a design decision you
make and the OS is not interested. (The same argument applies to COM. There is no
such thing as a COM thread, just a Win32 thread, which happens to execute COM,
calls. What is different is that the rules of COM apartments also apply.)

Win32 lets you execute UI calls on any thread. You may decide for design reasons to be
more selective and limit UI calls to certain threads. How window operations work in the
context of threads needs to be appreciated so that appropriate design decisions may be
made.

Three excellent books with coverage of threads and windowing are Richter’s
“Programming Applications for Microsoft Windows“ – ISBN: 1-57231-996-8, chapter

34

WTL Developer’s Guide

26; Berveridge’s/Wiener’s “Multithreading Applications in Win32”, ISBN:
0-201-44234-5, chapter 11 and Cohen’s/Woodring’s “Win32 Multithreaded
Programming”, ISBN: 1-56592-296-4, chapter 12.

Who Owns the Objects?
An application can create objects such as windows, pens, brushes etc. It is considered
good programming practice to delete these when they are no longer necessary. Even if
this is not done, the kernel will step in and at thread deletion time or process deletion
time will delete the objects that are still in existence. Window objects (and hook
objects) are owned by the thread in which they were created. When the thread exits then
each window created within that thread will be closed immediately. All other objects
(pens, brushes, regions, device contexts, bitmaps, fonts, etc.) are owned by the process,
and regardless of which thread upon which they were created, they remain in existence
until the object is explicitly deleted or the process (not the creator thread) is terminated.

Threads and Windows and Message Queues
The golden rule of Win32 windowing/thread interaction is that the thread in which a
window was created (via a call to Win32’s CreateWindow[Ex]) is also the thread
that processes messages for that window. Most other aspects of Win32 windows/thread
interaction flow from this rule.

There are a number of questions for which we need to find answers, to understand the
implications of this rule. If a thread is going to receive window messages, then does it
need a message queue? How does this get constructed? How are messages placed on
the message queue? If a thread has a message queue, then it needs a message pump to
extract messages from the queue and process them. How is this implemented? When a
thread dies, then the windows associated with the thread might as well also die, as no
further messages can be sent to them – how is this handled? What happens if the thread
that has a message pump also wishes to wait on OS kernel objects, such as a mutex?

Some threads need a message queue and some do not. Some threads will never be used
for windowing, and it would be inefficient to allocate memory for a message queue
when it will not be used. Therefore, when the OS creates a thread, it does not
automatically create a message queue. The very first time a call is made in a new thread
to any of the Win32 windowing APIs, the OS creates the message queue. This is done
transparently to application code. Once the message queue is in existence, it remains so
until the thread dies.

The application needs to know which threads have a message queue and hence which
threads it will need to add the familiar GetMessage / DispatchMessage
message pump functions. The application knows this because the message queue only
gets created when windowing calls are made in that thread. Therefore it is a design
issue to decide where to make such calls and if present then to add the message pump.

Sending and Posting Messages
The two main techniques, which result in the window procedure getting executed, are
known as sending and posting. Sending is done via:

LRESULT SendMessage(// return is result of message processing

35

WTL Developer’s Guide

 HWND hWnd, // Window to receive the message
 UINT Msg, // Message to send
 WPARAM wParam, // Parameter to message
 LPARAM lParam // Parameter to message
);
You can think of sending as synchronous. The caller thread will block until the message
has actually being processed, and then the next line after the SendMessage in the
thread will be executed. The hWnd parameter intrinsically identifies the thread that has
the window procedure that needs to be executed. If this is the same thread as that on
which SendMessage was called, then SendMessage internally simply calls the
window procedure directly – without a thread context switch, and without placing the
message on the message queue. If a different thread provides the window procedure,
then a message is placed on its message queue. Some time later it processes the
message, and sends back the reply, and then the thread in which SendMessage was
called awakes and continues processing. It is possible to call SendMessage from one
thread to send a message to a window created on a separate thread but the one major
problem that can arise is if that separate thread is not servicing its message pump
regularly, the first thread can block.

Posting is done via one of three functions.

BOOL PostMessage(// Return is result of posting
 HWND hWnd, // Window to receive the message
 UINT Msg, // Message to send
 WPARAM wParam, // Parameter to message
 LPARAM lParam // Parameter to message
);
This places the message on the message queue associated with the thread in which the
identified window was created.

BOOL PostThreadMessage(// Return is result of posting
 DWORD idThread, // Thread to receive the message
 UINT Msg, // Message to send
 WPARAM wParam, // Parameter to message
 LPARAM lParam // Parameter to message
);
This places the message on the message queue associated with the identified thread.
The window parameter when received will be 0.

VOID PostQuitMessage(// no return
 int nExitCode // Exit-code
);
This places a WM_QUIT on the message queue of the thread in which this call was
made. Sometime later, when the thread retrieves the WM_QUIT message off the queue,
it should exit gracefully.

Posting is asynchronous. The message is posted on the message queue and the function
returns immediately. It does not wait and the message may or may not be correctly
processed.

36

WTL Developer’s Guide

This normally works fine and enables different threads to communicate with each other,
without requiring synchronization. The recipient thread can, at a time convenient to
itself, take the message off its queue and process it in an orderly fashion.

One point of concern is what happens if the message queue does not exist – will a call
to one of the Post functions from a different thread create it. The answer is no. The
message queue for a particular thread will only get created inside that thread, when it
calls any windowing function. This is important in the context of WTL’s Multiple
Threads SDI Application, which we will discuss further in detail in the upcoming WTL
AppWizard chapter.

Threads and Kernel Objects
The GetMessage API is a blocking call, waiting for the next message to come in on
the message queue. The WaitForSingleObject or
WaitForMultipleObjects are blocking calls, waiting until one or more kernel
objects become signaled. What happens it we wish to wait on both kernel objects and
incoming window messages? For this the Win32 APIs
MsgWaitForMultipleObjects and MsgWaitForMultipleObjectsEx can
be used.

DWORD MsgWaitForMultipleObjects(
 DWORD nCount, // handle count
 CONST HANDLE pHandles, // array of handles
 BOOL fWaitAll, // what waiting needs to be done
 DWORD dwMilliseconds, // Timeout
 DWORD dwWakeMask // What input to detect
);
DWORD MsgWaitForMultipleObjectsEx(
 DWORD nCount,
 CONST HANDLE pHandles,
 DWORD dwMilliseconds,
 DWORD dwWakeMask,
 DWORD dwFlags // Additional Flags
);
They will wait on an array of kernel object handles and detect incoming messages. They
also have a timeout.

37

WTL Developer’s Guide

Chapter 3
ATL Windowing

Objectives
The objectives of this chapter are to:

• Describe ATL’s windowing classes and templates

• Cover ATL message maps and chaining

• Explain how subclassing and superclassing work in ATL

• Introduce the concept of a contained window

• Explore ActiveX control containment within ATL’s dialogs

• Examine the use of GDI functions with ATL windows

Overview
ATL provides comprehensive support for the full range of core windowing
functionality. This includes sub-classing, super-classing, handling windows messages
and notifications in a wide variety of means, and creating modal and modeless dialog
boxes (including ActiveX control containment).

ATL does not offer a C++ class for each type of Windows standard control (button,
combo box, edit-box, etc) or common control (list view, rebar, tree view, property
sheets). Rather, it offers classes and templates to construct generic windows and allows
you to specify the class name, which can be that of one of the standard or common
controls. The concept of message maps is used to dispatch incoming messages to C++
member functions.

ATL windowing is the foundation for the Windows Template Library (WTL). WTL
provides effective MFC UI-like C++ classes for each standard and common controls,
templates for GDI drawing and higher-level user interface application features, such as
toolbars, frames, views, statusbars, splitters and printing.

ATL provides limited wizard support. The ATL Object Wizard permits the creation of
dialog boxes with support ActiveX control containment. All other window creation –
dialog boxes without ActiveX control containment and generic windows, need to be
created manually in code by instantiating the appropriate ATL templates. Dialog
resources may be constructed and edited using Developer Studio’s standard
ResourceView. Through ClassView, you can access a wizard called New Windows
Message and Event Handler that enables you to add handler functions for particular
types of windows messages.

38

WTL Developer’s Guide

Windowing with ATL
ATL windowing provides an efficient layer of classes and templates above the low-
level Win32 windowing APIs. The aim is to provide a C++ interface to windowing that
is compatible and well integrated with other aspects of ATL. You can use ATL
windowing on its own, but more likely it will be part of an application which also
exposes COM functionality. ATL windowing is needed to display standard windows
(e.g. displaying graphics or word-processing output), for dialog boxes (including but
not limited to those which contain ActiveX controls) and for the visual aspects of an
ActiveX control and its design-mode property sheets.

CWindow
The CWindow class is the main API between the client (the user of the window) and
the implementation.

CWindow manages a HWND and provides type-safe member function wrappers to
virtually all the APIs related to HWNDs.

A typical member function of CWindow is implemented as:

BOOL SetWindowText(LPCTSTR lpszString){
ATLASSERT(::IsWindow(m_hWnd));
return ::SetWindowText(m_hWnd, lpszString);

}
The m_hWnd member needs to be initialized. This is done in one of the Create
member function, which the client must call with appropriate parameters.

HWND Create(LPCTSTR lpstrWndClass, HWND hWndParent,
RECT& rcPos, LPCTSTR szWindowName = NULL, DWORD dwStyle = 0,
DWORD dwExStyle = 0, UINT nID = 0, LPVOID lpCreateParam=NULL){

m_hWnd = ::CreateWindowEx(dwExStyle,
lpstrWndClass, szWindowName,
dwStyle, rcPos.left,rcPos.top,
rcPos.right - rcPos.left,
rcPos.bottom - rcPos.top,
hWndParent, (HMENU)nID,
_Module.GetModuleInstance(),
lpCreateParam);

return m_hWnd;
}
HWND Create(LPCTSTR lpstrWndClass, HWND hWndParent,

LPRECT lpRect = NULL,
LPCTSTR szWindowName = NULL,
DWORD dwStyle = 0,
DWORD dwExStyle = 0,
HMENU hMenu = NULL,
LPVOID lpCreateParam = NULL) {

if(lpRect == NULL)
lpRect = &rcDefault;

m_hWnd = ::CreateWindowEx(dwExStyle,
lpstrWndClass, szWindowName,
dwStyle, lpRect->left,
lpRect->top,
lpRect->right - lpRect->left,
lpRect->bottom - lpRect->top,
hWndParent, hMenu,

39

WTL Developer’s Guide

_Module.GetModuleInstance(),
lpCreateParam);

return m_hWnd;
}

Effectively, the Create member functions are very thin wrappers around the Win32
API CreateWindowEx.

If we assume the client has already registered a window class with the name
szWindowClass using RegisterClassEx, a CWindow may be instantiated
using:

CWindow wnd;
wnd.Create(szWindowClass, 0, 0,

TEXT("CWindow Demo"),
WS_OVERLAPPEDWINDOW | WS_VISIBLE);

As we have seen, this results in a call to CreateWindowEx.

Sometimes a client has an existing HWND, and to use this via the CWindow wrappers it
can pass in the hwnd as a parameter to the CWindow constructor, and not bother to call
Create (the window already exists, so there is no need for an additional call to
CreateWindowEx).

 CWindow wnd(hwnd);
wnd.SetWindowText(TEXT(“New Text”));

When handling ActiveX control containment, an additional template, called
CAxWindowT, is used to provide the extra support needed. We will cover this template
later.

Note that when a CWindow goes out of scope the HWND attached to it is NOT
destroyed (The CWindow class actually does not have a destructor). If you wish to
destroy the HWND associated with a CWindow you must directly call
CWindow::DestroyWindow.

From a client’s perspective, the use of CWindow is fine as it provides us with access to
the features we require.

Sample - WindowingWithATL
The WindowingWithATL project is a simple example showing how to use CWindow.
It was created using the ATL AppWizard and “Executable” was selected in the project
type options. No COM objects were inserted as we are focusing exclusively on the
windowing features. The AppWizard generated a file WindowingWithATL.cpp, and
this contained a WinMain with a message loop.

To use windowing we first need to include atlwin.h. A good place to put this in
stdafx.h, somewhere after the inclusion of <atlbase.h>.
// stdafx.h
#include <atlcom.h>
#include <atlwin.h>

40

WTL Developer’s Guide

In our WinMain function we add code to register a window class using the Win32
SDK API RegisterClassEx and then we create a window based on it using
CWindow.

TCHAR szWindowClass[]=TEXT("myapp");
WNDCLASSEX wcex;
wcex.cbSize = sizeof(WNDCLASSEX);
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = (WNDPROC)MyWndProc;
wcex.cbClsExtra = 0;
. . .
RegisterClassEx(&wcex);
CWindow wnd;
wnd.Create(szWindowClass, 0, 0, TEXT("CWindow Demo"),

WS_OVERLAPPEDWINDOW | WS_VISIBLE);
We must create a traditional window procedure, and to access the window through the
CWindow API we first instantiate a CWindow based on the HWND passed to our
message loop.

LRESULT CALLBACK MyWndProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam){

PAINTSTRUCT ps;
HDC hdc;
TCHAR szHello[]=TEXT("Hello");
switch (message) {

case WM_PAINT:
. . . ;

case WM_LBUTTONDOWN:{
CWindow wnd(hWnd);
wnd.SetWindowText(TEXT("New Text"));

}
break;

. . .
 }
 return 0;
}
From an implementer’s perspective (and the person who implements a window is very
often the same person who is going to use it as a client), we have two problems: the
window class and the window procedure are still handled as with SDK programming.

Window Construction
A group of classes, templates and macros based around CWindowImpl and its parent,
CWindowImplBaseT, are provided to facilitate the implementation of more
advanced windowing functionality, such as window classes and window procedures.

With CWindowImpl, the implementer may add as much or as little functionality as
s/he desires, and leave the remaining to default to that provided by CWindowImpl.
Each important piece of functionality is separately represented and may easily be
configured as needed.

41

WTL Developer’s Guide

Window Traits
When creating windows numerous styles such as WS_CHILD or
WS_OVERLAPPEDWINDOW may be specified in the call to CreateWindowEx.
Instead of having to specify the same set of styles again and again throughout your
code, ATL provides a template called CWinTraits that stores the styles to use, and
they may be passed as a parameter to CWindowImpl when needed.

template <DWORD t_dwStyle = 0, DWORD t_dwExStyle = 0>
class CWinTraits{
public:

static DWORD GetWndStyle(DWORD dwStyle) {
return dwStyle == 0 ? t_dwStyle : dwStyle;
}
static DWORD GetWndExStyle(DWORD dwExStyle) {
return dwExStyle == 0 ? t_dwExStyle:dwExStyle;
}

};
You specify the set of standard and extended styles when instantiating the template. The
two functions, GetWndStyle and GetWndExStyle return these values. Note that
both values default to 0 if not specified.

There are a number of frequently used sets of styles, and for these ATL provides
predefined CWinTraits. It also provides a NULL trait.

typedef CWinTraits<WS_CHILD | WS_VISIBLE |
WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 0>
CControlWinTraits;

typedef CWinTraits<WS_OVERLAPPEDWINDOW |
WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
WS_EX_APPWINDOW | WS_EX_WINDOWEDGE>
CFrameWinTraits;

typedef CWinTraits<WS_OVERLAPPEDWINDOW | WS_CHILD |
WS_VISIBLE | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
WS_EX_MDICHILD>
CMDIChildWinTraits;

typedef CWinTraits<0, 0> CNullTraits;
There is an extra template called CWinTraitOR that logically ORs additional styles
with those already set in a CWinTraits.

template <DWORD t_dwStyle = 0, DWORD t_dwExStyle = 0,
class TWinTraits = CControlWinTraits>

class CWinTraitsOR{
public:

static DWORD GetWndStyle(DWORD dwStyle) {
return dwStyle | t_dwStyle |

TWinTraits::GetWndStyle(dwStyle);
}
static DWORD GetWndExStyle(DWORD dwExStyle){

return dwExStyle | t_dwExStyle |
TWinTraits::GetWndExStyle(dwExStyle);

}
};
The word “trait” is used in the ISO C++ standard when modeling separately a collection
of attributes of some other class/template. An example of its use is char_traits
which is a parameter to the string template basic_string. This explains why the

42

WTL Developer’s Guide

term is used in ATL when naming CWinTraits (CWinTraits is the only use of the
term in ATL in the current version, but this could change in future). The term is also
used in the Windows Template Library.

Window Class Information
ATL provides a class to manage the window class information. This is called
_ATL_WNDCLASSINFO and is implemented as follows:

struct _ATL_WNDCLASSINFOW{
WNDCLASSEX m_wc;
LPCTSTR m_lpszOrigName;
WNDPROC pWndProc;
LPCTSTR m_lpszCursorID;
BOOL m_bSystemCursor;
ATOM m_atom;
TCHAR m_szAutoName[13];
ATOM Register(WNDPROC* p){

return AtlModuleRegisterWndClassInfoW(
&_Module, this, p);

}
};
The string CWndClassInfo maps to an ASCII or Unicode version of
_ATL_WNDCLASSINFO as needed. Note that the third member, pWndProc, is a
pointer to the window procedure to use.

The Register member function first checks to see if the named class has already
been registered, and if not, then calls the Win32 API RegisterClassEx to register a
new class. If the specified class name is NULL then a new one is generated.

Application developers normally do not use CWndClassInfo directly – rather they
use one of three macros, DECLARE_WND_CLASS, DECLARE_WND_CLASS_EX or
DECLARE_WND_SUPERCLASS. The CWindowImpl template has
DECLARE_WND_CLASS(NULL) entry, so this is used if an application’s windowing
class does not have its own CWndClassInfo.

One of these macros can be added to a window implementation class. It provides a
function called GetClassInfo, which returns a reference to a static
CWndClassInfo structure defined within the function. The reason for three macros is
to allow you to influence how the CWndClassInfo gets initialized.

DECLARE_WND_CLASS creates a data member called wc of type CWndClassInfo
and fills in all the fields in the structure with default values, and fills in the name with
the supplied parameter. This name may be NULL, in which case ATL will generate a
name by combining the string “ATL:” and the string-ified address of the m_wc field.

#define DECLARE_WND_CLASS(WndClassName) \
static CWndClassInfo& GetWndClassInfo() { \

static CWndClassInfo wc = { \
{ sizeof(WNDCLASSEX), CS_HREDRAW | CS_VREDRAW|\

CS_DBLCLKS, StartWindowProc, 0, 0, NULL,\
NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1),\
NULL, WndClassName, NULL }, \

NULL, NULL, IDC_ARROW, TRUE, 0, _T("") \

43

WTL Developer’s Guide

}; \
return wc; \

}
DECLARE_WND_CLASS_EX takes additional style and background color members and
uses them when filling in the structure.

#define DECLARE_WND_CLASS_EX(
WndClassName, style, bkgnd) \

static CWndClassInfo& GetWndClassInfo() { \
static CWndClassInfo wc = { \
{ sizeof(WNDCLASSEX), style, StartWindowProc, \
0, 0, NULL, NULL, NULL, (HBRUSH)(bkgnd + 1),\
NULL, WndClassName, NULL }, \
NULL, NULL, IDC_ARROW, TRUE, 0, _T("") \

}; \
return wc; \

}
DECLARE_WND_SUPERCLASS creates a new window class which is a superclass of
an existing class.

#define DECLARE_WND_SUPERCLASS(WndClassName,
 OrigWndClassName) \

static CWndClassInfo& GetWndClassInfo() { \
static CWndClassInfo wc = { \
{ sizeof(WNDCLASSEX), 0, StartWindowProc, \
 0, 0, NULL, NULL, NULL, NULL, NULL, WndClassName,
 NULL }, OrigWndClassName,NULL,NULL,TRUE, 0,_T("") \
}; \
return wc; \

}
The third member is the window procedure to use and it is set to
StartWindowProc.
If an application wishes to provide specific settings, and these are not supported through
the macros, then there is no problem adding a direct implementation of
GetWndClassInfo. We will see this in action in the later ATLSplitter sample,
which uses a specific class cursor for the window (IDC_SIZEALL). It defines
GetWndClassInfo as follows:

// We wish to use a specific class cursor (IDC_SIZEALL),
// so we define our own implementation of GetWndClassInfo
static CWndClassInfo& GetWndClassInfo() {

static CWndClassInfo wc = {
{ sizeof(WNDCLASSEX), CS_HREDRAW | CS_VREDRAW|\

CS_DBLCLKS, StartWindowProc, 0, 0, NULL,
NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1),
NULL, TEXT("MYSPLITTER"), NULL },
NULL, NULL, IDC_SIZEALL, TRUE, 0, _T("")

};
return wc;

}

Window Procedure using CMessageMap
To facilitate the processing of messages, ATL provides an abstract class called
CMessageMap and a range of macros to set up message maps. CMessageMap
declares one pure virtual function called ProcessWindowMessage.

44

WTL Developer’s Guide

class ATL_NO_VTABLE CMessageMap{
public:

virtual BOOL ProcessWindowMessage(HWND hWnd,
UINT uMsg, WPARAM wParam, LPARAM lParam,
LRESULT& lResult, DWORD dwMsgMapID) = 0;

};
If you think ProcesssWndMessage looks similar to the declaration of a window
procedure, you are quite right. Within the implementation of this function each
windowing class will have to react to incoming window messages, such as
WM_LBUTTONDOWN and WM_CHAR. The range of messages, which a window
implementation will wish, to track and their reaction to them varies according to the
role of the window and therefore each window which derives from CMessageMap
must implement its own version of this function.

If none are needed, then the DECLARE_EMPTY_MSG_MAP macro may be used.

#define DECLARE_EMPTY_MSG_MAP() \
public: BOOL ProcessWindowMessage(HWND, UINT, \
 WPARAM, LPARAM, LRESULT&, DWORD) { return FALSE; }

Most applications will wish to detect certain messages, and we will shortly examine
how ATL supports this using message map macros. For now, think of these as setting
up a large switch statement, similar to those found in normal window procedures,
which test for a particular message type (e.g. WM_MOUSEMOVE) and call a C++ member
function when the message type is received.

As we have seen from the various DECLARE_WND_XXX macros, the window
procedure is specified as StartWindowProc. So how do we get our newly created
window to call its own ProcessWindowMessage?

StartWindowProc and Thunking
The window procedure is called StartWindowProc and is defined as a static
function. C++ static functions cannot directly call instance member functions (how
could they decide which of the potentially many instances to call?), but this is exactly
what we want our window procedure to do. To get around this, the idea of thunking is
used. We have a HWND and we need to map it to the object pointer, so we can calls its
non-static ProcessWindowMessage. To understand how this works we need to
take a small tour of the innards of ATL.

The CComModule maintains a linked list of _AtlCreateWndData, which
maintains pairs of object pointers and thread ids.

struct _AtlCreateWndData{
void* m_pThis;
DWORD m_dwThreadID;
_AtlCreateWndData* m_pNext;

};
CComModule has member functions AddCreateWndData to add to this linked list
and ExtractCreateWndData to retrieve the object pointer for the current thread.
Only one value per thread may be maintained at any one time.

CWindowImplBaseT is part of the inheritance tree when we use CWindowImpl.
One of its data members is:

45

WTL Developer’s Guide

CWndProcThunk m_thunk;
It is implemented as:

class CWndProcThunk{
union {

_AtlCreateWndData cd;
_WndProcThunk thunk;

};
void Init(WNDPROC proc, void* pThis);

}
The reason a union is used here is to conserve space. At any one time either the cd or
thunk field will be needed – they are never needed together.

To create a window, the Create member function of CWindowImplBaseT is
called, and this results in a call to:

AddCreateWndData(&m_thunk.cd, this);
Note that the m_thunk.cd parameter is memory for the node that becomes part of the
linked list, and this is the data that is put into it.

Then a call to the Win32 API CreateWindowEx is made. As the window procedure
for the window class is StartWindowProc, it is called with the first window
creation message (important: this is guaranteed to occur before the call to
CreateWindowEx returns).

Within StartWindowProc it calls CComModule::ExtractCreateWndData
to retrieve the object pointer for the current thread (and remove the node from the
linked list). The application code running in this thread is in a call to
CreateWindowEx, so there is no possibility that two windows within one thread
might be in the process of being created at the same time. As a window procedure,
StartWindowProc will receive the HWND as a parameter. It stores this value in the
object’s m_hwnd field.

The thunk is initialized, so that when called it will replace the HWND parameter on the
stack with a pointer to the object instance, and jump to the
CWindowImplBaseT::WindowProc method, which is also a static member
function of CWindowImplBaseT. Then using SetWindowLong(GWL_WNDPROC)
[or SetWindowLongPtr in the 32/64-bit version of ATL] the window procedure is
changed to call the thunk. Then StartWindowProc returns. StartWindowProc
will not be called again for this instance of the window object.

For all further messages for the window, the thunk will be called, and it replaces the
HWND on the stack (we have already stored a copy of it once in the object’s m_Hwnd),
and then jumps to executing WindowProc.

 CWindowImplBaseT has a (non-static) method called WindowProc, which when
called will result in the class’ ProcessWindowMessage method being called, which
as we have seen results in the message map being processed. the
CWindowImplBaseT::WindowProc looks like a window procedure, and its first
parameter is by definition a HWND. However, because of the thunking, the value on the

46

WTL Developer’s Guide

stack was replaced with the pointer to the CWindowImplBaseT object. After a
suitable cast the object’s ProcessWindowMessage is called.

CWindowImplBaseT< TBase, TWinTraits >* pThis =
(CWindowImplBaseT< TBase, TWinTraits >*)hWnd;

BOOL bRet = pThis->ProcessWindowMessage(pThis->m_hWnd, uMsg,
wParam, lParam, lRes, 0);

CWindowImpl
To help facilitate the creation of C++ classes for windowing, ATL provide the
CWindowImpl template. This derives from CWindowImplBaseT, which in turn
derives from CWindowImplRoot, which finally derives from both CMessageMap
and CWindow. Note that the ProcessWindowMessage member function in
CMessageMap is abstract and therefore your implementation class must supply this
function.

The ATL Object Wizard does not provide wizard support to use CWindowImpl (but it
does for dialog boxes). It is easy enough to use it manually. You must create a C++
class which derives from CWindowImpl, write a constructor which calls Create and
a destructor which calls DestroyWindow, and add a message map which implements
ProcessWindowMessage.

There is a small syntactical issue you should be aware of. As your class is deriving from
the template CWindowImpl, and it final parameter is itself the templated
CWinTraits, at the end of your declaration you will have two template terminators
‘>’. You must leave a space between them – C++ has a quite different understanding of
the symbols ‘>’ and ‘ >>’. If you forget don’t worry – the compiler will kindly remind
you!

class CMyATLWindow : public CWindowImpl< CMyATLWindow, CWindow,
CWinTraits < WS_CAPTION | WS_POPUPWINDOW | WS_VISIBLE, 0> >{

public:
CMyATLWindow (){
RECT r={0, 0, 510, 510};
Create(0, r, TEXT("My Name"));

}
~ CMyATLWindow (){

if (m_hWnd)
DestroyWindow();

}
BEGIN_MSG_MAP(CMyATLWindow)
MESSAGE_HANDLER(WM_CHAR, OnChar)
END_MSG_MAP()

47

WTL Developer’s Guide

};

Message Maps
Now that we have seen how our object’s ProcessWindowMessage member
function gets called, we next want to examine how it reacts to incoming messages in
this function. ATL does not “crack” messages, so the same prototype is used for all
handlers. [Note that WTL does add crackers and has an additional macro,
BEGIN_MESSAGE_MAP_EX.]

ProcessWindowMessage will receive a very large number of messages and we
wish to detect only a small number of these and pass the remainder onto

48

CWindow

+rcDefault:RECT
+m_hWnd:HWND

CMessageMap

+ProcessWindowMessage():BOOL {abstract}

CWndProcThunk

«union » +cd : _AtlCreateWndData cd
+thunk : _WndProcThunk

+Init(proc WNDPROC, * pThis void)

CWindowImpl

+wc : CWndClassInfo

+Create() : HWND

T TBase
TWinTraits

CWindowImplBaseT

+m_pfnSuperWindowProc : WNDPROC

+GetWndStyle() +GetWndExStyle()
+StartWindowProc() +WindowProc()

+Create() +DestroyWindow()
+SubclassWindow()

+UnsubclassWindow() DefWindowProc
OnFinalMessage

TBase
TWinTraits

CWindowImplRoot

+m_pCurrentMsg : *MSG

+GetCurrentMessage
+ReflectNotifications

+DefaultReflectionHandler

TBase

WTL Developer’s Guide

DefWindowProc or equivalent for default processing. Within
ProcessWindowMessage we need to build a switch statement which for each
message we in which we are interested, we call a member function we write (e.g. for
WM_CHAR we might call MyOnCharFnc).

ProcessWindowMessage(HWND hwnd, UINT uMsg, . . .){
switch (msg) {

case WM_CHAR: MyOnCharFnc (); break;
case WM_PAINT: MyOnPaintFnc (); break;
default: defWindowProc();

}
}
For organizational reasons, we often wish a C++ class representing a parent window to
react to messages that were sent to a child window. This saves us having to write
separate C++ classes for each window, and is useful for subclassing and superclassing,
which we will cover later.

ProcessWindowMessage(HWND hwnd, UINT uMsg, . .,
DWORD dwMsgMapID){

switch (dwMsgMapID) {
case 0: // handle messages for this window

if (uMsg == WM_CHAR) MyOnCharFnc();
if (uMsg == WM_PAINT) MyOnPaintFnc();
break;

case 1: // handle messages for the first child window
if (uMsg == WM_LBUTTONDOWN) MyOnButtonDownFnc();

default: defWindowProc();
}

}

Constructing the Message Map
We do not wish to manually build up such a big switch statement. The macros
BEGIN_MSG_MAP and END_MSG_MAP set up an empty message map.

#define BEGIN_MSG_MAP(theClass) \
public: \

BOOL ProcessWindowMessage(HWND hWnd, UINT uMsg, WPARAM
wParam,LPARAM lParam,LRESULT& lResult,DWORD dwMsgMapID = 0){ \

BOOL bHandled = TRUE; \
//Following line avoids possible “not used” warnings
hWnd; uMsg; wParam; lParam; lResult; bHandled;
switch(dwMsgMapID) { \
case 0:

#define END_MSG_MAP() \
break; \

default: \
ATLTRACE2(atlTraceWindowing, 0,
_T("Invalid message map ID (%i)\n"), dwMsgMapID);\
ATLASSERT(FALSE); \
break; \

} \
return FALSE; \

}

49

WTL Developer’s Guide

Note that the last line of BEGIN_MSG_MAP is “case 0:” which indicates we are
switching on the message map id. The macro ALT_MSG_MAP sets up an alternative
message map id, after which we could place handlers for other windows.

#define ALT_MSG_MAP(msgMapID) \
break; \
case msgMapID:

Message Handlers
Next we need to populate our message maps with handlers, which can be done using a
number of macros. The simplest of these is MESSAGE_HANDLER, which takes two
parameters, a message and a function pointer, and if the message parameter is equal to
the messageID parameter to ProcessWindowMessage, then the function pointer is
called.

#define MESSAGE_HANDLER(msg, func) \
if(uMsg == msg) { \

bHandled = TRUE; \
lResult = func(uMsg, wParam, lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

If we wish to call a handler if any one of a contiguous range of messages was received,
we could use MESSAGE_RANGE_HANDLER:

#define MESSAGE_RANGE_HANDLER(msgFirst, msgLast, func) \
if(uMsg >= msgFirst && uMsg <= msgLast) { \

bHandled = TRUE; \
lResult = func(uMsg, wParam, lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

For each handler specified in the message map, you must create a handler function, with
the following prototype:

LRESULT OnMessagetype(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled){

return 0;
}

The return value from this function becomes the return value from the window
procedure. The final Boolean parameter, bHandled, can be set to FALSE to state that
the message has not been handled, and that the search for message handlers in the
message map should continue. Before your handler is called, the initial value of
bHandled is set to TRUE, which is what most handlers want, so if you are happy with
this there is no need to set it within your handler. Note that normally ATL does not
unpack the parameters to the window procedure. The wParam and lParam values
contain important information, which is particular to each message type, and you will
have to examine the Win32 Platform SDK documentation to discover what they
represent. ATL does not un-wrap them and present them to your function nicely
converted to specific data types.

50

WTL Developer’s Guide

The New Windows Message and Event Handlers Dialog
Though Developer Studio does not offer any Wizard support to create CWindowImpl-
derived classes, it does provide one dialog box to help you populate their message
maps.

You will first have to manually create a class deriving it from CWindowImpl. Then in
ClassView (not the MFC ClassWizard!) select the class and right click to bring up the
context menu. Select the Add Windows Message Handler menu item, and the New
Windows Message and Event Handlers dialog will be displayed. This dialog enables
you to add handlers for different window messages and events.

The list of messages depends on the type of window that is selected. For example, if a
pushbutton is selected, handlers may be added to detect single and double button clicks.
The most common notifications are supported. For others, you will have to manually
add them to the message maps in code.

Rendering with ATL
ATL itself does not provide any templates to help with GDI programming. This is one
of the added benefits of using WTL. If developing windowing code using ATL only,
you will have to use the Win32 GDI functions such as LineTo etc.

Sample: ATLWithCWindowImpl
The ATLWithCWindowImpl project examines how to implement a C++ class that is
derived from CWindowImpl and has a message map containing a number of message
handlers.

51

WTL Developer’s Guide

The project enables to user to draw lines in a window, and including rubber banding as
the line is being constructed.

It was started by running the ATL AppWizard and creating an EXE. Then a new file
was created and the code for our class CMyATLWindow added.

class CMyATLWindow : public CWindowImpl< CMyATLWindow, CWindow,
CWinTraits < WS_CAPTION | WS_POPUPWINDOW | WS_VISIBLE, 0> >{
private:

CSimpleArray<POINT> m_pointList;
bool m_bAddingLine;
POINT m_StartPoint;
POINT m_CurrentPoint;

public:
CMyATLWindow (){
RECT r={0, 0, 510, 510};
Create(0, r, TEXT("Draw Lines"));
bAddingLine = false;

}
~CMyATLWindow (){

if (m_hWnd)
DestroyWindow();

}
void OnFinalMessage(HWND hWnd){

::PostQuitMessage(0);
}
The m_pointList data member maintains an array of points of the lines in the
picture. This will be used when the picture needs to be redrawn. The m_bAddLine
Boolean data member is used while detecting mouse moves, and states if we are in the
middle of adding a line (and rubber-banding effect is needed). The m_StartPoint is
the beginning point in the line, and the m_CurrentPoint is the last point entered.

The constructor and destructor create and destroy the window, and the
OnFinalMessage function causes the entire single-threaded application to shut
down when this window is closed (for more substantial applications, you certainly will
not want to add this to every window!).

The message map detects four messages and calls suitable member functions for each.

BEGIN_MSG_MAP(CMyWindows)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
MESSAGE_HANDLER(WM_MOUSEMOVE, OnMouseMove)
MESSAGE_HANDLER(WM_LBUTTONUP, OnLButtonUp)
MESSAGE_HANDLER(WM_PAINT, OnPaint)
END_MSG_MAP()

The functions OnButtonDown, OnMouseMove and OnButtonUp keep track of the
line as it is being constructed and perform rubber banding.

LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled){

m_StartPoint.x = LOWORD(lParam);
m_StartPoint.y = HIWORD(lParam);

52

WTL Developer’s Guide

m_CurrentPoint.x = LOWORD(lParam)+20;
m_CurrentPoint.y = HIWORD(lParam)+20;
HDC hdc = ::GetDC(m_hWnd);
SetROP2(hdc, R2_NOT);
MoveToEx(hdc, m_StartPoint.x, m_StartPoint.y, NULL);
LineTo(hdc, m_CurrentPoint.x, m_CurrentPoint.y);
m_bAddingLine = true;
::ReleaseDc(m_hWnd, hdc);
return 0;

}
LRESULT OnMouseMove(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
if (m_bAddingLine){

HDC hdc = ::GetDC(m_hWnd);
SetROP2(hdc, R2_NOT);
// First erase last line drawn
MoveToEx(hdc, m_StartPoint.x, m_StartPoint.y,NULL);
LineTo(hdc, m_CurrentPoint.x, m_CurrentPoint.y);
// Update curent point
m_CurrentPoint.x = LOWORD(lParam);
m_CurrentPoint.y = HIWORD(lParam);
// Draw new line
MoveToEx(hdc, m_StartPoint.x, m_StartPoint.y,NULL);
LineTo(hdc, m_CurrentPoint.x, m_CurrentPoint.y);

::ReleaseDc(m_hWnd, hdc);
}

return 0;
}
LRESULT OnLButtonUp(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
HDC hdc = ::GetDC(m_hWnd);
SetROP2(hdc, R2_NOT);
// First erase last line drawn
MoveToEx(hdc, m_StartPoint.x, m_StartPoint.y, NULL);
LineTo(hdc, m_CurrentPoint.x, m_CurrentPoint.y);
// Reset drawing mode to black
SetROP2(hdc, R2_BLACK);
m_bAddingLine = false;
// Add points to array
m_CurrentPoint.x = LOWORD(lParam);
m_CurrentPoint.y = HIWORD(lParam);
m_pointList.Add(m_StartPoint);
m_pointList.Add(m_CurrentPoint);
// Draw newly added line
MoveToEx(hdc, m_StartPoint.x, m_StartPoint.y, NULL);
LineTo(hdc, m_CurrentPoint.x, m_CurrentPoint.y);
::ReleaseDc(m_hWnd, hdc);
return 0;

}

53

WTL Developer’s Guide

The OnPaint member function is called whenever the picture in the window needs to
be refreshed. It simply runs through the list of points, and for each pair moves to the
first and calls LineTo to the second.

LRESULT OnPaint(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled)

{
PAINTSTRUCT ps;
HDC hdc = (wParam != NULL) ?

reinterpret_cast<HDC>(wParam) :
::BeginPaint(m_hWnd, &ps);

int numLines = m_pointList.GetSize() / 2;
int counter=0;
while (counter< numLines)
{

POINT ptbegin = m_pointList[counter*2];
POINT ptend = m_pointList[counter*2+1];
MoveToEx(hdc, ptbegin.x, ptbegin.y, NULL);
LineTo(hdc, ptend.x, ptend.y);
counter++;

}
if (wParam == NULL)

::EndPaint(m_hWnd, &ps);
return 0;

}
};
To instantiate your new class add this line to your WinMain:

CMyATLWindow wnd;

Command and Notification Handlers
In general ATL does not “crack” messages for us (WTL does!), but ATL does offer
some special help for commands (WM_COMMAND) and notifications (WM_NOTIFY).
Commands are sent to parent windows when, for example, menu items in the window
menu are selected or child pushbuttons are pressed. Notifications are used by the
common controls to inform the application in details about what is happening with
these controls.

You write your command handlers as follows:

LRESULT CommandHandler(WORD wNotifyCode, WORD wID,
HWND hWndCtl, BOOL& bHandled);

Note that here ATL does break out the notification code and the command id.

ATL provides four macros to support commands. Each macro tests that the uMsg field
is set to WM_COMMAND and another condition, and if so it calls the final parameter,
which is your command handler. The “other condition” is what distinguishes the four
macros from each other.

#define COMMAND_HANDLER(id, code, func) \
if(uMsg == WM_COMMAND && id == LOWORD(wParam)

&& code == HIWORD(wParam)) { \
bHandled = TRUE; \
lResult = func(HIWORD(wParam), LOWORD(wParam),

54

WTL Developer’s Guide

(HWND)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

COMMAND_HANDLER maps a control id and notification to a command handler.

#define COMMAND_ID_HANDLER(id, func) \
if(uMsg == WM_COMMAND && id == LOWORD(wParam)) { \

bHandled = TRUE; \
lResult = func(HIWORD(wParam), LOWORD(wParam),

(HWND)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

COMMAND_ID_HANDLER maps the control id only.

#define COMMAND_CODE_HANDLER(code, func) \
if(uMsg == WM_COMMAND && code == HIWORD(wParam)) { \

bHandled = TRUE; \
lResult = func(HIWORD(wParam), LOWORD(wParam),

(HWND)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

COMMAND_CODE_HANDLER maps the notification code only.

#define COMMAND_RANGE_HANDLER(idFirst, idLast, func) \
if(uMsg == WM_COMMAND && LOWORD(wParam) >= idFirst

&& LOWORD(wParam) <= idLast) { \
bHandled = TRUE; \
lResult = func(HIWORD(wParam), LOWORD(wParam),

(HWND)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}
COMMAND_RANGE_HANDLER maps a range of control ids.

Notifications are normally used by the common controls to tell their parent of
significant events. The prototype for notification handlers is as follows:

LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL& bHandled);
Note that the third parameter is of type pointer to NMHDR. Depending on the control
involved, this can be cast to a larger control-specific header. For example, the
DateTimePicker notification header would be:

typedef struct tagNMDATETIMECHANGE {
NMHDR nmhdr;
DWORD dwFlags;
SYSTEMTIME st;
} NMDATETIMECHANGE;
As the first field it NMHDR if can safely be accessed through a pointer to NMHDR and if
such a pointer were cast to a pointer to NMDATETIMECHANGE, the other fields could
be accessed. Hence very rich information can be supplied to the application. The four
notification macros are similar to the command macros, in that the first checks for a
control id and a notification code, a control id only, a notification only and a range of
control ids.

#define NOTIFY_HANDLER(id, cd, func) \
if(uMsg == WM_NOTIFY && id == ((LPNMHDR)lParam)->idFrom && cd ==

55

WTL Developer’s Guide

((LPNMHDR)lParam)->code) { \
bHandled = TRUE; \

lResult = func((int)wParam, (LPNMHDR)lParam, bHandled); \
if(bHandled) return TRUE; \

}
#define NOTIFY_ID_HANDLER(id, func) \

if(uMsg == WM_NOTIFY && id == ((LPNMHDR)lParam)->idFrom) { \
bHandled = TRUE; \
lResult = func((int)wParam, (LPNMHDR)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

#define NOTIFY_CODE_HANDLER(cd, func) \
if(uMsg == WM_NOTIFY && cd == ((LPNMHDR)lParam)->code) { \

bHandled = TRUE; \
lResult = func((int)wParam, (LPNMHDR)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

#define NOTIFY_RANGE_HANDLER(idFirst, idLast, func) \
if(uMsg == WM_NOTIFY && ((LPNMHDR)lParam)->idFrom >= idFirst &&

((LPNMHDR)lParam)->idFrom <= idLast) { \
bHandled = TRUE; \
lResult = func((int)wParam, (LPNMHDR)lParam, bHandled); \
if(bHandled) \

return TRUE; \
}

Sample : ATLCommandsAndNotifications
The ATLCommandsAndNotifications project demonstrates the use of command and
notification handlers. It uses a menu to generate the commands and a tree view to
generate the notifications.

class CMyCommandAndNotifWindow : public CWindowImpl<
CMyCommandAndNotifWindow, CWindow,
CWinTraits < WS_CAPTION | WS_POPUPWINDOW | WS_VISIBLE, 0> >{
public:

CWindow m_ctlTreeview;
CMyCommandAndNotifWindow (){
RECT r={0, 0, 510, 510};
HMENU hMenu = LoadMenu(_Module.GetResourceInstance(),

 MAKEINTRESOURCE(IDR_MY_MENU));
Create(0, r,
 TEXT("ATL Command and Notification Demo"),0,0,(UINT)hMenu);

RECT rc={20,20,150,300};
m_ctlTreeview.Create(WC_TREEVIEW, m_hWnd, &rc,

TEXT("CWindow Demo"),
WS_CHILD | WS_VISIBLE | TVS_HASLINES | TVS_LINESATROOT);

RECT rc1={200,20,500,50};
TV_INSERTSTRUCT TreeCtrlItem;
TreeCtrlItem.hInsertAfter = TVI_LAST;
TreeCtrlItem.item.mask = TVIF_TEXT | TVIF_PARAM;
TreeCtrlItem.item.pszText = "First Entry";
TreeCtrlItem.item.lParam = 0;
TreeCtrlItem.hParent = TVI_ROOT;
m_ctlTreeview.SendMessage(TVM_INSERTITEM, 0,

(LPARAM)&TreeCtrlItem);

56

WTL Developer’s Guide

TreeCtrlItem.item.pszText = "Second Entry";
TreeCtrlItem.hParent = TVI_ROOT;
m_ctlTreeview.SendMessage(TVM_INSERTITEM, 0,

 (LPARAM)&TreeCtrlItem);
}
BEGIN_MSG_MAP(CMyCommandAndNotifWindow)

COMMAND_ID_HANDLER(ID_BEEP, OnBeep)
COMMAND_ID_HANDLER(ID_RELOCATE, OnRelocate)
NOTIFY_CODE_HANDLER(TVN_SELCHANGED, OnSelChange)

END_MSG_MAP()
Simple implementations of the handlers are provided to verify that they are executed.
The OnBeep handler calls the Win32 Beep API, the OnRelocate handler calls
CWindow::MoveWindow to reposition the window and the OnSelChange handler
outputs some debug text to show that the notification has been received.

LRESULT OnBeep(WORD wNotifyCode, WORD wID, HWND hWndCtl,
BOOL& bHandled){

OutputDebugString("OnBeep called\n");
Beep(100,100);
return 0;

}
LRESULT OnRelocate(WORD wNotifyCode, WORD wID, HWND hWndCtl,

BOOL& bHandled){
OutputDebugString("OnRelocate called\n");
MoveWindow(200, 200, 600, 600, TRUE);
return 0;

}

Message Map Chaining
One of the great features of the MFC architecture is the way command and message
routing occurs. The class representing the window in which a message is received need
not be the one that handles that message. It is possible to forward to message to another
class, which might be better suited. With MFC much of this is done automatically.

ATL offers similar functionality and it is known as message map chaining. A number of
macros are provided and these can be inserted manually as appropriate. ATL provides
five macros and one C++ class (CDynamicChain) that are used to allow
implementers to flexibly route messages to different classes.

CHAIN_MSG_MAP and CHAIN_MSG_MAP_ALT redirect messages from a derived
class to be processed in the message map of a parent class. CHAIN_MSG_MAP redirects
the message to the parent’s default message map, and CHAIN_MSG_MAP_ALT
(<number>) redirects messages to the alternate message map identified by the
number parameter. Be clear that CHAIN_MSG_MAP should appear in the derived class’
message map, and the parameter to the macro, theChainClass, must be a base
class.

#define CHAIN_MSG_MAP(theChainClass) { \
if(theChainClass::ProcessWindowMessage(hWnd, uMsg,\

 wParam, lParam, lResult)) \
return TRUE; \

}

57

WTL Developer’s Guide

#define CHAIN_MSG_MAP_ALT(theChainClass, msgMapID) { \
if(theChainClass::ProcessWindowMessage(hWnd, uMsg,\
 wParam, lParam, lResult, msgMapID)) \

return TRUE; \
}

CHAIN_MSG_MAP_MEMBER and CHAIN_MSG_MAP_ALT_MEMBER are used when a
class wishes to redirect incoming messages to another class that is a data member of it.
(This other class must itself implement ProcessWindowMessage).

