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Preface
WebGL is a new web technology that brings hardware-accelerated 3D graphics to the 
browser without requiring the user to install additional software. As WebGL is based on 
OpenGL and brings in a new concept of 3D graphics programming to web development,  
it may seem unfamiliar to even experienced web developers.

Packed with many examples, this book shows how WebGL can be easy to learn despite its 
unfriendly appearance. Each chapter addresses one of the important aspects of 3D graphics 
programming and presents different alternatives for its implementation. The topics are always 
associated with exercises that will allow the reader to put the concepts to the test in an 
immediate manner.

WebGL Beginner's Guide presents a clear road map to learning WebGL. Each chapter starts 
with a summary of the learning goals for the chapter, followed by a detailed description 
of each topic. The book offers example-rich, up-to-date introductions to a wide range of 
essential WebGL topics, including drawing, color, texture, transformations, framebuffers, 
light, surfaces, geometry, and more. Each chapter is packed with useful and practical 
examples that demonstrate the implementation of these topics in a WebGL scene. With each 
chapter, you will "level up" your 3D graphics programming skills. This book will become your 
trustworthy companion filled with the information required to develop cool-looking 3D web 
applications with WebGL and JavaScript.

What this book covers
Chapter 1, Getting Started with WebGL, introduces the HTML5 canvas element and describes 
how to obtain a WebGL context for it. After that, it discusses the basic structure of a WebGL 
application. The virtual car showroom application is presented as a demo of the capabilities 
of WebGL. This application also showcases the different components of a WebGL application.

Chapter 2, Rendering Geometry, presents the WebGL API to define, process, and render 
objects. Also, this chapter shows how to perform asynchronous geometry loading using  
AJAX and JSON.



Preface

[ 2 ]

Chapter 3, Lights!, introduces ESSL the shading language for WebGL. This chapter shows  
how to implement a lighting strategy for the WebGL scene using ESSL shaders. The theory 
behind shading and reflective lighting models is covered and it is put into practice through 
several examples.

Chapter 4, Camera, illustrates the use of matrix algebra to create and operate cameras 
in WebGL. The Perspective and Normal matrices that are used in a WebGL scene are also 
described here. The chapter also shows how to pass these matrices to ESSL shaders so they 
can be applied to every vertex. The chapter contains several examples that show how to set 
up a camera in WebGL.

Chapter 5, Action, extends the use of matrices to perform geometrical transformations 
(move, rotate, scale) on scene elements. In this chapter the concept of matrix stacks is 
discussed. It is shown how to maintain isolated transformations for every object in the scene 
using matrix stacks. Also, the chapter describes several animation techniques using matrix 
stacks and JavaScript timers. Each technique is exemplified through a practical demo.

Chapter 6, Colors, Depth Testing, and Alpha Blending, goes in depth about the use of colors 
in ESSL shaders. This chapter shows how to define and operate with more than one light 
source in a WebGL scene. It also explains the concepts of Depth Testing and Alpha Blending, 
and it shows how these features can be used to create translucent objects. The chapter 
contains several practical exercises that put into practice these concepts.

Chapter 7, Textures, shows how to create, manage, and map textures in a WebGL scene. 
The concepts of texture coordinates and texture mapping are presented here. This chapter 
discusses different mapping techniques that are presented through practical examples. The 
chapter also shows how to use multiple textures and cube maps.

Chapter 8, Picking, describes a simple implementation of picking which is the technical  
term that describes the selection and interaction of the user with objects in the scene.  
The method described in this chapter calculates mouse-click coordinates and determines  
if the user is clicking on any of the objects being rendered in the canvas. The architecture  
of the solution is presented with several callback hooks that can be used to implement  
logic-specific application. A couple of examples of picking are given.

Chapter 9, Putting It All Together, ties in the concepts discussed throughout the book.  
In this chapter the architecture of the demos is reviewed and the virtual car showroom 
application outlined in Chapter 1, Getting Started with WebGL, is revisited and expanded. 
Using the virtual car showroom as the case study, this chapter shows how to import Blender 
models into WebGL scenes and how to create ESSL shaders that support the materials used 
in Blender.
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Chapter 10, Advanced Techniques, shows a sample of some advanced techniques such as 
post-processing effects, point sprites, normal mapping, and ray tracing. Each technique is 
provided with a practical example. After reading this WebGL Beginner's Guide you will be 
able to take on more advanced techniques on your own.

What you need for this book
 � You need a browser that implements WebGL. WebGL is supported by all major 

browser vendors with the exception of Microsoft Internet Explorer. An updated  
list of WebGL-enabled browsers can be found here:

http://www.khronos.org/webgl/wiki/Getting_a_WebGL_
Implementation

 � A source code editor that recognizes and highlights JavaScript syntax.

 � You may need a web server such as Apache or Lighttpd to load remote geometry  
if you want to do so (as shown in Chapter 2, Rendering Geometry). This is optional.

Who this book is for
This book is written for JavaScript developers who are interested in 3D web development. 
A basic understanding of the DOM object model, the JQuery library, AJAX, and JSON is ideal 
but not required. No prior WebGL knowledge is expected.

A basic understanding of linear algebra operations is assumed.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are 
followed with:
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What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you  
have learned.

You will also find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Open the file ch1_Canvas.html using one of the 
supported browsers."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
   <title> WebGL Beginner's Guide - Setting up the canvas </title>
   <style type="text/css">
   canvas {border: 2px dotted blue;}
   </style>
</head>
<body>
<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support HTML5
</canvas>
</body>
</html>

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

<!DOCTYPE html>
<html>
<head>
   <title> WebGL Beginner's Guide - Setting up the canvas </title>
   <style type="text/css">
   canvas {border: 2px dotted blue;}
   </style>
</head>
<body>
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<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support HTML5
</canvas>
</body>
</html>

Any command-line input or output is written as follows:

--allow-file-access-from-files

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Now switch to camera 
coordinates by clicking on the Camera button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in  
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.
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Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can 
visit http://www.PacktPub.com/support and register to have the files e-mailed directly 
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used  
in this book. The color images will help you better understand the changes in the output. 
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/1727_images.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support, 
selecting your book, clicking on the errata submission form link, and entering the details  
of your errata. Once your errata are verified, your submission will be accepted and the  
errata will be uploaded on our website, or added to any list of existing errata, under the 
Errata section of that title. Any existing errata can be viewed by selecting your title from 
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.



1
Getting Started with WebGL

In 2007, Vladimir Vukicevic, an American-Serbian software engineer, began 
working on an OpenGL prototype for the then upcoming HTML <canvas> 
element which he called Canvas 3D. In March, 2011, his work would lead 
Kronos Group, the nonprofit organization behind OpenGL, to create WebGL: 
a specification to grant Internet browsers access to Graphic Processing Units 
(GPUs) on those computers where they were used.

WebGL was originally based on OpenGL ES 2.0 (ES standing for Embedded Systems),  
the OpenGL specification version for devices such as Apple's iPhone and iPad. But as the 
specification evolved, it became independent with the goal of providing portability across 
various operating systems and devices. The idea of web-based, real-time rendering opened  
a new universe of possibilities for web-based 3D environments such as videogames, scientific 
visualization, and medical imaging. Additionally, due to the pervasiveness of web browsers, 
these and other kinds of 3D applications could be taken to mobile devices such as smart 
phones and tablets. Whether you want to create your first web-based videogame, a 3D 
art project for a virtual gallery, visualize the data from your experiments, or any other 3D 
application you could have in mind, the first step will be always to make sure that your 
environment is ready.

In this chapter, you will:

 � Understand the structure of a WebGL application

 � Set up your drawing area (canvas)

 � Test your browser's WebGL capabilities

 � Understand that WebGL acts as a state machine

 � Modify WebGL variables that affect your scene

 � Load and examine a fully-functional scene
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System requirements
WebGL is a web-based 3D Graphics API. As such there is no installation needed. At the time 
this book was written, you will automatically have access to it as long as you have one of the 
following Internet web browsers:

 � Firefox 4.0 or above

 � Google Chrome 11 or above

 � Safari (OSX 10.6 or above). WebGL is disabled by default but you can switch it  
on by enabling the Developer menu and then checking the Enable WebGL option

 � Opera 12 or above

To get an updated list of the Internet web browsers where WebGL is supported, please check 
on the Khronos Group web page following this link:

http://www.khronos.org/webgl/wiki/Getting_a_WebGL_Implementation

You also need to make sure that your computer has a graphics card.

If you want to quickly check if your current configuration supports WebGL, please visit  
this link:

http://get.webgl.org/

What kind of rendering does WebGL offer?
WebGL is a 3D graphics library that enables modern Internet browsers to render 3D scenes 
in a standard and efficient manner. According to Wikipedia, rendering is the process of 
generating an image from a model by means of computer programs. As this is a process 
executed in a computer, there are different ways to produce such images.

The first distinction we need to make is whether we are using any special graphics hardware 
or not. We can talk of software-based rendering , for those cases where all the calculations 
required to render 3D scenes are performed using the computer's main processor, its CPU; 
on the other hand we use the term hardware-based rendering for those scenarios where 
there is a Graphics Processing Unit (GPU) performing 3D graphics computations in real 
time. From a technical point of view, hardware-based rendering is much more efficient than 
software-based rendering because there is dedicated hardware taking care of the operations. 
Contrastingly, a software-based rendering solution can be more pervasive due to the lack of 
hardware dependencies.
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A second distinction we can make is whether or not the rendering process is happening 
locally or remotely. When the image that needs to be rendered is too complex, the render 
most likely will occur remotely. This is the case for 3D animated movies where dedicated 
servers with lots of hardware resources allow rendering intricate scenes. We called this 
server-based rendering. The opposite of this is when rendering occurs locally. We called  
this client-based rendering.

WebGL has a client-based rendering approach: the elements that make part of the 3D scene 
are usually downloaded from a server. However, all the processing required to obtain an 
image is performed locally using the client's graphics hardware.

In comparison with other technologies (such as Java 3D, Flash, and The Unity Web Player 
Plugin), WebGL presents several advantages:

 � JavaScript programming: JavaScript is a language that is natural to both web 
developers and Internet web browsers. Working with JavaScript allows you to access 
all parts of the DOM and also lets you communicate between elements easily as 
opposed to talking to an applet. Because WebGL is programmed in JavaScript, this 
makes it easier to integrate WebGL applications with other JavaScript libraries such 
as JQuery and with other HTML5 technologies.

 � Automatic memory management: Unlike its cousin OpenGL and other technologies 
where there are specific operations to allocate and deallocate memory manually, 
WebGL does not have this requisite. It follows the rules for variable scoping in 
JavaScript and memory is automatically deallocated when it's no longer needed. 
This simplifies programming tremendously, reducing the code that is needed and 
making it clearer and easier to understand.

 � Pervasiveness: Thanks to current advances in technology, web browsers with 
JavaScript capabilities are installed in smart phones and tablet devices. At the 
moment of writing, the Mozilla Foundation is testing WebGL capabilities in  
Motorola and Samsung phones. There is also an effort to implement WebGL  
on the Android platform.

 � Performance: The performance of WebGL applications is comparable to equivalent 
standalone applications (with some exceptions). This happens thanks to WebGL's 
ability to access the local graphics hardware. Up until now, many 3D web rendering 
technologies used software-based rendering.

 � Zero compilation: Given that WebGL is written in JavaScript, there is no need to 
compile your code before executing it on the web browser. This empowers you to 
make changes on-the-fly and see how those changes affect your 3D web application. 
Nevertheless, when we analyze the topic of shader programs, we will understand 
that we need some compilation. However, this occurs in your graphics hardware,  
not in your browser.
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Structure of a WebGL application
As in any 3D graphics library, in WebGL, you need certain components to be present to 
create a 3D scene. These fundamental elements will be covered in the first four chapters  
of the book. Starting from Chapter 5, Action, we will cover elements that are not required  
to have a working 3D scene such as colors and textures and then later on we will move to 
more advanced topics.

The components we are referring to are as follows:

 � Canvas: It is the placeholder where the scene will be rendered. It is a standard 
HTML5 element and as such, it can be accessed using the Document Object Model 
(DOM) through JavaScript.

 � Objects: These are the 3D entities that make up part of the scene. These entities  
are composed of triangles. In Chapter 2, Rendering Geometry, we will see how 
WebGL handles geometry. We will use WebGL buffers to store polygonal data  
and we will see how WebGL uses these buffers to render the objects in the scene.

 � Lights: Nothing in a 3D world can be seen if there are no lights. This element of any 
WebGL application will be explored in Chapter 3, Lights!. We will learn that WebGL 
uses shaders to model lights in the scene. We will see how 3D objects reflect or 
absorb light according to the laws of physics and we will also discuss different light 
models that we can create in WebGL to visualize our objects.

 � Camera: The canvas acts as the viewport to the 3D world. We see and explore  
a 3D scene through it. In Chapter 4, Camera, we will understand the different  
matrix operations that are required to produce a view perspective. We will also 
understand how these operations can be modeled as a camera.

This chapter will cover the first element of our list—the canvas. We will see in the coming 
sections how to create a canvas and how to set up a WebGL context.

Creating an HTML5 canvas
Let's create a web page and add an HTML5 canvas. A canvas is a rectangular element  
in your web page where your 3D scene will be rendered.
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Time for action – creating an HTML5 canvas
1. Using your favorite editor, create a web page with the following code in it: 

<!DOCTYPE html>
<html>
<head>
   <title> WebGL Beginner's Guide - Setting up the canvas </title>
   <style type="text/css">
   canvas {border: 2px dotted blue;}
   </style>
</head>
<body>
<canvas id="canvas-element-id" width="800" height="600">
Your browser does not support HTML5
</canvas>
</body>
</html> 

Downloading the example code

You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the  files e-mailed directly to you.

2. Save the file as ch1_Canvas.html.

3. Open it with one of the supported browsers.

4. You should see something similar to the following screenshot:
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What just happened?
We have just created a simple web page with a canvas in it. This canvas will contain our  
3D application. Let's go very quickly to some relevant elements presented in this example.

Defining a CSS style for the border
This is the piece of code that determines the canvas style:

   <style type="text/css">
   canvas {border: 2px dotted blue;}
   </style>

As you can imagine, this code is not fundamental to build a WebGL application. However,  
a blue-dotted border is a good way to verify where the canvas is located, given that the 
canvas will be initially empty.

Understanding canvas attributes
There are three attributes in our previous example:

 � Id: This is the canvas identifier in the Document Object Model (DOM).

 � Width and height: These two attributes determine the size of our canvas. When 
these two attributes are missing, Firefox, Chrome, and WebKit will default to using  
a 300x150 canvas.

What if the canvas is not supported?
If you see the message on your screen: Your browser does not support HTML5 (Which was 
the message we put between <canvas> and </canvas>) then you need to make sure that 
you are using one of the supported Internet browsers.

If you are using Firefox and you still see the HTML5 not supported message. You might 
want to be sure that WebGL is enabled (it is by default). To do so, go to Firefox and type 
about:config in the address bar, then look for the property webgl.disabled. If is set to 
true, then go ahead and change it. When you restart Firefox and load ch1_Canvas.html, 
you should be able to see the dotted border of the canvas, meaning everything is ok.

In the remote case where you still do not see the canvas, it could be due to the fact that 
Firefox has blacklisted some graphic card drivers. In that case, there is not much you can  
do other than use a different computer.
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Accessing a WebGL context
A WebGL context is a handle (more strictly a JavaScript object) through which we can access 
all the WebGL functions and attributes. These constitute WebGL's Application Program 
Interface (API).

We are going to create a JavaScript function that will check whether a WebGL context can be 
obtained for the canvas or not. Unlike other JavaScript libraries that need to be downloaded 
and included in your projects to work, WebGL is already in your browser. In other words, if 
you are using one of the supported browsers, you don't need to install or include any library.

Time for action – accessing the WebGL context
We are going to modify the previous example to add a JavaScript function that is going to 
check the WebGL availability in your browser (trying to get a handle). This function is going 
to be called when the page is loaded. For this, we will use the standard DOM onLoad event.

1. Open the file ch1_Canvas.html in your favorite text editor (a text editor that 
highlight HTML/JavaScript syntax is ideal).

2. Add the following code right below the </style> tag:

<script>
var gl = null;
function getGLContext(){
var canvas = document.getElementById("canvas-element-id");
   if (canvas == null){
      alert("there is no canvas on this page");
      return;
   }

var names = ["webgl", 
             "experimental-webgl", 
             "webkit-3d", 
             "moz-webgl"];

   for (var i = 0; i < names.length; ++i) {
       try {
          gl = canvas.getContext(names[i]);
       } 
       catch(e) {}
       if (gl) break;
   }

   if (gl == null){
      alert("WebGL is not available");
   }
   else{
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      alert("Hooray! You got a WebGL context");
   }
}
   </script>

3. We need to call this function on the onLoad event. Modify your body tag so it looks 
like the following:

<body onLoad ="getGLContext()">

4. Save the file as ch1_GL_Context.html. 

5. Open the file ch1_GL_Context.html using one of the WebGL supported browsers.

6. If you can run WebGL you will see a dialog similar to the following:

What just happened?
Using a JavaScript variable (gl), we obtained a reference to a WebGL context. Let's go back 
and check the code that allows accessing WebGL:

var names = ["webgl", 
             "experimental-webgl", 
             "webkit-3d", 
             "moz-webgl"];
   
for (var i = 0; i < names.length; ++i) {
       try {
          gl = canvas.getContext(names[i]);
       } 
       catch(e) {}
       if (gl) break;

}

The canvas getContext method gives us access to WebGL. All we need to specify a context 
name that currently can vary from vendor to vendor. Therefore we have grouped them 
in the possible context names in the names array. It is imperative to check on the WebGL 
specification (you will find it online) for any updates regarding the naming convention.
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getContext also provides access to the HTML5 2D graphics library when using 2d as the 
context name. Unlike WebGL, this naming convention is standard. The HTML5 2D graphics 
API is completely independent from WebGL and is beyond the scope of this book.

WebGL is a state machine
A WebGL context can be understood as a state machine: once you modify any of its attributes, 
that modification is permanent until you modify that attribute again. At any point you can 
query the state of these attributes and so you can determine the current state of your WebGL 
context. Let's analyze this behavior with an example.

Time for action – setting up WebGL context attributes
In this example, we are going to learn to modify the color that we use to clear the canvas:

1. Using your favorite text editor, open the file ch1_GL_Attributes.html:

<html>
<head>
   <title> WebGL Beginner's Guide - Setting WebGL context 
attributes </title>
    <style type="text/css">
   canvas {border: 2px dotted blue;}
   </style>
   
   <script>
    var gl = null;
    var c_width = 0;
    var c_height = 0;
    
    window.onkeydown = checkKey;
    
    function checkKey(ev){
      switch(ev.keyCode){
      case 49:{ // 1
           gl.clearColor(0.3,0.7,0.2,1.0);
        clear(gl);
        break;
      }
      case 50:{ // 2
        gl.clearColor(0.3,0.2,0.7,1.0);
        clear(gl);
        break;
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      }
      case 51:{ // 3
        var color = gl.getParameter(gl.COLOR_CLEAR_VALUE);
        
        // Don't get confused with the following line. It 
             // basically rounds up the numbers to one decimal 
             cipher    
             //just for visualization purposes
        alert('clearColor = (' + 
                      Math.round(color[0]*10)/10 + 
                ',' + Math.round(color[1]*10)/10+
                ',' + Math.round(color[2]*10)/10+')');
        
             window.focus();
        break;
      }
      }
    }
    
    function getGLContext(){
      var canvas = document.getElementById("canvas-element-id");
      if (canvas == null){
          alert("there is no canvas on this page");
          return;
      }

      var names = ["webgl", 
                   "experimental-webgl", 
                   "webkit-3d", 
                   "moz-webgl"];
       var ctx = null;
       for (var i = 0; i < names.length; ++i) {
           try {
               ctx = canvas.getContext(names[i]);
           } 
           catch(e) {}
           if (ctx) break;
       }

       if (ctx == null){
         alert("WebGL is not available");
          }
       else{
          return ctx;
       }
   }      
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    function clear(ctx){
      ctx.clear(ctx.COLOR_BUFFER_BIT);               
          ctx.viewport(0, 0, c_width, c_height);
    }
    
    function initWebGL(){
      gl = getGLContext();
      
    }
   </script>
</head>

<body onLoad="initWebGL()">
    <canvas id="canvas-element-id" width="800" height="600">
        Your browser does not support the HTML5 canvas element.
    </canvas>
</body>

</html>

2. You will see that this file is very similar to our previous example. However,  
there are new code constructs that we will explain briefly. This file contains  
four JavaScript functions:

Function Description

checkKey This is an auxiliary function. It captures the keyboard input and executes 
code depending on the key entered.

getGLContext Similar to the one used in the Time for action – accessing the WebGL 
context section. In this version, we are adding some lines of code to 
obtain the canvas' width and height.

clear Clear the canvas to the current clear color, which is one attribute of 
the WebGL context. As was mentioned previously, WebGL works as 
a state machine, therefore it will maintain the selected color to clear 
the canvas up to when this color is changed using the WebGL function 
gl.clearColor (See the checkKey source code)

initWebGL This function replaces getGLContext as the function being called on 
the document onLoad event. This function calls an improved version 
of getGLContext that returns the context in the ctx variable. This 
context is then assigned to the global variable gl.
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3. Open the file test_gl_attributes.html using one of the supported Internet 
web browsers.

4. Press 1. You will see how the canvas changes its color to green. If you want to query 
the exact color we used, press 3.

5. The canvas will maintain the green color until we decided to change the attribute 
clear color by calling gl.clearColor. Let's change it by pressing 2. If you look at 
the source code, this will change the canvas clear color to blue. If you want to know 
the exact color, press 3.

What just happened?
In this example, we saw that we can change or set the color that WebGL uses to clear the 
canvas by calling the clearColor function. Correspondingly, we used getParameter 
(gl.COLOR_CLEAR_VALUE) to obtain the current value for the canvas clear color.

Throughout the book we will see similar constructs where specific functions  
establish attributes of the WebGL context and the getParameter function retrieves  
the current values for such attributes whenever the respective argument (in our example, 
COLOR_CLEAR_VALUE) is used.

Using the context to access the WebGL API
It is also essential to note here that all of the WebGL functions are accessed through the 
WebGL context. In our examples, the context is being held by the gl variable. Therefore,  
any call to the WebGL Application Programming Interface (API) will be performed using  
this variable.

Loading a 3D scene 
So far we have seen how to set up a canvas and how to obtain a WebGL context; the next 
step is to discuss objects, lights, and cameras. However, why should we wait to see what 
WebGL can do? In this section, we will have a glance at what a WebGL scene look like.

Virtual car showroom
Through the book, we will develop a virtual car showroom application using WebGL. At this 
point, we will load one simple scene in the canvas. This scene will contain a car, some lights, 
and a camera.
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Time for action – visualizing a finished scene
Once you finish reading the book you will be able to create scenes like the one we are going 
to play with next. This scene shows one of the cars from the book's virtual car showroom.

1. Open the file ch1_Car.html in one of the supported Internet web browsers.

2. You will see a WebGL scene with a car in it as shown in the following screenshot.  
In Chapter 2, Rendering Geometry we will cover the topic of geometry rendering  
and we will see how to load and render models as this car.

3. Use the sliders to interactively update the four light sources that have been defined 
for this scene. Each light source has three elements: ambient, diffuse, and specular 
elements. We will cover the topic about lights in Chapter 3, Lights!.

4. Click and drag on the canvas to rotate the car and visualize it from different 
perspectives. You can zoom by pressing the Alt key while you drag the mouse on  
the canvas. You can also use the arrow keys to rotate the camera around the car. 
Make sure that the canvas is in focus by clicking on it before using the arrow keys.  
In Chapter 4, Camera we will discuss how to create and operate with cameras  
in WebGL.
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5. If you click on the Above, Front, Back, Left, or Right buttons you will see an 
animation that stops when the camera reaches that position. For achieving  
this effect we are using a JavaScript timer. We will discuss animation in  
Chapter 5, Action.

6. Use the color selector widget as shown in the previous screenshot to change the 
color of the car. The use of colors in the scene will be discussed in Chapter 6, Colors, 
Depth Testing, and Alpha Blending. Chapters 7-10 will describe the use of textures 
(Chapter 7, Textures), selection of objects in the scene (Chapter 8, Picking), how 
to build the virtual car show room (Chapter 9, Putting It All Together) and WebGL 
advanced techniques (Chapter 10, Advanced Techniques).

What just happened?
We have loaded a simple scene in an Internet web browser using WebGL.

This scene consists of:

 � A canvas through which we see the scene.

 � A series of polygonal meshes (objects) that constitute the car: roof, windows, 
headlights, fenders, doors, wheels, spoiler, bumpers, and so on. 

 � Light sources; otherwise everything would appear black.

 � A camera that determines where in the 3D world is our view point. The camera can 
be made interactive and the view point can change, depending on the user input. 
For this example, we were using the left and right arrow keys and the mouse to 
move the camera around the car.

There are other elements that are not covered in this example such as textures, colors, and 
special light effects (specularity). Do not panic! Each element will be explained later in the 
book. The point here is to identify that the four basic elements we discussed previously are 
present in the scene.
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Summary
In this chapter, we have looked at the four basic elements that are always present in any 
WebGL application: canvas, objects, lights, and camera.

We have learned how to add an HTML5 canvas to our web page and how to set its ID, width, 
and height. After that, we have included the code to create a WebGL context. We have seen 
that WebGL works as a state machine and as such, we can query any of its variables using 
the getParameter function.

In the next chapter we will learn how to define, load, and render 3D objects into  
a WebGL scene.





2
Rendering Geometry

WebGL renders objects following a "divide and conquer" approach. Complex 
polygons are decomposed into triangles, lines, and point primitives. Then, each 
geometric primitive is processed in parallel by the GPU through a series of 
steps, known as the rendering pipeline, in order to create the final scene that is 
displayed on the canvas.

The first step to use the rendering pipeline is to define geometric entities. In this 
chapter, we will take a look at how geometric entities are defined in WebGL.

In this chapter, we will:

 � Understand how WebGL defines and processes geometric information

 � Discuss the relevant API methods that relate to geometry manipulation

 � Examine why and how to use JavaScript Object Notation (JSON) to define,  
store, and load complex geometries

 � Continue our analysis of WebGL as a state machine and describe the attributes 
relevant to geometry manipulation that can be set and retrieved from the  
state machine

 � Experiment with creating and loading different geometry models!

Vertices and Indices
WebGL handles geometry in a standard way, independently of the complexity and number 
of points that surfaces can have. There are two data types that are fundamental to represent 
the geometry of any 3D object: vertices and indices.
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Vertices are the points that define the corners of 3D objects. Each vertex is represented by 
three floating-point numbers that correspond to the x, y, and z coordinates of the vertex. 
Unlike its cousin, OpenGL, WebGL does not provide API methods to pass independent 
vertices to the rendering pipeline, therefore we need to write all of our vertices in a 
JavaScript array and then construct a WebGL vertex buffer with it.

Indices are numeric labels for the vertices in a given 3D scene. Indices allow us to tell WebGL 
how to connect vertices in order to produce a surface. Just like with vertices, indices are 
stored in a JavaScript array and then they are passed along to WebGL's rendering pipeline 
using a WebGL index buffer.

There are two kind of WebGL buffers used to describe and process geometry:

Buffers that contain vertex data are known as Vertex Buffer Objects (VBOs).

Similarly, buffers that contain index data are known as Index Buffer Objects 
(IBOs).

Before getting any further, let's examine what WebGL's rendering pipeline looks like and 
where WebGL buffers fit into this architecture.

Overview of WebGL's rendering pipeline
Here we will see a simplified version of WebGL's rendering pipeline. In subsequent chapters, 
we will discuss the pipeline in more detail.

Let's take a moment to describe every element separately.
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Vertex Buffer Objects (VBOs)
VBOs contain the data that WebGL requires to describe the geometry that is going to be 
rendered. As mentioned in the introduction, vertex coordinates are usually stored and 
processed in WebGL as VBOs. Additionally, there are several data elements such as vertex 
normals, colors, and texture coordinates, among others, that can be modeled as VBOs.

Vertex shader
The vertex shader is called on each vertex. This shader manipulates per-vertex data such  
as vertex coordinates, normals, colors, and texture coordinates. This data is represented  
by attributes inside the vertex shader. Each attribute points to a VBO from where it reads 
vertex data.

Fragment shader
Every set of three vertices defines a triangle and each element on the surface of that triangle 
needs to be assigned a color. Otherwise our surfaces would be transparent.

Each surface element is called a fragment. Since we are dealing with surfaces that are going 
to be displayed on your screen, these elements are more commonly known as pixels.

The main goal of the fragment shader is to calculate the color of individual pixels.  
The following diagram explains this idea:

Framebuffer
It is a two-dimensional buffer that contains the fragments that have been processed by 
the fragment shader. Once all fragments have been processed, a 2D image is formed and 
displayed on screen. The framebuffer is the final destination of the rendering pipeline.
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Attributes, uniforms, and varyings
Attributes, uniforms, and varyings are the three different types of variables that you will find 
when programming with shaders.

Attributes are input variables used in the vertex shader. For example, vertex coordinates, 
vertex colors, and so on. Due to the fact that the vertex shader is called on each vertex,  
the attributes will be different every time the vertex shader is invoked.

Uniforms are input variables available for both the vertex shader and fragment shader.  
Unlike attributes, uniforms are constant during a rendering cycle. For example, lights position.

Varyings are used for passing data from the vertex shader to the fragment shader.

Now let's create a simple geometric object.

Rendering geometry in WebGL
The following are the steps that we will follow in this section to render an object in WebGL:

1. First, we will define a geometry using JavaScript arrays.

2. Second, we will create the respective WebGL buffers.

3. Third, we will point a vertex shader attribute to the VBO that we created in the 
previous step to store vertex coordinates.

4. Finally, we will use the IBO to perform the rendering.

Defining a geometry using JavaScript arrays
Let's see what we need to do to create a trapezoid. We need two JavaScript arrays:  
one for the vertices and one for the indices.



Chapter 2

[ 27 ]

As you can see from the previous screenshot, we have placed the coordinates sequentially in 
the vertex array and then we have indicated in the index array how these coordinates are used 
to draw the trapezoid. So, the first triangle is formed with the vertices having indices 0, 1, and 
2; the second with the vertices having indices 1, 2, and 3; and finally, the third, with vertices 
having indices 2, 3, and 4. We will follow the same procedure for all possible geometries.

Creating WebGL buffers
Once we have created the JavaScript arrays that define the vertices and indices for our 
geometry, the next step consists of creating the respective WebGL buffers. Let's see how  
this works with a different example. In this case, we have a simple square on the x-y plane  
(z coordinates are zero for all four vertices):

var vertices = [-50.0, 50.0, 0.0, 
 -50.0,-50.0, 0.0, 
 50.0,-50.0, 0.0, 
 50.0, 50.0, 0.0];/* our JavaScript vertex array */
var myBuffer = gl.createBuffer(); /*gl is our WebGL Context*/
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In the previous chapter, you may remember that WebGL operates as a state machine. Now, 
when myBuffer is made the currently bound WebGL buffer, this means that any subsequent 
buffer operation will be executed on this buffer until it is unbound or another buffer is made 
the current one with a bound call. We bind a buffer with the following instruction:

gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);

The first parameter is the type of buffer that we are creating. We have two options  
for this parameter:

 � gl.ARRAY_BUFFER: Vertex data

 � gl.ELEMENT_ARRAY_BUFFER: Index data

In the previous example, we are creating the buffer for vertex coordinates; therefore,  
we use ARRAY_BUFFER. For indices, the type ELEMENT_ARRAY_BUFFER is used.

WebGL will always access the currently bound buffer looking for the 
data. Therefore, we should be careful and make sure that we have 
always bound a buffer before calling any other operation for geometry 
processing. If there is no buffer bound, then you will obtain the error 
INVALID_OPERATION

Once we have bound a buffer, we need to pass along its contents. We do this with the 
bufferData function:

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices),
gl.STATIC_DRAW);

In this example, the vertices variable is a JavaScript array that contains the vertex 
coordinates. WebGL does not accept JavaScript arrays directly as a parameter for the 
bufferData method. Instead, WebGL uses typed arrays, so that the buffer data can  
be processed in its native binary form with the objective of speeding up geometry  
processing performance.

The specification for typed arrays can be found at: http://www.khronos.
org/registry/typedarray/specs/latest/

The typed arrays used by WebGL are Int8Array, Uint8Array, Int16Array, 
Uint16Array, Int32Array, UInt32Array, Float32Array, and Float64Array.
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Please observe that vertex coordinates can be float, but indices are always 
integer. Therefore, we will use Float32Array for VBOs and UInt16Array 
for IBOs throughout the examples of this book. These two types represent the 
largest typed arrays that you can use in WebGL per rendering call. The other 
types can be or cannot be present in your browser, as this specification is not 
yet final at the time of writing the book.

Since the indices support in WebGL is restricted to 16 bit integers, an index 
array can only be 65,535 elements in length. If you have a geometry that 
requires more indices, you will need to use several rendering calls. More about 
rendering calls will be seen later on in the Rendering section of this chapter.

Finally, it is a good practice to unbind the buffer. We can achieve that by calling the  
following instruction:

gl.bindBuffer(gl.ARRAY_BUFFER, null);

We will repeat the same calls described here for every WebGL buffer (VBO or IBO)  
that we will use.

Let's review what we have just learned with an example. We are going to code the 
initBuffers function to create the VBO and IBO for a cone. (You will find this  
function in the file named ch2_Cone.html):

var coneVBO = null;  //Vertex Buffer Object
var coneIBO = null;  //Index Buffer Object
function initBuffers() {
  var vertices = [];   //JavaScript Array that populates coneVBO
  var indices  = [];   //JavaScript Array that populates coneIBO;
//Vertices that describe the geometry of a cone    
  vertices =[1.5, 0, 0, 
    -1.5, 1, 0, 
    -1.5, 0.809017,  0.587785,
    -1.5, 0.309017,  0.951057, 
    -1.5, -0.309017, 0.951057, 
    -1.5, -0.809017, 0.587785,
    -1.5, -1, 0.0, 
    -1.5, -0.809017, -0.587785,
    -1.5, -0.309017, -0.951057, 
    -1.5, 0.309017,  -0.951057, 
    -1.5, 0.809017,  -0.587785];
//Indices that describe the geometry of a cone
  indices = [0, 1, 2,
    0, 2, 3,
    0, 3, 4,
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    0, 4, 5,
    0, 5, 6,
    0, 6, 7,
    0, 7, 8,
    0, 8, 9,
    0, 9, 10,
    0, 10, 1];
  coneVBO = gl.createBuffer();
  gl.bindBuffer(gl.ARRAY_BUFFER, coneVBO);
  gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), 
   gl.STATIC_DRAW);
  gl.bindBuffer(gl.ARRAY_BUFFER, null);
  coneIBO = gl.createBuffer();
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, coneIBO);
  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), 
   gl.STATIC_DRAW);
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
}

If you want to see this scene in action, launch the file ch2_Cone.html in your  
HTML5 browser.

To summarize, for every buffer, we want to:

 � Create a new buffer

 � Bind it to make it the current buffer

 � Pass the buffer data using one of the typed arrays

 � Unbind the buffer

Operations to manipulate WebGL buffers
The operations to manipulate WebGL buffers are summarized in the following table:

Method Description

var aBuffer = 
createBuffer(void)

Creates the aBuffer buffer

deleteBuffer(Object aBuffer) Deletes the aBuffer buffer

bindBuffer(ulong target, 
Object buffer)

Binds a buffer object. The accepted values for 
target are:

 � ARRAY_BUFFER (for vertices)

 � ELEMENT_ARRAY_BUFFER  
(for indices)
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Method Description

bufferData(ulong target, 
Object data, ulong type)

The accepted values for target are:

 � ARRAY_BUFFER (for vertices)

 � ELEMENT_ARRAY_BUFFER(for 
indices)

The parameter type is a performance hint for 
WebGL. The accepted values for type are:

 � STATIC_DRAW: Data in the buffer 
will not be changed (specified once 
and used many times) 
DYNAMIC_DRAW: Data will be 
changed frequently (specified many 
times and used many times)

 � STREAM_DRAW: Data will change on 
every rendering cycle (specified once 
and used once)

Associating attributes to VBOs
Once the VBOs have been created, we associate these buffers to vertex shader attributes. 
Each vertex shader attribute will refer to one and only one buffer, depending on the 
correspondence that is established, as shown in the following diagram:
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We can achieve this by following these steps:

1. First, we bind a VBO.

2. Next, we point an attribute to the currently bound VBO.

3. Finally, we enable the attribute.

Let's take a look at the first step.

Binding a VBO
We already know how to do this:

gl.bindBuffer(gl.ARRAY_BUFFER, myBuffer);

where myBuffer is the buffer we want to map.

Pointing an attribute to the currently bound VBO
In the next chapter, we will learn to define vertex shader attributes. For now, let's assume 
that we have the aVertexPosition attribute and that it will represent vertex coordinates 
inside the vertex shader.

The WebGL function that allows pointing attributes to the currently bound VBOs is 
vertexAttribPointer. The following is its signature:

gl.vertexAttribPointer(Index,Size,Type,Norm,Stride,Offset);

Let us describe each parameter individually:

 � Index: An attribute's index that we are going to map the currently bound buffer to.

 � Size: Indicates the number of values per vertex that are stored in the currently 
bound buffer.

 � Type: Specifies the data type of the values stored in the current buffer. It is one 
of the following constants: FIXED, BYTE, UNSIGNED_BYTE, FLOAT, SHORT, or 
UNSIGNED_SHORT.

 � Norm: This parameter can be set to true or false. It handles numeric conversions 
that lie out of the scope of this introductory guide. For all practical effects, we will 
set this parameter to false.

 � Stride: If stride is zero, then we are indicating that elements are stored sequentially 
in the buffer.

 � Offset: The position in the buffer from which we will start reading values for the 
corresponding attribute. It is usually set to zero to indicate that we will start reading 
values from the first element of the buffer.
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vertexAttribPointer defines a pointer for reading information 
from the currently bound buffer. Remember that an error will be 
generated if there is no VBO currently bound.

Enabling the attribute
Finally, we just need to activate the vertex shader attribute. Following our example,  
we just need to add:

gl.enableVertexAttribArray (aVertexPosition);

The following diagram summarizes the mapping procedure:

Rendering
Once we have defined our VBOs and we have mapped them to the corresponding vertex 
shader attributes, we are ready to render!

To do this, we use can use one of the two API functions: drawArrays or drawElements.

The drawArrays and drawElements functions
The functions drawArrays and drawElements are used for writing on the framebuffer.

drawArrays uses vertex data in the order in which it is defined in the buffer to create the 
geometry. In contrast, drawElements uses indices to access the vertex data buffers and 
create the geometry.
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Both drawArrays and drawElements will only use enabled arrays. These are the vertex 
buffer objects that are mapped to active vertex shader attributes.

In our example, we only have one enabled array: the buffer that contains the vertex 
coordinates. However, in a more general scenario, we can have several enabled arrays.  
For instance, we can have arrays with information about vertex colors, vertex normals 
texture coordinates, and any other per-vertex data required by the application. In this  
case, each one of them would be mapped to an active vertex shader attribute.

Using several VBOs

In the next chapter, we will see how we use a vertex normal buffer in addition to 
vertex coordinates to create a lighting model for our geometry. In that scenario, 
we will have two active arrays: vertex coordinates and vertex normals.

Using drawArrays
We will call drawArrays when information about indices is not available. In most cases, 
drawArrays is used when the geometry is so simple that defining indices is an overkill; for 
instance, when we want to render a triangle or a rectangle. In that case, WebGL will create 
the geometry in the order in which the vertex coordinates are defined in the VBO. So if you 
have contiguous triangles (like in our trapezoid example), you will have to repeat these 
coordinates in the VBO.

If you need to repeat a lot of vertices to create geometry, probably drawArrays is not the 
best way to go. The more vertex data you duplicate, the more calls you will have on the 
vertex shader. This could reduce the overall application performance since the same vertices 
have to go through the pipeline several times. One for each time that they appear repeated 
in the respective VBO.
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The signature for drawArrays is:

gl.drawArrays(Mode, First, Count)

Where:

 � Mode: Represents the type of primitive that we are going to render. Possible 
values for mode are: gl.POINTS, gl.LINE_STRIP, gl.LINE_LOOP, gl.LINES, 
gl.TRIANGLE_STRIP, gl.TRIANGLE_FAN, and gl.TRIANGLES (more about this 
in the next section).

 � First: Specifies the starting element in the enabled arrays.

 � Count: The number of elements to be rendered.

From the WebGL specification:  
"When drawArrays is called, it uses count sequential elements from each 
enabled array to construct a sequence of geometric primitives, beginning with 
the element first. Mode specifies what kinds of primitives are constructed and 
how the array elements construct those primitives."
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Using drawElements
Unlike the previous case where no IBO was defined, drawElements allows us to use the 
IBO, to tell WebGL how to render the geometry. Remember that drawArrays uses VBOs. 
This means that the vertex shader will process repeated vertices as many times as they 
appear in the VBO. Contrastingly, drawElements uses indices. Therefore, vertices are 
processed just once, and can be used as many times as they are defined in the IBO. This 
feature reduces both the memory and processing required on the GPU.

Let's revisit the following diagram of this chapter:

When we use drawElements, we need at least two buffers: a VBO and an IBO. The vertex 
shader will get executed on each vertex in the VBO and then the rendering pipeline will 
assemble the geometry into triangles using the IBO.

When using drawElements, you need to make sure that the corresponding 
IBO is currently bound.
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The signature for drawElements is:

gl.drawElements(Mode, Count, Type, Offset)

Where:

 � Mode: Represents the type of primitive that we are going to render. Possible values 
for mode are POINTS, LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_STRIP, 
TRIANGLE_FAN, and TRIANGLES (more about this later on).

 � Count: Specifies the number of elements to be rendered.

 � Type: Specifies the type of the values in indices. Must be UNSIGNED_BYTE  
or UNSIGNED_SHORT, as we are handling indices (integer numbers).

 � Offset: Indicates which element in the buffer will be the starting point for rendering. 
It is usually the first element (zero value).

WebGL inherits without any change this function from the OpenGL ES 2.0 
specification. The following applies:

"When drawElements is called, it uses count sequential elements from an 
enabled array, starting at offset to construct a sequence of geometric primitives. 
Mode specifies what kinds of primitives are constructed and how the array elements 
construct these primitives. If more than one array is enabled, each is used."

Putting everything together
I guess you have been waiting to see how everything works together. Let's start with some 
code. Let's create a simple WebGL program to render a square.

Time for action – rendering a square
Follow the given steps:

1. Open the file ch_Square.html in your favorite HTML editor (ideally one that 
supports syntax highlighting like Notepad++ or Crimson Editor).
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2. Let's examine the structure of this file with the help of the following diagram:

3. The web page contains the following:

 � The script <script id="shader-fs" type="x-shader/x-
fragment"> contains the fragment shader code.

 � The script <script id="shader-vs" type="x-shader/x-vertex"> 
contains the vertex shader code. We will not be paying attention to these 
two scripts as these will be the main point of study in the next chapter. For 
now, let's notice that we have a fragment shader and a vertex shader.

 � The next script on our web page <script id="code-js" type="text/
javascript"> contains all the JavaScript WebGL code that we will need. 
This script is divided into the following functions:



Chapter 2

[ 39 ]

 � getGLContext: Similar to the function that we saw in the previous chapter, 
this function allows us to get a WebGL context for the canvas present in the 
web page (ch_Square.html).

 � initProgram: This function obtains a reference for the vertex shader and 
the fragment shader present in the web page (the first two scripts that we 
discussed) and passes them along to the GPU to be compiled. More about 
this in the next chapter.

 � initBuffers: Let's take a close look at this function. It contains the API calls 
to create buffers and to initialize them. In this example, we will be creating 
a VBO to store coordinates for the square and an IBO to store the indices of 
the square.

 � renderLoop: This function creates the rendering loop. The application 
invokes renderLoop periodically to update the scene (using the 
requestAnimFrame function).

 � drawScene: This function maps the VBO to the respective vertex buffer 
attribute and enables it by calling enableVertexAttribArray. It then 
binds the IBO and calls the drawElements function.

 � Finally, we get to the <body> tag of our web page. Here we  
invoke runWebGLApp the main function, ,which is executed by  
the standard JavaScript onLoad event of the DOM document with  
the following instruction:

         <body onLoad='runWebGLApp()'>

4. Open the file ch2_Square.html in the HTML5 browser of your preference  
(Firefox, Safari, Chrome, or Opera).

5. You will see four tabs showing the code of: WebGL JS (JavaScript), Vertex Shader, 
Fragment Shader, and HTML. You will always need these four elements in your web 
page to write a WebGL app.

6. If the WebGL JS tab is not active, select it.
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7. Scroll down to the initBuffers function. Please pay attention to the diagram that 
appears as a comment before the function. This diagram describes how the vertices 
and indices are organized. You should see something like the following screenshot:

8. Go back to the text editor. If you have closed ch_Square.html, open it again.

9. Go to the initBuffers function.

10. Modify the buffer array and index array so that the resulting figure is a pentagon 
instead of a square. To do this, you need to add one vertex to the vertex array and 
define one more triangle in the index array.

11. Save the file with a different name and open it in the HTML5 browser of your 
preference to test it.

What just happened?
You have learned about the different code elements that conform to a WebGL app. The 
initBufferrs function has been examined and modified for rendering a different figure.
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Have a go hero – changing the square color
Go to the Fragment Shader and change the color of your pentagon.

The format is (red, green, blue, alpha). Alpha is always 1.0 (for now), and 
the first three arguments are float numbers in the range 0.0 to 1.0.

Remember to save the file after making the changes in your text editor and then open it in 
the HTML5 browser of your preference to see the changes.

Rendering modes
Let's revisit the signature of the drawElements function:

gl.drawElements(Mode, Count, Type, Offset)

The first parameter determines the type of primitives that we are rendering. In the following 
time for action section, we are going to see with examples the different rendering modes.

Time for action – rendering modes
Follow the given steps:

1. Open the file ch_RenderingModes.html in the HTML5 browser of your 
preference. This example follows the same structure as discussed in the  
previous section.

2. Select the WebGL JS button and scroll down to the initBuffer function.

3. You will see here that we are drawing a trapezoid. However, on screen you will see 
two triangles! We will see how we did this later.
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4. At the bottom of the page, there is a combobox that allows you to select the different 
rendering modes that WebGL provides, as shown in the following screenshot:

5. When you select any option from this combobox, you are changing the value of the 
renderingMode variable defined at the top of the WebGL JS code (scroll up if you 
want to see where it is defined).

6. To see how each option modifies the rendering, scroll down to the  
drawScene function.

7. You will see there that after binding the IBO trapezoidIndexBuffer with the 
following instruction:

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, trapezoidIndexBuffer);

you have a switch statement where there is a code that executes, depending on the 
value of the renderingMode variable:

case 'TRIANGLES': {
...
}
case 'LINES': {
...
}
case'POINTS': {
...
}
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8. For each mode, you define the contents of the JavaScript array indices. Then, you 
pass this array to the currently-bound buffer (trapezoidIndexBuffer) by using 
the bufferData function. Finally, you call the drawElements function.

9. Let's see what each mode does:

Mode Example Description

TRIANGLES When you use the TRIANGLES mode, 
WebGL will use the first three indices 
defined in your IBO for constructing the first 
triangle, the next three for constructing the 
second triangle, and so on. In this example, 
we are drawing two triangles, which can 
be verified by examining the following 
indices JavaScript array that populates 
the IBO:

indices = [0,1,2,2,3,4];

LINES The LINES mode will instruct WebGL 
to take each consecutive pair of indices 
defined in the IBO and draw lines taking the 
coordinates of the corresponding vertices.

For instance indices = 
[1,3,0,4,1,2,2,3]; will draw four 
lines: from vertex number 1 to vertex 
number 3, from vertex number 0 to vertex 
number 4, from vertex number 1 to vertex 
number 2, and from vertex number 2 to 
vertex number 3.

POINTS When we use the POINTS mode, WebGL 
will not generate surfaces. Instead, it will 
render the vertices that we had defined 
using the index array.

In this example, we will only render vertices 
number 1, number 2, and number 3 with 
indices = [1,2,3];
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Mode Example Description

LINE_LOOP LINE_LOOP draws a closed loop 
connecting the vertices defined in the 
IBO to the next one. In our case, it will be 
indices = [2,3,4,1,0];

LINE_STRIP It is similar to LINE_LOOP. The difference 
here is that WebGL does not connect the 
last vertex to the first one (not a closed 
loop).

The indices JavaScript array will be 
indices = [2,3,4,1,0];

TRIANGLE_
STRIP

TRIANGLE_STRIP draws connected 
triangles. Every vertex specified after the 
first three (in our example, vertices number 
0, number 1, and number 2) creates a new 
triangle.

If we have indices = [0,1,2,3,4];, 
then we will generate the triangles:

(0,1,2) , (1,2,3), and (2,3,4).

TRIANGLE_FAN TRIANGLE_FAN creates triangles in 
a similar way to TRIANGLE_STRIP. 
However, the first vertex defined in the IBO 
is taken as the origin of the fan (the only 
shared vertex among consecutive triangles).

In our example, indices = 
[0,1,2,3,4];

will create the triangles: (0,1,2) and (0,3,4).

Now let's make some changes:

10. Edit the web page (ch_RenderingModes.html) so that when you select the 
option TRIANGLES, you render the trapezoid instead of two triangles.
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You need one extra triangle in the indices array.

11. Save the file and test it in the HTML5 browser of your preference.

12. Edit the web page so that you draw the letter 'M' using the option LINES.

You need to define four lines in the indices array.

13. Just like before, save your changes and test them in your HTML5 browser.

14. Using the LINE_LOOP mode, draw only the boundary of the trapezoid.

What just happened?
We have seen in action through a simple exercise the different rendering modes supported 
by WebGL. The different rendering modes determine how to interpret vertex and index data 
to render an object.

WebGL as a state machine: buffer manipulation
There is some information about the state of the rendering pipeline that we can 
retrieve when we are dealing with buffers with the functions: getParameter, 
getBufferParameter, and isBuffer.

Just like we did in the previous chapter, we will use getParameter(parameter) where 
parameter can have the following values:

 � ARRAY_BUFFER_BINDING: It retrieves a reference to the currently-bound VBO

 � ELEMENT_ARRAY_BUFFER_BINDING: It retrieves a reference to the  
currently-bound IBO

Also, we can enquire about the size and the usage of the currently-bound VBO and IBO using 
getBufferParameter(type, parameter) where type can have the following values:

 � ARRAY_BUFFER: To refer to the currently bound VBO

 � ELEMENT_ARRAY_BUFFER: To refer to the currently bound IBO
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And parameter can be:

 � BUFFER_SIZE: Returns the size of the requested buffer

 � BUFFER_USAGE: Returns the usage of the requested buffer

Your VBO and/or IBO needs to be bound when you enquire about the 
state of the currently bound VBO and/or IBO with getParameter 
and getBufferParameter.

Finally, isBuffer(object) will return true if the object is a WebGL buffer, false, when 
the buffer is invalid, and an error if the object being evaluated is not a WebGL buffer. Unlike 
getParameter and getBufferParameter, isBuffer does not require any VBO or IBO to 
be bound.

Time for action – enquiring on the state of buffers
Follow the given steps:

1. Open the file ch2_StateMachine.html in the HTML5 browser of your preference.

2. Scroll down to the initBuffers method. You will see something similar to the 
following screenshot:
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3. Pay attention to how we use the methods discussed in this section to retrieve  
and display information about the current state of the buffers.

4. The information queried by the initBuffer function is shown at the bottom 
portion of the web page using updateInfo (if you look closely at runWebGLApp 
code you will see that updateInfo is called right after calling initBuffers).

5. At the bottom of the web page (scroll down the web page if necessary), you will see 
the following result:

6. Now, open the same file (ch2_StateMachine.html) in a text editor.

7. Cut the line:

gl.bindBuffer(gl.ARRAY_BUFFER,null);

and paste it right before the line:

coneIndexBuffer = gl.createBuffer();

8. What happens when you launch the page in your browser again?

9. Why do you think this behavior occurs?

What just happened?
You have learned that the currently bound buffer is a state variable in WebGL. The buffer 
is bound until you unbind it by calling bindBuffer again with the corresponding type 
(ARRAY_BUFFER or ELEMENT_ARRAY_BUFFER) as the first parameter and with null as the 
second argument (that is, no buffer to bind). You have also learned that you can only query 
the state of the currently bound buffer. Therefore, if you want to query a different buffer,  
you need to bind it first.

Have a go hero – add one validation
Modify the file so that you can validate and show on screen whether the indices array  
and the coneIndexBuffer are WebGL buffers or not.
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You will have to modify the table in the HTML body of the file to allocate 
space for the new validations.

You will have to modify the updateInfo function accordingly.

Advanced geometry loading techniques: JavaScript  
Object Notation (JSON) and AJAX
So far, we have rendered very simple objects. Now let's study a way to load the geometry 
(vertices and indices) from a file instead of declaring the vertices and the indices every time 
we call initBuffers. To achieve this, we will make asynchronous calls to the web server 
using AJAX. We will retrieve the file with our geometry from the web server and then we will 
use the built-in JSON parser to convert the context of our files into JavaScript objects. In our 
case, these objects will be the vertices and indices array.

Introduction to JSON – JavaScript Object Notation
JSON stands for JavaScript Object Notation. It is a lightweight, text-based, open format  
used for data interchange. JSON is commonly used as an alternative to XML.

The JSON format is language-agnostic. This means that there are parsers in many languages 
to read and interpret JSON objects. Also, JSON is a subset of the object literal notation of 
JavaScript. Therefore, we can define JavaScript objects using JSON.

Defining JSON-based 3D models
Let's see how this work. Assume for example that we have the model object with two  
arrays vertices and indices (does this ring any bells?). Say that these arrays contain  
the information described in the cone example (ch2_Cone.html) as follows:

vertices =[1.5, 0, 0, 
    -1.5, 1, 0,
    -1.5, 0.809017,  0.587785,
    -1.5, 0.309017,  0.951057,
    -1.5, -0.309017, 0.951057,
    -1.5, -0.809017, 0.587785,
    -1.5, -1, 0,
    -1.5, -0.809017, -0.587785,
    -1.5, -0.309017, -0.951057,
    -1.5, 0.309017,  -0.951057,
    -1.5, 0.809017,  -0.587785];
indices = [0, 1, 2,
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    0, 2, 3,
    0, 3, 4,
    0, 4, 5,
    0, 5, 6,
    0, 6, 7,
    0, 7, 8,
    0, 8, 9,
    0, 9, 10,
    0, 10, 1];

Following the JSON notation, we would represent these two arrays as an object, as follows:

var model = {
"vertices" : [1.5, 0, 0, 
  -1.5, 1, 0, 
  -1.5, 0.809017,  0.587785,
  -1.5, 0.309017,  0.951057,
  -1.5, -0.309017, 0.951057,
  -1.5, -0.809017, 0.587785,
  -1.5, -1, 0,
  -1.5, -0.809017, -0.587785,
  -1.5, -0.309017, -0.951057,
  -1.5, 0.309017,  -0.951057,
  -1.5, 0.809017,  -0.587785],
"indices" : [0, 1, 2,
  0, 2, 3,
  0, 3, 4,
  0, 4, 5,
  0, 5, 6,
  0, 6, 7,
  0, 7, 8,
  0, 8, 9,
  0, 9, 10,
  0, 10, 1]};

From the previous example, we can infer the following syntax rules:

 � The extent of a JSON object is defined by curly brackets {}

 � Attributes in a JSON object are separated by comma ,

 � There is no comma after the last attribute

 � Each attribute of a JSON object has two parts: a key and a value

 � The name of an attribute is enclosed by quotation marks " "
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 � Each attribute key is separated from its corresponding value with a colon :

 � Attributes of the type Array are defined in the same way you would define them  
in JavaScript

JSON encoding and decoding
Most modern web browsers support native JSON encoding and decoding through the built-in 
JavaScript object JSON. Let's examine the methods available inside this object:

Method Description

var myText = JSON.
stringify(myObject)

We use JSON.stringify for converting 
JavaScript objects to JSON-formatted text.

var myObject = JSON.
parse(myText)

We use JSON.parse for converting text 
into JavaScript objects.

Let's learn how to encode and decode with the JSON notation.

Time for action – JSON encoding and decoding
Let's create a simple model: a 3D line. Here we will be focusing on how we do JSON encoding 
and decoding. Follow the given steps:

1. Go to your Internet browser and open the interactive JavaScript console. Use the 
following table for assistance:

Web browser Menu option Shortcut keys (PC / Mac)

Firefox Tools | Web Developer | Web Console Ctrl + Shift + K / Command + Alt + K

Safari Develop | Show Web Inspector Ctrl + Shift + C / Command + Alt + C

Chrome Tools | JavaScript Console Ctrl + Shift + J / Command + Alt + J

2. Create a JSON object by typing:

var model = {"vertices":[0,0,0,1,1,1], "indices":[0,1]};

3. Verify that the model is an object by writing:

typeof(model)

4. Now, let's print the model attributes. Write this in the console (press Enter at the 
end of each line):

model.vertices
model.indices
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5. Now, let's create a JSON text:

var text = JSON.stringify(model)
alert(text)

6. What happens when you type text.vertices?

As you can see, you get an error message saying that text.vertices is not 
defined. This happens because text is not a JavaScript object but a string with 
the peculiarity of being written according to JSON notation to describe an object. 
Everything in it is text and therefore it does not have any fields.

7. Now let's convert the JSON text back to an object. Type the following:

var model2 = JSON.parse(text)
typeof(model2)
model2.vertices

What just happened?
We have learned to encode and decode JSON objects. The example that we have used is 
relevant because this is the way we will define our geometry to be loaded from external files. 
In the next section, we will see how to download geometric models specified with JSON from 
a web server.

Asynchronous loading with AJAX
The following diagram summarizes the asynchronous loading of files by the web browser 
using AJAX:
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Let's analyze this more closely:

1. Request file: First of all, we should indicate the filename that we want to load. 
Remember that this file contains the geometry that we will be loading from the  
web server instead of coding the JavaScript arrays (vertices and indices) directly  
into the web page.

2. AJAX request: We need to write a function that will perform the AJAX request.  
Let's call this function loadFile. The code can look like this:

function loadFile(name) {
  var request = new XMLHttpRequest();
  var resource = http:// + document.domain + name;
  request.open("GET",resource);
  request.onreadystatechange = function() {
    if (request.readyState == 4) {
      if(request.status == 200 || (request.status == 0 &&  
       document.domain.length == 0) {
      handleLoadedGeometry(name,JSON.parse(request.responseText));
       }
      else {
        alert ('There was a problem loading the file :' + name);
        alert ('HTML error code: ' + request.status);
      }
    }
  }
  request.send();
}

If the readyState is 4, it means that the file has finished downloading.

More about this function later. Let's say for now that this function will perform the 
AJAX request.

3. Retrieve file: The web server will receive and treat our request as a regular 
HTTP request. As a matter of fact, the server does not know that this request 
is asynchronous (it is asynchronous for the web browser as it does not wait for 
the answer). The server will look for our file and whether it finds it or not, it will 
generate a response. This will take us to step 4.

4. Asynchronous response: Once a response is sent to the web browser, the callback 
specified in the loadFile function is invoked. This callback corresponds to the 
request method onreadystatechange. This method examines the answer. If 
we obtain a status different from 200 (OK according to the HTTP specification), it 
means that there was a problem. Hopefully the specific error code that we get on 
the status variable (instead of 200) can give us a clue about the error. For instance, 
code 404 means that the resource does not exist. In that case, you would need to 
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check if there is a typo, or you are requesting a file from a directory different from 
the directory where the page is located on the web server. Different error codes will 
give you different alternatives to treat the respective problem. Now if we get a 200 
status, we can invoke the handleLoadedGeometry function.

There is an exception where things can work, even if you do not 
have a web server. If you are running the example from your 
computer, the ready state will be 4 but the request status will be 
0. This is a valid configuration too.

5. Handling the loaded model: In order to keep our code looking pretty, we can 
create a new function to process the file retrieved from the server. Let's call this 
handleLoadedGeometry function. Please notice that in the previous segment 
of code, we used the JSON parser in order to create a JavaScript object from the 
file before passing it along to the handleLoadedGeometry function. This object 
corresponds to the second argument (model) as we can see here. The code for the 
handleLoadedGeometry function looks like this:

function handleLoadedGeometry(name,model){
  alert(name + ' has been retrieved from the server');
  modelVertexBuffer = gl.createBuffer();
  gl.bindBuffer(gl.ARRAY_BUFFER, modelVertexBuffer);
  gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(model.vertices), 
   gl.STATIC_DRAW);
  modelIndexBuffer = gl.createBuffer();
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, modelIndexBuffer);
  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, 
   new Uint16Array(model.indices), gl.STATIC_DRAW);
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
  gl.bindBuffer(gl.ARRAY_BUFFER,null);
}

If you look closely, this function is very similar to one of our functions that we 
saw previously: the initBuffers function. This makes sense because we cannot 
initialize the buffers until we retrieve the geometry data from the server. Just like 
initBuffers, we bind our VBO and IBO and pass them the information contained 
in the JavaScript arrays of our model object.

Setting up a web server
If you do not have a web server, we recommend you install a lightweight web server such as 
lighttpd (http://www.lighttpd.net/).
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Please note that if you are using Windows:

1. The installer can be found at http://en.wlmp-project.net/downloads.
php?cat=lighty

2. Once installed, you should go to the subfolder bin and double-click on  
Service-Install.exe to install lighttpd as a Windows service.

3. You should copy Chapter 2's exercises in the subfolder htdocs or change lighttpd's 
configuration file to point to your working directory (which is the one you have used 
to run the examples so far).

4. To be able to edit server.document-root in the file conf/lighttpd-inc.
conf you need to run a console with administrative privileges.

Working around the web server requirement
If you have Firefox and do not want to install a web server, you can change  
strict_origin_policy to false in about:config.

If you are using Chrome and do not want to install a web server, make sure you run it from 
the command line with the following modifier:

--allow-file-access-from-files

Let's use AJAX + JSON to load a cone from our web server.

Time for action – loading a cone with AJAX + JSON
Follow the given steps:

1. Make sure that your web server is running and access the file ch2_AJAXJSON.html 
using your web server.

You know you are using the web server if the URL in the address 
bar starts with localhost/… instead of file://...
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2. The folder where you have the code for this chapter should look like this:

3. Click on ch2_AjaxJSON.html.

4. The example will load in your browser and you will see something similar to this:
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5. When you click on the JavaScript alert, you will see:

6. As the page says, please review the functions loadModel and 
handleLoadedModel to better understand the use of AJAX and JSON  
in the application.

7. What does the modelLoaded variable do? (check the source code).

8. See what happens when you change the color in the file models/cone.json and 
reload the page.

9. Modify the coordinates of the cone in the file models/cone.json and reload the 
page. Here you can verify that WebGL reads and renders the coordinates from the 
file. If you modify them in the file, the geometry will be updated on the screen.

What just happened?
You learned about using AJAX and JSON to load geometries from a remote location (web 
server) instead of specifying these geometries (using JavaScript arrays) inside the web page.

Have a go hero – loading a Nissan GTX
Follow the given steps:

1. Open the file ch2_Nissan.html using your web server. Again, you should see 
something like http://localhost./.../code

2. You should see something like this:
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3. The reason we selected the mode LINES instead of the model TRIANGLES 
(explained previously in this chapter) is to visualize better the structure of this car.

4. Find the line where the rendering mode is being selected and make sure you 
understand what the code does.

5. Next, go to the drawScene function.

6. In the drawElements instruction, change the mode from gl.LINES to 
gl.TRIANGLES.

7. Refresh the page in the web browser (Ctrl + F5 for full refresh).

8. What do you see? Can you hypothesize about the reasons for this? What is  
your rationale? 

When the geometry is complex, the lighting model allows us to visualize it better. Without 
lights, all our volumes will look opaque and it would be difficult to distinguish their parts 
(just as in the previous case) when changing from LINES to TRIANGLES.

In the next chapter, we will see how to create a lighting model for our scene. Our work there 
will be focused on the shaders and how we communicate information back and forth between 
the WebGL JavaScript API and the attributes, uniforms, and varyings. Do you remember them? 
We mentioned when we were talking about passing information to the GPU.
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Summary
In this chapter, we have discussed how WebGL renders geometry. Remember that there  
are two kinds of WebGL buffers that deal with geometry rendering: VBOs and IBOs.

WebGL's rendering pipeline describes how the WebGL buffers are used and passed in the 
form of attributes to be processed by the vertex shader. The vertex shader parallelizes 
vertex processing in the GPU. Vertices define the surface of the geometry that is going to 
be rendered. Every element on this surface is known as a fragment. These fragments are 
processed by the fragment shader. Fragment processing also occurs in parallel in the GPU. 
When all the fragments have been processed, the framebuffer, a two-dimensional array, 
contains the image that is then displayed on your screen.

WebGL works as a state machine. As such, properties referring to buffers are available and 
their values will be dependent on the buffer currently bound.

We also saw that JSON and AJAX are two JavaScript technologies that integrate really well 
with WebGL, enabling us to load really complex geometries without having to specify them 
inside our webpage.

In the next chapter, we will learn more about the vertex and fragment shaders and we will 
see how we can use them to implement light sources in our WebGL scene.



3
Lights!

In WebGL, we make use of the vertex and fragment shaders to create a 
lighting model for our scene. Shaders allow us to define a mathematical model 
that governs how our scene is lit. We will study different algorithms and see 
examples about their implementation.

A basic knowledge of linear algebra will be really useful to help you understand the contents 
of this chapter. We will use glMatrix, a JavaScript library that handles most of the vector 
and matrix operation, so you do not need to worry about the details. Nonetheless, it is 
paramount to have a conceptual understanding of the linear algebra operations that we  
will discuss.

In this chapter, we will:

 � Learn about light sources, normals, and materials

 � Learn the difference between shading and lighting

 � Use the Goraud and Phong shading methods, and the Lambertian and Phong  
lighting models

 � Define and use uniforms, attributes, and varyings

 � Work with ESSL, the shading language for WebGL

 � Discuss relevant WebGL API methods that relate to shaders

 � Continue our analysis of WebGL as a state machine and describe the attributes 
relevant to shaders that can be set and retrieved from the state machine
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Lights, normals, and materials
In the real world, we see objects because they reflect light. Any object will reflect light 
depending on the position and relative distance to the light source; the orientation of 
its surface, which is represented by normal vectors and the material of the object which 
determines how much light is reflected. In this chapter, we will learn how to combine  
these three elements in WebGL to model different illumination schemes.

Lights
Light sources can be positional or directional. A light source is called positional when its 
location will affect how the scene is lit. For instance, a lamp inside a room falls under this 
category. Objects far from the lamp will receive very little light and they will appear obscure. 
In contrast, directional lights refer to lights that produce the same result independent from 
their position. For example, the light of the sun will illuminate all the objects in a terrestrial 
scene, regardless of their distance from the sun.
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A positional light is modeled by a point in space, while a directional light is modeled with a 
vector that indicates its direction. It is common to use a normalized vector for this purpose, 
given that this simplifies mathematical operations.

Normals
Normals are vectors that are perpendicular to the surface that we want to illuminate. Normals 
represent the orientation of the surface and therefore they are critical to model the interaction 
between a light source and the object. Each vertex has an associated normal vector.

We make use of a cross product for calculating normals.

Cross Product:

By definition, the cross product of vectors A and B will be perpendicular 
to both vectors A and B.

Let's break this down. If we have the triangle conformed by vertices p0, p1, and p2, 
then we can define the vector v1 as p2-p1 and the vector v2 as p0-p1. Then the normal 
is obtained by calculating the cross product v1 x v2. Graphically, this procedure looks 
something like the following:

Then we repeat the same calculation for each vertex on each triangle. But, what about the 
vertices that are shared by more than one triangle? The answer is that each shared vertex 
normal will receive a contribution from each of the triangles in which the vertex appears.
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For example, say that the vertex p1 is being shared by triangles #1 and #2, and we have 
already calculated the normals for the vertices of triangle #1. Then, we need to update the 
p1 normal by adding up the calculated normal for p1 on triangle #2. This is a vector sum. 
Graphically, this looks similar to the following:

Similar to lights, normals are usually normalized to facilitate mathematical operations.

Materials
The material of an object in WebGL can be modeled by several parameters, including its 
color and its texture. Material colors are usually modeled as triplets in the RGB space  
(Red, Green, Blue). Textures, on the other hand, correspond to images that are mapped  
to the surface of the object. This process is usually called Texture Mapping. We will see  
how to perform texture mapping in Chapter 7, Textures.

Using lights, normals, and materials in the pipeline
We mentioned in Chapter 2, Rendering Geometry, that WebGL buffers, attributes, and 
uniforms are used as input variables to the shaders and that varyings are used to carry 
information between the vertex shader and the fragment shader. Let's revisit the pipeline 
and see where lights, normals, and materials fit in.
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Normals are defined on a vertex-per-vertex basis; therefore normals are modeled in WebGL 
as a VBO and they are mapped using an attribute, as shown in the preceding diagram. Please 
notice that attributes are never passed to the fragment shader.

Lights and materials are passed as uniforms. Uniforms are available to both the vertex 
shader and the fragment shader. This gives us a lot of flexibility to calculate our lighting 
model because we can calculate how the light is reflected on a vertex-by-vertex basis  
(vertex shader) or on a fragment-per-fragment basis (fragment shader).

Remember that the vertex shader and fragment shader together are referred 
to as the program.

Parallelism and the difference between attributes and uniforms
There is an important distinction to make between attributes and uniforms. When a draw 
call is invoked (using drawArrays or drawElements), the GPU will launch in parallel 
several copies of the vertex shader. Each copy will receive a different set of attributes.  
These attributes are drawn from the VBOs that are mapped to the respective attributes. 
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On the other hand, all the copies of the vertex shaders will receive the same uniforms, 
therefore the name, uniform. In other words, uniforms can be seen as constants per  
draw call.

Once lights, normals, and materials are passed to the program, the next step is to determine 
which shading and lighting models we will implement. Let's see what this is about.

Shading methods and light reflection models
The terms shading and lighting are commonly interchanged ambiguously. However, they 
refer to two different concepts: on one hand, shading refers to the type of interpolation that 
is performed to obtain the final color for every fragment in the scene. We will explain this 
in a moment. Let's say here as well that the type of shading defines where the final color 
is calculated—in the vertex shader or in the fragment shader; on the other hand, once the 
shading model is established, the lighting model determines how the normals, materials, 
and lights are combined to produce the final color. The equations for lighting models use 
the physical principles of light reflection. Therefore, lighting models are also referred to in 
literature as reflection models.
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Shading/interpolation methods
In this section, we will analyze two basic types of interpolation method: Goraud and  
Phong shading.

Goraud interpolation
The Goraud interpolation method calculates the final color in the vertex shader. The vertex 
normals are used in this calculation. Then the final color for the vertex is carried to the 
fragment shader using a varying variable. Due to the automatic interpolation of varyings, 
provided by the rendering pipeline, each fragment will have a color that is a result of 
interpolating the colors of the enclosing triangle for each fragment.

The interpolation of varyings is automatic in the pipeline. No programming 
is required.

Phong interpolation
The Phong method calculates the final color in the fragment shader. To do so, each vertex 
normal is passed along from the vertex shader to the fragment shader using a varying. 
Because of the interpolation mechanism of varyings included in the pipeline, each fragment 
will have its own normal. Fragment normals are then used to perform the calculation of the 
final color in the fragment shader.

The two interpolation models can be summarized by the following diagram:
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Again, please note here that the shading method does not specify how the final color for 
every fragment is calculated. It only specifies where (vertex or fragment shader) and also the 
type of interpolation (vertex colors or vertex normals).

Light reflection models
As previously mentioned, the lighting model is independent from the shading/interpolation 
model. The shading model only determines where the final color is calculated. Now it is time 
to talk about how to perform such calculations.

Lambertian reflection model
Lambertian reflections are commonly used in computer graphics as a model for diffuse 
reflections, which are the kind of reflections where an incident light ray is reflected in many 
angles instead of only in one angle as it is the case for specular reflections.

This lighting model is based on the cosine emission law or Lambert's emission law. It is 
named after Johann Heinrich Lambert, from his Photometria, published in 1760.

The Lambertian reflection is usually calculated as the dot product between the surface 
normal (vertex or fragment normal, depending on the interpolation method used) and  
the negative of the light-direction vector, which is the vector that starts on the surface and 
ends on the light source position. Then, the number is multiplied by the material and light 
source colors.
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Phong reflection model
The Phong reflection model describes the way a surface reflects the light as the sum of three 
types of reflection: ambient, diffuse, and specular. It was developed by Bui Tuong Phong who 
published it in his 1973 Ph.D. dissertation.

The ambient term accounts for the scattered light present in the scene. This term is 
independent from any light source and it is the same for all fragments.

The diffuse term corresponds to diffuse reflections. Usually a Lambertian model is used for 
this component.

The specular term provides mirror-like reflections. Conceptually, the specular reflection 
will be at its maximum when we are looking at the object on an angle that is equal to the 
reflected light-direction vector.

This is modeled by the dot product of two vectors, namely, the eye vector and the  
reflected light-direction vector. The eye vector has its origin in the fragment and its end  
in the view position (camera). The reflected light-direction vector is obtained by reflecting 
the light-direction vector upon the surface normal vector. When this dot product equals 1 
(by working with normalized vectors) then our camera will capture the maximum  
specular reflection. 
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The dot product is then exponentiated by a number that represents the shininess of the 
surface. After that, the result is multiplied by the light and material specular components.

The ambient, diffuse, and specular terms are added to find the final color of the fragment.

Now it is time for us to learn the language that will allow us to implement the shading and 
lighting strategies inside the vertex and fragment shaders. This language is called ESSL.

ESSL—OpenGL ES Shading Language
OpenGL ES Shading Language (ESSL) is the language in which we write our shaders. Its syntax 
and semantics are very similar to C/C++. However, it has types and built-in functions that 
make it easier and more intuitive to manipulate vectors and matrices. In this section,  
we will cover the basics of ESSL so we can start using it right away.

This section is a summary of the official GLSL ES specification. It is a subset of 
GLSL (the shading language for OpenGL).

You can find the complete reference at http://www.khronos.org/
registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.
pdf
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Storage qualifier
Variable declarations may have a storage qualifier specified in front of the type:

 � attribute: Linkage between a vertex shader and a WebGL application for per-vertex 
data. This storage qualifier is only legal inside the vertex shader.

 � uniform: Value does not change across the object being processed, and uniforms 
form the linkage between a shader and a WebGL application. Uniforms are legal 
in both the vertex and fragment shaders. If a uniform is shared by the vertex and 
fragment shader, the respective declarations need to match.

 � varying: Linkage between a vertex shader and a fragment shader for interpolated 
data. By definition, varyings are necessarily shared by the vertex shader and the 
fragment shader. The declaration of varyings needs to match between the vertex 
and fragment shaders.

 � const: a compile-time constant, or a function parameter that is read-only. They can 
be used anywhere in the code of an ESSL program.

Types
ESSL provides the following basic types:

 � void: For functions that do not return a value or for an empty parameter list

 � bool: A conditional type, taking on values of true or false

 � int: A signed integer

 � float: A single floating-point scalar

 � vec2: A two component floating-point vector

 � vec3: A three component floating-point vector

 � vec4: A four component floating-point vector

 � bvec2: A two component boolean vector

 � bvec3: A three component boolean vector

 � bvec4: A four component boolean vector

 � ivec2: A two component integer vector

 � ivec3: A three component integer vector

 � ivec4: A four component integer vector

 � mat2: A 2×2 floating-point matrix
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 � mat3: A 3×3 floating-point matrix

 � mat4: A 4×4 floating-point matrix

 � sampler2D: A handle for accessing a 2D texture

 � samplerCube: A handle for accessing a cube mapped texture

So an input variable will have one of the three qualifiers followed by one type. For example, 
we will declare our vFinalColor varying as follows:

varying vec4 vFinalColor;

This means that the vFinalColor variable is a varying vector with four components.

Vector components
We can refer to each one of the components of an ESSL vector by its index.

For example:

vFinalColor[3] will refer to the fourth element of the vector (zero-based vectors). 
However, we can also refer to each component by a letter, as it is shown in the  
following table:

{x,y,z,w} Useful when accessing vectors representing points or vectors

{r,g,b,a} Useful when accessing vectors representing colors

{s,t,p,q} Useful when accessing vectors that represent texture coordinates

So, for example, if we want to set the alpha channel (fourth component) of our variable 
vFinalColor to 1, we can write:

vFinalColor[3] = 1.0;

or

vFinalColor.a = 1.0;

We could also do this:

vFinalColor.w = 1.0;

In all three cases, we are referring to the same fourth component. However, given that 
vFinalColor represents a color, it makes more sense to use the {r,g,b,a} notation.
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Also, it is possible to use the vector component notation to refer to subsets inside a vector. 
For example (taken from page 44 in the GLSL ES 1.0.17 specification):

vec4 v4;
 v4.rgba;  // is a vec4 and the same as just using v4,
 v4.rgb;   // is a vec3,
 v4.b;     // is a float,
 v4.xy;    // is a vec2,
 v4.xgba;  // is illegal - the component names do not come from
           // the same set.

Operators and functions
ESSL also provides many useful operators and functions that simplify vector and matrix 
operations. According to the specification: the arithmetic binary operators add (+), subtract 
(-), multiply (*), and divide (/) operate on integer and floating-point typed expressions 
(including vectors and matrices). The two operands must be the same type, or one can be 
a scalar float and the other a float vector or matrix, or one can be a scalar integer and the 
other an integer vector. Additionally, for multiply (*), one can be a vector and the other a 
matrix with the same dimensional size of the vector. These result in the same fundamental 
type (integer or float) as the expressions they operate on. If one operand is a scalar and 
the other is a vector or a matrix, the scalar is applied component-wise to the vector or the 
matrix, with the final result being of the same type as the vector or the matrix. Dividing by 
zero does not cause an exception but does result in an unspecified value.

 � -x: The negative of the x vector. It produces the same vector in the exact  
opposite direction.

 � x+y : Sum of the vectors x and y. They need to have the same number  
of components.

 � x-y: Subtraction of the vectors x and y. They need to have the same number  
of components.

 � x*y: If x and y are both vectors, then this operator yields a component-wise 
multiplication.  Multiply applied to two matrices return a linear algebraic matrix 
multiplication, not a component-wise multiplication (for it, you must use the 
matrixCompMult function).

 � x/y: The division operator behaves similarly to the multiply operator.

 � dot(x,y): Returns the dot product (scalar) of two vectors. They need to have the 
same dimensions.

 � cross(vec3 x, vec3 y): Returns the cross product (vector) of two vectors. They 
have to be vec3.
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 � matrixCompMult (mat x, mat y): Component-wise multiplication of matrices. 
They need to have the same dimensions (mat2, mat3, or mat4).

 � normalize(x): Returns a vector in the same direction but with a length of 1.

 � reflect(t, n): Reflects the vector t along the vector n. 

There are many more functions including trigonometry and exponential functions. We will 
refer to those as we need them in the development of the different lighting models.

Let's see now a quick example of the shaders ESSL code for a scene with the  
following properties:

 � Lambertian reflection model: We account for the diffuse interaction between one 
light source and our scene. This means that we will use uniforms to define the light 
properties, the material properties, and we will follow the Lambert's Emission Law 
to calculate the final color for every vertex.

 � Goraud shading: We will interpolate vertex colors to obtain fragment colors  
and therefore we need one varying to pass the vertex color information  
between shaders.

Let's dissect first what the attributes, uniforms, and varyings will be.

Vertex attributes
We start by defining two attributes in the vertex shader. Every vertex will have:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

Right after the attribute keyword, we find the type of the variable. In this case, this 
is vec3, as each vertex position is determined by three elements (x,y,z). Similarly, the 
normals are also determined by three elements (x,y,z). Please notice that a position is a 
point in tridimensional space that tells us where the vertex is, while a normal is a vector that 
gives us information about the orientation of the surface that passes along that vertex.

Remember that attributes are only available for use inside the vertex shader.

Uniforms
Uniforms are available to both the vertex shader and the fragment shader. While attributes 
are different every time the vertex shader is invoked (remember, we process the vertices 
in parallel, therefore each copy/thread of the vertex shader processes a different vertex). 
Uniforms are constant throughout a rendering cycle. That is, during a drawArrays or 
drawElements WebGL call.
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We can use uniforms to pass along information about lights (such as diffuse color and 
direction), and materials (diffuse color).

For example:

uniform vec3 uLightDirection; //incoming light source direction
uniform vec4 uLightDiffuse;   //light diffuse component

uniform vec4 uMaterialDiffuse; //material diffuse color

Again, here the keyword uniform tells us that these variables are uniforms and the ESSL 
types vec3 and vec4 tell us that these variables have three or four components. In the case 
of the colors, these components are the red, blue, green, and alpha channels (RGBA) and in 
the case of the light direction, these components are the x, y, and z coordinates that define 
the vector in which the light source is directed in the scene.

Varyings
We need to carry the vertex color from the vertex shader to the fragment shader:

varying vec4 vFinalColor;

As previously mentioned in the section Storage Qualifier, the declaration of varyings need to 
match between the vertex and fragment shaders.

Now let's plug the attributes, uniforms, and varyings into the code and see how the vertex 
shader and fragment shader look like.

Vertex shader
This is what a vertex shader looks like. On a first look, we identify the attributes, uniforms, 
and varyings that we will use along with some matrices that we will discuss in a minute. 
Also we see that the vertex shader has a main function that does not accept parameters and 
returns void. Inside, we can see some ESSL functions such as normalize and dot and some 
arithmetical operators.

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat4 uNMatrix;

uniform vec3 uLightDirection;
uniform vec4 uLightDiffuse;
uniform vec4 uMaterialDiffuse;
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varying vec4 vFinalColor;

void main(void) {
   
   vec3 N = normalize(vec3(uNMatrix * vec4(aVertexNormal, 1.0))); 
   vec3 L = normalize(uLightDirection); 
    
   float lambertTerm = dot(N,-L);
   
   vFinalColor = uMaterialDiffuse * uLightDiffuse * lambertTerm;
   vFinalColor.a = 1.0;
   
gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

}

There are three uniforms that we have not discussed yet:

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

uniform mat4 uNMatrix;

We can see that these three uniforms are 4x4 matrices. These matrices are required in the 
vertex shader to calculate the location for vertices and normals whenever we move the 
camera. There are a couple of operations here that involve using these matrices:

vec3 N = vec3(uNMatrix * vec4(aVertexNormal, 1.0));

The previous line of code calculates the transformed normal.

And:

gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

This line calculates the transformed vertex position. gl_Position is a special output 
variable that stores the transformed vertex position.

We will come back to these operations in Chapter 4, Camera. For now, let's acknowledge 
that these uniforms and operations deal with camera and world transformations (rotation, 
scale, and translation).

Going back to the code of the main function, we can clearly see that the Lambertian 
reflection model is being implemented. The dot product of the normalized normal and 
light direction vector is obtained and then it is multiplied by the light and material diffuse 
components. Finally, this result is passed into the vFinalColor varying to be used in 
the fragment shader. Also, as we are calculating the color in the vertex shader and then 
interpolating the vertex colors for the fragments of every triangle, we are using a Goraud 
interpolation method.
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Fragment shader
The fragment shader is very simple. The first three lines define the precision of the shader. 
This is mandatory according to the ESSL specification. Similarly, to the vertex shader, we 
define our inputs; in this case, just one varying variable and then we have the main function.

#ifdef GL_SL
precision highp float;
#endif
varying vec4  vFinalColor;

void main(void)  {
  gl_FragColor = vFinalColor;
}

We just need to assign the vFinalColor varying to the output variable gl_FragColor.

Remember that the value of the vFinalColor varying will be different from the one 
calculated in the vertex shader as WebGL will interpolate it by taking the corresponding 
calculated colors for the vertices surrounding the correspondent fragment (pixel).

Writing ESSL programs
Let's now take a step back and take a look at the big picture. ESSL allows us to implement a 
lighting strategy provided that we define a shading method and a light reflection model. In 
this section, we will take a sphere as the object that we want to illuminate and we will see 
how the selection of a lighting strategy changes the scene.
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We will see two scenarios for Goraud interpolation: with Lambertian and with Phong 
reflections; and only one case for Phong interpolation: under Phong shading the Lambertian 
reflection model is no different from a Phong reflection model where the ambient and 
specular components are set to zero.

Goraud shading with Lambertian reflections
The Lambertian reflection model only considers the interaction of diffuse material and 
diffuse light properties. In short, we assign the final color as:

Final Vertex Color = Id

where the following value is seen:

Id = Light Diffuse Property * Material Diffuse Property * Lambert 
coefficient

Under Goraud shading, the Lambert coefficient is obtained by calculating the dot product of 
the vertex normal and the inverse of the light-direction vector. Both vectors are normalized 
previous to finding the dot product.

Now let's take a look at the vertex shader and the fragment shader of the example  
ch3_Sphere_Goraud_Lambert.html:

Vertex shader:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat4 uNMatrix;
uniform vec3 uLightDirection;  
uniform vec4 uLightDiffuse;  
uniform vec4 uMaterialDiffuse;
varying vec4 vFinalColor;
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void main(void) {
  vec3 N = normalize(vec3(uNMatrix * vec4(aVertexNormal, 1.0)));
  vec3 L = normalize(uLightDirection);
   float lambertTerm = dot(N,-L);
     vec4 Id = uMaterialDiffuse * uLightDiffuse * lambertTerm;
   vFinalColor = Id;
  vFinalColor.a = 1.0;
   gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

}

Fragment shader:

#ifdef GL_ES
precision highp float;
#endif

varying vec4  vFinalColor;

void main(void)  {
 gl_FragColor = vFinalColor;
}

We can see that the final vertex color that we process in the vertex shader is carried into a 
varying variable to the fragment (pixel) shader. However, please remember that the value 
that arrives to the fragment shader is not the original value that we calculated in the vertex 
shader. The fragment shader interpolates the vFinalColor variable to generate a final 
color for the respective fragment. This interpolation takes into account the vertices that 
enclose the current fragment as we saw in Chapter 2, Rendering Geometry.

Time for action – updating uniforms in real time
1. Open the file ch3_Sphere_Goraud_Lambert.html in your favorite  

HTML5 browser.

2. You will see that this example has some widgets at the bottom of the page. These 
widgets were created using JQuery UI. You can check the code for those in the HTML 
<body> of the page.

 � X,Y,Z: controls the direction of the light. By changing these sliders you will 
modify the uniform uLightDirection.

 � Sphere color: changes the uniform uMaterialDiffuse, which represents 
the diffuse color of the sphere. Here we use a color selection widget so you 
can try different colors. The updateObjectColor function receives the 
updates from the widgets and updates the uMaterialDiffuse uniform.
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 � Light diffuse term: changes the uniform uLightDiffuse, which 
represents the diffuse color of the light source. There are no reasons as to 
why the light color has to be white; however for the sake of simplicity, in 
this case, we are using a slider instead of a color to restrict the light color 
to the gray scale. We achieve this by assigning the slider value to the RGB 
components of uLightDiffuse while we keep the alpha channel set to 
1.0. We do this inside the updateLightDiffuseTerm function, which 
receives the slider updates.

3. Try different settings for light source position (which will affect the light-direction 
vector), the diffuse material, and light properties.

What just happened?
We have seen an example of a simple scene illuminated using Goraud interpolation and a 
Lambertian reflection model. We have also seen the immediate effects of changing uniform 
values for the Lambertian lighting model.

Have a go hero – moving light
We have mentioned before that we use matrices to move the camera around the scene. 
Well, we can also use matrices to move lights! 

1. Check the file ch3_Sphere_Moving.html using your favorite source code editor. 
The vertex shader is very similar to the previous diffuse model example. However, 
there is one extra line:

vec4 light = uMVMatrix * vec4(uLightDirection, 0.0);
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Here we are transforming the uLightDirection vector to the light variable. 
Notice that the uniform uLightDirection is a vector with three components 
(vec3) and that uMVMatrix is a 4x4 matrix. In order to do the multiplication, we 
need to transform this uniform to a four-component vector (vec4). We achieve this 
with the construct:

vec4(uLightDirection, 0.0);

The matrix uMVMatrix contains the Model-view-transform. We will see how all this 
works in the next chapter. However, for now, let's say that this matrix allows us to 
update vertices positions and also, as we see in this example, lights positions. 