CHAIN_MSG_MAP_MEMBER redirects to the default message map whereas
CHAIN_MSG_MAP_ALT_MEMBER(<number>) redirects to the specified alternate.

#define CHAIN_MSG_MAP_MEMBER(theChainMember) { \
if(theChainMember.ProcessWindowMessage(hWnd, uMsg,\

 wParam, lParam, lResult)) \
return TRUE; \

}
#define CHAIN_MSG_MAP_ALT_MEMBER(theChainMember,msgMapID){\

if(theChainMember.ProcessWindowMessage(hWnd, uMsg,\
wParam, lParam, lResult, msgMapID)) \
return TRUE; \

}
With these four chaining macros there must be either an inheritance or a containment
relationship between the classes. What happens if we wish to direct messages between
classes that are not related, or if we wish to change the destination class on the fly? This
is supported through the use of dynamic chaining, which uses the CHAIN_MSG_MAP
macro and the CDynamicChain class.

#define CHAIN_MSG_MAP_DYNAMIC(dynaChainID) { \
if(CDynamicChain::CallChain(dynaChainID, hWnd, uMsg,\
 wParam, lParam, lResult)) \

return TRUE; \
}

CDynamicChain is a simple class that manages an array of mapping from a chain id
(an integer identifier) to a pointer to a CMessageMap and a map id (which will be 0 if
the default map is to be used, or a greater number if an alternate map should be used).
Entries can be added to the array using CDynamicChain::SetChainEntry and
removed with CDynamicChain::RemoveChainEntry. The
CDynamicChain::CallChain finds the CMessageMap object associated with a
chain id, and calls its ProcessWindowMessage function.

The class you write which is to receive the redirected message must be derived from
CMessageMap and have its own message map. The class you write which receives the
message must be derived from CDynamicChain and must call
CDynamicChain::SetChainEntry passing in the recipient class and a chain id.

Then when CHAIN_MSG_MAP_DYNAMIC is used in the message map, the chain id is
used to lookup the CDynamicChain array and the ProcessWindowMessage
function called in the appropriate recipient.

Sample: WindowMessageChaining
The WindowMessageChaining project explores the use of ATL message map chaining.

58

WTL Developer’s Guide

Base class chaining is performed by creating two classes, CMyBaseWindow and
derived from it, CMyDerivedWindow. Both implement messages maps – usually
these would contain different messages but to clearly indicate which piece of code
handles the message, we have both of them handling WM_LBUTTONDOWN, and the
handler for this prints out a string to the output window (when you are running it in the
debugger).

The message map for the derived class contains two entries, one specifying a base
chaining to the base class, and the other specifies a normal message handler. When the
derived class receives a WM_LBUTTONDOWN message, whichever of these entries
comes first will get to process it, so if CHAIN_MSG_MAP(CMyBaseWindow) is first
the output window shows "CMyBaseWindow::OnLButtonDown called” whereas if the
MESSAGE_HANDLER (WM_LBUTTONDOWN, OnLButtonDown) entry came first
the output window would show “CMyDerivedWindow::OnLButtonDown called".

class CMyBaseWindow : public CWindowImpl< CMyBaseWindow ,
 CWindow, CWinTraits <WS_CAPTION|WS_POPUPWINDOW|WS_VISIBLE, 0>>{
public:

BEGIN_MSG_MAP(CMyBaseWindow)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
OutputDebugString(TEXT(

"CMyBaseWindow::OnLButtonDown called\n"));
return 0;

}
};
class CMyDerivedWindow : public CmyBaseWindow {
public:

BEGIN_MSG_MAP(CMyDerivedWindow)
CHAIN_MSG_MAP(CMyBaseWindow)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
 OutputDebugString(TEXT(

"CMyDerivedWindow::OnLButtonDown called\n"));
return 0;
}

};
Chaining to a contained class member is performed using the CMyContainedClass
and CMyContainerWindow classes. CMyContainedClass derives from
CMessageMap, and its map detects WM_LBUTTONDOWN and the handler prints out a
string for this. CMyContainerWindow is a normal window and as a data member
has an instance of CMyContainedClass. It its message map it calls
CHAIN_MSG_MAP_MEMBER. When CMyContainerWindow is instantiated and the
mouse button clicks in the window, the string “CMyContainedClass::OnLButtonDown
called” is output.

class CMyContainedClass : public CMessageMap {
public:

59

WTL Developer’s Guide

BEGIN_MSG_MAP(CMyContainedClass)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam,

BOOL& bHandled){
OutputDebugString(TEXT(

"CMyContainedClass::OnLButtonDown called\n"));
return 0;

}
};
class CMyContainerWindow : public CWindowImpl< CMyContainerWindow ,
CWindow,

CWinTraits < WS_CAPTION | WS_POPUPWINDOW | WS_VISIBLE, 0> >
{
public:

CMyContainedClass contained;
BEGIN_MSG_MAP(CMyContainerWindow)
CHAIN_MSG_MAP_MEMBER(contained)
END_MSG_MAP()

LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled){

OutputDebugString(TEXT(
"CMyContainerWindow::OnLButtonDown called\n"));

return 0;
}

};
Dynamic chaining is shown using the classes CMyDestinationClass (which is
derived from CMessageMap) and CMySourceWindow (which is derived from
CDynamicChain). These two classes are not related by inheritance or containment, as
with the other chaining techniques. To set up the connection between instances of the
classes, the following code is added (e.g. in WinMain)

CMySourceWindow wnd3;
CMyDestinationClass DynamicDestination;
wnd3.SetChainEntry(1, &DynamicDestination, 0);

Note that the first parameter to SetChainEntry is the chain id – and if multiple calls
are may to SetChainEntry with the same id then the latter call replaces the previous
setting. The third parameter is the message map id, 0 for the default or a higher number
for alternates. If you use a higher number and no alternate of that number exists, an
ASSERT fails within the ATL code.

The implementation of the CMyDestinationClass consists of a message map that
detects WM_LBUTTONDOWN and the handler that outputs a string when it is detected.

class CMyDestinationClass : public CMessageMap {
public:

BEGIN_MSG_MAP(CMyDestinationClass)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
END_MSG_MAP()

LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled){

60

WTL Developer’s Guide

 OutputDebugString(TEXT(
"CMyDestinationClass::OnLButtonDown called\n"));

 return 0;
}

};
The implementation of CMySourceWindow contains a message map which dynamic
chains chainID 1. Its OnLButtonDown is never called.

class CMySourceWindow : public CWindowImpl< CMySourceWindow,
 CWindow, CWinTraits <WS_CAPTION|WS_POPUPWINDOW|WS_VISIBLE,0>>,
 public CDynamicChain {
public:

BEGIN_MSG_MAP(CMySourceWindow)
CHAIN_MSG_MAP_DYNAMIC (1)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled){

OutputDebugString(TEXT(
"CMySourceWindow::OnLButtonDown called\n"));

return 0;
}

};
When this code is run and the mouse clicked in the window the output is
CMyDestinationClass::OnLButtonDown called, which shows that the chaining has
worked.

Subclassing and Superclassing
CWindowImpl supports superclassing and instance subclassing.

To superclass a window you use the DECLARE_WND_SUPERCLASS instead of
DECLARE_WND_CLASS to define the class information.
DECLARE_WND_SUPERCLASS takes two class names as parameters – the name of the
new class, and the name of an existing class. During class registration (which is
initiated in CWindowImpl::Create) the class information for the existing class is
accessed, and its window procedure recorded in the data member
CWindowImplBaseT::m_pfnSuperWindowProc.

Later, when messages are being processed, if a particular message has no entry in the
message map it is forwarded to the
CWindowImplBaseT::m_pfnSuperWindowProc for processing by the base
class.

Subclassing of an existing window is performed in CWindowImplBaseT::
SubclassWindow(HWND hWnd), where the HWND parameter represents the
window to be subclassed. A CWindowImpl expects to manage a single HWND, so
either SubclassWindow (which uses an existing window) or Create (which
creates a new one without subclassing) should be called, but it is an error to call both.
The implementation of SubclassWindow calls SetWindowLong(hWnd,
GWL_WNDPROC) to replace the window procedure in use for the existing window. The
old window procedure is returned, and this is stored in

61

WTL Developer’s Guide

CWindowImplBaseT::m_pfnSuperWindowProc , and is called if messages are
not processed by our message map.

ATL does not support global subclassing (a search of the ATL source tree for
SetClassLongPtr or SetClassLong finds no matches).

Sample: SubClassAndSuperClass
The SubclassAndSuperclass project experiments with superclassing and subclassing in
ATL. The CMySuperWindow class superclasses the BUTTON control. It detects
WM_LBUTTONDOWN messages and prints out a string when they arrive.

class CMySuperWindow : public CWindowImpl< CMySuperWindow ,
CWindow,CWinTraits<WS_CAPTION|WS_POPUPWINDOW | WS_VISIBLE, 0> >{
public:

DECLARE_WND_SUPERCLASS ("MySuperWindow", "BUTTON")
CMySuperWindow (){

RECT r={0, 0, 510, 510};
Create(0, r, TEXT("MY SUPERCLASSED WINDOW"));

}
BEGIN_MSG_MAP(CMySuperWindow)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
OutputDebugString(TEXT(

"CMySuperWindow::OnLButtonDown called\n"));
return 0;

}
};
To show subclassing we first have to have an existing window. For this we write
CMyChildWindow. Note that it detects WM_LBUTTONDOWN and WM_LBUTTONUP
messages. Also note that its constructor calls Create, to really create a new window,
whose parent is a HWND we pass in.

class CMyChildWindow : public CWindowImpl< CMyChildWindow , CWindow,
CWinTraits < WS_CHILD | WS_VISIBLE, 0> >{
public:

CMyChildWindow (HWND hParent){
RECT r={20, 20, 150, 150};
Create(hParent, r, TEXT("MY CHILD WINDOW"));

}
BEGIN_MSG_MAP(CMyChildWindow)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
MESSAGE_HANDLER(WM_LBUTTONUP, OnLButtonUp)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
OutputDebugString(TEXT(

"CMyChildWindow::OnLButtonDown called\n"));
return 0;

}

62

WTL Developer’s Guide

LRESULT OnLButtonUp(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled){

OutputDebugString(TEXT(
"CMyChildWindow::OnLButtonUp called\n"));

return 0;
}

};
To subclass CMyWindow we write another class called CMySubClassedWindow. In
its constructor it takes in a HWND and calls SubclassWindow to subclass the window
identified by the HWND parameter. The message map for CMySubClassedWindow
detects the WM_LBUTTONDOWN message.

class CMySubclassedWindow : public CWindowImpl< CMySubclassedWindow ,
CWindow, CWinTraits < WS_CHILD | WS_VISIBLE, 0> >{
public:

CMySubclassedWindow (HWND hSubclassThisWindow){
RECT r={20, 20, 150, 150};
SubclassWindow(hSubclassThisWindow);

}
BEGIN_MSG_MAP(CMySubclassedWindow)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
END_MSG_MAP()
LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
OutputDebugString(TEXT(

"CMySubclassedWindow::OnLButtonDown called\n"));
return 0;

}
};
To use both these classes we need to add the following (e.g. in WinMain):

CMyChildWindow wnd1(hWnd);
CMySubclassedWindow wnd2(wnd1.m_hWnd);

We first instantiate CMyChildWindow and then we subclass it in
CMySubclassedWindow. Now when we run this program and press the mouse
button down and up in the window, the output is:

CMySubclassedWindow::OnLButtonDown called
CMyChildWindow::OnLButtonUp called

Which is what we expect.

CContainedWindow
When you wish to process messages concerning a child window in the message map of
a parent window, you can use CContainedWindow. You may either create the
window within CContainedWindow or subclass an existing window. When
initializing the contained window you must specify an object that implements
CMessageMap and which will act as the parent window. You must also specify an
alternative message map id, which will be used when passing child messages to the
parent.

63

WTL Developer’s Guide

When using CContainedWindow you do not derive a class from it, rather you create
a data member of type CContainedWindow in another class (usually the parent
class), and then you initialize the data member and call Create (which super-classes the
window) or SubclassWindow.

To initialize a CContainedWindow, you call Create. CContainedWindow has
a number of constructors and a number of Create functions with different signatures.
It is important that you use a combination of one of each that supplies a pointer to the
parent object which implements CMessageMap, the class name of the contained
window and the alternate message map id.

Sample: ContainedWindowSample
The ContainedWindowSample shows the use of CContainedWindow. It creates two
instances of CContainedWindow, one using superclassing and the other using
subclassing. Both redirect their messages to their parent’s message map, but to different
map ids.

class CMyWindow : public CWindowImpl< CMyWindow , CWindow,
CWinTraits < WS_CAPTION | WS_POPUPWINDOW | WS_VISIBLE,

WS_EX_WINDOWEDGE> > {
public:

HWND m_hToSubclassAsContainedWindow;
CMyWindow (HWND hToSubclassAsContainedWindow)
 :Subclassed(this, 2){

RECT r={0, 0, 510, 510};
m_hToSubclassAsContainedWindow =

hToSubclassAsContainedWindow;
Create(0, r, TEXT("MY WINDOW"));

}
CContainedWindow SuperClassed;
CContainedWindow Subclassed;
BEGIN_MSG_MAP(CMyWindow)
MESSAGE_HANDLER(WM_CREATE, OnCreate)
ALT_MSG_MAP(1)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDownSuperClassed)
ALT_MSG_MAP(2)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDownSubclassed)
END_MSG_MAP()
LRESULT OnLButtonDownSuperClassed(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled) {
OutputDebugString(TEXT(
 "CMyWindow::OnLButtonDown called for superclassed\n"));
return 0;

}
LRESULT OnLButtonDownSubclassed(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled) {
OutputDebugString(TEXT(
 "CMyWindow::OnLButtonDown called for subclassed\n"));
return 0;

}
LRESULT OnCreate(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){

64

WTL Developer’s Guide

RECT r={50, 50, 210, 210};
OutputDebugString("OnCreate\n");
SuperClassed.Create("edit", this, 1, m_hWnd, &r);

Subclassed.SubclassWindow(
m_hToSubclassAsContainedWindow);

return 0;
}

};

Higher-level UI
It is possible to build more sophisticated functionality above the ATL windowing
foundation. Potential areas of interest could be splitter windows, command bars,
hyperlink functionality or advanced controls such as bitmap buttons.

ATL does provide you with all the facilities to build such UI constructs. We will now
briefly look at one sample, to show it is possible. But the question must be asked - why
bother with this extra effort? WTL provides this type of functionality in a well-thought
out library of templates, and hence instead of coding such UI yourself, it would be
much better to use WTL directly.

Sample: ATLSplitter

The ATLSplitter sample shows how a splitter window could be implemented. It
consists of two windows, a workspace window, and as a child, a splitter, which is used
to divide the workspace.

The project contains a splitter class that has methods to react to button down and up
events and mouse menus, similar to what we saw in the ATLWithCWindowImpl
sample.

class CMySplitter : public CWindowImpl< CMySplitter, CWindow,
CWinTraits < WS_CHILD | WS_VISIBLE> >

{
public:

enum Orientation {
ORIENTATION_VERT,
ORIENTATION_HORIZ

};
private:

RECT m_rcLocation; // dimensions of splitter itself
RECT m_rcBoundingBox;// dimensions of workspace being split

65

WTL Developer’s Guide

int m_CenterPoint; // offset from 0 in parent's
// co-ordinates for center of splitter

Orientation m_Orientation;// whether splitter is vert or horiz
HWND m_hParentWnd; // Handle to parent window
bool m_bBeingMoved; // Are we in the middle of a move

// WM_MOUSEMOVE handling is only done
// when true

int m_parentCoord; // Location within parent of splitter

public:

BEGIN_MSG_MAP(CMySplitter)
MESSAGE_HANDLER(WM_PAINT, OnPaint)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
MESSAGE_HANDLER(WM_LBUTTONUP, OnLButtonUp)
MESSAGE_HANDLER(WM_MOUSEMOVE, OnMouseMove)
END_MSG_MAP()
. . .

};
The workspace class contains one instance of the splitter class and must initialize it to
the correct dimensions.

CMySplitter m_VerticalSplitter;
. . .

m_VerticalSplitter.Init(m_hWnd,CMySplitter::ORIENTATION_VERT,
200, rcBoundingBox);

When the workspace is resized, it must inform the splitter.

LRESULT OnSize(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled){

int ClientAreaWidth = LOWORD(lParam);
int ClientAreaHeight = HIWORD(lParam);
if (m_VerticalSplitter.IsWindowVisible()) {

RECT rcBoundingBox;
GetClientRect(&rcBoundingBox);
m_VerticalSplitter.SetBoundingBox(rcBoundingBox);
m_VerticalSplitter.GetFirstPane(rcBoundingBox);

// here would need to update contents of workspace
}

return 0;
}

Dialog Boxes
In addition to providing classes that manage windows, ATL also provides a range of
classes for dialog boxes. CDialogImpl is used to manage dialog boxes and just like
with CWindowImpl, you must derived your class from it manually. You must also
manually create a dialog template using Developer Studio’s ResourceView. The ATL
Object Wizard lets you create a class derived from CAxDialogImpl and
automatically adds a default dialog template for it. The difference between
CDialogImpl and CAxDialogImpl is that the latter supports ActiveX control

66

WTL Developer’s Guide

containment, which is an excellent feature if you plan to add ActiveX controls to the
dialog, but is unnecessary overhead (though not much) if not needed.

Once you have a class derived from one of the ATL dialog templates, you may add
message handlers to it and expand the message map, and edit the dialog templates with
ResourceView.

CSimpleDialog can be used where you need to construct a dialog based on a dialog
template, initialize fields within OnInitDialog, then display the dialog, react to
messages, and then handle OK and Cancel selections. CSimpleDialog has its own
predefined message map, in which the WM_INITDIALOG causes OnInitDialog to
be called, and either IDOK or IDCANCEL causes ::EndDialog to be executed. If
you wish to handle other message or commands you can either add your own message
map in your derived class or you can use CDialogImpl/CAxDialogImpl.

An important point to note if adding your message map to your derived class is that by
default the message map in CSimpleDialog itself will then not be used – if you are
interested in detecting WM_INITDIALOG, IDOK or IDCANCEL, you must either add
appropriate entries to your message map or chain the one in CSimpleDialog.
CDialogImpl is available for more sophisticated needs. It does not have a default
message map.

Sample : SimpleModalAndModeless
This project shows how to use CSimpleDialog, and in both modal and modeless
forms how to use CDialogImpl.

The MySimpleDialog class is derived from CSimpleDialog and contains its own
message map. It has a checkbox that in OnInitDialog is initialized to true, and in
OnOk the current value is retrieved.

class MySimpleDialog : public CSimpleDialog<IDD_SIMPLE_DIALOG>{
public:

MySimpleDialog(): m_bButton(BST_CHECKED){}
BEGIN_MSG_MAP(CMainDialog)
COMMAND_ID_HANDLER(IDOK, OnOk)
COMMAND_ID_HANDLER(IDCANCEL, OnCloseCmd)
MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
END_MSG_MAP()
UINT m_bButton;
LRESULT OnInitDialog(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
CheckDlgButton(IDC_SIMPLE_CHECKBOX, m_bButton);
return 0;

}
LRESULT OnOk(WORD wNotifyCode, WORD wID, HWND hWndCtl,

BOOL& bHandled){
m_bButton = IsDlgButtonChecked(IDC_SIMPLE_CHECKBOX);
OnCloseCmd(wNotifyCode, wID, hWndCtl, bHandled);
return 0;

}

67

WTL Developer’s Guide

};
This dialog is displayed with the following calls:

MySimpleDialog dlg;
dlg.DoModal();

Note that the windows for the controls in the dialog do not exist immediately after the
dialog’s C++ class is constructed – we do get a chance to change them
programmatically in OnInitDialog, which is called after they are created but before
the dialog is rendered on screen.

The MyModalDialog is a modal dialog, whose main feature is a pushbutton, which
when pressed relocates itself!

class MyModalDialog : public CDialogImpl<MyModalDialog>{
public:

MyModalDialog(){}
enum {IDD=IDD_MODAL_DIALOG};
BEGIN_MSG_MAP(MyModalDialog)
COMMAND_ID_HANDLER(IDOK, OnOk)
COMMAND_ID_HANDLER(IDC_CTL_RELOCATE_BUTTON, OnRelocate)
END_MSG_MAP()
LRESULT OnRelocate(WORD wNotifyCode, WORD wID,

HWND hWndCtl, BOOL& bHandled){
RECT r;
CWindow wnd(GetDlgItem(IDC_CTL_RELOCATE_BUTTON));
wnd.GetWindowRect(&r);
r.left +=1;r.top+=1;r.right +=1;r.bottom+=1;
wnd.MoveWindow(&r, TRUE);
return 0;

}
LRESULT OnOk(WORD wNotifyCode, WORD wID, HWND hWndCtl,

BOOL& bHandled) {
EndDialog(IDOK);
return 0;

}
};
This dialog is displayed with the following calls:

MyModalDialog dlg;
dlg.DoModal();

The MyModelessDialog is a modeless dialog which is implemented as follows:

#define WM_MODELESSCHILD_DESTROYED WM_USER+1
class MyModelessDialog : public CDialogImpl<MyModelessDialog>{

public:
CWindow m_ParentWnd;
MyModelessDialog(){}
enum {IDD=IDD_MODELESS_DIALOG};

BEGIN_MSG_MAP(MyModelessDialog)
COMMAND_ID_HANDLER(IDOK, OnOk)
COMMAND_ID_HANDLER(IDCANCEL, OnCancel)
END_MSG_MAP()

68

WTL Developer’s Guide

LRESULT OnOk(WORD wNotifyCode, WORD wID, HWND hWndCtl,
BOOL& bHandled){

m_ParentWnd = GetParent();
DestroyWindow();
return 0;

}
LRESULT OnCancel(WORD wNotifyCode, WORD wID, HWND hWndCtl,

 BOOL& bHandled){
m_ParentWnd = GetParent();
DestroyWindow();
return 0;

}
void OnFinalMessage(HWND hWnd){

m_ParentWnd.PostMessage(WM_MODELESSCHILD_DESTROYED,0,0);
}

};
One issue that requires some application-specific design is how to destroy modeless
dialogs – both the window and the C++ class which represents it.

The modeless dialog itself can detect when it should disappear – when the user clicks in
the OK or Cancel buttons, or the Close button in the window frame (the “X” in the top
right corner of the window). Some developers have the class which created the
modeless dialog (e.g. the main application window class / mainframe) maintain a data
member which stores an instance of a modeless dialog class. The lifetime of this
instance mirrors the lifetime of the entire application – its visibility is turned on or off
as appropriate. This technique works fine and is often highly suitable.

Other developers wish to maintain an instance of a modeless dialog class only so long
at its window is displayed. Once its window is dismissed they wish both the window
and the C++ class instance to be destroyed. The modeless dialog itself can detect when
to disappear – and its OnOK or OnCancel methods can call DestroyWindow. This
will destroy the on-screen window, but the instance of the C++ class is still in memory.
If delete is called on it in OnOK or OnCancel it will crash – as the instance is not
finished processing. Instead, the piece of code that created the modeless dialog class
instance should be told to destroy it, using a custom window message. A good place to
put this is inside OnFinalMessage. The only problem here is to get the parent
window’s handle. By the time OnFinalMessage is called the window of the
modeless dialog is destroyed, so it we called GetParent directly there it would fail.
Therefore we call it elsewhere, and use a member variable to store the value, and we
use this value in OnFinalMessage. The final task is to detect the custom message
arriving in the parent and react appropriately. The following code shows how the parent
creates and destroyed the modeless dialog class.

BEGIN_MSG_MAP(CMainDialog)
COMMAND_ID_HANDLER(ID_SHOW_MODELESS, OnShowModeless)
MESSAGE_HANDLER(WM_MODELESSCHILD_DESTROYED, OnDestroyModeless)
END_MSG_MAP()
LRESULT OnShowModeless(WORD wNotifyCode, WORD wID,

HWND hWndCtl, BOOL& bHandled){
if (!m_dlgModeless){

m_dlgModeless=new (MyModelessDialog);

69

WTL Developer’s Guide

m_dlgModeless->Create(m_hWnd);
m_dlgModeless->ShowWindow(SW_SHOW);

}
return 0;

}
LRESULT OnDestroyModeless(UINT uMsg, WPARAM wParam,

LPARAM lParam, BOOL& bHandled){
if (m_dlgModeless){
OutputDebugString(TEXT("Destroying modeless class\n"));
delete m_dlgModeless;
m_dlgModeless=NULL;

}
return 0;

}

Windowing for ActiveX Controls
ATL provides good support for ActiveX control development and client containment.
Here we will examine a number of windowing issues related to ActiveX controls from
an ATL perspective.

Windowed or Windowless Controls
When creating ActiveX controls within ATL Object Wizard, in the Miscellaneous tab
there is an option called “Windowed Only”. By default, this checkbox is unselected.

In the past every ActiveX control had its own window, which became a child window
of the container (e.g. dialog box) in which the ActiveX control was placed. When one
or two controls were used, this was not a problem. When fifty controls were used, it
was noticeably slower. The idea behind windowless controls is that the control does not
have its own window; rather it lives within the window of its container, which improves
performance. Some containers mandate that the control have its own window, and some
will allow the control not to. Hence even a control that is capable of being windowless
might not always be created without a window. If the “Windowed Only” checkbox is
selected in the ObjectWizard, then the control will definitely be created with a window.
Some controls might have specific requirements that mandate this. In the generated
code, it results in this line being added to the control class’ constructor:

m_bWindowOnly = TRUE;
In the ATL templates, this variable is used inside a member function called
CComControlBase::InPlaceActivate, where it results in
CComControl::CreateControlWindow being called, which calls
CWindow::Create. The main class in your ATL ActiveX project will derive from
ATL’s CComControl, which in turn derives from ATL’s CComControlBase.

70

WTL Developer’s Guide

Basing an ActiveX Control on a Standard or Common Control
In addition to being based on a generic window (which needs to be rendered in
OnDraw), an ATL ActiveX control may also be based or an existing Standard or
common control. The Miscellaneous tab also has an Add control based on: combo-box.
This contains a list of some standard and common controls and one of them may be
chosen or another name entered. Note that if the selection in this combo-box is not
empty then the Windowed Only option is disabled. The ATL ActiveX control will
superclass the standard or common control.

Assuming we superclass the listview, the effect this has on the generated code is that a
CContainedWindow variable is added and this is initialized in the constructor (note
the last parameter is the message map id of 1):

CContainedWindow m_ctlSysListView32;
CLISTVIEWDEMO() :m_ctlSysListView32(

_T("SysListView32"),this,1){
m_bWindowOnly = TRUE;

}
The message map has this entry removed:

DEFAULT_REFLECTION_HANDLER()
And these entries added:

ALT_MSG_MAP(1)
// Replace this with message map entries for

// superclassed SysListView32
END_MSG_MAP()
Messages that were destined for the listview are now sent to the parent, with a message
map id of 1. This alternative message map could be populated with message handlers
that we wish to control.

ActiveX Control Message Reflection
With parent-child relationships among windows, the child window based on a control
often sends notification messages to the parent, which the parent will detect in its
window procedure. The normal mechanism of communication from an ActiveX control
to its container is via ActiveX events. The ActiveX control fires these events and the

71

WTL Developer’s Guide

container traps them. As an ActiveX control could be used with a variety of containers,
it would be much better to handle messages related to the ActiveX control within the
control itself, and not in its parent, and also when the control has something significant
to tell the parent, to so this via ActiveX events.

This concept is supported through the use of message reflection. The parent will reflect
back to the child any window messages it receives regarding the child. The child will
process these in its own window procedure, and if needed fire ActiveX events.

The ActiveX control container provides message reflection. It is an optional feature – a
control can at runtime determine if it is being contained in a container that supports it
by examining the ambient property MessageReflect – if it is true then the feature is
supported. If it is not supported, then there are three options. Either the control is not
very functional, or the parent has to do a lot of control-specific work, or the control
could create an extra window of its own to sit between the parent and the main control
window (the control window’s immediate parent would be the intermediate window,
which is also owned by the control and messages sent to it from children would be
processed with the control itself.

To enable the control to determine that the messages have been reflected back from the
parent as opposed to being sent directly to the control, the value OCM_BASE is added to
the message id.

With ATL control containment, there is support for message reflection, using two
macros and two member function of CWindowImplRoot. The two macros may be
used in messages maps, and in their implementation simply call the equivalent member
function. REFLECT_NOTIFICATIONS is used in the parent window and it calls
ReflectNotifications in CWindowImplRoot, which adds OCM_BASE to
the message value and calls SendMessage to send it to the child window.

The DEFAULT_REFLECTION_HANDLER macro is used in the control and it calls
DefaultReflectionHandler in CWindowImplRoot, which removes the
added OCM_BASE from the message value and calls DefWindowProc.

Rendering within ActiveX Controls
If your ActiveX control is superclassing a Windows standard or common control,
normally you need to do nothing to redraw it. The control itself will refresh as needed.
You may influence what it draws by setting values on the Windows control, such as the
text to display. For other ActiveX controls, your code will be called by the control-
hosting infrastructure when the control needs to be redrawn.

If the control is windowed, CComBase detects the WM_PAINT message and calls
CComControlBase::OnDrawAdvanced, which finally calls your OnDraw
method, which you will need to supply. If the control is windowless, the container will
call IViewObject::Draw, which is implemented in ATL’s
CComControlBase::IViewObject_Draw; it then calls
CComControlBase::OnDrawAdvanced, which calls your OnDraw. It is passed a
structure of type ATL_DRAWINFO. The ATL ObjectWizard automatically generates
this default implementation of OnDraw:

72

WTL Developer’s Guide

HRESULT OnDraw(ATL_DRAWINFO& di){
RECT& rc = *(RECT*)di.prcBounds;
Rectangle(di.hdcDraw, rc.left, rc.top,

rc.right, rc.bottom);
SetTextAlign(di.hdcDraw, TA_CENTER|TA_BASELINE);
LPCTSTR pszText = _T("ATL 3.0 : FULL_CONTROL");
TextOut(di.hdcDraw,
 (rc.left + rc.right)/2, (rc.top + rc.bottom)/2,
 pszText, lstrlen(pszText));
return S_OK;

}
The two important fields in the ATLDRAWINFO structure are prcBounds, which is a
rectangle stating where to draw, and hdcDraw that is a device context, which can be
used to actually carry out the drawing.

Composite Controls
A composite control is an ActiveX control which can manage a dialog template that
contains standard and common controls, and other ActiveX controls. To the container, a
composite control behaves as a single ActiveX control. It is windowed. The ATL
template CComCompositeControl is the foundation for it.

 CComCompositeControl : public CComControl<T,CAxDialogImpl<T> >
Note that it uses CAxDialogImpl, which is also the foundation for normal dialog
boxes that can contain ActiveX controls. Composite controls can be used when you
need to supply somewhat more functionality than a single superclassed
standard/common control or a simple drawing control, yet less than a complete dialog
box. Think of them as pre-built blocks of functionality ready to slot in when needed.

HTML ActiveX Controls
ATL supports the creation of a type of ActiveX control known as an HTML control.
This control hosts the WebBrowser control from Internet Explorer. Naturally the client
application could host the web browser control directly, so it only makes sense creating
an HTML control if there is some “added-value” which is needed by the client, and you
do not wish to implement it directly within the client.

The HTML control generated by the ATL ObjectWizard by default renders an HTML
page that is stored as a resource (loaded from an external file during the build).

The control’s OnCreate method has this call:

HRESULT hr = wnd.CreateControl(IDH_MYHTMLCONTROL);

73

WTL Developer’s Guide

which is implemented inside ATL as:

HRESULT CAxWindows::CreateControl(DWORD dwResID,
 IStream* pStream=NULL, IUnknown** ppUnkContainer=NULL){

TCHAR szModule[_MAX_PATH];
GetModuleFileName(_Module.GetModuleInstance(),
szModule, _MAX_PATH);

CComBSTR bstrURL(OLESTR("res://"));
bstrURL.Append(szModule);
bstrURL.Append(OLESTR("/"));
TCHAR szResID[11];
wsprintf(szResID, _T("%0d"), dwResID);
bstrURL.Append(szResID);
ATLASSERT(::IsWindow(m_hWnd));
return AtlAxCreateControl(bstrURL, m_hWnd, pStream,
 ppUnkContainer);

}
The WebBrowser control understands a Windows specific protocol, called res:// in
addition to http:// and the other standard protocols. With res://, the data
following the protocol description contains the pathname to a DLL and a resource id of
an HTML page, which is located inside the resources of that DLL. If our control were
installed under C:\HtmlControlDemo.dll and the resource id of the HTML page were
102, then the full resource string would be:

res://C:\HtmlControlDemo.dll/102

ActiveX Control Containment
ATL provides a family of templates that support ActiveX control containment. The
naming convention is to use CAx as a prefix - e.g. CAxDialogImpl. To give an
indication of the complexity involved, the implementation of most of the ATL
functionality for control containment is in the atlhost.h file that is over 2,500 lines long.
Luckily most of the work is done for us, so as component and client developers we only
have to concern ourselves with the “added-value” of our solution. Note that ATL’s
control containment functionality works through the official ActiveX control COM
interfaces, and they totally disregard with which development environment the control
itself was created – VB, MFC, ATL or maybe even in low-level C. ATL control
containment works equally well with them all. No special tricks are performed if the
ActiveX control itself was also developed with ATL.

The AtlAxWin Window and CAxWindow / CAxHostWindow Templates
To contain ActiveX controls, an application must support a wide variety of COM
interfaces and a hosting window, which is used as the parent of the ActiveX control
window if it is windowed, and as the actual window for rendering if the ActiveX
control is windowless. In implementations of control containment with some other
development environments, the hosting window would be a top-level window or more
likely a dialog-box. With ATL, the hosting window is created specifically for each
hosted control, and this hosting window itself is usually a child of a dialog-box. It is an
intermediary between the ActiveX control and the dialog. This hosting window is of the

74

WTL Developer’s Guide

window class AtlAxWin. ATL provides the CAxHostWindow and CAxWindow
templates for client-side management of AtlAxWin windows.

If you place an ActiveX control inside a dialog, ATL control containment code will
automatically place AtlAxWin windows between the dialog and the ActiveX control.
This allows the ATL C++ templates, CAxHostWindow and CAxWindow, to manage
the AtlAxWin to handle most of the complex interaction with the ActiveX control,
leaving nothing or little for the client application developer to do.

For example, if you have a dialog box with three ActiveX controls, there will be an
ATL dialog box C++ class and its window, and three instances of C++ classes based on
CAxHostWindow and another three windows. In addition, if the ActiveX controls are
windowed-only, then there will be a further three windows, giving a total of seven
windows for this sample dialog. ATL control containment does support windowless
controls, so if the ActiveX controls being used also support windowless, only four
windows will be used for the dialog. If we assume the dialog has OK and Cancel
standard pushbuttons and three ActiveX controls, one of which is Windowed-Only, the
window hierarchy as displayed in SPY++ is:

Creating the Control
When CAxWindow is instantiated it creates the “AtlAxWin” window and then it
needs to internally use CoCreateInstance to instantiate a COM component, the
ActiveX control, and make it live within the “AtlAxWin” window. This cannot be
done until the “AtlAxWin” window actually exists. The easiest time to perform these
tasks (and what ATL actually does) is during the processing of WM_CREATE for
AtlAxWin.
The next question is which CLSID to use? The client code creating CAxWindow will
know and it somehow needs to pass this information into the handler for WM_CREATE.
Your first idea might be to use the LPCREATESTRUCT that is passed in to
CreateWindow. The client code can be written to instantiate CAxWindow directly,
but more often it instantiates a CAxDialogImpl, which is based on a dialog template
in the resources, which contains embedded ActiveX controls. The resource file will also
contain properties for each ActiveX control, and these also need to be passed to the
creation code. ATL uses the LPCREATESTRUCT field for a pointer to a stream for this
property information, so it is not available for the CLSID. The alternative approach,
which ATL takes, is to set the window name to a CLSID or information from which the
CLSID can be deduced. The “AtlAxWin” is never displayed with a title bar, so end-
users will never see it. Once extracted, it is set to NULL. Hence the previous SPY++
screen dump showed empty titles for the AtlAxWin windows.

75

WTL Developer’s Guide

To see this is action, set up a break point in your debugger on ATL’s
AtlAxWindowProc in the atlhost.h header, run the application. When it hits the
breakpoint, examine the window hierarchy in SPY++.

static LRESULT CALLBACK AtlAxWindowProc(HWND hWnd,
UINT uMsg, WPARAM wParam, LPARAM lParam){

switch(uMsg){
case WM_CREATE:

. . .
// Property stream is lpCreate->lpCreateParams
// This value is 0 when creating AtlAxWin directly, and
// is set to poitner to an IStream based on global memory
// initialised from resources for dialog-based controls
CREATESTRUCT* lpCreate = (CREATESTRUCT*)lParam;

// Get string defining CLSID to use from window title
int nLen = ::GetWindowTextLength(hWnd);
LPTSTR lpstrName = (LPTSTR)_alloca((nLen + 1)

* sizeof(TCHAR));
::GetWindowText(hWnd, lpstrName, nLen + 1);
::SetWindowText(hWnd, _T(""));

As each ActiveX control is created, the debugger stops at the GetWindowText call.
In SPY++, we see a window of type AtlAxWin with a name of the CLSID. After this is
extracted, the call to SetWindowText NULLs the title. This happens for each of the
three controls. The output from SPY++ when the third and final control is created is:

We should emphasize again, that the AtlAxWin is an extra window to the dialog itself
and (if windowed only) the ActiveX control. If the control is windowed only, then
inside CComControlBase::InPlaceActivate which calls
CComControlBase::CreateControlWindow which actually creates the
window as a child of AtlAxWin. Once this is done, the output from SPY++ is as in the
previous screen dump.

Which control to create?
We have seen how the window title is used to pass in a string to the WM_CREATE
handling code. This string is usually a CLSID of the ActiveX control to create. This is
the case when the ActiveX control is created based on a dialog template from the
resource file. However, when used from client application code, the string can be set to
other values, such as a PROGID or a URL or even the pathname to a MS-WORD
document, and an appropriate ActiveX control for these will be created. ATL uses the
following ordered set of rules to decided which CLSID to use in
CoCreateInstance:

76

WTL Developer’s Guide

• Firstly, if window name is NULL, or first character of window name is 0, do not
create any control and return

• Secondly, if the initial seven characters of the window name are
“MSHTML:” (case-insensitive), then use CLSID_HTMLDocument (set a flag
to note it can handle HTML) and return

• Thirdly, if the string is shorter than 255 characters, then do the following. If the
string begins with “{“ use CLSIDFromString to determine if it is a CLSID,
otherwise use CLSIDFromProgId to determine if it is a ProgID – if either of
these succeeded, then use CoCreateInstance with the CLSID of whichever
technique worked, and return

• Finally, if none of the above worked, then call CoCreateInstance with
CLSID_WebBrowser (set a flag to note it can handle HTML)

This is implemented in the static function CreateNormalizedObject in atlhost.h.

Note that if a non-NULL string is passed in which does not contain “MSHTML:”, a
string-ified CLSID or a ProgID, then CLSID_WebBrowser is used – it is the default.
Hence we could pass in a pathname to a file from MS-WORD or any other application
which CLSID_WebBrowser can access through its Active Document support, or any
files that CLSID_WebBrowser can directly understand, such as files with the suffixes
*.htm or *.txt .

If the string was a CLSID or a ProgID, once CoCreateInstance was called ATL is
finished with it. Otherwise there is a bit more to do, as CLSID_HTMLDocument or
CLSID_WebBrowser have been instantiated, but now they need to be told what to
display. The AtlControlEx method does this.

CLSID_HTMLDocument is Internet Explorer’s rendering engine for HTML. ATL
uses it if the window title started with the seven characters “MSHTML:”. The rest of
the window title can be raw HTML. This needs to be passed to the
CLSID_HTMLDocument instance to render. The relevant snippet of code from
CreateControlEx is as follows:

CComPtr<IHTMLDocument2> spHTMLDoc2;
hr = spUnk->QueryInterface(IID_IHTMLDocument2,
(void**)&spHTMLDoc2);

if (SUCCEEDED(hr)){
CComPtr<IHTMLElement> spHTMLBody;

hr = spHTMLDoc2->get_body(&spHTMLBody);
if (SUCCEEDED(hr))
hr = spHTMLBody->put_innerHTML(

CComBSTR(lpszTricsData + 7));
}

We see it passes the window title from the eighth character onwards to the
put_innerHMTL method of the BODY. A valid message could be:

MSHTML:<P>Hello World</P>

77

WTL Developer’s Guide

CLSID_WebBrowser is Internet Explorer’s full engine. It incorporates the rendering
engine for HTML, Active Document support, scripting and dynamic HTML. If
CLSID_WebBrowser was instantiated, then the full window title is passed in to the
instance via its IWebBrowser2::Navigate2 method, and it can decide what to do
with it. The relevant snippet of code from CreateControlEx is as follows:

CComPtr<IWebBrowser2> spBrowser;
spUnk->QueryInterface(IID_IWebBrowser2, (void**)&spBrowser);
if (spBrowser){

CComVariant ve;
CComVariant vurl(lpszTricsData);
spBrowser->put_Visible(VARIANT_TRUE);
spBrowser->Navigate2(&vurl, &ve, &ve, &ve, &ve);

}
If the window title is a URL, the web browser will access it over HTTP and render the
contents. If the title is another protocol that Internet Explorer understands (e.g.
mailto:info@example.com), then it will be used. If the title is a filename (e.g. a full
pathname to a Word 2000 document), then the ActiveX Document functionality comes
into play.

Enthusiastic Windows shell programmers will note that Navigate2 is used. In
addition to accepting an URL/pathname, this method also accepts a PIDL to a location
in the Windows Shell. So if we set the window title that that of a PIDL, can we browse
the shell? Well, no. As is, the code here initializes the VARIANT parameter to
Navigate2 as a string, and when you look at the IWebBrowser2::Navigate2 in
the MSDN, you will see that strings are processed as if they are URLs. To browse the
shell, we have to pass in a VARIANT of type VT_ARRAY|VT_UI1 containing a
SAFEARRAY with the PIDL. The ATL code does not do this and it is a bad idea to
modify it. However, there is nothing stopping us calling
IWebBrowser2::Navigate2 sometime later.

The later chapter that discusses the views in WTL applications has samples of using all
the possible window title formats and a PIDL.

CAxDialogImpl - ActiveX Controls within Dialog Boxes
Dialog boxes that do not contain ActiveX controls are managed by ATL’s
CDialogImpl template. Classes deriving from this must be manually created – the
ATL ObjectWizard does not provide any help here. ATL’s CAxDialogImpl manages
dialog boxes that do support ActiveX controls. The ATL ObjectWizard, in its
miscellaneous section, does support creating these. As there is some extra processing
inside CAxDialogImpl, if you do not plan to host ActiveX controls, you would be
(slightly) better off using CDialogImpl. If you decide later that you do need ActiveX
controls, you can simply switch CAxDialogImpl for CDialogImpl in the header
file. The ObjectWizard is only available if DevStudio thinks it is editing an ATL
project. This is of course the case if you have created the project with the ATL
AppWizard. This is not the case it you have created the project with the WTL
AppWizard (and not selected the COM Server option). There is a way to fix this –
which is discussed in the later chapter on dialogs and controls.

78

mailto:

WTL Developer’s Guide

With the ResourceView, you can edit the resource template used as the basis for a
dialog. The control CLSID, its id and its location in the dialog are stored in the
DIALOG section of the RC file. Additional properties for each ActiveX control are
stored in the DLGINIT section. When CAxDialogImpl is constructing a dialog, it
needs to process both sections in order to create the specified dialog.

//
// Dialog
IDD_MYACTIVEXDIALOG DIALOG DISCARDABLE 0, 0, 186, 95
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Dialog"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",1,129,7,50,14
 PUSHBUTTON "Cancel",2,129,24,50,14
 CONTROL "",IDC_MEDIAPLAYER1,
 "{22D6F312-B0F6-11D0-94AB-0080C74C7E95}",

WS_TABSTOP,10,0, 118,75
END
//
Dialog Info
IDD_MYACTIVEXDIALOG DLGINIT
BEGIN
 IDC_MEDIAPLAYER1, 0x376, 340, 0
0x0000, 0x0000, 0x0001, 0x0000, 0x1383, 0x0000, 0x0c67, 0x0000,
0x0003, 0xffff, 0xffff, 0x000b, 0x0000, 0x000b, 0xffff, 0x000b,
. . .
0x0000, 0x000b, 0x0000, 0x0003, 0xfda8, 0xffff, 0x000b, 0x0000,
 0
END

//

During dialog construction, ATL creates an “AtlAxWin” for each control, and puts
the DLGINIT data for the control in a stream based on global memory. As discussed
earlier, this is passed into the handler for WM_CREATE in its LPCREATESTRUCT
structure, and from there the contents of the stream are parsed by the control (e.g. if the
control was created using ATL, its property map is traversed).

The final issue to consider is once constructed and initialized, how does the containing
application programmatically communicate with the control at run-time. MFC has its
COleDispatchDriver class. VB internal run-time dispatching functionality, which
the application developer can influence using the VB References dialog box. What
happens with ATL? Like the other solutions, it is better that ATL is told at compile
time about the ActiveX controls it will be using. This can be done using the #import
construct. We have to #import the DLL containing the ActiveX control.

Question: To use #import, we have to load in the CRT, something we often wish to
avoid – is there any better way to access the type information for ActiveX controls,
which does not consume hundreds of lines of code, yet gives us access to the dual
interfaces of the ActiveX control?

We can use CWindow::GetDlgControl to extract an interface pointer to the
control and then we can use it like any other COM interface.

79

WTL Developer’s Guide

Internally, what happens is that the CAxHostWindow/CAxWindow instance
representing the ActiveX control maintains a data-member of the IUnknown interface
to the control, which it received from CoCreateInstance (the riid passed into it
is IID_IUnknown). It has a message handler for an ATL custom message type
WM_ATLGETCONTROL, and it responds to it by add-ref’ing the IUnknown pointer it
has and returning it as the handler result.

MESSAGE_HANDLER(WM_ATLGETCONTROL, OnGetControl)
LRESULT OnGetControl(UINT /*uMsg*/, WPARAM /*wParam*/,

LPARAM /*lParam*/, BOOL& /*bHandled*/){
IUnknown* pUnk = m_spUnknown;
if (pUnk)

pUnk->AddRef();
return (LRESULT)pUnk;

}
When CWindow::GetDlgControl is called, it converts the dialog item id into a
window handler with the GetDlgItem call (this window will be of type
“AtlAxWin”), and then it calls AtlAxControl helper function, which causes a
WM_ATLGETCONTROL message to be sent to the AtlAxWin window.