2. Take another look at the vertex shader. In this example, we are rotating the sphere 
and the light. Every time the drawScene function is invoked, we rotate the matrix 
mvMatrix a little bit in the y axis:

mat4.rotate(mvMatrix, angle * Math.PI / 180, [0, 1, 0]);

3. If you examine the code more closely, you will notice that the matrix mvMatrix is 
mapped to the uniform:

uMVMatrix:gl.uniformMatrix4fv(prg.uMVMatrix, false, mvMatrix);

4. Now run the example in your HTML5 browser. You will see a sphere and a light 
source rotating on the y-axis:

5. Look for the initLights function and change the light orientation so the light is 
pointing in the negative z-axis direction:

gl.uniform3f(prg.uLightDirection, 0.0, 0.0, -1.0)

6. Save the file and run it again. What happened? Now change the light direction 
uniform so it points to [-1.0, 0.0, 0.0]. Save the file and run it again on your browser. 
What happened?
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7. Now set the light back to the 45 degree angle by changing the uniform 
uLightDirection so it goes back to its initial value:

gl.uniform3f(prg.uLightDirection, 0.0, 0.0, -1.0)

8. Go to drawScene and change the line:

mat4.rotate(mvMatrix, angle * Math.PI / 180, [0, 1, 0]);

with:

mat4.rotate(mvMatrix, angle * Math.PI / 180, [1, 0, 0]);

9. Save the file and launch it again in your browser. What happens?

What can you conclude? As you see, the vector that is passed as the third argument to mat4.
rotate determines the axis of the rotation. The first component corresponds to the x-axis, the 
second to the y-axis and the third to the z-axis.

Goraud shading with Phong reflections
In contrast with the Lambertian reflection model, the Phong reflection model considers three 
properties: the ambient, diffuse, and specular. Following the same analogy that we used in 
the previous section:

Final Vertex Color = Ia + Id + Is

where:

Ia = Light Ambient Property * Material Ambient Property
Id = Light Diffuse Property * Material Diffuse Property * Lambert 
coefficient
Is = Light Specular Property * Material Specular Property * specular 
coefficient

Please notice that:

 � As we are using Goraud interpolation, we still use vertex normals to calculate the 
diffuse term. This will change when using Phong interpolation where we will be 
using fragment normals.

 � Both light and material have three properties: the ambient, diffuse,  
and specular colors.

 � We can see on these equations that Ia, Id, and Is receive contributions from their 
respective light and material properties.
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Based on our knowledge of the Phong reflection model, let's see how to calculate the 
specular coefficient in ESSL:

float specular = pow(max(dot(R, E), 0.0), f );

where:

E is the view vector or camera vector.

R is the reflected light vector.

f is the specular exponential factor or shininess.

R is calculated as:

R = reflect(L, N)

where N is the vertex normal considered and L the light direction that we have been using to 
calculate the Lambert coefficient.

Let's take a look at the ESSL implementation for the vertex and fragment shaders.

Vertex shader:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 uMVMatrix; 
uniform mat4 uPMatrix; 
uniform mat4 uNMatrix;
uniform float uShininess;    
uniform vec3 uLightDirection;  
uniform vec4 uLightAmbient;    
uniform vec4 uLightDiffuse;      
uniform vec4 uLightSpecular;    
uniform vec4 uMaterialAmbient;
uniform vec4 uMaterialDiffuse;  
uniform vec4 uMaterialSpecular;  
varying vec4 vFinalColor;

void main(void) {

   vec4 vertex = uMVMatrix * vec4(aVertexPosition, 1.0);
   
vec3 N = vec3(uNMatrix * vec4(aVertexNormal, 1.0));
   vec3 L = normalize(uLightDirection); 
  float lambertTerm = clamp(dot(N,-L),0.0,1.0);
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vec4 Ia = uLightAmbient * uMaterialAmbient;
  vec4 Id = vec4(0.0,0.0,0.0,1.0);
  vec4 Is = vec4(0.0,0.0,0.0,1.0);
    
    Id = uLightDiffuse* uMaterialDiffuse * lambertTerm; 
     
       vec3 eyeVec = -vec3(vertex.xyz);
    vec3 E = normalize(eyeVec);
    vec3 R = reflect(L, N);
    float specular = pow(max(dot(R, E), 0.0), uShininess );
       Is = uLightSpecular * uMaterialSpecular * specular;  
  
vFinalColor = Ia + Id + Is;
  vFinalColor.a = 1.0;

  gl_Position = uPMatrix * vertex;
}

We can obtain negative dot products for the Lambert term when the geometry of our 
objects is concave or when the object is in the way between the light source and our point  
of view, in either case the negative of the light-direction vector and the normals will form  
an obtuse angle producing a negative dot product, as shown in the following figure:

For that reason we are using the ESSL built-in clamp function to restrict the dot product 
to the positive range. In the case of obtaining a negative dot product, the clamp function 
will set the lambert term to zero and the respective diffuse contribution will be discarded, 
generating the correct result.
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Given that we are still using Goraud interpolation, the fragment shader is exactly as before:

#ifdef GL_ES
precision highp float;
#endif
varying vec4 vFinalColor;

void main(void)
{
  gl_FragColor = vFinalColor;
} 

In the following section, we will explore the scene and see what it looks like when we have 
negative Lambert coefficients that have been clamped to the [0,1] range.

Time for action – Goraud shading
1. Open the file ch3_Sphere_Goraud_Phong.html in your HTML5 browser. You will 

see something similar to the following screenshot:

2. The interface looks a little bit more elaborate than the diffuse lighting example. Let's 
stop here for a moment to explain these widgets:

 � Light color (light diffuse term): As mentioned at the beginning of the 
chapter, we can have a case where our light is not white. We have included 
a color selector widget here for the light color so you can experiment with 
different combinations.

 � Light ambient term: The light ambient property. In this example, a gray 
value: r = g = b.
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 � Light specular term: The light specular property. A gray value: r=g=b.

 � X,Y,Z: The coordinates that define the light orientation.

 � Sphere color (material diffuse term): The material diffuse property. We 
have included a color selector so you can try different combinations for the 
r, g, b channels.

 � Material ambient term: The material ambient property. We have included it 
just for the sake of it. But as you might have noticed in the diffuse example, 
this vector is not always used.

 � Material specular term: The material specular property. A gray value.

 � Shininess: The specular exponential factor for the Goraud model.

 � Background color (gl.clearColor): This widget simply allows us to 
change the background color. We used this code in Chapter 1, Getting 
started with WebGL. Now we have a nice color selector widget.

3. Let's prove that when the light source is behind the object, we only see the  
ambient term.

4. Open the web page (ch3_Sphere_Goraud_Phong.html) in a text editor.

5. Look for the updateLightAmbientTerm function and replace the line:

gl.uniform4fv(prg.uLightAmbient,[la,la,la,1.0]);

with:

gl.uniform4fv(prg.uLightAmbient,[0.0,la,0.0,1.0]);

This will make the ambient property of the light a green color (r = 0, g = la, b=0).

6. Save the file with a new name.

7. Open this new file in your HTML5 browser.

8. Move the light ambient term slider so it is larger than 0.4.

9. Move X close to 0.0

10. See what happens as you move Z towards 1.0. It should be clear then that the light 
direction is coming behind the object and we are only getting the light ambient term 
which, in this case, is a color in the green scale (r=0,g=0.3,b=0).
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11. Go back to the original web page (ch3_Sphere_Goraud_Phong.html) in your 
HTML5 browser.

12. The specular reflection in the Phong reflection model depends on the shininess, the 
specular property of the material, and the specular property of the light. When the 
specular property of the material is close to zero (vector [0,0,0,1]), the material loses 
its specular property. Check this behavior with the widgets provided.

13. What happens when the specularity of the material is low and the shininess is high?

14. What happens when the specularity of the material is high and the shininess is low?

15. Using the widgets, try different combinations for the light and material properties.

What just happened?
 � We have seen how the different parameters of the Phong lighting model interact 

with each other.

 � We have modified the light orientation, the properties of the light, and the material 
to observe different behaviors of the Phong lighting model.

 � Unlike the Lambertian reflection model, the Goraud lighting model has two extra 
terms: the ambient and specular components. We have seen how these parameters 
affect the scene.

Just like the Lambertian reflection model, the Phong reflection model obtains the vertex 
color in the vertex shader. This color is interpolated in the fragment shader to obtain the 
final pixel color. This is because, in both cases, we are using Goraud interpolation. Let's now 
move the heavy processing to the fragment shader and study how we implement the Phong 
interpolation method.
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Phong shading
Unlike the Goraud interpolation, where we calculated the final color for each vertex, the 
Phong interpolation calculates the final color for every fragment. This means that the 
calculation of the ambient, diffuse, and specular terms in the Phong model are performed 
in the fragment shader instead of the vertex shader. As you can imagine, this is more 
computationally intensive than performing a simple interpolation like in the two previous 
scenarios where we were using Goraud interpolation. However, we obtain a scene that 
seems more realistic.

What do we do in the vertex shader then? Well, in this case, we are going to create varyings 
here that will allow us to do all of the calculations in the fragment shader later on. Think for 
example of the normals.

Whereas before we had a normal per vertex, now, we need to generate a normal for 
every pixel so we can calculate the Lambert coefficient for each fragment. We do so by 
interpolating the normals that we pass to the vertex shader. Nevertheless, the code is very 
simple. All we need to know is to create a varying that stores the normal for the vertex that 
we are processing in the vertex shader and obtain the interpolated value in the fragment 
shader (courtesy of ESSL). That's all! Conceptually, this looks like the following diagram:

Now let's take a look at the vertex shader under Phong shading:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
uniform mat4 uMVMatrix; 
uniform mat4 uPMatrix; 
uniform mat4 uNMatrix; 
varying vec3 vNormal;
varying vec3 vEyeVec;

void main(void) {
  vec4 vertex = uMVMatrix * vec4(aVertexPosition, 1.0);
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  vNormal = vec3(uNMatrix * vec4(aVertexNormal, 1.0));
  vEyeVec = -vec3(vertex.xyz);
  gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

}

In contrast with the Goraud interpolation, the vertex shader looks really simple. There is no 
final color calculation and we are using two varyings to pass information to the fragment 
shader. The fragment shader will now look like the following:

uniform float uShininess;        
uniform vec3 uLightDirection;  
uniform vec4 uLightAmbient;      
uniform vec4 uLightDiffuse;      
uniform vec4 uLightSpecular;     
uniform vec4 uMaterialAmbient;
uniform vec4 uMaterialDiffuse;   
uniform vec4 uMaterialSpecular;  
varying vec3 vNormal;
varying vec3 vEyeVec;

void main(void)
{
 vec3 L = normalize(uLightDirection);
 vec3 N = normalize(vNormal);
 
 float lambertTerm = dot(N,-L);
 vec4 Ia = uLightAmbient * uMaterialAmbient;
 vec4 Id = vec4(0.0,0.0,0.0,1.0);
 vec4 Is = vec4(0.0,0.0,0.0,1.0);
 
 if(lambertTerm > 0.0) 
 {
  Id = uLightDiffuse * uMaterialDiffuse * lambertTerm; 
  
  vec3 E = normalize(vEyeVec);
  vec3 R = reflect(L, N);
  float specular = pow( max(dot(R, E), 0.0), uShininess);
  
  Is = uLightSpecular * uMaterialSpecular * specular; 
 }
 
 vec4 finalColor = Ia + Id + Is;
 finalColor.a = 1.0;
 
 gl_FragColor = finalColor;
}
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When we pass vectors as varyings, it is possible that they denormalized in the interpolation 
step. Therefore, you may have noticed that both vNormal and vEyeVec are normalized 
before they are used in the fragment shader.

As we mentioned before, under Phong lighting, the Lambertian reflection model can be seen 
as a Phong reflection model where the ambient and specular components are set to zero. 
Therefore, we will only cover the general case in the next section where we will see how the 
sphere scene looks like when using Phong shading and Phong lighting combined.

Time for action – Phong shading with Phong lighting
1. Open the file ch3 Sphere_Phong.html in your HTML5 Internet browser. The page 

will look similar to the following screenshot:

2. The interface is very similar to the Goraud example's interface. Please notice how 
the Phong shading combined with Phong lighting delivers a more realistic scene.

3. Click on the button Code. This will bring up the code viewer area. Check the vertex 
shader and the fragment shader with the respective buttons that will appear under 
the code viewer area. As in previous examples, the code has been commented 
extensively so you can understand every step of the process.

4. Now click on the button Controls to go back to the original layout. Modify the 
different parameters of the Phong lighting model to see the immediate result  
on the scene to the right.
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What just happened?
We have seen the Phong shading and Phong lighting in action. We have explored the source 
code for the vertex and fragment shaders. We have also modified the different parameters of 
the model and we have observed the immediate effect of the changes on the scene.

Back to WebGL
It is time to go back to our JavaScript code. Now, how do we close the gap between our 
JavaScript code and our ESSL code?

First, we need to take a look at how we create a program using our WebGL context. Please 
remember that we refer to both the vertex shader and fragment shader as the program.

Second, we need to know how to initialize attributes and uniforms.

Let's take a look at the structure of the web apps that we have developed so far:

Each application has a vertex shader and a fragment shader embedded in the web page. 
Then we have a script section where we write all of our WebGL code. Finally, we have the 
HTML code that defines the page components such as titles and the location of the widgets 
and the canvas.
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In the JavaScript code, we are calling the runWebGLApp function on the onLoad event of the 
web page. This is the entry point for our application. The first thing that runWebGLApp does 
is to obtain a WebGL context for the canvas, and then calls a series of functions that initialize 
the program, the WebGL buffers, and the lights. Finally it gets into a render loop where 
every time that the loop goes off, the drawScene callback is invoked. In this section, we will 
take a closer look at the initProgram and initLights functions. initPrograms allows 
creating and compiling a ESSL program while initLights allows initializing and passing 
values to the uniforms defined in the programs. It is inside initLights where we will 
define the light position, direction, and color components (ambient, diffuse, and specular)  
as well as default values for material properties.

Creating a program
Let's take a step-by-step look at initProgram:

var prg; //global variable 
function initProgram() {

First we use the utility function utils.getShader(WebGLContext, DOM_ID) to retrieve 
the contents of the vertex shader and the fragment shader.

  var fragmentShader= utils.getShader(gl, "shader-fs");
  var vertexShader= utils.getShader(gl, "shader-vs");
  

Let's make a small parenthesis here and talk a bit about the getShader function. The first 
parameter of getShader is the WebGL context. The second parameter is the DOM ID of 
the script that contains the source code of the shader that we want to add to the program. 
Internally, getShader reads the source code of the script and it stores it in a local variable 
named str. Then it executes the following piece of code:

var shader;
        if (script.type == "x-shader/x-fragment") {
            shader = gl.createShader(gl.FRAGMENT_SHADER);
        } else if (script.type == "x-shader/x-vertex") {
            shader = gl.createShader(gl.VERTEX_SHADER);
        } else {
            return null;
        }

        gl.shaderSource(shader, str);
        gl.compileShader(shader);  
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Basically, the preceding code fragment will create a new shader using the WebGL 
createShader function. Then it will add the source code to it using the shaderSource 
function and finally it will try to compile the shader using the compileShader function.

The source code for the getShader function is in the file js/utils.js, which 
accompanies this chapter.

Going back to initProgram, the program creation occurs in the following lines:

prg = gl.createProgram();
gl.attachShader(prg, vertexShader);
gl.attachShader(prg, fragmentShader);
gl.linkProgram(prg);
if (!gl.getProgramParameter(prg, gl.LINK_STATUS)) {
  alert("Could not initialize shaders");
}

gl.useProgram(prg);

Here we have used several functions provided by the WebGL context. These are as follows:

WebGL Function Description

createProgram() Creates a new program (prg)

attachShader(Object program, 
Object shader)

Attaches a shader to the current program

linkProgram(Object program) Creates executable versions of the vertex and 
fragment shaders that are passed to the GPU

getProgramParameter(Object 
program, Object parameter)

This is part of the WebGL State Machine query 
mechanism. It allows querying the program 
parameters. We use this function here to verify 
whether the program has been successfully 
linked or not.

useProgram(Object program) It will install the program in the GPU if the 
program contains valid code (that is, it has been 
successfully linked).

Finally, we create a mapping between JavaScript variables and the program attributes and 
uniforms. Instead of creating several JavaScript variables here (one per program attribute or 
uniform), we are attaching properties to the prg object. This does not have anything to do 
with WebGL. It is just a convenience step to keep all of our JavaScript variables as part of the 
program object.

prg.aVertexPosition  = gl.getAttribLocation(prg, "aVertexPosition");
prg.aVertexNormal    = gl.getAttribLocation(prg, "aVertexNormal");
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prg.uPMatrix =gl.getUniformLocation(prg, "uPMatrix");
prg.uMVMatrix = gl.getUniformLocation(prg, "uMVMatrix");
prg.uNMatrix = gl.getUniformLocation(prg, "uNMatrix");
  
  
prg.uLightDirection = gl.getUniformLocation(prg, "uLightDirection");
prg.uLightAmbient = gl.getUniformLocation(prg, "uLightAmbient");
prg.uLightDiffuse = gl.getUniformLocation(prg, "uLightDiffuse");
prg.uMaterialDiffuse = gl.getUniformLocation(prg,"uMaterialDiffuse");

}

This is all for initProgram. Here we have used these WebGL API functions:

WebGL Function Description

Var reference = 
getAttribLocation(Object 
program,String name)

This function receives the current program 
object and a string that contains the name of the 
attribute that needs to be retrieved. Then this 
function returns a reference to the respective 
attribute.

var reference= 
getUniformLocation(Object 
program,String uniform)

This function receives the current program object 
and a string that contains the name of the uniform 
that needs to be retrieved. Then this function 
returns a reference to the respective uniform.

Using this mapping, we can initialize the uniforms and attributes from our JavaScript code,  
as we will see in the next section.

Initializing attributes and uniforms
Once we have compiled and installed the program, the next step is to initialize the attributes 
and variables. We will initialize our uniforms using the initLights function.

function initLights(){
  gl.uniform3fv(prg.uLightDirection, [0.0, 0.0, -1.0]);
  gl.uniform4fv(prg.uLightAmbient, [0.01,0.01,0.01,1.0]);
  gl.uniform4fv(prg.uLightDiffuse, [0.5,0.5,0.5,1.0]);   
  gl.uniform4fv(prg.uMaterialDiffuse, [0.1,0.5,0.8,1.0]);

}
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You can see here that we are using the references obtained with getUniformLocation  
(we did this in initProgram).

These are the functions that the WebGL API provides to set and get uniform values:

WebGL Function Description

uniform[1234][fi] Specifies 1-4 float or int values of a uniform 
variable

uniform[1234][fi]v Specifies the value of a uniform variable as an 
array of 1-4 float or int values.

getUniform(program, reference) Retrieves the contents of a uniform variable. 
The reference parameter has been previously 
obtained with getUniformLocation.

In Chapter 2, Rendering Geometry, we saw that there is a three-step process to initialize and 
use attributes (review the Associating Attributes to VBOs section in Chapter 2, Rendering 
Geometry). Let's remember that we:

1. Bind a VBO.

2. Point an attribute to the currently bound VBO.

3. Enable the attribute.

The key piece here is step 2. We do this with the instruction:

gl.vertexAttribPointer(Index,Size,Type,Norm,Stride,Offset);

If you check the example ch3_Wall.html, you will see that we do this inside the 
drawScene function:

gl.vertexAttribPointer(prg.aVertexPosition, 3, gl.FLOAT, false, 0, 0); 

gl.vertexAttribPointer(prg.aVertexNormal,3,gl.FLOAT, false, 0,0); 

Bridging the gap between WebGL and ESSL
Let's see in practice how we integrate our ESSL program to our WebGL code by working on a 
simple example from scratch.
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We have a wall composed of the sections A, B, and C. Imagine that you are facing section 
B (as shown in the following diagram) and that you have a flashlight on your hand (Frontal 
View). Intuitively section A and section C will be darker than section B. This fact can be 
modeled by starting at the color of the center of section B and darkening the color of the 
surrounding pixels as we move away from the center.

Let's summarize here the code that we need to write:

1. Write the ESSL program. Code the ESSL vertex and fragment shaders. We know  
how to do this already. For the wall, we are going to select Goraud shading with  
a Diffuse/Lambertian reflection model.

2. Write the initProgram function. We already saw how to do this. We need to make 
sure that we map all the attributes and uniforms that we had defined in the ESSL 
code. Including the normals:

prg.aVertexNormal= gl.getAttribLocation(prg, "aVertexNormal");

3. Write initBuffers. Here we need to create our geometry: we can represent 
the wall with eight vertices that define six triangles such as the ones shown in 
the previous diagram. In init buffers, we apply what we learned in Chapter 2, 
Rendering Geometry to set up the appropriate WebGL buffers. This time, we need  
to set up an additional buffer: the VBO that contain information about normals.

The code to set up the normals VBO looks like this:

var normals = utils.calculateNormals(vertices, indices);
var normalsBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, normalsBuffer);
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gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normals), 
gl.STATIC_DRAW);

To calculate the normals, we use the following function:

calculateNormals(vertices, indices)

You will find this function in the file js/utils.js

4. Write initLights. We also saw how to do that.

5. There is only a minor but important change to make inside the drawScene 
function. We need to make sure that the normals VBO is bound before we use 
drawElements. The code to do that looks like this:

gl.bindBuffer(gl.ARRAY_BUFFER, normalsBuffer);
gl.vertexAttribPointer(prg.aVertexNormal,3,gl.FLOAT, false, 0,0);

In the following section, we will explore the functions that we just described for building and 
illuminating the wall.

Time for action – working on the wall
1. Open the file ch3_Wall.html in your HTML5 browse. You will see something 

similar to the following screenshot:

2. Now, open the file again, this time in your favorite text editor (for example,  
Notepad ++).
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3. Go to the vertex shader (Hint: look for the tag <script id="shader-vs" 
type="x-shader/x-vertex">). Make sure that you identify the attributes 
uniforms and varyings that are declared there.

4. Now go to the fragment shader. Notice that there are no attributes here 
(Remember: attributes are exclusive of the vertex shader).

5. Go to the runWebGLApp function. Verify that we are calling initProgram and 
initLights there.

6. Go to initProgram. Make sure you understand how the program is built and how 
we obtain references to attributes and uniforms.

7. Now go to initLights. Update the values of the uniforms, as shown here.

  gl.uniform3fv(prg.uLightDirection, [0.0, 0.0, -1.0]);
  gl.uniform4fv(prg.uLightAmbient, [0.1,0.1,0.1,1.0]);
  gl.uniform4fv(prg.uLightDiffuse, [0.6,0.6,0.6,1.0]);   
  gl.uniform4fv(prg.uMaterialDiffuse, [0.6,0.15,0.15,1.0]);

8. Please notice that one of the updates consists of changing from uniform4f to 
uniform4fv for the uniform uMaterialDiffuse.

9. Save the file.

10. Open it again (or reload it) in your HTML5 Internet browser. What happened?

11. Now let's do something a bit more interesting. We are going to create a key listener 
so every time we hit a key, the light orientation changes.

12. Right after the initLights function, write the following code:

var azimuth = 0;  
var elevation = 0;

document.onkeypress = processKey;
function processKey(ev){ 

    var lightDirection = gl.getUniform(prg,prg.uLightDirection);
    var incrAzimuth =   10;
    var incrElevation = 10;
    
    switch(ev.keyCode){
    case 37:{ // left arrow
            azimuth -= incrAzimuth;
            break;
    }
       case 38:{ //up arrow
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            elevation += incrElevation;
            break;
        }
    case 39:{ // right arrow
            azimuth += incrAzimuth;
            break;
    }
 
       case 40:{ //down arrow
            elevation -= incrElevation;
            break;
        }
     }
    
    azimuth %= 360;
    elevation %=360;
        
    var theta = elevation * Math.PI / 180;
    var phi   = azimuth * Math.PI / 180;
    
    //Spherical to Cartesian coordinate transformation
    lightDirection[0] = Math.cos(theta)* Math.sin(phi);
    lightDirection[1] = Math.sin(theta);
    lightDirection[2] = Math.cos(theta)* -Math.cos(phi);
    

   gl.uniform3fv(prg.uLightDirection, lightDirection);
 
} 

This function processes the arrow keys and changes the light direction accordingly. 
There is a bit of trigonometry (Math.cos, Math.sin) Mat.sin) there but do not 
worry. We are just converting the angles (azimuth and elevation) calculated by the 
entered arrow keys into Cartesian coordinates.

Please notice that we are getting the current light direction using the function:

var lightDirection = gl.getUniform(prg,prg.uLightDirection);

After processing the key strokes, we can save the updated light direction with:

gl.uniform3fv(prg.uLightDirection, lightDirection);
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13. Save the work and reload the web page:

14. Use the arrow keys to change the light direction.

15. If you have any problem during the development of the exercise or you just want to 
verify the final result, please check the file ch3_Wall_Final.html that contains 
the completed exercise.

What just happened?
In this exercise, we have created a keyboard listener that allows us to update the light 
orientation so we can move it around the wall and see how it reacts to surface normals. We 
have also seen how the vertex shader and fragment shader input variables are declared and 
used. We understood how to build a program by reviewing the initProgram function. We 
also learned about initializing uniforms on the initLights function. We also studied the 
getUniform function to retrieve the current value of a uniform.
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More on lights: positional lights
Before we finish the chapter, let's revisit the topic of lights. So far we have assumed that  
our light source is infinitely far away from the scene. This assumption allows us to model  
the light rays as being parallel to each other. An example of this is sunlight. These lights are 
called directional lights; now we are going to consider the case where the light source is 
relatively close to the object that it is going to illuminate. Think, for example, of a lamp  
desk illuminating the document you are reading. These lights are called positional lights.

As we experienced before, when working with directional lights, only one variable 
is required. This is the light direction that we have represented in the uniform 
uLightDirection.

Contrastingly, when working with positional lights, we need to know the location of the light. 
We can represent it using a uniform that we will name uLightPosition. As when using 
positional lights, the light rays are not parallel to each other, we will need to calculate each 
light ray separately. We will do this by using a varying that we will name vLightRay.

In the following Time for action section, we will see how a positional light interacts  
with a scene.
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Time for action – positional lights in action
1. Open the file ch3_Positional Lighting.html in your HTML5 Internet browser. 

The page will look similar to the following screenshot:

2. The interface of this exercise is very simple. You will notice that there are no sliders 
to select the ambient and specular properties for the objects or the light source. 
This has been done deliberately with the objective of focusing on the new element 
of study—the light position. Unlike in previous exercises, the X, Y, and Z sliders do 
not represent light direction here. Instead, they allow us to set the light source 
position. Go ahead and play with them.

3. For clarity, a little sphere representing the position of the light source has been 
added to the scene. However, this is not generally required.

4. What happens when the light source is located on the surface of the cone or on the 
surface of the sphere?

5. What happens when the light source is inside the sphere? 

6. Now, click on the button Animate. As you would expect, the lighting of the scene 
changes according to the light source and the position of the camera.
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7. Let's take a look at the way we calculate the light rays. Click on the Code button. 
Once the code viewer area is displayed, click on the Vertex Shader button.

The light ray calculation is performed in the following two lines of code:

vec4 light = uMVMatrix * vec4(uLightPosition,1.0);
vLightRay = vertex.xyz-light.xyz;

8. The first line allows us to obtain a transformed light position by multiplying the 
Model-view matrix by the uniform uLightPosition. If you check the code in 
the vertex shader, we also use this matrix for calculating transformed vertices and 
normals. We will discuss these matrix operations in the next chapter. For now, 
believe me when I say that this is necessary to obtain transformed vertices, normals, 
and light positions whenever we move the camera. If you do not believe me, then 
go ahead and modify this line by removing the matrix from the equation so the line 
looks like the following:

vec4 light = vec4(uLightPosition,1.0);

Save the file with a different name and launch it in your HTML5 browser. What is the 
effect of not transforming the light position? Click on the button Animate. What you 
see is that the camera is moving, but the light source position is not being updated!

9. In the second line of code (step 7), we can see that the light ray is calculated as the 
vector that goes from the transformed light position (light) to the vertex position.

Thanks to the interpolation of varyings that is provided by ESSL, we automatically 
obtain all the light rays per pixel in the fragment shader.
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What just happened?
We have studied the difference between directional lights and positional lights. We have  
also seen the importance of the Model-view matrix for the correct calculation of positional 
lights when the camera is moving. Also, the procedure to obtain per-vertex light rays has 
been shown.

Nissan GTS example
We have included in this chapter an example of the Nissan GTS exercise that we saw  
in Chapter 2, Rendering Geometry. This time, we have used a Phong lighting model with  
a positional light to illuminate the scene. The file where you will find this example is  
ch3_Nissan.html.

Here you can experiment with different light positions. You can see the nice specular 
reflections that you obtain thanks to the specularity property of the car and the shininess  
of the light.
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Summary
In this chapter, we have seen how to use the vertex shader and the fragment shader to 
define a lighting model for our 3D scene. We have learned in detail what light sources, 
materials, and normals are, and how these elements interact to illuminate a WebGL scene. 
We have also learned the difference between a shading method and a lighting model and 
have studied the basic Goraud and Phong shading methods and the Lambertian and Phong 
lighting models. We have also seen several examples of how to implement these shading and 
lighting models in code using ESSL, and how to communicate between the WebGL code and 
the ESSL code through attributes and uniforms.

In the following chapter, we will expand on the use of matrices in ESSL and we will see how 
we use them to represent and move our viewpoint in a 3D scene.





4
Camera

In this chapter, we will learn more about the matrices that we have seen in  
the source code. These matrices represent transformations that when applied 
to our scene, allow us to move things around. We have used them so far to  
set the camera to a distance that is good enough to see all the objects in  
our scene and also for spinning our Nissan GTS model (Animate button in  
ch3_Nissan.html). In general, we move the camera and the objects in the  
scene using matrices. 

The bad news is that you will not see a camera object in the WebGL API, only matrices.  
The good news is that having matrices instead of a camera object gives WebGL a lot of 
flexibility to represent complex animations (as we will see in Chapter 5, Action). In this 
chapter, we will learn what these matrix transformations mean and how we can use them  
to define and operate a virtual camera.

In this chapter, we will:

 � Understand the transformations that the scene undergoes from a 3D world  
to a 2D screen

 � Learn about affine transformations

 � Map matrices to ESSL uniforms

 � Work with the Model-View matrix and the Perspective matrix

 � Appreciate the value of the Normal matrix

 � Create a camera and use it to move around a 3D scene
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WebGL does not have cameras
This statement should be shocking! How is it that there are no cameras in a 3D computer 
graphics technology? Well, let me rephrase this in a more amicable way. WebGL does not 
have a camera object that you can manipulate. However, we can assume that what we see 
rendered in the canvas is what our camera captures. In this chapter, we are going to solve 
the problem of how to represent a camera in WebGL. The short answer is we need  
4x4 matrices.

Every time that we move our camera around, we will need to update the objects according 
to the new camera position. To do this, we need to systematically process each vertex 
applying a transformation that produces the new viewing position. Similarly, we need to 
make sure that the object normals and light directions are still consistent after the camera 
has moved. In summary, we need to analyze two different types of transformations: vertex 
(points) and normal (vectors).

Vertex transformations
Objects in a WebGL scene go through different transformations before we can see them on 
our screen. Each transformation is encoded by a 4x4 matrix, as we will see later. How do we 
multiply vertices that have three components (x,y,z) by a 4x4 matrix? The short answer is 
that we need to augment the cardinality of our tuples by one dimension. Each vertex then 
will have a fourth component called the homogenous coordinate. Let's see what they are 
and why they are useful.

Homogeneous coordinates
Homogeneous coordinates are a key component of any computer graphics program.  
Thanks to them, it is possible to represent affine transformations (rotation, scaling,  
shear, and translation) and projective transformations as 4x4 matrices.

In Homogeneous coordinates, vertices have four components: x, y, z, and w. The first three 
components are the vertex coordinates in Euclidian Space. The fourth is the perspective 
component. The 4-tuple (x,y,z,w) take us to a new space: The Projective Space.

Homogeneous coordinates make possible to solve a system of linear equations where each 
equation represents a line that is parallel with all the others in the system. Let's remember 
here that in Euclidian Space, a system like that does not have solutions, because there are 
not intersections. However, in Projective Space, this system has a solution—the lines will 
intersect at infinite. This fact is represented by the perspective component having a value of 
zero. A good physical analogy of this idea is the image of train tracks: parallel lines that touch 
in the vanishing point when you look at them.



Chapter 4

[ 107 ]

It is easy to convert from Homogeneous coordinates to non-homogeneous, old-fashioned, 
Euclidean coordinates. All you need to do is divide the coordinate by w:

h(x, y, z, w) = v(x / w, y / w, z / w)

v(x, y, z) = h(x, y, z, )1

Consequently, if we want to go from Euclidian to Projective space, we just add the fourth 
component w and make it 1.

As a matter of fact, this is what we have been doing so far! Let's go back to one of the 
shaders we discussed in the last chapter: the Phong vertex shader. The code looks like  
the following:

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 uMVMatrix; 
uniform mat4 uPMatrix; 
uniform mat4 uNMatrix; 

varying vec3 vNormal;
varying vec3 vEyeVec;

void main(void) {
     //Transformed vertex position
     vec4 vertex = uMVMatrix * vec4(aVertexPosition, 1.0);
     
     //Transformed normal position
     vNormal = vec3(uNMatrix * vec4(aVertexNormal, 0.0));

     //Vector Eye
     vEyeVec = -vec3(vertex.xyz);
     
     //Final vertex position
     gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

}

Please notice that for the aVertexPosition attribute, which contains a vertex of our 
geometry, we create a 4-tuple from the 3-tuple that we receive. We do this with the ESSL 
construct vec4(). ESSL knows that aVertexPosition is a vec3 and therefore we only 
need the fourth component to create a vec4.
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To pass from Homogeneous coordinates to Euclidean coordinates, we divide by w

To pass from Euclidean coordinates to Homogeneous coordinates, we add w =1

Homogeneous coordinates with w = 0 represent a point at infinity

There is one more thing you should know about Homogeneous coordinates—while vertices 
have a Homogeneous coordinate w = 1, vectors have a Homogeneous coordinate w = 0.  
This is the reason why, in the Phong vertex shader, the line that processes the normals  
looks like this:

     vNormal = vec3(uNMatrix * vec4(aVertexNormal, 0.0));

To code vertex transformations, we will be using Homogeneous coordinates unless indicated 
otherwise. Now let's see the different transformations that our geometry undergoes to be 
displayed on screen.

Model transform
We start our analysis from the object coordinate system. It is in this space where vertex 
coordinates are specified. Then if we want to translate or move objects around, we use 
a matrix that encodes these transformations. This matrix is known as the model matrix. 
Once we multiply the vertices of our object by the model matrix, we will obtain new vertex 
coordinates. These new vertices will determine the position of the object in our 3D world.
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While in object coordinates, each object is free to define where its origin is and then specify 
where its vertices are with respect to this origin, in world coordinates, the origin is shared by 
all the objects. World coordinates allow us to know where objects are located with respect 
to each other. It is with the model transform that we determine where the objects are in the 
3D world.

View transform
The next transformation, the view transform, shifts the origin of the coordinate system to the 
view origin. The view origin is where our eye or camera is located with respect to the world 
origin. In other words, the view transform switches world coordinates by view coordinates. 
This transformation is encoded in the view matrix. We multiply this matrix by the vertex 
coordinates obtained by the model transform. The result of this operation is a new set of 
vertex coordinates whose origin is the view origin. It is in this coordinate system that our 
camera is going to operate. We will go back to this later in the chapter.
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Projection transform
The next operation is called the projection transform. This operation determines how much 
of the view space will be rendered and how it will be mapped onto the computer screen. 
This region is known as the frustum and it is defined by six planes (near, far, top, bottom, 
right, and left planes), as shown in the following diagram:

These six planes are encoded in the Perspective matrix. Any vertices lying outside of the 
frustum after applying the transformation are clipped out and discarded from further 
processing. Therefore, the frustum defines, and the projection matrix that encodes the 
frustum produces, clipping coordinates.

The shape and extent of the frustum determines the type of projection from the 3D viewing 
space to the 2D screen. If the far and near planes have the same dimensions, then the 
frustum will determine an orthographic projection. Otherwise, it will be a perspective 
projection, as shown in the following diagram:
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Up to this point, we are still working with Homogeneous coordinates, so the clipping 
coordinates have four components: x, y, z, and w. The clipping is done by comparing the x, y, 
and z components against the Homogeneous coordinate w. If any of them is more than, +w, 
or less than, –w , then that vertex lies outside the frustum and is discarded.

Perspective division
Once it is determined how much of the viewing space will be rendered, the frustum is 
mapped into the near plane in order to produce a 2D image. The near plane is what is  
going to be rendered on your computer screen.

Different operative systems and displaying devices can have mechanisms to represent 2D 
information on screen. To provide robustness for all possible cases, WebGL (also in OpenGL 
ES) provides an intermediate coordinate system that is independent from any specific 
hardware. This space is known as the Normalized Device Coordinates (NDC).

Normalized device coordinates are obtained by dividing the clipping coordinates by the 
w component. This is the reason why this step is known as perspective division. Also, 
please remember that when you divide by the Homogeneous coordinate, we go from 
projective space (4-components) to Euclidean space (3-components), so NDC only has 
three components. In the NDC space, the x and y coordinates represent the location of your 
vertices on a normalized 2D screen, while the z-coordinate encodes depth information, 
which is the relative location of the objects with respect to the near and far planes. Though, 
at this point, we are working on a 2D screen, we still keep the depth information. This will 
allow WebGL to determine later how to display overlapping objects based on their distance 
to the near plane. When using normalized device coordinates, the depth is encoded in the 
z-component.
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The perspective division transforms the viewing frustum into a cube centered in the origin 
with minimum coordinates [-1,-1,-1] and maximum coordinates [1,1,1]. Also, the direction  
of the z-axis is inverted, as shown in the following figure:

Viewport transform
Finally, NDCs are mapped to viewport coordinates. This step maps these coordinates to the 
available space in your screen. In WebGL, this space is provided by the HTML5 canvas, as 
shown in the following figure:

Unlike the previous cases, the viewport transform is not generated by a matrix 
transformation. In this case, we use the WebGL viewport function. We will learn more 
about this function later in the chapter. Now it is time to see what happens to normals.
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Normal transformations
Whenever vertices are transformed, normal vectors should also be transformed, so they 
point in the right direction. We could think of using the Model-View matrix that transforms 
vertices to do this, but there is a problem: The Model-View matrix will not always keep the 
perpendicularity of normals.

This problem occurs if there is a unidirectional (one axis) scaling transformation or a  
shearing transformation in the Model-View matrix. In our example, we have a triangle  
that has undergone a scaling transformation on the y-axis. As you can see, the normal  
N' is not normal anymore after this kind of transformation. How do we solve this?

Calculating the Normal matrix
If you are not interested in finding out how we calculate the Normal matrix and just want the 
answer, please feel free to jump to the end of this section. Otherwise, stick around to see 
some linear algebra in action!

Let's start from the mathematical definition of perpendicularity. Two vectors are 
perpendicular if their dot product is zero. In our example:

N.S = 0

Here, S is the surface vector and it can be calculated as the difference of two vertices,  
as shown in the previous diagram at the beginning of this section.

Let M be the Model-View matrix. We can use M to transform S as follows:

S' = MS

This is because S is the difference of two vertices and we use M to transform vertices onto 
the viewing space.
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We want to find a matrix K that allows us to transform normals in a similar way. For the 
normal N, we want:

N' = KN

For the scene to be consistent after obtaining N' and S', these two need to keep the 
perpendicularity that the original vectors N and S had. This is:

N'.S' = 0

Substituting N' and S':

(KN).(MS) =0

A dot product can also be written as a vector multiplication by transposing the first vector,  
so we have that this still holds:

(KN)T(MS) = 0

The transpose of a product is the product of the transposes in the reverse order:

NTKTMS = 0     

Grouping the inner terms:

NT(KTM)S = 0

Now remember that N.S =0 so NTS = 0 (again, a dot product can be written as a vector 
multiplication). This means that in the previous equation, (KTM) needs to be the identity 
matrix I, so the original condition of N and S being perpendicular holds:

KTM = I

Applying a bit of algebra:

KTMM-1 = IM-1 = M-1 multiply by the inverse of M on both 
sides

KT(I) = M-1 because MM-1 = I

(KT)T = (M-1)T transposing on both sides

K = (M-1)T Double transpose of K is the original 
matrix K.

Conclusions: 

 � K is the correct matrix transform that keeps the normal vectors being perpendicular 
to the surface of the object. We call K the Normal matrix.
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 � K is obtained by transposing the inverse of the Model-View matrix  
(M in this example).

 � We need to use K to multiply the normal vectors so they keep being perpendicular 
to surface when these are transformed.

WebGL implementation
Now let's take a look at how we can implement vertex and normal transformations in 
WebGL. The following diagram shows the theory that we have learned so far and it  
shows the relationships between the steps in the theory and the implementation  
in WebGL.

In WebGL, the five transformations that we apply to object coordinates to obtain viewport 
coordinates are grouped in three matrices and one WebGL method:

1. The Model-View matrix that groups the model and view transform in one single 
matrix. When we multiply our vertices by this matrix, we end up in view coordinates. 

2. The Normal matrix is obtained by inverting and transposing the Model-View matrix. 
This matrix is applied to normal vectors for lighting purposes.

3. The Perspective matrix groups the projection transformation and the perspective 
division, and as a result, we end up in normalized device coordinates (NDC).

Finally, we use the operation gl.viewport to map NDCs to viewport coordinates:

gl.viewport(minX, minY, width, height);

The viewport coordinates have their origin in the lower-left corner of the  
HTML5 canvas.
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JavaScript matrices
WebGL does not provide its own methods to perform operations on matrices. All WebGL 
does is it provides a way to pass matrices to the shaders (as uniforms). So, we need to use a 
JavaScript library that enables us to manipulate matrices in JavaScript. In this book, we have 
used glMatrix to manipulate matrices. However, there are other libraries available online 
that can do this for you.

We used glMatrix to manipulate matrices in this book. You can find more 
information about this library here: https://github.com/toji/gl-
matrix. And the documentation (linked further down the page) can be 
found at: http://toji.github.com/gl-matrix/doc

These are some of the operations that you can perform with glMatrix:

Operation Syntax Description

Creation var m = mat4.create() Creates the matrix m

Identity mat4.identity(m) Sets m as the identity matrix of rank 4

Copy mat4.
set(origin,target)

Copies the matrix origin into the matrix target

Transpose mat4.transpose(m) Transposes matrix m

Inverse mat4.inverse(m) Inverts m

Rotate mat4.rotate(m,r,a) Rotates the matrix m by r radians around the axis a 
(this is a 3-element array [x,y,z]).

glMatrix also provides functions to perform other linear algebra operations. It also 
operates on vectors and matrices of rank 3. To get the full list, visit https://github.com/
toji/gl-matrix

Mapping JavaScript matrices to ESSL uniforms
As the Model-View and Perspective matrices do not change during a single rendering step, 
they are passed as uniforms to the shading program. For example, if we were applying  
a translation to an object in our scene, we would have to paint the whole object in the  
new coordinates given by the translation. Painting the whole object in the new position  
is achieved in exactly one rendering step.

However, before the rendering step is invoked (by calling drawArrays or drawElements, 
as we saw in Chapter 2, Rendering Geometry), we need to make sure that the shaders have 
an updated version of our matrices. We have seen how to do that for other uniforms such  
as light and color properties. The method map JavaScript matrices to uniforms is similar to 
the following:
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First, we get a JavaScript reference to the uniform with:

var reference= getUniformLocation(Object program, String uniformName)

Then, we use the reference to pass the matrix to the shader with:

gl.uniformMatrix4fv(WebGLUniformLocation reference, bool transpose, 

float[] matrix);

matrix is the JavaScript matrix variable.

As it is the case for other uniforms, ESSL supports 2, 3, and 4-dimensional matrices:

uniformMatrix[234]fv(ref,transpose,matrix): will load 2x2, 3x3, or 4x4 matrices 
(corresponding to 2, 3, or 4 in the command name) of floating points into the uniform 
referenced by ref. The type of ref is WebGLUniformLocation. For practical purposes, it is 
an integer number. According to the specification, the transpose value must be set to false. 
The matrix uniforms are always of floating point type (f). The matrices are passed as 4, 
9, or 16 element vectors (v) and are always specified in a column-major order. The matrix 
parameter can also be of type Float32Array. This is one of JavaScript's typed arrays. These 
arrays are included in the language to provide access and manipulation of raw binary data, 
therefore increasing efficiency.

Working with matrices in ESSL
Let's revisit the Phong vertex shader, which was introduced in the last chapter. Please pay 
attention to the fact that matrices are defined as uniform mat4.

In this shader, we have defined three matrices:

 � uMVMatrix: the Model-View matrix

 � uPMatrix: the Perspective matrix

 � uNMatrix: the Normal matrix

attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;

uniform mat4 uMVMatrix; 
uniform mat4 uPMatrix; 
uniform mat3 uNMatrix; 

varying vec3 vNormal;
varying vec3 vEyeVec;

void main(void) {
     //Transformed vertex position
     vec4 vertex = uMVMatrix * vec4(aVertexPosition, 1.0);
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     //Transformed normal vector
     vNormal = uNMatrix * aVertexNormal;

     //Vector Eye
     vEyeVec = -vec3(vertex.xyz);
     
     //Final vertex position
     gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 
1.0);
}

In ESSL, the multiplication of matrices is straightforward, that is, you do not need to multiply 
element by element, but as ESSL knows that you are working with matrices, it performs the 
multiplication for you.

     gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);

The last line of this shader assigns a value to the predefined gl_Position variable. This 
will contain the clipping coordinates for the vertex that is currently being processed by the 
shader. We should remember here that the shaders work in parallel: each vertex is processed 
by an instance of the vertex shader.

To obtain the clipping coordinates for a given vertex, we need to multiply first by the Model-
View matrix and then by the Projection matrix. To achieve this, we need to multiply to the 
left (because matrix multiplication is not commutative).

Also, notice that we have had to augment the aVertexPosition attribute by including 
the Homogeneous coordinate. This is because we have always defined our geometry in 
Euclidean space. Luckily, ESSL lets us do this just by adding the missing component and 
creating a vec4 on the fly. We need to do this because both the Model-View matrix and  
the Perspective matrix are described in homogeneous coordinates (4 rows by 4 columns).

Now that we have seen how to map JavaScript matrices to ESSL uniforms in our shaders, 
let's talk about how to operate with the three matrices: the Model-View matrix, the Normal 
matrix, and the Perspective matrix.

The Model-View matrix
This matrix allows us to perform affine transformations in our scene. Affine is a 
mathematical name to describe transformations that do not change the structure of the 
object that undergoes such transformations. In our 3D world scene, such transformations 
are rotation, scaling, reflection shearing, and translation. Luckily for us, we do not need to 
understand how to represent such transformations with matrices. We just have to use one  
of the many JavaScript matrix libraries that are available online (such as glMatrix).
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You can find more information on how transformation matrices work in 
any linear algebra book. Look for affine transforms in computer graphics.

Understanding the structure of the Model-View matrix is of no value if you just want to apply 
transformations to the scene or to objects in the scene. For that effect, you just use a library 
such as glMatrix to do the transformations on your behalf. However, the structure of this 
matrix could be invaluable information when you are trying to troubleshoot your  
3D application.

Let's take a look.

Spatial encoding of the world
By default, when you render a scene, you are looking at it from the origin of the world in the 
negative direction of the z-axis. As shown in the following diagram, the z-axis is coming out 
of the screen (which means that you are looking at the negative z-axis).

From the center of the screen to the right, you will have the positive x-axis and from the 
center of the screen up, you will have the positive y-axis. This is the initial configuration  
and it is the reference for affine transformations.

In this configuration, the Model-View matrix is the identity matrix of rank four.

The first three rows of the Model-View matrix contain information about rotations  
and translations that are affecting the world.
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Rotation matrix
The intersection of the first three rows with the first three columns defines the 3x3 Rotation 
matrix. This matrix contains information about rotations around the standard axis. In the 
initial configuration, this corresponds to:

[m1,m2,m3]  =  [1, 0, 0]    =   x-axis

[m5,m6,m7]  =   [0, 1, 0]    =  y-axis

[m9,m10,m11] =  [0, 0, 1]   =  z-axis

Translation vector
The intersection of the first three rows with the last column defines a three-component 
Translation vector. This vector indicates how much the origin, and for the same sake, the 
world, have been translated. In the initial configuration, this corresponds to:

    = origin (no translation)

The mysterious fourth row
The fourth row does not bear any special meaning.

 � Elements m4, m8, m12 are always zero.

 � Element m16 (the homogeneous coordinate) will always be 1.

As we described at the beginning of this chapter, there are no cameras in WebGL. However, 
all the information that we need to operate a camera (mainly rotations and translations) can 
be extracted from the Model-View matrix itself!

The Camera matrix
Let's say, for a moment, that we do have a camera in WebGL. A camera should be able to 
rotate and translate to explore this 3D world. For example, think of a first person shooter 
game where you have to walk through levels killing zombies. As we saw in the previous 
section, a 4x4 matrix can encode rotations and translations. Therefore, our hypothetical 
camera could also be represented by one such matrix.

Assume that our camera is located at the origin of the world and that it is oriented in a way 
that it is looking towards the negative z-axis direction. This is a good starting point—we 
already know what transformation represents such a configuration in WebGL (identity matrix 
of rank 4).
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For the sake of analysis, let's break the problem down into two sub-problems: camera 
translation and camera rotation. We will have a practical demo on each one.

Camera translation
Let's move the camera to [0 ,0, 4] in world coordinates. This means 4 units from the origin on 
the positive z-axis.

Remember that we do not know at this point of a matrix to move the camera, we only know 
how to move the world (with the Model-View matrix). If we applied:

mat4.translate(mvMatrix, [0,0,4]);

In such a case, the world would be translated 4 units on the positive z-axis and as the camera 
position has not been changed (as we do not know a matrix to do this), it would be located 
at [0,0,-4], which is exactly the opposite of what we wanted in the first place!

Now, say that we applied the translation in the opposite direction:

mat4.translate(mvMatrix, [0,0,-4]);

In such a case, the world would be moved 4 units on the negative z-axis and then the camera 
would be located at [0,0,4] in the new world coordinate system.

We can see here that translating the camera is equivalent to translating the world in the 
opposite direction.

In the following section, we are going to explore translations both in world space and in 
camera space.
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Time for action – exploring translations: world space versus 
camera space

1. Open ch4_ModelView_Translation.html in your HTML5 browser:

2. We are looking from a distance at the positive z-axis at a cone located at the origin 
of the world. There are three sliders that will allow you to translate either the world 
or the camera on the x, y, and z axis, respectively. The world space is activated  
by default.

3. Can you tell by looking at the World-View matrix on the screen where the origin of 
the world is? Is it [0,0,0]? (Hint: check where we define translations in the Model-
View matrix).

4. We can think of the canvas as the image that our camera sees. If the world center is 
at [0,-2,-50], where is the camera?

5. If we want to see the cone closer, we would have to move the center of the world 
towards the camera. We know that the camera is far on the positive z-axis of the 
world, so the translation will occur on the z-axis. Given that you are on world 
coordinates, do we need to increase or decrease the z-axis slider? Go ahead  
and try your answer.



Chapter 4

[ 123 ]

6. Now switch to camera coordinates by clicking on the Camera button. What is the 
translation component of this matrix? What do you need to do if you want to move 
the camera closer to the cone? What does the final translation look like? What can 
you conclude?

7. Go ahead and try to move the camera on the x-axis and the y-axis. Check what the 
correspondent transformations would be on the Model-View matrix.

What just happened?
We saw that the camera translation is the inverse of the Model-View matrix translation.  
We also learned where to find translation information in a transformation matrix.

Camera rotation
Similarly, if we want to rotate the camera, say, 45 degrees to the right, this would be 
equivalent to rotating the world 45 degrees to the left. Using glMatrix to achieve this,  
we write the following:

mat4.rotate(mvMatrix,45 * Math.PI/180, [0,1,0]);

Let's see this behavior in action!

Similar to the previous section where we explored translations, in the following time for 
action, we are going to play with rotations in both world and camera spaces.
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Time for action – exploring rotations: world space versus 
camera space

1. Open ch4_ModelView_Rotation.html in your HTML5 browser:

2. Just like in the previous example, we will see:

 � A cone at the origin of the world

 � The camera is located at [0,2,50] in world coordinates

 � Three sliders that will allows us to rotate either the world or the camera

 � Also, we have a matrix where we can see the result of different rotations

3. Let's see what happens to the axis after we apply a rotation. With the World 
coordinates button selected, rotate the world 90 degrees around the x-axis.  
What does the Model-View matrix look like?

4. Let's see where the axes end up after a 90 degree rotation around the x-axis:

 � By looking at the first column, we can see that the x-axis has not changed.  
It is still [1,0,0]. This makes sense as we are rotating around this axis.

 � The second column of the matrix indicates where the y-axis is after 
the rotation. In this case, we went from [0,1,0] , which is the original 
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configuration, to [0,0,1], which is the axis that is coming out of the screen. 
This is the z-axis in the initial configuration. This makes sense as now we are 
looking from above, down to the cone.

 � The third column of the matrix indicates the new location of the z-axis. It 
changed from [0,0,1], which as we know is the z-axis in the standard spatial 
configuration (without transforms), to [0,-1,0], which is the negative portion 
of the y-axis in the original configuration. This makes sense as we rotated 
around the x-axis.

5. As we just saw, understanding the Rotation matrix (3x3 upper-left corner of the 
Model-View matrix) is simple: the first three columns are always telling us where  
the axis is.

6. Where are the axis in this transformation:

Check your answer by using the sliders to achieve the rotation that you believe 
produce this matrix.

7. Now let's see how rotations work in Camera space. Click on the Camera button.

8. Start increasing the angle of rotation in the X axis by incrementing the slider 
position. What do you notice?
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9. Go ahead and try different rotations in camera space using the sliders.

10. Are the rotations commutative? That is, do you get the same result if you rotate,  
for example, 5 degrees on the X axis and 90 degrees on the Z axis, compared to the 
case where you rotate 90 degrees on the Z axis and then you rotate 5 degrees on 
the X axis?

11. Now, go back to World space. Please check that when you are in World space, you 
need to reverse the rotations to obtain the same pose. So, if you were applying 5 
degrees on the X axis and 90 degrees on the Z axis. Check that when you apply -5 
degrees on the X axis and -90 degrees on the Z axis you obtain the same image as in 
point 10.

What just happened?
We just saw that the Camera matrix rotation is the inverse of the Model-View matrix rotation. 
We also learned how to identify the orientation of our world or camera upon analysis of the 
rotation matrix (3x3 upper-left corner of the correspondent transformation matrix).

Have a go hero – combining rotations and translations
1. The file ch4_ModelView.html contains the combination of rotations and 

translations. When you open it your HTML5 browser, you see something  
like the following:
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2. Try different configurations of rotations and translations in both World and  
Camera spaces.

The Camera matrix is the inverse of the Model-View matrix
We can see through these two scenarios that a Camera matrix would require being the exact 
Model-View matrix opposite. In linear algebra, we know this as the inverse of a matrix.

The inverse of a matrix is such that when multiplying it by the original matrix, we obtain the 
identity matrix. In other words, if M is the Model-View matrix and C is the Camera matrix,  
we have the following:

MC = I

M-1MC = M-1   

C= M-1

We can create the Camera matrix using glMatrix by writing something like the following:

var cMatrix = mat4.create();     
mat4.inverse(mvMatrix,cMatrix);   

Thinking about matrix multiplications in WebGL
Please do not skip this section. If you want to, just put a sticker on this page so you 
remember where to go when you need to debug Model-View transformations. I spent so 
many nights trying to understand this (sigh) and I wish I had had a book like this to explain 
this to me.

Before moving forward, we need to know that in WebGL, the matrix operations 
are written in the reverse order in which they are applied to the vertices.

Here is the explanation. Assume, for a moment, that you are writing the code to rotate/
move the world, that is, you rotate your vertices around the origin and then you move away. 
The final transformation would look like this:

RTv

Here, R is the 4x4 matrix encoding pure rotation, T is the 4x4 matrix encoding  
pure translation, and v corresponds to the vertices present in your scene  
(in homogeneous coordinates).
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Now, if you notice, the first transformation that we actually apply to the vertices is the 
translation and then we apply the rotation! Vertices need to be multiplied first by the matrix 
that is to the left. In this scenario, that matrix is T. Then, the result needs to be multiplied by R.

This fact is reflected in the order of the operations (here mvMatrix is the  
Model-View matrix):

mat4.identity(mvMatrix)
mat4.translate(mvMatrix, position); mat4.rotateX(mvMatrix,rotation[0]
*Math.PI/180);
mat4.rotateY(mvMatrix,rotation[1]*Math.PI/180);
mat4.rotateZ(mvMatrix,rotation[2]*Math.PI/180);

Now if we were working in camera coordinates and we wanted to apply the same 
transformation as before, we need to apply a bit of linear algebra first:

M = RT The Model-View matrix M is the result of multiplying 
rotation and translation together

C = M-1 We know that the Camera matrix is the inverse of the 
Model-View matrix

C =(RT)-1 By substitution

C=T-1R-1 Inverse of a matrix product is the reverse product of the 
inverses

Luckily for us, when we are working in camera coordinates in the chapter's examples, 
we have the inverse translation and the inverse rotation already calculated in the global 
variables position and rotation. Therefore, we would write something like this in the 
code (here cMatrix is the Camera matrix):

mat4.identity(cMatrix);
mat4.rotateX(cMatrix,rotation[0]*Math.PI/180);
mat4.rotateY(cMatrix,rotation[1]*Math.PI/180);
mat4.rotateZ(cMatrix,rotation[2]*Math.PI/180);
mat4.translate(cMatrix,position);

Basic camera types
The following are the camera types that we will discuss in this chapter.

 � Orbiting camera

 � Tracking camera
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Orbiting camera
Up to this point, we have seen how we can generate rotations and translations of the world 
in the world or camera coordinates. However, in both cases, we are always generating the 
rotations around the center of the world. This could be ideal for many cases where we are 
orbiting around a 3D object such as our Nissan GTX model. You put the object at the center 
of the world, then you can examine the object at different angles (rotation) and then you 
move away (translation) to see the result. Let's call this type of camera an orbiting camera. 

Tracking camera
Now, going back to the example of the first person shooting game, we need to have a 
camera that is able to look up when we want to see if there are enemies above us. Just 
the same, we should be able to look around left and right (rotations) and then move in the 
direction in which our camera is pointing (translation). This camera type can be designated 
as a first-person camera. This same type is used when the game follows the main character. 
Therefore, it is also known as a tracking camera.

To implement first-person cameras, we need to set up the rotations on the camera axis 
instead of using the world origin.

Rotating the camera around its location
When we multiply matrices, the order in which matrices are multiplied is relevant. Say, for 
instance, that we have two 4x4 matrices. Let R be the first matrix and let's assume that this 
matrix encodes pure rotation; let T be the second matrix and let's assume that T encodes 
pure translation. Now:

RT ≠ TR

In other words, the order of the operations affects the result. It is not the same to rotate 
around the origin and then translate away from it (orbiting camera), as compared to 
translating the origin and then rotating around it (tracking camera)! 

So in order to set the location of the camera as the center for rotations, we just need to 
invert the order in which the operations are called. This is equivalent to converting from  
an orbiting camera to a tracking camera.

Translating the camera in the line of sight
When we have an orbiting camera, the camera will be always looking towards the center 
of the world. Therefore, we will always use the z-axis to move to and from the object that 
we are examining. However, when we have a tracking camera, as the rotation occurs at the 
camera location, we can end up looking to any position in the world (which is ideal if you 
want to move around it and explore it). Then, we need to know the direction in which the 
camera is pointing to in world coordinates (camera axis). We will see how to obtain this next.
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Camera model
Just like its counterpart, the Model-View matrix, the Camera matrix encodes information 
about the camera axes orientation. As we can see in the figure, the upper-left 3x3 matrix 
corresponds to the camera axes:

 � The first column corresponds to the x-axis of the camera. We will call it the  
Right vector.

 � The second column is the y-axis of the camera. This will be the Up vector.

 � The third column determines the vector in which the camera can move back  
and forth. This is the z-axis of the camera and we will call it the Camera axis.

Due to the fact that the Camera matrix is the inverse of the Model-View matrix, the  
upper-left 3x3 rotation matrix contained in the Camera matrix gives us the orientation  
of the camera axes in world space. This is a plus, because it means that we can tell the 
orientation of our camera in world space, just by looking at the columns of this 3x3  
rotation matrix (And we know now what each column means).

In the following section, we will play with orbiting and tracking cameras and we will see how 
we can change the camera position using mouse gestures, page widgets (sliders), and also 
we will have a graphical representation of the resulting Model-View matrix. In this exercise, 
we will integrate both rotations and translations and we will see how they behave under the 
two basic types of cameras that we are studying.
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Time for action – exploring the Nissan GTX
1. Open the file ch4_CameraTypes.html in your HTML5 browser. You will see 

something like the following:

2. Go around the world using the sliders in Tracking mode. Cool eh?

3. Now, change the camera type to Orbiting mode and do the same.

4. Now, please check that besides the slider controls, both in Tracking and Orbiting 
mode, you can use your mouse and keyboard to move around the world.

5. In this exercise, we have implemented a camera using two new classes:

 � Camera: to manipulate the camera.

 � CameraInteractor: to connect the camera to the canvas. It will receive 
mouse and keyboard events and it will pass them along to the camera.

If you are curious, you can see the source code of these two classes in /js/webgl. 
We have applied the concepts explained in this chapter to build these two classes.

6. So far, we have seen a cone in the center of the world. Let's change that for 
something more interesting to explore.

7. Open the file ch4_CameraTypes.html in your source code editor.
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8. Go to the load function. Let's add the car to the scene. Rewrite the contents of this 
function so it looks like the following:

function load(){
    Floor.build(2000,100);
    Axis.build(2000);
    Scene.addObject(Floor);
    Scene.addObject(Axis);
    Scene.loadObjectByParts('models/nissan_gts/pr','Nissan',178);
}

You will see that we have increased the size of the axis and the floor so we can see 
them. We do need to do this because the car is an object much larger than the 
original cone.

9. There are some steps that we need to take in order to be able to see the car 
correctly. First we need to make sure that we have a large enough view volume.  
Go to the initTransforms function and update this line:

mat4.perspective(30, c_width / c_height, 0.1, 1000.0, pMatrix);

With this:

mat4.perspective(30, c_width / c_height, 10, 5000.0, pMatrix);

10. Do the same in the updateTransforms function.

11. Now, let's change the type of our camera so when we load the page, we have  
an orbiting camera by default. In the configure function, change this line:

camera = new Camera(CAMERA_TRACKING_TYPE);

With:

camera = new Camera(CAMERA_ORBIT_TYPE);

12. Another thing we need to take into account is the location of the camera. For a large 
object like this car, we need to be far away from the center of the world. For that 
purpose, go to the configure function and change:

camera.goHome([0,2,50]);

Add:

camera.goHome([0,200,2000]);

13. Let's modify the lighting of our scene so it fits better in the model we are displaying. 
In the function configure function, right after this line:

interactor = new CameraInteractor(camera, canvas);
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Write:

gl.uniform4fv(prg.uLightAmbient,   [0.1,0.1,0.1,1.0]);
gl.uniform3fv(prg.uLightPosition,  [0, 0, 2120]);
gl.uniform4fv(prg.uLightDiffuse,   [0.7,0.7,0.7,1.0]);

14. Save the file with a different name and then load this new file in your HTML5 
Internet browser. You should see something like the following screenshot:

15. Using the mouse, keyboard, or/and the sliders, explore the new scene.  
Hint: use orbiting mode to explore the car from different angles.

16. See how the Camera matrix is updated when you move around the scene.

17. You can see what the final exercise looks like by opening the file  
ch4_NissanGTR.html.

What just happened?
We added mouse and keyboard interaction to our scene. We also experimented with the two 
basic camera types—tracking and orbiting cameras. We modified the settings of our scene to 
visualize a complex model.
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Have a go hero – updating light positions
Remember that when we move the camera, we are applying the inverse transformation to 
the world. If we do not update the light position, then the light source will be located at the 
same static point, regardless of the final transformation applied to the world.

This is very convenient when we are moving around or exploring an object in the scene. 
We will always be able to see if the light is located on the same axis of the camera. This is 
the case for the exercises in this chapter. Nevertheless, we can simulate the case when the 
camera movement is independent from the light source. To do so, we need to calculate the 
new light position whenever we move the camera. We do this in two steps:

First, we calculate the light direction. We can do this by simply calculating the difference 
vector between our target and our origin. Say that the light source is located at [0,2,50]. 
If we want to direct our light source towards the origin, we calculate the vector [0,0,0] - 
[0,2,50] (target - origin). This vector has the correct orientation of the light when we target 
the origin. We repeat the same procedure if we have a different target that needs to be lit.  
In that case, we just use the coordinates of the target and from them we subtract the 
location of the light.

As we are directing our light source towards the origin, we can find the direction of the light 
just by inverting the light position. If you notice, we do this in ESSL in the vertex shader:

vec3 L = normalize(-uLightPosition);  

Now as L is a vector, if we want to update the direction of the light, then we need to use  
the Normal matrix, discussed earlier in this chapter, in order to update this vector under  
any world transformation. This step is optional in the vertex shader:

if(uUpdateLight){
  L = vec3(uNMatrix*vec4(L,0.0));   
}

In the previous fragment of code, L is augmented to 4-components, so we can use the direct 
multiplication provided by ESSL. (Remember that uNMatrix is a 4x4 matrix and as such, the 
vectors that are transformed by it need to be 4-dimensional). Also, please bear in mind that, 
as explained in the beginning of the chapter, vectors have their homogeneous coordinate 
always set to zero, while vertices have their homogeneous coordinate set to one.

After the multiplication, we reduce the result to 3-components before assigning the result 
back to L.

You can test the effects of updating the light position by using the button Update Light 
Position, provided in the files ch4_NissanGTR.html and ch4_CameraTypes.html.
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We connect a global variable that keeps track of the state of this button with the uniform 
uUpdateLight.

1. Edit ch4_NissanGTR.html and set the light position to a different location.  
To do this, edit the configure function. Go to: 

gl.uniform3fv(prg.uLightPosition,[0, 0, 2120]);

Try different light positions:

 � [2120,0,0]

 � [0,2120,0]

 � [100,100,100]

2. For each option, save the file and try it with and without updating the light position 
(use the button Update Light Position).

3. For a better visualization, use an Orbiting camera.

The Perspective matrix
At the beginning of the chapter, we said that the Perspective matrix combines the  
projection transformation and the perspective division. These two steps combined  
take a 3D scene and converts it into a cube that is then mapped to the 2D canvas  
by the viewport transformation.
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In practice, the Perspective matrix determines the geometry of the image that is captured by 
the camera. In a real world camera, the lens of the camera would determine how distorted 
the final images are. In a WebGL world, we use the Perspective matrix to simulate that. Also, 
unlike in the real world where our images are always affected by perspective, in WebGL, we 
can pick a different representation: the orthographic projection.

Field of view
The Perspective matrix determines the Field of View (FOV) of the camera, that is, how  
much of the 3D space will be captured by the camera. The field of view is a measure given  
in degrees and the term is used interchangeably with the term angle of view.

Perspective or orthogonal projection
A perspective projection assigns more space to details that are closer to the camera than the 
details that are farther from it. In other words, the geometry that is close to the camera will 
appear bigger than the geometry that is farther from it. This is the way our eyes see the real 
world. Perspective projection allows us to assess the distance because it gives our brain a 
depth cue.

In contrast, an orthogonal projection uses parallel lines; this means that will look the same 
size regardless of their distance to the camera. Therefore, the depth cue is lost when using 
orthogonal projection.

Using glMatrix, we can set up the perspective or the orthogonal projection by calling 
mat4.persective or mat4.ortho respectively. The signatures for these methods are:
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Function Description (Taken from the documentation of 
the library)

mat4.perspective(fovy, aspect, 
near, far, dest)

Generates a perspective projection matrix with 
the given bounds 
Parameters:

fovy - vertical field of view

aspect - aspect ratio—typically viewport width/
height 
near, far - near and far bounds of the frustum 
dest - Optional, mat4 frustum matrix will be 
written into 
 
Returns: 
dest if specified, a new mat4 otherwise 

 
mat4.ortho(left, right, bottom, 
top, near, far, dest) 

Generates an orthogonal projection matrix with 
the given bounds:

Parameters: 
left, right - left and right bounds of the 
frustum 
bottom, top - bottom and top bounds of the 
frustum 
near, far - near and far bounds of the frustum 
dest - Optional, mat4 frustum matrix will be 
written into 
Returns: 
dest if specified, a new mat4 otherwise.

In the following time for action section, we will see how the field of view and the perspective 
projection affects the image that our camera captures. We will experiment perspective and 
orthographic projections for both orbiting and tracking cameras.

Time for action – orthographic and perspective projections
1. Open the file ch4_ProjectiveModes.html in your HTML5 Internet browser.

2. This exercise is very similar to the previous one. However, there are two new 
buttons: Perspective and Orthogonal. As you can see, Perspective is activated  
by default.
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3. Change the camera type to Orbiting.

4. Change the projective mode to Orthographic.

5. Explore the scene. Notice the lack of depth cues that is characteristic of  
orthogonal projections:

6. Now switch to Perspective mode:
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7. Explore the source code. Go to the updateTransforms function:

function updateTransforms(){
    if (projectionMode == PROJ_PERSPECTIVE){
        mat4.perspective(30, c_width / c_height, 10, 5000, 
pMatrix);
    }
    else{
        mat4.ortho(-c_width, c_width, -c_height, c_height, -5000, 
5000, pMatrix);
    }
}

8. Please take a look at the parameters that we are using to set up the projective view.

9. Let's modify the field of view. Create a global variable right before the 
updateTransforms function:

var fovy = 30;

10. Let's use this variable instead of the hardcoded value:

Replace:

mat4.perspective(30, c_width / c_height, 10, 5000, pMatrix);

With:

mat4.perspective(fovy, c_width / c_height, 10, 5000, pMatrix);

11. Now let's update the camera interactor to update this variable. Open the file /js/
webgl/CameraInteractor.js in your source code editor.

Append these lines to CameraInteractor.prototype.onKeyDown inside if 
(!this.ctrl){:

else if (this.key == 87) {  //w
    if(fovy<120) fovy+=5;
    console.info('FovY:'+fovy);
}
else if (this.key == 78) { //n
    if(fovy>15) fovy-=5;
    console.info('FovY:'+fovy);
}

Please make sure that you are inside the if section.
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If these instructions are already there, do not write them again. Just 
make sure you understand that the goal here is to update the global 
fovy variable that refers to the field of view in perspective mode.

12.Save the changes made to CameraInteractor.js.

13. Save the changes made to ch4_ProjectiveModes.html. Use a different name. 
You can see the final result in the file ch4_ProjectiveModesFOVY.html.

14. Open the renamed file in your HTML5 Internet browser. Try different fields of view 
by pressing w or n repeatedly. Can you replicate these scenes:

15. Notice that as you increase the field of view, your camera will capture more of the 
3D space. Think of this as the lens of a real-world camera. With a wide-angle lens, 
you capture more space with the trade-off of deforming the objects as they move 
towards the boundaries of your viewing box.

What just happened?
We experimented with different configurations for the Perspective matrix and we saw how 
these configurations produce different results in the scene.

Have a go hero – integrating the Model-view and the projective transform
Remember that once we have applied the Model-View transformation to the vertices, the 
next step is to transform the view coordinates to NDC coordinates:
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We do this by a simple multiplication using ESSL in the vertex shader:

gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition,1.0);

The predefined variable, gl_Position, stores the NDC coordinates for each vertex  
of every object defined in the scene.

In the previous multiplication, we augment the shader attribute, aVertexPosition, 
to a 4-component vertex because our matrices are 4x4. Unlike normals, vertices have a 
homogeneous coordinate equal to one (w=1).

After this step, WebGL will convert the computed clipping coordinates to normalized device 
coordinates and from there to canvas coordinates using the WebGL viewport function. We 
are going to see what happens when we change this mapping.

1. Open the file ch4_NisanGTS.html in your source code editor.

2. Go to the draw function. This is the rendering function that is invoked every time  
we interact with the scene (by using the mouse, the keyboard, or the widgets on  
the page).

3. Change this line:

gl.viewport(0, 0, c_width, c_height);

Make it:

gl.viewport(0, 0, c_width/2, c_height/2);
gl.viewport(c_width/2,c_height/2, c_width, c_height);
gl.viewport(50, 50, c_width-100, c_height-100);



Camera

[ 142 ]

4. For each option, save the file and open it on your HTML5 browser.

5. What do you see? Please notice that you can interact with the scene just like before. 

Structure of the WebGL examples
We have improved the structure of the code examples in this chapter. As the complexity of 
our WebGL applications increases, it is wise to have a good, maintainable, and clear design. 
We have left this section at the end of the chapter so you can use it as a reference when 
working on the exercises.

Just like in previous exercises, our entry point is the runWebGLApp function which  
is called when the page is loaded. There we create an instance of WebGLApp, as shown  
in the previous diagram.

WebGLApp
This class encapsulates some of the utility functions that were present in our examples in 
previous chapters. It also declares a clear and simple life cycle for a WebGL application. 
WebGLApp has three function hooks that we can map to functions in our web page. These 
hooks determine what functions will be called for each stage in the life cycle of the app. In 
the examples of this chapter, we have created the following mappings:
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 � configureGLHook: which points to the configure function in the web page

 � loadSceneHook: which is mapped to the load function in the webpage

 � drawSceneHook: which corresponds to the draw function in the webpage

A function hook can be described as a pointer to a function. In JavaScript, 
you can write:

function foo(){alert("function foo invoked");}  
var hook = foo; 
hook();

This fragment of code will execute foo when hook() is executed. This 
allows a pluggable behavior that is more difficult to express in fully typed 
languages.

WebGLApp will use the function hooks to call configure, load, and draw in our page in 
that order.

After setting these hooks, the run method is invoked.

The source code for WebGLApp and other supporting objects can be 
found in /js/webgl

Supporting objects
We have created the following objects, each one in its own file:

 � Globals.js: Contains the global variables used in the example.

 � Program.js: Creates the program using the shader definitions. Provides  
the mapping between JavaScript variables (prg.*) and program attributes  
and uniforms.

 � Scene.js: Maintains a list of objects to be rendered. Contains the AJAX/JSON 
functionality to retrieve remote objects. It also allows adding local objects to  
the scene.

 � Floor.js: Defines a grid on the X-Z plane. This object is added to the Scene to 
have a reference of where the floor is.

 � Axis.js: Represents the axis in world space. When added to the scene, we will 
have a reference of where the origin is.
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 � WebGLApp.js: Represents a WebGL application. It has three function hooks that 
define the configuration stage, the scene loading stage, and the rendering stage. 
These hooks can be connected to functions in our web page.

 � Utils.js: Utility functions such as obtaining a gl context.

You can refer to Globals.js to find the global variables used in this 
example (the definition of the JavaScript matrices is there) and Program.
js to find the prg.* JavaScript variables that map to attributes and 
uniforms in the shaders.

Life-cycle functions
The following are the functions that define the life-cycle of a WebGLApp application:

Configure
The configure function sets some parameters of our gl context, such as the color  
for clearing the canvas, and then it calls the initTransforms function.

Load
The load function sets up the objects Floor and Axis. These two locally-created objects 
are added to the Scene by calling the addObject method. After that, a remote object  
(AJAX call) is loaded using the Scene.loadObject method.

Draw
The draw function calls updateTransforms to calculate the matrices for the new position 
(that is, when we move), then iterates over the objects in the Scene to render them. Inside 
this loop, it calls setMatrixUniforms for every object to be rendered.

Matrix handling functions
The following are the functions that initialize, update, and pass matrices to the shaders:

initTransforms
As you can see, the Model-View matrix, the Camera matrix, the Perspective matrix, and the 
Normal matrix are set up here:

function initTransforms(){

    mat4.identity(mvMatrix);
    mat4.translate(mvMatrix, home);
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    displayMatrix(mvMatrix);
    
    mat4.identity(cMatrix);
    mat4.inverse(mvMatrix,cMatrix);
    
    mat4.identity(pMatrix);
    mat4.perspective(30, c_width / c_height, 0.1, 1000.0, pMatrix);

    mat4.identity(nMatrix);
    mat4.set(mvMatrix, nMatrix);
    mat4.inverse(nMatrix);
    mat4.transpose(nMatrix);

    coords = COORDS_WORLD;
}

updateTransforms
In updateTransforms, we use the contents of the global variables position and 
rotation to update the matrices. This is, of course, if the requestUpdate variable  
is set to true. We set requestUpdate to true from the GUI controls. The code for these 
is located at the bottom of the webpage (for instance, check the file ch4_ModelView_
Rotation.html).

function updateTransforms(){
    
    mat4.perspective(30, c_width / c_height, 0.1, 1000.0, pMatrix);   
    if (coords == COORDS_WORLD){
            mat4.identity(mvMatrix);
            mat4.translate(mvMatrix, position);                      
            mat4.rotateX(mvMatrix,rotation[0]*Math.PI/180);
            mat4.rotateY(mvMatrix,rotation[1]*Math.PI/180);
            mat4.rotateZ(mvMatrix,rotation[2]*Math.PI/180);
     }
     else{
            mat4.identity(cMatrix);
            mat4.rotateX(cMatrix,rotation[0]*Math.PI/180);
            mat4.rotateY(cMatrix,rotation[1]*Math.PI/180);
            mat4.rotateZ(cMatrix,rotation[2]*Math.PI/180);
            mat4.translate(cMatrix,position);
     }
}
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setMatrixUniforms
This function performs the mapping:

function setMatrixUniforms(){

    if (coords == COORDS_WORLD){
         mat4.inverse(mvMatrix, cMatrix); 
         displayMatrix(mvMatrix);
         gl.uniformMatrix4fv(prg.uMVMatrix, false, mvMatrix);
    }
    else{
         mat4.inverse(cMatrix, mvMatrix);      
         displayMatrix(cMatrix);
         
     }
     
     gl.uniformMatrix4fv(prg.uPMatrix, false, pMatrix);              
     gl.uniformMatrix4fv(prg.uMVMatrix, false, mvMatrix);        
     mat4.transpose(cMatrix, nMatrix);                          
     gl.uniformMatrix4fv(prg.uNMatrix, false, nMatrix);    
}

Summary
Let's summarize what we have learned in this chapter:

There is no camera object in WebGL. However, we can build one using the  
Model-View matrix.

3D objects undergo several transformations to be displayed on a 2D screen.  
These transformations are represented as 4x4 matrices.

Scene transformations are affine. Affine transformations are constituted by a linear 
transformation followed by a translation. WebGL groups affine transforms in three  
matrices: the Model-View matrix, the Perspective matrix, and the Normal matrix  
and one WebGL operation: gl.viewport().
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Affine transforms are applied in projective space so they can be represented by 4x4 matrices. 
To work in projective space, vertices need to be augmented to contain an extra term, namely, 
w, which is called the perspective coordinate. The 4-tuple (x,y,z,w) is called homogeneous 
coordinates. Homogeneous coordinates allows representation of lines that intersect on 
infinity by making the perspective coordinate w = 0. Vectors always have a homogeneous 
coordinate w = 0; While points have a homogenous coordinate, namely, w = 1 (unless they 
are at infinity, in which case w=0).

By default, a WebGL scene is viewed from the world origin in the negative direction of the 
z-axis. This can be altered by changing the Model-View matrix.

The Camera matrix is the inverse of the Model-View matrix. Camera and World operations 
are opposite. There are two basic types of camera—orbiting and tracking camera.

Normals receive special treatment whenever the object suffers an affine transform. Normals 
are transformed by the Normal matrix, which can be obtained from the Model-View matrix.

The Perspective matrix allows the determining of two basic projective modes, namely, 
orthographic projection and perspective projection.





5
Action

So far, we have seen static scenes where all interactions are done by moving the 
camera. The camera transformation is applied to all objects in the 3D scene, 
therefore we call it a global transform. However, objects in 3D scenes can have 
actions on their own. For instance, in a racing car game, each car has its own 
speed and trajectory. In a first-person shooting game your enemies can hide 
behind barricades then come and fight you or run away. In general, each one 
of these actions is modeled as a matrix transformation that is attached to the 
corresponding actor in the scene. These are called local transforms. In this 
chapter we will study different techniques to make use of local transforms.

In this chapter, we will discuss the following topics:

 � Global versus local transformations

 � Matrix stacks and using them to perform animation

 � Using JavaScript timers to do time-based animation

 � Parametric curves

 � Interpolation

In the previous chapter, we saw that when we apply the same transformation to all the 
objects in our scene we move the world. This global transformation allowed us to create two 
different kinds of cameras. Once we have applied the camera transform to all the objects in 
the scene, each one of them could update its position; representing, for instance, targets 
that are moving in a first-person shooting game, or the position of other competitors  
in a car racing game.
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This can be achieved by modifying the current Model-View transform for each object. However, 
if we modified the Model-View matrix, how could we make sure that these modifications do 
not affect other objects? After all, we only have one Model-View matrix, right?

The solution to this dilemma is to use matrix stacks.

Matrix stacks
A matrix stack provides a way to apply local transforms to individual objects in our scene 
while at the same time we keep the global transform (camera transform) coherent for all  
of them. Let's see how it works.

Each rendering cycle (each call to our draw function) requires calculating the scene matrices 
to react to camera movements. We are going to update the Model-View matrix for each 
object in our scene before passing the matrices to the shading program (as attributes).  
We do this in three steps as follows:

 � Step 1: Once the global Model-View matrix (camera transform) has been calculated, 
we proceed to save it in a stack. This step will allow us to recover the original matrix 
once we had applied to any local transforms.

 � Step 2: Calculate an updated Model-View matrix for each object in the scene.  
This update consists of multiplying the original Model-View matrix by a matrix  
that represents the rotation, translation, and/or scaling of each object in the scene. 
The updated Model-View matrix is passed to the program and the respective object 
then appears in the location indicated by its local transform.

 � Step 3: We recover the original matrix from the stack and then we repeat steps 1  
to 3 for the next object that needs to be rendered.

The following diagram shows this three-step procedure for one object:
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Animating a 3D scene
To animate a scene is nothing else than applying the appropriate local transformations to 
objects in it. For instance, if we have a cone and a sphere and we want to move them, each 
one of them will have a corresponding local transformation that will describe its location, 
orientation, and scale. In the previous section, we saw that matrix stacks allow recovering 
the original Model-View transform so we can apply the correct local transform for the next 
object to be rendered.

Knowing how to move objects with local transforms and matrix stacks, the question that 
needs to be addressed is: When?

If we calculated the position that we want to give to the cone and the sphere of our example 
every time we called the draw function, this would imply that the animation rate would be 
dependent on how fast our rendering cycle goes. A slower rendering cycle would produce 
choppy animations and a too fast rendering cycle would create the illusion of objects 
jumping from one side to the other without smooth transitions.

Therefore, it is important to make the animation independent from the rendering cycle. 
There are a couple of JavaScript elements that we can use to achieve this goal: The 
requestAnimFrame function and JavaScript timers.

requestAnimFrame function
The window.requestAnimFrame() function is currently being implemented in HTML5-
WebGL enabled Internet browsers. This function is designed such that it calls the rendering 
function (whatever function we indicate) in a safe way only when the browser/tab window is 
in focus. Otherwise, there is no call. This saves precious CPU, GPU, and memory resources.

Using the requestAnimFrame function, we can obtain a rendering cycle that goes as fast 
as the hardware allows and at the same time, it is automatically suspended whenever the 
window is out of focus. If we used requestAnimFrame to implement our rendering cycle, 
we could use then a JavaScript timer that fires up periodically calculating the elapsed time 
and updating the animation time accordingly. However, the function is a feature that is still  
in development.

To check on the status of the requestAnimFrame function, please refer to 
the following URL:

https://developer.mozilla.org/en/DOM/window.requestAn
imationFrame#AutoCompatibilityTable.
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JavaScript timers
We can use two JavaScript timers to isolate the rendering rate from the animation rate.

In our previous code examples, the rendering rate is controlled by the class WebGLApp.  
This class invokes the draw function, defined in our page, periodically using a JavaScript timer.

Unlike the requestAnimFrame function, JavaScript timers keep running in the background 
even when the page is not in focus. This is not optimal performance for your computer given 
that you are allocating resources to a scene that you are not even looking. To mimic some 
of the requestAnimFrame intelligent behavior provided for this purpose, we can use the 
onblur and onfocus events of the JavaScript window object.

Let's see what we can do:

Action (What) Goal (Why) Method (How)

Pause the rendering To stop the rendering until the 
window is in focus

Clear the timer calling 
clearInterval in the window.
onblur function

Slow the rendering To reduce resource 
consumption but make sure 
that the 3D scene keeps 
evolving even if we are not 
looking at it

We can clear current timer calling 
clearInterval in the window.
onblur function and create a new 
timer with a more relaxed interval 
(higher value)

Resume the rendering To activate the 3D scene at 
full speed when the browser 
window recovers its focus

We start a new timer with the 
original render rate in the window.
onfocus function

By reducing the JavaScript timer rate or clearing the timer, we can handle hardware 
resources more efficiently.

The source code for WebGLApp is located in the file /js/webgl/
WebGLApp.js that accompanies this chapter. In WebGLApp you can see how 
the onblur and onfocus events have been used to control the rendering 
timer as described previously.

Timing strategies
In this section, we will create the second JavaScript timer that will allow controlling the 
animation. As previously mentioned, a second JavaScript timer will provide independency 
between how fast your computer can render frames and how fast we want the animation  
to go. We have called this property the animation rate.
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However, before moving forward you should know that there is a caveat when working with 
timers: JavaScript is not a multi-threaded language.

This means that if there are several asynchronous events occurring at the same time 
(blocking events) the browser will queue them for their posterior execution. Each browser 
has a different mechanism to deal with blocking event queues.

There are two blocking event-handling alternatives for the purpose of developing an 
animation timer.

Animation strategy
The first alternative is to calculate the elapsed time inside the timer callback.  
The pseudo-code looks like the following :

var initialTime = undefined;
var elapsedTime = undefined;
var animationRate   = 30; //30 ms
function animate(deltaT){
    //calculate object positions based on deltaT 
}
function onFrame(){
    elapsedTime = (new Date).getTime() – initialTime;
    if (elapsedTime < animationRate) return; //come back later
    animate(elapsedTime);
    initialTime = (new Date).getTime();
}
function startAnimation(){
  setInterval(onFrame,animationRate/1000);
}

Doing so, we can guarantee that the animation time is independent from how often the 
timer callback is actually executed. If there are big delays (due to other blocking events) this 
method can result in dropped frames. This means the object's positions in our scene will be 
immediately moved to the current position that they should be in according to the elapsed 
time (between consecutive animation timer callbacks) and then the intermediate positions 
are to be ignored. The motion on screen may jump but often a dropped animation frame is 
an acceptable loss in a real-time application, for instance, when we move one object from 
point A to point B over a given period of time. However, if we were using this strategy when 
shooting a target in a 3D shooting game, we could quickly run into problems. Imagine that 
you shoot a target and then there is a delay, next thing you know the target is no longer 
there! Notice that in this case where we need to calculate a collision, we cannot afford to 
miss frames, because the collision could occur in any of the frames that we would drop 
otherwise without analyzing. The following strategy solves that problem.
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Simulation strategy
There are several applications such as the shooting game example where we need all the 
intermediate frames to assure the integrity of the outcome. For example, when working  
with collision detection, physics simulations, or artificial intelligence for games. In this case, 
we need to update the object's positions at a constant rate. We do so by directly calculating 
the next position for the objects inside the timer callback.

var animationRate = 30; //30 ms
var deltaPosition = 0.1 
function animate(deltaP){
   //calculate object positions based on deltaP
}
function onFrame(){
    animate(deltaPosition);
}
function startAnimation(){
    setInterval(onFrame,animationRate/1000);
}

This may lead to frozen frames when there is a long list of blocking events because the 
object's positions would not be timely updated.

Combined approach: animation and simulation
Generally speaking, browsers are really efficient at handling blocking events and in most 
cases the performance would be similar regardless of the chosen strategy. Then, deciding to 
calculate the elapsed time or the next position in timer callbacks will then depend on your 
particular application.

Nonetheless, there are some cases where it is desirable to combine both animation and 
simulation strategies. We can create a timer callback that calculates the elapsed time and 
updates the animation as many times as required per frame. The pseudocode looks like  
the following:

var initialTime = undefined;
var elapsedTime = undefined;
var animationRate = 30; //30 ms
var deltaPosition = 0.1;
function animate(delta){
  //calculate object positions based on delta
}

function onFrame(){
    elapsedTime = (new Date).getTime() - initialTime;



Chapter 5

[ 155 ]

    if (elapsedTime < animationRate) return; //come back later!
    
    var steps = Math.floor(elapsedTime / animationRate);
    while(steps > 0){
        animate(deltaPosition);
        steps -= 1;
    }
    initialTime = (new Date).getTime();
}

function startAnimation(){
   initialTime = (new Date).getTime();
  setInterval(onFrame,animationRate/1000);
}

You can see from the preceding code snippet that the animation will always update at a fixed 
rate, no matter how much time elapses between frames. If the app is running at 60 Hz, the 
animation will update once every other frame, if the app runs at 30 Hz the animation will 
update once per frame, and if the app runs at 15 Hz the animation will update twice per 
frame. The key is that by always moving the animation forward a fixed amount it is far  
more stable and deterministic.