HRESULT GetDlgControl(int nID, REFIID iid, void** ppUnk){
HRESULT hr = E_FAIL;
HWND hWndCtrl = GetDlgItem(nID);
if (hWndCtrl != NULL){

*ppUnk = NULL;
CComPtr<IUnknown> spUnk;
hr = AtlAxGetControl(hWndCtrl, &spUnk);
if (SUCCEEDED(hr))

hr = spUnk->QueryInterface(iid, ppUnk);
}
return hr;

}
ATLINLINE ATLAPI AtlAxGetControl(HWND h, IUnknown** pp){

pp = (IUnknown)SendMessage(h, WM_ATLGETCONTROL, 0, 0);
return (*pp) ? S_OK : E_FAIL;

}

Sample : ATLControlDemo
The ATLControlDemo sample shows how to create a control in one project and host it
in a different project.

80

WTL Developer’s Guide

The one workspace is used for both. The fact that both projects are created with ATL
does not have an impact on how they communicate – they will still use the rules of
ActiveX controls. Use the ATL AppWizard to create the workspace and first project
named ATLControlDemo. The project should be of type DLL. Use the ATL Object
Wizard to insert a Full Control. Name it “MyAtlControl”.

In ClassView, select IMyAtlControl, and right-click to bring up the context menu,
and select Add Method.

Use the dialog to add a method called Beep. This adds the method to the IDL file and
adds a default implementation to the CMyAtlControl class.

Change it to call the Beep API.

STDMETHODIMP CMyAtlControl::Beep(){
::Beep(200,200);
return S_OK;

}
That is the ActiveX control finished. Build the project, which automatically registers it
on the development machine. It also adds type information to the DLL.

81

WTL Developer’s Guide

Now in FileView, select the Workspace root, right click and select Add New Project to
Workspace. Select the ATL AppWizard and create a new EXE-based project called
ATLControlContainer.

Use the ObjectWizard to insert a new dialog box. In ResourceView, select the dialog
template, right-click and select Add ActiveX Control. Select the MyAtlControl
from the list. If it does not appear in the list it is probably because you have not actually
compiled the AtlControlDemo project (which would have automatically registered the
control). In Properties, assign the id IDC_MYATLCONTROL to the control.

In the implementation file for the dialog box, add this import statement:

#import "..\debug\ATLControlDemo.dll" no_namespace
Change the OnInitDialog method to call the exposed Beep method in the ActiveX
control:

LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled){

CComPtr<IMyAtlControl> m_pIMyAtlControl;
GetDlgControl(IDC_MYATLCONTROL, __uuidof(IMyAtlControl),

(void **) &m_pIMyAtlControl);
m_pIMyAtlControl->Beep();
return 1; // Let the system set the focus

}
In the application’s main cpp file, ATLControlContainer.cpp, include the header file for
the dialog class and instantiate the dialog and call its DoModal. That’s it - compile and
run. You should hear a beep should as the dialog is being displayed.

82

WTL Developer’s Guide

Chapter 4
WTL Quick Tour

Objectives
The objectives of this chapter are to:

• Examine the templates and classes in WTL

• List the features which are not part of WTL

• Describe issues such as the WTL namespace, CRT and error handling

• List the WTL macros

• See how debugging can be improved with AUTOEXP.DAT

• Review the use of CRT and WTL

• Compare MFC and WTL

• Cover WTL’s CString class

The WTL Distribution
There are three parts to the WTL distribution – the fifteen C++ header files in the
include directory, the WTL AppWizard and the sample projects. The core functionality
is in the include directory. The AppWizard generates projects whose source code makes
calls into the templates/classes defined in the header files. The sample projects should
how to use them. You might spend a few hours examining what the WTL AppWizard
produces and the sample projects, but you will spend many weeks learning all about the
templates/classes defined in the header files.

WTL provides a large number of templates and classes dedicated to user interface
development. They may be used in tandem with, rather than competing with, other
template libraries, such as ATL, STL and VC++ OLE DB Data templates. All these
template libraries together may be considered as a competitor to MFC and VB.

In most parts, WTL is a very thin layer on the low level Win32 APIs. In a small number
of areas (e.g. scroll-bars, splitters, print preview) there is substantial new functionality.

Apart from the WTL AppWizard, there are no specific WTL wizards integrated with
DevStudio. One can use the ATL Windows Message Handler Wizard to add handlers,
but these do not use WTL’s message crackers.

83

WTL Developer’s Guide

Templates and Classes
WTL is a collection of C++ templates and classes. There are some isolated cases of a
small group of classes using inheritance (e.g. CDC, CPaintDC, CWindowDC and
CPrintDC), but by and large WTL’s templates and classes are independent of each
other and they share no common root, hence there is no such thing as a hierarchy
diagram for WTL. There simply is no large hierarchy.

In this section we will provide an overview of the functional areas covered by WTL and
list the templates and classes available. Each functional area is neatly contained within
its own WTL header file, which we also list.

Every WTL application must include atlapp.h, which internally includes atluser.h and
atlgdi.h. The other WTL header files only need to be included if the functionality they
contain will be used in the application.

Application Services (atlapp.h)
These classes provide the foundation for the module (EXE or DLL) and control the
message loop. They also support message filtering and idle handling.

class CAppModule : public CComModule
class CServerAppModule : public CAppModule
class CMessageLoop
class CMessageFilter
class CIdleHandler

Standard Controls and Common Controls (atlctrls.h)
WTL provides a wrapper template for each standard control and common control in the
Windows OS. The template is typically used with ATL’s CWindow, so an appropriate
typedef is also provided for each control. In code, you will normally use the typedef’ed
value, and not the template directly.

Each control is defined as follows:

template <class TBase> class CStaticT;
typedef CStaticT<CWindow> CStatic;
Here is the full list of controls:

CButtonT CButton CTrackBarCtrlT CTrackBarCtrl
CListBoxT CListBox CUpDownCtrlT CUpDownCtrl
CComboBoxT CComboBox CProgressBarCtrlT CProgressBarCtrl
CEditT CEdit CHotKeyCtrlT CHotKeyCtrl
CScrollBarT CScrollBar CAnimateCtrlT CAnimateCtrl
CToolTipCtrlT CToolTipCtrl CRichEditCtrlT CRichEditCtrl
CHeaderCtrlT CHeaderCtrl CReBarCtrlT CReBarCtrl
CListViewCtrlT CListViewCtrl CMonthCalendarCtrlT CMonthCalendarCtrl
CTreeViewCtrlT CTreeViewCtrl CDateTimePickerCtrlT CDateTimePickerCtrl
CToolBarCtrlT CToolBarCtrl CIPAddressCtrlT CIPAddressCtrl
CStatusBarCtrlT CStatusBarCtrl CPagerCtrlT CPagerCtrl
CTabCtrlT CTabCtrl

84

WTL Developer’s Guide

These controls can be created using the Create method, but more often a dialog
template defined in the ResourceView will contain the layout of the dialog and the
controls which are to appear on it, and in source code you can instantiate one of these
control templates and call its Attach method to hook up with the control in the dialog
box. So to add a string to a list box in a dialog you might use the following:

CListBox m_ListBox;
. . .

m_ListBox.Attach(GetDlgItem(IDC_LIST_DEMO));
m_ListBox.AddString(TEXT("One"));

Note that ATL already supports ActiveX control containment (as discussed in detail in
the previous chapter on ATL Windowing) and WTL adds no additional support.

There are some additional classes/templates for controls that provide extra
functionality.

WTL’s CComboBoxEx is a wrapper for Win32’s ComboBoxEx control, which adds
support for image lists to the standard combo box. In WTL, CComboBoxExT is
derived from CComboBoxT, and adds extra functionality as needed.

template <class TBase> class CComboBoxExT
: public CComboBoxT< TBase >

typedef CComboBoxExT<CWindow> CComboBoxEx;
Flat scroll-bars are supported in WTL. In functionality they are the same as normal
scrollbars, but in appearance, as the name suggests, they are flat, without the raised
beveled edge.

template <class T> class CFlatScrollBarImpl
template <class TBase> class CFlatScrollBarT : public TBase,

public CFlatScrollBarImpl<CFlatScrollBarT< TBase > >
typedef CFlatScrollBarT<CWindow> CFlatScrollBar;
The treeview control deals with a HTREEITEM, which is a handle to a complicated
structure containing details of how each node should appear in the tree. To simplify
dealing with HTREEITEM, WTL has a class called CTreeItem, which provides
methods to get and set text, image, data and state information, and to walk the tree. The
CTreeViewCtrlExT template is based on the CTreeViewCtrlT template.

template <class TBase> class CTreeViewCtrlExT :
public CTreeViewCtrlT< TBase >

typedef CTreeViewCtrlExT<CWindow> CTreeViewCtrlEx;
class CTreeItem; // wrapper for HTREEITEM
CTreeViewCtrlExT furnishes methods that deal with CTreeItem in addition to
the methods that work with raw HTREEITEM handles. For example,
CTreeViewCtrlT provides this method to insert an item:

HTREEITEM InsertItem(LPTV_INSERTSTRUCT lpInsertStruct);
whereas CTreeViewCtrlExT has this method:

CTreeItem InsertItem(LPTV_INSERTSTRUCT lpInsertStruct);
Edit boxes and rich-edit boxes must deal with a number of common messages, such as
ID_EDIT_COPY, ID_EDIT_CUT, ID_EDIT_PASTE and ID_EDIT_UNDO.
These two helper classes are provided to automate the processing of such messages.

85

WTL Developer’s Guide

template <class T> class CEditCommands;
template <class T> class CRichEditCommands

: public CEditCommands< T >
Helper classes are also provided to manage image lists and toolinfo.

class CImageList;
class CToolInfo : public TOOLINFO
A drag-listbox is similar to a normal listbox, but also offers functionality to drag items
within the listbox. CDragListNotifyImpl supports message processing during the
dragging.

template <class TBase> class CDragListBoxT
: public CListBoxT< TBase >

typedef CDragListBoxT<CWindow> CDragListBox;
template <class T> class CDragListNotifyImpl;
Some common controls can be configured to use custom draw to render their items.
They send a NM_CUSTOMDRAW message. This WTL template helps with the processing
of such messages:

template <class T> class CCustomDraw

Command Bars (atlctrlw.h)
In the past applications presented commands to end users in standard menubars. Then
along came toolbars. Later still came the rebar control, first introduced with Internet
Explorer. Some advanced applications, such as Microsoft Word 2000, provided the
concept of command bars, which are a uniform hosting of menus and toolbar icons.
WTL also supports functionality called command bars, but these are different to those
that appear in Word 2000.

In WTL, a command-bar is a more powerful version of a menubar. The toolbar is still
used. The command bar is hosted in one band and the toolbar in a different band within
a single rebar control in the WTL generated application. The bands are movable within
that rebar. Command bars (and toolbars) in WTL are not dockable.

A WTL command bar displays menus, and within each menu displays menu-items and
the equivalent toolbar icon next to the menu item, thus increasing end-user knowledge
of what each toolbar icon means.

WTL provides classes to help with command bars:

class CCommandBarCtrlBase : public CToolBarCtrl
template <class T, class TBase = CCommandBarCtrlBase,

class TWinTraits = CControlWinTraits>
class CCommandBarCtrlImpl

: public CWindowImpl< T, TBase, TWinTraits>
class CCommandBarCtrl

: public CCommandBarCtrlImpl<CCommandBarCtrl>
When generating an application with the WTL AppWizard, and assuming you accept
the default settings, then your project will automatically use command-bars and you
have no further action to take.

Advanced Controls (atlctrlx.h)
WTL supports a number of more advanced controls.

86

WTL Developer’s Guide

CBitmapButton provides pushbuttons that display an image from an imagelist rather
than text.

template <class T, class TBase = CButton,
class TWinTraits = CControlWinTraits>

class CBitmapButtonImpl
: public CWindowImpl< T, TBase, TWinTraits>

class CBitmapButton : public CBitmapButtonImpl<CBitmapButton>
CCheckListView provides a list of checkboxes.

template <DWORD t_dwStyle, DWORD t_dwExStyle,
 DWORD t_dwExListViewStyle> class CCheckListViewCtrlImplTraits;

typedef CCheckListViewCtrlImplTraits<WS_CHILD | WS_VISIBLE |
LVS_REPORT | LVS_SHOWSELALWAYS, WS_EX_CLIENTEDGE,
LVS_EX_CHECKBOXES | LVS_EX_FULLROWSELECT>
CCheckListViewCtrlTraits;

template <class T, class TBase = CListViewCtrl,
class TWinTraits = CCheckListViewCtrlTraits>

class CCheckListViewCtrlImpl
: public CWindowImpl<T, TBase, TWinTraits>;

class CCheckListViewCtrl
: public CCheckListViewCtrlImpl<CCheckListViewCtrl>;

CHyperlink enables the embedded of web-links within the application. When
pressed, a web-browser is started displaying a specific URL.

template <class T, class TBase = CWindow,
class TWinTraits = CControlWinTraits>

class CHyperLinkImpl
: public CWindowImpl< T, TBase, TWinTraits >

class CHyperLink : public CHyperLinkImpl<CHyperLink>
CWaitCursor sets the cursor. The actual cursor used depends on an input parameter
– which defaults to IDC_WAIT.

class CWaitCursor
CMultiPaneStatusBarCtrl provides a status bar with sub-divisions, each of
which can contain different text.

template <class T, class TBase = CStatusBarCtrl>
class CMultiPaneStatusBarCtrlImpl

: public CWindowImpl< T, TBase >
class CMultiPaneStatusBarCtrl

 : public CMultiPaneStatusBarCtrlImpl<CMultiPaneStatusBarCtrl>

Dynamic Data Exchange (atlddx.h)
DDX is used to transfer data in both directions between C++ data members and dialog
box controls. In WTL, DDX involves a single template, CWinDataExchange, and
many macros, such as DDX_TEXT.

template <class T> class CWinDataExchange
To use DDX, your dialog class should derived from both CDialogImpl and
CWinDataExchange, and it should have a message map, such as:

BEGIN_DDX_MAP(CMyDialogDlg)
DDX_INT(IDC_AMOUNT_INT, m_nAmount)

87

WTL Developer’s Guide

END_DDX_MAP()
Currently this map must be created manually, though it is likely that in a future version
of Visual C++ Wizard support will be added.

System Dialogs And Property Sheets (atldlgs.h)
WTL offers a full range of templates which expose the system dialogs.

template <class T> class CFileDialogImpl
: public CDialogImplBase

class CFileDialog : public CFileDialogImpl<CFileDialog>
template <class T> class CFolderDialogImpl

 class CFolderDialog : public CFolderDialogImpl<CFolderDialog>
class CCommonDialogImplBase : public CWindowImplBase
template <class T> class CFontDialogImpl

: public CCommonDialogImplBase
class CFontDialog : public CFontDialogImpl<CFontDialog>
class CRichEditFontDialogImpl : public CFontDialogImpl< T >
class CRichEditFontDialog : public

CRichEditFontDialogImpl<CRichEditFontDialog>
template <class T> class CColorDialogImpl

 : public CCommonDialogImplBase
 class CColorDialog : public CColorDialogImpl<CColorDialog>
template <class T> class CPrintDialogImpl

: public CCommonDialogImplBase
class CPrintDialog : public CPrintDialogImpl<CPrintDialog> template
<class T> class CPrintDialogExImpl

: public CWindow, public CMessageMap,
public IPrintDialogCallback,
public IObjectWithSiteImpl< T >

class CPrintDialogEx : public CPrintDialogExImpl<CPrintDialogEx>
template <class T> class CPageSetupDialogImpl

: public CCommonDialogImplBase
class CPageSetupDialog

: public CPageSetupDialogImpl<CPageSetupDialog>
template <class T> class CFindReplaceDialogImpl

: public CCommonDialogImplBase
class CFindReplaceDialog

: public CFindReplaceDialogImpl<CFindReplaceDialog>
WTL also offers a range of templates to help with property sheet construction.

class CPropertySheetWindow : public CWindow
template <class T, class TBase = CPropertySheetWindow>
class CPropertySheetImpl : public CWindowImplBaseT< TBase >
class CPropertySheet : public CPropertySheetImpl<CPropertySheet>
class CPropertyPageWindow : public CWindow
template <class T, class TBase = CPropertyPageWindow>

class CPropertyPageImpl : public CDialogImplBaseT< TBase >
template <WORD t_wDlgTemplateID> class CPropertyPage

 : public CPropertyPageImpl<CPropertyPage<t_wDlgTemplateID> >

Frames (atlframe.h)
The following classes support frames.

CFrameWndClassInfo is the window class for frame windows.

88

WTL Developer’s Guide

class CFrameWndClassInfo
CFrameWindowImpl is used as the basis of application-level C++ classes that
manage the frames.

template <class TBase = CWindow, class TWinTraits =
CFrameWinTraits> class CFrameWindowImplBase
: public CWindowImplBaseT< TBase, TWinTraits >

template <class T, class TBase = CWindow, class TWinTraits =
CFrameWinTraits> class CFrameWindowImpl
: public CFrameWindowImplBase< TBase, TWinTraits >

To support MDI, WTL provides these templates:

class CMDIWindow : public CWindow
template <class T, class TBase = CMDIWindow, class TWinTraits =

CFrameWinTraits>
class CMDIFrameWindowImpl : public CFrameWindowImplBase<TBase,

TWinTraits >
template <class T, class TBase = CMDIWindow, class TWinTraits =

CMDIChildWinTraits> class CMDIChildWindowImpl
: public CFrameWindowImplBase<TBase, TWinTraits >

The template COwnerDraw assists with the implementation of owner draw
functionality. It is normally added to a class via multiple inheritance. The difference
between COwnerDraw and CCustomDraw that we mentioned when introducing the
controls, is that CCustomDraw processes NM_CUSTOMDRAW notifications delivered
in a WM_NOTIFY message. This is supported by the following common controls:
header, list view, rebar, toolbar, tooltip, trackbar and tree view controls. COwnerDraw
processes the WM_DRAWITEM, WM_MEASUREITEM, WM_COMPAREITEM and
WM_DELETEITEM messages, which are typically sent to owner-drawn button, combo
box, list box, list view control, or menu items.

template <class T> class COwnerDraw
CUpdateUI is provided to update UI elements dynamically. Menu-items and toolbar
buttons can be enabled or disabled using this.

class CUpdateUIBase;
template <class T> class CUpdateUI : public CUpdateUIBase

GDI (atlgdi.h)
WTL provides templates to manage all the GDI objects. The Boolean template
parameter for each of these, t_bManaged, specifies whether the GDI object should be
deleted in the destructor of the template instance. For each template, WTL has two
typedefs, one of which is declared with t_bManaged set to true, and the other with
t_bManaged set to false.

These templates bring together all the Win32 C APIs which deal with each GDI. These
expose typesafe C++ methods which call the underlying C API.

template <bool t_bManaged> class CPenT
typedef CPenT<false> CPenHandle;
typedef CPenT<true> CPen;
template <bool t_bManaged> class CBrushT

89

WTL Developer’s Guide

typedef CBrushT<false> CBrushHandle;
typedef CBrushT<true> CBrush;
template <bool t_bManaged> class CFontT
typedef CFontT<false> CFontHandle;
typedef CFontT<true> CFont;
template <bool t_bManaged> class CBitmapT
typedef CBitmapT<false> CBitmapHandle;
typedef CBitmapT<true> CBitmap;
template <bool t_bManaged> class CPaletteT
typedef CPaletteT<false> CPaletteHandle;
typedef CPaletteT<true> CPalette;
template <bool t_bManaged> class CRgnT
typedef CRgnT<false> CRgnHandle;
typedef CRgnT<true> CRgn;
template <bool t_bManaged> class CDCT
typedef CDCT<false> CDCHandle;
typedef CDCT<true> CDC;
A number of helper classes are derived from CDC to provide additional functionality.
CPaintDC is used to handle WM_PAINT messages; it calls Win32’s BeginPaint in
its constructor and EndPaint in its destructor. CClientDC and CWindowDC get the
client area and full window DCs of a HWND parameter respectively.
CEnhMetaFileDC is used to render into a enhanced metafile. It calls Win32’s
CreateEnhMetaFile from its constructor and CloseEnhMetaFile from its
destructor.

class CPaintDC : public CDC
class CClientDC : public CDC
class CWindowDC : public CDC
class CEnhMetaFileDC : public CDC
Extra functionality is provided for enhanced metafiles. CEnhMetaFileT is a wrapper
for an enhanced metafile handle. CEnhMetaFileInfo provides methods that call
Win32’s GetEnhMetaFileBits, GetEnhMetaFileDescription,
GetEnhMetaFileHeader and GetEnhMetaFilePixelFormat.

template <bool t_bManaged> class CEnhMetaFileT
typedef CEnhMetaFileT<false> CEnhMetaFileHandle;
typedef CEnhMetaFileT<true> CEnhMetaFile;
class CEnhMetaFileInfo

Miscellaneous (atlmisc.h)
Helper classes are provided to assist managing common data types. WTL’s CString
is a perfect emulation of MFC’s equivalent. CSize, CPoint and CRect derived
from Win32 data types, and offer method to initialize the values and carry out
operations (e.g. summation) on them.

class CSize : public tagSIZE
class CPoint : public tagPOINT
class CRect : public tagRECT
class CString;
These classes support recent file list and the file searching (using Win32’s
FindFirstFile / FindNextFile APIs).

90

WTL Developer’s Guide

class CRecentDocumentList;
class CFindFile;

Printing (atlprint.h)
WTL provides good support for printing.

PrinterInfo data is handled via:

template <unsigned int t_nInfo> class CPrinterInfo
These are provided to manage a handle to a printer:

template <bool t_bManaged> class CPrinterT
typedef CPrinterT<false> CPrinterHandle;
typedef CPrinterT<true> CPrinter;
These are provided to manage printing’s DEVMODE information:

template <bool t_bManaged> class CDevModeT;
typedef CDevModeT<false> CDevModeHandle;
typedef CDevModeT<true> CDevMode;
When rendering for printing, use this DC type:

class CPrinterDC : public CDC
To gain information about print jobs, use:

class IPrintJobInfo
class CPrintJobInfo : public IPrintJobInfo
class CPrintJob;
Print preview window support is provided by:

class CPrintPreview;
template <class T, class TBase = CWindow, class TWinTraits =
CControlWinTraits>
class CPrintPreviewWindowImpl
 :public CWindowImpl<T, TBase, TWinTraits>, public CPrintPreview
class CPrintPreviewWindow

: public CPrintPreviewWindowImpl<CPrintPreviewWindow>

Scrolling (atlscrl.h)
Window scrolling is supported through this set of templates:

template <class T> class CScrollImpl
template <class T, class TBase = CWindow,

class TWinTraits = CControlWinTraits>
class CScrollWindowImpl

:public CWindowImpl<T,TBase,TWinTraits>,public CScrollImpl< T >
template <class T> class CMapScrollImpl: public CScrollImpl< T >
template <class T, class TBase = CWindow,

class TWinTraits = CControlWinTraits>
class CMapScrollWindowImpl : public CWindowImpl< T, TBase,

TWinTraits >, public CMapScrollImpl< T >
Flat scrollbars are also supported.

template <class TBase = CWindow> class CFSBWindowT
 :public TBase, public CFlatScrollBarImpl<CFSBWindowT< TBase > >
typedef CFSBWindowT<CWindow> CFSBWindow;

91

WTL Developer’s Guide

Splitters (atlsplit.h)
Horizontal and vertical splitters are supported using these templates:

template <class T, bool t_bVertical = true> class CSplitterImpl;
template <class T, bool t_bVertical = true, class TBase =

CWindow, class TWinTraits = CControlWinTraits>
class CSplitterWindowImpl : public CWindowImpl< T, TBase, TWinTraits
>, public CSplitterImpl<CSplitterWindowImpl< T , t_bVertical, TBase,
TWinTraits >, t_bVertical>
template <bool t_bVertical = true> class CSplitterWindowT

: public CSplitterWindowImpl<
 CSplitterWindowT<t_bVertical>, t_bVertical>

typedef CSplitterWindowT<true> CSplitterWindow;
typedef CSplitterWindowT<false> CHorSplitterWindow;

Menus (atluser.h)
The CMenuItemInfo class is a wrapper for Win32’s MENUITEMINFO structure and
menus are managed through CMenuT, which provides typesafe access to all operations
that are possible on menus.

class CMenuItemInfo : public MENUITEMINFO
template <bool t_bManaged> class CMenuT
typedef CMenuT<false> CMenuHandle;
typedef CMenuT<true> CMenu;

What is NOT in WTL
After having considered what are the major pieces of functionality within WTL, now
we will examine what is NOT supported.

WTL is solely aimed at developers of desktop user interfaces. It does this exceptionally
well. It does not stray into other areas. Competing toolkits, such as VC++’s MFC or VB
do provide incredible amounts of functionality covering vast areas. Their supporters
might claim these toolkits offer a consistent mutually compatible, well-integrated range
of functionality, but WTL supporters will counter with the assertion that MFC and VB
are monolithic, slow-changing and simply too big (downloads of apps to be measured in
megabytes, compared to WTL downloads which are in kilobytes). The philosophy of
template programming – fast, static binding, supporting multiple data types, is still very
much alive in WTL and is shared with other template libraries, such as ATL, STL and
the data templates. WTL can be used in conjunction with these, or on its own.

In this section we examine features not available with WTL.

WTL does not compete with ATL, STL, Data Templates or COM libraries
Functionality that is provided by other template libraries is not duplicated in WTL. This
keeps WTL small and focused, yet developers can access other template libraries when
needed.

92

WTL Developer’s Guide

No Document Support
WTL provides a frame and a view, but no document. Developers coming from MFC
wonder why. WTL is concentrating on the user-interface, and the document itself is
never seen, so it is considered outside the scope of WTL.

MFC provided binary files that usually were based on structured storage. The latest in
document format is basing everything on XML. For Internet content, formats could
include XHTML for hypertext, PNG for images, and SVG for vector diagrams and
SMIL-Boston for multimedia. PNG is a binary file; all the others are based on XML.
Applications that need custom formats should define their own XML schemas and write
the appropriate code to load and save XML files based on this schema.

Chapter 16 of “Inside ATL”, Sheperd/King, MS-Press, contains an interesting (but
short) description of how to manage documents.

No Active Document Support
WTL does not support Active Documents (formerly called OLE Documents) directly.
WTL/ATL provides no support for Active Document Servers. ATL does provide some
indirect support for Active Document Containment, through the use of Internet
Explorer. This could be used in a WTL application, but it certainly does not provide the
same level of functionality as MFC’s extensive Active Document support. Microsoft
has indicated that it currently has no plans to added support to WTL for Active
Documents.

However, it should be noted that the popularity of Active Documents is waning. It adds
considerably to the complexity of the application. The vast majority of end-users never
actually benefit from the functionality as they ignore it.

As we move our data storage formats from binary structured storage files to XML data,
this trend will accelerate.

Chapter 15 of “Creating Lightweight Components with ATL”, Bates, SAMS, contains a
well-designed project which shows Active Document Server and Containment.

One-side note: If planning to become a container, you will have to offer structured
storage. The default (provided) implementation sits above binary files. If your data file
format is based on XML with your custom tags, then somehow you have to get the data
coming from the server in structured storage streams to be converted into data that end
up as tags inside your XML file. The way this could be done is to implement a COM
component that exposes ILockBytes. It might have a method called WriteAt that
pumps the data to the XML file:

HRESULT __stdcall LockBytesObj::WriteAt(
ULARGE_INTEGER ulOffset, const void *pv,
ULONG cb,ULONG *pcbWritten){
*pcbWritten = write-to-xml-file(pv, 1, cb, fp);
return (S_OK);

}

93

WTL Developer’s Guide

When loading a document, use the Win32 API
StgCreateDocfileOnILockBytes, and base it one your LockBytes component,
rather than the normal binary data file created with StgCreateDocFile.

The storage you get back can be passed to other components, which might call:

hres = pIStorage->CreateStream(szStreamName,
STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
0, 0, &pIStream);

hres = pIStream->Write(myDataWrite, strlen(myDataWrite)+1,
&ulLenWritten);

No ISAPI Support
WTL does not provide ISAPI functionality. ISAPI is a well-defined API that sits
between web servers and extension DLLs that are dynamically loaded to service
specialist browser requests. These extension DLLs are written by third-party developers
and provide features that are not part of the web server. Their advantage over CGI
scripts is that they are only loaded once compared to CGI that requires a new process to
be launched for each request.

The ATL Server functionality in Visual C++ version 7 will provide powerful features in
the area. Microsoft’s MSDN web site has details of this.

No WinInet Support
WTL provides no special WinInet support. Again, this is non-UI, and there is no reason
you could not use the WinInet APIs directly.

No Wrappers for Threading or Synchronization
WTL provides no specific wrappers for Win32’s thread creation functions or
synchronization functions. WTL works extremely well with Win32 threads and
synchronization kernel objects and simply needs no additional support. The code
generated by the WTL AppWizard Multithreaded SDI option contains an excellent
implementation of a multithreaded SDI application – the code related to the threads is
actually in the application code, not inside WTL templates.

Rest assured, WTL and threads get on very well together!

No Database Support
WTL does not offer any database support. The VC++ OLE DB Templates offer both
consumer and provider templates for data access. These can of course be used from
within a WTL application.

MFC offers consumer classes to access existing database tables. It offers no provider
functionality. MFC also has the likes of CRecordView and DDX_Field functions
for UI functionality when accessing ODBC databases. WTL does not offer
corresponding functionality.

The lack of CRecordView is not a problem – indeed, it could be considered a benefit.
Many people consider the MFC approach of forcing database record UI into the totally
un-related MFC Document/View architecture as less than stellar design. They are

94

WTL Developer’s Guide

simply different - so let them be different. Very many MFC database applications did
not use CRecordView.

The lack of DDX_Field is more troublesome. The idea behind MFC’s DDX_Field is
that you will have a C++ class for the UI dialog, and a C++ class for the database table.
Usually there is a (one-to-one?) mapping from what appears on the dialog to the fields
in the database table. It is inefficient to store the data values both in the dialog’s C++
class and in the database table’s C++ class. MFC’s DDX_Field eliminates the need
for the dialog C++ data-members, and the data is copied directly from the dialog box on
screen to the member variables of the C++ database class. Hence it is much more
efficient.

WTL does not support this idea of DDX_Field. Applications based of WTL, which do
not use too many database tables, could simply copy the data from the C++ class
representing the dialog to the C++ class representing the database table. Applications
that make more substantial use of databases might consider implementing their own
version of DDX_Field.

Development Issues
To get the most out of WTL there are a number of development issues that need to be
well understood.

The Finished Product
The size of applications built with WTL is very small. When you compile the
AppWizard generated default SDI app the resulting EXE is only 64K in size. The
TinyWTL sample app has extraneous features stripped out (so it does absolutely
nothing), but is only 24K in size. A substantial commercial-strength application could
be provided in less than 250K. Note that when such a file is compressed, it generally
loses two-thirds of its size and hence could be rapidly downloaded over the Internet.

After building the application, you then have to consider how to get it installed on the
client’s machine. Assuming you are not using the CRT or other libraries such as
DirectX, then when you compile a WTL project the resulting EXE or DLL is the only
file you will need to deliver to end-users. Hence the size of your installation is quite
small. Not only that, it is the only file that can cause problems. The less you deliver, the
fewer things that can go wrong. Many applications vendors operate on tight margins
and even one support call from an end-user can wipe out the profit on the sale to that
customer. WTL applications will have no external dependencies, thus producing
savings in this area.

To install the application, you could create an installation script (e.g. based on
Windows Installer). For simple app you could get away with just delivering the EXE or
DLL. Sometimes you may wish to add entries to the registry. In this case, you can have
the end-user execute a command line such as regsvr32 <your DLL name> or
<your EXE name> /RegServer
An alternative would be to make the EXE or DLL auto-sense that it has no registry
entries the first time it is run, and to add them at that point.

95

WTL Developer’s Guide

CRT
The C-Runtime library is a set of C functions built above the Win32 API. It is
commonly known as the CRT. The source code for the CRT is provided as part of the
Visual C++ distribution (in the src directory). When you examine it you will see that the
functions in the CRT are implemented in ANSI C, some call Win32 APIs directly and
some call helper functions that in turn call Win32 APIs. The CRT is mostly a collection
of functions from the Standard Library in ANSI C (printf, strtok etc.), but it is
also some Win32-specific functions (the beginthreadex CRT function does some
CRT initialization and then calls the Win32 function CreateThread).

If you program exclusively to the ANSI C Standard library then you code will be
portable. There are plenty of multi-million lines of code projects out there that can be
equally well compiled on Windows and UNIX and with changes to less than 2% of
code it will work just fine. The CRT does offer some extra functionality over the Win32
API in some areas, such as supporting floating-point values in strings. Other benefits of
CRT include support for C++ exception handling, STL and the calling of
constructors/destructors for global variables.

If you are programming with ATL and WTL, your code will definitely not be portable
to UNIX/LINUX platforms, and the question arises, should I link with the CRT? By
and large the CRT duplicates functionality already in the Win32 API, so often the
answer is no. It is possible to survive without C++ exception handling and the calling of
constructors/destructors for global variables. By linking with the CRT, you are making
your binary larger. You are also introducing a dependency on an external library
(MSVCRT.dll), and multiple versions of this can exist. It is just one extra thing that can
cause problems.

The WTL AppWizard produces a project with settings so that the CRT is provided with
the debug build (this is needed for the ATLASSERT calls), and the CRT is not provided
with the release build, as the latter defines the _ATL_MIN_CRT macro in the
preprocessor. If you are not paying attention here, sometime over the next few months
you will develop a project that uses a CRT call, and it will not link in release mode.
You will scratch your head, and hopefully come back here and say, aha! To avoid such
rigmarole, note now that CRT IS NOT PRESENT IN RELEASE BUILDS BY
DEFAULT.

If you do decide to use the CRT, simply remove the _ATL_MIN_CRT macro in the
preprocessor. If using the CRT, then an interesting point arises with multithreading.
There are multiple versions of the CRT – some which are statically bound, and some
that are dynamically loaded, and some are for single-thread apps, and some for multi-
threaded apps. If you are using the CRT functions from more than one thread, you
definitely must use the multithreaded version. It is also imperative that the EXE and all
DLLs in the project use the same setting for the CRT. It is to be found in the Project
Settings dialog in DevStudio, Code Generation category.

Error Handling
In the past, the recommendation was to examine the return value from every function
and carry out remedial action if needed. This often led to code bloating. For every ten

96

WTL Developer’s Guide

lines of real code you could have forty lines of error checking and correction code and it
was often difficult to debug and to follow the logical path through the code.

Then along came C++ exception handling. The functional code was placed within try-
catch blocks and when an exception was thrown, either directly within the try-catch
block or in a function called from the block, and then the exception handler was
activated. This reduced the amount of code in the project and made it clear. However,
exceptions are time consuming to handle, do not cross language boundaries and more
importantly, require the use of the CRT.

If you are writing code which will run on multiple operating systems it makes sense to
use the CRT and its features, including exception handling. However, as discussed
earlier, if you are solely targeting Windows, and wish to produce small binaries without
external dependencies (e.g. on a particular version of the CRT library - MSVCRT.dll),
then you will wish to avoid linking with the CRT, which also means avoiding C++
exceptions. WTL is designed so that the CRT is not needed in release builds – so the
obvious question we have to look at is how does WTL handle error situations.

There are two main categories of errors:

• Operational Errors – e.g. hard-disk is full while saving file

• Programming Errors – e.g. divide by zero somewhere

Operational errors will always occur and a well-written application should be able to
detect them and respond appropriately – such as informing the user of the problem,
suggesting how to fix it (e.g. make space on the disk), and the application should
continue running. Programming errors should never occur in a well-written application.
If they do occur it is a sign of a defect in the application. Something is seriously wrong.
How can an application sensibly handle divide by zero – it is a design defect as user
interface code should have only allowed the user enter a number not equal to zero. Such
errors should never exist in an application in use by end-users. They will occur in debug
builds, when developers are testing their applications. That is expected, but such
problems should be eliminated by the time the product is ready to ship.

For operational errors, WTL detects the problems and reports them back to application
code, for example as a Boolean return code. This is a sample excerpt from WTL’s
CFindFile class, which calls the Win32 API FindFirstFile.

BOOL FindFile(LPCTSTR pstrName = NULL){
Close();
if(pstrName == NULL)

pstrName = _T("*.*");
lstrcpy(m_fd.cFileName, pstrName);
m_hFind = ::FindFirstFile(pstrName, &m_fd);
if(m_hFind == INVALID_HANDLE_VALUE)

return FALSE;
. . .

CFindFile::FindFile returns a BOOL, which states whether the operation
succeeded or not. There can often be problems with pathnames (e.g. network is
temporarily down) and applications need to respond appropriately. How this response is

97

WTL Developer’s Guide

made is left to the application code – WTL just says the error occurred. Note that the
last error is often that of the Win32 API that was called, so application code often can
get more information from calling GetLastError (WTL provides no wrapper for it).

For programming errors, WTL’s approach is quite different. The design goal could be
stated as: “In debug builds, when we detect programming errors we will invoke an
assertion, and we will test the application so well the problems won’t occur in release
builds”. The great benefit of this approach is that the release build is very fast, as it is
not clogged up with millions of error-checking lines of code.

ATLASSERT statements are liberally scattered through out the WTL source code.
ATLASSERTs get eliminated during release builds. During debug builds, then evolve
into ASSERTE calls, which in turn evaluate the Boolean expression passed in as a
parameter, and if FALSE then it calls _CrtDbgReport, which displays a message
box with the string-ified version of the expression parameter and breaks in the debugger
at the appropriate line.

As an example, the WTL’s CListBox has this method to insert a string into a listbox:

int InsertString(int nIndex, LPCTSTR lpszItem){
ATLASSERT(::IsWindow(m_hWnd));
return (int)::SendMessage(m_hWnd,
LB_INSERTSTRING, nIndex, (LPARAM)lpszItem);

}
The window handle data member must be initialized before this call. If not, during the
call it invokes an assertion. It is expected that application developers have a
comprehensive test plan to cover all the code paths, and coding errors such as calling
CListBox::InsertString without initializing the CListBox will be detected
(and fixed) using the debug build, and when finished, shipped as a very fast release
build to end-users. That’s the theory.

What happens if we … eh … skimped on testing! What happens if an error occurs on a
customer site and we are using release builds. WTL carries out no programmer error
checking in release builds. The above CListBox::InsertString method gets
compiled into a straight call to Win32’s SendMessage. In general, WTL methods
that are wrappers just call the underlying Win32 function and WTL methods that
perform more elaborate operations work as best they can. If errors occur, then either just
the last error value is set, the method returns an error code and the process continues, or
the process is terminated.

If it is vital for your application that all error values are checked, you can certainly make
the piece of application code which call the likes of CListBox ::InsertString
itself call ATLASSERT before and / or after the method calls or add other error
handling code which might even be invoked even during release builds, and handle the
error some other way.

98

WTL Developer’s Guide

The WTL Namespace
The new ISO C++ standard introduced the concept of namespaces. Template and class
names all have to be unique with a namespace. In the past there was a single global
namespace within a project. This sometimes caused problems as libraries from different
vendors often has name clashes. What ISO C++ added was the idea of creating extra
namespaces, in addition to the global namespace.

If we have a C++ namespace for WTL and a namespace for ATL and yet another
namespace for a third-party library, then all three can happily be used together safe in
the knowledge that even if classes from the different libraries use the same names there
will be no problems.

Every WTL header file starts with:

namespace WTL
{
and ends with:

}; //namespace WTL
Unlike a class definition, which can only be declared once, a namespace can be partially
declared in multiple header files, and all they entries become part of its namespace.

When distinguishing between an MFC class and a WTL class of the same name, we can
use the full WTL class name, which includes its namespace name. So we can talk about
WTL::CRect. The namespace is used just for naming purposes – it has no other
programmatic significance.

Within your source code, you will have to decide whether you wish to use the long-
form, WTL::CRect or the short-form, CRect. If you are only using WTL, then it is
likely adding WTL:: every time you use a template/class name will be tedious, so you
will wish to avoid it. You can do this by adding the “using namespace WTL;”
line to your source code. However, if using multiple libraries, and there is a possibility
of name clashes, then you will have to use the full name.

These lines are at the bottom of the WTL header file, atlapp.h:

 #ifndef _WTL_NO_AUTOMATIC_NAMESPACE
using namespace WTL;
#endif //!_WTL_NO_AUTOMATIC_NAMESPACE
In the project generated by the WTL AppWizard,
_WTL_NO_AUTOMATIC_NAMESPACE is not defined, so the using entry is in force,
and the generated code does not use WTL:: prefix. If you want to take this out, just
define or set it in the preprocessor definitions.

Template/Class/Method Naming
The naming conventions of WTL deliberately follow those of MFC. This makes sense,
as both are based above the Win32 API, and most WTL developers will be coming
from a MFC background.

99

WTL Developer’s Guide

WTL has class names such as CEdit, CStatic and CDC. Handlers for Windows
messages have names such as OnInitDialog and OnOK. Data exchange is carried
out using DDX, and a method called DoDataExchange.

Where there is a difference between MFC and Win32 naming, WTL follows Win32,
which is sensible. Therefore for the Win32 UpDown control, WTL has a template
called CUpDownCtrlT whereas MFC has a class called CSpinButtonCtrl.

Versions of Windows
One appealing aspect of WTL is its full support of all new UI features in Windows
2000 and Windows Me. WTL can also be used with all older versions of Windows, and
the level of functionality it exposes can be controlled via a #define of WINVER.

Complete list of Macros used in WTL
The implementation of the WTL functionality is controlled from a variety of #defines.
They are listed in the following table, along with the default and what impact they have.
Note that some of them are preceded and succeeded by one or two underscores – and
you better make sure you get it right!

Some of the macros are Win32-based, some are ATL-based and some are new to WTL.

Win32 Macros Which Impact WTL
Macro Default Impact

_WIN64 Not
defined

If defined, the 64-bit friendly version of
_SettingChangeDlgProc is used; if not
defined, the 64/32-bit friendly functions
GetWindowLongPtr etc. are mapped to the 32-
bit only GetWindowLong etc.

_WIN32_WINNT Not
defined

If defined as 0x400, assume that the target platform
is Windows NT 4 or later; if defined as 05x00,
assume target is Windows 2000 or later

WINVER Set to
0x0400 in
stdafx.h

If defined as 0x400, assume the target platform is
one of Windows 95 or Windows NT 4 or later; if
defined as 0x0500, assume the target platform is
Windows 98, Windows 2000 or later

_WIN32_IE Set to
0x0400 in
stdafx.h

Defines minimum version of Internet Explorer
which is installed

_UNICODE Not
defined

If defined, TCHARs expect to wchar_t etc. and use
W versions of OS APIs, if not defined, TCHAR
expands to char etc., and use A version of OS APIs

100

WTL Developer’s Guide

ATL Macros Which Impact WTL
Macro Default Impact

_ATL_MIN_CRT Depends States whether the C-Runtime Library should be
included or not. In the WTL AppWizard generated
project settings, it is defined for release builds, and it
is not defined for debug builds.
When _ATL_MIN_CRT is defined,
_ATL_USE_DDX_FLOAT may not be defined

WTL Macros That You Can Define
Macro Default Impact

_WTL_NO_
AUTOMATIC_
NAMESPACE

Not
defined

If not defined, then the statement using
namespace WTL;
is added, other wise each WTL construct needs to
be preceded with WTL::

_WTL_NO_CSTRING Not
defined

If defined, states that you do not wish to use
CStrings anywhere in the app

_CMDBAR_EXTRA_
TRACE

Not
defined

If defined, then extra debug output is supplied for
command bars

_ATL_USE_DDX_
FLOAT

Not
defined

If defined, then no floating point DDX support is
available. If true then it is available – and it will
use the CRT (so this cannot be defined at the
same time _ATL_MIN_CRT is defined)

_ATL_NO_REBAR_
SUPPORT

Not
defined

If true, do not add support for the rebar control

_ATL_NO_MSIMG Not
defined

If not defined, then link with "msimg32.lib" and
add these methods to WTL::CDC:
AlphaBlend, TransparentBlt and
GradientFill

_ATL_NO_OPENGL Not
defined

If not defined, then link with “opengl32.lib” and
add 15 OpenGL wrapper methods to WTL:CDC

_WTL_NO_WTYPES Not
defined

If defined, then provide the WTL classes CSize,
CPoint & CRect

_ATL_USE_NEW_
PRINTER_INFO

Not
defined

If defined, add support for printer templates based
on PRINTER_INFO_8 and PRINTER_INFO_9

_RICHEDIT_VER Set to
0x0100
in
stdafx.h

Specifies the level of rich edit support

101

WTL Developer’s Guide

RICHEDIT Not
defined

If defined, add declarations of
CRichEditFontDialogImpl and
CRichEditFontDialog, which provide font
selection for the Rich Edit control

OEMRESOURCE Not
defined

If defined, add implementations of
AtlLoadSysBitmap and
AtlLoadSysBitmapImage which call
Win32’s LoadBitmap and LoadImage with a
NULL first parameter, which means they use the
predefined Win32 bitmaps

_ATL_NO_COM Not
defined

If not defined, then for many WTL classes, where
there is a member function that takes a string
parameter, add an overridden member that takes a
BSTR. Also, add the member functions
AllocSysString and SetSysString to
WTL’s CString

_OLEAUTO_H_ Not
defined

This macro is only evaluated if _ATL_NO_COM is
not defined
If _OLEAUTO_H_ is defined, then add a member
function GetTextBSTR to WTL’s
CListBoxT, and overridden member functions
GetText to CTreeItem and GetTextFace
to CDC, both of which retrieve a BSTR

WTL Macros That You May Use But Should Not Define
Macro Default Impact

_WTL_VER 0x0300 Version of WTL. It is defined in the WTL header
file AtlApp.h, but is not used anywhere. Future
versions might need it.

__ATLSTR_H__ Depends States that WTL’s CStrings may be used.
By default, this is defined if both atlmisc.h is
included and _WTL_NO_CSTRING is not defined

Debugging with WTL
The development environment for Visual C++ includes many excellent productivity
features. (It is unfortunate that most developers have not taken the time to explore
them).

One of every developer’s favorites is while executing an application under the
debugger, if you float the cursor above a variable name or look at it in the data window,
your see the variable’s value. Visual C++ automatically knows how to handle simple
variables such as integers and character pointers. But how should it display more
complex data structures and classes?

102

WTL Developer’s Guide

When you install Visual C++, a text file called AUTOEXP.DAT is placed under
<INSTALL_LOCATION>\Common\MSDev98\Bin\. This file contains
instructions, using simple text-based formatting rules, telling the Visual C++
environment how to render specific data structures. The formatting rules are explained
at the top of the file.

By default, AUTOEXP.DAT contains entries for common Win32 structures, such as
POINT and RECT (but not SIZE), and many common MFC classes.

There are no entries for WTL. But that is not a problem, as we can add our own. Open
up the file in Notepad and pop the following entries at the bottom of the file.

WTL::CString =<m_pchData,st>
WTL::CSize =cx=<cx> cy=<cy>
WTL::CPoint =x=<x> y=<y>
WTL::CRect =top=<top> bottom=<bottom> left=<left> right=<right>
WTL::CDCT<*> =hDC=<m_hDC>
WTL::CClientDC=hDC=<m_hDC> hWnd = <m_hWnd>
WTL::CWindowDC=hDC=<m_hDC> hWnd = <m_hWnd>
WTL::CPaintDC =hDC=<m_hDC> hWnd = <m_hWnd>
WTL::CServerAppModule =m_hEventShutdown=<m_hEventShutdown>
WTL::CPenT<*> =m_hPen=<m_hPen>
WTL::CBrushT<*> = m_hBrush=<m_hBrush>
WTL::CFontT<*> = m_hFont=<m_hFont>
WTL::CBitmapT<*> = m_hBitmap=<m_hBitmap>
WTL::CPaletteT<*> = m_hPalette=<m_hPalette>
WTL::CRgnT<*> = m_hRgn=<m_hRgn>
ATL::CWindowImpl<*>=<,t> hWnd=<m_hWnd>
ATL::CWindow=<,t> hWnd=<m_hWnd>
Note that the namespace specification for the last two entries is ATL:: and not WTL::.

Structures and classes that do not have entries in AUTOEXP.DAT are rendered using
“…”, which is not very informative. The following two screen dumps are from a WTL
application running under DevStudio’s Debugger, and the cursor is floating over a
WTL variable of type CString. This is how a WTL CString is displayed without
(left picture) and with (right picture) the AUTOEXP.DAT entries shown above:

The AUTOEXP.DAT entries are of the format:

type=[text]<member[,format]>
Type indicates the data-type (including the namespace name). When the debugger
detects a variable of this type, it renders a string based on the rest of the entry. The
[text] field is optionally, but if present is rendered as is. The <member> field states
which data member of the class or structure should be displayed, and the format field
states how it should be displayed.

So the entry . . .:

WTL::CString =<m_pchData,st>

103

WTL Developer’s Guide

. . . says please display a WTL::CString as the m_pchData field, and display it as a
NULL terminated string, and the entry. . :

WTL::CBrushT<*> = m_hBrush=<m_hBrush>
. . . says please display any class based on the WTL::CBrushT template as the text
string “m_hBrush=” and the actual data value of the m_hBrush data member (in the
default integer format).

If an entry does not exist for a class, and if that class is derived from another class or a
structure, then an attempt is made to find an entry for the base class or structure.
Because of this, even without the entries for WTL::CPoint and WTL::CRect, you
will see tooltips for them, because they are derived from the Win32 data types, POINT
and RECT, and entries for these structures do exist in the default AUTOEXP.DAT. As
there is no entry for Win32’s SIZE structure, then a tooltip is not displayed for
WTL::CSize.

To ensure the right match, it is important that the namespace name is correct and you
are clear about whether you are matching a class or a template. For a template you must
use <*>, and for a class, you may not use it. Note that CWindow is a class, not a
template, and hence is entered without the <*>. All the standard and common control
wrappers are based on CWindow.

In addition to seeing the actual value of the variable, this feature is also helpful to know
it if it NULL (e.g. non-initialized), or some value that is impossible (e.g. illegal memory
address), thus indicating memory problems.

 Detailed Comparison between MFC and WTL
Most developers starting with WTL will have already developed MFC applications.
They will have an excellent knowledge of MFC and have used it in quite substantial
projects.

They will wish in some cases to leverage that knowledge to quickly develop WTL
applications and sometimes might even need to port from MFC to WTL.

To assist these, here we examine how the functionality of each of the MFC classes can
be provided in a WTL application. We also look at what is in WTL that is not supported
inside MFC.

We follow the categories in the MFC hierarchy charts.

Application Architecture
• CCmdTarget – command routing is done in ATL message maps

• CWinThread – use Win32 Multithreading APIs

• CWinApp – CAppModule or CServerAppModule
• COleControlModule – ATL ActiveX control infrastructure

104

WTL Developer’s Guide

• CDocTemplate, CSingleDocTemplate, CMultiDocTemplate –
WTL has no document support – use XML code

• COleObjectFactory – Use ATL’s wide range of class factories

• COleTemplateServer / COleMessageFilter – WTL has no Active
Document support

• COleDataSource, COleDropSource, COleDropTarget – WTL
has no universal data transfer support – could implement directly

• CConnectionPoint – Use ATL’s connection point templates and proxy
generator

• CDocument / CHtmlEditDoc / CRichEditDoc – WTL has no
document support – you will need to manually implement these features

• COleDocument / COleLinkingDoc / COleServerDoc,
CDocItem/ COleClientItem/ COleDocObjectItem /
COleServerItem / CDocObjectServerItem /
CDocObjectServer – WTL does not support Active Documents

• CRichEditCntrItem – WTL provides a template for the rich edit control,
but has no support from Active Document server/containment for it, as this
MFC class provides

• COleControlContainer / COleControlSite – Use ATL’s ActiveX
control containment functionality (CAxWindow etc.)

Window Support
• CWnd – Use ATL’s CWindow, CWindowImpl and CContainedWindow

Frame Window
• CFrameWnd – Use WTL’s CFrameWindowImpl
• CDockFrameWnd – WTL provides no docking support

• CMDIChildWnd – Use WTL’s CMDIChildWindowImpl
• CMDIFrameWnd – Use WTL’s CMDIFrameWindowImpl
• CMDIDockSiteFrame – WTL provides no docking support

• COleIPFrameWnd – WTL provides no in-place activation support

• CSplitterWnd – Use WTL’s CSplitterImpl,
CSplitterWindowImpl and CSplitterWindowT

Question - CTabMDIChildWnd and CTabFrameWnd are listed in the MFC hierarchy
chart, but no doc provided – Any ideas what they are? VC++ v6.1

105

WTL Developer’s Guide

Property Sheets
• CPropertySheet – Use WTL’s CPropertySheetWindow,

CPropertySheetImpl and CPropertySheet

Dialog Boxes
• CDialog – Use WTL’s CDialogImpl
• CCommonDialog – WTL’s CCommonDialogImplBase
• CColorDialog – WTL’s CColorDialogImpl and CColorDialog
• CFileDialog – WTL’s CFileDialogImpl and CFileDialog
• CFindReplaceDialog – WTL’s CFindReplaceDialog
• CFontDialog – CFontDialogImpl and CFontDialog
• COleDialog / COleBusyDialog / COleChangeIconDialog /

COleChangeSourceDialog / COleConvertDialog /
COleInsertDialog / COleLinksDialog / COleUpdateDialog
/ COlePasteSpecialDialog / COlePropertiesDialog – WTL
offers no Active Document support at all

• CPageSetupDialog – WTL’s CPageSetupDialogImpl and
CPageSetupDialog

• CPrintDialog – WTL’s CPrintDialogImpl and CPrintDialog
• COlePropertyPage – ATL’s ActiveX control functionality provides similar

support

• CPropertyPage – WTL’s CPropertyPageWindow,
CPropertyPageImpl and CPropertyPage

Question - CDHtmlSinkHandler / CDHtmlEventSink / CDHtmlEventHandler /
CDHtmlHostHandler/CDHtmlDialog /CMultiPageDHtmlDialog are listed in the MFC
hierarchy chart but no doc provided – Any ideas what they are? VC++ v6.1

Views
• CView – WTL offers no special class for the view. The WTL AppWizard

generated application code does contain a view class derived from
CWindowImpl –this simplifies the design immensely

• CScrollView – Use WTL’s CScrollImpl, CScrollWindowImpl,
CMapScrollImpl, CMapScrollWIndowImpl and CFSBWindowT

• COleDBRecordView/CRecordView – WTL’s offers no corresponding
functionality – which is a good, as trying to force database editing into MFC’s
Document/View infrastructure was not a good approach – use WTL’s
CDialogImpl< MYCLASS > [form view] when needed

106

WTL Developer’s Guide

• CCtrlView – In MFC, this class derives from CView and is the parent of
other views based on controls, such CEditView and CTreeView. WTL does
not provide such an intermediary class

WTL offers no specific templates for views based controls, as it has no need for them. It
does offer a complete range – they are to be implemented by deriving from the
CWindowImpl template based on the control in question (This is also supported in
step 2 in the WTL AppWizard).

• CEditView –CWindowImpl< MYCLASS, CEdit>
• CListView - CWindowImpl< MYCLASS, CListViewCtrl>
• CRichEditView -

 CWindowImpl< MYCLASS, CRichEditCtrl >
• CTreeView - CWindowImpl< MYCLASS, CTreeViewCtrl>
• CFormView - CDialogImpl< MYCLASS >
• CHtmlEditView – This class is listed in the MFC hierarchy chart, along with

CHtmlEditBase / CHtmlEditCtrl, but no class documentation on the
MSDN and no implementation in the VC++ installation is available – we
assume it will be provided in a future version – and will be based on MSHTML
Editing Platform. For more details. See:
 http://msdn.microsoft.com/workshop/browser/mshtmleditplaf.asp
WTL provides no functionality to edit HTML, but this could be manually
implemented

• CHtmlView – CWindowImpl< MYCLASS, CAxWindow>; The ATL
CAxWindow uses the Web Browser control internally

Controls
Both MFC and WTL offer a complete range of wrappers for Window controls. WTL’s
controls are templates (names ends in T) and a default implementation based on
CWindow is provided (without the T).

Note that WTL always uses the correct OS name (e.g. UpDown control, TrackBar
control), whereas MFC sometimes invents its own (e.g. SpinButtonCtrl or SliderCtrl)

• CAnimateCtrl - CAnimateCtrlT<CWindow> CAnimateCtrl;
• CButton - CButtonT<CWindow> CButton
• CBitmapButton - CBitmapButton : public

CBitmapButtonImpl
• CComboBox - CComboBoxT<CWindow> CComboBox
• CComboBoxEx - CComboBoxExT<CWindow> CComboBoxEx

107

http://msdn.microsoft.com/workshop/browser/mshtmleditplaf.asp

WTL Developer’s Guide

• CDataTimeCtrl -
CDateTimePickerCtrlT<CWindow>CDateTimePickerCtrl

• CEdit - CEditT<CWindow> CEdit [Note: WTL also offers
CEditCommands, to assist with the handling of common editing commands
such as clear/copy/page/undo]

• CHeaderCtrl - CHeaderCtrlT<CWindow> CHeaderCtrl
• CHotKeyCtrl - CHotKeyCtrlT<CWindow> CHotKeyCtrl
• CIPAddressCtrl -

CIPAddressCtrlT<CWindow> CIPAddressCtrl
• CListBox - CListBoxT<CWindow> CListBox
• CCheckListBox –

CCheckListViewCtrlImpl/CCheckListViewCtrl
• CDragListBox

- CDragListBoxT<CWindow> CDragListBox; [Note: WTL also
offers CDragListNotifyImpl to help with notifications]

• CListCtrl - CListViewCtrlT<CWindow> CListViewCtrl
• CMonthCalCtrl -

CMonthCalendarCtrlT<CWindow> CMonthCalendarCtrl
• CProgressCtrl - CProgressBarCtrlT<CWindow>

CProgressBarCtrl
• CReBarCtrl - CReBarCtrlT<CWindow> CReBarCtrl [Note that

WTL offers extensive commandbar support, based on the rebar]

• CRichEditCtrl - CRichEditCtrlT<CWindow>
CRichEditCtrl [Note: WTL also offers CRichEditCommands to help

with editing command processing

• CScrollBar - CScrollBarT<CWindow> CScrollBar
• CSliderCtrl -

CTrackBarCtrlT<CWindow> CTrackBarCtrl
• CSpinButtonCtrl -

CUpDownCtrlT<CWindow> CUpDownCtrl
• CStatic - CStaticT<CWindow> CStatic
• CStatusBarCtrl - CStatusBarCtrlT<CWindow>

CStatusBarCtrl [Note that WTL offers substantial extra functionality in
CMultiPaneStatusBarCtrlImpl / CMultiPaneStatusBarCtrl]

• CTabCtrl - CTabCtrlT<CWindow> CTabCtrl

108

WTL Developer’s Guide

• CToolBarCtrl -
CToolBarCtrlT<CWindow> CToolBarCtrl

• CToolTipCtrl -
CToolTipCtrlT<CWindow> CToolTipCtrl
[Note that WTL also offers CToolInfo, to help with the initialization of
Win32’s TOOLINFO structure]

• CTreeCtrl -
CTreeViewCtrlT<CWindow> CTreeViewCtrl and
CTreeViewCtrlExT:public CTreeViewCtrlT< TBase >
and CTreeItem

• CHtmlEditBase / CHtmlEditCtrl – See note regarding these classes in
the earlier discussion of MFC’s CHtmlEditView

• COleControl – This is MFC’s base class for ActiveX controls – ATL offers
equivalent (really, far superior) functionality

Exceptions
• CException, CArchiveException, CDaoException, CDBException,

CFileException, CInternetException, CMemoryException,
CNotSupportException, COleException, CResourceException, CUserException
– WTL has no exception classes.

File Services
• CFile, CMemFile, CSharedFile, COleStreamFile,

CMonikerFile, CAsyncMonikerFile, CDataPathProperty,
CCachedDataPathProperty, CSocketFIle, CInternetFIle,
CGopherFIle, CHttpFile – WTL offers no handling file support

• CRecentFileList – Use WTL’s CRecentDocumentList

Graphical Drawing
• CDC – WTL’s CDC
• CClientDC – WTL’s CClientDC
• CMetaFileDC – WTL’s CEnhMetaFileDC [Note that WTL also offers a

number of additional classes for enhanced metafiles]

• CPaintDC – WTL’s CPaintDC
• CWindowDC – WTL’s CWindowDC

Control Support
• CDockState – WTL offers no support for docking

• CImageList – WTL’s CImageList

109

WTL Developer’s Guide

Graphical Drawing Objects
• CGdiObject – WTL has no common base for its GDI templates

• CBitmap – WTL’s CBitmap
• CBrush – WTL’s CBrush
• CFont – WTL’s CFont
• CPalette – WTL’s CPalette
• CPen – WTL’s CPen
• CRgn – WTL’s CRgn

Menu
• CMenu – WTL’s CMenu [WTL also offers CMenuItemInfo, a helper to

access Win32’s MENUINFO structure]

Command Line
• CCommandLineInfo – WTL’s CServerAppModule has the FindOneOf

and ParseCommandLine helper functions – [In the WTL AppWizard, step 1,
if Act as a COM Server is selected, the generated code uses
CServerAppModule, otherwise it uses CAppModule]

MFC’s Arrays/Lists/Maps/Typed Template Collections
WTL has no container classes. You may either use the excellent STL (many of whose
features are dependent on the CRT) or ATL offers a limited range of collection classes
that are not dependent on the CRT.

MFC’s ODBC/DAO/Synchronization/Sockets/Internet Services
WTL offers no equivalent support for MFC classes in these areas.

In WTL applications, MFC’s ODBC/DAO functionality can be replaced with the VC++
OLE DB Consumer templates. Synchronization can be provided by using the relevant
Win32 APIs directly. Sockets functionality can be provided by direct calls to
WinSock2. Internet services can be provided by direct calls to the WinInet APIs.

Internet Server API (ISAPI)
MFC offers CHttpArgList, CHtmlStream, CHttpFilter,
CHttpFilterControl, CHttpServer, CHttpServerContext,
CInternetSession, CInternetConnection, CFtpConnection,
CGopherConnection, CHttpConnection, CFtpFindFile,
CGopherFindFile and CGopherLocator.

ATL will cover this area comprehensively in Visual C++ v7, in a technology to be
known as ATL Server. For more details, see
 http://msdn.microsoft.com/vstudio/nextgen/default.asp

110

http://msdn.microsoft.com/vstudio/nextgen/default.asp

WTL Developer’s Guide

Run-time Object Model Support
• CArchive – This is used to serialize data, which might ultimately end up in a

document or sent over a socket – WTL offers no similar functionality

• CDumpContext – ATL/WTL does not fully cover this, but some of the
debugging facilities within ATL partially help – for all the features, you would
have to implement a dump function for each class, and walk some collection of
class instances and call the function

• CRuntimeClass – Use ISO C++ RTTI if needed – but in general it is
considered bad practice to use either of these, as they is costly in terms of
performance/size and can cause problems in future (if client code has some big
switch doing class specific processing, what happens if later a new class is
added – then client has to be change – (class specific code should be inside the
class!)

Simple Value Types
• CPoint – WTL’s CPoint
• CRect – WTL’s CRect
• CSize – WTL’s CSize
• CString – WTL’s CString
• CTime – This is MFC’s wrapper for absolute time, stored as time_t - WTL

offers no similar class

• CTimeSpan - This is MFC’s wrapper for the interval between times, stored as
time_t - WTL offers no similar class

Structures
• CCreateContext – MFC uses this when creating frame windows and views

for a document. WTL provides no document support

Question - CHttpArg is listed in the MFC Hierarchy Chart but no documentation and
no implementation is provided – Any ideas what it is? VC++ v6.1

• CMemoryState – This is used for debugging memory leaks – WTL/ATL
provides no similar functionality, apart from ATL’s functionality which traces
interface reference counting

• COleSafeArray – WTL offers no SafeArray support – one can use the
Win32 SafeArray APIs directly [Should this not be part of Automation Types
section in the MFC hierarchy?]

• CPrintInfo – WTL’s CPrintJob

111

WTL Developer’s Guide

Support Classes
• CCmdUI – WTL’s CUpdateUI
• COleCmdUI – WTL provides no Active Document Support

• CDaoFieldExchange – WTL/ATL provides no DAO support – DAO is a
legacy API, and for new projects you will be much better off to using VC++
OLE DB Data Consumer templates, which can be used inside WTL applications

• CDataExchange – WTL’s CWinDataExchange
• CDbVariant – This is a MFC wrapper for VARIANTs that is not based on

OLE – useful for the MFC ODBC data access – For WTL, use the OLE DB data
consumer templates

• CFieldExchange - WTL/ATL provides no ODBC support – ODBC is a
legacy API, and for new projects you will be much better off using VC++ OLE
DB Data Consumer Templates, which can be used inside WTL applications

Question - CImage is listed in the MFC Hierarchy Chart but no documentation and no
implementation is provided – Any ideas what it is? VC++ v6.1

• COccManager – This is a MFC helper class which provides ActiveX control
Containment – Use ATL’s CAxWindow

• COleDataObject – Use ATL’s IDataObjectImpl
• COleDispatchDriver – Use ATL’s CComDispatchDriver
• CPropExchange – Use ATL’s Active Control properties functionality

• CRectTracker – WTL offers no similar class

• CWaitCursor – WTL’s CWaitCursor

Question – CWinDHtmlDDX & CDHtmlDDX are listed in the MFC Hierarchy Chart
but no documentation and no implementation is provided – Any ideas what they are?
VC++ v6.1

OLE Type Wrappers
• CFontHolder – This is a wrapper for Platform SDK IFontDisp interface

returned as the Font stock property for ActiveX controls. WTL/ATL provides no
similar support – you can simply use IFontDisp (and IFont) directly

• CPictureHolder - This is a wrapper for Platform SDK IPictureDisp
interface returned as the MouseIcon and Picture stock properties for
ActiveX controls. WTL/ATL provides no similar support – you can simply use
IPictureDisp (and IPicture) directly

112

WTL Developer’s Guide

Automation Types
• COleCurrency / COleDateTime / COleDateTimeSpan – These

are wrappers for various fields in Automation’s VARIANT structure. WTL
offers no similar support – you can use ATL’s CComVariant or VC++’s
native _variant_

• COleVariant – CComVariant or VC++ native _variant_

What is in WTL but not MFC
Unlike WTL, MFC does not provide wrappers for the folder dialog or the rich edit font
dialog (WTL provides CFolderDialogImpl / CFolderDialog and
CRichEditFontDialog / CRichEditFontDialogImpl).

MFC does not support equivalents of WTL’s CEditCommands or
CRichEditCommands.

MFC does support menubars and toolbars, but does not provide the extra functionality
of WTL’s command bars.

MFC does not provide a wrapper for HTREEITEM, whereas WTL provides
CTreeItem.

WTL provides excellent enhanced metafile support, beyond what MFC offers.

WTL offers these additional control classes, which have no direct equivalent in MFC:

• CPageCtrl
• CFlatScrollBarImpl
• CCustomDraw
• CHyperLink

WTL’s CString
To begin to get a feel for WTL’s functionality, we will here examine one of its classes –
CString.

The WTL CString class manages a character buffer. It provides virtually every
conceivable operation you would like to carry out on a string. It offers all the
functionality of MFC’s CString class – it is such a perfect emulation of MFC’s
CString that their class documentation is interchangeable! Every method in MFC’s
CString is in WTL’s CString.

A string in WTL’s CString is stored in a contiguous array of characters. WTL
supports 16-bit (UNICODE) and 8-bit characters (ASCII) and a mixture (MBCS).
CString offers a number of constructors that takes as the input parameter strings in
different formats.

CString();

113

WTL Developer’s Guide

CString(const CString& stringSrc);
CString(TCHAR ch, int nRepeat = 1);
CString(LPCSTR lpsz);
CString(LPCWSTR lpsz);
CString(LPCTSTR lpch, int nLength);
CString(const unsigned char* psz);

The internal buffer will automatically grow and contract as needed. Member functions
are provided to get the length of the string, to determine it is NULL and to empty it.

int GetLength() const;
BOOL IsEmpty() const;
void Empty();

CStrings are reference-counted, so that when passing strings around the reference
count is incremented and the entire string is not copied. Only if a string is about to be
changed will a separate copy of the shared string data be made. If a CString is going
to be used from multiple threads, and that use includes writing from at least one thread,
then care must be taken with synchronization.

Member functions are provides to access the CString as if it were a character array.
The LPCTSTR() operator means a CString may be passed in anywhere a LPCTSTR
is expected.

TCHAR GetAt(int nIndex) const;
TCHAR operator[](int nIndex) const;
void SetAt(int nIndex, TCHAR ch);
operator LPCTSTR() const;

A complete range of assignment & concatenation operators is supported.

Member functions are provided for string comparisons, extractions, conversions and
trimming.

int Compare(LPCTSTR lpsz) const;
int CompareNoCase(LPCTSTR lpsz) const;
int Collate(LPCTSTR lpsz) const;
CString Mid(int nFirst, int nCount) const;
CString Mid(int nFirst) const;
CString Left(int nCount) const;
CString Right(int nCount) const;
CString SpanIncluding(LPCTSTR lpszCharSet) const;
CString SpanExcluding(LPCTSTR lpszCharSet) const;
void MakeUpper();
void MakeLower();
void MakeReverse();
void TrimRight();
void TrimLeft();
void AnsiToOem();
void OemToAnsi();

Member functions are provided for string replacement, insertions & appending.

int Replace(TCHAR chOld, TCHAR chNew);
int Insert(int nIndex, TCHAR ch);
int Insert(int nIndex, LPCTSTR pstr);

114

WTL Developer’s Guide

int Delete(int nIndex, int nCount = 1);
int Find(TCHAR ch) const;
int ReverseFind(TCHAR ch) const;
int FindOneOf(LPCTSTR lpszCharSet) const;
int Find(LPCTSTR lpszSub) const;
const CString& Append(int n)
void __cdecl Format(LPCTSTR lpszFormat, ...);
void __cdecl Format(UINT nFormatID, ...);
BOOL __cdecl FormatMessage(LPCTSTR lpszFormat, ...);
BOOL __cdecl FormatMessage(UINT nFormatID, ...);

WTL’s CString supports loading strings from a resource file:

// Windows support
BOOL LoadString(UINT nID);

It also supports Automation BSTRs.

BSTR AllocSysString() const;
BSTR SetSysString(BSTR* pbstr) const;

These methods are provided to allow access to the data for direct manipulation

LPTSTR GetBuffer(int nMinBufLength);
void ReleaseBuffer(int nNewLength = -1);
LPTSTR GetBufferSetLength(int nNewLength);
void FreeExtra();

After calling GetBuffer, and changing the data, it is important to later call
ReleaseBuffer, so that CString again takes responsibility for the buffer.

To lock and unlock the buffer for reference counting uses these methods:

LPTSTR LockBuffer();
void UnlockBuffer();

From just examining this one WTL class, it should become clear that when WTL
provides support for a feature, it is very comprehensive.

115

WTL Developer’s Guide

Chapter 5
The WTL AppWizard

Objectives
The objectives of this chapter are to:

• Use the WTL AppWizard to create all support application types

• Review the generated build settings

• Examine the application features available in Step 1 of the AppWizard – COM
Server and ActiveX hosting

• Examine the UI features available in Step 2

• Conduct a code walkthrough of all the generated source code

Just Say “HelloWorld”
In the time-honored Kernighan & Ritchie tradition of computerdom, we had better start
our exploration of WTL with the simplest HelloWorld application we can create. We
could either display the text in a dialog box or in an SDI or MDI application window.
We could display it as ordinary text with a view, or a listbox, richeditbox, treeview,
listview or each a HTML page. It is such a difficult design decision; let’s try them all!

Naturally we do not wish to type (that’s too much effort) so we will use the WTL
AppWizard and hopefully if it is any good it won’t have too much effort. Of course we
wish to examine how to use the AppWizard, but it is very simple to use and only
contains two steps – it is almost trivial, but the real magic is what it produces. Our goal
here is to comprehensively understand the generated application code. After all, we will
use the AppWizard for two minutes at the beginning or a project, but have to spend six
months or more building our application above the foundation of the code it generates.

Modal Dialog-Based Application
To use the WTL AppWizard to create a dialog-based application, start DevStudio,
select File/New, select the ATL/WTL AppWizard, and the following first Wizard step
will appear. As we wish to create a dialog-based app, select Dialog-Based and select
Modal (we will examine modeless dialogs shortly).

As we have selected Dialog-Based, all step 2 options are disabled (as they relate to
standard application windows), so we can select finish at the bottom of step 1. Then we
use the ResourceView to edit the dialog IDD_MAINDLG and add a static control with
the text “HelloWorld”. Compile and run.

116

WTL Developer’s Guide

The wizard-weary gray-haired Visual C++ developer will recall his/her early MFC days
and suspiciously think, “WTL is easy, but what is really happening – with MFC there
was a million lines of code generated and it was quite difficult to understand”.

With WTL, things are actually different, and somewhat easier.

The External Dependencies are based directly on the WTL header files. There is no
WTL DLL to use – only the header files are needed. The resources are in a file called
<projectname>.rc and there is an icon <projectname>.ico. Note that the icon used for
the top-left corner defaults to “ATL”.

There are three header files, stdafx.h, resources.h and maindlg.h. All of which are quite
small. Stdafx.h contains these #defines and #includes:

#define WINVER 0x0400
#define _WIN32_IE 0x0400
#define _RICHEDIT_VER 0x0100
#include <atlbase.h>
#include <atlapp.h>
extern CAppModule _Module;
#include <atlwin.h>

117

WTL Developer’s Guide

Resources.h contains defines for resource Ids, such as:

#define IDD_ABOUTBOX 100
#define IDR_MAINFRAME 128
#define IDD_MAINDLG 129

Maindlg.h contains the implementation of the CMainDlg class. It is the core
functionality of this application. It derives from the ATL Windowing class
CDialogImpl. It contains an ATL Windowing message map, which maps buttons Ids
to member functions. It also maps WM_INITDIALOG to OnInitDialog (all very
familiar to MFC developers!).

class CMainDlg : public CDialogImpl<CMainDlg> {
public:

enum { IDD = IDD_MAINDLG };
BEGIN_MSG_MAP(CMainDlg)

MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
COMMAND_ID_HANDLER(ID_APP_ABOUT, OnAppAbout)
COMMAND_ID_HANDLER(IDOK, OnOK)
COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

END_MSG_MAP()
LRESULT OnInitDialog(UINT /*uMsg*/, WPARAM /*wParam*/,
LPARAM /*lParam*/, BOOL& /*bHandled*/){

// center the dialog and set icons
. . .

return TRUE;
}

118

WTL Developer’s Guide

LRESULT OnAppAbout(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

CSimpleDialog<IDD_ABOUTBOX, FALSE> dlg;
dlg.DoModal();
return 0;

}
LRESULT OnOK(WORD /*wNotifyCode*/, WORD wID, HWND /*hWndCtl*/,

BOOL& /*bHandled*/) {
// TODO: Add validation code
EndDialog(wID);
return 0;

}
LRESULT OnCancel(WORD /*wNotifyCode*/, WORD wID, HWND

/*hWndCtl*/, BOOL& /*bHandled*/){
EndDialog(wID);
return 0;

}
};
Two source files are generated, stdafx.cpp and <projectname>.cpp. Stdafx.cpp contains
just two lines, #includes of stdafx.h and the ATL header file, atlimpl.h. The main
source file, <projectname>.cpp, #includes various WTL header files and maindlg.h,
then create a variable called _Module based on the WTL data type CAppModule,
and provides the following WinMain:

int WINAPI _tWinMain(HINSTANCE hInstance, HINSTANCE
/*hPrevInstance*/, LPTSTR lpstrCmdLine, int nCmdShow){

HRESULT hRes = ::CoInitialize(NULL);
ATLASSERT(SUCCEEDED(hRes));
// initialize the common controls
. . .

hRes = _Module.Init(NULL, hInstance);
ATLASSERT(SUCCEEDED(hRes));
CMainDlg dlgMain;
int nRet = dlgMain.DoModal();
_Module.Term();
::CoUninitialize();
return nRet;

}
Note that there are calls to CoInitialize and CoUninitialize, even though we
have not selected the COM Server application feature.

That is it. It is easy to really understand your first WTL application within ten minutes.

Default Project Settings
The WTL AppWizard produces project files with two pre-configured build settings –
one for release and one for debug. This contrasts with the ATL AppWizard, which
produces builds for Debug, Unicode Debug, Release MinSize, ReleaseMinDependency,
Unicode Release MinSize and UnicodeMinDependency. At first one might consider
ATL to be more helpful – but as we will see very often during our examination of
WTL, the minimalist approach that WTL offers is better.

119

WTL Developer’s Guide

The vast majority of developers just need two builds – one for debugging and one for
release. Decisions concerning UNICODE support or the tradeoff of minimum build
versus minimum size is made once during development, and it is very rare that
developers need to have multiple builds for these alternatives. They make their choice
and that is that. Having all these extra build settings hanging around can cause problems
and confusion. Project settings changes can incorrectly be made to the wrong build, and
they seemingly have no effect. Groups of developers working on the same project have
to all know which one to use. In most projects involving ATL, all but two of the build
settings become “dormant”, are never updated but are not deleted. It just adds to
potential problems. Smart developers get rid of these as soon as possible.

Unicode is supported if _UNICODE is defined.

The minimum sized binary is achieved if _ATL_DLL and _ATL_MIN_CRT are
defined.

The minimum dependency is achieved if _ATL_STATIC_REGISTRY and
_ATL_MIN_CRT are defined.

When developing with WTL, you should decide which of these settings you desire and
simply add they to the release and debug builds. If you really need additional builds
(thought it is unlikely) they simply create them.

The default preprocessor definition for a WTL AppWizard generated project is for the
DEBUG build:

WIN32,_DEBUG,_WINDOWS,_MBCS,STRICT
And for the release build:

WIN32,NDEBUG,_WINDOWS,_MBCS,STRICT,_ATL_MIN_CRT
Precompiled headers are supported through stdafx.h and stdafx.cpp.

Normally WTL does not use the C Run-Time Library. This is enforced when
_ATL_MIN_CRT is added, which is the default setting for the release build. If you do
decide to use CRT, then remove _ATL_MIN_CRT. If using the CRT, one point you
must be careful with is which version you are using. For efficiency reasons, there are
multiple versions of the CRT. Sometimes applications will only have one thread and
with the CRT to be as fast as possible. Other times applications will have multiple
threads and wish to call CRT functions concurrently, so a special version of the CRT
exists with synchronization as appropriate. This is slightly slower so is only used with
multi-threaded applications. How does the compiler know which one your application
should use? It does not. Instead, it lets you tell it, via a build setting.

In DevStudio, Project menu, select “Settings …” . The Project Settings dialog will be
displayed. Select the C/C++ property page and the Code Generation category. The Use
run-time library list shows the available options regarding which CRT to use. It is
almost always best if an EXE and all its DLLs use the same setting for this. It is often
disastrous if an EXE with multiple threads that uses the CRT only links with the single-
threaded version of the CRT.

120

WTL Developer’s Guide

The WTL AppWizard generate projects have this setting set to Multithreaded, which
makes sense. By default WTL projects do not use the CRT, but if they do they are
thread-safe.

Exception handling is enabled for debug build and disabled for release builds.

C++’s RTTI is not enabled for either Debug or Release builds. Most developers do not
need RTTI.

In WTL projects that are not COM servers, there are neither custom steps, pre-link steps
nor post-build steps. In WTL projects that are COM servers, there is this custom step
that registers the EXE if its timestamp is more recent than the dummy trg timestamp
file:

"$(TargetPath)" /RegServer
echo regsvr32 exec. time > "$(OutDir)\regsvr32.trg"
echo Server registration done!

SDI Application
Next, we will try to create a HelloWorld application that is presented as a typical main
window in an application. We need to create a new project, which we call
HelloWorldWin.

In the WTL AppWizard, select the SDI Application project type. Leave both application
features unchecked. Then select next. In the second step of the AppWizard use the
default selections.

Open the <projectname>view.h file, and in the OnPaint method replace the TODO
comment with this one line of code:

dc.TextOut(0, 0, TEXT("HelloWorld"));

When you build and run the application the following window will appear:

121

WTL Developer’s Guide

Let’s look at what is happening behind the scenes.

There are many more entries in the resources. Additional entries are provided for the
menubar, toolbar, and versioning. There is a string table with almost fifty strings, which
are used in various places in the application.

The files stdafx.h, stdafx.cpp and resources.h are the same are for the dialog-based
sample. The about box code is in a separate class, CAboutDlg in a separate file,
aboutdlg.h.

The three files that are different in the sample are <projectname>.cpp,
<projectname>view.h and mainfrm.h.

<Projectname>.cpp contains two functions – WinMain which is similar to the Dlg
implementation, with the change that the dlg.DoModal code is replaced by a called
to the second function in the file, Run.

int Run(LPTSTR /*lpstrCmdLine*/ = NULL,
int nCmdShow = SW_SHOWDEFAULT){

CMessageLoop theLoop;
_Module.AddMessageLoop(&theLoop);
CMainFrame wndMain;
if(wndMain.CreateEx() == NULL) {

ATLTRACE(_T("Main window creation failed!\n"));
return 0;

}
wndMain.ShowWindow(nCmdShow);

122

WTL Developer’s Guide

int nRet = theLoop.Run();
_Module.RemoveMessageLoop();
return nRet;

}
Run sets up instances of a class within our application called CMainFrame (defined in
our mainfrm.h) and the WTL class CMessageLoop.

_Module maintains a map of threadId / messageloop pairs, and calls to
AddMessageLoop and RemoveMessageLoop edit it as needed. Later we will see
the use of GetMessageLoop that retrieves the message loop for the current thread.

CMessageLoop manages arrays of message filters and idle handlers and performs the
traditional Win32 message dispatching. Idle handlers are functions that are called when
there are no more messages on the queue. They are usually used for background
processing. Message filters are functions that can be used to customize how messages
get translated, before the main message loop gets at them.

The WTL AppWizard has generated an implementation of a class called CMainFrame
in mainfrm.h for us. CMainFrame manage the main application window and within it
must render the menubar, toolbar, statusbar and a separate client area windows called
the view. In effect, it performs the same role as the MFC class of the same name.

class CMainFrame : public CFrameWindowImpl<CMainFrame>,
public CUpdateUI<CMainFrame>,
public CMessageFilter, public CIdleHandler{

public:
DECLARE_FRAME_WND_CLASS(NULL, IDR_MAINFRAME)
CHelloWorldWinView m_view;
CCommandBarCtrl m_CmdBar;

BEGIN_MSG_MAP(CMainFrame)
MESSAGE_HANDLER(WM_CREATE, OnCreate)
COMMAND_ID_HANDLER(ID_APP_EXIT, OnFileExit)
COMMAND_ID_HANDLER(ID_FILE_NEW, OnFileNew)
COMMAND_ID_HANDLER(ID_VIEW_TOOLBAR, OnViewToolBar)
COMMAND_ID_HANDLER(ID_VIEW_STATUS_BAR, OnViewStatusBar)
COMMAND_ID_HANDLER(ID_APP_ABOUT, OnAppAbout)
CHAIN_MSG_MAP(CUpdateUI<CMainFrame>)
CHAIN_MSG_MAP(CFrameWindowImpl<CMainFrame>)

END_MSG_MAP()

BEGIN_UPDATE_UI_MAP(CMainFrame)
UPDATE_ELEMENT(ID_VIEW_TOOLBAR, UPDUI_MENUPOPUP)
UPDATE_ELEMENT(ID_VIEW_STATUS_BAR, UPDUI_MENUPOPUP)

END_UPDATE_UI_MAP()

LRESULT OnCreate(. . .) {
// create command bar window, set up toolbar and call

 // the view’s Create function
. . .
CMessageLoop* pLoop = _Module.GetMessageLoop();

123

WTL Developer’s Guide

pLoop->AddMessageFilter(this);
pLoop->AddIdleHandler(this);

return 0;
}

LRESULT OnFileExit(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

PostMessage(WM_CLOSE);
return 0;

}

LRESULT OnFileNew(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/)

{
// TODO: add code to initialize document

return 0;
}
// Implementation of the other message handlers
. . .

};
CMainFrame derives from the following two WTL templates and two WTL classes.

• CFrameWindowImpl – Boilerplate code for manages frames

• CUpdateUI – Works in conjunction with an UPDATE_UI_MAP to perform
data exchange between UI elements (e.g. toolbar & statusbar) and code

• CMessageFilter – custom message filtering

• CIdleHandler – custom idle handling

CMainFrame has a macro called DECLARE_FRAME_WND_CLASS that identifies the
resource Id to use to when accessing UI resources such as toolbar, accelerator, and
menu descriptions. CMainFrame instantiates a class called
C<Projectname>View, which is responsible for the client area.

The CMainFrame::OnCreate function instantiates UI elements such as the toolbar,
the statusbar and the menubar, and calls Create on the View class.

It also gets the message loop for the current thread through a call to
GetMessageLoop and appends a message filter and idle handler.

There is a message map that maps menubar command Ids (e.g. ID_APP_EXIT &
ID_FILE_NEW) to handler functions (e.g. OnFileExit & OnFileNew). Note that
unlike MFC, where default implementation handlers for common commands are part of
the library, with WTL these handlers are directly in the application’s code. The WTL
AppWizard generated implementations of the handlers provide a full implementation
where possible (e.g. OnFileExit posts a WM_CLOSE, which results in app
shutdown) and otherwise the handlers contain a TODO comment (e.g. OnFileNew
needs to be written by the application developer). Unlike MFC, WTL does not provide

124

WTL Developer’s Guide

its own serialization code and binary file formats. Instead modern applications are
strongly encouraged to base their serialization on XML, and it is easy enough to add
your own XML code behind OnFileNew etc to call the XML parser.

When OnFileExit posts a WM_CLOSE, neither the WTL templates nor the WTL
AppWizard-generated application code detects this message, so by default it is passed
to DefWindowProc, which responds by calling the Win32 API DestroyWindow,
which posting a WM_DESTROY message. The application code does not detect this
either, but the WTL template CFrameWindowImplBase does – by mapping it to a
call to its member function OnDestroy. It in turn calls the Win32 API
PostQuitMessage, which pops a WM_QUIT message onto the message queue.

LRESULT OnDestroy(UINT, WPARAM, LPARAM, BOOL& bHandled){
if((GetStyle() & (WS_CHILD | WS_POPUP)) == 0)

::PostQuitMessage(1);
bHandled = FALSE;
return 1;

}
The WTL CMessageLoop::Run method has a for loop taking messages off the
message queue and processing them. It calls the Win32 API GetMessage, which
returns 0 if the message received is WM_QUIT. If this is the case, there is a break out of
the loop.

bRet = ::GetMessage(&m_msg, NULL, 0, 0);
. . .

else if(!bRet){
ATLTRACE2(atlTraceUI, 0,
_T("CMessageLoop::Run - exiting\n"));

break; // WM_QUIT, exit message loop
}

If you wish to customize shutdown, you could consider detecting the WM_CLOSE
message and when finished calling DestroyWindow manually.

The view class provides a straightforward ATL window that occupies the space from
underneath the toolbar to above the statusbar. It has a message map that by default
handles one message, WM_PAINT, which gets mapped to OnPaint. The
implementation of OnPaint by default contains a TODO comment, but we changed
that to call TextOut.

class CHelloWorldWinView :
public CWindowImpl<CHelloWorldWinView>{

public:
DECLARE_WND_CLASS(NULL)
BOOL PreTranslateMessage(MSG* pMsg){

pMsg;
return FALSE;

}
BEGIN_MSG_MAP(CHelloWorldWinView)

MESSAGE_HANDLER(WM_PAINT, OnPaint)
END_MSG_MAP()
LRESULT OnPaint(UINT /*uMsg*/, WPARAM /*wParam*/,

125

WTL Developer’s Guide

LPARAM /*lParam*/, BOOL& /*bHandled*/) {
CPaintDC dc(m_hWnd);
dc.TextOut(0,0, TEXT("HelloWorld"));
return 0;

}
};

Adding a Menu-item And a Toolbar Icon
The resources generated by the WTL AppWizard include a menu and a toolbar, both
identified by IDR_MAINFRAME. If we wish to add commands to menus or the toolbar,
then we need to extend these resources in ResourceView, assign command ids to them,
detect these command ids in the message map for the frame window and map them to
handler functions. An example will make this clearer. Imagine we wished to add a
menu item and toolbar icon which when pressed, would result in the Win32 Beep API
being called.

We start by adding a menu item to the resources, giving it an id of ID_FILE_BEEP.

We then add a toolbar icon to the toolbar resource. We also give it also the id of
ID_FILE_BEEP. To support tooltips, append “\nBeep” to the prompt.

Both the menubar and the toolbar are going to be hosted by the mainframe class.
Therefore we add this command handler to its message map:

COMMAND_ID_HANDLER(ID_FILE_BEEP, OnFileBeep)
And we add this implementation

LRESULT OnFileBeep(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

Beep(200,200);
return 0;

}

126

WTL Developer’s Guide

When we build and run the application we see the extra Beep menu item and Beep
toolbar icon. When either is pressed, we should hear a beep from the PC’s speakers.
When we hover the mouse over the beep toolbar icon we see its tooltip.

Assuming you accept the defaults for step 2 in the WTL AppWizard, the generated
application uses WTL’s command bars to display the contents of the menubar and
toolbar within rebar controls. One neat trick of WTL command bars is that when
rendering menu items that have the same command id as a toolbar icon, that icon is also
rendered along with the menu-item name. This greatly increases awareness among end-
users of what such icons mean – it is especially useful when very many icons are in use.

MDI Application
If we wish to edit multiple document types concurrently, the MDI is one approach. The
top-level mainframe window contains a number of childframe windows, each of which
can edit a document. Visual C++’s DevStudio itself is a classic example.

To examine the MDI support within WTL, create a new project called HelloWorldMDI,
and in the WTL AppWizard select the MDI Application option.

As with the SDI Application sample, in the OnPaint method in the
C<ProjectName>view class add this line:

dc.TextOut(0,0, TEXT("HelloWorld"));
Compile and run. There is another frame containing the menubar, toolbar, status bar,
and in its client area there can be a multiple MDI child window. Each of these has a
view and hence during each of their refreshes they output the string “HelloWorld”.

127

WTL Developer’s Guide

The code produced is very similar to that of the SDI Application. All files are exactly
the same, except for mainfrm.h. Also, there is an additional file called ChildFrm.h.

The CMainFrame class is defined in mainfrm.h as:

class CMainFrame : public CMDIFrameWindowImpl<CMainFrame>,
public CUpdateUI<CMainFrame>, public CMessageFilter,
public CidleHandler

In the SDI sample it derives from CFrameWindowImpl, whereas in the MDI sample
it derives from CMDIFrameWindowImpl, which WTL defines as:

template <class T, class TBase = CMDIWindow,
class TWinTraits = CFrameWinTraits> class CMDIFrameWindowImpl;

The message map handles three additional messages:

COMMAND_ID_HANDLER(ID_WINDOW_CASCADE, OnWindowCascade)
COMMAND_ID_HANDLER(ID_WINDOW_TILE_HORZ, OnWindowTile)
COMMAND_ID_HANDLER(ID_WINDOW_ARRANGE, OnWindowArrangeIcons)

Handler functions for the new messages merely pass the call onto default
implementations inside CMDIFrameWindowImpl’s CMDIWindow. You can change
these as needed.

LRESULT OnWindowCascade(WORD /*wNotifyCode*/, WORD /*wID*/, HWND
/*hWndCtl*/, BOOL& /*bHandled*/) {

MDICascade();
return 0;

}
LRESULT OnWindowTile(WORD /*wNotifyCode*/, WORD /*wID*/, HWND
/*hWndCtl*/, BOOL& /*bHandled*/){

MDITile();
return 0;

}
LRESULT OnWindowArrangeIcons(WORD /*wNotifyCode*/, WORD /*wID*/,

HWND /*hWndCtl*/, BOOL& /*bHandled*/){
MDIIconArrange();
return 0;

128

WTL Developer’s Guide

}
OnFileNew is also changes to create a new ChildFrame.

LRESULT OnFileNew(WORD /*wNotifyCode*/, WORD /*wID*/, HWND
/*hWndCtl*/, BOOL& /*bHandled*/)

{
CChildFrame* pChild = new CChildFrame;
pChild->CreateEx(m_hWndClient);

// TODO: add code to initialize document

return 0;
}

The ChildFrm.h file contains the definition of the new ChildFrame class.