The following diagram shows the responsibilities of each function in the call stack for the 
combined approach:
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This approach can cause issues if for whatever reason an animation step actually takes longer 
to compute than the fixed step, but if that is occurring, you really ought to simplify your 
animation code or put out a recommended minimum system spec for your application.

Web Workers: Real multithreading in JavaScript
Though it is beyond the scope of this book, you may want to know that if performance is 
really critical to you and you need to ensure that a particular update loop always fires at a 
consistent rate then you could use Web Workers.

Web Workers is an API that allows web applications to spawn background processes  
running scripts in parallel to their main page. This allows for thread-like operation  
with message-passing as the coordination mechanism.

You can find the Web Workers specification at the following URL: http://dev.w3.org/
html5/workers/

Architectural updates
Let's review the structure of the examples developed in the book. Each web page includes 
several scripts. One of them is WebGLApp.js. This script contains the WebGLApp object.

WebGLApp review
The WebGLApp object defines three function hooks that control the life cycle of the 
application. As shown in the diagram, we create a WebGLApp instance inside the 
runWebGLApp function. Then, we connect the WebGLApp hooks to the configure, load, 
and draw functions that we coded. Also, please notice that the runWebGLApp function is  
the entry point for the application and it is automatically invoked using the onload event  
of the web page.
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Adding support for matrix stacks
The diagram also shows a new script: SceneTransforms.js. This file contains 
the SceneTransforms objects that encapsulate the matrix-handling operations 
including matrix stacks operations push and pop. The SceneTransforms object 
replaces the functionality provided in Chapter 4, Camera, by the initTransforms, 
updateTransforms, and setMatrixUniforms functions.

You can find the source code for SceneTransforms in js/webgl/SceneTransforms.js.

Configuring the rendering rate
After setting the connections between the WebGLApp hooks and our configure, load and 
draw functions, WebGLApp.run() is invoked. This call creates a JavaScript timer that is 
triggered every 500 ms. The callback for this timer is the draw function. Up to now a refresh 
rate of 500 ms was more than acceptable because we did not have any animations. However, 
this is a parameter that you could tweak later on to optimize your rendering speed. To do so 
please change the value of the constant WEBGLAPP_RENDER_RATE. This constant is defined 
in the source code for WebGLApp.

You can find the source code for WebGLApp in js/webgl/WebGLApp.js.
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Creating an animation timer
As shown in the previous architecture diagram, we have added a call to the new 
startAnimation function inside the runWebGLApp function. This causes the  
animation to start when the page loads.

Connecting matrix stacks and JavaScript timers
In the following Time for action section, we will take a look at a simple scene where we have 
animated a cone and a sphere. In this example, we are using matrix stacks to implement 
local transformations and JavaScript timers to implement the animation sequence.

Time for action – simple animation
1. Open ch5_SimpleAnimation.html using your WebGL-enabled Internet browser 

of choice.

2. Move the camera around and see how the objects (sphere and cone) move 
independently of each other (local transformations) and from the camera position 
(global transformation).

3. Move the camera around pressing the left mouse button and holding it while you 
drag the mouse.

4. You can also dolly the camera by clicking the left mouse button while pressing the 
Alt key and then dragging the mouse.

5. Now change the camera type to Tracking. If for any reason you lose your bearings, 
click on go home.

6. Let's examine the source code to see how we have implemented this example.  
Open ch5_SimpleAnimation.html using the source code editor of your choice.

7. Take a look at the functions startAnimation, onFrame, and animate.  
Which timing strategy are we using here?

8. The global variables pos_sphere and pos_cone contain the position of the  
sphere and the cone respectively. Scroll up to the draw function. Inside the 
main for loop where each object of the scene is rendered, a different local 
transformation is calculated depending on the current object being rendered.  
The code looks like the following:
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transforms.calculateModelView();           
transforms.push();
if (object.alias == 'sphere'){
     var sphereTransform  = transforms.mvMatrix;
     mat4.translate(sphereTransform,[0,0,pos_sphere]);
}
else if (object.alias == 'cone'){
    var coneTransform = transforms.mvMatrix;
    mat4.translate(coneTransform, [pos_cone,0,0]);
}
transforms.setMatrixUniforms();
transforms.pop();

Using the transforms object (which is an instance of SceneTransforms) we obtain 
the global Model-View matrix by calling transforms.calculateModelView(). 
Then, we push it into a matrix stack by calling the push method. Now we can apply 
any transform that we want, knowing that we can retrieve the global transform so it 
is available for the next object on the list. We actually do so at the end of the code 
snippet by calling the pop method. Between the push and pop calls, we determine 
which object is currently being rendered and depending on that, we use the global 
pos_sphere or pos_cone to apply a translation to the current Model-View matrix. 
By doing so, we create a local transform.

9. Take a second look at the previous code. As you saw at the beginning of this 
exercise, the cone is moving in the x axis while the sphere is moving in the z axis. 
What do you need to change to animate the cone in the y axis? Test your hypothesis 
by modifying this code, saving the web page, and opening it again on your HTML5 
web browser.

10. Let's go now back to the animate function. What do we need to modify here to 
make the objects to move faster? Hint: take a look at the global variables that this 
function uses.

What just happened?
In this exercise, we saw a simple animation of two objects. We examined the source code 
to understand the call stack of functions that make the animation possible. At the end of 
this call stack, there is a draw function that takes the information of the calculated object 
positions and applies the respective local transforms.
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Have a go hero – simulating dropped and frozen frames
1. Open the ch5_DroppingFrames.html file using your HTML5 web browser.  

Here you will see the same scene that we analyzed in the previous Time for  
action section. You can see here that the animation is not smooth because  
we are simulating dropping frames.

2. Take a look at the source code in an editor of your choice. Scroll to the animate 
function. You can see that we have included a new variable: simulationRate. In 
the onFrame function, this new variable calculates how many simulation steps need 
to be performed when the time elapsed is around 300 ms (animationRate). Given 
that the simulationRate is 30 ms this will produce a total of 10 simulation steps. 
These steps can be more if there are unexpected delays and the elapsed time is 
considerably higher. This is the behavior that we expect.

3. In this section we want you to experiment with different values for the 
animationRate and simulationRate variables to answer the following questions:

 � How do we get rid of the dropping frames issue?

 � How can we simulate frozen frames? 

Hint: the calculated steps should always be zero.

 � What is the relationship between the animationRate and the 
simulationRate variables when simulating frozen frames?

Parametric curves
There are many situations where we don't know the exact position that an object will have 
at a given time but we know an equation that describe its movement. These equations are 
known as parametric curves and are called like that because the position depends on one 
parameter: the time.

There are many examples of parametric curves. We can think for instance of a projectile 
that we shoot on a game, a car that is going downhill or a bouncing ball. In each case, there 
are equations that describe the motion of these objects under ideal conditions. The next 
diagram shows the parametric equation that describes free fall motion.
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We are going to use parametric curves for animating objects in a WebGL scene.  
In this example, we will model a set of bouncing balls.

The complete source code for this exercise can be found in 
/code/ch5_BouncingBalls.html.

Initialization steps
We will create a global variable that will store the time (simulation time).

var sceneTime = 0;

We also create the global variables that regulate the animation:

var animationRate = 15; /* 15 ms */
var elapsedTime = undefined;
var initialTime = undefined;
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The load function is updated to load a bunch of balls using the same geometry  
(same JSON file) but adding it several times to the scene object. The code looks  
like this:

function load(){
  
    Floor.build(80,2);
    Axis.build(82);
    Scene.addObject(Floor);
        
    for (var i=0;i<NUM_BALLS;i++){
        var pos = generatePosition();
        ball.push(new BouncingBall(pos[0],pos[1],pos[2]));
        Scene.loadObject('models/geometry/ball.json','ball'+i);
    }
}

Notice that here we also populate an array named ball[]. We do this so that we can 
store the ball positions every time the global time changes. We will talk in depth about the 
bouncing ball simulation in the next Time for action section. For the moment, it is worth 
mentioning that it is on the load function that we load the geometry and initialize the ball 
array with the initial ball positions.

Setting up the animation timer
The startAnimation and onFrame functions look exactly as in the previous examples:

function onFrame() {
  elapsedTime = (new Date).getTime() - initialTime;
  if (elapsedTime < animationRate) { return;} //come back later
  var steps = Math.floor(elapsedTime / animationRate);
    while(steps > 0){
        animate();
        steps -= 1;
    }
  initialTime = (new Date).getTime();
}
 
function startAnimation(){
  initialTime = (new Date).getTime();
  setInterval(onFrame,animationRate/1000); // animation rate 
}
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Running the animation
The animate function passes the sceneTime variable to the update method of every ball 
in the ball array. Then, sceneTime is updated by a fixed amount. The code looks like this:

function animate(){
    for (var i = 0; i<ball.length; i++){

        ball[i].update(sceneTime);
    }
    sceneTime += 33/1000;  //simulation time
  draw();
} 

Again, parametric curves are really helpful because we do not need to know beforehand  
the location of every object that we want to move. We just apply a parametric equation  
that gives us the location based on the current time. This occurs for every ball inside its 
update method.

Drawing each ball in its current position
In the draw function, we use matrix stack to save the state of the Model-View matrix  
before applying a local transformation for each one of the balls. The code looks like this:

 transforms.calculateModelView();           
 transforms.push();
 if (object.alias.substring(0,4) == 'ball'){
     var index = parseInt(object.alias.substring(4,8));
     var ballTransform  = transforms.mvMatrix;
     mat4.translate(ballTransform,ball[index].position);
     object.diffuse = ball[index].color;
}
transforms.setMatrixUniforms();
transforms.pop();

The trick here is to use the number that makes part of the ball alias to look up the respective 
ball position in the ball array. For example, if the ball being rendered has the alias ball32 
then this code will look for the current position of the ball whose index is 32 in the ball 
array. This one-to-one correspondence between the ball alias and its location in the ball 
array was established in the load function.

In the following Time for action section, we will see the bouncing balls animation working. 
We will also discuss some of the code details.
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Time for action – bouncing ball
1. Open ch5_BouncingBalls.html in your HTML5-enabled Internet browser.

2. The orbiting camera is activated by default. Move the camera and you will see how 
all the objects adjust to the global transform (camera) and yet they keep bouncing 
according to its local transform (bouncing ball).

3. Let's explain here a little bit more in detail how we keep track of each ball.

 � First of all let's define some global variables and constants:

var ball = [];        //Each element of this array is a ball
var BALL_GRAVITY = 9.8;  //Earth acceleration 9.8 m/s2
var NUM_BALLS = 50;      //Number of balls in this 
simulation

 � Next, we need to initialize the ball array. We use a for loop in the load 
function to achieve it:

for (var i=0;i<NUM_BALLS;i++){
       ball.push(new BouncingBall());
       Scene.loadObject('models/geometry/ball.
json','ball'+i);
}
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 � The BouncingBall function initializes the simulation variables for  
each ball in the ball array. One of this attributes is the position,  
which we select randomly. You can see how we do this by using  
the generatePosition function.

 � After adding a new ball to the ball array, we add a new ball object 
(geometry) to the Scene object. Please notice that the alias that we create 
includes the current index of the ball object in the ball array. For example, 
if we are adding the 32nd ball to the array, the alias that the corresponding 
geometry will have in the Scene will be ball32.

 � The only other object that we add to the scene here is the Floor object. 
We have used this object in previous exercises. You can find the code for  
the Floor object in /js/webgl/Floor.js.

4. Now let's talk about the draw function. Here, we go through the elements of the 
Scene and retrieve each object's alias. If the alias starts with the word ball then 
we know that the reminder of the alias corresponds to its index in the ball array. 
We could have probably used an associative array here to make it look nicer but 
it does not really change the goal. The main point here is to make sure that we 
can associate the simulation variables for each ball with the corresponding object 
(geometry) in the Scene.

It is important to notice here that for each object (ball geometry) in the scene, 
we extract the current position and the color from the respective BouncingBall 
object in the ball array.

Also, we alter the current Model-View matrix for each ball using a matrix stack to 
handle local transformations, as previously described in this chapter. In our case, we 
want the animation for each ball to be independent from the camera transform and 
from each other.

5. Up to this point, we have described how the bouncing balls are created (load) and 
how they are rendered (draw). None of these functions modify the current position 
of the balls. We do that using BouncingBall.update(). The code there uses the 
animation time (global variable named sceneTime) to calculate the position for the 
bouncing ball. As each BouncingBall has its own simulation parameters, we can 
calculate the position for each given position when a sceneTime is given. In short, 
the ball position is a function of time and as such, it falls into the category of motion 
described by parametric curves.

6. The BouncingBall.update() method is called inside the animate function. As 
we saw before, this function is invoked by the animation timer each time the timer 
is up. You can see inside this function how the simulation variables are updated in 
order to reflect the current state of that ball in the simulation.
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What just happened?
We have seen how to handle several object local transformations using the matrix stack 
strategy while we keep global transformation consistent through each rendering frame.

In the bouncing ball example, we have used an animation timer for the animation that is 
independent from the rendering timer.

The bouncing ball update method shows how parametric curves work.

Optimization strategies
If you play a little and increase the value of the global constant NUM_BALLS from 50 to 500, 
you will start noticing degradation in the frame rate at which the simulation runs as shown in 
the following screenshot:

Depending on your computer, the average time for the draw function can be higher than 
the frequency at which the animation timer callback is invoked. This will result in dropped 
frames. We need to make the draw function faster. Let's see a couple of strategies to do this.
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Optimizing batch performance
We can use geometry caching as a way to optimize the animation of a scene full of similar 
objects. This is the case of the bouncing balls example. Each bouncing ball has a different 
position and color. These features are unique and independent for each ball. However, all 
balls share the same geometry.

In the load function, for ch5_BouncingBalls.html we created 50 vertex buffer objects 
(VBOs) one for each ball. Additionally, the same geometry is loaded 50 times, and on every 
rendering loop (draw function) a different VBO is bound every time, despite of the fact that 
the geometry is the same for all the balls!

In ch5_BouncingBalls_Optimized.html we modified the functions load  
and draw to handle geometry caching. In the first place, the geometry is loaded just once 
(load function):

Scene.loadObject('models/geometry/ball.json','ball');

Secondly, when the object with alias 'ball' is the current object in the rendering loop 
(draw function), the delegate drawBalls function is invoked. This function sets some of 
the uniforms that are common to all bouncing balls (so we do not waste time passing them 
every time to the program for every ball). After that, the drawBall function is invoked. This 
function will set up those elements that are unique for each ball. In our case, we set up the 
program uniform that corresponds to the ball color, and the Model-View matrix, which is 
unique for each ball too because of the local transformation (ball position).



Action

[ 168 ]

Performing translations in the vertex shader
If you take a look at the code in ch5_BouncingBalls_Optimized.html, you may notice 
that we have taken an extra step and that the Model-View matrix is cached!

The basic idea behind it is to transfer once the original matrix to the GPU (global) and then 
perform the translation for each ball (local) directly into the vertex shader. This change 
improves performance considerably because of the parallel nature of the vertex shader.

This is what we do, step-by-step:

1. Create a new uniform that tells the vertex shader if it should perform a translation 
or not (uTranslate).

2. Create a new uniform that contains the ball position for each ball (uTranslation).

3. Map these two new uniforms to JavaScript variables (we do this in the  
configure function).

prg.uTranslation   = gl.getUniformLocation(prg, "uTranslation");
gl.uniform3fv(prg.uTranslation, [0,0,0]);
    
prg.uTranslate = gl.getUniformLocation(prg, "uTranslate");
gl.uniform1i(prg.uTranslate, false);

4. Perform the translation inside the vertex shader. This part is probably the trickiest as 
it implies a little bit of ESSL programming.

//translate vertex if there is a translation uniform 
 vec3 vecPosition = aVertexPosition; 
 if (uTranslate){
    vecPosition += uTranslation;
 }
//Transformed vertex position
vec4 vertex = uMVMatrix * vec4(vecPosition, 1.0);

In this code fragment we are defining vecPosition, a variable of vec3 type. 
This vector is initialized to the vertex position. If the uTranslate uniform is active 
(meaning we are trying to render a bouncing ball) then we update vecPosition 
with the translation. This is implemented using vector addition.

After this we need to make sure that the transformed vertex carries the translation 
in case of having one. So the next line looks like the following code:

//Transformed vertex position
 vec4 vertex = MV * vec4(vecPosition, 1.0);
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5. In drawBall we pass the current ball position as the content for the uniform 
uTranslation:

gl.uniform3fv(prg.uTranslation, ball.position);

6. In drawBalls we set the uniform uTranslate to true:

gl.uniform1i(prg.uTranslate, true);

7. In draw we pass the Model-View matrix once for all balls by using the following line 
of code:

transforms.setMatrixUniforms();

After making these changes we can increase the global variable NUM_BALLS from 50 to 300 
and see how the application keeps performing reasonably well regardless of the increased 
scene complexity. The improvement in execution times is shown in the following screenshot:
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The optimized source code is available at: /code/ch5_
BouncingBalls_Optimized.html

Interpolation
Interpolation greatly simplifies 3D object's animation. Unlike parametric curves, it is not 
necessary to define the position of the object as a function of time. When interpolation is 
used, we only need to define control points or knots. The set of control points describes 
the path that the object that we want to animate will follow. There are many interpolation 
methods in the literature; however, it is always a good idea to start from the basics.

Linear interpolation
This method requires that we define the starting and ending points for the location of 
our object and also the number of interpolating steps. The object will move on the line 
determined by the starting and ending points.

Polynomial interpolation
This method allows us to determine as many control points as we want. The object will move 
from the starting point to the ending point and it will go through each one of the control 
points in between.
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When using polynomials, an increasing number of control points can produce undesired 
oscillations on the object's path described by this technique. This is known as the Runge's 
phenomenon. In the following figure, you can see the result of moving one of the control 
points of a polynomial described with 11 control points.
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B-Splines
This method is similar to polynomial interpolation with the difference that the control points 
are outside from the object's path. In other words, the object does not go through the 
control points as it moves. This method is common in computer graphics in general because 
the knots allow a much smoother path generation than the polynomial equivalent at the 
same time that fewer knots are required. B-Splines also respond better to the  
Runge's phenomenon.

In the following Time for action section we are going to see in practice the three  
different interpolation techniques that have been introduced: linear, polynomial  
and b-splines interpolation.
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Time for action – interpolation
1. Open ch5_Interpolation.html using your HTML5 Internet browser.

2. Select Linear interpolation if it is not already selected.

3. Move the start and end points using the slider provided.

4. Change the number of interpolation steps. What happens to the animation when 
you decrease the number of steps?

5. The code for the linear interpolation has been implemented in the 
doLinearInterpolation function.

6. Now select Polynomial interpolation. In this example we have implemented 
Lagrange's interpolation method. You can see the source code in the 
doLagrangeInterpolation function.
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7. After selecting the polynomial interpolation, you will see that three new control 
points (flags) appear on screen. Using the sliders provided on the webpage, you  
can change the location of these control points. You can also change the number  
of interpolation steps.

8. You also may have noticed that whenever the ball approaches one of the flags  
(with the exception of the start and end points) the flag changes color. To do that, 
we have written the ancillary close function. We use this function inside the 
draw routine to determine the color of the flags. If the current position of the ball, 
determined by position[sceneTime] is close to one of the flag positions, the 
respective flag changes color. When the ball is far from the flag, the flag changes 
back to its original color.

9. Modify the source code so each flag remains activated, this is, with a new color after 
the ball passes by until the animation loops back to the beginning. This happens 
when sceneTime is equal to ISTEPS (see the animate function).

10. Now select the B-Spline interpolation. Notice how the ball does not reach any of the 
intermediate flags in the initial configuration. Is there any configuration that you can 
try so the ball passes through at least two of the flags?
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What just happened?
We have learned how to use interpolation to describe the movement of an object in our 
3D world. Also, we have created very simple scripts to detect object proximity and alter 
our scene accordingly (changing flag colors in this example). Reaction to proximity is a key 
element in game design!

Summary
In this chapter, we have covered the basic concepts behind object animation in WebGL. 
Specifically we have learned about the difference between local and global transformations. 
We have seen how matrix stacks allows us saving and retrieving the Model-View matrix and 
how a stack allows us to implement local transformation.

We learned to use JavaScript timers for animation. The fact that an animation timer is not 
tied up to the rendering cycle gives a lot of flexibility. Think a moment about it: the time in 
the scene should be independent of how fast you can render it on your computer. We also 
distinguished between animation and simulation strategies and learned what problems  
they solve.

We discussed a couple of methods to optimize animations through a practical example  
and we have seen what we need to do to implement these optimizations in the code.

Finally, interpolation methods and sprites were introduced and the Runge's phenomenon 
was explained.

In the next chapter, we will play with colors in a WebGL scene. We will study the interaction 
between the objects and light colors and we will see how to create translucent objects.





6
Colors, Depth Testing, and Alpha 

Blending

In this chapter, we will go a little bit deeper in the use of colors in WebGL. We 
will start by examining how colors are structured and handled in both WebGL 
and ESSL. Then we will discuss the use of colors in objects, lights and in the 
scene. After this we will see how WebGL knows how perform object occlusion 
when one object is in front of another. This is possible thanks to depth testing. 
In contrast, alpha blending will allows us to combine the colors of objects when 
one is occluding the other. We will use alpha blending to create translucent 
objects.

This chapter talks about:

 � Using colors in objects

 � Assigning colors to light sources

 � Working with several light sources in the ESSL program

 � The depth test and the z-buffer

 � Blending functions and equations

 � Creating transparent objects with face culling
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Using colors in WebGL
WebGL includes a fourth attribute to the RGB model. This attribute is called the alpha 
channel. The extended model then is known as the RGBA model, where A stands for alpha. 
The alpha channel contains values in the range from 0.0 to 1.0, just like the other three 
channels (red, green, and blue). The following diagram shows the RGBA color space. On the 
horizontal axis you can see the different colors that can be obtained by combining the R, G, 
and B channels. The vertical axis corresponds to the alpha channel.

The alpha channel carries extra information about the color. This information affects the way 
the color is rendered on the screen. For instance, in most cases, the alpha value will refer to 
the amount of opacity that the color contains. A completely opaque color will have an alpha 
value of 1.0, whereas a completely transparent color will have an alpha value of 0.0. This is 
the general case, but as we will see later on, there are some considerations that we need to 
take into account to obtain translucent colors.

We use colors everywhere in our WebGL 3D scenes:

 � Objects: 3D objects can be colored selecting one color for every pixel (fragment) of 
the object, or by selecting the color that the object will have. This would usually be 
the material diffuse property.

 � Lights: Though we have been using white lights so far in the book, there is no reason 
why we can't have lights whose ambient or diffuse properties contain colors other 
than white.
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 � Scene: The background of our scene has a color that we can change by calling 
gl.clearColor. Also, as we will see later, there are special operations on objects' 
colors in the scene when we have translucent objects.

Use of color in objects
The final color of pixel is assigned in the fragment shader by setting the ESSL special variable 
gl_FragColor. If all the fragments in the object have the same color we can say that the 
object has a constant color. Otherwise, the object has a per-vertex color.

Constant coloring
To obtain a constant color we store the desired color in a uniform that is passed to the 
fragment shader. This uniform is usually called the object's diffuse material property. 
We can also combine object normals and light source information to obtain a Lambert 
coefficient. We can use the Lambert coefficient to proportionally change the reflecting  
color depending on the angle on which the light hits the object.

As shown in the following diagram, we lose depth perception when we do not use 
information about the normals to obtain a Lambert coefficient. Please notice that  
we are using a diffusive lighting model.

Usually constant coloring is indicated for objects that are going to become assets in  
a 3D game.
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Per-vertex coloring
In medical and engineering visualization applications, it is common to find color maps that 
are associated to the vertices of the models that we are rendering. These maps assign each 
vertex a color depending on its scalar value. An example of this idea is the temperature 
charts where we can see cold temperatures as blue and hot temperatures as red overlaid  
on a map.

To implement per-vertex coloring, we need to define an attribute that stores the color for the 
vertex in the vertex shader:

attribute vec4 aVertexColor;

The next step is to assign the aVertexColor attribute to a varying so it can be carried into 
the fragment shader. Remember that varyings are automatically interpolated. Therefore, each 
fragment will have a color that is the weighted contribution of the vertices surrounding it.

If we want our color map to be sensitive to lighting conditions we can multiply each vertex 
color by the diffuse component of the light. The result is then assigned to the varying that 
will transfer the result to the fragment shader as mentioned before. The following diagram 
shows two different possibilities for this case. On the left the vertex color is multiplied by 
the diffuse term of the light source without any weighting due to the light source relative 
position; on the right, the Lambert coefficient generates the expected shadows giving 
information about the relative location of the light source.
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Here we are using a Vertex Buffer object that is mapped to the 
Vertex Shader attribute aVertexColor. We learned how to map 
VBOs in the section Associating Attributes to VBOs discussed in Chapter 
2, Rendering Geometry.

Per-fragment coloring
We could also assign a random color to each pixel of the object we are rendering. However, 
ESSL does not have a pre-built random function. Although there are algorithms that can be 
used to generate pseudo-random numbers, the purpose and the usefulness of this technique 
go beyond the scope of this book.

Time for action – coloring the cube
1. Open the file ch6_Cube.html using your HTML5 Internet browser. You will see a 

page like the one shown in the following screenshot:

In this exercise, we are going to compare constant versus per-vertex coloring.  
Let's talk about the page's widgets:

 � Use Lambert Coefficient: When selected it will include the Lambert 
coefficient in the calculation of the final color.
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 � Constant/Per-Vertex: The two options to color objects explained before.

 � Simple Cube: Corresponds to a JSON object where the vertices are defined 
once.

 � Complex Cube: Loads a JSON object where the vertices are repeated with 
the goal of obtaining multiple normals and multiple colors per vertex. We 
will explain how this works later.

 � Alpha Value: This slider is mapped to the float uniform uAlpha in the 
vertex shader. uAlpha sets the alpha value for the vertex color.

2. Disable the use of the Lambert coefficient by clicking on Use Lambert Coefficient. 
Rotate the cube clicking on it with the mouse and dragging it around. As you see, 
there is loss of depth perception when the Lambert coefficient is not included in 
the final color calculation. The Use Lambert Coefficient button is mapped to the 
Boolean uniform uUseLambert. The code that calculates the Lambert coefficient 
can be found in the vertex shader included in the page:

float lambertTerm = 1.0;

 if (uUseLambert){
  //Transformed normal position
  vec3 normal = vec3(uNMatrix * vec4(aVertexNormal, 1.0));
 
  //light direction: pointing at the origin
  vec3 lightDirection = normalize(-uLightPosition);
 
  //weighting factor
  lambertTerm = max(dot(normal,-lightDirection),0.20);
 }

If the uniform uUseLambert is false, then lambertTerm keeps being 1.0 and then 
it will not affect the final diffuse term which is calculated later on:

Id = uLightDiffuse * uMaterialDiffuse * lambertTerm;

Otherwise, Id will have the Lambert coefficient factored in.

3. Having Use Lambert Coefficient disabled, click on the button Per Vertex. Rotate the 
cube to see how ESSL interpolates the vertex colors. The vertex shader key code 
fragment that allows us to switch from a constant diffuse color to per- vertex colors 
uses the Boolean uniform uUseVertexColors and the aVertexColor attribute. 
This fragment is shown here:

if (uUseVertexColor){
  Id = uLightDiffuse * aVertexColor * lambertTerm;
 }
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 else {
  Id = uLightDiffuse * uMaterialDiffuse * lambertTerm;
 }

Take a look at the file /models/simpleCube.js. There, the eight vertices of the 
cube are defined in the vertices array and there is an element in the scalars 
array for every vertex. As you may expect, each one of these elements correspond 
to the respective vertex color, as shown in the following diagram:

4. Make sure that the Use Lambert Coefficient button is not active and then click 
on the button Complex Cube. By repeating vertices in the vertex array in the 
corresponding JSON file /models/complexCube.js, we can achieve independent 
face coloring. The following diagram explains how the vertices are organized in 
complexCube.js. Also note that as the definition of colors occurs by vertex  
(as we are using the shader attribute), we need to repeat each color four times, 
because each face has four vertices. This idea is depicted in the following diagram:
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5. Activate the Use Lambert Coefficient button and see how the Lambert coefficient 
affects the color of the object. Try different button configurations and see  
what happens.

6. Finally, let's quickly explore the effect of changing the alpha channel to a value less 
than 1.0. For that, click-and-drag the slider to the left that appears at the bottom 
of the page. What do you see? Please notice that the object does not become 
transparent but instead it starts losing its color. To obtain transparency, we need to 
activate blending. We will discuss blending in depth later in this chapter. For now, 
uncomment these lines in the configure function, in the source code:

//gl.disable(gl.DEPTH_TEST);
//gl.enable(gl.BLEND);
//gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);

7. Save the page and reload it in your Internet browser. If you select Per Vertex, 
Complex Cube and reduce the alpha value to 0.25 you will see something like  
the following screenshot:

What just happened?
We have studied two different ways for coloring objects: constant coloring and per-vertex 
coloring. In both cases, the final color for each fragment is assigned by using the fragment 
shader gl_FragColor variable.

We also saw how, by activating the calculation of the Lambert coefficient, we can obtain 
sensory depth information.

By repeating vertices in our object, we can obtain different coloring effects. For instance,  
we can color an object by faces instead of doing it by vertices.
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Use of color in lights
Colors are light properties. In Chapter 3, Lights, we saw that the number of light properties 
depend on the lighting reflection model selected for the scene. For instance, using a 
Lambertian reflection model we would only need to model one shader uniform: the light 
diffuse property/color. In contrast, if the Phong reflection model were selected, each light 
source would need to have three properties: the ambient, diffuse, and specular colors.

The light position is usually also modeled as a uniform when the shader 
needs to know where the light source is. Therefore, a Phong model with a 
positional light would have four uniforms: ambient, diffuse, specular, and 
position.

For the case of directional lights, the fourth uniform is the light direction. 
Refer to the More on Lights: positional lights section discussed in Chapter 
3, Lights!.

We have also seen that each light property is represented by a four-element array in 
JavaScript and that these arrays are mapped to the vec4 uniforms in the shaders as  
shown in the following diagram:

The two functions we use to pass lights to the shaders are:

 � getUniformLocation—locates the uniform in the program and returns  
an index we can use to set the value

 � uniform4fv—since the light components are RGBA, we need to pass  
a four-element float vector
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Using multiple lights and the scalability problem
As you could imagine, the number of uniforms grow rapidly when we want to use more than 
one light source in our scene—for each one of them, we need to define and map as many 
uniforms as we need depending on the lighting model of choice. This approach makes the 
programming effort simple enough—we have exactly one uniform for each light property 
we want to have, for each light. However, let's think about this for a moment. If we have 
four properties per light (ambient, diffuse, specular, and location) this means that we have 
to define four uniforms per each light. If we want to have three lights, we will have to write, 
use, and map 12 uniforms!

How many uniforms can we use?
The OpenGL Shading Language ES specification delineates the number of uniforms that we 
are allowed to use. (Section 4.3.4 - Uniforms):

There is an implementation dependent limit on the amount of storage for uniforms 
that can be used for each type of shader and if this is exceeded it will cause a 
compile-time or link-time error.

In order to know what the limit is for your WebGL implementation, you can query WebGL 
using the gl.getParameter function with these constants:

gl.MAX_VERTEX_UNIFORM_VECTORS
gl.MAX_FRAGMENT_UNIFORM_VECTORS

The implementation limit is given by your browser and it depends greatly on your  
graphics hardware. For instance, my MacBook Pro running Firefox tells me that  
I can use 1024 uniforms.

Now, the fact that we have enough variable space does not necessarily mean that the 
problem is solved. We still have to write and map each one of the uniforms and as we will 
see later in exercise ch6_Wall_Initial.html, the shaders become a lot more verbose 
doing this.

Simplifying the problem
In order to simplify the problem (and code less), we could assume, for instance, that the 
ambient component is the same for all the lights. This allows reducing the number of 
uniforms—one uniform less for each light. However, this is not a pretty or an extensible 
solution for more general cases where we cannot assume that the ambient light is a constant.

Let's see how the shaders in a scene with multiple lights look like. First, let's address some 
pending updates to our architecture.
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Architectural updates
As we move from chapter to chapter and study different WebGL concepts, we should also 
update our architecture to reflect what we have learned. In this occasion as we are handling 
a lot of uniforms, we will add support for multiple lights and will improve the way we pass 
uniforms to the program.

Adding support for light objects
The following diagram shows the changes and additions that we have implemented in  
the architecture of our exercises. We have updated Program.js to simplify how we  
handle uniforms and we have included a new file: Ligths.js. Also, we have modified  
the configure function to use the changes implemented in the Program object.  
We will discuss these improvements next.
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We have created a new JavaScript module Lights.js that has two objects:

 � Light—aggregates lights properties (position, diffuse, specular, and so on) in one 
single entity.

 � Lights—contain the lights in our scene. It allows us to retrieve each light by index 
and by name.

Lights also contains the getArray method to flatten the arrays of properties by type:

getArray: function(type){ //type = 'diffuse' or 'position' or ..
  var a = [];
  for(var i = 0, max = this.list.length; i < max; i+=1){
    a = a.concat(this.list[i][type]); //list: the list of lights
  }
  return a;
}

This will be useful when we use uniform arrays later on.

Improving how we pass uniforms to the program
We have also improved the way we pass uniforms to the program. In WebGLApp.js we have 
removed the call to Program.load().

function WebGLApp(canvas) {
    this.loadSceneHook = undefined;
    this.configureGLHook = undefined;
    gl = Utils.getGLContext(canvas);
    Program.load();  
}

And we have deferred this call to the configure function in the web page. Remember that 
WebGLApp will call three functions in the web page: configure, load, and draw. These 
three functions define the life cycle of our application.

The configure function is the appropriate place to load the program. We are also going to 
create a dynamic mapping between JavaScript variables and uniforms. With this in mind, we 
have updated the Program.load method to receive two arrays:

 � attributeList—an array containing the names of the attributes that we will map 
between JavaScript and ESSL

 � uniformList—an array containing the names of the uniforms that we will map 
between JavaScript and ESSL
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The implementation of the function now looks as follows:

load : function(attributeList, uniformList) {

   var fragmentShader = Program.getShader(gl, "shader-fs");
   var vertexShader = Program.getShader(gl, "shader-vs");
     
     prg = gl.createProgram();
     gl.attachShader(prg, vertexShader);
     gl.attachShader(prg, fragmentShader);
     gl.linkProgram(prg);
     if (!gl.getProgramParameter(prg, gl.LINK_STATUS)) {
      alert("Could not initialise shaders");
     }

     gl.useProgram(prg);
   
   this.setAttributeLocations(attributeList);

   this.setUniformLocations(uniformList);

    }

The last two lines correspond to the two new functions setAttributeLocations and 
setUniformLocations:

setAttributeLocations: function (attrList){

  for(var i=0, max = attrList.length; i <max; i+=1){
    this[attrList[i]] = gl.getAttribLocation(prg, attrList[i]);
  }
},
  
setUniformLocations: function (uniformList){
    
for(var i=0, max = uniformList.length; i < max; i +=1){
    this[uniformList[i]] = gl.getUniformLocation(prg, 
                            uniformList[i]);
  }
}

As you can see, these functions read the attribute and uniform lists, respectively, and after 
obtaining the location for each element of the list, attach the location as a property of the 
object Program.



Colors, Depth Testing, and Alpha Blending

[ 190 ]

This way, if we include the uniform name uLightPosition in the list uniformList that 
we pass to Program.load, then we will have a property Program.uLightPosition that 
will contain the location of the respective uniform! Neat, isn't it?

Once we load the program in the configure function, we can also initialize the values of 
the uniforms that we want right there by writing something as follows:

gl.uniform3fv(Program.uLightPosition, value);

Time for action – adding a blue light to a scene
Now we are ready to take a look at the first example of this chapter. We will work on a scene 
with per-fragment lighting that has three light sources.

Each light has a position and a diffuse color property. This means we have two uniforms  
per light.

1. Also for simplicity, we have assumed here that the ambient color is the same for 
the three light sources. For the sake of simplicity, we have removed the specular 
property. Open the file ch6_Wall_Initial.html using your HTML5 web browser.

2. You will see a scene such as the one displayed in the following screenshot where 
there are two lights (red and green) illuminating a black wall:

3. Open the file ch6_Wall_Initial.html using your preferred text editor. We will 
update the vertex shader, the fragment shader, the JavaScript code, and the HTML 
code to add the blue light.
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4. Updating the vertex shader: Go to the vertex shader. You can see these  
two uniforms:

uniform vec3 uPositionRedLight; 
uniform vec3 uPositionGreenLight; 

Let's add the third uniform here:

uniform vec3 uPositionBlueLight; 

5. We also need to define a varying to carry the interpolated light ray direction  
to the fragment shader. Remember here that we are using per-fragment lighting.

Check where the varyings are defined:

varying vec3 vRedRay;
varying vec3 vGreenRay;

And add the third varying there:

varying vec3 vBlueRay;

6. Now let's take a look at the body of the vertex shader. We need to update each  
one of the light locations according to our position in the scene. We achieve this  
by writing:

vec4 bluePosition = uMVMatrix * vec4(uPositionBlueLight, 1.0);

As you can see there, the positions for the other two lights are being calculated too.

7. Now let's calculate the light ray for the updated position from our blue light to the 
current vertex. We do that by writing the following code:

vBlueRay = vertex.xyz-bluePosition.xyz;

That is all we need to modify in the vertex shader.

8. Updating the fragment shader: So far, we have included a new light position and we 
have calculated the light rays in the vertex shader. These rays will be interpolated by 
the fragment shader.

Now let's work out how the colors on the wall will change by including our  
new blue source of light. Scroll down to the fragment shader and let's add  
a new uniform—the blue diffuse property. Look for these uniforms declared  
right before the main function:

uniform vec4 uDiffuseRedLight;
uniform vec4 uDiffuseGreenLight;

Then insert the following line of code:

uniform vec4 uDiffuseBlueLight;
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To calculate the contribution of the blue light to the final color we need to obtain 
the light ray we defined previously in the vertex shader. So this varying is available in 
the fragment shader, you need to also declare it before the main function. Look for:

varying vec3 vRedRay;
varying vec3 vGreenRay;

Then insert the following code right below:

varing vec3 vBlueRay;

9. It is assumed that the ambient component is the same for all the lights. This is 
reflected in the code by having only one uLightAmbient variable. The ambient 
term Ia is obtained as the product of uLightAmbient and the wall's material 
ambient property:

//Ambient Term
vec4 Ia = uLightAmbient * uMaterialAmbient;

If uLightAmbient is set to (1,1,1,1) and uMaterialAmbient is set to ( 
0.1,0.1,0.1,1.0) then the resulting ambient term Ia will be really small.  
This means that the contribution of the ambient light will be low in this scene.

In contrast, the diffuse component will be different for every light.

Let's add the effect of the blue diffuse term. In the fragment shader main function, 
look for the following code:

//Diffuse Term
vec4 Id1 = vec4(0.0,0.0,0.0,1.0);
vec4 Id2 = vec4(0.0,0.0,0.0,1.0);

Then add the following line immediately below:

vec Id3 = vec4(0.0,0.0,0.0,1.0);

Then scroll down to:

//Lambert's cosine law
float lambertTermOne  = dot(N,-normalize(vRedRay));
float lambertTermTwo  = dot(N,-normalize(vGreenRay));

And add the following line of code right below:

float lambertTermThree  = dot(N,-normalize(vBlueRay));

Now scroll to:

if(lambertTermTwo > uCutOff){
  Id2 = uDiffuseGreenLight * uMaterialDiffuse * lambertTermTwo;
}
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And insert the following code after it:

if(lambertTermThree > uCutOff){

  Id3 = uDiffuseBlueLight * uMaterialDiffuse * lambertTermTwo;

}

Finally update finalColor so it includes Id3:

vec4 finalColor = Ia + Id1 + Id2 +Id3;

That's all we need to do in the fragment shader. Let's move on to our  
JavaScript code.

10. Updating the configure function: Up to this point, we have written the code that 
is needed to handle one more light inside our shaders. Let's see how we create the 
blue light from the JavaScript side and how we map it to the shaders. Scroll down to 
the configure function and look for the following code:

var green = new Light('green');
green.setPosition([2.5,3,3]);
green.setDiffuse([0.0,1.0,0.0,1.0]);

11. Then insert the following code:

var blue = new Light('blue');

blue.setPosition([-2.5,3,3]);

blue.setDiffuse([0.0,0.0,1.0,1.0]);

Next, Scroll down to:

Lights.add(red);
Lights.add(green);

Then add the blue light:

Lights.add(blue);

12. Scroll down to the point where the attribute list is defined. As mentioned earlier 
in this chapter, this new mechanism makes it easier to obtain locations for the 
uniforms. Add the two new uniforms that we are using for the blue light. The list 
should look like the following code:

uniformList = [  "uPMatrix", 
          "uMVMatrix", 
          "uNMatrix",
          "uMaterialDiffuse",
          "uMaterialAmbient",
          "uLightAmbient",
          "uDiffuseRedLight",
          "uDiffuseGreenLight",
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          "uDiffuseBlueLight",

          "uPositionRedLight",
          "uPositionGreenLight",

          "uPositionBlueLight",

          "uWireframe",
          "uLightSource",
          "uCutOff"
          ];

13. Let's pass the position and diffuse values of our newly defined light to the program. 
After the line that loads the program (what line is that?), insert the following code:

gl.uniform3fv(Program.uPositionBlueLight, blue.position);

gl.uniform4fv(Program.uDiffuseBlueLight,  blue.diffuse);

That's all we need to do in the configure function. 

Coding lights code using one uniform per light property makes the code 
really verbose. Please bear with me; we will see later on in the exercise 
ch6_Wall_LightArrays.html that the coding efforts are reduced by 
using uniform arrays. If you are really eager, you can go now and check the 
code in that exercise, and see how uniform arrays are used.

14. Updating the load function: Now let's update the load function. We need a new 
sphere to represent the blue light, the same way we have two spheres in the scene: 
one for the red light and the other for the green light. Append the following line:

Scene.loadObject('models/geometry/smallsph.json','light3');

15. Updating the draw function:  As we saw in the load function, we are loading 
the same geometry (sphere) three times. In order to differentiate the sphere that 
represents the light source we are using local transforms for the sphere (initially 
centered at the origin).

Then add the following code:

if (object.alias == 'light2'){
mat4.translate(transforms.mvMatrix,gl.getUniform(prg,      
Program.uPositionGreenLight));
object.diffuse = gl.getUniform(prg, Program.uDiffuseGreenLight);
gl.uniform1i(Program.uLightSource,true);
}
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Next, add the following code:

if (object.alias == 'light3'){
mat4.translate(transforms.mvMatrix,gl.getUniform(prg, 
Program.uPositionBlueLight));
  object.diffuse = gl.getUniform(prg, Program.uDiffuseBlueLight);
  gl.uniform1i(Program.uLightSource,true);
} 

16. That is it. Now, save the page with a different name and try it on your  
HTML5 browser.

17. If you do not obtain the expected result, please go back and check the steps. You will 
find the completed exercise in the file ch6_Wall_Final.html.

What just happened?
We have modified our sample scene by adding one more light: a blue light. We have updated 
the following:

 � The vertex shader

 � The fragment shader

 � The configure function

 � The load function

 � The draw function

Handling light properties one uniform at a time is not very efficient as you can see.  
We will study a more effective way to handle lights in a WebGL scene later in this chapter.
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Have a go hero – adding interactivity with JQuery UI
We are going to add some HTML and JQuery UI code to interactively change the position of 
the blue light that we just added.

We will use three JQuery UI Sliders, one for each one of the blue light coordinates.

You can find more information about JQuery UI widgets here:

http://jqueryui.com

1. Create three sliders: one for the x coordinate, one for the y coordinate, and a third 
one for the z coordinate for the blue light. The function that you need to call on the 
change and slide events for these sliders is updateLightPosition(3).

2. For this to work, you need to update the updateLightPosition function and add 
the following case:

case 3: gl.uniform3fv(Program.uPositionBlueLight, [x,y,z]); break;

3. The final GUI should include the new blue light sliders which should look as shown 
in the following diagram:

4. Use the sliders present in the page to guide your work.

Using uniform arrays to handle multiple lights
As stated before, handling light properties with individual uniforms make the code verbose 
and also difficult to maintain. Hopefully, ESSL provides several mechanisms that we can use 
to solve the problem of handling multiple lights. One of them is uniform arrays.