It is defined simply as:

class CChildFrame : public CMDIChildWindowImpl<CChildFrame>
{
public:

DECLARE_FRAME_WND_CLASS(NULL, IDR_MDICHILD)
CHelloWorldMDIView m_view;
virtual void OnFinalMessage(HWND /*hWnd*/){

delete this;
}
BEGIN_MSG_MAP(CChildFrame)

MESSAGE_HANDLER(WM_CREATE, OnCreate)
MESSAGE_HANDLER(WM_FORWARDMSG, OnForwardMsg)
CHAIN_MSG_MAP(CMDIChildWindowImpl<CChildFrame>)

END_MSG_MAP()
LRESULT OnCreate(UINT /*uMsg*/, WPARAM /*wParam*/,

LPARAM /*lParam*/, BOOL& bHandled){
 m_hWndClient = m_view.Create(m_hWnd, rcDefault, NULL,
 WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN,
 WS_EX_CLIENTEDGE);

 bHandled = FALSE;
 return 1;
}

LRESULT OnForwardMsg(UINT /*uMsg*/, WPARAM /*wParam*/,
LPARAM lParam, BOOL& /*bHandled*/){

LPMSG pMsg = (LPMSG)lParam;
if(CMDIChildWindowImpl<CChildFrame>::PreTranslateMessage(pMsg))

return TRUE;
return m_view.PreTranslateMessage(pMsg);

}
};

Multiple Threads SDI
The SDI Application is fine when we wish to edit a single document of a single
document type at a time. This happens if the application only wishes to display a single

129

WTL Developer’s Guide

SDI window, and within it edit a single document (Notepad is a good example). The
MDI approach manages multiple child frames within a single top-level main frame.

What the Multiple Threads SDI option in the WTL AppWizard provides is the
capability of editing multiple documents in multiple top-level SDI windows (the
Notepad-like WTL example MTPad shows this – Microsoft Word 2000 is also a good
example). The end-user sees a separate top-level window for each open document, but
only a single process is running. There should be a slight performance increase (as
multiple threads in one process will work faster than multiple processes) and resources
(memory/files/database connection, etc.) can be shared among all the threads.

Now we wish to examine how this works. Create a new project called HelloWorldMT,
and in the WTL AppWizard select the Multiple Threads SDI option. When we select
this, the “Create as a COM Server” option is disabled. This is something we will
investigate further later. Select the defaults for step 2 options.

The code produced is quite similar to that from “SDI Application” option with 3 areas
of difference. In both the resource file and the mainfrm.h file there are a small
difference and there is a substantial difference in the <projectname>.cpp file.

The menubar in Multiple Threads SDI has an additional menu item, titled “New
Window” which has a command id of ID_FILE_NEW_WINDOW.

In mainfrm.h, the message map has a new entry:

COMMAND_ID_HANDLER(ID_FILE_NEW_WINDOW, OnFileNewWindow)
And an implementation of OnFileNewWindow is provided.

LRESULT OnFileNewWindow(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

 ::PostThreadMessage(_Module.m_dwMainThreadID, WM_USER, 0, 0L);
 return 0;

}
What this is doing is posting a private message, WM_USER, onto the message queue of
the primary thread. (Therefore the developer should not try to use this particular
message type for private purposes). We will need to see what happens to that message.

The source file contain WinMain, <projectname>.cpp, is quite different.

The WinMain implementation has the call to the Run function removed, and it is
replaced by:

CHelloWorldMTThreadManager mgr;
int nRet = mgr.Run(lpstrCmdLine, nCmdShow);

The C<Projectname>ThreadManager class is completely defined inside the
<projectname>.cpp file. The implementation of the Run function has been moved into
this class and it includes multi-threading functionality.

This class is used to manage a set of threads, each of which in turn manages one SDI
window. This class defines one internal structure, and provides a static function that is
the threadproc for the per-SDI thread, methods to add and remove threads and a Run
method.

130

WTL Developer’s Guide

class CHelloWorldMTThreadManager
{
public:

// thread init param
struct _RunData
{

LPTSTR lpstrCmdLine;
int nCmdShow;

};
The RunData structure stores the command line and the nCmdShow parameter. A
new instance of this structure is created each time a new thread is needed, and it tells
the thread which command line and which nCmdShow option to use.

The threadproc parameter is a pointer, and we need to pass in a pointer and an int.
Therefore we need this extra structure containing a pointer and an integer, and pass in a
pointer to it.

Our multithreading experts might say this information is read-only and it is only
necessary that it exists once. After all, we are allocating either eight or twelve bytes
(depending on whether we are using Win32 or Win64), which are both occupying space
and time consuming, and it would better if we could avoid it. The way it is used here is
that the first SDI window gets the command line and the CmdShow from WinMain
and that subsequent threads are passed a NULL command line and SW_SHOWNORMAL.

The wizard-generated code ignores the command line and uses nCmdShow parameter
to determine the rendering of the mainframe. As your first thread will be receiving the
command line and subsequent threads will receive NULL, you might consider adding
code to determine if the command-line is non-NULL and if so to process it – how this is
to be is obviously application-specific, but one typical command-line parameter could
be a document filename to open.

At this point our multithreading experts will argue (they are a persistent bunch) that
surely we could have the structure for the first thread (which needs real data), and for
subsequent thread pass in NULL as the threadproc parameter, and inside the threadproc
if the parameter is NULL ignore the command line and use SW_SHOWNORMAL when
rendering the mainframe. Yes, this will work, but it limits our future flexibility – what
happens if we wish to do different things in different threads, then this defaulting will
hamper us. In conclusion, the current implementation is fine, and don’t worry about a
dozen bytes (1GB of RAM does not cost much!). If you are losing a night’s sleep over
it, then use the NULL parameter idea.

static DWORD WINAPI RunThread(LPVOID lpData){
CMessageLoop theLoop;
_Module.AddMessageLoop(&theLoop);
_RunData* pData = (_RunData*)lpData;
CMainFrame wndFrame;

if(wndFrame.CreateEx() == NULL){
ATLTRACE(_T("Frame window creation failed!\n"));
return 0;

}
wndFrame.ShowWindow(pData->nCmdShow);

131

WTL Developer’s Guide

::SetForegroundWindow(wndFrame); // Win95 needs this
delete pData;
int nRet = theLoop.Run();
_Module.RemoveMessageLoop();
return nRet;

}
RunThread is the threadproc for each SDI thread. Note that it is static, which is a
requirement for a C++ class member to be a threadproc. Apart from the code
concerning _RunData, this is the same as we examine previously in the SDI
Application sample.

DWORD m_dwCount;
HANDLE m_arrThreadHandles[MAXIMUM_WAIT_OBJECTS - 1];
CHelloWorldMTThreadManager() : m_dwCount(0){ }

There are two data members, one to hold the count of and the other to hold the handles
of the SDI threads. We need to keep track of these to determine when thread dies, and
when the final one exits then we can shutdown the process. The count is initialized to 0.

int Run(LPTSTR lpstrCmdLine, int nCmdShow){
MSG msg;
// force message queue to be created
::PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
AddThread(lpstrCmdLine, nCmdShow);
int nRet = m_dwCount;
DWORD dwRet;
while(m_dwCount > 0){

dwRet = ::MsgWaitForMultipleObjects(m_dwCount,
m_arrThreadHandles, FALSE,
INFINITE, QS_ALLINPUT);

if(dwRet == 0xFFFFFFFF)
 ::MessageBox(NULL,

 _T("ERROR: Wait for multiple objects failed!!!"),
 _T("HelloWorldMT"), MB_OK);

else if(dwRet >= WAIT_OBJECT_0 && dwRet <=
 (WAIT_OBJECT_0 + m_dwCount - 1))

RemoveThread(dwRet - WAIT_OBJECT_0);
else if(dwRet == (WAIT_OBJECT_0 + m_dwCount)){

::GetMessage(&msg, NULL, 0, 0);
if(msg.message == WM_USER)

AddThread("", SW_SHOWNORMAL);
else

::MessageBeep((UINT)-1);
}
else

::MessageBeep((UINT)-1);
}
return nRet;

}
};
The Run method is called from WinMain. It first calls the AddThread method to add
the initial thread that processes the real command line and displays the first window.

132

WTL Developer’s Guide

After this it initializes the nRet parameter to the value of m_dwCount, which has just
been set to 1 inside AddThread. The last line in Run returns nRet as the return value
of the method. In WinMain, the return value from Run is used as the return value for
the entire process, which means it becomes the process’ exit code. Most of the time this
is not important – if it is for your application you can change it as needed.

The core of the Run method is a while loop, in which a blocking call is make to
MsgWaitForMultipleObjects, which waits until a message arrives on the
message queue for the upon which this API call is made or any kernel handle in the list
becomes signaled. The kernel handles are the handles to the thread Ids, and they will
become signaled when the thread exits. Threads get added when the user selects “New
Window”, which results in a WM_USER message getting popped onto the primary
thread’s message queue. Threads exit when the end-user closes the SDI window. In
both cases it is the call to MsgWaitForMultipleObjects that detects these and
responds accordingly by calling AddThread and RemoveThread as needed. When
the number of SDI threads hits 0, then no windows are displayed and the application
can shutdown.

In the WaitForMultipleObjects API, MAXIMUM_WAIT_OBJECTS kernel
objects can be waited upon simultaneously. MAXIMUM_WAIT_OBJECTS is set to 64
on Windows 2000 and the older Windows OS versions. With
MsgWaitForMultipleObjects, the limit is MAXIMUM_WAIT_OBJECTS-1, or
63. What happened to the last one? The OS itself is adding an event handle to the list
and thus taking up one slot. This event gets signaled when messages are detected on the
message queue.

The hard coded strings inside the call to MessageBox are noted – your
internationalization engineers will need to change that to resource strings.

Note there is a call to PeekMessage with the comment “force message queue
to be created”. What is happening here is that the primary thread running this
method has no window, and yet each SDI thread contains a menu item called “Add
Window”, which when selected causes the SDI thread to pop a WM_USER message onto
the message queue of the primary thread.

As you will recall from our discussion of Win32 windowing, inside the Windows OS,
the kernel maintains message queues for threads that might need them. Not every thread
will be using windows (think of all that number-crunching code in the world which has
no user interface), so it would be inefficient to automatically create these queues.
Instead, what the kernel does is to create a message queue structure the first time calls
are made to the windowing APIs on that thread.

As the primary thread has no windows, up to this point the message queue does not
exist. The call to PeekMessage here within the primary thread will result in the
kernel creating it for this thread. The call to MsgWaitForMultipleObjects a few
lines on will also cause the message queue for the primary thread to be created.

So why is the call to PeekMessage needed? If we comment it out and build and run
the application, we will notice it seems to run fine. Where problems can occur is when
the secondary thread (created in the call to AddThread) starts sending messages to the

133

WTL Developer’s Guide

primary thread before the primary thread has a message queue. This could occur if there
is a context switch between the calls to AddThread and
MsgWaitForMultipleObjects, and when the secondary thread starts running,
the end-user selected the New Window menu item. It is unlikely to happen, but the
PeekMessage call completely eliminates that possibility. To simulate the problem we
could force a context switching by changing this code in the Run method . . .:

::PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
AddThread(lpstrCmdLine, nCmdShow);

. . . to these lines:

// ::PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
AddThread(lpstrCmdLine, nCmdShow);
Sleep(20000);

When we run this application, the primary thread runs, executes AddThread and
sleeps. The secondary thread is launched from AddThread and causes the SDI
window to be displayed – if the end-user then quickly selects “New Window” a few
times, we see nothing immediately. When the sleep duration expires, the message queue
is create, and all messages subsequent to that are processed.

What happens to the messages posted onto the message queue from the SDI threads
when the message queue did not exist? On Windows 2000, a solitary message is
recorded – so if we press “Add Window” three times, then at the end of the sleep period
only one new message is created. This is probably different on other versions of
Windows.

A word of warning - as with any multithreading coding, you have to be extremely
careful with sequencing your calls to the OS. The code generated by WTL AppWizard
as presented is correct. However, as it is now part of your application, you could quite
easily, and probably will, start making changes to it. Again, this is fine – that is what
you are paid to do if it is needed. This warning relates to the call to
MsgWaitForMultipleObjects. This returns when new messages are received on
the message queue for this thread. Messages that have been looked at by PeekMessage
are not consider new. In the AppWizard generated code, the sequence of calls is
PeekMessage, AddThread and MsgWaitForMultipleObjects. If you
change their order to AddThread, PeekMessage and
MsgWaitForMultipleObjects, and if there is a context switch between the first
two of these, if could happen that the user clicks “Add New Window” in the SDI thread
and a WM_USER message gets popped onto the primary thread’s message queue.
Sometime later there is another context switch, and the primary thread resumes
executing. It calls PeekMessage, which detects the WM_USER message on the queue
and changes its state so it is not new. Then MsgWaitForMultipleObjects
executes and it simply ignores the WM_USER message because it is not new. To clearly
demonstrate the problem, change these two lines in the wizard-generated code:

::PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
AddThread(lpstrCmdLine, nCmdShow);
to these lines:

AddThread(lpstrCmdLine, nCmdShow);
Sleep(20000); // give ourselves plenty of time to “Add Window”

134

WTL Developer’s Guide

::PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
When the application runs, select New Window from the File menu – you will note that
the command is ignored by the application. In the original code, a new window would
be displayed.

To avoid the problem, you should either leave the code generated by the WTL
AppWizard as is, remove the call to PeekMessage or change the call to
MsgWaitForMultipleObjects to a call to
MsgWaitForMultipleObjectsEx with the MWMO_INPUTAVAILABLE
parameter.

dwRet = ::MsgWaitForMultipleObjectsEx(m_dwCount,
m_arrThreadHandles, INFINITE, QS_ALLINPUT,
MWMO_INPUTAVAILABLE);

It is unlikely that you will change the code in this way, but you have been warned!

DWORD AddThread(LPTSTR lpstrCmdLine, int nCmdShow){
if(m_dwCount == (MAXIMUM_WAIT_OBJECTS - 1)){
::MessageBox(NULL,
 _T("ERROR: Cannot create ANY MORE threads!!!"),
 _T("HelloWorldMT"), MB_OK);

return 0;
}
_RunData* pData = new _RunData;
pData->lpstrCmdLine = lpstrCmdLine;
pData->nCmdShow = nCmdShow;
DWORD dwThreadID;
HANDLE hThread = ::CreateThread(NULL, 0, RunThread,
pData, 0, &dwThreadID);

if(hThread == NULL){
::MessageBox(NULL,
_T("ERROR: Cannot create thread!!!"),
_T("HelloWorldMT"), MB_OK);

return 0;
}
m_arrThreadHandles[m_dwCount] = hThread;
m_dwCount++;
return dwThreadID;

}

135

WTL Developer’s Guide

136

Primary Thread

Calls WinMain, which calls C<Projectname>ThreadMgr::Run
C<Projectname>ThreadMgr::Run calls

AddThread – for first SDI Window

Calls MsgWaitForMultipleObjects in a loop

If WM_USER window message received, call AddThread to
create a new SDI thread which in turn creates a new SDI
window

If a thread handle becomes signaled, call RemoveThread
If no more thread handles are available, return, and then exit WinMain

Multiple Threads SDI Architecture

Secondary Threads controlling SDI Window

If user selects “New Window” from file menu, post a
WM_USER message on primary thread’s message queue

If user selects “Exit” from file menu, post a WM_CLOSE
message on this thread’s message queue This message is not
handled directly by WTL or application code, so is passed to
DefWindowProc, which responds by posting a WM_DESTROY
message - This message is handled inside WTL’s
CFrameWindowImplBase::OnDestroy which posts a
WM_QUIT message, which terminates the thread

Windows on Screen

The primary thread has
no window

Each secondary thread
controls one visible

SDI window

Array of Thread Handles

Primary thread waits until handles to secondary threads become
signaled (i.e. secondary thread has exited)

To control this is needs to manage an array of handles to the
secondary threads - handles are appended at the end of the array in a
call to AddThread
Handles are not actually removed from the array – rather they are
overwritten. When the primary thread detects that a secondary thread
has exited, it calls RemoveThread which copies the uppermost
entry in the array to overwrite the value in the index occurred by the
exited thread

Primary thread itself exits when no secondary threads exist

Message Queue for
Primary Thread

Only ever contains
WM_USER messages

Messages are appended
by seconday threads

Messages are extracted
in primary thread’s
message loop, which
calls AddThread

WTL Developer’s Guide

The AddThread method is responsible for creating a new SDI thread that in turn
causes a new SDI window to be displayed. It just calls the Win32 CreateThread
API and pops the thread handle at the end of the handle array and increments the
m_dwCount variable that stores the number of entries.

There is no need to switch the call to m_dwCount++ with a call to
InterlockedIncrement(&m_dwCount) because this code will only every be
used from the primary thread – it is never used from the SDI threads.

void RemoveThread(DWORD dwIndex){
::CloseHandle(m_arrThreadHandles[dwIndex]);
if(dwIndex != (m_dwCount - 1))

m_arrThreadHandles[dwIndex] =
m_arrThreadHandles[m_dwCount - 1];

m_dwCount--;
}

The RemoveThread method closes the handle of the thread that has just exited and
removes its entry from the array of handles. Note that this array must be kept
contiguous, so the technique used is to copy the top-most entry to the index of the
thread to remove.

Modeless Dialog-Based Application
The last application type to discuss is a modeless dialog-based application. The output
from the WTL AppWizard for this is a mixture of the modal dialog and the SDI
Application approaches.

In the Modeless Dialog code, CMainDlg is derived from CDialogImpl, just like the
Modal Dialog sample, but also from CUpdateUI, CMessageFilter and
CIdleHandler, as in the SDI sample.

class CMainDlg:public CDialogImpl<CMainDlg>,
 CUpdateUI<CMainDlg>,public CMessageFilter, public CIdleHandler
There is a empty update UI map.

The closing of the dialog in the modal dialog sample was through a call to ATL’s
CDialogImpl::EndDialog, which in turn called the Win32 API, EndDialog. In
the modeless dialog sample, the closing of the dialog results in the following generated
code being called:

void CloseDialog(int nVal){
DestroyWindow();
::PostQuitMessage(nVal);

}
There is also a call to CUpdateUIBase::UIAddChildWindowContainer
added to OnInitDialog for updating of UI elements (CUpdateUIBase is the
parent of CUpdateUI).

In the modal dialog sample, the <projectname>.cpp file contained the WinMain
implementation, which handles the message loop in a call to
CDialogImpl::DoModal, which in turn calls the Win32 API DialogBoxParam.

137

WTL Developer’s Guide

In the modeless dialog sample, the <projectname>.cpp file is exactly as with the SDI
Application. It contains the WinMain and does the message loop through an
instantiation of WTL’s CMessageLoop.

Application Features - ActiveX Control Hosting
Now we turn our attention to the WTL AppWizard “Application Features” in step 1,
“ActiveX Control Hosting” and “Act as a COM Server”.

When “ActiveX Control Hosting” is selected, two changes are made to the code.

Stdafx.h has some extra headers included. Instead of this line at the bottom of the file:

#include <atlwin.h>
Now there are these lines

#include <atlcom.h>
#include <atlhost.h>
#include <atlwin.h>
#include <atlctl.h>
Also, WinMain is changed to initialize COM and a call to AtlAxInit is added.
AtlAxInit registers the "AtlAxWin" window, which is used for ActiveX control
hosting.

int WINAPI _tWinMain(HINSTANCE hInstance, HINSTANCE
/*hPrevInstance*/, LPTSTR lpstrCmdLine, int nCmdShow){

HRESULT hRes = ::CoInitialize(NULL);
// initialize common controls
. . .

hRes = _Module.Init(NULL, hInstance);
ATLASSERT(SUCCEEDED(hRes));
AtlAxWinInit();
int nRet = Run(lpstrCmdLine, nCmdShow);
_Module.Term();
::CoUninitialize();
return nRet;

}
It is important to note that selecting “ActiveX Control Hosting” is only adding header
file support, registering the ATLAxWin window class and initializing COM for the
primary thread, and that is all it does. It does not itself actually add any ActiveX
control. This can be done later as needed.

“ActiveX Control Hosting” and Modal Dialog Applications
A special case is when the WTL AppWizard is asked to generate a modal or modeless
dialog application and ActiveX Control Hosting is selected. The generated dialog code
derives from CAxDialogImpl instead of CDialogImpl.

 “ActiveX Control Hosting” and SDI/MDI apps with Form view type
The second step within the WTL AppWizard allows you to select the basis for the view,
which we will discuss shortly. Normally it is set to a (blank) generic window. It can

138

WTL Developer’s Guide

also be based on listview, treeview, etc. One additional option is to base it on a dialog
template (a form). When the view is based on a form, the generated view class derives
from CDialogImpl, regardless of the setting for “ActiveX Control Hosting” in step
1. However, when “ActiveX Control Hosting” is set, then an additional checkbox in set
2, Host ActiveX Controls, is enabled, and when set the form dialog derives from
CAxDialogImpl and hence can host ActiveX controls.

Application Features - Act as a COM Server
All the samples produced up to now have concentrated exclusively on windowing. The
ATL AppWizard can produce code that supports COM component creation. What
happens if we wish to support both windowing and COM components within the one
project? There is where the “Act As a COM Server” feature comes in.

When this feature is selected a number of changes are made to the project settings and
the generated code.

A custom build step is added to register the components in the project (if any).

One point of interest here is that the rgs file for each component has the LocalServer
entry set to “LocalServer32 = s '%MODULE%'” and we will need to return to
this issue when examining how startup happens via Automation.

In stdafx.h, there is an external definition of _Module instantiating
CServerAppModule and not CAppModule as in the previous sample. Note that
CServerAppModule itself derives from CAppModule and adds methods very
similar to the ATL AppWizard generated code when you select the “Executable”
option. It has familiar methods such as StartMonitor, MonitorShutdown,
FindOneOf and new methods such as ParseCommandLine and
Register/UnregisterAppId. Also in stdafx.h, the header file atlcom.h is
included, thus providing the application code with access to ATL’s COM definitions.

Stdafx.cpp includes these additional lines, to do with registry management code:

139

WTL Developer’s Guide

#ifdef _ATL_STATIC_REGISTRY
#include <statreg.h>
#include <statreg.cpp>
#endif
An IDL file called <Projectname>.idl is generated and it contains a default type library
definition (just as would be generated had we run the ATL AppWizard).

The main changes are in <projectname>.cpp. Essentially what it needs to do is merge
the code from the WTL AppWizard and the ATL AppWizard auto-generated generated
<projectname>.cpp files.

It starts by adding includes for the GUIDs and interfaces:

#include "initguid.h"
#include "HelloWorldWithCOMServer.h"
#include "HelloWorldWithCOMServer_i.c"
It instantiates a variable called _Module of type CServerAppModule. Note it
MUST be called _Module as this name is used in various ATL macros.

CServerAppModule _Module;
It has an empty object map. Later, the ATL ObjectWizard may be used to populate this
map, as in standard ATL programming.

BEGIN_OBJECT_MAP(ObjectMap)
END_OBJECT_MAP()

The Message Loop
The Run function is the similar to that of the SDI Application sample: It creates a
CMessageLoop, instantiates CMainFrame and calls CMessageLoop::Run. The
one change is the addition of a call to _Module.Lock(). This increments the lock
count with the ATL COM code uses to decide whether the COM server can be
shutdown. In essence, what is happening is that the code is pretending that the
CMainFrame is actually a COM component, and while displayed, the process running
this EXE should not shut down. We will have to track how shutdown actually happens
later.

int Run(LPTSTR /*lpstrCmdLine*/ = NULL,
int nCmdShow = SW_SHOWDEFAULT){

CMessageLoop theLoop;
_Module.AddMessageLoop(&theLoop);
CMainFrame wndMain;
if(wndMain.CreateEx() == NULL){

ATLTRACE(_T("Main window creation failed!\n"));
return 0;

}
_Module.Lock();
wndMain.ShowWindow(nCmdShow);
int nRet = theLoop.Run();
_Module.RemoveMessageLoop();
return nRet;

}

140

WTL Developer’s Guide

The WinMain code has called to CoInitialize/_Module.Init() and
_Module.Term()/CoUninitialize at the beginning and end. It initializes the
common controls. The command line is parsed for UnregServer and RegServer, and if
detected the appropriate calls in _Module are made and bRun set to false. The
command line is also checked for “Automation” and if there a bAutomation flag is
set.

// check for UnregServer and RegServer
. . .
if(lstrcmpi(lpszToken, _T("Automation")) == 0){

bAutomation = true;
break;

}
The core of WinMain is as follows:

if(bRun){
_Module.StartMonitor();
hRes = _Module.RegisterClassObjects(CLSCTX_LOCAL_SERVER,
 REGCLS_MULTIPLEUSE | REGCLS_SUSPENDED);

ATLASSERT(SUCCEEDED(hRes));
hRes = ::CoResumeClassObjects();
ATLASSERT(SUCCEEDED(hRes));
if(bAutomation){

CMessageLoop theLoop;
nRet = theLoop.Run();

} else {
nRet = Run(lpstrCmdLine, nCmdShow);

}
_Module.RevokeClassObjects();
::Sleep(_Module.m_dwPause);

}

The Automation Command-line Parameter
Note that when the Automation flag is passed in on the command line then no
application window is displayed. This is keeping with the convention of application
starting through Automation not displaying any UI unless specifically asked to via an
Automation API.

However, there is a problem here. When the COM run-time is asked to launch a server
through a client’s call to CoCreateInstance, the COM run-time retrieves the
“LocalServer” value from the registry, appends the string “-Embedding” to create a
command-line, and calls CreateProcess to launch a new process using this
command line. As noted earlier, the WTL AppWizard (and the ATL AppWizard),
generate the LocalServer string in the component’s rgs file to be just %MODULE%,
which gets expanded to the installed path to the EXE. The COM libraries will append
“-Embedding” to this, but no one is appending “/Automation” and therefore by default
the WTL-generated application, even when started via CoCreateInstance in a
client, never even sees “/Automation” on the command-line. This is not a problem
with ATL projects, because they are expected to store COM components and are
designed to be always started this way. It is a problem with WTL projects, because they
sometimes will be started directly by users - in which case they will immediately

141

WTL Developer’s Guide

display the UI, and sometimes via COM by client applications - in which case by
default they do not wish to display the UI, and will need to provide a component with
an Automation method for displaying the UI. This is in keeping with the convention of
Automation, which allows a client to decide whether the server’s UI should be
displayed. Note that the application developer needs to write a component to display the
UI – the WTL AppWizard generated code does not provide this.

Note that whether ‘-‘ or ‘/’ is used to start a new command-line parameter is irrelevant.
Most applications (including all ATL and WTL ones) search for both. The “-
Embedding” command-line parameter is used to signify that the application should
work as an ActiveX Document Server and is being started by an ActiveX Document
Container. The “/Automation” command-line parameter is used to signify that the
application has been launched by a client wishing programmatic access to the
Automation components inside the applications. What effect those command-line
parameters have on an application are of course entirely an internal matter for the
application. ATL applications just ignore them, as they always assume there are run as
components. WTL applications wish to display the user interface when run directly by
the end-user, and not when programmatically started via Automation.

The solution is easy. Firstly one could check for Embedding rather than Automation, by
changing the line:

else if(lstrcmpi(lpszToken, _T("Automation")) == 0)
for the line:

else if(lstrcmpi(lpszToken, _T("Embedding")) == 0)

Alternatively, one could add “/Automation” to the LocalServer entry in the .rgs file.
With a DLL, there is no “command-line”, and therefore for component servers housed
inside DLLs, the InprocServer32 or InprocServer64 entry merely states the pathname to
the DLL. With EXEs, there are command-lines, and when a process is started by
CoCreateInstance it takes the FULL string in the LocalServer32 or LocalServer64
field, appends “–Embedding” to it, and calls the Win32/64 API CreateProcess and
passes the command-line string as the second parameter. Specifically, LocalServer need
not be just a path, it can be a path and command-line parameter, such as
“/Automation”. So, a solution to the problem would be to change the .rgs file as
follows:

LocalServer32 = s '%MODULE% /Automation’
However, this introduces another problem. The FindOneOf function is the WTL
AppWizard generated code only checks for one parameter, and returns a pointer to the
beginning of that parameter (first character after the ‘/’ or’-‘) until the end of the entire
command-line. (It does not copy any data). As “-Embedding” is automatically appended
to the command-line, what FindOneOf returns is actually “Automation –Embedding”
and therefore the line:

 else if(lstrcmpi(lpszToken, _T("Automation")) == 0)
fails to find a match. One solution would be to change this to:

 else if(lstrcmpi(lpszToken, _T("Automation -Embedding")) == 0)
and another (probably better) solution would be to change the FindOneOf function to
change the next whitespace to a NULL character.

142

WTL Developer’s Guide

One final point before we leave the issue of the command line is what happens if an
application only wishes to expose components with custom interfaces. There are no
conventions regarding how the command-line should be set for this scenario, as
normally the programmatic exposure of desktop applications is done purely via
Automation. Think of the likes of Word 2000, which can be programming from
virtually every Windows programming environment, precisely because it exposes an
Automation API. However, if you really do need to have custom interfaces, and want to
avoid the use of the “/Automation” command-line option, then you are free to pick you
own, or simply rely on “–Embedding”.

Application Termination
The next item to consider is how the application (whether started via Automation or
not!) gets shut down.

With normal ATL projects, the _Module instance maintains a variable called
m_nLockCnt, which is incremented when components are instantiated and
decremented when the instances terminates. When it hits zero, a win32 event is set, so
that the main application code can shutdown.

With WTL applications, we might have one or more instances of components running,
or windows only running, or a mixture of both. When should we shut down? The
answer is when all windows and all component instances are terminated. When the
application was started by the end-user, it could be that while running a client
application programmatically created instances of components within the process, and
so even when the end-user shuts down the last window (and thinks the entire
application has disappeared), we should still keep the process running until the client
released the component instance(s). When the application was started first by a client
application via Automation, it could happen that a UI of that component is visible to
end-users, and they might use a command such as “New Window” to edit another
document within the same process. Alternatively, it could be that they try to launch the
application again, and through certain tweaking with some code, you have it using the
existing process if available. Later, when the programmatic client releases all its
components, the process should not shutdown until the end-user windows are also shut
directly by the end-user.

To manage all this WTL uses the m_nLockCnt count for both top-level windows
AND component instances, and when the value hits zero this means the process can
exit. _Module has methods Lock and Unlock to increment and decrement this
value, and GetLockCount to returns its current value. As components are instances
and terminate the normal ATL code with increment and decrement m_nLockCnt as
needed.

What about WTL’s windows? We saw in the implementation of the Run function in
<Projectname>.cpp that there is call to Lock when we are displaying a window:

_Module.Lock();
When a window is closed (e.g. by selecting Exit from the File menu), then the
WM_DESTROY message is detected and mapped to a call to a new method OnDestroy
in the frame window class in mainfrm.h.

143

WTL Developer’s Guide

LRESULT OnDestroy(UINT /*uMsg*/, WPARAM /*wParam*/,
LPARAM /*lParam*/, BOOL& /*bHandled*/){

// if UI is the last thread, no need to wait
if(_Module.GetLockCount() == 1){

_Module.m_dwTimeOut = 0L;
_Module.m_dwPause = 0L;

}
_Module.Unlock();
return 0;

}
This decrements the count. Note also it sets pauses to zero- the pauses are there for
component code so that a process with no component instances will run for a short time
longer, just in case a request comes in from a client to create a new instance – it is much
faster doing so in an existing process, as opposed to launching a completely new
process.

There is a slight bug in the WTL method, CServerAppModule::Term. It calls the
Win32 function CloseHandle for m_hEventShutdown. However, this has
already been closed in the MonitorShutdown function, and therefore the repeated
call in CServerAppModule::Term results in an error - a "First chance exception -
Invalid Handle" exception is thrown.

Void term(){
if (m_hEventShutdown != NULL)

CloseHandle(m_hEventShutdown);
CAppModule::Term();

}
The solution is to either remove the CloseHandle call in
CServerAppModule::Term or alternatively in MonitorShutdown, after calling
CloseHandle, then set m_hEventShutdown to NULL.

Sample Using COM Server
To create a sample using the COM Server support in WTL, create a new project called
HelloWorldSDI_WithCOMServer, and in the AppWizard in Step 1 select “SDI
Application” and “Act As A COM Server”, and select the defaults in step 2.

Now from DevStudio’s Insert menu run the ATL Object Wizard, and insert a
component called CConversation – with a dual-interface called IConversation
(select “dual” in the Attributes property page). In DevStudio’s ClassView, select
IConversation, right click and select “Add A Method”, and in the displayed dialog
add a method to IConversation called Chat. There is no need for parameters.
Now in ClassView select CConversation, and directly beneath it, select
IConversation and the Chat method – select it and the Conversation.cpp file
should be displayed, showing a default implementation of CConversation::Beep
(note: do not select the top-level IConversation, which refers to the IDL entry).
Add this line to CConversation::Beep:

::Beep(200,200);
Fix the problem regarding the command-line Automation parameter, as discussed
earlier. Then build.

144

WTL Developer’s Guide

Issues regarding registration of Universal Marshaler
Our WTL COM Server exposes an Automation Interface. So we need to build a simple
WTL dialog-based client that calls the IConversation Interface. Run the WTL
AppWizard again and in the dialog box add a push button.

#import the typelibrary which is embedded in the server’s EXE.

#import "..\debug\HelloWorldSDI_WithComServer.exe"
rename_namespace("HelloLib")
using namespace HelloLib;
An aside here: Some developer dislike hard-coding a pathname into a source file. It can
also be an annoyance if you are building the release version and first you have to build
the debug version. You can avoid this by placing the typelibrary in a file on the OS
search path or extending DevStudio’s Options menu/Directories list. Alternatively, you
could consider that its use as here is merely for test purposes, and that you might only
be building the debug version of the test project. (Note that the type library that is
produced is the same regardless whether it is the debug or release builds).

Add a command handler to be called when the pushbutton is selected.

LRESULT OnChat(WORD /*wNotifyCode*/, WORD wID,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

IConversationPtr m_ConversationPtr;
HRESULT hr =
m_ConversationPtr.CreateInstance(__uuidof(Conversation));

 if (FAILED(hr))
 _com_issue_error(hr);

if (m_ConversationPtr){
m_ConversationPtr->Chat();

}
m_ConversationPtr.Release();
m_ConversationPtr = NULL;
return 0;

}
When we run our client app we note that unfortunately when it runs it reports an error
when trying to connect to the WTL-generated application.

If we try creating the client in VB, we would start by displaying the VB References
dialog, and trying to select our typelib from the list, which is generated from the
registry’s typelibrary entries. However, the typelibrary for our project does not appear in
this list. Even when we add it manually using the browse button, when we later code up
a call to the interface, it fails.

Private Sub Command1_Click()
Dim SH As New Conversation
SH.Chat
End Sub
What is going on here? What are the clients not working? The debugger will tell us the
problem is when instantiating the server. Let’s work our way back from the client to the
server. The client and the server are in separate processes, so we need marshaling
between them. We are using Automation, so we want to use type-library marshaling.

145

WTL Developer’s Guide

For this to happen, two important sets of registry entries are needed. Under the registry
HKCR\Interfaces key, there should be an entry for the IID of the IConversation
interface, and it should have a sub-key of ProxyStubClsid32. As we are using
Automation and the OS provides use with a suitable proxy stub DLL known as the
Universal Marshaler (with a CLSID of 00020424-0000-0000-C000-000000000046), its
value should be used. Also, the typelib id should be registered, as this is needed for
type-library marshaling. However, when we examine the registry neither of these sets of
keys exist.

The reason the VB References dialog did not show the typelibrary for
HelloWorldSDI_WithCOMServer was because its typelibrary was not registered.

Now the ATL experts will argue here that surely this cannot be. When we generate ATL
out-of-proc servers based on Automation, these registry entries are correctly made. Yes,
that is correct with ATL – and surely WTL is tied in closely with ATL? Hmmm…

Let us first examine what happens with an ATL EXE when “/register” is passed in on
the command-line. For executables, the ATL AppWizard generates code will call
FindOneOf and then has this code when the RegServer command-line parameter is
found:

 if (lstrcmpi(lpszToken, _T("RegServer"))==0) {
 _Module.UpdateRegistryFromResource(

IDR_SimpleExeProject, TRUE);
 nRet = _Module.RegisterServer(TRUE);
 bRun = FALSE;
 break;
 }
Note it calls the CComModule::RegisterServer method, with a TRUE
parameter. The result of this is that the typelibrary and all interfaces are registered as
needed, and clients can attach without further ado.

Now, when we examine the same code in the WTL AppWizard generated code, there is
a slight difference.

The RegServer handling code calls:

nRet = _Module.RegisterServer();
When we examine CComModule::RegisterServer we see it defaults the first
parameter, bRegTypeLib, to FALSE.

HRESULT RegisterServer(BOOL bRegTypeLib = FALSE,
const CLSID* pCLSID = NULL)

146

WTL Developer’s Guide

147

HKCR

CLSID

Interfaces

Typelibrary

{CLSID of Conversation}

LocalServer32={path to Conversation EXE}

{CLSID of Universal Marshaler}

InprocServer32={path to oleaut32.dll}

1.0

0

Win32={pathname to typelibrary -
embedded inside Conversation’s EXE}

IID of IConversation interface

ProxyStubClsid32 = CLSID of Universal Marshaler

TypeLib = typelib id of Conversation Typelibrary

typelib id of Conversation Typelibrary

Hard-disk

= Entries you must make,
other entries already exist

Registry Layout for Local Servers supporting Automation

WTL Developer’s Guide

So now we see the difference between the ATL- and WTL-AppWizard generated code.
What does the bRegTypeLib flag control? When set to true it results in a call to
::RegisterTypeLib, which registers the interfaces and typelib entries necessary
for Automation. When set to false, which is the case for WTL, these entries are not
made. Note that regardless of the bRegTypeLib, the CLSID entries are made due to
the entries in the .rgs file.

Assuming you wish to make the Interfaces and Typelib entries, all you have to do is
change the call to RegServer in your WTL-AppWizard generated code as follows:

nRet = _Module.RegisterServer(TRUE);

Step 2 of the WTL AppWizard
Now we will move on to examine step 2 of the WTL AppWizard.

Note that if Dialog Based is selected in step (with or without the Modal Dialog check-
box selected), all the options in step 2 are disabled. The following discussion assumes
you have selected a project type other than dialog-based.

The default settings for Step 2 are as follows:

The available options can be subdivided into a number of sections.

Firstly, we can select whether we wish to have a toolbar, rebar, command bar or status
bar in place.

Status Bar
The status bar checkbox can be selected independently of the others. If selected, it
causes a number of additions to the generated application.

A call to CreateSimpleStatusBar (with no parameter) is inserted in the
Mainframe’s Create method. Your Mainframe class is derived from WTL’s
CFrameWindowImpl, which in turn is derived from CFrameWindowImplBase.

148

WTL Developer’s Guide

CreateSimpleStatusBar is implemented in CFrameWindowImplBase. When
called with no parameters it loads a string resource identified by
ATL_IDS_IDLEMESSAGE (which is set to “Ready” in the generated resources) and
calls an overloaded method, which in turn calls Win32’s CreateStatusWindow,
which create a status window as a child of the mainframe window, and records the
status bar’s HWND in a data member called m_hWndStatusBar.

BOOL CreateSimpleStatusBar(UINT nTextID = ATL_IDS_IDLEMESSAGE,
DWORD dwStyle = WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN |
WS_CLIPSIBLINGS|SBARS_SIZEGRIP, UINT nID = ATL_IDW_STATUS_BAR){

TCHAR szText[128];// max text lentgth is 127 for status bars
szText[0] = 0;

 ::LoadString(_Module.GetResourceInstance(),nTextID,szText,128);
return CreateSimpleStatusBar(szText, dwStyle, nID);
}
BOOL CreateSimpleStatusBar(LPCTSTR lpstrText, DWORD dwStyle =

WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN | WS_CLIPSIBLINGS |
SBARS_SIZEGRIP, UINT nID = ATL_IDW_STATUS_BAR) {

ATLASSERT(!::IsWindow(m_hWndStatusBar));
m_hWndStatusBar = ::CreateStatusWindow(dwStyle, lpstrText,

m_hWnd, nID);
return (m_hWndStatusBar != NULL);

}
A menu item titled Status Bar is added to the View menu with these properties:

The mainframe message map is extended with this entry:

COMMAND_ID_HANDLER(ID_VIEW_STATUS_BAR, OnViewStatusBar)
The OnViewStatusBar handler function is added.

LRESULT OnViewStatusBar(WORD /*wNotifyCode*/,
 WORD /*wID*/, HWND /*hWndCtl*/, BOOL& /*bHandled*/){

BOOL bNew = !::IsWindowVisible(m_hWndStatusBar);
::ShowWindow(m_hWndStatusBar, bNew ?

SW_SHOWNOACTIVATE : SW_HIDE);
UISetCheck(ID_VIEW_STATUS_BAR, bNew);
UpdateLayout();
return 0;

}
This line is also added to the CMainframe::Create method.

UISetCheck(ID_VIEW_STATUS_BAR, 1);
The menu item has a check box beside it, and when selected, the status bar should be
displayed. This line is initializing the checkbox to be set, as the status bar is initially
displayed.

149

WTL Developer’s Guide

Finally it add this entry to the UPDATE_UI_MAP for the mainframe:

UPDATE_ELEMENT(ID_VIEW_STATUS_BAR, UPDUI_MENUPOPUP)
The UPDATE_UI_MAP is used by WTL to keep track of what it needs to update
dynamically. Here it updates what is displayed in the status bar, but we can also use it to
update the rendering of toolbar icons and menu items.

WTL also offers a sophisticated status bar class called
CMultiPaneStatusBarCtrl. It supports a status bar that has sub-divisions. The
WTL AppWizard does not provide extra support for its use, but it can easily be added
manually. We will examine it is a later chapter.

Command Bars, Rebars and Toolbars
If the toolbar checkbox is un-selected, then the Rebar and Command Bar checkboxes
are automatically disabled (hence to use a rebar or command bar you must have a
toolbar). If the Rebar checkbox is un-selected, then the Command Bar checkbox is
automatically disabled (hence to use a command bar you must have a rebar).

Think of a command bar as a super menubar that displays menu item text and alongside
icons that share the same command id. It lives within a band inside a rebar control. The
command bar takes those icons from a toolbar (the toolbar itself is also displayed in
another band in the rebar). A command bar is not a Win32 control – it is something
specific to WTL and involves quite an amount of code.

If you don’t have a rebar, then it does not make sense to have a command-bar. If you
don’t have a toolbar, then there would be no icons for a command bar to display, and if
you only have a single menubar then it does not make sense to have rebar or command
bars.

If the Command Bar checkbox is selected, then the following occurs.

The CMainFrame class has this extra data member:

CCommandBarCtrl m_CmdBar;
These lines are added to CMainFrame::OnCreate:

// create command bar window
HWND hWndCmdBar = m_CmdBar.Create(m_hWnd, rcDefault,

NULL, ATL_SIMPLE_CMDBAR_PANE_STYLE);
// attach menu
m_CmdBar.AttachMenu(GetMenu());
// load command bar images
m_CmdBar.LoadImages(IDR_MAINFRAME);
// remove old menu
SetMenu(NULL);

. . .
CreateSimpleReBar(ATL_SIMPLE_REBAR_NOBORDER_STYLE);
AddSimpleReBarBand(hWndCmdBar);

When the mainframe window is created it automatically loads up a menubar with the
IDR_MAINFRAME menubar resource. What is happening in this command bar calling
code is that it calls Win32’s GetMenu API to get a HMENU of the loaded menubar.

150

WTL Developer’s Guide

Within the call to the command bar’s AppendMenu, the contents of the existing
menubar are copied to the command bar, and toolbar icons with the same command IDs
are also added. When that is finished, we now have two copies of the menubar – one
that was loaded by default and is the traditional menubar for the window, and the other
which is in the commandbar. We only need one – hence the call to SetMenu(NULL),
which eliminates the existing menubar. The call to AddSimpleReBarBand adds the
command-bar as a band to the rebar control. (To prove that two menubars do exist for a
short time, simply comment out the SetMenu(NULL) call – when you run the
application you will see the old menubar and the new commandbar).

Note that the call to CreateSimpleReBar when command bars are supported has
the parameter ATL_SIMPLE_REBAR_NOBORDER_STYLE. If the command bar
checkbox is not selected in the WTL AppWizard, then the call to
CreateSimpleReBar is passed no parameter, and it defaults to
ATL_SIMPLE_REBAR_STYLE.

These two defines are:

#define ATL_SIMPLE_REBAR_STYLE \
(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_CLIPCHILDREN |

WS_CLIPSIBLINGS | RBS_VARHEIGHT | RBS_BANDBORDERS | RBS_AUTOSIZE)
#define ATL_SIMPLE_REBAR_NOBORDER_STYLE \

(WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN | WS_CLIPSIBLINGS |
RBS_VARHEIGHT | RBS_BANDBORDERS |
RBS_AUTOSIZE | CCS_NODIVIDER)
The difference between them is one has WS_BORDER and the other has
CCS_NODIVIDER.

The following three screen dumps shows an app with rebar and command-bar options
selected (left), with the rebar option selected and command-bar option not selected
(center) and with neither the rebar nor the command bar options selected (right).

When the command-bar is selected, then the rebar shows band dividers (those vertical-
line grip marks at the front of each band) and shows no border. It is noted that the
command-bar is a couple of pixels taller than the menubar, and that when only the rebar
is selected that a border is displayed (beneath the toolbar). When neither the rebar nor
the command bar options are selected, then a normal toolbar is displayed. Note that its
icons have a border around each of them.

It is recommended for most applications to choose both the rebar and command bar
options (this is the WTL AppWizard defaults settings). The extra command bar
functionality is powerful and involves no extra work on the part of the application
developer. End users will appreciate the extra functionality the command-bar provides
over traditional menubars. However, command bars require the rebar control, and this is
available in version 4.70 and later of Comctl32.dll, which is supported natively in
Windows 2000/Windows 98 or later, but for Windows 95 and Windows NT 4 then
Internet Explorer 3 or later needs to be installed. The vast majority (but not all) end-

151

WTL Developer’s Guide

users with these older OSes also have IE3 installed. If your application must work on
machines which do not IE3 installed, or if you wish to completely emulate the user
interface of an old application, then you should un-select rebar and command bar
support. The in-between choice, of selecting rebar but un-selecting command bar
support, does not seem to be sensible in most situations – if you have rebars you might
as well have command bars, which most end-users will appreciate – this choice would
probably mean that the application developer intends to manually change some of the
generated code for his/her specific purposes.

Now will explore what additions are made to the generate source code when these
options are selected.

If you select toolbar support (by default it is selected), then the following additions are
made.

The OnIdle method has a call to UIUpdateToolBar added.

The menubar resource has a toolbar menu item added beneath the View menu.

An entry is added to the CMainFrame’s message map:

COMMAND_ID_HANDLER(ID_VIEW_TOOLBAR, OnViewToolBar)
And a command handler is supplied:

LRESULT OnViewToolBar(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/) {

BOOL bNew = !::IsWindowVisible(m_hWndToolBar);
::ShowWindow(m_hWndToolBar, bNew ?
SW_SHOWNOACTIVATE : SW_HIDE);

UISetCheck(ID_VIEW_TOOLBAR, bNew);
UpdateLayout();
return 0;

}
This line is also added to the CMainframe::Create method.

UISetCheck(ID_VIEW_TOOLBAR, 1);

The menu item has a check box beside it, and when selected, the status bar should be
displayed. This line is initializing the checkbox to be set, as the toolbar in initially
displayed.

Finally it add this entry to the UPDATE_UI_MAP for the mainframe:

UPDATE_ELEMENT(ID_VIEW_TOOLBAR, UPDUI_MENUPOPUP)

152

WTL Developer’s Guide

If toolbar support is selected, but rebar support is not, then the toolbar creation code
inside Mainframe’s Create method is simply a call to:

CreateSimpleToolBar ();
If toolbar and rebar support is selected, but command bar support is not, then the code
is:

HWND hWndToolBar = CreateSimpleToolBarCtrl(m_hWnd,
IDR_MAINFRAME, FALSE, ATL_SIMPLE_TOOLBAR_PANE_STYLE);

CreateSimpleReBar();
AddSimpleReBarBand(hWndToolBar);

If toolbar, rebar support and command-bar support are selected, then the code is:

// create command bar window
HWND hWndCmdBar = m_CmdBar.Create(m_hWnd, rcDefault,

 NULL, ATL_SIMPLE_CMDBAR_PANE_STYLE);
// attach menu
m_CmdBar.AttachMenu(GetMenu());
// load command bar images
m_CmdBar.LoadImages(IDR_MAINFRAME);
// remove old menu
SetMenu(NULL);
HWND hWndToolBar = CreateSimpleToolBarCtrl(m_hWnd,
IDR_MAINFRAME, FALSE, ATL_SIMPLE_TOOLBAR_PANE_STYLE);

CreateSimpleReBar(ATL_SIMPLE_REBAR_NOBORDER_STYLE);
AddSimpleReBarBand(hWndCmdBar);
AddSimpleReBarBand(hWndToolBar, NULL, TRUE);

Use a View Window
Step 2 of the WTL AppWizard contains a checkbox with the title Use a view window.
By default this is selected.

When selected, the generated code contains a view class, and the mainframe class has a
data member which is an instance of the view class, and in CMainframe::Create a
call is made to the view create member function.

The view is created as a child window of the mainframe window, with the
WS_EX_CLIENTEDGE. The view occurs the client area in the mainframe – covering
all the space beneath the toolbar and above the statusbar. The framewindow has a
m_hWndClient data member, and this records the HWND of the view. When the
framewindow is resized, WTL detects the WM_SIZE and resizes the view window as
appropriately.

When the Use a view window checkbox is un-selected, the view type listbox in the
AppWizard is disabled. Applications generated with or without a view look almost
identical. The background of the view and the background of the frame’s client area are
displayed in the default background color (usually white). The only distinction is that
with the view, one can see the edge generated by the WS_EX_CLIENTEDGE attribute,
which is absent when the view is not there.

153

WTL Developer’s Guide

View Type
The view type combo-box specifies how the view should be created. It may be set to
one of the following:

• Generic window (blank window – the default)

• Form (Dialog based)

• Listbox

• Edit

• Listview

• Treeview

• Rich-Edit

• HTML Page

Using the WTL AppWizard, you may not create a view based on a control not in this
list and you may not create multiple views (but we will later examine how to do both of
these manually). The mainframe class generated by the WTL AppWizard is not
changed in any way when different view types are selected (with the exception of
HTML Page).

When generic window view type is selected, then the view code is generated as follows:

class CWithEverythingView : public CWindowImpl<CWithEverythingView>{
public:

DECLARE_WND_CLASS(NULL)
BOOL PreTranslateMessage(MSG* pMsg){

pMsg;
return FALSE;

}
BEGIN_MSG_MAP(CWithEverythingView)

MESSAGE_HANDLER(WM_PAINT, OnPaint)
END_MSG_MAP()

LRESULT OnPaint(UINT /*uMsg*/, WPARAM /*wParam*/,
LPARAM /*lParam*/, BOOL& /*bHandled*/) {

CPaintDC dc(m_hWnd);
//TODO: Add your drawing code here
return 0;

}
};
When a view based on a control is selected, then the code generated is:

class CViewBasedOnListViewView
: public CWindowImpl<CViewBasedOnListViewView, CListViewCtrl>{

public:
DECLARE_WND_SUPERCLASS(NULL, CListViewCtrl::GetWndClassName())
BOOL PreTranslateMessage(MSG* pMsg){

154

WTL Developer’s Guide

pMsg;
return FALSE;

}
BEGIN_MSG_MAP(CViewBasedOnListViewView)
END_MSG_MAP()

};
No WM_PAINT handler is required, as the control will draw itself when needed. The
view window derives from CWindowImpl based on an appropriate control class. The
DECLARE_WND_SUPERCLASS macro is passed the control’s name. The listview,
treeview, edit, listbox and rich-edit all work this way. If you wished to create a view
based on a different control, you could simply make the appropriate change to one of
the support control view types. The list that is supported contains the controls that are
most frequently used as the basis of a view. Other controls might not be that suitable.
For example, a pushbutton should not be the basis for a view.

Note that the version of rich edit used depends on the _RICHEDIT_VER macro
setting, which is defaulted to 0x0100 in stdafx.h. Also note that the WTL distribution
contains a good examine of RichEdit called MTPad.

When the view type is selected as Form (dialog based), then a dialog template is
generated in the ResourceView with an id of IDD_<projectname>_FORM and the
view class is generated as follows:

class CViewBasedOnFormView
: public CDialogImpl<CViewBasedOnFormView>{

public:
enum { IDD = IDD_VIEWBASEDONFORM_FORM };
BOOL PreTranslateMessage(MSG* pMsg){

return IsDialogMessage(pMsg);
}
BEGIN_MSG_MAP(CViewBasedOnFormView)
END_MSG_MAP()

};
Note that the view is based on CDialogImpl and not CAxDialogImpl.

The difference between selecting an SDI/MDI app with its view type set to form, as
here, and selecting a dialog box (in step 1 of the WTL AppWizard), is that the SDI/MDI
app has a mainframe with command bars and statusbar.

When the view type is set to HTML Page, then the view will be based on the web
browser. The view class will be generated as:

class CViewbasedOnHtmlPageView
 : public CWindowImpl<CViewbasedOnHtmlPageView, CAxWindow>{
public:

DECLARE_WND_SUPERCLASS(NULL, CAxWindow::GetWndClassName())
BOOL PreTranslateMessage(MSG* pMsg) {

if((pMsg->message < WM_KEYFIRST || pMsg->message >
WM_KEYLAST) && (pMsg->message < WM_MOUSEFIRST ||
pMsg->message > WM_MOUSELAST))

return FALSE;
// give HTML page a chance to translate this message

155

WTL Developer’s Guide

return (BOOL)SendMessage(WM_FORWARDMSG, 0, (LPARAM)pMsg);
}
BEGIN_MSG_MAP(CViewbasedOnHtmlPageView)
END_MSG_MAP()

};
The view is based on CAxWindow. You will recall from our discussion of WTL
Windowing, that CAxWindow will instantiate an ActiveX control to completely cover
its window. Which ActiveX control depends on the window title – it could be a CLSID,
a ProgID, in-line HTML (with the MSHTML prefix) or any string that
CLSID_WebBrowser can understand, such as a URL, a pathname to a HTML or text
file, or a pathname to a document from an Active Document Server (e.g. a Word 2000
document). The view window title is never displayed and normally when creating the
view window, the WTL AppWizard uses a NULL window title. However, with Html
Page, the title is used to indicate to the web browser what to render. The generated code
is:

//TODO: Replace with a URL of your choice
m_hWndClient = m_view.Create(m_hWnd, rcDefault,

 _T("http://www.microsoft.com"), //  change as needed
WS_CHILD | WS_VISIBLE |
 WS_CLIPSIBLINGS | WS_CLIPCHILDREN, WS_EX_CLIENTEDGE);

ActiveX Control
The final part of step 2 of the WTL AppWizard is the Host ActiveX Controls checkbox.
This is only enabled if all of the following conditions are true:

• The project type in step 1 is not set to Dialog Based

• The Enable ActiveX Control Hosting check-box in step 1 is selected

• The view type in step 2 is set to Form (dialog-based)

If you select Host ActiveX Controls then the generated view is based on
CAxDialogImpl (otherwise it is based on CDialogImpl) and it is implemented as
follows:

class CViewBasedOnFormWithActiveXControlView : public
CAxDialogImpl<CViewBasedOnFormWithActiveXControlView>{
public:

enum { IDD = IDD_VIEWBASEDONFORMWITHACTIVEXCONTROL_FORM };
BOOL PreTranslateMessage(MSG* pMsg) {

if((pMsg->message < WM_KEYFIRST || pMsg->message >
WM_KEYLAST) && (pMsg->message < WM_MOUSEFIRST ||
pMsg->message > WM_MOUSELAST))

return FALSE;
HWND hWndCtl = ::GetFocus();
if(IsChild(hWndCtl))
{

// find a direct child of the dialog from the
// window that has focus

while(::GetParent(hWndCtl) != m_hWnd)
hWndCtl = ::GetParent(hWndCtl);

156

WTL Developer’s Guide

// give control a chance to translate this message
if(::SendMessage(hWndCtl, WM_FORWARDMSG, 0,

(LPARAM)pMsg) != 0)
return TRUE;

}
return IsDialogMessage(pMsg);

}
BEGIN_MSG_MAP(CViewBasedOnFormWithActiveXControlView)
END_MSG_MAP()

};

Threads with COM and Windowing
Technically, there should be no problems using both the Win32 windowing APIs and
COM together in a multithreaded application, as both can support calls from multiple
threads provided suitable precautions are taken.

How COM reacts in a multi-threaded environment is guided by whether
CoInitialize or CoInitializeEx is called, and in the case of
CoInitializeEx, what parameter is used. The two interesting parameters to
CoInitializeEx are COINIT_APARTMENTTHREADED and
COINIT_MULTITHREADED. The first indicates that for COM components
instantiated on one thread, all method calls to an instance of a COM component will be
on the same thread in which instantiation occurred. This effectively means that data
members of that instance do not need synchronization protection, as they can only be
used from one thread. Separate instances of the same component may be instantiated on
separate threads, so global variables and static (class) members do need protection.
COINIT_MULTITHREADED means that a component instance may be used
simultaneously from different threads. Such components should provide
synchronization protection for all writeable data members. COM should only be used in
a thread if CoInitialize[Ex] has been called on that thread. It is perfectly
acceptable to call CoInitialize[Ex] from a subset of the available threads (even
only one) and use other threads for non-COM functionality.

Calling CoInitialize is equivalent to calling CoInitializeEx with
COINIT_APARTMENTTHREADED. CoInitializeEx is not available for the
original (“classic”) Windows 95 distribution, but is available when the DCOM add-on
is installed with Windows 95. CoInitializeEx is available for all later Windows
OSes – 98, 98SE, Me, NT 4, 2000, CE and Whistler. CoInitialize is not available
for Windows CE – you must use CoInitializeEx.

Threads in which CoInitializeEx(COINIT_APARTMENTTHREADED) are
called need a message loop, because COM uses a hidden window to ensure that
incoming method calls are handled on the right thread at an appropriate time. Threads
in which CoInitializeEx(COINIT_MULTITHREADED) are called do not need a
message loop (for COM), because the incoming method calls are made on one of a
queue of threads which the RPC run-time maintains. It is quite possible that the same or
different clients make method calls to the same instance of a components, and these
method call execute at the same time on different threads – the component needs to
protect against synchronization problems. When dealing with WTL, we will have

157

WTL Developer’s Guide

windows on screen, so we will also need a message loop for that, but still the RPC
threads are used for the methods calls.

The WTL AppWizard generated code is meant to run on all platforms, including the
original Windows 95, and therefore the code contains a call to CoInitialize. There
is also a comment containing a call to CoInitializeEx.

// If you are running on NT 4.0 or higher you can use the
// following call instead to make the EXE free threaded. This
// means that calls come in on a random RPC thread.
// HRESULT hRes = ::CoInitializeEx(NULL,
// COINIT_MULTITHREADED);
It is left as a design decision to the application developer to decide, which is a sensible
strategy.

With regarding to windowing, windows may be created on any thread. There is a
message queue per thread and messages for a particular window are queued to the
message queue of the thread in which the window was created. Calls to
SendMessage may be make from a thread different to the thread upon which the
window was created, but the thread that calls SendMessage will block until the
message is actually processed by the thread that handles the message queue for the
window. This can lead to deadlock situations in poorly designed applications. Calls to
PostThreadMessage post the message on the message queue of the specified
thread and returns immediately.

Sample using Multiple Threads SDI with COM Server
Now that we have examined the treading issues with windows and COM, and
confirmed that one can have a multiple threads SDI application AND support COM, we
will create a sample project.

Even though the WTL AppWizard does not directly create a multi-threaded SDI app
that supports COM Server, we can still use it to help us. Essentially what we have to do
is use it to create two separate projects – one which is based on Multiple Threads SDI
without the COM Server option, and the other based on the (single-threaded) SDI
Application with the COM Server option, and merge the code to complete our project.

We will start by creating a project called HelloWorldMT_WithCOMServer and in the
WTL AppWizard select SDI Application with the COM Server option. We start with
this as it contains most of the code we need. Next we create a dummy project, which we
will discard, based on Multiple Threads SDI. It will help to have both of these projects
open in separate instances of DevStudio, to facilitate copying and pasting.

The previous discussion of Multiple Threads SDI contained a detailed description of the
differences between the (single-threaded) SDI Application and the Multiple Threads
SDI Application. We need to apply all these changes manually to the
HelloWorldMT_WithCOMServer project source code and make appropriate changes.

Firstly delete the generated Run function in HelloWorldMT_WithCOMServer.

158

WTL Developer’s Guide

Copy the RunData structure and the RunThread and AddThread member
functions from the CHelloWorldMTThreadManager class in the dummy Multiple
Threads SDI Application to HelloWorldMT_WithCOMServer.cpp.

Within WinMain, change the message loop code to the following:

 if(bRun) {
_Module.StartMonitor();
hRes = _Module.RegisterClassObjects(CLSCTX_LOCAL_SERVER,

REGCLS_MULTIPLEUSE | REGCLS_SUSPENDED);
ATLASSERT(SUCCEEDED(hRes));
hRes = ::CoResumeClassObjects();
ATLASSERT(SUCCEEDED(hRes));
CMessageLoop theLoop;
if (!bAutomation)

AddThread(lpstrCmdLine, nCmdShow);
nRet = theLoop.Run();
_Module.RevokeClassObjects();
::Sleep(_Module.m_dwPause);

 }
In mainfrm.h, add a message map entry:

COMMAND_ID_HANDLER(ID_FILE_NEW_WINDOW,
OnFileNewWindow)

In the ResourceView, add a “New Window” entry to the file menu.

Add the command handler for CMainFrame::OnFileNewWindow, which calls
AddThread.

LRESULT OnFileNewWindow(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

AddThread(0, SW_SHOWNORMAL);
return 0;

That’s it – now we have a multi-threaded SDI app which can work as a COM server.

159

WTL Developer’s Guide

Chapter 6
Dialog Boxes and Controls

Objectives
The aims of this chapter are to:

• Cover how WTL supports dialog boxes

• Describe dynamic data exchange and validation functionality

• Introduce the WTL wrappers for each type of window control

Introduction
Virtually all applications that expose a user interface contain one or more dialog boxes,
each showing multiple controls. A much smaller proportion of applications need to
display windows with a client area in which graphical primitives can be rendered. We
will start our in-depth look at WTL by examining how it handles dialog boxes and
controls. In later chapters we will cover client-area graphics.

In WTL, the top-level window can be a dialog box itself, or can be a mainframe
containing a child window known as a view, based on a dialog (resource template) or a
single control. When the top-level window is not a dialog, it usually contains a
command bar (menubar) and toolbar, whose entries when selected often result in dialog
boxes being displayed.

Dialogs use an assortment of standard controls, common controls and ActiveX controls.
Data must be copied between these controls and data members of C++ classes
representing the dialogs. The resource information containing the layout for the dialog
may be created using a resource editor. The dialog must be displayed on screen and
when appropriate removed. Dialogs may be modal or non-modal. Property sheets and
wizards may be provided. There are numerous system dialogs that the OS provides to
automate and standardize how common UI tasks should work. Message loops are
needed to process messages.

In our exploration of WTL dialogs and controls we will need to understand all these
issues.

What WTL Supports
WTL provides comprehensive support for the complete range of dialog box
functionality. It supports modal dialogs, modeless dialogs, and property sheets and
provides easy-to-use wrappers for the system dialogs, such as OpenFile. WTL
provides wrappers for each Win32 standard control, such as buttons, listboxes, edit
boxes, and for each common control, such as listview, treeview, imagelist and

160

WTL Developer’s Guide

monthcalendar. WTL supports more advanced functionality, which is not directly based
on existing controls, including bitmap buttons, hyperlinks and a wait cursor. WTL
supports the hosting of ActiveX controls through the existing ATL mechanism. In
short, every aspect of dialog boxes development is very well catered for by WTL.

One shortcoming is the integration between WTL and the development environment
within Visual C++ v6. There is no WTL ClassWizard (the ClassWizard that is there is
for MFC). What is currently provided is a New Windows Message and Event Handler
wizard, which allows messages for CWindowImpl-derived classes to be mapped to
function handlers.

This was designed for ATL windowing and can also be used with WTL, as WTL is
based on ATL windowing. It supports mapping all the WM_XXX messages for the dialog
itself to member function, and for each control id, mapping a subset of notifications that
they send to their parent (the dialog). The handler functions it creates are generic (they
all have the same prototype). WTL offers message crackers, (e.g. when a lParam
contains a POINT data, a WTL CPoint is used in the prototype). These are not
supported by the current version of the wizard. It is likely with the next version of
Visual Studio that the development environment will be extended with more Wizard
support for WTL.

The WTL Message crackers refer to the WM_XXX messages only. They do not provide
any special functionality for the notification of a WM_COMMAND message. We will
examine them in a later chapter.

The concept of mapping UI controls to C++ classes (similar to the Member Variables
tab of the MFC ClassWizard) is currently not supported in WTL. At the moment this
has be done manually in source code.

161

WTL Developer’s Guide

How WTL works with Dialog boxes and Controls
To prepare to learn about dialog development with WTL, you first need a good
understanding of traditional Win32 UI programming (from the “Petzoldian” era of
Windows programming) and you need to know about ATL windowing. This might be a
good point to review the earlier chapters on these topics. WTL uses both of these
extensively, and most of WTL’s support is a set of lightweight wrappers and more
functionality in some specific areas.

What WTL adds is a set of wrappers for each Windows standard control and each
Windows common control. WTL provides a member function for absolutely every
message that can be sent to these controls. The naming of the member functions of
these wrappers is an exact match for the messages that each control accepts (just one
reason for the usefulness of a clear understanding of Win32 UI programming). In
contrast, MFC sometimes renamed certain features or amalgamated them. For the
dialog box template itself and message mapping, WTL uses ATL windowing. MFC
provided elaborate message routing, which provided additional functionality but which
often caused as many problems as it solved. In contrast, WTL/ATL windowing message
routing is very simple and easy to understand. It is trivial to follow it in a debugger.

Varying Degrees of Interaction with Controls
Application developers need different levels of interaction with controls.

It could be applications only need to determine when a specific message is received. For
example, when a pushbutton is pressed its parent window (usually the dialog window),
is sent a WM_COMMAND message with the BN_CLICKED notification. To detect these
WTL provides the concept of message maps, which maps incoming messages to
handlers within the dialog class.

Alternatively, it could be that applications need to set and get data stored in the control.
For example, when displaying a dialog, developers might wish to set the text to appear
in an edit box, and when the dialog disappears to retrieve (the possibly updated) text.
For this, WTL provides DDX functionality.

Finally, it could be that applications wish to manage the control in detail. For this, WTL
provides wrapper classes, such as CEdit, which provides the necessary fine-grained
access to the control’s properties.

WTL provides good support for all these levels of interaction with controls. It is a
design decision developers will need to take as to which technique to use. Most
applications will use all of them at some stage.

Dialog Boxes in WTL
Dialogs within WTL are based directly on ATL’s CDialogImpl or
CAxDialogImpl. The “Ax” term means that the dialog provides the necessary
support to host ActiveX controls. The following discussion of working with dialogs
applies equally well to CDialogImpl and CAxDialogImpl-based dialogs. In the
chapter on ATL Windowing we looked at the specifics of ActiveX controls hosting
within CAxDialogImpl.

162

WTL Developer’s Guide

WTL is a thin layer above ATL and Win32 SDK
As with other parts of WTL, its dialog box support is a very thin layer above what is
provided by ATL and the Win32 SDK. If you read through the WTL source code you
will very quickly hit the Win32 SDK.

WTL AppWizard-Generated Dialogs
When you run the WTL AppWizard and as the Project Type select the Dialog option,
the generated code contains one dialog that acts as the main window of the application.
By default, the generated dialog is based on CDialogImpl. If you select the ActiveX
Control Hosting option in the step 1, the dialog is based on CAxDialogImpl. Note
that when you select Dialog as the Project Type in step 1 of the WTL AppWizard, then
all options in Step 2 are disabled.

If you select either a SDI or MDI application for Project Type, and in step 2 of the WTL
AppWizard, select Form (Dialog-based) as the View Type, then by default the
generated view is based on CDialogImpl. However, if the Host ActiveX Controls
checkbox in step 2 of the WTL AppWizard is selected, then the view is based on
CAxDialogImpl. Note that Host ActiveX Controls checkbox is normally disabled. It
becomes enabled only when all three of these conditions are true: Project Type in step 1
is not set to Dialog, ActiveX Control Hosting is selected in step 1 and the View Type in
step 2 is set to Form (Dialog-Based).

Creating Additional Dialog Boxes Manually
Apart from the WTL AppWizard generated dialog, you must create additional dialogs
based on CDialogImpl manually. There is no wizard support. With Visual Studio 7
it is expected that wizard support will be provided. The current ATL Object Wizard
does support the creation of CAxDialogImpl-based dialogs but not CDialogImpl.

To add a CDialogImpl-based dialog, you need to create the dialog resource and a C+
+ class to manage the dialog. To create the resource, display ResourceView in
DevStudio’s workspace, select Dialog, and in the context menu select Insert Dialog. A
dialog template will be added to the resource. [The term “template” used for resources
refers to the layout of the controls – it is of course a totally distinct concept from a C++
template]. Use the ResourceView’s control palette to add controls onto the dialog and
then set their various properties. Specify an IDD identifier for the dialog. To construct a
C++ class, you will need to manually create a class with code similar to this:

class CMyFirstManualDlg:public CDialogImpl<CMyFirstManualDlg >{
public:

enum { IDD = IDD_MY_FIRST_MANUAL_DIALOG };
BEGIN_MSG_MAP(CMyFirstManualDlg)

MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
COMMAND_ID_HANDLER(IDOK, OnOK)
COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

END_MSG_MAP()
LRESULT OnInitDialog(UINT /*uMsg*/, WPARAM /*wParam*/,

LPARAM /*lParam*/, BOOL& /*bHandled*/){
// center the dialog on the screen
CenterWindow();

163

WTL Developer’s Guide

return TRUE;
}

LRESULT OnOK(WORD /*wNotifyCode*/, WORD wID, HWND /*hWndCtl*/,
BOOL& /*bHandled*/){

// TODO: Add validation code
EndDialog(wID);
return 0;

}
LRESULT OnCancel(WORD /*wNotifyCode*/, WORD wID,

HWND /*hWndCtl*/, BOOL& /*bHandled*/){
// TODO: Add validation code
EndDialog(wID);
return 0;

}
};
The enum IDD must be set to that you used in ResourceView. Also note that you must
have a message map. This will implement a virtual function
ProcessWindowMessage, which is needed to get everything to compile.

These are tedious manual steps; after you have completed them for one dialog, the use
of CTRL-C and CTRL-V mean it does not take too long, and hopefully VS7 will
automate this.

Instantiating and Displaying Dialogs
Just as with MFC, one instantiates and displays a WTL dialog using this code:

CMyFirstManualDialog dlg;
int res = Dlg.DoModal();
To dismiss a dialog (usually after the user selecting OK or CANCEL), the dialog class
itself will call EndDialog, and the parameter passed to this will become the return
value from DoModal.

Dialog Initialization
When a dialog class is instantiated, the windows for the dialog and its control do not
exist. A common mistake for new MFC developers and it applies equally to WTL is to
have code such as:

CMyFirstManualDialog dlg;
Dlg.m_edit.SetWindowText(TEXT("My initial text")); // WRONG!
int res = Dlg.DoModal();
The problem here is that the edit box does not exist in the hierarchy of windows until
during the DoModal call and therefore there is no valid destination from the window
message resulting from the call to SetWindowText.

The proper way to handle this situation is to execute the code after the window has been
created but before it has been displayed on screen. The OS send a WM_INITDIALOG
message to the dialog when at exactly this point in time, and we can detect it with a
message map entry:

MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

164

WTL Developer’s Guide

So the solution is as follows:

CMyFirstManualDialog dlg;
int res = Dlg.DoModal();
. . .
class CMyFirstManualDialog : CDialogImpl<CMyFirstManualDialog >{

BEGIN_MSG_MAP(CMyFirstManualDlg)
MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

END_MSG_MAP()
LRESULT OnInitDialog(. . .){

m_edit.SetWindowText(TEXT(“My initial text”));
return TRUE;

}
. . .
};
If the data to use when initializing the controls is known where we instantiate the
dialog, and not inside the dialog class, then we could pass it in as a constructor
parameter or add an extra method which gets called before DoModal.

CMyFirstManualDialog dlg;
Dlg.m_strName = TEXT(“My name”):
int res = Dlg.DoModal();
. . .
class CMyFirstManualDialog : CDialogImpl<CMyFirstManualDialog >{
CString m_strName;
. . .

LRESULT OnInitDialog(. . .){
m_edit.SetWindowText(m_strName);
return TRUE;

}

Dialog Termination
Dialogs terminate when a call is made to CDialogImpl<T>::EndDialog. It is up
to you code to decide when to call this method. There is no default handling of
WM_COMMAND messages such as IDCANCEL, which is sent to the dialog when the
close button (‘X’ symbol) in the dialog’s top corner is pressed, or (by default) when the
ESC key is pressed. This contrasts to MFC’s implementation, which in its default
message map maps the IDCANCEL message to a call to MFC’s
CDialog::OnCancel, which results in EndDialog being called.

With WTL/ATL, if you do not handle the IDCANCEL message then nothing will
happen – specifically the dialog box will not disappear, even when you pressed the
Close button.

It is the responsibility of your code to call EndDialog, and therefore you will usually
add OK and Cancel pushbuttons, with ids of IDOK and IDCANCEL and map these to
appropriate message handlers that will call EndDialog. Even if you do not have a
Cancel button, you should still add a command handler for IDCANCEL, as the Close
Button and the ESC key cause IDCANCEL to be sent to the dialog.

165

WTL Developer’s Guide

Handling Dialog Messages
DevStudio’s New Window Message and Event Handler wizard enables you to attach
command handlers to a variety of messages for the dialog itself and all the controls it
contains. This is similar to the message map feature in MFC.

Per selected window/control, the list of possible messages is displayed, and you can
select the Add Handler button to create a new command handler for that message.

Sample : DialogDemo
To explore dialogs, we will now create an example. Start up the WTL AppWizard and
create a project called Dialogdemo. In Step 1, select modal dialog, and select the
defaults in Step 2.

In the dialog node in ResourceView, select the DialogDemo. Using the Controls palette,
add a pushbutton to the dialog. Select the pushbutton and from the context menu bring
up its properties. Set the id to IDC_MY_FIRST_BUTTON and give it a caption of
“First Button”.

We are now finished adding the button to the resource, and can move on to creating a
handler to be activated when the button is pressed.

In DevStudio’s ClassView, select the CMainDlg class which manages the dialog. In
the context menu for it select Add Windows Message Handler. The following dialog
will be displayed.

166

WTL Developer’s Guide

In the Class or object to handle list, select IDC_MY_FIRST_BUTTON. The messages
that are most commonly needed for a window of the selected type are displayed. In this
case, a button is selected, and the messages are BN_CLICKED and
BN_DOUBLECLICKED. Select BN_CLICKED and then select Add Handler.

You are given an opportunity to enter a name for the handler function, but normally you
should select the default.

The message map will automatically have this line added:

COMMAND_HANDLER(IDC_MY_FIRST_BUTTON, BN_CLICKED,
OnClickedMy_first_button)

A default implementation of the handler will also be added, and you can add a call to
Win32’s Beep function.

LRESULT OnClickedMy_first_button(WORD wNotifyCode, WORD wID,
HWND hWndCtl, BOOL& bHandled){

::Beep(200,200);
return 0;

}

DDX
Passing data in and out of dialog controls is very frequently needed. It can be done
using low-level window messages, but that involves many lines of code if done
manually. Naturally developers wished to minimize the effort involved, and out of this
grew the concept of dynamic data exchange (DDX). MFC developers will be quite
familiar with DDX, as it has been used there for many years. WTL’s DDX support is

167

WTL Developer’s Guide

modeled on MFC’s support. These are some differences, but in general, if you
understand DDX in MFC you will very quickly understand WTL’s also.

To get started with DDX in a WTL application you will need to carry out a few manual
steps. Firstly you will have to include atlddx.h in your project. Adding it to stdafx.h is
the recommended location. Then you will have to derive your dialog class from WTL’s
CWinDataExchange, set up a DDX Map, call DoDataExchange when needed
and finally think about error handling. It is likely that in future the wizards will be
updated to automate the necessary support.

CWinDataExchange
The heart of WTL’s DDX support is a WTL template called CWinDataExchange. It
contains a method called DoDataExchange that the application has to over-ride
(usually using a DDX Map). This contains the list of dialog-specific exchanges needed.
CWinDataExchange also contains methods called OnDataExchangeError and
OnDataValidateError for error handling, and the application may over-ride these
if desired. The bulk of the methods inside CWinDataExchange are methods to
transfer data in and out of controls. These include:

• DDX_Text – text based on LPTSTR, BSTR, CComBSTR & WTL’s CString
• DDX_Int – integer

• DDX_Float – float and double

• DDX_Control – control sub-classing (nothing to do with ActiveX controls)

• DDX_Check – check box

• DDX_Radio – group of radio buttons

You derive your dialog box’s C++ class from the CWinDataExchange template and
this gives you access to these methods. Each DDX method in CWinDataExchange
takes in a Boolean parameter, which specifies whether a save or a load operation is to
be carried out.

Note that WTL’s CWinDataExchange does contain a default implementation of
DoDataExchange – when called it simply asserts and throws you into the debugger.
If you omit the DDX map then this will happen. To solve the problem you will simply
have to add an appropriate DDX map.

DDX Maps
Instead of calling the data transfer methods, such as DDX_Int, directly, WTL provides
the concept of DDX Maps. One of these maps should exist for each dialog class that
uses DDX. The DDX Map implements the DoDataExchange function and its
essential role is to map the control IDs of dialog controls to C++ data members. Data is
transferred from the controls to the C++ data members when DoDataExchange is
called with a TRUE parameter, and in the reverse direction when called with FALSE.

168

WTL Developer’s Guide

Calling DoDataExchange
The application developer needs to decide when to call DoDataExchange. Unlike
MFC, it is not done automatically for you.

The controls must actually exist when you call DoDataExchange. Typically you will
add a call to DoDataExchange(FALSE) to OnInitDialog, and a call to
DoDataExchange(TRUE) to OnOK.

Sample : DataExchangeDemo
To show a simple example of how to use WTL’s data exchange, create a project called
DoDataExchange. Add this line at the bottom of stdafx.h:

#include <atlddx.h>
In the dialog resource, add a text box with an id of IDC_MYFIRST_INT.

Change the definition of CMainDlg so it derives from CWinDataExchange:

class CMainDlg : public CDialogImpl<CMainDlg>,
public CWinDataExchange<CMainDlg>

Add an integer data member to the CMainDlg class:

int m_num;
Add a data map with an entry mapping m_num data member to the text box in the
dialog:

BEGIN_DDX_MAP(CMainDlg)
DDX_INT(IDC_MYFIRST_INT, m_num)

END_DDX_MAP()
Put calls to DoDataExchange in OnInitDialog and OnOK.

LRESULT OnInitDialog(. . .){
. . .
m_num = 43; // initialize m_num here
DoDataExchange(FALSE); // FALSE means copy TO the dialog
return TRUE;

}
LRESULT OnOK(){

DoDataExchange(TRUE); // TRUE means copy FROM the dialog
// use m_num here
EndDialog(wID);
return 0;

}
In OnInitDialog, the data is transferred from the C++ data member to the dialog
controls using the call to DoDataExchange. This means that the C++ data member
values may be set before the call as needed. As they are only C++ data members, then
may also be set where the dialog class is instantiated.

CMainDlg dlg;
Dlg.m_num = 20;
Dlg.DoModal();

169

WTL Developer’s Guide

The actual window for the control does not need to exist at this point. It does need to
exist when DoDataExchange is called.

If you wish to carry out data exchange for a particular control, you can pass its id as the
second parameter to DoDataExchange. If our DDX_MAP had many entries and for
some reason we only wished to perform data exchange for the IDC_MYFIRST_INT
control, we could call DoDataExchange as follows:

DoDataExchange(TRUE, IDC_MYFIRST_INT);

DDX With Integers
The member function CWinDataExchange::DDX_Int is responsible for handling
integer exchange. Its prototype is:

template <class Type> BOOL DDX_Int(UINT nID, Type& nVal,
BOOL bSigned, BOOL bSave, BOOL bValidate = FALSE,
Type nMin = 0, Type nMax = 0);

At a minimum, its needs a control’s id and variable as parameters.

The macros to put inside the DDX map which using DDX_Int are:

• DDX_INT(nID, var): exchanges signed integer values, no validation

• DDX_INT_RANGE(nID, var, min, max): exchanges signed integer
values and for validation ensures it is between min and max (the max and min
values themselves are valid in the range)

• DDX_UINT(nID, var): exchanges unsigned integer values, no validation

• DDX_UINT_RANGE(nID, var, min, max): exchanges unsigned
integer values and for validation ensures it is between min and max (the max
and min values themselves are valid in the range)

For each transfer method in CWinDataExchange, there are multiple DDX macros,
which call it using various combinations of parameters.

If validation is turned on (i.e. using the DDX_INT_RANGE or DDX_UINT_RANGE
macros), then when loading var must be between nMin and nMax (inclusive) – this is
enforced by an assertion; when saving if var is not in the nMin/nMax range then the
OnDataValidateError method is called. Note the difference between loading and
saving – with loading the condition must be true – if false (and running in debug mode)
an assertion is activated, whereas with saving the condition may be false and if so
causes a call to the error handler but the application continues running.

DDX with Checkboxes and Radio-Buttons
The DDX member functions for check boxes and radio buttons are:

void DDX_Check(UINT nID, int& nValue, BOOL bSave)
void DDX_Radio(UINT nID, int& nValue, BOOL bSave)
For the checkbox, the valid values are 0, 1 and 2, which correspond to unchecked,
checked and indeterminate (for tri-state buttons). When transferring data to the check

170

WTL Developer’s Guide

box control, if the value is not 0,1 or 2, then ATLTRACE2 is called to print out an error
message in the output window – note that OnDataExchangeError is not called.
When loading, the nValue must be 0, 1 or 2 – this is enforced by an assertion.

For a radio button group, the members of the group are delimited by the control id of
the first radio button in the group, and the next control with the WS_GROUP attribute set
(this is one past the end). You can arrange the ordering of controls by selecting tab
order from the layout menu in resource view. You will need to set the WS_GROUP
property for the first radio button in the group and for the control one past the last radio
button in tab order.

If there are members of the group that are not radio-buttons (this should not be the
case), then this message is sent to the output window

ATL: Warning - skipping non-radio button in group.
Only one radio button in the group can be selected and the control id parameter must be
that of a radio button control (both of these should be the case) – this is enforced by
assertions.

The DDX macros are:

• DDX_CHECK(nID, var) : exchanges between an unsigned integer and a
check box

• DDX_RADIO(nID, var) : exchanges data between an unsigned integer and
radio button group

DDX with Floating Point Values
The DDX member functions for floating point values are:

BOOL DDX_Float(UINT nID, float& nVal, BOOL bSave,
 BOOL bValidate = FALSE, float nMin = 0.F, float nMax = 0.F)

BOOL DDX_Float(UINT nID, double& nVal, BOOL bSave,
 BOOL bValidate = FALSE, double nMin = 0., double nMax = 0.)
Both floats and doubles are supported. At a minimum a control id and a data member
are needed as parameters.

The macros for floats/doubles are:

• DDX_FLOAT(nID, var) – data exchange only (no validation)

• DDX_FLOAT_RANGE(nID, var, min, max) : data exchange and
validation

The floating point functionality requires the C-Run-Time library. If you wish to use
floating point DDX you will need to add a definition to the preprocessor of
_ATL_USE_DDX_FLOAT to both the debug and release build settings, and remove the
definition of _ATL_MIN_CRT from the release build settings (it was put these
automatically by the WTL AppWizard). You cannot have both of these defined in the
preprocessor – as one is saying include the CRT and the other is saying exclude the
CRT. If you forget, these lines in atlddx.h will remind you:

171

WTL Developer’s Guide

#if defined(_ATL_USE_DDX_FLOAT) && defined(_ATL_MIN_CRT)
#error Cannot use floating point DDX with _ATL_MIN_CRT defined

#endif //defined(_ATL_USE_DDX_FLOAT) && defined(_ATL_MIN_CRT)
If validation is turned on (i.e. using the DDX_FLOAT_RANGE macro), then when
loading the following must be true (this is enforced by an assertion):

nVal >= nMin && nVal <= nMax

When saving if

nVal < nMin || nVal > nMax

is true, then the OnDataValidateError method is called.

Similarly to integer processing, if validation is turned on (i.e. using the
DDX_FLOAT_RANGE macro), then when loading var must be between nMin and
nMax (inclusive) – this is enforced by an assertion; when saving if var is not in the
nMin/nMax range then the OnDataValidateError method is called. Also an
assertion ensures that nMin is not equal to nMax.

DDX with Strings
CWinDataExchange offers a number of member functions dealing with data
exchange for text. They are:

BOOL DDX_Text(UINT nID, LPTSTR lpstrText, int nSize, BOOL bSave,
BOOL bValidate = FALSE, int nLength = 0);

BOOL DDX_Text(UINT nID, BSTR& bstrText, int /*nSize*/,
BOOL bSave, BOOL bValidate = FALSE, int nLength = 0);

BOOL DDX_Text(UINT nID, CComBSTR& bstrText, int /*nSize*/,
BOOL bSave, BOOL bValidate = FALSE, int nLength = 0);

BOOL DDX_Text(UINT nID, CString& strText, int /*nSize*/,
BOOL bSave, BOOL bValidate = FALSE, int nLength = 0);

The string data types they support are LPTSTR, BSTR, CComBSTR and
WTL::CString.

Note that WTL::CString is only supported if _ATL_TMP_NO_CSTRING is NOT
defined (and usually it is not), and if the header file atlmisc.h is included.

Each of these exchange functions transfer string data to a textbox control. The optional
validation is the length of the string. If the string is to accept numeric characters only,
then the NUMBER property should be set in the resource editor for the text-box.

172

WTL Developer’s Guide

The DDX macros for text are:

• DDX_TEXT(nID,var)- data exchange between text box and string data
member (no validation)

• DDX_TEXT_LEN(nID, var, len) - data exchange between text box and
string data member, and also validation of string length

The var field can be one of LPTSTR, BSTR, CComBSTR or CString and depending
on its data type the appropriate DDX_Text member function will be called.

If saving and validation is turned on, then the length field must be greater than zero
(this is enforced by an assertion).

If loading, and validation is turned on, and the data or type is one of LPTSTR, BSTR or
CComBSTR (but not CString), then the number of characters in the string must be
greater than the nLength parameter (this is enforced by an assertion).

DDX For Control Sub-Classing
To support subclassing of controls, CWinDataExchange offers the DDX_Control
method. It simply calls the CWindowImplBaseT< TBase, TWinTraits
>::SubclassWindow, which we discussed in the coverage of ATL Windowing.

One macro is provided to support subclassing:

• DDX_CONTROL(nID, Control) – the control class subclasses the control
window in the dialog box

Sample: CallMacrosDlg in DataExchangeDemo
We will now extend the DataExchangeDemo with a dialog box that shows all these
macros in use.

As we wish to use floating-point, we first add _ATL_USE_DDX_FLOAT as a
preprocessor definition in both the debug and release build settings. We also remove
_ATL_MIN_CRT from the release build preprocessor definitions.

As we wish to use the WTL’s CString functionality and the DDX functionality, we
add atlmisc.h and atlddx.h to stdafx.h.

173

WTL Developer’s Guide

In the ResourceView, create a new dialog template, with the id of
IDD_ALL_MACROS_DLG and the title of All Macros. Lay out a series of controls as
follows:

Create a new dialog class called CAllMacrosDlg (say, in a file called
allmacrosdlg.h).

Add variables of each type we need:

int m_nSignedIntNoValidation;
int m_nSignedIntValidation;
unsigned int m_nUnsignedIntNoValidation;
unsigned int m_nUnsignedIntValidation;
int m_nCheckBoxValue;
int m_nRadioButtonValue;
float m_nFloatNoValidation;
float m_nFloatValidation;
CString m_nStringNoValidation;
CString m_nStringValidation;

Now manually construct a DDX map with all the entries:

BEGIN_DDX_MAP(CAllMacrosDlg)
DDX_INT(IDC_SIGNED_INT_NO_VAL, m_nSignedIntNoValidation)
DDX_INT_RANGE(IDC_SIGNED_INT_VAL,

m_nSignedIntValidation, 10,20)
DDX_UINT(IDC_UNSIGNED_INT_NO_VAL,

m_nUnsignedIntNoValidation)
DDX_UINT_RANGE(IDC_UNSIGNED_INT_VAL,

m_nUnsignedIntValidation, (unsigned int) 30,
(unsigned int) 40)

DDX_CHECK(IDC_CHECK_BOX, m_nCheckBoxValue)
DDX_RADIO(IDC_RADIOBUTTON_GROUP, m_nRadioButtonValue)
DDX_FLOAT(IDC_FP_NO_VAL, m_nFloatNoValidation)
DDX_FLOAT_RANGE(IDC_FP_VAL, m_nFloatValidation,

50.0, 60.0)
DDX_TEXT(IDC_STRING_NO_VAL, m_nStringNoValidation)

174

WTL Developer’s Guide

DDX_TEXT_LEN(IDC_STRING_VAL, m_nStringValidation, 20)
END_DDX_MAP()

Note that the DDX_MAP is entirely separate from the message map and each control can
appear in neither, or both or any one of the two maps.

In OnInitDialog, initialize the variables, and then call DoDataExchange.

m_nSignedIntNoValidation = 1;
m_nSignedIntValidation = 15;
m_nUnsignedIntNoValidation = 3;
m_nUnsignedIntValidation = 35;
m_nCheckBoxValue = 1; // set check box
m_nRadioButtonValue = 2; // third entry - zero'd

 // based index;
m_nFloatNoValidation = 10.0;
m_nFloatValidation = 55.0;
m_nStringNoValidation = TEXT("A Wonderful String");
m_nStringValidation = TEXT("Another String");
DoDataExchange(FALSE);

Validation occurs when transferring data from C++ data members to dialog controls. So
it is where we call DoDataExchange(FALSE), usually inside OnInitDialog,
where validation can fail.

In OnOK, call DoDataExchange(TRUE), which results in the updated values being
copied from the dialog box controls into the member variables.

Sample : CStringWithFloat
While on the subject of support for floating point, we will now return to the CString
class. WTL’s CString::Format provides printf-like formatting functions.
Currently it does not support floating point values (e.g. “%f”). WTL’s DDX optionally
does supports floating-point (based on a #define), but this requires the inclusion of
the C Run Time (CRT) library.

What happens if we wish to use floats with WTL’s CString::Format? It is likely
that this support will be built into CString in future, but for now we have to do some
work.

The CStringWithFloat sample explores how to add this support. It has a class
CStringWithFloat that derives from WTL’s CString. It has two member
functions, Format and FormatV. Format is a wrapper function for FormatV.
CStringWithFloat::Format is the same implementation as
CString::Format. It is there to ensure that it calls
CStringWithFloat::FormatV and not CString::FormatV.

If the macro _ATL_USE_CSTRING_FLOAT is defined, we add support for floats (this
is similar to how floats are supported in WTL’s DDX code). The implementation of
CStringWithFloat::FormatV is very similar to that of CString::FormatV,
with two modifications. Firstly, when walking the argument list to determine the length
for the CString buffer, we add this code:

#ifdef _ATL_USE_CSTRING_FLOAT

175

WTL Developer’s Guide

va_arg(argList, float);
nItemLen = 32;
nItemLen = max(nItemLen, nWidth+nPrecision);

#else
ATLASSERT(!"Floating point (%%e, %%f, %%g, and %%G) is “
“not supported by the WTL::CString class.");

#endif // !_ATL_USE_CSTRING_FLOAT
Secondly, when actually formatting, we use the CRT function _vstprintf (which
can handle floats and is TCHAR-friendly) rather than wvsprintf from the Win32
API (which does not support floats):

#ifdef _ATL_USE_CSTRING_FLOAT
int nRet = _vstprintf(m_pchData, lpszFormat, argListSave);

#else
int nRet = wvsprintf(m_pchData, lpszFormat, argListSave);

#endif
We can use this as follows:

CStringWithFloat str;
str.Format("This is a float = %f\n", 4354.56);

The DDX Map Macros
The aim of the DDX map macros is to simplify the construction of the
DoDataExchange function. The begin and end macros start and finish the function,
and the various data transfer macros call the transfer function when appropriate.

The BEGIN_DDX_MAP macro is defined as:

#define BEGIN_DDX_MAP(thisClass) \
BOOL DoDataExchange(BOOL bSaveAndValidate = FALSE, UINT nCtlID =

(UINT)-1) \
{ \

The data transfer macros are all defined similarly. Here is the one for DDX_INT:

#define DDX_INT(nID, var) \
if(nCtlID == (UINT)-1 || nCtlID == nID) \
{ \

if(!DDX_Int(nID, var, TRUE, bSaveAndValidate)) \
return FALSE; \

}
The END_DDX_MAP macro is defined as:

define END_DDX_MAP() \
return TRUE; \

}
So the DDX map . . .