This technique allows us to handle multiple lights by introducing light arrays in the shaders. 
This way we calculate light contributions by iterating through the light arrays in the shaders. 
We still need to define each light in JavaScript but the mapping to ESSL becomes simpler as 
we are not defining one uniform per light property. Let's see how this technique works.
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We just need to do two simple changes in our code.

Uniform array declaration
First, we need to declare the light uniforms as arrays inside of our ESSL shaders. For instance, 
for the light position in a scene with three lights we would write something like:

uniform vec3 uPositionLight[3];

It is important to realize here that ESSL does not support dynamic initialization of uniform 
arrays. If you wrote something like:

uniform int uNumLights;
uniform vec3 uPositionLight[uNumLights];  //will not work

the shader will not compile and you will obtain an error as follows:

ERROR: 0:12: ":constant expression required
ERROR: 0:12: ":array size must be a constant integer expression"

However, this construct is valid:

const int uNumLights = 3;
uniform vec3 uPositionLight[uNumLights];  //will work 
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We declare one uniform array per light property, regardless of how many lights we are going 
to have. So, if we want to pass information about diffuse and specular components of five 
lights, for example, we need to declare two uniform arrays as follows:

uniform vec4 uDiffuseLight[5];
uniform vec4 uSpecularLight[5];

JavaScript array mapping
Next, we will need to map the JavaScript variables where we have the light property 
information to the program. For example, if we wanted to map these three light positions:

var LightPos1 = [0.0, 7.0, 3.0];
var LightPosition2 = [2.5, 3.0, 3.0];
var LightPosition3 = [-2.5, 3.0, 3.0];

Then, we need to retrieve the uniform array location (just like in any other case):

var location = gl.getUniformLocation(prg,"uPositionLight");

Here is the difference, we map these positions as a concatenated flat array:

gl.uniform3fv(location, [0.0,7.0,3.0,2.5,3.0,3.0,-2.5,3.0,3.0]);

There are two things you should notice here:

 � The name of the uniform is passed to getUniformLocation the same way it was 
passed before. That is, the fact that uPositionLight is now an array does not 
change a thing when you locate the uniform with getUniformLocation.

 � The JavaScript array that we are passing to the uniform is a flat array. If you write 
something as follows the mapping will not work:

gl.uniform3fv(location, [[0.0,7.0,3.0],[2.5,3.0,3.0],[-
2.5,3.0,3.0]]);

So, if you have one variable per light you should make sure to concatenate them 
appropriately before passing them to the shader.

Time for action – adding a white light to a scene
1. Open the file ch6_Wall_LightArrays.html in your HTML5 browser. This scene 

looks exactly as ch6_Wall_Final.html, however the code required to write this 
scene is much less as we are using uniform arrays. Let's see how the use of uniform 
arrays change our code.
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2. Let's update the vertex shader first. Open the file ch6_Wall_LightArrays.html 
using your favorite source code editor. Let's take a look at the vertex shader. Note 
the use of the constant integer expression const int NUM_LIGHTS = 3; to 
declare the number of lights that the shader will handle.

3. Also, you can see there that a uniform array is being used to operate on  
light positions.

Note that we are using a varying array to pass the light rays (for each light) to the 
fragment shader.

//Calculate light ray per each light
 for(int i=0; i < NUM_LIGHTS; i++){
  vec 4 lightPosition = uMVMatrix * vec4(uLightPosition[i], 1.0);
  vLightRay[i] = vertex.xyz - lightPosition[i].xyz;
 }

This fragment of code calculates one varying light ray per light. If you remember, the 
same code in the file ch6_Wall_Final.html looks like the following code:

//Transformed light position
 vec4 redPosition = uMVMatrix * vec4(uPositionRedLight,1.0);
 vec4 greenPosition = uMVMatrix * vec4(uPositionGreenLight,1.0);
 vec4 bluePosition = uMVMatrix * vec4(uPositionBlueLight, 1.0);

 //Light position
 vRedRay   = vertex.xyz-redPosition.xyz;
 vGreenRay = vertex.xyz-greenPosition.xyz;

 vBlueRay  = vertex.xyz-bluePosition.xyz;

At this point the advantage of using uniform arrays (and array varyings) to write 
shading programs should start being evident.

4. Similarly, the fragment shader also uses uniform arrays. In this case, the fragment 
shader iterates through the light diffuse properties to calculate the contribution of 
each one to the final color on the wall:

for(int i = 0; i < NUM_LIGHTS; i++){    //For each light
      
  L = normalize(vLightRay[i]);      //Calculate reflexion
  lambertTerm = dot(N, -L);
      
  if (lambertTerm > uCutOff){      
      finalColor += uLightDiffuse[i] * uMaterialDiffuse 
*lambertTerm;           
      //Add diffuse component, one per light
  }
}
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5. For the sake of brevity we will not see the corresponding verbose code from  
the ch6_Wall_Final.html exercise.

6. In the configure function, the size of the JavaScript array that contains the 
uniform names has decreased considerably because now we have just one  
element per property regardless of the number of lights:

var uniformList = [  
          "uPMatrix", 
          "uMVMatrix", 
          "uNMatrix",
          "uMaterialDiffuse",
          "uMaterialAmbient",
          "uLightAmbient",
          "uLightDiffuse",
          "uPositionLight",
          "uWireframe",
          "uLightSource",
          "uCutOff"
          ];

7. Also, the mapping between JavaScript Light objects and uniform arrays is simpler 
because of the getArray method of the Lights class. As we described in the 
section Architectural Updates, the getArray method concatenates in one flat  
array the property that we want for all the lights.

8. The load and draw functions look exactly the same. If we wanted to add a new 
light, we will still need to load a new sphere in the load function (to represent 
the light source in our scene) and we still need to translate this sphere to the 
appropriate location in the draw function.

9. Let's see how much effort we need to add a new light. Go to the configure 
function and create a new light object like this:

var whiteLight = new Light('white');
whiteLight.setPosition([0,10,2]);
whiteLight.setDiffuse([1.0,1.0,1.0,1.0]);
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10. Add whiteLight to the Lights object as follows:

Lights.add(whiteLight);

11. Now move to the load function and append this line:

Scene.loadObject('models/geometry/smallsph.json','light4');

12. And just like in the previous Time For Action section, add this to the draw function:

if (object.alias == 'light4'){
  mat4.translate(transforms.mvMatrix,Lights.get('white').
position);
  object.diffuse = Lights.get('white').diffuse;
  gl.uniform1i(Program.uLightSource,true);
}

13. Save the webpage with a different name and open it using your HTML5 browser.  
We have also included the completed exercise in ch6_Wall_LightArrays_
White.html. The following diagram shows the final result:

That is all you need to do! Evidently, if you want to control the white light properties through 
JQuery UI you would need to write the corresponding code, the same way we did it for the 
previous hero section. And talking about heroes.
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Time for action – directional point lights
In Chapter 3, Lights!, we compared point and directional lights:

In this section, we will combine directional and positional lights. We are going to  
create a third type of light: a directional point light. This light has both position and  
direction properties. We are ready to do this as our shaders can easily handle lights  
with multiple properties.

The trick to create these lights consist into subtract the light direction vector from the 
normal for each vertex. The resulting vector will originate a different Lambert coefficient  
that will reflect into the cone generated by the light source.
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1. Open ch6_Wall_Directional.html in your HTML5 Internet web browser.  
As you can see there, the three light sources have now a direction.  
Let's take a look at the code.

2. Open ch6_Wall_Directional.html in your source code editor.

3. To create a light cone we need to obtain a Lambert coefficient per fragment. Just 
like in previous exercises, we obtain these coefficients in the fragment shader by 
calculating the dot product between the inverted light ray and the normal that has 
been interpolated. So far, we have been using one varying to do this: vNormal.

4. Only one varying has sufficed so far, as we have not had to update the normals, no 
matter how many lights we have in the scene. However to create directional point 
lights we do have to update the normals: the direction of each light will create a 
different normal. Therefore, we replace vNormal with a varying array:

varying vec3 vNormal[numLights];

5. The line that subtracts the light direction from the normal occurs inside the for 
loop. This is because we do this for every light in the scene, as every light has its 
own light direction:

//Calculate normals and light rays
for(int i = 0; i < numLights; i++){
vec4 positionLight = uMVMatrix * vec4(uLightPosition[i],1.0);
vec3 directionLight = vec3(uNMatrix * vec4(uLightDirection[i], 
1.0));
vNormal[i] = normal - directionLight;
vLightRay[i] = vertex.xyz-positionLight.xyz;
 }
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Also, here the light direction is transformed by the Normal matrix while the light 
position is transformed by the Model-View matrix.

6. In the fragment shader, we calculate the Lambert coefficients: one per light  
and per fragment. The key difference is this line in the fragment shader:

N = normalize(vNormal[i]);

Here we obtain the interpolated updated normal per light.

7. Let's create a cut-off by restricting the allowed Lambert coefficients. There are  
at least two different ways to obtain a light cone in the fragment shader. The first 
one consists of restricting the Lambert coefficient to be higher than the uniform 
uCutOff (cut-off value). Let's us take a look at the fragment shader:

if (lambertTerm > uCutOff){      
  finalColor += uLightDiffuse[i] * uMaterialDiffuse    

}

Remember that the Lambert coefficient is the cosine of the angle between the 
reflected light and the surface normal. If the light ray is perpendicular to the surface 
we obtain the highest Lambert coefficient, and as we move away from the center, 
the Lambert coefficients changes following the cosine function until the light rays 
are completely parallel to the surface creating a cosine of 90 degrees between the 
normal and the light ray. This produces a Lambert coefficient of zero.

8. Open ch6_Wall_Directional.html in your HTML5 browser if you have not 
done so yet. Use the cut-off slider on the page and notice how this affects the light 
cone making it wider or narrower. After playing with the slider, you can notice that 
these lights do not look very realistic. The reason is that the final color is the same 
no matter what Lambert coefficient you obtained: as long as the Lambert coefficient 
is higher than the set cut-off value, you will obtain the full diffuse contribution from 
the three light sources.
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9. To change it, open the web page using your source code editor, go to the fragment 
shader and multiply the Lambert coefficient in the line that calculates the final color:

finalColor += uLightDiffuse[i] * uMaterialDiffuse * lambertTerm;

10. Save the web page with a different name (so you can keep the original) and then go 
ahead and load it on your web browser. You will notice that the light colors appear 
attenuated as you depart from the center of each light reflection on the wall. This 
looks better but there is an even better way to create light cut-offs.

11. Now let's create a cut-off by using an exponential attenuation factor. In the 
fragment shader replace the following code:

if (lambertTerm > uCutOff){      
      finalColor += uLightDiffuse[i] * uMaterialDiffuse;
}

With:

finalColor += uLightDiffuse[i] * uMaterialDiffuse * 
pow(lambertTerm, 10.0 * uCutOff);

Yes, we have gotten rid of the if section and we have only left its contents.  
This time the attenuation factor is pow(lambertTerm, 10*uCutOff).

This modification works because this factor attenuates the final color exponentially. 
If the Lambert coefficient is close to zero, the final color will be heavily attenuated.
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12. Save the web page with a different name and load it in your browser.  
The improvement is dramatic!

We have included the completed exercises here:

 � Ch6_Wall_Directional_Proportional.html

 � Ch6_Wall_Directional_Exponential.html

What just happened?
We have learned how to implement directional point lights. We have also discussed 
attenuation factors that improve lighting effects.

Use of color in the scene
It is time to discuss transparency and alpha blending. We mentioned before that the alpha 
channel can carry information about the opacity of the color with which the object is being 
painted. However, as we saw in the cube example, it is not possible to obtain a translucent 
object unless alpha blending is activated. Things get a bit more complicated when we have 
several objects in the scene. We will see here what to do in order to have a consistent scene 
when we have translucent and opaque objects.
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Transparency
The first approach to obtain transparent objects is to use polygon stippling. This technique 
consists of discarding some fragments so you can see through the object. Think of it as 
punching little holes throughout the surface of your object.

OpenGL supports polygon stippling through the glPolygonStipple function. This function 
is not available in WebGL. You could try to replicate this functionality by dropping some 
fragments in the fragment shader using the ESSL discard command.

More commonly, we can use the alpha channel information to obtain translucent objects. 
However, as we saw in the cube example, modifying the alpha values does not produce 
transparency automatically.

Creating transparencies corresponds to alter the fragments that we have already written to 
the frame buffer. Think for instance of a scene where there is one translucent object in front 
of an opaque object (from our camera view). For the scene to be rendered correctly we need 
to be able to see the opaque object through the translucent object. Therefore, the fragments 
that overlap between the far and the near objects need to be combined somehow to create 
the transparency effect.

Similarly, when there is only one translucent object in the scene, the same idea applies.  
The only difference is that, in this case, the far fragments correspond to the back face of  
the object and the near fragments correspond to the front face of the object. In this case,  
to produce the transparency effect, the far and near fragments need to be combined.

To implement transparencies, we need to learn about two important WebGL concepts:  
depth testing and alpha blending.

Updated rendering pipeline
Depth testing and alpha blending are two optional stages for the fragments once they have 
been processed by the fragment shader. If the depth test is not activated, all the fragments 
are automatically available for alpha blending. If the depth test is enabled, those fragments 
that fail the test will be automatically discarded by the pipeline and will no longer be 
available for any other operation. This means that discarded fragments will not be  
rendered. This behavior is similar to using the ESSL discard command. 
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The following diagram shows the order in which depth testing and alpha blending  
are performed:

Now let's see what depth testing is about and why it is relevant for alpha blending.

Depth testing
Each fragment that has been processed by the fragment shader carries an associated 
depth value. Though fragments are two-dimensional as they are going to be displayed on 
the screen, the depth value keeps the information of how distant the fragment is from the 
camera (screen). Depth values are stored in a special WebGL buffer named depth buffer or 
z-buffer. The z comes from the fact that x and y values correspond to the screen coordinates 
of the fragment while the z value measures distance perpendicular to the screen.

After the fragment has been calculated by the fragment shader, it is eligible for depth testing. 
This only occurs if the depth test is enabled. Assuming that gl is the JavaScript variable that 
contains our WebGL context, we can enable depth testing by writing:

gl.enable(gl.DEPTH_TEST)

The depth test takes into consideration the depth value of a fragment and it compares it to 
the depth value for the same fragment coordinates already stored in the depth buffer. The 
depth test determines whether or not that fragment is accepted for further processing in the 
rendering pipeline.

Only the fragments that pass the depth test will be processed. Otherwise, any fragment that 
does not pass the depth test will be discarded.
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In normal circumstances when the depth test is enabled, only those fragments with a lower 
depth value than the corresponding fragments present in the depth buffer will be accepted.

Depth testing is a commutative operation with respect to the rendering order. This means 
that no matter which object gets rendered first, as long as depth testing is enabled, we will 
always have a consistent scene.

Let's see this with an example. In the following diagram, there is a cone and a sphere.  
The depth test is disabled using the following code:

gl.disable(gl.DEPTH_TEST)

The sphere is rendered first. As it is expected, the cone fragments that overlap the cone 
are not discarded when the cone is rendered. This occurs because there is no depth test 
between the overlapping fragments.

Now let's enable the depth test and render the same scene. The sphere is rendered first. 
Since all the cone fragments that overlap the sphere have a higher depth value (they are 
farer from the camera) these fragments fail the depth test and are discarded creating a 
consistent scene.
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Depth function
In some applications, we could be interested in changing the default function of  
the depth-testing mechanism which discards fragments with a higher depth value 
than those fragments in the depth buffer. For that purpose WebGL provides the 
gl.depthFunc(function) function.

This function has only one parameter, the function to use:

Parameter Description

gl.NEVER The depth test always fails

gl.LESS Only fragments with a depth lower than current fragments on the depth buffer 
will pass the test

gL.LEQUAL Fragments with a depth less than or equal to corresponding current fragments 
in the depth buffer will pass the test

gl.EQUAL Only fragments with the same depth as current fragments on the depth buffer 
will pass the test

gl.NOTEQUAL Only fragments that do not have the same depth value as fragments on the 
depth buffer will pass the test

gl.GEQUAL Fragments with greater or equal depth value will pass the test

gl.GREATER Only fragments with a greater depth value will pass the test

gl.ALWAYS The depth test always passes

The depth test is disabled by default in WebGL. When enabled, if no 
depth function is set, the gl.LESS function is selected by default.

Alpha blending
A fragment is eligible for alpha blending if it has passed the depth test. However, when depth 
testing is disabled, all fragments are eligible for alpha blending.

Alpha blending is enabled using the following line of code:

gl.enable(gl.BLEND);
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For each eligible fragment the alpha blending operation reads the color present in the  
frame buffer for those fragment coordinates and creates a new color that is the result  
of a linear interpolation between the color previously calculated in the fragment shader 
(gl_FragColor) and the color already present in the frame buffer.

Alpha blending is disabled by default in WebGL.

Blending function
With blending enabled, the next step is to define a blending function. This function will 
determine how the fragment colors coming from the object we are rendering (source)  
will be combined with the fragment colors already present in the frame buffer (destination).

We combine source and destination as follows:

Color Output = S * sW + D * dW

Here,

 � S: source color

 � D: destination color

 � sW: source scaling factor

 � dW: destination scaling factor

 � S.rgb: rgb components of the source color

 � S.a: alpha component of the source color

 � D.rgb: rgb components of the destination color

 � D.a: alpha component of the destination color
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It is very important to notice here that the rendering order will determine what the source 
and the destination fragments are in the previous equations. Following the example from the 
previous section, if the sphere is rendered first, then it will become the destination of the 
blending operation because the sphere fragments will be already stored in the frame buffer 
when the cone is rendered. In other words, alpha blending is a non-commutative operation 
with respect to the rendering order.

Separate blending functions
It is also possible to determine how the RGB channels are going to be combined independently 
from the alpha channels. For that, we use the gl.blendFuncSeparate function.

We define two independent functions this way:

Color output = S.rgb * sW.rgb + D.rgb * dW.rgb
Alpha output = S.a * sW.a + D.a * dW.a

Here,

 � sW.rgb: source scaling factor (only rgb)

 � dW.rgb: destination scaling factor (only rgb)

 � sW.a: source scaling factor for the source alpha value

 � dW.a: destination scaling factor for the destination alpha value

Then we could have something as follows:

Color output = S.rgb * S.a + D.rbg * (1 - S.a)
Alpha output = S.a * 1 + D.a * 0
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This would be translated into code as:

gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, 
gl.ZERO)

This particular configuration is equivalent to our previous case where we did not separate 
the functions. The parameters for the gl.blendFuncSeparate function are the same as 
that can be passed to gl.blendFunc. As stated before, you will find the complete list later 
in this section.

Blend equation
We could have the case where we do not want to interpolate the source and destination 
fragment colors by scaling them and adding them as shown before. It could be the  
case where we want to subtract one from the other. In that case, WebGL provides  
the gl.blendEquation function. This function receives one parameter that  
determines the operation on the scaled source and destination fragment colors.

gl.blendEquation(gl.FUNC_ADD) will correspond to:

Color output = S * sW + D *dW

While gl.blendEquation(gl.FUNC_SUBTRACT) corresponds to:

Color output = S * sW - D *dW

There is a third option: gl.blendEquation(gl.FUNC_REVERSE_SUBTRACT)  
that corresponds to:

Color output = D* dw – S*sW

As it is expected, it is also possible to define the blending equation separately for the RGB 
channels and for the alpha channel. For that, we use the gl.blendEquationSeparate 
function.

Blend color
WebGL provides the scaling factors gl.CONSTANT_COLOR and gl.ONE_MINUS_
CONSTANT_COLOR. These scaling factors can be used with gl.blendFunc and with 
gl.blendFuncSeparate. However, we need to establish beforehand what the blend  
color is going to be. We do so by invoking gl.blendColor.
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WebGL alpha blending API
The following table summarizes the WebGL functions that are relevant to performing alpha 
blending operations:

WebGL Function Description

gl.enable|disable (gl.BLEND) Enable/disable blending

gl.blendFunc (sW, dW) Specify pixel arithmetic. Accepted values for sW 
and dW are:  
ZERO

ONE

SRC_COLOR

DST_COLOR

SRC_ALPHA

DST_ALPHA

CONSTANT_COLOR

CONSTANT_ALPHA

ONE_MINUS_SRC_ALPHA

ONE_MINUS_DST_ALPHA

ONE_MINUS_SRC_COLOR

ONE_MINUS_DST_COLOR

ONE_MINUS_CONSTANT_COLOR

ONE_MINUS_CONSTANT_ALPHA

In addition, sW can also be SRC_ALPHA_
SATURATE

gl.blendFuncSeparate(sW_rgb, dW_
rgb, sW_a, dW_a)

Specify pixel arithmetic for RGB and alpha 
components separately
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WebGL Function Description

gl.blendEquation(mode) Specify the equation used for both the RGB 
blend equation and the alpha blend equation. 
Accepted values for mode are:

gl.FUNC_ADD

gl.FUNC_SUBTRACT

gl.FUNC_REVERSE_SUBTRACT

gl.blendEquationSeparate(modeRGB
, modeAlpha)

Set the RGB blend equation and the alpha blend 
equation separately

gl.blendColor ( red, green, 
blue, alpha)

Set the blend color

gl.getParameter(pname) Just like with other WebGL variables, it is 
possible to query blending parameters using 
gl.getParameter.

Relevant parameters are:

gl.BLEND

gl.BLEND_COLOR

gl.BLEND_DST_RGB

gl.BLEND_SRC_RGB

gl.BLEND_DST_ALPHA

gl.BLEND_SRC_ALPHA

gl.BLEND_EQUATION_RGB

gl.BLEND_EQUATION_ALPHA

Alpha blending modes
Depending on the parameter selection for sW and dW we can create different blending modes. 
In this section we are going to see how to create additive, subtractive, multiplicative, and 
interpolative blending modes. All blending modes depart from the already known formula:

Color output = S * (sW) + D * dW
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Additive blending
Additive blending simply adds the colors of the source and destination fragments, creating  
a lighter image. We obtain additive blending by writing:

gl.blendFunc(gl.ONE, gl.ONE);

This assigns the weights for source and destination fragments sW and dW to 1. The color 
output will be:

Color output = S * 1 + D * 1

Color output = S + D

Since each color channel is in the [0, 1] range, this blending will clamp all values over 1. 
When all channels are 1 this results in a white color.

Subtractive blending
Similarly, we can obtain subtractive blending by writing:

gl.blendEquation(gl.FUNC_SUBTRACT);
gl.blendFunc(gl.ONE, gl.ONE);

This will change the blending equation to:

Color output = S * (1) - D * (1)
Color output = S - D

Any negative values will be simply shown as zero. When all channels are negative this results 
in black color.

Multiplicative blending
We obtain multiplicative blending by writing:

gl.blendFunc(gl.DST_COLOR, gl.ZERO);

This will be reflected in the blending equation as:

Color output = S * (D) + D * (0)
Color output = S * D

The result will be always a darker blending.

Interpolative blending
If we set sW to S.a and dW to 1-S.a then:

Color output = S * S.a + D *(1-S.a)
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This will create a linear interpolation between the source and destination color using the 
source alpha color S.a as the scaling factor. In code, this is translated as:

gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);

Interpolative blending allows us to create a transparency effect as long as the destination 
fragments have passed the depth test. This implies that the objects need to be rendered 
from back to front.

In the next section you will play with different blending modes on a simple scene constituted 
by a cone and a sphere.

Time for action – blending workbench
1. Open the file ch6_Blending.html in your HTML5 Internet browser. You will see an 

interface like the one shown in the following screenshot:

2. This interface has most of the parameters that allow you to configure alpha 
blending. The settings by default are source: gl.SRC_ALPHA and destination: 
gl.ONE_MINUS_SRC_ALPHA. These are the parameters for interpolative  
blending. Which slider do you need to use in order to change the scaling factor  
for interpolative blending? Why?

3. Change the sphere alpha slider to 0.5. You will see some shadow-like artifacts on 
the surface of the sphere. This occurs because the sphere back face is now visible. 
To get rid of the back face click on Back Face Culling.
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4. Click on the Reset button.

5. Disable the Lambert Term and Floor buttons.

6. Enable the Back Face Culling button.

7. Let's implement multiplicative blending. What values do source and destination 
need to have? 

8. Click-and-drag on the canvas. Check that the multiplicative blending create dark 
regions where the objects overlap.

9. Change the blending function to gl.FUNC_SUBTRACT using the provided  
drop-down menu.

10. Change Source to gl.ONE and Destination to gl.ONE.

11. What blending mode is this? Click-and-drag on the canvas to check the appearance 
of the overlapped regions.

12. Go ahead and try different parameter configurations. Remember you can also 
change the blending function. If you decide to use a constant color or constant 
alpha, please use the color widget and the respective slider to modify the values  
of these parameters.

What just happened?
You have seen how the additive, multiplicative, subtractive, and interpolative blending 
modes work through a simple exercise.

You have seen that the combination gl.SRC_ALPHA and gl.ONE_MINUS_SRC_ALPHA 
produces transparency.

Creating transparent objects
We have seen that in order to create transparencies we need to:

1. Enable alpha blending and select the interpolative blending function.

2. Render the objects back-to-front.

How do we create transparent objects when there is nothing to blend them against? In other 
words, if there is only one object, how do we make it transparent?

One alternative to do this is to use face culling.
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Face culling allows rendering the back face or the front face of an object only. You saw this in 
the previous Time For Action section when we only rendered the front face by enabling the 
Back Face Culling button.

Let's use the color cube that we used earlier in the chapter. We are going to make it 
transparent. For that effect, we will:

1. Enable alpha blending and use the interpolative blending mode.

2. Enable face culling.

3. Render the back face (by culling the front face).

4. Render the front face (by culling the back face).

Similar to other options in the pipeline, culling is disabled by default. We enable it by calling:

gl.enable(gl.FACE_CULLING);

To render only the back face of an object we call gl.cullFace(gl.FRONT) before we call 
drawArrays or drawElements.

Similarly, to render only the front face, we use gl.cullFace(gl.BACK) before the  
draw call.

The following diagram summarizes the steps to create a transparent object with alpha 
blending and face culling.

In the following section we see the transparent cube in action and we will take a look at the 
code that makes it possible.
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Time for action – culling
1. Open the ch6_Culling.html file using your HTML5 Internet browser.

2. You will see that the interface is similar to the blending workbench exercise. 
However, on the top row you will see these three options:

 � Alpha Blending: enables or disables alpha blending

 � Render Front Face: if active, renders the front face

 � Render Back Face: if active, renders the back face

Remember that for blending to work objects need to be rendered back-to-front. 
Therefore, the back face of the cube is rendered first.

This is reflected in the draw function:

if(showBackFace){
    gl.cullFace(gl.FRONT);  //renders the back face
    gl.drawElements(gl.TRIANGLES, object.indices.length, 
                    gl.UNSIGNED_SHORT,0);
}
if (showFrontFace){
    gl.cullFace(gl.BACK);  //renders the front face
    gl.drawElements(gl.TRIANGLES, object.indices.length, 
                    gl.UNSIGNED_SHORT,0);
}

Going back to the web page, notice how the interpolative blending  
function produces the expected transparency effect. Move the alpha value  
slider that appears below the button options to adjust the scaling factor for 
interpolative blending.

3. Review to the interpolative blending function. In this case, the destination is the 
back face (rendered first) and the source is the front face. If the alpha source = 1 
what would you obtain according to the function? Go ahead and test the result by 
moving the alpha slider to zero.
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4. Let's visualize the back face only. For that, disable the Render Front Face button by 
clicking on it. Increase the alpha value using the alpha value slider that appears right 
below the button options. Your screen should look like this:

5. Click-and-drag the cube on the canvas. Notice how the back face is calculated every 
time you move the camera around.

6. Click on the Render Front Face again to activate it. Change the blending function so 
you can obtain subtractive blending.

7. Try different blending configurations using the controls provided in this exercise.

What just happened?
We have seen how to create transparent objects using alpha blending interpolative mode 
and face culling.

Now let's see how to implement transparencies when there are two objects on the screen.  
In this case we have a wall that we want to make transparent. Behind it there is a cone.
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Time for action – creating a transparent wall
1. Open ch6_Transparency_Initial.html in your HTML5 web browser.  

We have two completely opaque objects: a cone behind a wall. Click-and-drag  
on the canvas to move the camera behind the wall and see the cone as shown  
in the following screenshot:

2. Change the wall alpha value by using the provided slider.

3. As you can see, modifying the alpha value does not produce any transparency. The 
reason for this is that the alpha blending is not being enabled. Let's edit the source 
code and include alpha blending. Open the file ch6_Transparency_Initial.
html using your preferred source code editor. Scroll to the configure function  
and below these lines:
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL);

Add:

gl.enable(gl.BLEND);
gl.blendFunc(gl.SRC_ALPHA,gl.ONE_MINUS_SRC_ALPHA);

4. Save your changes as ch6_Transparency_Final.html and load this page on 
your web browser.

5. As expected, the wall changes its transparency as you modify its alpha value using 
the respective slider.
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6. A note on rendering order: Remember that in order for transparency to be effective 
the objects need to be rendered back to front. Let's take a look at the source code. 
Open ch6_Transparency_Final.html in your source code editor.

The cone is the farthest object in the scene. Hence, it is loaded first. You can check 
that by looking at the load function:

Scene.loadObject('models/geometry/cone.json','cone');
Scene.loadObject('models/geometry/wall.json','wall',{diffu
se:[0.5,0.5,0.2,1.0], ambient:[0.2,0.2,0.2,1.0]});

Therefore it occupies a lower index in the Scene.objects list. In the draw 
function, the objects are rendered in the order in which they appear in the Scene.
objects list like this:

for (var i = 0, max=Scene.objects.length; i < max; i++){
    var object = Scene.objects[i];
    ...

7. What happens if we rotate the scene so the cone is closer to the camera and the 
wall is farer away? Open ch6_Transparency_Final.html and rotate the scene 
such that the cone appears in front of the wall. Now decrease the alpha value of the 
cone while the alpha value of the wall remains at 1.0.

8. As you can see, the blending is inconsistent. This does not have to do with alpha 
blending because in ch6_Transparency_Final.html the blending is enabled 
(you just enabled it on step 3). It has to do with the rendering order. Click on the 
Wall First button. The scene should appear consistent now.

The Cone First and Wall First buttons use a couple of new functions that we have 
included in the Scene object to change the rendering order. These functions are 
renderSooner and renderFirst.

In total, we have added these functions to the Scene object to deal with  
rendering order:

 � renderSooner(objectName)—moves the object with name 
objectName one position before in the Scene.objects list.

 � renderLater(objectName)—moves the object with name objectName 
one position after in the Scene.objects list.

 � renderFirst(objectName)—moves the object with name objectName 
to the first position of the list (index 0).

 � renderLast(objectName)—moves the object with name objectName 
to the last position of the list.
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 � renderOrder()—lists the objects in the Scene.objects list in the order 
in which they are rendered. This is the same order in which they are stored 
in the list. For any two given objects, the object with the lower index will be 
rendered first.

You can use these functions from the JavaScript console in your browser and see 
what effect these have on the scene.

What just happened?
We have taken a simple scene where we have implemented alpha blending.  
After that we have analyzed the importance of the rendering order in creating consistent 
transparencies. Finally, we have presented the new methods of the Scene object that 
control the rendering order.

Summary
In this chapter, we have seen how to use colors on objects, lights, and on the scene  
in general. Specifically, we have learned that an object can be colored per vertex,  
per fragment, or it can have a constant color.

The color of light sources in the scene depends on implemented lighting model. Not all 
lights need to be always white. We have also seen how uniform arrays simplify working with 
multiple lights in ESSL and in JavaScript WebGL. Also we have created point directional lights.

The alpha value does not necessarily make an object translucent. Interpolative blending is 
necessary to create translucent objects. Also, the objects need to be rendered back-to-front.

Additionally, face culling can help to produce better results when there are multiple 
translucent objects present in the scene.

In Chapter 7, Textures, we will study how to paint images over our objects. For that we will 
use WebGL textures.



7
Textures

So far, we've added details to our scene with geometry, vertex colors, and 
lighting; but often that won't be enough to achieve the look that we want. 
Wouldn't it be great if we could "paint" additional details onto our scene 
without needing additional geometry? We can, through a technique called 
texture mapping. In this chapter, we'll examine how we can use textures to 
make our scene more detailed.

In this chapter, we'll learn the following:

 � How to create a texture

 � How to use a texture when rendering

 � Filter and wrapping modes and how they affect the texture's use

 � Multi-texturing

 � Cube mapping

Let's get started!
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What is texture mapping?
Texture mapping is, at its most basic, a method for adding detail to the geometry being 
rendered by displaying an image on the surface. Consider the following image:

Using only the techniques that we've learned so far, this relatively simple scene would be 
very difficult to build and unnecessarily complex. The WebGL logo would have to be carefully 
constructed out of many little triangles with appropriate colors. Certainly such an approach 
is possible, but the additional geometry needed would make it quickly impractical for use in 
even a marginally complex scene.

Luckily for us, texture mapping makes the above scene incredibly simple. All that's required 
is an image of the WebGL logo in an appropriate file format, an additional vertex attribute on 
the mesh, and a few additions to our shader code.

Creating and uploading a texture
First off, for various reasons your browser will naturally load textures "upside down" from 
how textures are traditionally used in desktop OpenGL. As a result, many WebGL applications 
specify that the textures should be loaded with the Y coordinate flipped. This is done with a 
single call from somewhere near the beginning of the code.

gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);

Whether or not you use this mode is up to you, but we will be using it throughout  
this chapter. 

The process of creating a texture is very similar to that of creating a vertex or an index buffer. 
We start by creating the texture object as follows:

var texture = gl.createTexture();

Textures, like buffers, must be bound before we can manipulate it in any way. 

gl.bindTexture(gl.TEXTURE_2D, texture);
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The first parameter indicates the type of texture we're binding, or the texture target.  
For now, we'll focus on 2D textures, indicated with gl.TEXTURE_2D in the previous  
code snippet. More targets will be introduced in the Cube maps section. 

Once we have bound the texture, we can provide it with image data. The simplest way  
to do that is to pass a DOM image into the texImage2D function as shown in the following 
code snippet:

var image = document.getElementById("textureImage");
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, 
image);

You can see in this example that we have selected an image element from our page with the 
ID of "textureImage" to act as the source for our texture. This is known as Uploading the 
texture, since the image will be stored for fast access during rendering, often in the GPU's 
video memory. The source can be in any image format that can be displayed on a web page, 
such as JPEG, PNG, GIF, or BMP files. 

The image source for the texture is passed in as the last parameter of the texImage2D 
call. When texImage2D is called with an image in this way, WebGL will automatically 
determine the dimensions of the texture from the image you provide. The rest of the 
parameters instruct WebGL about the type of information the image contains and how to 
store it. Most of the time, the only value you will need to worry about changing is the third 
and fourth parameter, which can also be gl.RGB to indicate that your texture has no alpha 
(transparency) channel. 

In addition to the image, we also need to instruct WebGL how to filter the texture when 
rendering. We'll get into what filtering means and what the different filtering modes do  
in a bit. In the meantime let's use the simplest one to get us started:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

Finally, just as with buffers, it's a good practice to unbind a texture when you are finished 
using it, which is accomplished by binding null as the active texture:

gl.bindTexture(gl.TEXTURE_2D, null);

Of course, in many cases you won't want to have all of the textures for your scene embedded 
on your web page, so it's often more convenient to create the image element on the fly and 
have it dynamically load the image needed. Putting all of this together gives us a simple 
function that will load any image URL that we provide as a texture.

var texture = gl.createTexture();
var image = new Image();
image.onload = function(){
    gl.bindTexture(gl.TEXTURE_2D, texture);
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    gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_
BYTE, image);
    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, 
gl.NEAREST);
    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, 
gl.NEAREST);
    gl.bindTexture(gl.TEXTURE_2D, null);
}
image.src = "textureFile.png";

There is a slight 'gotcha' when loading images in this way. The image loading 
is asynchronous, which means that your program won't stop and wait for the 
image to finish loading before continuing execution. So what happens if you 
try to use a texture before it's been populated with image data? Your scene 
will still render, but any texture values you sample will be black.

In summary, creating textures follows the same pattern as using buffers. For every texture  
we create, we want to do the following:

 � Create a new texture

 � Bind it to make it the current texture

 � Pass the texture contents, typically from an image

 � Set the filter mode or other texture parameters

 � Unbind the texture

If we reach a point where we no longer need a texture, we can remove it and free up the 
associated memory using deleteTexture:

gl.deleteTexture(texture);

After this the texture is no longer valid. Attempts to use it will react as though null has  
been passed.

Using texture coordinates
So now that we have our texture ready to go, we need to apply it to our mesh somehow.  
The most basic question that arises then is what part of the texture to show on which part  
of the mesh. We do this through another vertex attribute named texture coordinates.
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Texture coordinates are two-element float vectors that describe a location on the texture that 
coincides with that vertex. You might think that it would be most natural to have this vector 
be an actual pixel location on the image, but instead, WebGL forces all the texture coordinates 
into a 0 to 1 range, where [0, 0] represents the top left-hand side corner of the texture and  
[1, 1] represents the bottom right-hand side corner, as is shown in the following image:

This means that to map a vertex to the center of any texture, you would give it a texture 
coordinate of [0.5, 0.5]. This coordinate system holds true even for rectangular textures.

At first this may seem strange. After all, it's easier to determine what the pixel coordinates  
of a particular point are than what percentage of an image's height and width that point is 
at, but there is a benefit to the coordinate system that WebGL uses.

Let's say you create a WebGL application with some very high resolution textures. At some 
point after releasing your application, you get feedback from users saying that the textures 
are taking too long to load, or that the large textures are causing their device to render 
slowly. As a result, you decide to offer a lower resolution texture option for these users.

If your texture coordinates were defined in terms of pixels, you would now have to  
modify every mesh used by your application to ensure that the texture coordinates match 
up to the new, smaller textures correctly. However, when using WebGL's 0 to 1 coordinate 
range, the smaller textures can use the exact same coordinates as the larger ones and still 
display correctly!

Figuring out what the texture coordinates for your mesh should be, especially if the mesh is 
complex, can be one of the trickier parts of creating 3D resources, but fortunately most 3D 
modeling tools come with excellent utilities for laying out texture coordinates. This process  
is called Unwrapping.
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Just like the vertex position components are commonly represented with 
the characters X, Y, and Z, texture coordinates also have a common symbolic 
representation. Unfortunately, it's not consistent across all 3D software 
applications. OpenGL (and therefore WebGL) refers to the coordinates as S and 
T for the X and Y components respectively. However, DirectX and many popular 
modeling packages refer to them as U and V. As a result, you'll often see people 
referring to texture coordinates as "UVs" and Unwrapping as "UV Mapping". 

We will use ST for the remainder of the book to be consistent with WebGL's usage.

Using textures in a shader
Texture coordinates are exposed to the shader code in the same way that we have any other 
vertex attribute; no surprises here. We'll want to include a two-element vector attribute in 
our vertex shader that will map to our texture coordinates:

attribute vec2 aVertexTextureCoords;

Additionally, we will also want to add a new uniform to the fragment shader that uses a type 
we haven't seen before: sampler2D. The sampler2D uniform is what allows us to access 
the texture data in the shader.

uniform sampler2D uSampler;

In the past, when we've used uniforms, we have always set them to the value that we want 
them to be in the shader, such as a light color. Samplers work a little differently, however. 
The following shows how to associate a texture with a specific sampler uniform:

gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.uniform1i(Program.uSampler, 0);

So what's going on here? First off, we are changing the active texture index with 
gl.activeTexture. WebGL supports using multiple textures at once (which we'll talk 
about later on in this chapter), so it's a good practice to specify which texture index we're 
working with, even though it won't change for the duration of this program. Next, we bind 
the texture we wish to use, which associates it with the currently active texture TEXTURE0. 
Finally, we tell the sampler uniform which texture it should be associated with, not with the 
texture itself, but with the texture unit provided via gl.uniform1i. Here we give it 0 to 
indicate that the sampler should use TEXTURE0.

That's quite a bit of setup, but now we are finally ready to use our texture in the fragment 
shader! The simplest way to use a texture is to return its value as the fragment color as 
shown here:

gl_FragColor = texture2D(uSampler, vTextureCoord);
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texture2D takes in the sampler uniform we wish to query and the coordinates to lookup, 
and returns the color of the texture image at those coordinates as a vec4. Even if the image 
has no alpha channel, a vec4 will still be returned with the alpha component always set to 1.

Time for action – texturing the cube
Open the file ch7_Textured_Cube.html in your favorite HTML editor. This contains the 
simple lit cube example from the previous chapter. If you open it in an HTML5 browser, you 
should see a scene that looks like the following screenshot:

In this example we will add a texture map to this cube as shown here: 

1. First, let's load the texture image. At the top of the script block, add a new variable 
to hold the texture:

var texture = null;

2. Then, at the bottom of the configure function, add the following code, which 
creates the texture object, loads an image, and sets the image as the texture data.  
In this case, we'll use a PNG image with the WebGL logo on it as our texture.

//Init texture
texture = gl.createTexture();

var image = new Image();
image.onload = function(){
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    gl.bindTexture(gl.TEXTURE_2D, texture);
    gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_
BYTE, image);
    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, 
gl.NEAREST);
    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, 
gl.NEAREST);
    gl.bindTexture(gl.TEXTURE_2D, null);
}
image.src = 'textures/webgl.png';

3. Next, in the draw function after the vertexColors binding block, add the 
following code to expose the texture coordinate attribute to the shader:

if (object.texture_coords){
 gl.enableVertexAttribArray(Program.aVertexTextureCoords);
 gl.bindBuffer(gl.ARRAY_BUFFER, object.tbo);
 gl.vertexAttribPointer(Program.aVertexTextureCoords, 2, 
gl.FLOAT, false, 0, 0);
}

4. Within that same if block, add the following code to bind the texture to the shader 
sampler uniform:

gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.uniform1i(Program.uSampler, 0);

5. Now we need to add the texture-specific code to the shader. In the vertex shader, 
add the following attribute and varying to the variable declarations:

attribute vec2 aVertexTextureCoords;
varying vec2 vTextureCoords;

6. And at the end of the vertex shader's main function, make sure to copy the texture 
coordinate attribute into the varying so that the fragment shader can access it:

vTextureCoord = aVertexTextureCoords;

7. The fragment shader also needs two new variable declarations: The sampler 
uniform and the varying from the vertex shader.

uniform sampler2D uSampler;
varying vec2 vTextureCoord;
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8. We must also remember to add aVertexTextureCoords to the attributeList 
and uSampler to the uniformList in the configure function so that the new 
variables can be accessed from our JavaScript binding code.

9. To access the texture color, we call texture2D with the sampler and the texture 
coordinates. As we want the textured surface to retain the lighting that was 
calculated, we'll multiply the lighting color and the texture color together, giving  
us the following line to calculate the fragment color:

gl_FragColor = vColor * texture2D(uSampler, vTextureCoord);

10. If everything has gone according to the plan, opening the file now in an HTML5 
browser should yield a scene like this one:

If you're having trouble with a particular step and would like a reference, the 
completed code is available in ch7_Textured_Cube_Finished.html.

What just happened?
We've just loaded a texture from a file, uploaded it to the GPU, rendered it on the cube 
geometry, and blended with the lighting information that was already being calculated.

The remaining examples in this chapter will omit calculation of lighting for simplicity  
and clarity, but all of the examples could have lighting applied to them if desired. 
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Have a go hero – try a different texture
Go grab one of your own images and see if you can get it to display as the texture instead. 
What happens if you provide a rectangular image rather than a square one?

Texture filter modes
So far, we've seen how textures can be used to sample image data in a fragment shader,  
but we've only used them in a limited context. Some interesting issues arise when you  
start to look at texture use in more robust situations.

For example, if you were to zoom in on the cube from the previous demo, you would see 
that the texture begins to alias pretty severely.

As we zoom in, you can see jagged edges develop around the WebGL logo. Similar problems 
become apparent when the texture is very small on the screen. Isolated to a single object, 
such artifacts are easy to overlook, but they can become very distracting in complex scenes.

So why do we see these artifacts in the first place?
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Recall from the previous chapter how vertex colors are interpolated, so that the fragment 
shader is provided a smooth gradient of color. Texture coordinates are interpolated in 
exactly the same way, with the resulting coordinates being provided to the fragment shader 
and used to sample color values from the texture. In a perfect situation, the texture would 
display at a 1:1 ratio on screen, meaning each pixel of the texture (known as texels) would 
take up exactly one pixel on screen. In this scenario, there would be no artifacts.