BEGIN_DDX_MAP(CMainDlg)
DDX_INT(IDC_MYFIRST_INT, m_num)

END_DDX_MAP()
. . . gets converted to this code:

BOOL DoDataExchange(BOOL bSaveAndValidate = FALSE,

176

WTL Developer’s Guide

UINT nCtlID = (UINT)-1){
if(nCtlID == (UINT)-1 || nCtlID == nID) {
if(!DDX_Int(nID, var, TRUE, bSaveAndValidate))

return FALSE;
}
return TRUE;

}
The vast majority of times, DoDataExchange will be called without the second
control id parameter. This means it defaults to –1, which results in all the DDX transfer
functions being called. For specialist needs you can call DoDataExchange and pass
it in a control id, when you need to carry out data transfer for a single control.

The first parameter, bSaveAndValidate, specifies if a save or a load is occurring. If
saving is occurring, then validation is an optional extra – it is called using some macros
and not with some others. In our previous listing of all the available DDX macros, we
noted those that provided validation.

Detailed Look at one DDX Transfer Method
To gain a deeper understanding of how data transfer works, we will look in more detail
at one sample from the WTL source code.

DDX_Text is called when any of the DDX_TEXT macros are used. The last two
parameters, bValidate and nLength, are only used from DDX macros which
require validation. The save parameters states whether we are copying data to the
control or from the control to the string.

The control id specific that control in the dialog we wish to exchange data with. Its
actual HWND is retrieved in a call to Win32’s GetDlgItem. The lpstrText
parameter is a buffer, filled with text if loading, and allocated with nSize characters if
saving.

Here is the implementation (we added comments inline):

BOOL // RETURN: Did operation succeed?
DDX_Text
(

UINT nID, // IN: The control id used in
// the transfer

LPTSTR lpstrText, // IN/OUT: the text string
// (buffer must be already allocated)

int nSize, // IN: the length of the buffer
BOOL bSave, // IN: Saving or loading
BOOL bValidate = FALSE, // IN: If saving, should we validate
int nLength = 0 // IN: If validating, the length

)
{

T* pT = static_cast<T*>(this);
BOOL bSuccess = TRUE;
if(bSave){
// ---
// COPY data from the control to the string buffer

177

WTL Developer’s Guide

// ---

// calls Win32’s ::GetDlgItem
HWND hWndCtrl = pT->GetDlgItem(nID);

int nRetLen = ::GetWindowText(hWndCtrl,
lpstrText, nSize);

// If buffer was not large enough, flag an error
if(nRetLen < ::GetWindowTextLength(hWndCtrl))

bSuccess = FALSE;
} else {
// ---
// COPY data from the string buffer to the control
// ---

ATLASSERT(!bValidate || lstrlen(lpstrText) <=
nLength);

bSuccess = pT->SetDlgItemText(nID, lpstrText);
}

// ---
// If transfer was unsuccessful, call the data
// exchange error handler and return FALSE
// ---

if(!bSuccess){
pT->OnDataExchangeError(nID, bSave);

}
else if(bSave && bValidate)
{

// --
// Perform validation if required - note that
// many DDX macros do not mandate validation
// --

ATLASSERT(nLength > 0);
if(lstrlen(lpstrText) > nLength){

//

// If validation failed, fill in the _XData
// structure and call the validation error handler

//

_XData data;
data.nDataType = ddxDataText;
data.textData.nLength = lstrlen(lpstrText);
data.textData.nMaxLength = nLength;
pT->OnDataValidateError(nID, bSave, data);
bSuccess = FALSE;

}
}
return bSuccess;

}

Error Handling
Errors can occur during data transfer. Four scenarios are catered for:

178

WTL Developer’s Guide

• General data exchange problems

• Validate upon loading

• Data exchange error

• Validate upon saving

The initial two are covered by assertions in the WTL code. There are coding errors and
ATLASSERTs are sprinkled around the DDX code to protect against these. These could
include trying to validate that a string has a length of zero, setting the check box to a
value outside the range 0-1-2, etc. In our discussion of the DDX macros/DDX data
exchange functions we noted all the rules to do with each data type.

To handle the latter two situations, CWinDataExchange provides two overrideable
error handlers, OnDataExchangeError and OnDataValidateError. A data
exchange error will occur if a window with the specific control id does not exist. This is
common if creating a dialog resource with a control which has a particular control id,
and you use this in a DDX map; and later you edit the dialog resource and change/delete
the control, but do not change the DDX map. The DDX map is left with an entry for a
non-existent control id. When a data exchange error occurs, this error is detected and
OnDataExchangeError is called. The problem can easily be fixed by ensuring that
all entries in the DDX map correspond to entries in the dialog. When validating upon
saving, then a validation error occurs (e.g. when a string is longer than permitted, or a
numeric value is outside the permitted range), then OnDataValidateError is
called.

The reason there is a difference in strategy between validating upon load (use asserts if
an error occurs) and validate upon save (call OnDataValidateError if an error
occurs), is that for loading, the data is coming from the application code and should be
correct, whereas when saving the data is coming from the end-user and could well be
incorrect.

An alternative for text validation is to set the text limit for an edit box. WTL’s CEdit
provides the SetLimitText method, which internally sends an
EM_SETLIMITTEXT message. Note that this affect what the user types into the edit
box, but not what might be added through WM_SETTEXT messages or what is already
in the edit box.

Error Handlers
CWinDataExchange has two data exchange handlers, OnDataExchangeError
and OnDataValidateError. Their default implementations are:

// Overrideables
void OnDataExchangeError(UINT nCtrlID, BOOL /*bSave*/){

// Override to display an error message
::MessageBeep((UINT)-1);
T* pT = static_cast<T*>(this);
::SetFocus(pT->GetDlgItem(nCtrlID));

}
void OnDataValidateError(UINT nCtrlID, BOOL /*bSave*/,

179

WTL Developer’s Guide

_XData& /*data*/){
// Override to display an error message
::MessageBeep((UINT)-1);
T* pT = static_cast<T*>(this);
::SetFocus(pT->GetDlgItem(nCtrlID));

}
They simply beep and set the focus to the offending control. Note that if the control id
is incorrect (a likely possibility for calls to OnDataExchangeError), then the call
to SetFocus will fail (but the app will not crash). Applications can provide custom
implementation of these error handlers.

It could be argued that these are coding errors and not end-user errors causes calls to
OnDataExchangeError, and therefore an ATLASSERT statement would be
appropriate. These are serious errors, and should be highlighted during debugging.
Alternatively, a message box could be displayed stating that an error occurred. The end-
user cannot do anything to fix the problem. Maybe the problem will still let the user
work with other parts of the application, but to fix it a new build is required from the
developer.

Calls to OnDataValidateError occur due to end-user action. These are to be
expected, and the application should robustly handle all of the validation errors and
definitely continue running. End-users often do not understand what has gone wrong
from a simple beep and the focus. They will probably need more descriptive error
description. You will have to provide this by overriding OnDataValidateError.

Per dialog, the same validation error handler is called for all validation errors. WTL
provides the handler with detailed identification of what went wrong, you’re your
implementation can display it to the end-user.

The handler is passed in a _XData variable. The nDataType field identifies the data
type that is in error and the union contains additional information.

 struct _XData
{

_XDataType nDataType;
union
{

_XTextData textData;
_XIntData intData;
_XFloatData floatData;

};
};

The nDataType field will be set to one of:

enum _XDataType
{

ddxDataNull = 0,
ddxDataText = 1,
ddxDataInt = 2,
ddxDataFloat = 3,
ddxDataDouble = 4

};

180

WTL Developer’s Guide

Note that ddxDataNull and ddxDataDouble are not used in the current
implementation (even DDX_Float when called with doubles uses ddxDataFloat
when a validation error occurs).

The additional information structures identify the permissible and the actual values:

struct _XTextData {
int nLength;
int nMaxLength;

};
struct _XIntData {

long nVal;
long nMin;
long nMax;

};
struct _XFloatData {

double nVal;
double nMin;
double nMax;

};
The _XData is only used for validation errors – it is not used for data exchange errors.

Custom Validation Error Handler
It is recommended that you provide a custom validation error handler for your dialogs if
you are using the DDX validation features.

First you will need to add strings to the application’s string table in the resources. In our
implementation we will use the following:

IDS_VALIDATE_TEXTERR
You entered a text string of length %d, whereas the maximum allowed
is %d
IDS_VALIDATE_INTERR
Error detected: You entered integer of %d, whereas it must be between
%d and %d inclusive
IDS_VALIDATE_FLOATERR
Error detected: You entered floating-point number of %f, whereas it
must be between %f and %f
IDS_VALIDATE_UNEXPECTEDERR
Unexpected error during validation
Then we will implement the error handler. First we set the focus to the errant control
and we select all its text. Validation errors occur with edit boxes and the particular one
with the problem is highlighted when its contents are selected.

Then we switch on the data type, and display a message box with as much information
describing the problem. Even when the data type is float, we wish to display the current
and permissible range. However, WTL’s CString does not permit floating point in its
Format method. Our specialization of CString, call CStringWithFloat, does,
so we use it here. (An alternative would be to directly call the CRT’s sprintf).

When we have formatted the error message we display it in a message box.

181

WTL Developer’s Guide

void OnDataValidateError(UINT nCtrlID, BOOL /*bSave*/, _XData&
data){

CString strFormat;
CStringWithFloat strError;
::SetFocus(GetDlgItem(nCtrlID));
::SendMessage(GetDlgItem(nCtrlID), EM_SETSEL, 0, -1);
switch (data.nDataType){
case ddxDataText:

strFormat.LoadString(IDS_VALIDATE_TEXTERR);
strError.Format(strFormat, data.textData.nLength,
data.textData.nMaxLength);

break;
case ddxDataInt:

strFormat.LoadString(IDS_VALIDATE_INTERR);
strError.Format(strFormat, data.intData.nVal,
data.intData.nMin, data.intData.nMax);

break;
case ddxDataFloat:

strFormat.LoadString(IDS_VALIDATE_FLOATERR);
strError.Format(strFormat, data.floatData.nVal,
data.floatData.nMin, data.floatData.nMax);

break;
case ddxDataDouble: // fall through to default
case ddxDataNull: // fall through to default
default:

strError.LoadString(IDS_VALIDATE_UNEXPECTEDERR);
}
MessageBox(strError);

}
Typically the same implementation will work for all your dialogs. You could define it
as one big macro, such as

#define ON_MY_DATA_VALIDATE_ERROR \
CString strFormat; \

. . . \
MessageBox(strError); \

}
and then add the macro to each of your dialogs:

class CMyFirstManualDialog : CDialogImpl<CMyDialog >{
. . .
ON_MY_DATA_VALIDATE_ERROR
BEGIN_DDX_MAP
. . .
};
Alternatively, you could define it in a template and derive your dialog class from it.

Processing the return value from DoDataExchange
We have seen how to create a custom implementation of the DoDataExchange
method using DDX maps populated with DDX macros. When data transfer errors occur
in one of the transfer method, then the DDX macros immediately return false from

182

WTL Developer’s Guide

DoDataExchange. The subsequent DDX macros are not called at all. The
DoDataExchange method returns a Boolean specifying if the data exchange
succeeded. It should be checked, and if false action taken.

Imagine we have a dialog box with two edit controls, identified by IDC_FIRST_VAL
and IDC_LAST_VAL. Imagine we used this DDX map to conduct data exchange with
it.

BEGIN_DDX_MAP(CMyDlg)
DDX_INT(IDC_FIRST_VAL, m_nFirstVal)
DDX_INT(IDC_MIDDLE_VAL, m_nMiddleVal)
DDX_INT(IDC_LAST_VAL, m_nLastVal)

END_DDX_MAP()
As no control with the id IDC_MIDDLE_VAL exists, data exchange will fail. We have
two problems, the DDX_Int call with IDC_MIDDLE_VAL failed, and the DDX call
IDC_LAST_VAL is never actually made. Here the problem will occur when initializing
the data. The OnDataExchangeError method will have been called from inside
DDX_Int, and then it returns false, which causes DoDataExchange to return false.
Such errors are very serious as they usually indicate a coding error. If an error occurred,
then it usually is better to display an error message and not displayed the half-initialized
dialog box. Some developer make the mistake of thinking that returning false from
OnInitDialog will accomplish this, which is incorrect. The Platform SDK description
for WM_INITDIALOG states: “The dialog box procedure should return TRUE to
direct the system to set the keyboard focus to the control specified by wParam.
Otherwise, it should return FALSE to prevent the system from setting the default
keyboard focus.” If you do not want the dialog to be displayed, call EndDialog.

In this snippet we assume we have declared an error string resource
IDS_DATA_TRANSFER_ERR with a suitable error message.

LRESULT OnInitDialog(. . .){
. . .
if (!DoDataExchange(FALSE)){

strFormat.LoadString(IDS_DATA_TRANSFER_ERR);
MessageBox(strError);

EndDialog(wID);
}

return TRUE;
}

If we manage to transfer data to the controls by successfully calling
DoDataExchange(FALSE) in OnInitDialog, then that probably means we will
not have data exchange problems when calling DoDataExchange(TRUE),
assuming no one have dynamically destroyed some of the controls! However, there can
very easily be validation errors when saving. These validation errors are to be expected,
and are not a programming error – that there are merely end-user mistakes. We need to
be able to robustly handle them. We have seen how our validation handler will be
called, and the offending control highlighted and focus set upon it. However, typically
we call DoDataExchange(TRUE) in our OnOk handler – and afterwards calls
EndDialog to dismiss the dialog.

183

WTL Developer’s Guide

An interesting problem can occur here. If a validation error arises, we do set the focus
etc., but if we then call EndDialog, the dialog will be immediately dismissed.
Instead, what we need to do is check the return from DoDataExchange, and only if it
is successful, should we call EndDialog. If it is not successful, then the dialog will
remained displayed, with the offending control highlighted.

 LRESULT OnOK(WORD /*wNotifyCode*/, WORD wID, HWND /*hWndCtl*/,
BOOL& /*bHandled*/){

if (DoDataExchange(TRUE))
EndDialog(wID);

return 0;
}

As you certainly do not wish to trap users in the dialog until then get the right entries in
all the fields, it is essentially from a usability viewpoint to provide them with a Cancel
button, so that if they are encountering validation errors, and do not know/want to fix
them, then at least they can select Cancel and dismiss the dialog.

So to recap, when loading the dialog with values, we only display it if no problems
occur. When dismissing the dialog, we only hide it if no errors occur.

What WTL’s DDX Does Not Support
There are a few desirable features missing from the current implementation of WTL’s
DDX. It does not support DDX for list-boxes or combo-boxes. Neither does it support
DDX with an ActiveX control – we examined in the ATL chapter how this has to be
done. It does not have a masked edit-box functionality, which would allow on-the-fly
validation (after each entered character).

Differences between MFC DDX and WTL DDX
The following table summarizes the differences between DDX within WTL and MFC.

Feature In MFC In WTL

Creation of DDX maps Automatic, when inserting
dialog

Manual

Populating DDX maps Automatic, via MFC’s
ClassWizard

Manual (Wizard support
expected in VC++ 7)

Class support Built into CDialog Need to manually derive
from
CWinDataExchange

Calling
DoDataExchange

Built in (which can
sometimes be a problem)

You decide when to call
(a little extra work, but
more flexible)

Validation Location Separate to DDX (DDV) Part of DDX

Validation Direction Occurs when retrieving
data from dialogs

Occurs when
transferring data to and
from dialog controls

184

WTL Developer’s Guide

Range of DDX macros Widespread Text, ints, floats,
checkboxes and radio-
buttons – no support for
listboxes and combo-
boxes

WTL Wrappers For The Standard Controls
WTL provides a range of wrapper classes for the standard Windows controls. These
simplify the sending of messages to the control to manage its behavior. It should be
noted that for most cases, the use of message maps to detect user interface actions (e.g.
BN_CLOCKED) and DDX maps to exchange data are all that is needed. The use of these
wrapper controls is only necessary when more advanced management of controls is
needed.

The wrapper classes are:

• CStatic
• CButton
• CListBox
• CComboBox
• CEdit
• CScrollBar

Each wrapper consists of a constructor, a function member called
GetWndClassName that returns the window class name of the control, and a method
for each valid type of message that can be sent to that particular control type.

The wrappers are in fact templates and have T appended to their names. The templates
have a single template parameter, which is usually CWindow. For each control there is
a typedef of the control using CWindow, and this is named without the ’T’.

typedef CStaticT<CWindow> CStatic;
The simplest wrapper is CStatic, and it exposes methods for each message it accepts.
The method implementation simply calls SendMessage with the appropriate
message. A sample implementation is as follows:

HICON GetIcon() const {
ATLASSERT(::IsWindow(m_hWnd));
return (HICON)::SendMessage(m_hWnd, STM_GETICON, 0, 0L);

}
The wrappers set up the wParam and lParam fields correctly and also provide type
safety.

185

WTL Developer’s Guide

Using the Wrappers
To use the wrapper templates you will first have to include atlctrls.h, usually in
stdafx.h. Then in the dialog box in which you wish to use the wrappers, you will need
to add data members:

CEdit m_Edit;
Then you will need to attach to the windows:

M_Edit.Attach(GetDlgItem(IDC_ANY_EDITBOX));
After that you can use the wrapper as needed to send message to the control. Note that
you would normally not use the wrapper to react to incoming messages for a particular
control. These are normally sent to the control’s parent (the dialog box itself), and as
discussed in the previous section on dialog box message maps, the Add Message
Wizard understands the messages individual controls will receive, and support their
detection.

Sample: Standard Controls Dialog to DataExchangeDemo
Now we will add a dialog called StandardControls to our demo project.

In ResourceView add a static based on a picture, a button based on a checkbox, a
listbox, a combobox, an editbox and a scrollbar.

Add member variables for each of these to the dialog’s definition.

CStatic m_Static;
CButton m_Button;
CListBox m_ListBox;
CComboBox m_ComboBox;
CEdit m_Edit;
CScrollBar m_ScrollBar;

In the dialog’s OnInitDialog, attach the wrapper instances to the dialog controls.
Also initialize the contents of the listboxes and combobox, and set the range for the
scroll-bar.

m_Static.Attach(GetDlgItem(IDC_STATIC_DEMO));

186

WTL Developer’s Guide

m_Button.Attach(GetDlgItem(IDC_BUTTON_DEMO));
m_ListBox.Attach(GetDlgItem(IDC_LIST_DEMO));
m_ListBox.AddString(TEXT("One"));
m_ListBox.AddString(TEXT("Two"));
m_ListBox.AddString(TEXT("Three"));

m_ComboBox.Attach(GetDlgItem(IDC_COMBO_DEMO));
m_ComboBox.AddString(TEXT("One"));
m_ComboBox.AddString(TEXT("Two"));
m_ComboBox.AddString(TEXT("Three"));
m_ComboBox.SetCurSel(2);

m_Edit.Attach(GetDlgItem(IDC_EDIT_DEMO));
m_Edit.SetWindowText(TEXT("Some text"));
m_ScrollBar.Attach(GetDlgItem(IDC_SCROLLBAR_DEMO));
m_ScrollBar.SetScrollRange(0,100);

Finally add a push-button called ChangeAttr and a corresponding member function
which exercises the wrappers.

LRESULT OnClickedChangeAttr(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL& bHandled){

HICON MyIcon;
MyIcon = (HICON) LoadImage(_Module.GetModuleInstance(),

MAKEINTRESOURCE(ID_MY_ICON), IMAGE_ICON, 0, 0,
LR_DEFAULTCOLOR);

m_Static.SetIcon(MyIcon);
m_Button.SetCheck(1);
m_ListBox.SetCurSel(1);
m_ComboBox.SetEditSel(0,1);
m_Edit.AppendText(TEXT("- Extra text"));
m_ScrollBar.SetScrollPos(50);
return 0;

}

Initializing a Combo-Box
The ResourceView in VC++’s DevStudio allows entries in a combobox to be added to
the resource template at design time. When you add a combobox, and bring up its
properties page, then the “Data” tab is used to add entries.

When you run an MFC app and display dialogs with combo-boxes who have had such
entries defined, they are displayed with the combo-boxes populated as expected. With
WTL, the combo-boxes get displayed, but are empty. What is happening?

Information about the combobox (such as its control id and location on the dialog, but
excluding its data entries) is stored as part of a resource, of type DIALOG, in the
resource file. The Win32 dialog APIs understand this and load it directly before
rendering the dialog. The information about the entries in a combobox is stored as a
separate resource, of type DLGINIT. The Win32 dialog APIs do not understand
DLGINIT. Other code in higher-level libraries or the application itself has to process
DLGINIT resources.

187

WTL Developer’s Guide

MFC provides functionality as part of its dialog classes to cater for DLGINIT. WTL
does not. The reuse header file (rtl.h) that we have written contains a WTL-friendly
function called RUiDlgInit, which loads the DLGINIT data. It is modeled on the
equivalent MFC functionality.

RUiDlgInit(IDD, m_hWnd);
You need to pass it in the IDD of the dialog and the HWND of the existing dialog
window. Typically it is called from OnInitDialog. RUiDlgInit just runs through
the fields in the DLGINIT and sends a CB_ADDSTRING to the combo-box for each
entry.

Sample : FirstCalc
The FirstCalc sample shows the use of the combo-box data entries.

It is a calculator, which accepts two numbers and lets the user select an operator (‘+’,
‘-‘, ‘/’, ‘*’) from a combo-box.

Its dialog is laid out as:

In the resource file this is stored as:

IDD_MAINDLG DIALOG DISCARDABLE 0, 0, 179, 62
STYLE WS_MINIMIZEBOX | WS_CAPTION | WS_SYSMENU
CAPTION "FirstCalc"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,65,40,50,14
 PUSHBUTTON "=",IDC_EQUALS_BTN,110,15,25,15
 EDITTEXT IDC_RESULT_EDIT,140,15,35,15,ES_AUTOHSCROLL |
 ES_READONLY
 EDITTEXT IDC_FIRST_EDIT,5,15,30,15,ES_AUTOHSCROLL

| ES_NUMBER
 COMBOBOX IDC_OP_COMBO,40,15,30,36,CBS_DROPDOWNLIST

| WS_VSCROLL | WS_TABSTOP
 EDITTEXT IDC_SECOND_EDIT,75,15,30,15,ES_AUTOHSCROLL

| ES_NUMBER
 LTEXT "Number:",IDC_STATIC,5,5,30,10
 LTEXT "Operator:",IDC_STATIC,40,5,35,10
 LTEXT "Number:",IDC_STATIC,75,5,30,10
END
The combobox entries are set using the ResourceView (for this demo they are just one
character each in length, but of course they can be any length you like):

188

WTL Developer’s Guide

At the end of each entry do not press <CR> - this will dismiss the properties dialog –
rather press <CTRL> and <CR> simultaneously, which will put the caret on the next
line.

This information is stored in the resource file in a DLGINIT:

IDD_MAINDLG DLGINIT
BEGIN
 IDC_OP_COMBO, 0x403, 2, 0
0x002b,
 IDC_OP_COMBO, 0x403, 2, 0
0x002d,
 IDC_OP_COMBO, 0x403, 2, 0
0x002a,
 IDC_OP_COMBO, 0x403, 2, 0
0x002f,
 0
END
Developers new to DevStudio sometimes have problems sizing a combo-box. There are
two sizes which need to be set: the (horizontal) size of the combo box when it is not in
a drop-down state, and the (vertical) size when it is. To set the first, click the mouse in
the combo-box outside of the drop-down arrow – to second the second click inside the
arrow.

To load this data, add a call to RUiDlgInit to the OnInitDialog method – also
set the current selection to 0 (the first entry in the combo-box list):

LRESULT OnInitDialog(UINT /*uMsg*/, WPARAM /*wParam*/,
LPARAM /*lParam*/, BOOL& /*bHandled*/){

. . .
RUiDlgInit(IDD, m_hWnd);

m_ctlOpCombo.Attach(GetDlgItem(IDC_OP_COMBO));
m_ctlOpCombo.SetCurSel(0);
return TRUE;

}
The handler carries out the calculation is as follows:

189

WTL Developer’s Guide

LRESULT OnClickedEquals_btn(WORD wNotifyCode, WORD wID, HWND
hWndCtl,
 BOOL& bHandled){

CString strError;
// get current values
if ((!DoDataExchange(TRUE, IDC_FIRST_EDIT)) ||
(!DoDataExchange(TRUE, IDC_SECOND_EDIT))){

strError.LoadString(IDS_ERR_EXCHANGE);
MessageBox(strError);
return 0;

}
int sel = m_ctlOpCombo.GetCurSel();
switch (sel){

case 0:
m_nResultNum = m_nFirstNum + m_nSecondNum; break;

case 1:
m_nResultNum = m_nFirstNum - m_nSecondNum; break;
case 2:
m_nResultNum = m_nFirstNum * m_nSecondNum; break;

case 3:
m_nResultNum = m_nFirstNum / m_nSecondNum; break;
default:
ATLASSERT(FALSE); // should not get here!

}
// Put result in result window
if (!DoDataExchange(FALSE, IDC_RESULT_EDIT)){

strError.LoadString(IDS_ERR_EXCHANGE);
MessageBox(strError);

}
return 0;

}

WTL Wrappers for Common Controls
WTL provides the following classes for controls and helper classes:

CListViewCtrl CTreeViewCtrl CTreeItem

CHeaderCtrl CImageList CTreeViewCtrlEx

CToolBarCtrl CToolInfo CProgressBarCtrl

CStatusBarCtrl CToolTip CHotKeyCtrl

CTabCtrl CTrackBarCtrl CAnimate

CFlatScrollBar CUpDownCtrl CRichEdit

CDragListBox CComboBoxEx CRichEditComamnds

CDragListNotifyImpl CDataTime CIPAddressCtrl

CReBarCtrl CMonthCalendar CPagerCtrl

190

WTL Developer’s Guide

CFlatScrollBarImpl CCustomDraw

191

WTL Developer’s Guide

Chapter 7
Graphical Primitives

Objectives
The objectives of this chapter are to:

• Explain when we need graphical primitives

• Describe the CSize/CPoint/CRect helper classes

• Explain device contexts

• Review graphical settings, such as pens, brushes and fonts

Overview
All modern operating systems provide windowed graphics, which operate in a similar
manner. The screen is divided into a hierarchical set of windows, which can be
controlled by multiple applications. An application can set up the co-ordinates and
mapping mode for its windows, specific drawing attributes and then use a variety of
primitives to render into the window. On Windows family of operating systems, the
graphics technology is known as GDI.

The most important type of GDI object is a device context. One can apply methods such
as LineTo or Rectangle or TextOut to a device context to effect rendering. The
output from device context rendering methods can be configured using other types of
GDI objects such as pens, brushes, fonts and bitmaps.

WTL provides a full range of classes and templates for graphical primitives that cover
all aspects of the Win32 graphics facilities. The WTL support is a very thin layer above
the Win32 GDI API, so it is highly efficient and also it is easy to mix WTL and direct
Win32 GDI calls.

Rendering Graphics In Windows
Win32 graphics is based on the concept of a device context, which provides access to
drawing primitives and stores drawing attributes and modes. Primitives consists of
lines, rectangles, text, bitmaps and anything else which is to appear as pixels in a
window. How these primitives are rendered is controlled by a set of attributes, some of
which are simple values, such as drawing mode (e.g. R2_COPYPEN for plain or
R2_NOT for inverting), and some of which are other objects, such as pens, brushes and
fonts. These attributes can be assigned to the device context, and when rendering occurs
the graphical primitives use the current attributes.

Windows GDI provides a number of object types. Each object is identified by a handle,
has construction and destruction functions and offers a variety of other graphical output

192

WTL Developer’s Guide

and settings functions. The idea of providing wrappers as C++ templates for each GDI
object types is appealing – and this is exactly what WTL does for all of them. The
Windows GDI object types are:

• Device Context (DC) – Rendering and current attribute selections

• Font – Font to use for text

• Pen – How to render edge of primitives

• Brush – How to fill internals of primitives

• Region – Collection of one or more rectangles, polygons, or ellipses, which
together describes an area of the window (need not be contiguous)

• Palette – A collection of color indices and values

• Bitmap – A two-dimensional collection of pixels

A DC is used for rendering inside windows. A DC is used to setup rendering attributes,
either using discrete attribute settings (e.g. current-pen position) or attribute object
types, such as a pen object, which color, width and dashing styles). A DC is used to
store graphical modes, such as whether XOR is used for drawing or the co-ordinate
management. Hence the DC is the main object and one can consider the others as helper
objects

Where to Render?
Display device contexts can either cover the client area of window (the normal case), or
the entire window including the window frame& title bar (rarely used).

Typically, Win32 applications render graphics in the client-area of a window. By
“client-area”, we mean the area inside the window frame, below the window title bar
and above the statusbar, and inside scrollbars and command-bars if present. A display
device context used for client-area rendering is known as a client DC. A Win32
function called GetDC will return a client DC.

Normally all these other parts of a window, such as the frame and title bar, are rendered
by the operating system itself, and applications rarely needed to render here. It is
possible to retrieve a DC, known as a window DC, capable of rendering in the entire
window. A Win32 function called GetWindowDC will return a window DC. However,
note that the Microsoft Platform SDK documentation for GetWindowDC has this line:
“Painting in non-client areas of any window is not recommended.”

The Windows standard and common controls are normally responsible for rendering
themselves. One exception is the concept of owner-draw controls, in which case your
code is responsible for refreshing controls as needed. It is possible to use the Win32
graphical primitives to render anywhere in any window, but this is not frequently done.
Two WTL templates that could help are CBitmapButton and COwnerDraw.

193

WTL Developer’s Guide

Types of Device Context
Think of device context as providing access to the destination for drawing. Very often,
device contexts represent on-screen windows (display device context), but the can also
represent printers, metafiles and off-screen memory (memory device contexts).

Hence the types of device contexts are:

• ClientDC
• WindowDC
• PaintDC
• EnhancedMetafileDC
• PrintDC

A memory device context (for off-screen bitmaps) operate like the generic device
context, so WTL need not provide anything special in this case. A memory device
context is constructed by calling the Win32 function CreateCompatibleDC.

During refreshing, the OS sending a WM_PAINT message to the window. To signify
that the update has actually occurred, the application code must call BeginPaint and
EndPaint. To facilitate this, WTL provides which is known as a PaintDC, which is
a normal DC, but in addition calls BeginPaint in its constructor and EndPaint in
its destructor.

What to Render?
The application needs to keep track of everything that appears in the client area of each
window. When a window is hidden and later displayed, it is the application’s duty to
redraw everything. WTL does not provide any support in this area. Typically the
application maintains a hierarchy of one or more collection classes, such as arrays or
linked lists, and during refreshes, it cycles through the data (in a painter’s algorithm,
back to front) and rendering each data item. Each item has a bounding box, which
identifies its perimeter, and when an update occurs often only a subsection of the
window needs to be refreshed. Only items whose bounding box intersects the refresh
area need be redrawn.

When the application is about to shutdown, there is a need to persist such data to the
hard disk. Again, WTL does not provide assistance in this area. Modern applications
normally use XML here.

When to Render?
There are two schools of thought about when to do rendering. One opinion is that it
should all be centralized inside the handling of WM_PAINT. This has the advantage of
doing it in one place, but the disadvantage of redrawing everything within the region,
which needs to be refreshed. The function will be needed anyway to refresh the screen
after it has been de-iconized or brought in front of another window which was
obscuring it, or re-sized or scrolled. However, in this first approach it can also be used
even if the window is already the foreground window. The idea is when adding an item

194

WTL Developer’s Guide

to appear on screen, it is appended to the internal hierarchical data structures, and then
the area on screen it will cover is invalidated. This will result in a WM_PAINT message
being sent to the window. Your windowing code will respond as usual by erasing the
background and walking through the hierarchy redrawing everything that appears in the
window. As the new object will be last in the hierarchy, it will be last to be drawn, so
will appear on top of everything else. You might think this is an awful lot of work just
to draw one object, but for very many applications it happens so fast the end-user will
not notice. However, for applications will very complex output, yes, it can slow things
down and there can be screen flicker. For such applications, the use of an off-screen
bitmap can be helpful. All the graphical primitives can be rendered off-screen, and
when finished, the off-screen bitmap can be bitblt'ed on-screen.

The second school of thought on how to do rendering is to permit rendering as needed,
and still have a complete WM_PAINT implementation. When adding an object, it can be
done inside the handler for mouse button up. Some people disapprove of this technique,
as it is spreading drawing code in multiple locations. However, most applications
manage items, which appear on screen as objects, and each has a draw method, so the
bulk of the drawing code in inside such methods. What appears inside your handler for
WM_PAINT or WM_LBUTTONUP is just calls to such methods. Also note that for rubber
banding, this will normally have to be done in mouse move handling, so this second
approach will still need to be catered for.

Whether you choose the first or the second approach usually depends on how complex
the scene will be and whether the appearance of the new item will change existing
items. For 3D graphics with shadowing etc., adding an item definitely will change other
items, so it should be done in WM_PAINT. For an application drawing an item onto a
window with 500,000 existing items, and if the item will just appear on top of these,
then it would make sense to render it directly inside your WM_LBUTTONUP handler.

WM_PAINT messages are considered of a low-priority. The reason for this is that if
additional messages are in the message queue, it is likely that they will change what
needs to be rendered, and hence it is more efficient to leave the painting until all the
other messages are handled, and then update once. When the OS is ready to present a
WM_PAINT message, it gathers all the outstanding messages and amalgamates their
invalid regions, and presents a single WM_PAINT with the amalgamated region to the
application code.

Device Context Types
There are two popular approaches to DC management. One is to use the DC pool and
the other is to maintain a private DC per window.

The OS maintains a pool of DCs and lends one to an application when it calls GetDC,
and it is returned when ReleaseDC is called. What is provided is known as a common
DC, as it is used by multiple windows (at different times). Using DCs from the pool is
efficient and very often the Get/Release occurs inside the same function. In the
distant past (e.g. Win3.1) there was a tiny limit to the number of DCs in the pool, but
now it is only limited by system memory availability, and if memory is full you are
going to have a lot more worries than simply refreshing the screen.

195

WTL Developer’s Guide

It is possible to maintain a separate DC for a particular window. Passing CS_OWNDC
among the styles to the Win32 API RegisterClass does this.

A third approach, known as a class DC, is possible but not recommended. This
approach uses one DC per class. Every window of that class will share the same DC.
This can cause serious problems in a multi-threaded application.

DCs and Threads
A DC may only be used in one thread at a time. If an attempt is made to use it in
multiple threads in parallel, one of the calls will fail. Another problem is that even
though a DC might not be used in different threads at exactly the same time, it could
happen that one thread has set up the DC with pens and brushes etc. and renders with it,
but another thread sets it up with different attributes, and thus the first thread will
render un-expectedly.

If you wish to share DCs across threads, then you are responsible for ensuring each DC
is used in only one thread at a time and you must use synchronization constructs such as
mutexes or critical sections. GDI itself does not do this for you. Most applications do
not share DCs across threads because of this. Hence most applications do not use class
DCs. Rather they use common device DCs, or if they can guarantee that all rendering to
a particular window will be from the same thread, a private DC.

It is noted that with the Windows Template Library, there is an option to use multiple
threads with the SDI approach, and critically these use one thread per window, so using
private device contexts will work. However, the default setting is that a common device
context will be used.

To use a private DC, add CD_OWNDC to the WNDCLASS passed to RegisterClass.
In WTL/ATL, adding a custom implementation of GetWndClassInfo as follows
can do this:

static CWndClassInfo& GetWndClassInfo() {
static CWndClassInfo wc = {

{ sizeof(WNDCLASSEX), CS_HREDRAW | CS_VREDRAW|\
CS_DBLCLKS | CS_OWNDC, StartWindowProc,

0, 0, NULL,
NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1),
NULL, TEXT("myWindow"), NULL },
NULL, NULL, IDC_ARROW, TRUE, 0, _T("")

};
return wc;

}

Selecting Attribute Objects
GDI attribute objects are selected into a device context using SelectObject. When
finished, the object has to be de-selected by calling SelectObject again with a
default value or any other valid object handle. It is deleted by calling DeleteObject.
Note that an object that is selected into a DC may not be deleted.

If you are using a common DC, every time you retrieve it its attributes will be set to
default values. You will have to set it up with settings suitable for your application.

196

WTL Developer’s Guide

With a private DC, the first time you retrieve a DC it will have default values, but all
subsequent retrieves will return the exact same DC and the attributes.

Minimize DC Alterations
For high-performance graphics applications, it is important to minimize the amount of
changing of DC attributes. If you are drawing ten elements on-screen it makes no
difference. If you are drawing a million elements, it certainly does.

For each element, it is ill advised to select a new pen, new brush, new font etc., as this
is a waste of CPU resources. Instead, only as needed should these be selected. Hence
we need to minimize the amount of DC alterations. One idea is to use a private DC. It is
likely that application default attributes can be different from system default, and with a
private DC we could set the default once. Also, certain attributes are likely not to
change, and they only need to be set in the private DC once.

The use of the concept of a style is another way of encouraging users to share attributes
among multiple elements. One idea is to have a bitmask identifying desired attributes –
and default attributes – only where bits are different, is there a need to select objects
into DC.

One final possibility is that you could use multiple DCs per window. If you were
managing a small number of graphical styles, you could create a DC for each style, and
never release it until the application was shut down. Therefore your redraw code would
never have to change a DC, thus speeding it up considerably. The number of times a
style is usually changed is small compare to the number of times it is used (e.g. one per
each element based on it per refresh).

Getting Started with WTL Graphics
Now we cam move on to WTL graphics.

WTL Header Files
When using WTL’s graphics features you will have to include the WTL header file
atlgdi.h.

If you plan to also use the helper classes such as CSize, CRect and CPoint, then
you will have to include atlmisc.h. The entries in atlgdi.h do not depend on the entries
in atlmisc.h, and vice versa, so it is quite possible to include one but not the other
header file.

Atlgdi.h is included in atlapp.h, which in turn is included in every WTL project by the
WTL AppWizard, so unless you change something you can be sure it is always
included.

Sample : First Line
To draw your first line in WTL, generate a sample project, say of type SDI Application.
In the <projectname>view.h file, there will be an implementation of the class
C<Projectname>View. It will have a default OnPaint method with an

197

WTL Developer’s Guide

instantiation of a device context based on the view window. Add a call to
CPaint::LineTo method, and build and run the application.

LRESULT OnPaint(UINT /*uMsg*/, WPARAM /*wParam*/,
LPARAM /*lParam*/, BOOL& /*bHandled*/){

CPaintDC dc(m_hWnd);
dc.LineTo(200, 200); // Add this line only
return 0;

}
The view window will contain a line, from the upper-left corner, down to the
dimensions you have specified as parameters to LineTo.

As you see, using WTL for graphics is very simple, especially if you have a prior
knowledge of Win32 graphics programming. All WTL provides is an efficient set of
wrappers for Win32 graphical constructs, and in some cases adds functionality, which
can be quite useful and timesaving. Using WTL for graphics also makes your code
more easily tie in with other parts of a WTL application.

WTL Helper Classes – CSize, CPoint and CRect
WTL provides three helper classes to manage size, rectangle and point information.
These classes have no data members. Instead then inherit from Win32 data types, which
is where the data is stored.

CSize/CPoint/CRect are not used in any WTL GDI templates – so for example,
to draw a rectangle, you may either pass in four integer parameters representing the
boundary, or a variable of a Win32 data type LPCRECT, which points to the Win32
RECT structure.

typedef struct tagRECT { // Win32
 LONG left;
 LONG top;
 LONG right;
 LONG bottom;
} RECT;
The result of this is that as the WTL GDI functionality is based on the same Win32 data
types, there is no direct dependency between the WTL helper classes and the WTL GDI
templates/classes. As the WTL helper classes derive from the Win32 structures, then
are interchangeable. You may either continue to use the Win32 structures, or the WTL
helper classes.

CSize
CSize manages rectangular dimensions. It stores the width and height values as
LONGs. WTL’s CSize derives from Win32’s SIZE structure.

CSize provides the following constructors:

CSize();
CSize(int initCX, int initCY);
CSize(SIZE initSize);
CSize(POINT initPt);

198

WTL Developer’s Guide

CSize(DWORD dwSize);
CSize provides these operations:

BOOL operator==(SIZE size) const;
BOOL operator!=(SIZE size) const;
void operator+=(SIZE size);
void operator-=(SIZE size);
void SetSize(int CX, int CY);

CSize has these operators which return CSize values:

CSize operator+(SIZE size) const;
CSize operator-(SIZE size) const;
CSize operator-() const;

CSize has these operators which return CPoint values:

CPoint operator+(POINT point) const;
CPoint operator-(POINT point) const;

Finally, CSize has these operators which return CRect values:

CRect operator+(const RECT* lpRect) const;
CRect operator-(const RECT* lpRect) const;

CPoint
CPoint manages a point. It stores the x and y co-ordinates as LONGs. WTL’s CPoint
derives from Win32’s POINT structure.

CPoint provides the following constructors:

CPoint();
CPoint(int initX, int initY);
CPoint(POINT initPt);
CPoint(SIZE initSize);
CPoint(DWORD dwPoint);

CPoint provides these operations:

void Offset(int xOffset, int yOffset);
void Offset(POINT point);
void Offset(SIZE size);
BOOL operator==(POINT point) const;
BOOL operator!=(POINT point) const;
void operator+=(SIZE size);
void operator-=(SIZE size);
void operator+=(POINT point);
void operator-=(POINT point);
void SetPoint(int X, int Y);

CPoint has these operators which return CPoint values:

CPoint operator+(SIZE size) const;
CPoint operator-(SIZE size) const;
CPoint operator-() const;
CPoint operator+(POINT point) const;

CPoint has this operator which return a CSize value:

199

WTL Developer’s Guide

CSize operator-(POINT point) const;
CPoint has these operators which return CRect values:

CRect operator+(const RECT* lpRect) const;
CRect operator-(const RECT* lpRect) const;

CRect
CRect manages a rectangle. It stores the upper-left and lower-right co-ordinates as
LONGs WTL’s CRect derives from Win32’s RECT structure.

CRect provides the following constructors:

CRect();
CRect(int l, int t, int r, int b);
CRect(const RECT& srcRect);
CRect(LPCRECT lpSrcRect);
CRect(POINT point, SIZE size);
CRect(POINT topLeft, POINT bottomRight);

Note that the CRect constructor, which takes four ints, expects left, top, right and
bottom parameters, and not left, top, width and height. It one assumed the latter and
create a CRect with say (10,20,10,200), it would occupy no area of screen.

CRect provides these additional methods to access the stored data:

int Width() const;
int Height() const;
CSize Size() const;
CPoint& TopLeft();
CPoint& BottomRight();
const CPoint& TopLeft() const;
const CPoint& BottomRight() const;
CPoint CenterPoint() const;

CRect provides these conversion methods:

operator LPRECT();
operator LPCRECT() const;

CRect provides these querying methods:

BOOL IsRectEmpty() const;
BOOL IsRectNull() const;
BOOL PtInRect(POINT point) const;
BOOL EqualRect(LPCRECT lpRect) const;

CRect provides these editing methods:

void SetRect(int x1, int y1, int x2, int y2);
void SetRect(POINT topLeft, POINT bottomRight);
void SetRectEmpty();
void CopyRect(LPCRECT lpSrcRect);

CRect provides these methods to inflate, deflate and offset the rectangle:

void InflateRect(int x, int y);
void InflateRect(SIZE size);
void InflateRect(LPCRECT lpRect);

200

WTL Developer’s Guide

void InflateRect(int l, int t, int r, int b);
void DeflateRect(int x, int y);
void DeflateRect(SIZE size);
void DeflateRect(LPCRECT lpRect);
void DeflateRect(int l, int t, int r, int b);
void OffsetRect(int x, int y);
void OffsetRect(SIZE size);
void OffsetRect(POINT point);
void NormalizeRect();

CRect provides these rectangle positioning methods:

void MoveToY(int y);
void MoveToX(int x);
void MoveToXY(int x, int y);
void MoveToXY(POINT point);

CRect provides these Boolean operator methods:

BOOL IntersectRect(LPCRECT lpRect1, LPCRECT lpRect2);
BOOL UnionRect(LPCRECT lpRect1, LPCRECT lpRect2);
BOOL SubtractRect(LPCRECT lpRectSrc1, LPCRECT lpRectSrc2);

CRect provides these overloaded operators:

void operator=(const RECT& srcRect);
BOOL operator==(const RECT& rect) const;
BOOL operator!=(const RECT& rect) const;
void operator+=(POINT point);
void operator+=(SIZE size);
void operator+=(LPCRECT lpRect);
void operator-=(POINT point);
void operator-=(SIZE size);
void operator-=(LPCRECT lpRect);
void operator&=(const RECT& rect);
void operator|=(const RECT& rect);

CRect provides these overloaded operators which return a CRect:
CRect operator+(POINT point) const;
CRect operator-(POINT point) const;
CRect operator+(LPCRECT lpRect) const;
CRect operator+(SIZE size) const;
CRect operator-(SIZE size) const;
CRect operator-(LPCRECT lpRect) const;
CRect operator&(const RECT& rect2) const;
CRect operator|(const RECT& rect2) const;
CRect MulDiv(int nMultiplier, int nDivisor) const;

Sample : HelperClasses
The HelperClasses sample shows a simple use of these helper classes.

It is a simple SDI project. The header file “atlmisc.h” is added to atdafx.h. This method
is added to show CPoint, CSize and CRect in action.

void HelperDemo(){
CPoint pt1(100,100);

201

WTL Developer’s Guide

CPoint pt2(300,300);
CRect rect(pt1, pt2);
CSize sz;
sz.SetSize(100,100);
pt1 += sz;
BOOL b = rect.PtInRect(pt2);

}

GDI Objects and Handle Management
GDI objects are a totally separate concept to Win32 kernel objects, C++ objects and
COM objects. They are internal OS-managed pieces of memory, which are used to
render graphics. Applications refer to them via handles. The OS frees GDI objects
automatically when the process, which uses them, dies. However, it is considered good
practice to release them when no longer needed.

A GDI object gets created with a call to Win32 APIs ::Create<ObjectType> and
get freed with a call to the Win32 API DeleteObject. Consider a GDI handle as an
opaque pointer to the memory. WTL provides templates to all the GDI objects to
manage their lifetime and to expose type-safe wrappers to access all their functionality.

Who owns the handle
One issue that needs to be considered is how the GDI object handle is managed. Is the
GDI object created inside the WTL template, or outside? Who looks after object
destruction? How is access to the handle provided through the WTL template, so that
direct Win32 calls can be made if needed?

Each WTL template for a GDI object works through this set of issues in the same way.
Here we will take the example of a WTL’s CPenT template. The same applies to
CBrushT, CFontT, CPaletteT, CBitmapT, CPaletteT, CRgnT,
CEnhMetaFileT and CDCT and all its derivatives (CPaintDCT, CClientDC,
CWindowDC and CEnhMetaFileDC).

There is one Boolean template parameter, which specifies how handle management is
to be done. Each template has two typedefs, which specify that the class will be used to
manage its own handle, or will use an existing handle created elsewhere.

template <bool t_bManaged>
class CPenT {
. . .
};
typedef CPenT<false> CPenHandle;
typedef CPenT<true> CPen;
The constructor can take in a handle as an optional parameter (it defaults to NULL).

CPenT(HPEN hPen = NULL) : m_hPen(hPen)
{ }

The destructor will destroy the object represented by the handle only WTL is in change
of handle management.

~CPenT(){
if(t_bManaged && m_hPen != NULL)

202

WTL Developer’s Guide

DeleteObject();
}

An assignment operator is provided.

CPenT<t_bManaged>& operator=(HPEN hPen){
m_hPen = hPen;
return *this;

}
Methods are provided to attach and detach the handle.

void Attach(HPEN hPen){m_hPen = hPen;}
HPEN Detach(){

HPEN hPen = m_hPen;
m_hPen = NULL;
return hPen;

}
Methods are provided to access the internal handles and determine if it is NULL.

operator HPEN() const { return m_hPen; }
bool IsNull() const { return (m_hPen == NULL); }

A method is provided to delete the object. This is called from the destructor and also
may be called directly.

BOOL DeleteObject(){
ATLASSERT(m_hPen != NULL);
BOOL bRet = ::DeleteObject(m_hPen);
if(bRet)

m_hPen = NULL;
return bRet;

}

Parameters for WTL GDI Member Functions
WTL’s GDI is a thin wrapper around Win32 GDI functionality. The design decision
was taken to use standard Win32 data types for parameters into most WTL template
methods. Hence one will see a HPEN rather that a &CPen being used. One exception is
CString, which is supported in some templates for string inputs.

Device Context Templates
WTL provides a number of templates for device contexts. CDC is the main one and the
other inherit from it. CDC is a big template – it is by far the biggest within WTL. It
offers about 240 methods, which mostly wrap the familiar Win32 drawing functions
such as LineTo and TextOut. Their implementations simply check that the DC
handle is valid and then execute the Win32 function. For example, WTL’s
CDC::LineTo is implemented as:

BOOL LineTo(int x, int y){
ATLASSERT(m_hDC != NULL);
return ::LineTo(m_hDC, x, y);

}

203

WTL Developer’s Guide

There are a small number of methods within CDC, which contain more substantial
functionality. We will shortly examine all of CDC’s methods.

The other WTL templates for device contexts are small – they essentially perform a few
extra duties and use CDC for the entire graphics rendering.

CPaintDC
CPaintDC is a class that derives from CDC. It is aimed at provided refresh
functionality – so it manages a Win32 PAINTSTRUCT. In its constructor it calls
Win32’s BeginPaint and in its destructor it calls Win32’s EndPaint. Apart from
that, it is exactly like a CDC.

It should be used inside an application’s handling of WM_PAINT messages. It should
not be used elsewhere.

CClientDC
CClientDC derives from CDC and it is a DC based a client area of a window.
Therefore it is ideal when rendering into a window – especially the client-area. Hence
the name – CClientDC. In its constructor it calls Win32’s GetDC and in its
destructor it calls Win32’s ReleaseDC. Apart from that, it is exactly like a CDC.

CClientDC is used when an application wishes to render outside of refresh handling.
Examples would be inside button down, mouse move and button up handlers.

CWindowDC
CWindowDC derives from CDC and in its constructor it calls Win32’s GetWindowDC
and in its destructor calls ReleaseDC. Apart from that, it is exactly like a CDC. The
CWindowDC template can be used to render in all parts of a window – including the
non-client areas such as the title bar. It is rarely used, as most applications render only
into the client-area (using CClientDC) do not need to render in the non-client area of
a window. The DC retuned is a common device context – regardless of whether
CS_OWNDC is set or not.

CEnhMetaFileDC
CEnhMetaFileDC is used when creating enhanced meta files.

We will discuss this template further when covering enhanced metafiles.

204

CDC

CPaintDC CClientDC

CWindowDCCEnhMetaFileDC

CPrintDC

WTL Developer’s Guide

CPrintDC
CPrintDC is used when printing.

We will discuss this template further in the chapter on printing.

Managing Attributes Objects
CDC provides a number of methods to work with attribute objects.

To retrieve the current attribute value, use:

CPenHandle GetCurrentPen() const
CBrushHandle GetCurrentBrush() const
CPaletteHandle GetCurrentPalette() const
CFontHandle GetCurrentFont() const
CBitmapHandle GetCurrentBitmap() const

To set and get the origin of the brush in use:

BOOL GetBrushOrg(LPPOINT lpPoint) const
BOOL SetBrushOrg(int x, int y, LPPOINT lpPoint = NULL)
BOOL SetBrushOrg(POINT point, LPPOINT lpPointRet = NULL)

To list the pens and brushes available use:

int EnumObjects(int nObjectType, int (CALLBACK* lpfn)(LPVOID,
LPARAM), LPARAM lpData)
When selecting attribute objects, use:

HPEN SelectPen(HPEN hPen)
HBRUSH SelectBrush(HBRUSH hBrush)
HFONT SelectFont(HFONT hFont)
HBITMAP SelectBitmap(HBITMAP hBitmap)
int SelectRgn(HRGN hRgn)

The OS provides a number of standard object types, known as stock objects. When
selecting stock objects use:

HPEN SelectStockPen(int nPen)
HBRUSH SelectStockBrush(int nBrush)
HFONT SelectStockFont(int nFont)
HPALETTE SelectStockPalette(int nPalette,

BOOL bForceBackground)
Stock pens may be one of: WHITE_PEN, BLACK_PEN or (Win98/2000 only) DC_
PEN. Stock brushes may be WHITE_BRUSH, HOLLOW_BRUSH or (Win98/2000 only)
DC_BRUSH. Stock fonts may be one of the range from OEM_FIXED_FONT to
SYSTEM_FIXED_FONT or DEFAULT_GUI_FONT. The stock palette must be
DEFAULT_PALETTE.

Lines and Pens
WTL’s CDC offers these member functions to render lines, arcs, polylines and bezier
curves.

BOOL GetCurrentPosition(LPPOINT lpPoint) const;

205

WTL Developer’s Guide

BOOL MoveTo(int x, int y, LPPOINT lpPoint = NULL);
BOOL MoveTo(POINT point, LPPOINT lpPointRet = NULL);
BOOL LineTo(int x, int y);
BOOL LineTo(POINT point);
BOOL Arc(int x1, int y1, int x2, int y2, int x3, int y3,

int x4, int y4);
BOOL Arc(LPCRECT lpRect, POINT ptStart, POINT ptEnd);
BOOL Polyline(LPPOINT lpPoints, int nCount);
BOOL AngleArc(int x, int y, int nRadius, float fStartAngle,

float fSweepAngle);
BOOL ArcTo(int x1, int y1, int x2, int y2, int x3, int y3,

int x4, int y4);
BOOL ArcTo(LPCRECT lpRect, POINT ptStart, POINT ptEnd);
int GetArcDirection() const;
int SetArcDirection(int nArcDirection);
BOOL PolyDraw(const POINT* lpPoints, const BYTE* lpTypes,

int nCount);
BOOL PolylineTo(const POINT* lpPoints, int nCount);
BOOL PolyPolyline(const POINT* lpPoints,

const DWORD* lpPolyPoints, int nCount);
BOOL PolyBezier(const POINT* lpPoints, int nCount);
BOOL PolyBezierTo(const POINT* lpPoints, int nCount);

Some functions use and update the current position and some don’t.

For some drawing primitives, two versions of the function are provided – one ending in
“To” and one not. The “To” versions (e.g. ArcTo, PolylineTo, PolyBezierTo)
use the current point as the starting point of the rendering and when finished update the
current position. The alternatives (Arc, Polyline, PolyBezier) ignore the current
point, by starting the rendering at the first point in the point list parameter and not
updating the current point when finished.

Some pairs of member functions provide access to the same underlying Win32 API, but
support multiple data types – e.g. there is a MoveTo which takes integer x and y, and
another MoveTo which takes POINTs.

The PolyDraw member function is not supported on Windows 9x. Check out
Microsoft's KB article id: Q135059 to see how to provide a custom implementation for
Win9x.

CPenT
A pen determines the line-rendering attributes, such as line color, dimensions and
dashing style.

The CPenT template maintains a single data member, of type HPEN, which is a GDI
handle to a pen object.

There are two types of pens: cosmetic and geometric. Cosmetic means that the pen’s
width is fixed and does not change with scaling, whereas with geometric pens the width
can be scaled.

206

WTL Developer’s Guide

Three Create methods are provided:

// creates a cosmetic pen
HPEN CreatePen(int nPenStyle, int nWidth, COLORREF crColor);
//creates a geometric pen

HPEN CreatePen(int nPenStyle, int nWidth, const
LOGBRUSH* pLogBrush, int nStyleCount = 0,
const DWORD* lpStyle = NULL);

// Creates cosmetic pen
HPEN CreatePenIndirect(LPLOGPEN lpLogPen);

CPenT also provides these methods to access pen attributes:

int GetLogPen(LOGPEN* pLogPen) const;
bool GetLogPen(LOGPEN& LogPen) const;
int GetExtLogPen(EXTLOGPEN* pLogPen) const;
bool GetExtLogPen(EXTLOGPEN& ExtLogPen) const;

These are wrappers for the Win32 API GetObject. They return information about the
currently selected pen.

Note that the Width field of the LOGPEN structure is actually a POINT, and only the x
field is used.

Sample : LinesAndPens
The LinesAndPens sample shows how to use the CDCT and CPenT templates. It is an
SDI application. Menu-items have been added for each important line member function
of CDC and each CPen member.

We wish to use a private DC, so that DC settings will be retained across multiple
GetDC calls. To enable this, in the view class, one line was commented out:

//DECLARE_WND_CLASS(NULL)
and this implementation of CWndClassInfo added:

static CWndClassInfo& GetWndClassInfo() {
static CWndClassInfo wc = {

{ sizeof(WNDCLASSEX), CS_HREDRAW | CS_VREDRAW|\
CS_DBLCLKS | CS_OWNDC, StartWindowProc,
0,0,NULL,NULL,NULL,(HBRUSH)(COLOR_WINDOW+1),
NULL, TEXT("myWindow"), NULL },
NULL, NULL, IDC_ARROW, TRUE, 0, _T("")

};
return wc;

}
The menu handlers are in the CMainFrame class, but the rendering is to be done in the
view class, which is identified inside the CMainFrame class by m_hWndClient.
Hence, when accessing the DC we use the line:

CClientDC dc(m_hWndClient);
There are three types of handlers. One type calls rendering methods, such as LineTo,
Arc, or PolyBezier. Here is one sample handler for PolyDraw:

LRESULT OnPloyDraw(WORD /*wNotifyCode*/, WORD /*wID*/,

207

WTL Developer’s Guide

HWND /*hWndCtl*/, BOOL& /*bHandled*/) {
#define NUM_BEZIER_POINTS 4
POINT ptList1[NUM_BEZIER_POINTS]={{20,20}, {250, 900},

{450,145}, {600,320}};
BYTE typeList1[NUM_BEZIER_POINTS]={PT_MOVETO,

PT_BEZIERTO, PT_BEZIERTO, PT_BEZIERTO};
dc.PolyDraw(ptList1, typeList1, NUM_BEZIER_POINTS);
return 0;

}
Another type of handler is used to retrieve information from the device context. In this
project, the data is simply sent to the output window.

LRESULT OnGetLogPen(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

CClientDC dc(m_hWndClient);
CPenHandle penhandle = dc.GetCurrentPen();
LOGPEN logpen;
penhandle.GetLogPen(logpen);
CString str;
str.Format("Output from GetLogPen: style = %d, \
width = %d, color = (%d, %d, %d)\n",
logpen.lopnStyle, logpen.lopnWidth.x,
GetRValue(logpen.lopnColor),
GetGValue(logpen.lopnColor),
GetBValue(logpen.lopnColor));

OutputDebugString(str);
return 0;

}
The final type of handler is used to create a new pen.

LRESULT OnCreatePen(WORD /*wNotifyCode*/, WORD /*wID*/,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

CClientDC dc(m_hWndClient);
// check if old pen existed
if (!m_pen.IsNull()){

// Before deleting pen, should de-select it from DC
dc.SelectStockPen(BLACK_PEN);
m_pen.DeleteObject();

}
// Generate logical pen
m_pen.CreatePen(PS_DASHDOT, 5, RGB(150,50,100));
dc.SelectPen(m_pen);
return 0;

}
Note that the m_Pen parameter is a member variable of the CMainFrame class. If it
were a local variable inside OnCreatePen, upon exiting the function the destructor
for CPen would be called, and it calls DeleteObject, which is definitely not what is
wanted in this situation.

208

WTL Developer’s Guide

Filled Shapes and Brushes
WTL’s CDC offers these methods to draw filled rectangles.

 BOOL Rectangle(int x1, int y1, int x2, int y2);
BOOL Rectangle(LPCRECT lpRect);

BOOL FillRect(LPCRECT lpRect, HBRUSH hBrush);
BOOL FrameRect(LPCRECT lpRect, HBRUSH hBrush);
BOOL InvertRect(LPCRECT lpRect);
BOOL RoundRect(int x1, int y1, int x2, int y2, int x3, int y3);
BOOL RoundRect(LPCRECT lpRect, POINT point);
BOOL DrawEdge(LPRECT lpRect, UINT nEdge, UINT nFlags);
BOOL DrawFrameControl(LPRECT lpRect, UINT nType, UINT nState);

The Rectangle method draws the outline with the current pen and fills with the
current brush. FillRect draws using the brush parameter, does not use the pen, and
draw the top and left borders, but does not touch the bottom and right borders.
FrameRect uses the brush to draw the outline of the rectangle. InvertRect
performs a logical NOT operation on each pixel inside the rectangle. RoundRect
draws a rounded rectangle. DrawEdge renders the edges of a rectangle according to a
variety of styles, such as sunken or raised, specified in the flags parameter.
DrawFrameControl renders the face of a standard control, such as a pushbutton or a
radiobutton.

CDC offers these methods to render chords, pies and ellipses.

BOOL Chord(int x1, int y1, int x2, int y2, int x3, int y3,
int x4, int y4);

BOOL Chord(LPCRECT lpRect, POINT ptStart, POINT ptEnd);
void DrawFocusRect(LPCRECT lpRect);
BOOL Ellipse(int x1, int y1, int x2, int y2);
BOOL Ellipse(LPCRECT lpRect);
BOOL Pie(int x1, int y1, int x2, int y2, int x3, int y3,

int x4, int y4);
BOOL Pie(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

The Pie method draws a pie shape. Chord draws part of an ellipse bounded by a line.
Ellipse draws the entire ellipse. DrawFocusRect draws a rectangle in XOR
mode.

CDC offers these methods to draw polygons:

BOOL Polygon(LPPOINT lpPoints, int nCount);
BOOL PolyPolygon(LPPOINT lpPoints, LPINT lpPolyCounts,

int nCount);
The Polygon method draws a single polygon, whereas the PolyPolygon method
draws multiple polygons.

CDC offers these methods to rendered already loaded icons:

BOOL DrawIcon(int x, int y, HICON hIcon);
BOOL DrawIcon(POINT point, HICON hIcon);

CDC offers these methods to render an image with an effect.

209

WTL Developer’s Guide

BOOL DrawState(POINT pt, SIZE size, HBITMAP hBitmap,
UINT nFlags, HBRUSH hBrush = NULL);

BOOL DrawState(POINT pt, SIZE size, HICON hIcon, UINT nFlags,
HBRUSH hBrush = NULL);

BOOL DrawState(POINT pt, SIZE size, LPCTSTR lpszText,
UINT nFlags, BOOL bPrefixText = TRUE,
int nTextLen = 0, HBRUSH hBrush = NULL);

BOOL DrawState(POINT pt, SIZE size, DRAWSTATEPROC lpDrawProc,
LPARAM lData, UINT nFlags, HBRUSH hBrush = NULL);

The image can be a bitmap, an icon, some text with or without a mnemonic, or what is
known as complex, which is a callback function you provide to draw it. The effects can
be hidden, hide-prefix, mono, normal (none), prefix only, right aligned or union
(dithering).

CBrushT
A brush is used to specify how filling is to be done in filled shapes.

The WTL template CBrushT manages one data member: an HBRUSH instance.

CBrushT offers the following Create methods:

HBRUSH CreateSolidBrush(COLORREF crColor);
HBRUSH CreateHatchBrush(int nIndex, COLORREF crColor);
HBRUSH CreateBrushIndirect(const LOGBRUSH* lpLogBrush);
HBRUSH CreatePatternBrush(HBITMAP hBitmap);
HBRUSH CreateDIBPatternBrush(HGLOBAL hPackedDIB, UINT nUsage);
HBRUSH CreateDIBPatternBrush(const void* lpPackedDIB,

UINT nUsage);
HBRUSH CreateSysColorBrush(int nIndex);

CBrushT provides these methods to access brush attributes:

int GetLogBrush(LOGBRUSH* pLogBrush) const
bool GetLogBrush(LOGBRUSH& LogBrush) const

Sample : FilledShapesAndBrushes
The FilledShapesAndBrushes sample exercises the CDC methods for filled shapes and
the CBrush template. It is a modal-dialog based application. It contains a series of
pushbuttons, which have been mapped to handlers that called the various methods. It
has a static with an id of IDC_OUTPUT_WINDOW which is used as a destination for
rendering. We wish to use a common DC, so we do nothing special when constructing
the static. A member variable of the dialog class identifies this.

CStatic m_OutputWindow;
LRESULT OnInitDialog(UINT /*uMsg*/, WPARAM /*wParam*/,

LPARAM /*lParam*/, BOOL& /*bHandled*/){
. . .

m_OutputWindow.Attach(GetDlgItem(IDC_OUTPUT_WINDOW));
}

One sample handler when creating a brush is implemented as follows:

LRESULT OnCreateBrushIndirect(WORD /*wNotifyCode*/, WORD wID,
 HWND /*hWndCtl*/, BOOL& /*bHandled*/){

210

WTL Developer’s Guide

LOGBRUSH logbrush;
logbrush.lbColor = RGB(190,90,70);
logbrush.lbHatch = HS_CROSS;
logbrush.lbStyle = BS_HATCHED;
CBrush br;
br.CreateBrushIndirect(&logbrush);
CClientDC dc(m_OutputWindow);
dc.SelectBrush(br);
dc.Rectangle(190,190,130,130);
return 0;

}
Here is one sample of the handlers for a drawing method:

LRESULT OnDrawState(WORD /*wNotifyCode*/, WORD wID,
HWND /*hWndCtl*/, BOOL& /*bHandled*/){

CClientDC dc(m_OutputWindow);
CPoint pt(150,150);
CSize size(0,0);
dc.DrawState(pt, size, TEXT("Hello there!"),DST_TEXT);
return 0;

}

Text and Fonts
WTL’s CDC offers these methods to render text:

BOOL TextOut(int x, int y, LPCTSTR lpszString, int nCount =-1);
BOOL ExtTextOut(int x, int y, UINT nOptions, LPCRECT lpRect,

 LPCTSTR lpszString, UINT nCount = -1, LPINT lpDxWidths=NULL);
SIZE TabbedTextOut(int x, int y, LPCTSTR lpszString,
int nCount = -1, int nTabPositions = 0,
LPINT lpnTabStopPositions = NULL, int nTabOrigin = 0);

int DrawText(LPCTSTR lpszString, int nCount, LPRECT lpRect,
UINT nFormat);

The TextOut method renders the string at the specified location using attributes of the
DC. ExtTextOut is similar to TextOut, but also provides for clipping and
opaquing. TabbedTextOut is also similar to TextOut, but expands tabs using the
dimensions in the tab positions array. DrawText renders formats (e.g. justifies) and
renders text. CDC offers these methods to get and set text-related information:

BOOL GetTextExtent(LPCTSTR lpszString, int nCount,
LPSIZE lpSize) const;

BOOL GetTabbedTextExtent(LPCTSTR lpszString, int nCount,
int nTabPositions, LPINT lpnTabStopPositions) const;

BOOL GrayString(HBRUSH hBrush,
BOOL (CALLBACK* lpfnOutput)(HDC, LPARAM, int),
LPARAM lpData, int nCount, int x, int y,
int nWidth, int nHeight);

UINT GetTextAlign() const;
UINT SetTextAlign(UINT nFlags);
int GetTextFace(LPTSTR lpszFacename, int nCount) const;
int GetTextFaceLen() const;

211

WTL Developer’s Guide

BOOL GetTextMetrics(LPTEXTMETRIC lpMetrics) const;
int SetTextJustification(int nBreakExtra, int nBreakCount);
int GetTextCharacterExtra() const;
int SetTextCharacterExtra(int nCharExtra);

GetTextExtent will return the space occupied by a string when rendered in this DC.
GetTabbedTextExtent does the same and takes tabbing into consideration.
GrayString renders a string (or a bitmap) with a grayed background.
GetTextMetrics returns a Win32 TEXTMETRIC structure filled in with lots of
detailed information about the DC’s current font. Get/SetTextAlign manages the
alignment of the text relative to the bounding rectangle of the text. GetTextFace
returns the typeface name of the currently selected font. There are versions of
GetTextFace that return a BSTR (if _ATL_NO_COM is not defined) and a
WTL::CString (if __ATLSTR_H__ is defined). GetTextFaceLen returns the
length of the name. Often applications will call this first, allocate enough memory for
the name, and then call GetTypeFace. There is no Win32 function called
GetTypeFaceLen – the way WTL::CDC::GetTypeFaceLen is implemented is
by calling Win32’s GetTypeFace with a NULL buffer. Note that there are some
problems with the implementation of CDC::GetTextFace(CString &str);
See the later “Bugs and Suggestions” section for details.

SetTextJustification sets the spacing to be added for break characters when a
string is later rendered with TextOut etc. Get/SetTextCharacterExtra
manages the inter-character spacing. This is the space used between each character
when rendering.

CDC offers these methods to manage fonts:

BOOL GetCharWidth(UINT nFirstChar, UINT nLastChar,
LPINT lpBuffer) const;

DWORD SetMapperFlags(DWORD dwFlag);
BOOL GetAspectRatioFilter(LPSIZE lpSize) const;
BOOL GetCharABCWidths(UINT nFirstChar, UINT nLastChar,
LPABC lpabc) const;

BOOL GetCharABCWidths(UINT nFirstChar, UINT nLastChar,
LPABCFLOAT lpABCF) const;

BOOL GetCharWidth(UINT nFirstChar, UINT nLastChar,
float* lpFloatBuffer) const;

DWORD GetFontData(DWORD dwTable, DWORD dwOffset,
LPVOID lpData, DWORD cbData) const;

int GetKerningPairs(int nPairs, LPKERNINGPAIR lpkrnpair) const;
UINT GetOutlineTextMetrics(UINT cbData,
LPOUTLINETEXTMETRIC lpotm) const;

DWORD GetGlyphOutline(UINT nChar, UINT nFormat,
LPGLYPHMETRICS lpgm, DWORD cbBuffer, LPVOID lpBuffer,
const MAT2* lpmat2) const;

GetCharWidth returns the character widths of characters from a font.
SetMapperFlags is used to get the DC to match the aspect ratio when mapping
logical to physical fonts. GetAspectRatioFilter returns the aspect-ratio filter,
which is a CSize structure, which specifies the desirable font size in pixels, when
selecting fonts. GetCharABCWidths returns the ABC width of characters in a

212

WTL Developer’s Guide

Truetype font. A stands for the space before the character glyph, B the width of what is
drawn in the glyph and C the space after the drawn glyph. A+B+C is the space the
current position is advanced when a character is drawn. GetFontData returns
information about the metrics of a Truetype font. GetKerningPairs returns the
kerning pairs for the current font. When certain pairs of characters are to be rendered
together, then it is sometimes the case that the inter-character distance should be
different than the standard. This is known as kerning. Usually the distance is less.
GetOutlineTextMetrics returns TrueType font metrics. GetGlyphOutline
returns the outline for a character, e.g. as bezier curve data.

The following methods are only available when _WIN32_WINNT >= 0x0500 (i.e.
Windows 2000 or later):

DWORD GetFontUnicodeRanges(LPGLYPHSET lpgs) const;
DWORD GetGlyphIndices(LPCTSTR lpstr, int cch, LPWORD pgi,
DWORD dwFlags) const;

BOOL GetTextExtentPointI(LPWORD pgiIn, int cgi,
LPSIZE lpSize) const;

BOOL GetTextExtentExPointI(LPWORD pgiIn, int cgi,
int nMaxExtent, LPINT lpnFit, LPINT alpDx,
LPSIZE lpSize) const;

BOOL GetCharWidthI(UINT giFirst, UINT cgi, LPWORD pgi,
LPINT lpBuffer) const;

BOOL GetCharABCWidthsI(UINT giFirst, UINT cgi, LPWORD pgi,
LPABC lpabc) const;

GetFontUnicodeRanges returns data about the UNICODE characters in a font.
GetGlyphIndices converts a string into indices for glyphs.
GetTextExtentPointI determines the dimensions of an array of glyph indices.
GetCharABCWidthsI returns the ABC widths of glyph indices.

CFontT
A font is used when rendering text.

The WTL template CFontT manages one data member, a HFONT.

CFontT provides these Create methods:

HFONT CreateFontIndirect(const LOGFONT* lpLogFont);
HFONT CreateFont(int nHeight, int nWidth, int nEscapement,

int nOrientation, int nWeight, BYTE bItalic,
BYTE bUnderline, BYTE cStrikeOut, BYTE nCharSet,
BYTE nOutPrecision, BYTE nClipPrecision, BYTE nQuality,
BYTE nPitchAndFamily, LPCTSTR lpszFacename);

HFONT CreatePointFont(int nPointSize, LPCTSTR lpszFaceName,
HDC hDC = NULL);

HFONT CreatePointFontIndirect(const LOGFONT* lpLogFont,
HDC hDC = NULL);

When running on Windows 2000 or later, it also offers:

HFONT CreateFontIndirectEx(CONST ENUMLOGFONTEXDV* penumlfex);
CFontT provides these methods to access attrobites:

int GetLogFont(LOGFONT* pLogFont) const

213

WTL Developer’s Guide

bool GetLogFont(LOGFONT& LogFont) const

Sample : TextandFonts
The TextAndFonts sample explores the text methods in WTL’s CDC and the CFont
template. It uses treeview to present the names of the methods, and when one item in
the treeview is selected, the relevant methods are called.

A sample handling of one API is as follows:

m_pDC->TabbedTextOut(40,40, TEXT("Tabbed\tText\tOut"),
-1, TAB_COUNT, tabList, 20);

A sample creation of a font is:

m_Font.CreateFont(16, 0, 900, 900,
 FW_DONTCARE, 0, 0, 0,DEFAULT_CHARSET,
 OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS, PROOF_QUALITY,
 DEFAULT_PITCH|FF_DONTCARE, "Helvetica");

m_pDC->SelectFont(m_Font);

214

WTL Developer’s Guide

Chapter 8
Internals of WTL

Objectives
• Identify the templates/classes in WTL’s source code

Overview
As it is a template library, WTL consists of a set of header files only (atl*.h). It has
no .cpp files. It includes some header files from ATL but in general you can use WTL
independently of using ATL.

Header Files
WTL consists of the following files:

File Name Comments Length
(text lines)

Length
(count of ‘;’)

AtlApp.h AppModel, messagepump, reflectioning 872 244

AtlCrack.h Windows message crackers 1835 748

AtlCtrls.h Wrapper code for each of the Windows controls
(The old code from ATLCON have evolved into
this file)

7134 2732

AtlCtrlw.h Command Bars 2218 886

AtlCtrlx.h Bitmap buttons, checklistview, hyperlink, wait
cursor and multipane status bar

1427 523

AtlDdx.h DDX Support 563 191

AtlDlgs.h Wrappers for common selection dialogs for File,
folder, font, wrappers for common find/replace,
printer setup, and property pages

2382 813

AtlFrame.h MDI/SDI frame windows, MDI child & UpdateUI 2259 823

AtlGdi.h Wrappers for pens, brushes, fonts, bitmaps,
palettes and device contexts; OpenGL pixel
formats and wgl wrappers

2847 1095

AtlMisc.h Wrappers for common windows structures such 3026 1211

215

WTL Developer’s Guide

as SIZE, POINT, RECT, a string class called
CString and helpers for Find File, recent
documents, etc.

AtlPrint.h Printing support 831 363

AtlRes.h List of #defines of Resource IDs 245 0

AtlScrl.h Scrolling 1020 364

AtlSplit.h Splitter windows 724 246

AtlUser.h Menu implementation 291 99

Total 27,674 10,338

Contents of Each Header File

216

CMessageLoop

m_aMsgFilter : CSimpleArray<CMessageFilter*>

m_aIdleHandler : CSimpleArray<CIdleHandler*>

m_msg MSG

AddMessageFilter (pMessageFilter : CMessageFIlter*) : BOOL

RemoveMessageFilter (pMessageFilter : CMessageFIlter*) : BOOL

AddIdleHandler(pIdleHandler: CIdleHandler*) : BOOL

RemoveIdleHandler(pIdleHandler: CIdleHandler*) : BOOL

AddUpdateUI(pIdleHandler: CIdleHandler*) : BOOL

RemoveUpdateUI(pIdleHandler: CIdleHandler*) : BOOL

Run() : int

IsIdleMessage (pMsg : MSG*)

PreTranslaterMessage (pMsg : MSG*) : BOOL

OnIdle (int) : BOOL

CMessageFilter

PreTranslateMessage (pMsg:
MSG*):BOOL {abstract}

CIdleHandler

OnIdle():BOOL {abstract}

ATLApp.h

WTL Developer’s Guide

217

CServerAppModule

m_hEventShutdown HANDLE
m_bActivity bool

m_dwTimeOut DWORD
m_dwPause DWORD

Init (pObjMap : _ATL_OBJMAP_ENTRY*, hInstance :
 HINSTANCE, * pLibID: const GUID* = NULL)

Term()
Unlock() : LONG

MonitorShutdown ()
StartMonitor () : bool

ParseCommandLine(lpCmdLine : LPCTSTR, nResId : UINT,
 pnRetCode : HRESULT bool *) : bool

ParseCommandLine(lpCMdLine : LPCTSTR, LPCTSTR pAppId,
 pnRetCode : HRESULT *) :

FindOneOf(p1: LPCTSTR, p2 : LPCTSTR) : LPCTSTR
RegisterAppID(pAppId : LPCTSTR) : HRESULT

UnregisterAppID

CComModule

CAppModule

m_dwMainThreadID

m_pMsgLoopMap : CSimpleMap<DWORD, CMessageLoop*>*

m_pSettingChangeNotify : CSimpleArray<HWND>*

Init (pObjMap : _ATL_OBJMAP_ENTRY*, hInstance :
 HINSTANCE, * pLibID: const GUID* = NULL)

Term()

AddMessageLoop (pMsgLoop : CMessageLoop*) : BOOL

RemoveMessageLoop () : BOOL

GetMessageLoop (dwThreadID: DWORD
 = GetCurrentThreadId) : CMessageLoop*

AddSettingChangeNotify (hWnd : HWND) : BOOL

RemoveSettingChangeNotidy (hWnd : HWND) : BOOL

_SettingChangeDlgProc (hwnd :HWND, uMsg : UINT,
 wParam : WPARAM, lParam : LPARAM) BOOL {callback}

ATLApp.h

WTL Developer’s Guide

218

CUpdateUIBase

. . .

CSimpleArray
<_AtlUpdateUIElement> m_UI

Elements

UIAddMenuBar

UIAddToolBar

UIAddStatusBar

UIAddChildWIndowContainer

OnInitMenuPopup

UIEnable

UISetCheck

UISetRadio

UISetText

UISetState

UIGetState

UIUpdateMenuBar

UIUpdateToolBar

UIUpdateStatusBar

UIUpdateChildWIndows

UIUpdateMenuBarElement

UIUpdateToolBarElement

UIUpdateStatusBarElement

UIUpdateChildWindow

CUpdateUI

CupdateUI()

T

COwnerDraw

. . .

IsMsgHandled

SetMsgHandled

OnDrawItem

OnMeasureItem

OnCompareItem

OnDeleteItem

DrawItem

MeasureItem

CompareItem

DeleteItem

T

ATLFrame.h

ATLRes.h

contains #defines

ATLCrack.h contains
message crackers

WTL Developer’s Guide

219

CWindowImplBaseT

+m_pfnSuperWindowProc : WNDPROC

+GetWndStyle() +GetWndExStyle()
+StartWindowProc() +WindowProc()

+Create() +DestroyWindow()
+SubclassWindow()

+UnsubclassWindow() DefWindowProc
OnFinalMessage

TBase
TWinTraits

CFrameWindowImpl

. . .

Create

CreateEx

CreateSimpleToolBar

OnReBarAutoSize

OnChevronPushed
CFrameWindowImplBase

. . .

Create

CreateSimpleToolBarCtrl

CreateSimpleReBarCtrl

CreateSImpleRebar

AddSimpleRebarCtrl

AddSimpleRebarBand

SizeSimpleReBarBands

CreateSimpleStatusBar

UpdateLayout

UpdateBarsPosition

PreTranslateMessage

OnEraseBackground

OnMenuselect

OnSetFocus

OnDestroy

OnToolTipTextA/W

DisplayChevro

CleanupChevronMenu

TBase
TWinTraits

CMDIFrameWindowImpl

. . .

Create

CreateEx

CreateSimpleToolBar

GetWindowProc

MDIFrameWindowProc
{callback}

DefWindowProc

PreTranslateMessage

CreateMDIClient

OnSize

OnSetFocus

OnMDISetMenu

OnReBarAutoSize

T
TBase

TWinTraits

T
TBase

TWinTraits

CMDIChild
-WindowImpl

. . .

Create

CreateEx

CreateSimpleToolBar

UpdateClientEdge

OnSize

OnWindowPosChanging

OnMenuSelect

OnMDIActivate

OnDestroy

OnChevronPushed

T
TBase

TWinTraits

ATLFrame.h

WTL Developer’s Guide

220

CWindow

CMDIWindow

. . .

MDIGetActive

MDIActivate

MDINext

MDIMaximize

MDIRestore

MDIDestroy

MDICascade

MDITile

MDIIconArrange

MDISetMenu

MDIRefreshMenu

GetStandardWindowMenu

SetMDIFrameMenu

GetMDIFrame

CFrameWindowClassInfo

Register

ATLFrame.h

CMenuT

CMenuT()

~CMenuT()

operator =

Attach

Detach

CreateMenu

CreatePopupMenu

LoadMenu

LoadMenuIndirect

DestroyMenu

DeleteMenu

TrackPopupMenu

TrackPopupMenuEx

AppendMenu

CheckMenuItem

EnableMenuItem

GetMenuItemCOunt

GetMenuItemID

GetMenuState

GetMenuString

GetSubMenu

InsertMenu

ModifyMenu

RemoveMenu

SetMenuItemBitmaps

CheckMenuRadioItem

SetMenuItemInfo

InsertMenuItem

SetMenuContextHelpId

GetMenuContextHelpId

bManaged

ATLUser.h

MENUINFO
 {struct which is
part of Win32}

CMenuItemInfo

CMenuItemInfo()

WTL Developer’s Guide

221

CSize

CPoint

CRect

CString
CRecentDocumentList

CFindFile

CPenT

CBrushT

CFontT

CBitmapT
CPaletteT

CRgnT

CDCT

CPaintDC

CClientDC

CWindowDC

CEnhMetaFileInfo

CEnhMetaFileT

CEnhMetaFileDC

ATLMisc.h

ATLGdih

WTL Developer’s Guide

222

ATLDlgs.h

CFileDialogImpl

CFileDialog

CFolderDialogImpl

CFolderDialog

CFontDialogImpl

CFontDialog

CRichEditFontDialogImpl

CRichEditFontDialog

CColorDialogImpl

CColorDialog

CPrintDialogImpl

CPrintDialog

CPageSetupDialogImpl

CPageSetupDialog

CPrintDialogExImpl
CFindReplaceDialog

CPropertySheetWindow

CPropertySheetImpl

CFindReplaceDialogImpl

CPropertyPageWindow

CPropertySheet
CPropertyPage

CPropertyPageImpl

ATLDdx.h

Lots of DDX macros!

CWinDataExchange

. . .

DoDataExchange

DDX_Text

DDX_Int

_AtlSimpleFloatParse

DDX_Float

DDX_Control

DDX_Check

DDX_Radio

OnDataExchangeError

OnDataValidateError

TBase
TWinTraits

WTL Developer’s Guide

223

ATLCtrlx.h

CBitmapButtonImpl

T
Tbase

TWinTraits

CBitmapButton

CCheckListViewCtrlImpl

T
Tbase

TWinTraits

CCheckListViewCtrl

CHyperLinkImpl

T
Tbase

TWinTraits

CHyperLink

CWaitCursor

CMultiPaneStatusBarCtrlImpl
T

Tbase

CMultiPaneStatusBarCtrl

ATLCtrlwh

CCommandBarCtrlImpl
T Tbase

TWinTraits

CCommand

WTL Developer’s Guide

224

CStaticT
ATLCtrlsh

CButtonT

CListBox

CComboBoxT

CEditT

CEditCommands

CScrollBarT

CImageList

CListViewCtrlT

CTreeViewCtrlT

CTreeItem

CTreeViewCtrlExT

CHeaderCtrlT

CToolBarCtrlT

CStatusBarCtrlT

CTabCtrlT

CToolInfo

CToolTip

CTrackBarCtrl

CUpDownCtrlT

CProgressBarCtr

CHotKeyCtrlT

CAnimate

CRichEdit

CRichEditCommands

CDragListBoxT

CDragListNotifyImpl

CReBarCtrlT

CComboBoxEx

CDateTimePicke

CMonthCalendarCtrlT

CFlatScrollBarImpl

CFlatScrollBarT

CIPAddressCtrlT

CPagerCtrlT

CCustomDraw

WTL Developer’s Guide

225

CSplitterImpl
ATLSplit.h

CSplitterWindowImpl

CSplitterWindowT

CScrollImpl
ATLScrl.h

CScrollWindowImpl

CMapScrollImpl

CMapScrollWindowImpl

CFSBWindowT

CPrinterInfo
ATLPrint.h

CPrinterT

CDevModeT

CPrinterDC

CPrintPreviewWindow

CPrintJobInfo

CPrintJob

CPrintPreview

CPrintPreviewWindowImpl

	Table of Contents
	Chapter 1
Overview of WTL
	Objectives
	Overview
	Aims of WTL
	Providing An Application Framework
	Aggregating UI Functionality
	Wrapping Windowing Controls, System Dialogs and GDI objects

	Relationship Between WTL, ATL and Win32/Win64 API
	Source Code
	Binary Deliverable

	Alternatives to WTL – ATL, MFC, VB, Java, DHTML or …
	Why Choose WTL?

	Installation of WTL
	Future Delivery Mechanism
	Current Installation Mechanism
	First Step - Getting the Files
	Second Step – The WTL AppWizard
	Third Step – Updating the Path

	Contents Of WTL’s Installation
	Possible Problems with the Installation
	Resources
	Development Tools
	Internet Sites
	Newsgroups and Discussion List
	Books
	Journals

	Target Audience For This Developer’s Guide
	Chapter Contents

	Chapter 2
Win32 SDK Windowing
	Objectives
	Fundamental Windowing Concepts
	Types of Windows
	Hierarchies of Windows
	Window Classes
	The Window Procedure
	The Window
	Sub-Classing
	Super-Classing
	Message Queues
	Message loop
	Capture and Focus
	Window Styles (Traits)
	Windows Properties
	Sample – WindowingWithSDK

	Messages
	Message IDs
	Standard Controls vs. Common Controls
	Getting/Setting Information
	Commands and Notifications
	Which Windows are in the Hierarchy

	Threads and Windowing
	Who Owns the Objects?
	Threads and Windows and Message Queues
	Sending and Posting Messages
	Threads and Kernel Objects

	Chapter 3
ATL Windowing
	Objectives
	Overview
	Windowing with ATL
	CWindow
	Sample - WindowingWithATL

	Window Construction
	Window Traits
	Window Class Information
	Window Procedure using CMessageMap
	StartWindowProc and Thunking
	CWindowImpl

	Message Maps
	Constructing the Message Map
	Message Handlers
	The New Windows Message and Event Handlers Dialog
	Rendering with ATL
	Sample: ATLWithCWindowImpl
	Command and Notification Handlers
	Sample : ATLCommandsAndNotifications
	Message Map Chaining
	Sample: WindowMessageChaining

	Subclassing and Superclassing
	Sample: SubClassAndSuperClass

	CContainedWindow
	Sample: ContainedWindowSample

	Higher-level UI
	Sample: ATLSplitter

	Dialog Boxes
	Sample : SimpleModalAndModeless

	Windowing for ActiveX Controls
	Windowed or Windowless Controls
	Basing an ActiveX Control on a Standard or Common Control
	ActiveX Control Message Reflection
	Rendering within ActiveX Controls
	Composite Controls
	HTML ActiveX Controls

	ActiveX Control Containment
	The AtlAxWin Window and CAxWindow / CAxHostWindow Templates
	Creating the Control
	
	Which control to create?
	CAxDialogImpl - ActiveX Controls within Dialog Boxes
	Sample : ATLControlDemo

	Chapter 4
WTL Quick Tour
	Objectives
	The WTL Distribution
	Templates and Classes
	Application Services (atlapp.h)
	Standard Controls and Common Controls (atlctrls.h)
	Command Bars (atlctrlw.h)
	Advanced Controls (atlctrlx.h)
	Dynamic Data Exchange (atlddx.h)
	System Dialogs And Property Sheets (atldlgs.h)
	Frames (atlframe.h)
	GDI (atlgdi.h)
	Miscellaneous (atlmisc.h)
	Printing (atlprint.h)
	class CPrintPreviewWindow
		: public CPrintPreviewWindowImpl<CPrintPreviewWindow>
	Scrolling (atlscrl.h)
	Splitters (atlsplit.h)
	Menus (atluser.h)

	What is NOT in WTL
	WTL does not compete with ATL, STL, Data Templates or COM libraries
	No Document Support
	No Active Document Support
	No ISAPI Support
	No WinInet Support
	No Wrappers for Threading or Synchronization
	No Database Support

	Development Issues
	The Finished Product
	CRT
	Error Handling
	The WTL Namespace
	Template/Class/Method Naming
	Versions of Windows

	Complete list of Macros used in WTL
	Win32 Macros Which Impact WTL
	ATL Macros Which Impact WTL
	WTL Macros That You Can Define
	WTL Macros That You May Use But Should Not Define

	Debugging with WTL
	 Detailed Comparison between MFC and WTL
	Application Architecture
	Window Support
	Frame Window
	Property Sheets
	Dialog Boxes
	Views
	Controls
	Exceptions
	File Services
	Graphical Drawing
	Control Support
	Graphical Drawing Objects
	Menu
	Command Line
	MFC’s Arrays/Lists/Maps/Typed Template Collections
	MFC’s ODBC/DAO/Synchronization/Sockets/Internet Services
	Internet Server API (ISAPI)
	Run-time Object Model Support
	Simple Value Types
	Structures
	Support Classes
	OLE Type Wrappers
	Automation Types
	What is in WTL but not MFC

	WTL’s CString

	Chapter 5
The WTL AppWizard
	Objectives
	Just Say “HelloWorld”
	Modal Dialog-Based Application
	Default Project Settings
	SDI Application
	Adding a Menu-item And a Toolbar Icon

	MDI Application
	Multiple Threads SDI
	Modeless Dialog-Based Application
	Application Features - ActiveX Control Hosting
	“ActiveX Control Hosting” and Modal Dialog Applications
	 “ActiveX Control Hosting” and SDI/MDI apps with Form view type

	Application Features - Act as a COM Server
	The Message Loop
	The Automation Command-line Parameter
	Application Termination
	Sample Using COM Server
	Issues regarding registration of Universal Marshaler

	Step 2 of the WTL AppWizard
	Status Bar
	Command Bars, Rebars and Toolbars
	Use a View Window
	View Type
	ActiveX Control

	Threads with COM and Windowing
	Sample using Multiple Threads SDI with COM Server

	Chapter 6
Dialog Boxes and Controls
	Objectives
	Introduction
	What WTL Supports
	How WTL works with Dialog boxes and Controls
	Varying Degrees of Interaction with Controls

	Dialog Boxes in WTL
	WTL is a thin layer above ATL and Win32 SDK
	WTL AppWizard-Generated Dialogs
	Creating Additional Dialog Boxes Manually
	Instantiating and Displaying Dialogs
	Dialog Initialization
	Dialog Termination
	Handling Dialog Messages
	Sample : DialogDemo

	DDX
	CWinDataExchange
	DDX Maps
	Calling DoDataExchange
	Sample : DataExchangeDemo
	DDX With Integers
	DDX with Checkboxes and Radio-Buttons
	DDX with Floating Point Values
	DDX with Strings
	DDX For Control Sub-Classing
	Sample: CallMacrosDlg in DataExchangeDemo
	Sample : CStringWithFloat
	The DDX Map Macros
	Detailed Look at one DDX Transfer Method
	Error Handling
	Error Handlers
	Custom Validation Error Handler
	Processing the return value from DoDataExchange
	What WTL’s DDX Does Not Support
	Differences between MFC DDX and WTL DDX

	WTL Wrappers For The Standard Controls
	Using the Wrappers
	Sample: Standard Controls Dialog to DataExchangeDemo
	Initializing a Combo-Box
	Sample : FirstCalc

	WTL Wrappers for Common Controls

	Chapter 7
Graphical Primitives
	Objectives
	Overview
	Rendering Graphics In Windows
	Where to Render?
	Types of Device Context
	What to Render?
	When to Render?
	Device Context Types
	DCs and Threads
	Selecting Attribute Objects
	Minimize DC Alterations

	Getting Started with WTL Graphics
	WTL Header Files
	Sample : First Line

	WTL Helper Classes – CSize, CPoint and CRect
	CSize
	CPoint
	CRect
	Sample : HelperClasses

	GDI Objects and Handle Management
	Who owns the handle
	Parameters for WTL GDI Member Functions

	Device Context Templates
	CPaintDC
	CClientDC
	CWindowDC
	CEnhMetaFileDC
	CPrintDC

	Managing Attributes Objects
	Lines and Pens
	CPenT
	Sample : LinesAndPens

	Filled Shapes and Brushes
	CBrushT
	Sample : FilledShapesAndBrushes

	Text and Fonts
	CFontT
	Sample : TextandFonts

	Chapter 8
Internals of WTL
	Objectives
	Overview
	Header Files
	Contents of Each Header File