The reality of 3D applications, however, is that the textures are almost never displayed 
at their native resolution. We refer to these scenarios as magnification and minification, 
depending on whether the texture has a lower or higher resolution than the screen space  
it occupies.
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When a texture is magnified or minified, there can be some ambiguity about what color the 
texture sampler should return. For example, consider the following diagram of sample points 
against a slightly magnified texture:

It's pretty obvious what color you would want the top left-hand side or middle sample points 
to return, but what about those that sit between texels? What color should they return? The 
answer is determined by your filter mode. Texture filtering gives us a way to control how 
textures are sampled and achieve the look that we want.

Setting a texture's filter mode is very straightforward, and we've already seen an example  
of how it works when talking about creating textures.

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

As with most WebGL calls, texParameteri operates on the currently bound texture, and 
must be set for every texture you create. This also means that different textures can have 
different filters, which can be useful when trying to achieve specific effects. 

In this example we are setting both the magnification filter (TEXTURE_MAG_FILTER) and 
the minification filter (TEXTURE_MIN_FILTER) to NEAREST. There are several modes that 
can be passed for the third parameter, and the best way to understand the visual impact that 
they have on a scene is to see the various filter modes in action.

Let's look at a demonstration of the filters in your browser while we discuss  
different parameters.
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Time for action – trying different filter modes
1. Open the file ch7_Texture_Filters.html using your HTML5 Internet browser: 

2. The controls along the bottom include a slider to adjust the distance of the box from 
the viewer, and the buttons modify the magnification and minification filters.

3. Experiment with different modes to observe the effect they have on the texture. 
Magnification filters take effect when the cube is closer, minification filters when it is 
further away. Be sure to rotate the cube as well and observe what the texture looks 
like when viewed at an angle with each mode.
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What just happened?
Let's look at each of the filter modes in depth, and discuss how they work.

NEAREST
Textures using the NEAREST filter always return the color of the texel whose center is 
nearest to the sample point. Using this mode textures will look blocky and pixilated when 
viewed up close, which can be useful for creating "retro" graphics. NEAREST can be used  
for both MIN and MAG filters.

LINEAR
The LINEAR filter returns the weighted average of the four pixels whose centers are nearest 
to the sample point. This provides a smooth blending of texel colors when looking at textures 
close up, and generally is a much more desirable effect. This does mean that the graphics 
hardware has to read four times as many pixels per fragment, so naturally it's slower than 
NEAREST, but modern graphics hardware is so fast that this is almost never an issue. LINEAR 
can be used for both MIN and MAG filters. This filtering mode is also known as bilinear filtering.
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Looking back at the close-up example image we showed earlier in the chapter,  
had we used LINEAR filtering it would have looked like this:

Mipmapping
Before we can discuss the remaining filter modes that are only applicable to  
TEXTURE_MIN_FILTER, we need to introduce a new concept: mipmapping.

A problem arises when sampling minified textures; even when using LINEAR filtering  
where the sample points can be so far apart that we can completely miss some details  
of the texture. As the view shifts, the texture fragments that we miss changes and the  
result is a shimmering effect. You can see this in action by setting the MIN filter in the  
demo to NEAREST or LINEAR, zooming out, and rotating the cube.
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To avoid this, graphics cards can utilize a mipmap chain. 

Mipmaps are scaled-down copies of a texture, with each copy being exactly half the size of 
the previous one. If you were to show a texture and all of it's mipmaps in a row, it would look 
like this:

The advantage is that when rendering, the graphics hardware can choose the copy of the 
texture that most closely matches the size of the texture on screen and sample from it 
instead, which reduces the number of skipped texels and the jittery artifacts that accompany 
it. However, mipmapping is only used if you use the appropriate texture filters. The following 
TEXTURE_MIN_FILTER modes will utilize mipmaps in some fashion or the other.

NEAREST_MIPMAP_NEAREST
This filter will select the mipmap that most closely matches the size of the texture on screen 
and sample from it using the NEAREST algorithm.

LINEAR_MIPMAP_NEAREST
This filter selects the mipmap that most closely matches the size of the texture on screen 
and sample from it using the LINEAR algorithm.

NEAREST_MIPMAP_LINEAR
This filter selects two mipmaps that most closely matches the size of the texture on screen 
and samples from both of them using the NEAREST algorithm. The color returned is a 
weighted average of those two samples.



Chapter 7

[ 241 ]

LINEAR_MIPMAP_LINEAR
This filter selects two mipmaps that most closely matches the size of the texture on screen 
and samples from both of them using the LINEAR algorithm. The color returned is a 
weighted average of those two samples. This mode is also known as trilinear filtering.

Of the *_MIPMAP_* filter modes, NEAREST_MIPMAP_NEAREST is the fastest and of 
lowest quality while LINEAR_MIPMAP_LINEAR will provide the best quality at the lowest 
performance, with the other two modes sitting somewhere in between on the quality/speed 
scale. In most cases, however, the performance tradeoff will be minor enough so that you 
should always favor LINEAR_MIPMAP_LINEAR.

Generating mipmaps
WebGL doesn't automatically create mipmaps for every texture; so if we want to use one 
of the *_MIPMAP_* filter modes, we have to create the mipmaps for the texture first. 
Fortunately, all this takes is a single function call:

gl.generateMipmap(gl.TEXTURE_2D);

generateMipmap must be called after the texture has been populated with texImage2D 
and will automatically create a full mipmap chain for the image.

Alternately, if you want to provide the mipmaps manually you can always specify that you 
are providing a mipmap level rather than the source texture when calling texImage2D by 
passing a number other than 0 as the second parameter.

gl.texImage2D(gl.TEXTURE_2D, 1, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, 
mipmapImage);
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Here we're manually creating the first mipmap level, which is half the height and width 
of the normal texture. The second level would be quarter the dimensions of the normal 
texture, and so on. 

This can be useful in some advanced effects, or when using compressed textures which 
cannot be used with generateMipmap.

In order to use mipmaps with a texture it needs to satisfy some dimension restrictions. 
Namely, the texture width and height must both be Powers Of Two (POT). That is, the width 
and height can be pow(2,n) pixels, where n is any integer. Examples are 16px, 32px, 64px, 
128px, 256px, 512px, 1024px, and so on. Also, note that the width and height do not have  
to be the same as long as both are powers of two. For example, a 512x128 texture can still  
be mipmapped.

Why the restriction to power of two textures? Recall that the mipmap chain is made of 
textures whose sizes are half of the previous level. When the dimensions are powers of  
two this will always produce integer numbers, which means that the number of pixels  
never needs to be rounded off and hence produces clean and fast scaling algorithms.

Non Power Of Two (NPOT) textures can still be used with WebGL, but are restricted to only 
using NEAREST and LINEAR filters.

For all the texture code samples after this point, we'll be using a simple 
texture class that cleanly wraps up the texture's download, creation, and 
setup. Any textures created with the class will automatically have mipmaps 
generated for them and be set to use LINEAR for the magnification filter 
and LINEAR_MIPMAP_LINEAR for the minification filter.

Texture wrapping
In the previous section, we used texParameteri to set the filter mode for textures, but 
as you might expect from the generic function name, that's not all that it can do. Another 
texture behavior that we can manipulate is the texture wrapping mode.

Texture wrapping describes the behavior of the sampler when the texture coordinates fall 
outside the range of 0-1. 

The wrapping mode can be set independently for both the S and T coordinates, so changing 
the wrapping mode typically takes two calls:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
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Here we're setting both the S and T wrapping modes for the currently bound texture to 
CLAMP_TO_EDGE, the effects of which we will see in a moment.

As with texture filters, it's easiest to demonstrate the effects of the different wrapping 
modes via an example and then discuss the results. Let's open up your browser again for 
another demonstration.

Time for action – trying different wrap modes
1. Open the file ch7_Texture_Wrapping.html using your HTML5 Internet browser.

2. The cube shown has texture coordinates that range from -1 to 2, which forces the 
texture wrapping mode to be used for everything but the center tile of the texture. 

3. Experiment with the controls along the bottom to see the effect that the different 
wrap modes have on the texture.

What just happened?
Let's look at each of the wrap modes and discuss how they work.
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CLAMP_TO_EDGE

This wrap mode rounds any texture coordinates greater than 1 down to 1 and lower than 0 
up to 0, "clamping" the values to the 0-1 range. Visually, this has the effect of repeating the 
border pixels of the texture indefinitely once the coordinates go out of the 0-1 range. Note 
that this is the only wrapping mode that is compatible with NPOT textures.

REPEAT

This is the default wrap mode, and the one that you'll probably use most often.  
In mathematical terms this wrap mode simply ignores the integer part of the texture 
coordinate. This creates the visual effect of the texture repeating as you go outside the  
0-1 range. This can be a useful effect for displaying surfaces that have a natural repeating 
pattern to them, such as a tile floor or brick wall.
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MIRRORED_REPEAT

The algorithm for this mode is a little more complicated. If the coordinate's integer portion 
is even, the texture coordinates will be the same as with REPEAT. If the integer portion of the 
coordinate is odd, however, the resulting coordinate is 1 minus the fractional portion of the 
coordinate. This results in a texture that "flip-flops" as it repeats, with every other repetition 
being a mirror image.

As was mentioned earlier, these modes can be mixed and matched if needed. For example, 
consider the following code snippet:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);

It would produce the following effect on the texture from the sample:
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Wondering why the shader uniforms are called "samplers" instead of 
"textures"? A texture is just the image data stored on the GPU, while 
a sampler contains all the information about how to look up texture 
information, including filter and wrap modes.

Using multiple textures
Up to this point, we've been doing all of our rendering using a single texture at a time. 
As you've seen this can be a useful tool. But there are times where we may want to have 
multiple textures that contribute to a fragment to create more complex effects. For these 
cases, we can use the WebGL's ability to access multiple textures in a single draw call, 
otherwise known as multitexturing.

We've already brushed up against multitexturing earlier in a chapter, so let's go back and 
look at it again. When talking about exposing a texture to a shader as a sampler uniform we 
used the following code:

gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);

The first line, gl.activeTexture, is the key to utilizing multitexturing. We use it to tell  
the WebGL state machine which texture we are going to be manipulating with, in subsequent 
texture functions. In this case, we passed gl.TEXTURE0, which means that any following 
texture calls (such as gl.bindTexture) will alter the state of the first texture unit.  
If we wanted to attach a different texture to the second texture unit, we would use 
gl.TEXTURE1 instead.

Different devices will support different numbers of texture units, but WebGL specifies that 
compatible hardware must always support at least two texture units. We can find out how 
many texture units the current device supports with the following function call:

gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);

WebGL provides explicit enumerations for gl.TEXTURE0 thorough gl.TEXTURE31, which  
is likely more than your hardware is capable of using. Sometimes it is convenient to specify 
the texture unit programmatically, or you may find a need to refer a texture unit above 31.  
To that end, you can always substitute gl.TEXTURE0 + i for gl.TEXTUREi. For example:

gl.TEXTURE0 + 2 === gl.TEXTURE2;
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Accessing multiple textures in a shader is as simple as declaring multiple samplers.

uniform sampler2D uSampler;
uniform sampler2D uOtherSampler;

When setting up your draw call, you tell the shader which texture is associated with which 
sampler by providing the texture unit to gl.uniform1i. The code to bind two textures to 
the samplers above would look something like this:

// Bind the first texture
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.uniform1i(Program.uSampler, 0);

// Bind the second texture
gl.activeTexture(gl.TEXTURE1);
gl.bindTexture(gl.TEXTURE_2D, otherTexture);
gl.uniform1i(Program. uOtherSampler, 1);

So now we have two textures available to our fragment shader. The question is what do we 
want to do with them?

As an example we're going to implement a simple multitexture effect that layers another 
texture on top of a simple textured cube to simulate static lighting.

Time for action – using multitexturing
1. Open the file ch7_Multitexture.html with your choice of HTML editor.

2. At the top of the script block, add another texture variable:

var texture2 = null;

3. At the bottom of the configure function, add the code to load the second texture. 
As mentioned earlier, we're using a class to make this process easier, so the new 
code is as follows:

texture2 = new Texture();
texture2.setImage('textures/light.png');
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4. The texture we're using is a white radial gradient that simulates a spot light:

5. In the draw function, directly below the code that binds the first texture,  
add the following to expose the new texture to the shader:

gl.activeTexture(gl.TEXTURE1);
gl.bindTexture(gl.TEXTURE_2D, texture2.tex);
gl.uniform1i(Program.uSampler1, 1);

6. Next, we need to add the new sampler uniform to the fragment shader:

uniform sampler2D uSampler1;

7. Don't forget to add the corresponding string to the uniformList in the 
configure function.

8. Finally, we add the code to sample the new texture value and blend it with the 
first texture. In this case, since we want the second texture to simulate a light, we 
multiply the two values together as we did with the per-vertex lighting in the first 
texture example.

gl_FragColor = texture2D(uSampler, vTextureCoord) * 
texture2D(uSampler1, vTextureCoord);

9. Note that we're re-using the same texture coordinate for both textures. It's 
convenient to do so in this case, but if needed, a second texture coordinate attribute 
could have been used, or we could even calculate a new texture coordinate from the 
vertex position or other criteria.
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10. Assuming that everything works as intended, you should see a scene that looks like 
this when you open the file in your browser:

11. You can see the completed example in ch7_Multitexture_Finished.html.

What just happened?
We've added a second texture to the draw call and blended it with the first to create a new 
effect, in this case simulating a simple static spotlight.

It's important to realize that the colors sampled from a texture are treated just like any 
 other color in the shader, that is as a generic 4-dimensional vector. As a result, we can 
combine textures together just like we would combine vertex and light colors, or any  
other color manipulation.
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Have a go hero – moving beyond multiply
Multiplication is one of the most common ways to blend colors in a shader, but there's 
really no limit to how you can combine color values. Try experimenting with some different 
algorithms in the fragment shader and see what effect it has on the output. What happens 
when you add values instead of multiply? What if you use the red channel from one texture 
and the blue and green from the other? Or try out the following algorithm and see what the 
result is:

gl_FragColor = vec4(texture2D(uSampler2, vTextureCoord).rgb - 
texture2D(uSampler, vTextureCoord).rgb, 1.0);

Cube maps
Earlier in this chapter, we mentioned that aside from 2D textures the functions we've  
been discussing can also be used for cube maps. But what are cube maps and how  
do we use them?

A cube map is, very much like it sounds, a cube of textures. Six individual textures are 
created, each assigned to a different face of the cube. The graphics hardware can sample 
them as a single entity, using a 3D texture coordinate.

The faces of the cube are identified by the axis they face and whether they are on the 
positive or negative side of that axis.

Up until this point, any time we have manipulated a texture, we have specified a texture 
target of TEXTURE_2D. Cube mapping introduces a few new texture targets that indicate 
that we are working with cube maps, and which face of the cube map we're manipulating:

 � TEXTURE_CUBE_MAP

 � TEXTURE_CUBE_MAP_POSITIVE_X

 � TEXTURE_CUBE_MAP_NEGATIVE_X
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 � TEXTURE_CUBE_MAP_POSITIVE_Y

 � TEXTURE_CUBE_MAP_NEGATIVE_Y

 � TEXTURE_CUBE_MAP_POSITIVE_Z

 � TEXTURE_CUBE_MAP_NEGATIVE_Z

These targets are collectively known as the gl.TEXTURE_CUBE_MAP_* targets. Which one 
you use depends on the function you are calling.

Cube maps are created like a normal texture, but binding and property manipulation happen 
with the TEXTURE_CUBE_MAP target, as shown here:

var cubeTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexture);
gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, 
gl.LINEAR);
gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, 
gl.LINEAR);

When uploading the image data for the texture, however, you specify the side that you are 
manipulating as shown here:

gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X, 0, gl.RGBA, gl.RGBA, 
gl.UNSIGNED_BYTE, positiveXImage);
gl.texImage2D(gl.TEXTURE_CUBE_MAP_NEGATIVE_X, 0, gl.RGBA, gl.RGBA, 
gl.UNSIGNED_BYTE, negativeXImage);
gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_Y, 0, gl.RGBA, gl.RGBA, 
gl.UNSIGNED_BYTE, positiveYImage);
// Etc.

Exposing the cube map texture to the shader is done in the same way as a normal texture, 
just with the cube map target:

gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexture);
gl.uniform1i(Program.uCubeSampler, 0);

However, the uniform type within the shader is specific to cube maps:

uniform samplerCube uCubeSampler;

When sampling from the cube map, you also use a cube map-specific function:

gl_FragColor = textureCube(uCubeSampler, vCubeTextureCoord);
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The 3D coordinates that you provide is normalized by the graphics hardware into a unit 
vector, which specifies a direction from the center of the "cube". A ray is traced along that 
vector and where it intersects the cube face is where the texture is sampled.

Time for action – trying out cube maps
1. Open the file ch7_Cubemap.html using your HTML5 internet browser. Once again, 

this contains a simple textured cube example on top of which we'll build the cube 
map example. We want to use the cube map to create a reflective-looking surface.

2. Creating the cube map is a bit more complicated than the textures we've loaded in 
the past, so this time we'll use a function to simplify the asynchronous loading of 
individual cube faces. It's called loadCubemapFace and has already been added to 
the configure function. Below that function, add the following code which creates 
and loads the cube map faces:

cubeTexture = gl.createTexture();

gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexture);
gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, 
gl.LINEAR);
gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, 
gl.LINEAR);
loadCubemapFace(gl, gl.TEXTURE_CUBE_MAP_POSITIVE_X, cubeTexture, 
'textures/cubemap/positive_x.png');
loadCubemapFace(gl, gl.TEXTURE_CUBE_MAP_NEGATIVE_X, cubeTexture, 
'textures/cubemap/negative_x.png');
loadCubemapFace(gl, gl.TEXTURE_CUBE_MAP_POSITIVE_Y, cubeTexture, 
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'textures/cubemap/positive_y.png');
loadCubemapFace(gl, gl.TEXTURE_CUBE_MAP_NEGATIVE_Y, cubeTexture, 
'textures/cubemap/negative_y.png');
loadCubemapFace(gl, gl.TEXTURE_CUBE_MAP_POSITIVE_Z, cubeTexture, 
'textures/cubemap/positive_z.png');
loadCubemapFace(gl, gl.TEXTURE_CUBE_MAP_NEGATIVE_Z, cubeTexture, 
'textures/cubemap/negative_z.png');

3. In the draw function, add the code to bind the cube map to the  
appropriate sampler:

gl.activeTexture(gl.TEXTURE1);
gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexture);
gl.uniform1i(Program.uCubeSampler, 1);

4. Turning to the shader now, first off we want to add a new varying to the vertex 
and fragment shader:

varying vec3 vVertexNormal;

5. We'll be using the vertex normals instead of a dedicated texture coordinate to do 
the cube map sampling, which will give us the mirror effect that we're looking for. 
Unfortunately, the actual normals of each face on the cube point straight out. If we 
were to use them, we would only get a single color per face from the cube map. In 
this case, we can "cheat" and use the vertex position as the normal instead. (For 
most models, using the normals would be appropriate).

vVertexNormal = (uNMatrix * vec4(-aVertexPosition, 1.0)).xyz; 

6. In the fragment shader, we need to add the new sampler uniform:

uniform samplerCube uCubeSampler;

7. And then in the fragment shader's main function, add the code to actually sample 
the cubemap and blend it with the base texture:

gl_FragColor = texture2D(uSampler, vTextureCoord) * 
textureCube(uCubeSampler, vVertexNormal);
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8. We should now be able to reload the file in a browser and see the scene shown  
in the next screenshot:

9. The completed example is available in ch7_Cubemap_Finished.html.

What just happened?
As you rotate the cube, you should notice that the scene portrayed in the cube map does 
not rotate along with it, which creates a "mirror" effect in the cube faces. This is due to 
multiplication of the normals by the normal matrix when assigning the vVertexNormal 
varying, which puts the normals in world space.

Using cube maps for reflective surfaces like this is a very common technique, but not the 
only use for cube maps. Other common uses are for skyboxes or advanced lighting models.

Have a go hero – shiny logo
In this example, we've created a completely reflective "mirrored" cube, but what if the only 
part of the cube we wanted to be reflective was the logo? How could we constrain the cube 
map to only display within the red portion of the texture?
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Summary
In this chapter we learned how to use textures to add a new level of detail to our scenes. 
We covered how to create and manage texture objects, and use HTML images as textures. 
We examined the various filter modes and how they affect the texture appearance and 
usage, as well as the available texture wrapping modes and how they alter the way texture 
coordinates are interpreted. We learned how to use multiple textures in a single draw call, 
and how to combine them in a shader. Finally, we learned how to create and render cube 
maps, and saw how they can be used to simulate reflective surfaces.

Coming up in the next chapter, we'll look at selecting and interacting with objects in the 
WebGL scene with your mouse, otherwise known as picking.





8
Picking

Picking refers to the ability of selecting objects in a 3D scene by pointing at 
them. The most common device used for picking is the mouse. However, picking 
can also be performed using other human computer interfaces such as tactile 
screens and haptic devices. In this chapter we will see how picking can be 
implemented in WebGL.

This chapter talks about:

 � Selecting objects in a WebGL scene using the mouse

 � Creating and using offscreen framebuffers

 � What renderbuffers are and how they are used by framebuffers

 � Reading pixels from framebuffers

 � Using color labels to perform object selection based on color

Picking
Virtually any 3D computer graphics application needs to provide mechanisms for the user to 
interact with the scene being displayed on the screen. For instance, you are writing a game 
you want to point at your target and perform an action upon it. Similarly, if you are writing a 
CAD system, you want to be able to select an object in your scene to modify its properties.  
In this chapter, we will see the basis of implementing these kinds of interactions in WebGL.
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We could select objects by casting a ray (vector) from the camera position (also known as 
eye position) into the scene and calculate what objects lie along the ray path. This is known 
as ray casting and it involves detecting intersections between the ray and object surfaces in 
the scene. However, because of its complexity it is beyond the scope of this beginner's guide. 
Instead, we will use picking based on object colors. This method is easier to implement and it 
is a good starting point to help you understand how picking works.

The basic idea is to assign a different color to every object in the scene and render the scene 
to an offscreen framebuffer. Then, when the user clicks on the scene, we go to the offscreen 
framebuffer and read the color for the correspondent click coordinates. As we assigned 
beforehand the object colors in the offscreen buffer, we can identify the object that has  
been selected and perform an action upon it. The following figure depicts this idea:

Let's break it down into the steps that we need to take.
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Setting up an offscreen framebuffer
As shown in Chapter 2, Rendering Geometry, the framebuffer is the final rendering 
destination in WebGL. When you visualize a scene on your screen, you are looking 
at the framebuffer contents. Assuming that gl is our WebGL context, every call to 
gl.drawArrays, gl.drawElements, and gl.clear will change the contents  
of the framebuffer.

Instead of rendering to the default framebuffer, we can also render our scene offscreen. This 
will be the first step for implementing picking. To do so, we need to set up a new framebuffer 
and tell WebGL that we want to use it instead of the default one. Let's see how to do that.

To set up a framebuffer, we need to be able to create storage for at least two things: 
colors and depth information. We need to be able to store the color for every fragment 
that is rendered in the framebuffer so we can create an image; in contrast, we need depth 
information to make sure that we have a scene where overlapping objects look consistent. 
If we did not have depth information, then we would not be able to tell, in the case of two 
overlapping objects, which object is in front and which one is at the back.

To store colors we will use a WebGL texture, and to store depth information we will  
use a renderbuffer.

Creating a texture to store colors
The code to create a texture is pretty straightforward after reading Chapter 7, Textures.  
If you have not read it, you can go back there and review that chapter.

var canvas = document.getElementById('canvas-element-id');
var width = canvas.width;
var height = canvas.height;
var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, 
gl.UNSIGNED_BYTE, null);

The only difference here is that we do not have an image to bind to the texture so when 
we call gl.texImage2D, the last argument is null. This is ok, as we are just allocating the 
space to store colors for the offscreen framebuffer.

Also, please notice that the width and height of the texture are set to the canvas size.
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Creating a Renderbuffer to store depth information
Renderbuffers are used to provide storage for the individual buffers used in a framebuffer. 
The depth buffer (z-buffer) is an example of a renderbuffer.It is always attached to the screen 
framebuffer which is the default rendering destination in WebGL.

The code to create a renderbuffer looks like the following code:

var renderbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, width, 
height);

The first line of code creates the renderbuffer. Similar to other WebGL buffers, the 
renderbuffer needs to be bound before we can operate on it. The third line of code 
determines the storage size of the renderbuffer.

Please notice that the size of the storage is the same as with the texture. This way we make 
sure that for every fragment (pixel) in the framebuffer, we can have a color (stored in the 
texture) and a depth value (stored in the renderbuffer).

Creating a framebuffer for offscreen rendering
We need to create a framebuffer and attach the texture and the renderbuffer that  
we created in the two previous steps to it. Let's see how this works in code.

First, we create a new framebuffer using a line of code like this:

var framebuffer = gl.createFramebuffer();

Similar to the VBO manipulation, we will tell WebGL that we are going to operate  
on this framebuffer by making it the currently bound framebuffer. We do so with  
the following instruction:

gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);

With the framebuffer bound, the texture is attached by calling the following method:

gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, 
gl.TEXTURE_2D, texture, 0);

Then, the renderbuffer is attached to the bound framebuffer using:

gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, 
gl.RENDERBUFFER, renderbuffer);
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Finally, we do a bit of cleaning up as usual:

gl.bindTexture(gl.TEXTURE_2D, null);
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);

When the previously created framebuffer is unbound, the WebGL state machine goes back 
to rendering into the screen framebuffer.

Assigning one color per object in the scene
We will pick an object based on its color. If the object has shiny reflections or shadows,  
then the color throughout it will not be uniform. Therefore, to pick an object based on its 
color we need to make sure that the color is constant per object and that each object has  
a different color.

We achieve constant coloring by telling the fragment shader to use only the material diffuse 
property to set the ESSL gl_FragColor variable. Here we are assuming that each object 
has a unique diffuse property.

When there are objects sharing the same diffuse color, then we need to create a new ESSL 
uniform to store the picking color and make it unique for every object that is rendered into 
the offscreen framebuffer. This way, the objects will look the same when they are rendered 
on screen but every time we render them into the offscreen framebuffer, their colors will be 
unique. This is something that we will do later on in this chapter.

For now, let's assume that the objects in our scene have unique diffuse colors as shown in 
the following diagram:

Let's see how to render the scene offscreen using the framebuffer that we just set up.
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Rendering to an offscreen framebuffer
In order to perform object selection using the offscreen framebuffer, this one has to be 
synchronized with the onscreen default framebuffer every time that this last one receives an 
update. If the onscreen framebuffer and the offscreen framebuffer were not synchronized, 
then we could be missing addition or deletion of objects, or updates in the camera position 
between buffers. As a result of it there would not be a correspondence.

A lack of correspondence will hinder us from reading the picking colors from the offscreen 
framebuffer and use them to identify the objects in the scene. We can also refer to picking 
colors as object labels.

To implement this synchronicity, we will create the render function. This function calls 
the draw function twice. First when the offscreen buffer is bound and second time when 
onscreen default framebuffer is bound. The code looks like this:

function render(){
    //off-screen rendering
    gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);     
    gl.uniform1i(Program.uOffscreen, true);
    draw();
       
    //on-screen rendering
    gl.bindFramebuffer(gl.FRAMEBUFFER, null);
    gl.uniform1i(Program.uOffscreen, false);
    draw();
}

We tell the ESSL program to use only diffuse colors when rendering into the offscreen 
framebuffer using the uOffscreen uniform. The fragment shader looks like the  
following code:

void main(void) {
    if(uOffscreen){
        gl_FragColor = uMaterialDiffuse;
        return;
    }
...
}
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The following diagram shows the behavior of the render function:

Consequently, every time that there is a scene update the render function should be called 
instead of calling the draw function.

We change this in the runWebGLApp function:

var app = null;
function runWebGLApp() {
    app = new WebGLApp("canvas-element-id");
    app.configureGLHook = configure;
    app.loadSceneHook   = load;
    app.drawSceneHook   = render;
    app.run();
}

In this way, the scene will be periodically updated using the render function instead of the 
original draw function.

We also need to update the function hook that the camera uses to render the scene 
whenever we interact with it. Originally, this hook is set to the draw function. If we do 
not change it, it points to the render function. We will have to wait until WebGLApp.
drawSceneHook is invoked again to synchronize the offscreen and the onscreen 
framebuffers (every 500 ms by default as you can check in WebGLApp.js). During  
this time, picking will not work.
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We change the camera render hook in the configure function:

function configure{
...
camera = new Camera(CAMERA_ORBITING_TYPE);
camera.goHome([0,0,40]);
camera.setFocus([0.0,0.0,0.0]);
camera.setElevation(-40);
camera.setAzimuth(-30);
camera.hookRenderer = render;

...

}

Clicking on the canvas
The next step is to capture the mouse coordinates when the user clicks on an object in  
the scene and reads the color value for these coordinates from the offscreen framebuffer.

For that, we use the standard onmouseup event from the canvas element in our webpage:

var canvas = document.getElementById('my-canvas-id');

canvas.onmouseup = function (ev){
    //capture coordinates from the ev event
    ...
}

There is an extra bit of work to do here given that the ev event does not return the mouse 
coordinates with respect to the canvas but with respect to the upper-left corner of the 
browser window (ev.clientX and ev.clientY). Then, we need to bubble up through the 
DOM getting the location of the elements that are in the DOM hierarchy to know the total 
offset that we have.

We do this with a code fragment like this inside the canvas.onmouseup function:

var x, y, top = 0, left = 0, obj = canvas;

while (obj&& && obj.tagName !== 'BODY') {
  top  += obj.offsetTop;
  left += obj.offsetLeft;
  obj   = obj.offsetParent;
}
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The following diagram shows how we are going to use the offset calculation to obtain the 
clicked canvas coordinates: 

Also, we take into account any page offset if present. The page offset is the result of scrolling 
and affects the calculation of the coordinates. We want to obtain the same coordinates for 
the canvas every time regardless of any possible scrolling. For that we add the following two 
lines of code just before calculating the clicked canvas coordinates:

left += window.pageXOffset;
top  -= window.pageYOffset;

Finally, we calculate the canvas coordinates:

x = ev.clientX - left;
y = c_height - (ev.clientY - top);  

Remember that unlike the browser window, the canvas coordinates (and also the 
framebuffer coordinates for this purpose) start in the lower-left corner as explained  
in the previous diagram.
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c_height is a global variable that we are maintaining in the file 
codeview.js, it refers to the canvas height and it is updated along with 
c_width whenever we resize the browser's window. If you are developing 
your own application, codeview.js might not be available or applicable 
and then you might want to replace c_height in this snippet of code 
by something like clientHeight which is a standard canvas property. 
Also, notice that resizing the browser window will not resize your canvas. 
The exercises in this book do, because we have implemented this inside 
codeview.js.

Reading pixels from the offscreen framebuffer
We can go now to the offscreen buffer and read the color from the coordinates that we 
clicked on the canvas.

WebGL allows us to read back from a framebuffer using the readPixels function. As usual, 
having gl as the WebGL context variable:
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Function Description

gl.readPixels(x, y, width, 
height, format, type, pixels)

x and y: Starting coordinates.

width, height: The extent of pixels to read 
from the framebuffer. In our example we are just 
reading one pixel (where the user clicks) so this 
will be 1,1.

format: At the time of writing this book the only 
supported format is gl.RGBA.

type: At the time of writing this book the only 
supported type is gl.UNSIGNED_BYTE.

pixels: It is a typed array that will contain 
the results of querying the framebuffer. It 
needs to have sufficient space to store the 
results depending on the extent of the query 
(x,y,width,height).

According to the WebGL specification at the 
time of writing this book it needs to be of type 
Uint8Array.

Remember that WebGL works as a state machine and many operations only make sense if 
this machine is in a valid state. In this case, we need to make sure that the framebuffer from 
which we want to read, the offscreen framebuffer, is the current one. To do that, we bind it 
using bindFramebuffer. Putting everything together, the code looks like this:

//read one pixel
var readout = new Uint8Array(1 * 1 * 4);
    
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.readPixels(coords.x,coords.y,1,1,gl.RGBA,gl.UNSIGNED_BYTE,readout);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);

Here the size of the readout array is 1*1*4. This means it has one pixel of 
width times one pixel height times four channels, as the format is RGBA. You 
do not need to specify the size this way; we just did it so that it was clear why 
the size is 4 when we are just retrieving one pixel.
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Looking for hits
We are going to check now whether or not the color that was obtained from the off-screen 
framebuffer corresponds to any of the objects in the scene. Remember here that we are 
using colors as object labels. If the color matches one of the objects then we call it a hit.  
If it does not we call it a miss.

When looking for hits, we compare each object's diffuse color with the label obtained from 
the offscreen framebuffer. There is a consideration to make here: each color channel of the 
label is in the [0,255] range while the object diffuse colors are in the [0,1] range. So, we 
need to consider this before we can actually check for any possible hits. We do this in the 
compare function:

function compare(readout, color){
  return (Math.abs(Math.round(color[0]*255) - readout[0]) <= 1 &&
      Math.abs(Math.round(color[1]*255) - readout[1]) <= 1 && 
      Math.abs(Math.round(color[2]*255) - readout[2]) <= 1);
} 

Here we are scaling the diffuse property to the [0,255] range and then we are comparing 
each channel individually. Note that we do not need to compare the alpha channel. If we 
had the two objects with the same color but different alpha channel, we would use the 
alpha channel in the comparison as well but in our example we do not have that scenario, 
therefore the comparison of the alpha channel is not relevant.

Also, note that the comparison is not precise because of the fact that we are dealing with 
decimal values in the [0,1] range. Therefore, we assume that after rescaling colors in this 
range and subtracting the readout (object label) if the difference is less than one for all the 
channels then we have a hit. The less then or equal to one comparison is a fudge factor.

Now, we just need to go through the object list in the Scene object and check if we have a 
miss or a hit. We are going to use two auxiliary variables here: found, which will be true in 
case of having a hit and pickedObject to retrieve the object that was hit.

var pickedObject = null, ob = null;
for(var i = 0, max = Scene.objects.length; i < max; i+=1){
    ob = Scene.objects[i];
    if (compare(readout, ob.diffuse)){
     pickedObject = ob;
        break;
    }
}        

The previous snippet of code will tell us if we have had a hit or a miss, and also what object 
we hit.
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Processing hits
Processing a hit is a very wide concept. It basically depends on the type of application that 
you are building. For instance if your application is a CAD system, you might want to retrieve 
on screen the properties of the object that you picked to edit them. You might also want to 
move the object or change its dimensions. In contrast, if you are developing a game, you 
could have selected the next target that your main character has to fight. We will leave this 
part of the code for you to decide. Nevertheless, we have included a simple example in the 
next Time for action section where you can drag-and-drop objects, which is one of the most 
common interactions you could have with your scene.

Architectural updates
The picking method described in this chapter has been implemented in our architecture:
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We have replaced the draw function with the render function. This function is the same 
that we previously described in the section Rendering to an offscreen framebuffer.

There is a new class: Picker. The source code for this class can be obtained from /js/
webgl/Picker.js. This class encapsulates the offscreen framebuffer and encapsulates  
the code necessary to create it, configure it, and read from it.

We also updated the class CameraInteractor to notify the picker whenever the user clicks 
on the canvas. The following diagram explains how the picking algorithm is implemented 
using the Render function and the classes Picker and CameraInteractor:

The source code for Picker and CameraInteractor can be found 
in the code accompanying this chapter under /js/webgl.

Now let's see picking in action!
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Time for action – picking
1. Open the file ch8_Picking.html using your HTML5 Internet browser. You will see 

a screen similar to this:

Here you have a set of objects, each one of which has a unique diffuse color 
property. As in the previous exercises you can rotate the camera around the scene. 
Please notice that the cube has a texture and that the flat disk is translucent. As you 
may expect, the code in the draw function handles textures coordinates and also 
transparencies, so it looks a bit more complex than before (you can check it out in 
the source code). This is a more realistic draw function. In a real application, you will 
have to handle these variables.

2. Click on the sphere and drag it around the scene. Notice that the object becomes 
translucent. Also, note that the displacement occurs along the axis of the camera.  
To make this evident, please go to your web browser's console and type:

camera.setElevation(0);

You will see that the camera updates its position to an elevation of zero degrees  
as shown in the following screenshot:
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To access the console using: 
Firefox go to Tools | Web Developer | Web Console  
Safari go to Develop | Show Web Inspector 
Chrome go to Tools | Javascript Console

3. Now when you click-and-drag objects in the scene from this perspective, you will 
see that they change their position according to the camera axis. In this case the 
up axis of the camera is aligned with the scene's y axis. If you move an object up 
and down, you will see that they change their position in the y coordinate. If you 
change the camera position (by clicking on the background and dragging the mouse 
around) and then you pick and move a different object, you will see that this moves 
according to the new camera axis.

Try different camera angles and see what happens.

4. Now let's see what the offscreen framebuffer looks like. Click on the Show Picking 
Image button. Here we are instructing the fragment shader to use each of the object 
diffuse properties to color the fragments. You can also rotate the scene and pick 
objects in this mode. If you want to go back to the original shading method, click 
again on Show Picking Image to deactivate it.

5. To reset the scene, click on Reset Scene.

What just happened?
We have seen an example of picking in action. The source code uses the Picker object  
that we previously described in the architectural update section. Let's examine it a bit closer.

Picker architecture
The following diagram tells us what happens in the Picker object when the user clicks  
the mouse on the canvas, drags it, and releases it:
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User interaction with Picker and Picker Callbacks

User clicks on Canvas

Picker seaches for hit

Picker finds hit

Start Picking Mode

in picking

list?
Remove hit from picking list

Add hit to picking list

drags mouse

Stays in picking

mode

Is shift

pressed

releases mouse button

moveCallback

hitPropertyCallback

removeHitCallback

addHitCallback

End Picking Mode

processHitsCallback

yes

no

yes

no

User
Picker
callback

As you can see, every picker state has a callback function associated to it:

State Callback

Picker searches for hit hitPropertyCallback(object): This callback informs the 
picker which object property we will use to make the comparison 
with the color retrieved from the offscreen framebuffer.

User drags mouse in picking 
mode

moveCallback(hits,interactor, dx, dy): When the 
picking mode is activated (by having picked at least one object), this 
callback allows us to move the objects in the picking list (hits). 
This list is maintained internally by the Picker class.

Remove hit from picking list addHitCallback(object): If we click on an object and this 
object is not in the picking list, the picker notifies the application by 
triggering this callback.

Add hit to picking list removeHitCallback(object): If we click on an object and 
this object is already in the picking list, the picker will remove it 
from the list and then it will inform the application by triggering 
this callback.

End Picking Mode processHitsCallback(hits): if the user releases the 
mouse button and the Shift key is not pressed when this happens, 
then the picking mode finishes and the application is notified by 
triggering this callback. If the Shift key is pressed then the picking 
mode continues and the picker waits for a new click to continue 
looking for hits.
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Implementing unique object labels
We previously mentioned that picking based on the diffuse property could be difficult if 
two or more objects in the scene share the same diffuse color. If that were the case and you 
selected one of them, how would you know which one is picked based on its color? In the 
next Time for Action section, we will implement unique object labels. The objects will be 
rendered in the offscreen framebuffer using these color labels instead of the diffuse colors. 
The scene will still be rendered on screen using the non-unique diffuse colors.

Time for action – unique object labels
This section is divided in two parts. In the first part you will develop the code to generate a 
random scene with cones and cylinders. Each object will be assigned a unique object label 
that will be used for coloring the object in the offscreen renderbuffer. In the second part,  
we will configure the picker to work with unique labels. Let's get started!

1. Creating a random scene: Open the ch8_Picking_Scene_Initial.html file in 
your HTML5 browser. As you can see this is a scene that is only showing the floor 
object. We are going to create a scene that contains multiple objects that can be 
either balls or cylinders.

2. Open ch8_Picking_Scene_Initial.html in a source code editor.

We will write code so each object in the scene can have:

 � A position assigned randomly

 � A unique object label color

 � A non-unique diffuse color

 � A scale factor that will determine the size of the object

3. We have provided empty functions that you will implement in this section.

4. Let's start by writing the positionGenerator function. Scroll down to it  
and add the following code:

function positionGenerator(){    
    var x = Math.floor(Math.random()*60);
    var z = Math.floor(Math.random()*60);
    var flagX = Math.floor(Math.random()*10);
    var flagZ = Math.floor(Math.random()*10);
    
    if (flagX >= 5) {x=-x;}
    if (flagZ >= 5) {z=-z;}
    return [x,0,z];
}
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Here we are using the Math.random function to generate the x and z coordinates 
for an object in the scene. Since Math.random always returns a positive number, 
we use the flagX and flagZ variables to randomly distribute the objects on 
the x-z plane (floor). Also, as we want all the objects to be on the x-z plane, the y 
component is set to zero in the return statement.

5. Now let's write a unique object label generator function. Scroll to the empty 
objectLabelGenerator function and add this code:

var colorset = {};
function objectLabelGenerator(){
    var color = [Math.random(), Math.random(),Math.random(),1.0];
    var key = color[0] + ':' + color[1] + ':' + color[2];

    if (key in colorset){
        return uniqueColorGenerator();
    }
    else {
        colorset[key] = true;
        return color;
    }
}

Here we are creating a random color using the Math.random function. If the 
key variable is already a property of the colorset object then we call the 
objectLabelGenerator function recursively; otherwise, we make key a property 
of colorset and then return the respective color. Notice how nicely the idea of 
handling JavaScript objects as sets allows here to resolve possible key collisions.

6. Now write the diffuseColorGenerator function. We will use this function  
to assign diffuse properties to the objects.

function diffuseColorGenerator(index){
    var c = (index % 30 / 60) + 0.2;
    return [c,c,c,1];
}

This function represents the case where we want to generate colors that are not 
unique. The index parameter represents the index of the object in the Scene.
objects list to which we are assigning the diffuse color. In this function we are 
creating a gray-level color as the r, g, and b components in the return statement  
all have the same c value.
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The diffuseColorGenerator function will create collisions every 30 indices. The 
remainder of the division of the index by 30 will create a loop in the sequence:

0 % 30 = 0
1 % 30 = 1
…
29 % 30 = 29
30 % 30 = 0
31 % 30 = 1
… 

As this result is being divided by 60, the result will be a number in the [0, 0.5] 
range. Then we add 0.2 to make sure that the minimum value that c has is 0.2. 
This way the objects will not look too dark during the onscreen rendering  
(they would be black if the calculated diffuse color were zero).

7. The last auxiliary function that we will write is the scaleGenerator function:

function scaleGenerator() {
    var f = Math.random()+0.3; 
    return [f, f, f];
}

This function will allow us to have objects of different sizes. 0.3 is added to control 
the minimum scaling factor that any object will have in the scene.

Now let's load 100 objects to our scene. By the end of this section you will be able 
to test picking on any of them!

8. Go to the load function and edit it so it looks like this: 

function load(){
    Floor.build(80,5);
    Floor.pcolor = [0.0,0.0,0.0,1.0];
    Scene.addObject(Floor);
    
    var positionValue, 
    scaleFactor, 
    objectLabel, 
    objectType, 
    diffuseColor; 

    for (var i = 0; i < 100; i++){
        positionValue = positionGenerator();

           objectLabel = objectLabelGenerator();

        scaleFactor = scaleGenerator();
        diffuseColor = diffuseColorGenerator(i);
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        objectType = Math.floor(Math.random()*2);

        switch (objectType){

            case 1: Scene.loadObject('models/geometry/sphere.
json',
                                     'ball_'+i,
                                     {
                                       position:positionValue,
                                       scale:scaleFactor, 
                                       diffuse:diffuseColor, 

                                       pcolor:objectLabel

                                     }); 
                    break;             
                                       
            case 0: Scene.loadObject('models/geometry/cylinder.
json',             
                                     'cylinder_'+i,
                                     {
                                       position:positionValue,
                                       scale:scaleFactor, 
                                       diffuse:diffuseColor, 

                                       pcolor:objectLabel

                                     }); 
                    break;
        } 
   }
}

Note here that the picking color is represented by the pcolor attribute. This 
attribute is passed in a list of attributes to the loadObject function from the 
Scene object. Once the object is loaded (using the JSON/Ajax mechanism discussed 
in Chapter 2, Rendering Geometry), loadObject uses this list of attributes and adds 
them as object properties.

9. Using unique labels in the fragment shader: The shaders in this exercise have 
already been set up for you. The pcolor property that corresponds to the unique 
object label is mapped to the uPickingColor uniform and the uOffscreen 
uniform determines if it is used or not in the fragment shader:

uniform vec4 uPickingColor;
... //other uniforms and varyings
main(void){
if(uOffscreen){
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      gl_FragColor = uPickingColor;
      return;
    }
    else {
    ... //on-screen rendering
    }
}

10. As mentioned before, we keep the offscreen and onscreen buffer in sync using the 
render function which looks like this:

function render(){
    //off-screen rendering
    gl.bindFramebuffer(gl.FRAMEBUFFER, picker.framebuffer);
    gl.uniform1i(Program.uOffscreen, true);
    draw();
    //on-screen rendering
    gl.uniform1i(Program.uOffscreen, showPickingImage);
    gl.bindFramebuffer(gl.FRAMEBUFFER, null);
    draw();
}

11. Save your work as ch8_Picking_Scene_NoPicker.html.

12. Open ch8_Picking_Scene_Final_NoPicker.html in your HTML5 Internet 
browser. As you can see the scene is generated as expected.

13. Click on Show Picking Image. What happens?

14. The scene is being rendered in the offscreen framebuffer and in the default 
(onscreen) framebuffer. However, we have not configured the Picker object 
callbacks yet.

15. Configuring the picker to work with unique object labels: Open ch8_Picking_
Scene_Final_NoPicker.html in your source code editor.

16. Scroll down to the configure function. As you can see, the picker is already set up 
for you:

picker = new Picker(canvas);
picker.hitPropertyCallback = hitProperty;
picker.addHitCallback = addHit;
picker.removeHitCallback = removeHit;
picker.processHitsCallback = processHits;
picker.moveCallback = movePickedObjects;
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This code fragment maps functions in the web page to picker callback hooks. These 
callbacks are invoked according to the picking state. If you need to review how this 
works, please go back to the Picker Architecture section.

In this part of the section, we are going to implement these callbacks. Again, we 
have provided empty functions that you will need to code.

17. Let's create the hitProperty function. Scroll down to the empty hitProperty 
function and add this code:

function hitProperty(ob){
    return ob.pcolor;
}

Here we are telling the picker to use the pcolor property to make the comparison 
with the color that will be read from the offscreen framebuffer. If these colors match 
then we have a hit.

18. Now we are going to write the addHit and removeHit functions. We want to 
create the effect where the diffuse color is changed to the picking color during 
picking. For that we need an extra property to save temporarily the original diffuse 
color so we can restore it later :

function addHit(ob){
    ob.previous = ob.diffuse.slice(0);     
    ob.diffuse = ob.pcolor;
    render();
}

The addHit function stores the current diffuse color in an auxiliary property named 
previous. Then it changes the diffuse color to pcolor, the object picking label.

function removeHit(ob){
    ob.diffuse = ob.previous.slice(0);
    render();
}

The removeHit function restores the diffuse color. In both functions we are calling 
render which we will implement later.

19. Now let's write the code for processHits:

function processHits(hits){
    var ob;
    for(var i = 0; i< hits.length; i+=1){
        ob = hits[i];
        ob.diffuse = ob.previous;
    }
    render();
}
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Remember that processHits is called upon exiting picking mode. This function  
will receive one parameter: the hits that the picker detected. Each element of  
the hits list is an object in the scene. In this case, we want to give back the hits 
their diffuse color. For that we use the previous property that we set in the 
addHit function.

20. The last picker callback that we need to implement is the  
movePickedObjects function:

function movePickedObjects(hits,interactor,dx,dy){
    if (hits == 0) return;
    var camera = interactor.camera;
    var depth = interactor.alt;
    var factor = Math.max(Math.max(
                                 camera.position[0], 
                                 camera.position[1]), 
                                 camera.position[2])/1000;

    var scaleX, scaleY;
    for (var i = 0, max = hits.length; i < max; i+=1){
        scaleX = vec3.create();
        scaleY = vec3.create();
        if (depth){
            //moving along the camera normal vector
            vec3.scale(camera.normal, dy * factor, scaleY);
        }
        else{ 
            //moving along the plane defined by the up and right 
            //camera vectors
            vec3.scale(camera.up, -dy * factor, scaleY);
            vec3.scale(camera.right, dx * factor, scaleX);
        }
        vec3.add(hits[i].position, scaleY);
        vec3.add(hits[i].position, scaleX);
        
    }
    render();
}

This function allows us to move the objects in the hits list interactively.  
The parameters that this callback function receives are:

 � hits: The list of objects that have been picked

 � interactor: The camera interactor object that is set up in the  
configure function
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 � dx: Displacement in the horizontal direction obtained from the mouse 
when it is dragged on the canvas

 � dy: Displacement in the vertical direction obtained from the mouse  
when it is dragged on the canvas.

Let's analyze the code. First, if there are no hits the function returns immediately.

if (hits == 0) return;

Otherwise, we obtain a reference to the camera and we determine if the user  
is pressing the Alt key.

var camera = interactor.camera;
var depth =  interactor.alt;

We calculate a weighing factor that we will use later (fudge factor):

factor = Math.max(Math.max(
                            camera.position[0], 
                            camera.position[1]), 
                            camera.position[2])/1000;

Next we create a loop to go through the hits list so we can update each  
object position:

Var scaleX, scaleY; 
for (var i = 0, max = hits.length; i < max; i+=1){
        scaleX = vec3.create();
        scaleY = vec3.create();    

The scaleX and scaleY variables are initialized for every hit.

As we have seen in previous exercises, the Alt key is being used to perform dollying 
(move the camera along its normal). In this case we want to move the objects that 
are in the picking list along the camera normal direction when the user is pressing 
the Alt key to provide a consistent user experience.

To move the hits along the camera normal we use the dy (up-down) displacement 
as follows:

if (depth){
    vec3.scale(camera.normal, dy * factor, scaleY);
}

This creates a scaled version of camera.normal and stores it into the scaleY 
variable. Notice that vec3.scale is an operation available in the glMatrix library.



Picking

[ 282 ]

If the user is not pressing the Alt key then we use dx (left-right) and dy (up-down) to 
move the hits in the camera plane. Here we use the camera up and right vectors 
like this to calculate the scaleX and scaleY parameters:

else {
    vec3.scale(camera.right, dx * factor, scaleX); 
    vec3.scale(camera.up,   -dy * factor, scaleY);
}

Finally we update the position of the hit:

vec3.add(hits[i].position, scaleY);
vec3.add(hits[i].position, scaleX);
}

After calculating  the new position for all hits we call render:

render();
}

21. Testing the scene: Save the page as ch8_Picking_Scene_Final.html and open 
it using your HTML5 web browser.

22. You will see a scene as shown in the following screenshot:

23. Click on Reset Scene several times and verify that you get a new scene every time.

24. In this scene, all the objects have very similar colors. However, each one has  
a unique picking color. To verify that click on the Show Picking Image button.  
You will see on screen what it is being rendered in the offscreen buffer:
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25. Now let's validate the changes that we made to the picker callbacks. Let's start by 
picking one object. As you see, the object diffuse color becomes its picking color 
(this was the change you implemented in the addHit function):

26. When the mouse is released, the object goes back to the original color! This is the 
change that was implemented in the processHits function.

27. While the mouse button is held down over an object, you can drag it around.  
While this is done, the movePickedObjects is being invoked.
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28. If the Shift key is pressed while objects are being selected, you will be telling the 
picker not to exit picking mode. This way you can select and move more than one 
object at once:

29. You will exit picking mode if you select  an object and the Shift key is no longer 
pressed or if your next click does not produce any hits (in other words: clicking 
anywhere else).

If you have any problems with the exercise or you missed one 
of the steps, we have included the complete exercise in the files 
ch8_Picking_Scene_NoPicker.html and ch8_Picking_
Scene_Final.html.

What just happened?
We have done the following:

 � Created the property picking color. This property is unique for every object  
in the scene and allows us to implement picking based on it.

 � Modified the fragment shader to use the picking color property by including  
a new uniform: uPickingColor and mapping this uniform to the pcolor  
object property.

 � Learned about the different picking states. We have also learned how to modify 
the Picker callbacks to perform specific application logic such as removing picked 
objects from the scene.
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Have a go hero – clearing the scene
Rewrite the processHits function to remove the balls in the hit list from the scene.  
If the user has removed all the balls from the scene then display a message telling the 
elapsed time accomplishing this task.

Hint 1: Use Scene.removeObject(ob.alias) in the processHits function if alias 
starts with ball_.

Hint 2: Once the hits are removed from the scene, go again through the Scene.objects list 
and make sure that there are no objects whose alias starts with ball_.

Hint 3: Use a JavaScript timer to measure and display the elapsed time until task completion.

Summary
In this chapter, we have learned how to implement color-based picking in WebGL. Picking 
based on a diffuse color is a bad idea because there could be scenarios where several objects 
have the same diffuse color. It is better to assign a new color property that is unique for 
every object to perform picking. We called this property picking color/object label.

Through the discussion of the picking implementation, we learned that WebGL provides 
mechanisms to create offscreen framebuffers and that what we see on screen when we 
render a scene corresponds to the default framebuffer contents.

We also studied the difference between a framebuffer and a renderbuffer. We saw that a 
renderbuffer is a special buffer that is attached to a framebuffer. Renderbuffers are used  
to store information that does not have a texture representation such as depth values.  
In contrast, textures can be used to store colors.

We saw too that a framebuffer needs at least one texture to store colors and a renderbuffer  
to store depth information.

We discussed how to convert from clicking coordinates in the page to canvas coordinates. 
We said also that the framebuffer coordinates and the canvas coordinates originate in the 
lower-left corner with a (0,0) origin.

The architecture of the picker implementation was discussed. We saw that picking can have 
different states and that each state can be associated to a callback function. Picker callbacks 
allow coding-specific logic application that will determine what we see in our scene when 
picking is in progress.

In the next chapter, we will develop a car showroom application. We will see how to import 
car models from Blender into a WebGL application.
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Putting It All Together

In this chapter, we will apply the concepts and use the infrastructure code that 
we have previously developed to build a Virtual Car Showroom. During the 
development of this demo application, we will use models, lights, cameras, 
animation, colors, and textures. We will also see how we can integrate these 
elements with a simple yet powerful graphical user interface.

This chapter talks about:

 � The architecture that we have developed throughout the book

 � Creating a virtual car showroom application using our architecture

 � Importing car models from Blender into a WebGL scene

 � Setting up several light sources

 � Creating robust shaders to handle multiple materials

 � The OBJ and MTL file formats

 � Programming the camera to fly through the scene

Creating a WebGL application
At this point, we have covered the basic topics that you need to be familiar with in order to 
create a WebGL application. These topics have been implemented in the infrastructure code 
that we have iteratively built up throughout the book. Let's see what we have learned so far.

In Chapter 3, Lights!, we introduced WebGL and learned how to enable it in our browser.  
We also learned that WebGL behaves as a state machine and that we can query the different 
variables that determine the current state using gl. getParameter.
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After that, we studied in Chapter 2, Rendering Geometry, that the objects of a WebGL scene 
are defined by vertices. We said that usually we use indices to label those vertices so we can 
quickly tell WebGL how to 'connect the dots' to render the object. We studied the functions 
that manipulate buffers and the two main functions to render geometry drawArrays  
(no indices) and drawElements (with indices). We also learned about the JSON format to 
represent geometry and how we can download models from a web server using AJAX.

In Chapter 3, Lights!, we studied about lights. We learned about normal vectors and the 
physics of light reflection. We saw how to implement different lighting models using shaders 
in ESSL.

We learned in Chapter 4, Camera, that WebGL does not have cameras and that we need to 
define our own cameras. We studied the Camera matrix and we showed that the Camera 
matrix is the inverse of the Model-View matrix. In other words, rotation, translation, and 
scaling in the world space produce the inverse operations in camera space.

The basics of animation were covered in Chapter 5, Action. We discussed the matrix stack 
with its push and pop operations to represent local object transformations. We also analyzed 
how to set up an animation cycle that is independent from the rendering cycle. We also 
studied different types of interpolation and saw examples of how interpolation is used to 
create animations.

In Chapter 6, Colors, Depth Testing, and Alpha Blending, we discussed a bit deeper about 
color representation and how we can use colors in objects, in lights, and in the scene.  
We also studied blending and the use of transparencies.

Chapter 7, Textures, covered textures and we saw an implementation for picking in Chapter 
8, Picking.

In this chapter, we will use our knowledge to create a simple application. Fortunately,  
we are going to use all the infrastructure code that we have developed so far. Let's review it.

Architectural review
The following diagram presents the architecture that has been built throughout the book:
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Globals.js: Defines the global variables gl (WebGL context), prg (ESSL program),  
and the canvas width (c_width) and height (c_height).

Utils.js: Contains auxiliary functions such as getGLContext which tries to create  
a WebGL context for a given HTML5 canvas.

WebGLApp.js: It provides three function hooks, namely: configureGLHook, 
loadSceneHook, and drawSceneHook that define the life cycle of a WebGL application.

As the previous diagram shows these hooks are mapped to JavaScript functions in our  
web page:

 � configure: Here we create cameras, lights, and instantiate the Program.object.

 � load: Here we request objects from the web server by calling Scene.loadObject. 
We can also add locally generated geometry (such as the Floor) by calling Scene.
addObject.

 � render (or draw): This is the function that is called every time when the rendering 
timer goes off. Here we will retrieve the objects from the Scene, one by one, and we 
will render them paying attention to their location (applying local transforms using 
the matrix stack), and their properties (passing the respective uniforms to  
the Program).
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Program.js: Is composed of the functions that handle programs, shaders, and the mapping 
between JavaScript variables and ESSL uniforms.

Scene.js: Contains a list of objects to be rendered by WebGL.

SceneTransform.js: Contains the matrices discussed in the book: The Model-View 
matrix, the Camera matrix, the Perspective matrix, and the Normal matrix. It implements  
the matrix stack with the operations push and pop.

Floor.js: Auxiliary object that when rendered appears like a rectangular mesh providing 
the floor reference for the scene.

Axis.js: Auxiliary object that represents the center of the scene.

Lights.js: Simplifies the creation and managing of lights in the scene.

Camera.js: Contains a camera representation. We have developed two types of camera: 
orbiting and tracking.

CameraInteractor.js: Listens for mouse and keyboard events on the HTML5 canvas that 
it is being used. It interprets these events and then transforms them into camera actions.

Picker.js: Provides color-based object picking.

Let's see how we can put everything together to create a Virtual Car Showroom.

Virtual Car Showroom application
Using our WebGL skills and the infrastructure code that we have developed, we will  
create an application that allows visualizing different 3D car models. The final result will  
look like this:
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First of all, we need to define what the graphical user interface (GUI) is going to look like. 
Then, we will be adding WebGL support by creating a canvas element and obtaining the 
correspondent WebGL context. Simultaneously, we need to define and implement the 
Vertex Shader and Fragment Shader using ESSL. After that, we need to implement the three 
functions that constitute the lifecycle of our application: configure, load, and render.

First, let's consider some particularities of our virtual showroom application.

Complexity of the models
A real-world application is different from a proof of concept demo in that the models that 
we will be loading are much more detailed than simple spheres, cones, and other geometric 
figures. Usually, models have lots of vertices conforming very complicated configurations 
that give the level of detail and realism that people would expect. Also, in many cases, these 
models are accompanied by one or more textures. Creating the geometry and the texture 
mapping by hand in JSON files is nothing less than a daunting task.

Hopefully, we can use 3D design software to create our own models and then import them 
into a WebGL scene. For the Virtual Car Showroom we will use models created with Blender.

Blender is an open-source 3D computer graphics software that allows you to create 
animations, games, and other interactive applications. Blender provides numerous features 
to create complex models. In this chapter, we will import car models created with Blender 
into a WebGL scene. To do so, we will export them to an intermediary file format called OBJ 
and then we will parse OBJ files into JSON files.

Shader quality
Because we will be using complex models, such as cars, we will see that there is a need to 
develop shaders that can render the different materials that our models are made of. This 
is not a big deal for us since the shaders that we previously developed can handle diffuse, 
specular, and ambient components for materials. In Blender, we will select the option to 
export materials when generating the OBJ files. When we do so, Blender will generate a 
second file known as the Material Template Library (MTL). Also, our shaders will use  
Phong shading, Phong lighting, and will support multiple lights.
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Network delays and bandwidth consumption
Due to the nature of WebGL, we will need to download the geometry and the textures from 
a web server. Depending on the quality of the network connection and the amount of data 
that needs to be transferred this can take a while. There are several strategies that you 
could investigate, such as geometry compression. Another alternative is background data 
downloading (using AJAX for example) while the application is idle or the user is busy and 
not waiting for something to download.

With these considerations in mind let's get started.

Defining what the GUI will look like
We will define a very simple layout for our application. The title will go on top, and then we 
have two div tags. The div on the left will contain the instructions and the tools we can use 
on the scene. The canvas will be placed inside the div on the right, shown as follows:

The code to achieve this layout looks like this (css/cars.css):

#header
{
 height: 50px;
 background-color: #ccc;
 margin-bottom: 10px;
}

#nav
{
 float: left;
 width: 28%;
 height: 80%;
 background-color: #ccc;
 margin-bottom: 1px;
}

#content
{
 float: right;
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 margin-left: 1%;
 width: 70%;
 height: 80%;
 background-color: #ccc;
 margin-bottom: 1px;
}

And we can use it like this (taken from ch9_GUI.html):

<body>
<div id="header">
<h1>Show Room</h1>
</div>

<div id="nav">
<b>Instructions</b>
</div>

<div id="content">
<h2>canvas goes here</h2>
</div>
</body>

Please make sure that you include cars.css in your page. As you can see in ch9_GUI.
html, cars.css has been included in the header section:

<link href='css/cars.css' type='text/css' rel='stylesheet' />

Now let's add the canvas. Replace:

<h2>canvas goes here</h2>

With:

<canvas id='the-canvas'></canvas>

inside the content div.

Adding WebGL support
Now, please check the source code for ch9_Scaffolding.html. We have taken ch9_GUI.
html which defines the basic layout and we have added the following:

 � References to the elements defined in our architecture: Globals.js, Utils.js, 
Program.js, and so on.

 � A reference to glMatrix.js, the matrix manipulation library that we use in  
our architecture.
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 � References to JQuery and JQuery UI.

 � References to the JQuery UI customized theme that we used in the book.

 � We have created the scaffolding for the three main functions that we will  
need to develop in our application: configure, load and render.

 � Using JQuery we have included a function that allows resizing the canvas  
to its container:

function resizeCanvas(){
    c_width = $('#content').width();
    c_height = $('#content').height();
    $('#the-canvas').attr('width',c_width);
    $('#the-canvas').attr('height',c_height);
}

We bind this function to the resize event of the window here:

$(window).resize(function(){resizeCanvas();});

This function is very useful because it allows us adapt the size of the canvas 
automatically to the available window space. Also, we do not need to hardcode  
the size of the canvas.

 � As in all previous exercises, we need to define the entry point for the application. 
We do this here:

var app;
function runShowRoom(){
    app = new WebGLApp("the-canvas");
    app.configureGLHook = configure;
    app.loadSceneHook   = load;
    app.drawSceneHook   = render;
    app.run(); 
}

And we bind it to the onLoad event:

<body onLoad='runShowRoom()'>
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Now if you run ch9_Scaffolding.html in your HTML5-enabled web browser, you will see 
that the canvas resizes according to the current size of content, its parent container, shown 
as follows:

Implementing the shaders
The shaders in this chapter will implement Phong shading and the Phong reflection model. 
Remember that Phong shading interpolates vertex normals and creates a normal for every 
fragment. After that, the Phong reflection model describes the light that an object reflects 
as the addition of the ambient, diffuse, and specular interaction of the object with the light 
sources present in the scene.
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To keep consistency with the Material Template Library (MTL) format, we will use the 
following convention for the uniforms that refer to material properties:

Material

Uniform

Description

uKa Ambient property

uKd Diffuse property

uKs Specular property

uNi Optical density. We will not use this feature but you will see it on the MTL file.

uNs Specular exponent. A high exponent results in a tight, concentrated highlight. Ns 
values normally range from 0 to 1000.

d Transparency (alpha channel)

illum Determines the illumination model for the object being rendered. Unlike previous 
chapters where we had one model for all the objects, here we let the object to 
decide how it is going to reflect the light.

According to the MTL file format specification illum can be:

0: Diffuse on and Ambient off (purely diffuse)

1: Diffuse on and Ambient on

2: Highlight on (Phong illumination model)

There are other values that are defined in the MTL specification that we mention 
here for completeness but that our shaders will not implement. These values are:

3: Reflection on and Ray trace on

4: Transparency: Glass on, Reflection: Ray trace on

5: Reflection: Fresnel on and Ray trace on

6: Transparency: Refraction on, Reflection: Fresnel off and Ray trace on

7: Transparency: Refraction on, Reflection: Fresnel on and Ray trace on

8: Reflection on and Ray trace off

9: Transparency: Glass on, Reflection: Ray trace off

10: Casts shadows onto invisible surfaces

The shaders that we will use support multiple lights using uniform arrays as we saw in 
Chapter 6, Colors, Depth Testing, and Alpha Blending. The number of lights is defined  
by a constant in both the Vertex and the Fragment shaders:

const int NUM_LIGHTS = 4;
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We will use the following uniform arrays to work with lights:

Light

Uniform Array

Description

uLa[NUM_LIGHTS] Ambient property

uLd[NUM_LIGHTS] Diffuse property

uLs[NUM_LIGHTS] Specular property

Please refer to ch9_Car_Showroom.html to explore the source code 
for the shaders in this chapter.

Next, we are going to work on the three main functions that constitute the lifecycle  
of our WebGL application. These are the configure, load, and render functions.

Setting up the scene
We set up the scene by writing the code for the configure function. Let's analyze it line  
by line:

var camera = null, transforms = null;
function configure(){

At this stage, we want to set some of the WebGL properties such as the clear color and 
the depth test. After that, we need to create a camera and set its original position and 
orientation. Also we need to create a camera interactor so that we can update the camera 
position when we click and drag on the HTML5 canvas in our web page. Finally, we want 
to define the JavaScript variables that will be mapped to the shaders. We can also initialize 
some of them at this point.

To accomplish the aforementioned tasks we will use Camera.js, CameraInteractor.js, 
and Program.js and SceneTransforms.js from our architecture.

Configuring some WebGL properties
Here we set the background color and the depth test properties as follows:

gl.clearColor(0.3,0.3,0.3, 1.0);
gl.clearDepth(1.0);
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL);
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Setting up the camera
The camera variable needs to be global so we can access it later on from the GUI functions 
that we will write. For instance, we want to be able to click on a button (different function  
in the code) and use the camera variable to update the camera position:

camera = new Camera(CAMERA_ORBITING_TYPE);
camera.goHome([0,0,7]);
camera.setFocus([0.0,0.0,0.0]);
camera.setAzimuth(25);
camera.setElevation(-30);

The azimuth and elevation of the camera are relative to the negative z-axis, which will be 
the default pose if you do not specify any other. An azimuth of 25 degrees and elevation 
of -30 degrees will give you a nice initial angle to see the cars. However, you can set any 
combination that you prefer as the default pose in here.

Here we make sure that the camera's rendering callback is our rendering function:

camera.hookRenderer = render;

Creating the Camera Interactor
We create a CameraInteractor that will bind the mouse gestures to camera actions. 
The first argument here is the camera we are controlling and the second element is a DOM 
reference to the canvas in our webpage:

var interactor = new CameraInteractor(camera, document.
getElementById('the-canvas');

The SceneTransforms object
Once we have instantiated the camera, we create a new SceneTransforms object passing 
the camera to the SceneTransforms constructor as follows:

transforms = new SceneTransforms(camera);
transforms.init();

The transforms variable is also declared globally so we can use it later in the rendering 
function to retrieve the current matrix transformations and pass them to the shaders.
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Creating the lights
We will create four lights using the Light object from our infrastructure code. The scene will 
look like in the following image:

For each light we will create a Light object:

var light1 = new Light('far-left');
light1.setPosition([-25,25,-25]);
light1.setDiffuse([1.4,0.4,0.4]);
light1.setAmbient([0.0,0.0,0.0]);
light1.setSpecular([0.8,0.8,0.8]);

var light2 = new Light('far-right');
light2.setPosition([25,25,-25]);
light2.setDiffuse([0.4,1.4,0.4]);
light2.setAmbient([0.0,0.0,0.0]);
light2.setSpecular([0.8,0.8,0.8]);

var light3 = new Light('near-left');
light3.setPosition([-25,25,25]);
light3.setDiffuse([0.5,0.5,1.5]);
light3.setAmbient([0.0,0.0,0.0]);
light3.setSpecular([0.8,0.38,0.38]);

var light4 = new Light('near-right');
light4.setPosition([25,25,25]);
light4.setDiffuse([0.2,0.2,0.2]);
light4.setAmbient([0.0,0.0,0.0]);
light4.setSpecular([0.38,0.38,0.38]);
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Then, we add them to the Lights list (also defined in Lights.js):

Lights.add(light1);
Lights.add(light2);
Lights.add(light3);
Lights.add(light4);

Mapping the Program attributes and uniforms
The last thing to do inside configure function is to map the JavaScript variables that  
we will use in our code to the attributes and uniforms that we will use in the shaders.

Using the Program object from our infrastructure code, we will set up the JavaScript 
variables that we will use to map attributes and uniforms to the shaders. The code looks  
like this:

var attributeList = ["aVertexPosition",
       "aVertexNormal",
       "aVertexColor"];

var uniformList = [ "uPMatrix", 
                    "uMVMatrix", 
                    "uNMatrix",
                    "uLightPosition",
                    "uWireframe",
                    "uLa",
                    "uLd",
                    "uLs",
                    "uKa",
                    "uKd",
                    "uKs",
                    "uNs",
                    "d",
                    "illum"];

Program.load(attributeList, uniformList);

When creating your own shaders, make sure that the shader attributes 
and uniforms are properly mapped to JavaScript variables. Remember that 
this mapping step allows us referring to attributes and uniforms through 
their location. In this way, we can pass attribute and uniform values to the 
shaders. Please check the methods setAttributeLocations and 
setUniformLocations, which are called by load in the Program object 
(Program.js) to see how we do the mapping in the infrastructure code.
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Uniform initialization
After the mapping, we can initialize shader uniforms such as lights:

gl.uniform3fv(Program.uLightPosition, Lights.getArray('position'));
gl.uniform3fv(Program.uLa, Lights.getArray('ambient'));
gl.uniform3fv(Program.uLd, Lights.getArray('diffuse'));
gl.uniform3fv(Program.uLs, Lights.getArray('specular'));

The default material properties are as follows:

gl.uniform3fv(Program.uKa , [1.0,1.0,1.0]);
gl.uniform3fv(Program.uKd , [1.0,1.0,1.0]);
gl.uniform3fv(Program.uKs , [1.0,1.0,1.0]);
gl.uniform1f(Program.uNs  , 1.0);
}

With that, we have finished setting up the scene. 

Loading the cars
Next, we need to implement the load function. Here is where we usually use AJAX to 
download the objects that will appear on the scene.

When we have the JSON files corresponding to the cars the procedure is really simple, we 
just use the Scene object to load these files. However, most commonly than not, you will 
not have ready-to-use JSON files. As mentioned at the beginning of this chapter, there are 
specialized design tools such as Blender that allow creating these models.

Nonetheless, we are assuming that you are not an expert 3D modeler (neither we are).  
So we will use pre-built models. We will use cars from blendswap.org, these models  
are publically available, free of charge, and free to distribute. 

Before we can use the models, we need to export them to an intermediate file format  
from where we can extract the geometry and the material properties so we can create  
our corresponding JSON files. The file format that we are going to use is Wavefront OBJ.
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Exporting the Blender models
Here we are using the current Blender version (2.6). Once you have loaded the car that you 
want to render in WebGL you need to export it as an OBJ file. To do so go to File | Export | 
Wavefront (.obj) as shown in the following screenshot:

In the Export OBJ panel, make sure that the following options are active:

 � Apply Modifiers: This will write the vertices in the scene that are the result of 
a mathematical operation instead of direct modeling. For instance, reflections, 
smoothing, and so on. If you do not check this option, the model may appear 
incomplete in the WebGL scene.

 � Write Materials: Blender will create the correspondent Material Template Library 
(MTL file). More about this in the following section.

 � Triangulate Faces: Blender will write the indices as triangles. Ideal for  
WebGL rendering.

 � Objects as OBJ Objects: This configuration will identify every object in the Blender 
scene as an object in the OBJ file.
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 � Material Groups: If an object in the Blender scene has several materials, for instance 
a car tire can have aluminum and rubber, then the object will be subdivided into 
groups, one per material in the OBJ file. Once you have checked these export 
parameters, select the directory and the name for your OBJ file and then click  
on Export.

Understanding the OBJ format
There are several types of definitions in an OBJ file. Let's see them with a line-by-line 
example. We are going to dissect the file square.obj that we have exported from the 
Blender file square.blend. This file represents a square divided into two parts, one  
painted in red and the other painted in blue, as shown in the following image:

When we export Blender models to the OBJ format, the resulting file would normally start 
with a comment:

# Blender v2.62 (sub 0) OBJ File: 'squares.blend'
# www.blender.org

As we can see here, comments are denoted with a hash (#) symbol at the beginning  
of the line.
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Next, we will usually find a line referring to the Material Template Library that this OBJ file is 
using. Such line will start with the keyword mtllib followed by the name of the materials 
library file:

mtllib square.mtl

There are several ways in which geometries can be grouped into entities in an OBJ file.  
We can find lines starting with the prefix o followed by the object name; or by the prefix g, 
followed again by the group name:

o squares_mesh

After an object declaration, the following lines will refer to vertices (v) and optionally to 
vertex normals (vn) and texture coordinates (vt). It is important to mention that vertices 
are shared by all the groups in an object in the OBJ format. That is, you will not find lines 
referring to vertices when defining a group because it is assumed that all vertex data was 
defined first when the object was defined:

v  1.0  0.0  -2.0
v  1.0  0.0   0.0
v -1.0  0.0   0.0
v -1.0  0.0  -2.0
v  0.0  0.0   0.0
v  0.0  0.0  -2.0
vn 0.0  1.0   0.0

In our case, we have instructed Blender to export group materials. This means that each 
part of the object that has different set of material properties will appear in the OBJ file as 
a group. In this example, we are defining an object with two groups (squares_mesh_blue 
and squares_mesh_red) and two corresponding materials (blue and red):

g squares_mesh_blue

If materials are being used, the line after the group declaration will be the material that is 
being used for that group. Here only the name of the material is required. It is assumed that 
the material properties for this material are defined in the Material Template Library file that 
was declared at the beginning of the OBJ file:

usemtl blue

The lines that start with the prefix s refer to smooth shading across polygons. We mention it 
here in case you see it on your files but we will not be using this definition when parsing the 
OBJ files into JSON files:

s off
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The lines that start with f refer to faces. There are different ways to represent faces.  
Let's see them:

 � Vertex:

f i1 i2 i3...

In this configuration, every face element corresponds to a vertex index. Depending 
on the number of indices per face, you could have triangular, rectangular, or 
polygonal faces. However, we have instructed Blender to use triangular faces to 
create the OBJ file. Otherwise, we would need to decompose the polygons into 
triangles before we could call drawElements.

 � Vertex / Texture Coordinate:

f i1/t1 i2/t2 i3/t3...

In this combination, every vertex index appears followed by a slash sign and a 
texture coordinate index. You will normally find this combination when texture 
coordinates are defined at the object level with vt.

 � Vertex / Texture Coordinate / Normal:

f i1/t1/n1 i2/t2/n2 i3/t3/n3...

Here a normal index has been added as the third element of the configuration. If 
both texture coordinates and vertex normals are defined at the object level, you 
most likely see this configuration at the group level.

 � Vertex // Normal:

There could also be a case where normals are defined but not texture coordinates. 
In this case, the second part of the face configuration is missing:

f i1//n1 i2//n2 i3//n3...

This is the case for square.obj, which looks like this:

f 6//1 4//1 3//1
f 6//1 3//1 5//1

Please notice that faces are defined using indices. In our example, we have 
defined a square divided in two parts. Here we can see that all vertices 
share the same normal identified with index 1.
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The remaining lines in this file represent the red group:

g squares_mesh_red
usemtl red
f 1//1 6//1 5//1
f 1//1 5//1 2//1

As mentioned before, groups belonging to the same object share indices.

Parsing the OBJ files
After exporting our cars to the OBJ format, the next step is parse the OBJ files to create 
WebGL JSON files that we can load into our scene. We have included the parser that we 
developed for this step into the code files accompanying this chapter. This parser has the 
following features:

 � It is written in python and can be called on the command line like this:

obj_parser.py arg1 arg2

Where arg1 is the name of the obj file to parse and arg2 is the name of the 
Material Template Library. The file extension is needed in both cases. For example:

obj_parser.py square.obj square.mtl

 � It creates one JSON file per OBJ group.

 � It searches into the Material Template Library (if defined) for the material properties 
for each group and adds them to the correspondent JSON file.

 � It will calculate the appropriate indices for each group. Remember that OBJ groups 
share indices. Since we are creating one independent WebGL object per group, each 
object needs to have indices starting in zero. The parser takes care of this for you.

If you do not have python installed in your system you can get it 
from: http://www.python.org/

The following diagram summarizes the procedure to create JSON files from  
Blender scenes:
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Load cars into our WebGL scene
Now we have cars stored as JSON files, ready to be used in our WebGL scene. Now we have 
to let the user tell us which car he wants to visualize. We could, however, load by default one 
of the cars so our GUI looks more attractive. To do so, we will write the following code inside 
the load function (finally!):

function load(){

 loadBMW();
}

// The bmw model has 24 parts. We retrieve them all in a loop
function loadBMW(){
for(var i = 1; i <= 24; i+=1){
        Scene.loadObject('models/cars/bmw/part'+i+'.json');
    }
}

We will add other cases later on.
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Rendering
Let's take a step back to take a look at the big picture. We mentioned before that in our 
architecture we have defined three main functions that define the lifecycle of our WebGL 
application. These functions are: configure, load, and render.

Up to this point, we have set up the scene writing the code for the configure function. 
After that, we have created our JSON cars and loaded them by writing the code for the load 
function. Now, we will implement the code for the third function: the render function.

The code is pretty standard and almost identical to the draw/render functions that we  
have written in previous chapters. As we can see in the following diagram, we set and clear 
the area that we are going to draw on, then we check on the camera perspective and then 
we process every object in Scene.objects.

The only consideration that we need to have here is to make sure that we are mapping 
correctly the material properties defined in our JSON objects to the appropriate shader 
uniforms. The code that takes care of this in the render function looks like this:

gl.uniform3fv(Program.uKa, object.Ka);
gl.uniform3fv(Program.uKd, object.Kd);
gl.uniform3fv(Program.uKs, object.Ks);
gl.uniform1f(Program.uNi, object.Ni);
gl.uniform1f(Program.uNs, object.Ns);
gl.uniform1f(Program.d, object.d);
gl.uniform1i(Program.illum, object.illum);

If you want, please take a look at the list of uniforms that was defined in the section 
Implementing the shaders. We need to make sure that all the shader uniforms are paired 
with object attributes. 

The following diagram shows the process inside the render function:
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Each car part is a different JSON file. The render function goes through all the parts stored 
as JSON objects inside the Scene object. For each part, the material properties are passed 
as uniforms to the shaders and the geometry is passed as attributes (reading data from 
the respective VBOs). Finally, the draw call (drawElements) is executed. The result looks 
something like this:

The file ch9_Car_Showroom.html contains all the code described up to now.
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Time for action – customizing the application
1. Open the file ch9_Car_Showroom.html using your favorite code editor.

2. We will assign a different home for the camera when we load the Ford Mustang.  
To do so, please check the cameraHome, cameraAzimuth, and cameraElevation 
global variables. We set up the camera home position by using this variable inside 
the configure function like this:

camera.goHome(cameraHome);
camera.setAzimuth(cameraAzimuth);
camera.setElevation(cameraElevation);

Let's use this code to configure the default pose for the camera when we load  
the Ford Mustang. Go to the loadMustang function and append these lines:

cameraHome = [0,0,10];
cameraAzimuth = -25;
cameraElevation = -15;
camera.goHome(cameraHome);
camera.setAzimuth(cameraAzimuth);
camera.setElevation(cameraElevation);

3. Now save your work and load the page in your web browser. Check that the camera 
appears in the indicated position when you load the Ford Mustang.

4. We can also set up the lighting scheme on a car-per-car basis. For instance, while 
low-diffusive, high-specular lights work well for the BMW I8, these configurations 
are not as good for the Audi R8. Let's take for example light1 in the configure 
function. First we set the light attributes like this:

light1.setPosition([-25,25,-25]);
light1.setDiffuse([0.4,0.4,0.4]);
light1.setAmbient([0.0,0.0,0.0]);
light1.setSpecular([0.8,0.8,0.8]);

Then, we add light1 to the Lights object:

Lights.add(light1);

Finally, we map the light arrays contained in the Lights object to the respective 
uniform arrays in our shaders:

gl.uniform3fv(Program.uLightPosition, Lights.
getArray('position'));
gl.uniform3fv(Program.uLa ,     Lights.getArray('ambient'));
gl.uniform3fv(Program.uLd,      Lights.getArray('diffuse'));
gl.uniform3fv(Program.uLs,      Lights.getArray('specular'));
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Notice though that we need to add light1 to Lights only once. Now check  
the code for the one in the updateLightProperty function at the bottom  
of the page:

function updateLightProperty(index,property){
    var v = $('#slider-l'+property+''+index).slider('value');
    $('#slider-l'+property+''+index+'-value').html(v);
    var light;
    switch(index){
                case 1: light = light1; break;
                case 2: light = light2; break;
                case 3: light = light3; break;
                case 4: light = light4; break;
    }
    
    switch(property){
       case 'a':light.setAmbient([v,v,v]);
       gl.uniform3fv(Program.uLa, Lights.getArray('ambient'));
       break;
       case 'd':light.setDiffuse([v,v,v]);
       gl.uniform3fv(Program.uLd, Lights.getArray('diffuse'));
       break;
       case 's':light.setSpecular([v,v,v]);
       gl.uniform3fv(Program.uLs, Lights.getArray('specular'));
       break;
    }

    render();
}

Here we are detecting what slider changed and we are updating the correspondent 
light. Notice that we refer to light1, light2, light3, or light4 directly as these 
are global variables. We update the light that corresponds to the slider that changed 
and then we map the Lights object arrays to the correspondent uniform arrays. 
Notice that here we are not adding light1 or any other light again to the Lights 
object. The reason we do not need to do this is that the Lights object keeps a 
reference to light1 and the other lights. This saves us from having to clear the 
Lights object and mapping all the lights again every time we want to update one 
of them.
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Using the same mechanism described in updateLightProperty, update the 
loadAudi function to set the diffuse terms of all four lights to [0.7,0.7,0.7]  
and the specular terms to [0.4,0.4,0.4].

5. Save your work and reload the page on your web browser. Try different lighting 
schemes for different cars.

What just happened?
We have built a demo that uses many of the elements that we have discussed in the  
book. For that purpose, we have used the infrastructure code writing three main functions: 
configure, load, and render. These functions define the lifecycle of our application.

On each of these functions, we have used the objects defined by the architecture of the 
examples in the book. For example, we have used a camera object, several light objects,  
the program, and the scene object among others.
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Have a go Hero – flying through the scene
We want to animate the camera to produce a fly-through effect. You will need to consider 
three variables to be interpolated: the camera position, elevation, and azimuth. Start by 
defining the key frames, these are the intermediate poses that you want the camera to have. 
One could start for instance by looking at the car in the front view and then flying by one of 
the sides. You could also try a fly-through starting from a 45 degree angle in the back view. 
In both cases, you want to make sure that the camera follows the car. To achieve that effect, 
you need to make sure to update the azimuth and elevation on each key frame so the car 
keeps in focus.

Hint: Take a look at the code for the animCamera function and the functions that we have 
defined for the click events on the Camera buttons:

Summary
In this chapter, we have reviewed the concepts and the code developed throughout the 
book. We have also built a simple application that shows how all the elements fit together.

We have learned that designing complex models requires specialized tools such as Blender. 
We also saw that most of the current 3D graphics formats require the definition of vertices, 
indices, normals, and texture coordinates. We studied how to obtain these elements from  
a Blender model and parse them into JSON files that we can load into a WebGL scene.

In the next and final chapter, we will give you a sneak peak of some of the advanced 
techniques that are used regularly in 3D computer graphic systems including games, 
simulations, and other 3D applications in general. We will see how to implement these 
techniques in WebGL.





10
Advanced Techniques

At this point, you have all the information you need to create rich 3D 
applications with WebGL. However, we've only just scratched the surface of 
what's possible with the API! Creative use of shaders, textures, and vertex 
attributes can yield fantastic results. The possibilities are, literally, limitless! 
In this final chapter, we'll provide a few glimpses into some advanced WebGL 
techniques, and hopefully leave you eager to explore more on your own. 

In this chapter, we'll learn the following topics:

 � Post-process effects

 � Point sprites

 � Normal mapping

 � Ray tracing in fragment shaders

Post-processing
Post-processing effects are the effects that are created by re-rendering the image of  
the scene with a shader that alters the final image somehow. Think of it as if you took  
a screenshot of your scene, opened it up in your favorite image editor, and applied  
some filters. The difference is that we can do it in real time!
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Examples of some simple post-processing effects are:

 � Grayscale

 � Sepia tone

 � Inverted color

 � Film grain

 � Blur

 � Wavy/dizzy effect

The basic technique for creating these effects is relatively simple: A framebuffer is created 
that is of the same dimensions as the canvas. At the beginning of the draw cycle, the 
framebuffer is set as the render target, and the entire scene is rendered normally to it.  
Next, a full-screen quad is rendered to the default framebuffer using the texture that makes 
up the framebuffer's color attachment. The shader used during the rendering of the quad 
is what contains the post-process effect. It can transform the color values of the rendered 
scene as they get written to the quad to produce the desired visuals.

Let's look at the individual steps of this process more closely.

Creating the framebuffer
The code that we use to create the framebuffer is largely same as the code used in  
Chapter 8, Picking, for the picking system. However, there is a key difference worth noting:

var width = canvas.width;
var height = canvas.height;

//1. Init Color Texture
var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, 
gl.UNSIGNED_BYTE, null);

//2. Init Render Buffer
var renderbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, width, 
height);
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//3. Init Frame Buffer
var framebuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, 
gl.TEXTURE_2D, texture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, 
gl.RENDERBUFFER, renderbuffer);

The change is that we are now using the canvas width and height to determine our buffer 
size instead of the arbitrary values that we used for the picker. This is because the content 
of the picker buffer was not meant to be rendered to the screen, and as such didn't need to 
worry too much about resolution. For the post-process buffer, however, we'll get the best 
results if the output matches the dimensions of the canvas exactly.

The canvas size won't always be a power of two, and as such we can't use the mipmapped 
texture filtering modes on it. However, in this case that won't matter. Since the texture 
will be exactly the same size as the canvas, and we'll be rendering it as a full-screen quad 
we have one of the rare situations where most of the time the texture will be displayed at 
exactly a 1:1 ratio on the screen, which means no filters need to be applied. This means  
that we could use the NEAREST filtering with no visual artifacts, though in the case of  
post-process effects that warp the texture coordinates (such as the wavy effect described 
later) we will still benefit from using LINEAR filtering. We also need to use a wrap mode  
of CLAMP_TO_EDGE, but again this won't pose many issues for our intended use.

Otherwise, the code is identical to the picker framebuffer creation.

Creating the geometry
While we could load the quad from a file, in this case the geometry is simple enough that 
we can put it directly into our code. All that's needed in this case is the vertex positions and 
texture coordinates:

//1. Define the geometry for the fullscreen quad
var vertices = [
    -1.0,-1.0,
     1.0,-1.0,
    -1.0, 1.0,

    -1.0, 1.0,
     1.0,-1.0,
     1.0, 1.0
];

var textureCoords = [
     0.0, 0.0,
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     1.0, 0.0,
     0.0, 1.0,

     0.0, 1.0,
     1.0, 0.0,
     1.0, 1.0
];

//2. Init the buffers
this.vertexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_
DRAW);
  
this.textureBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, this.textureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoords), 
gl.STATIC_DRAW);

//3. Clean up
gl.bindBuffer(gl.ARRAY_BUFFER, null);

Setting up the shader
The vertex shader for the post-process draw is the simplest one you are likely to see  
in a WebGL application:

attribute vec2 aVertexPosition;
attribute vec2 aVertexTextureCoords;

varying vec2 vTextureCoord;

void main(void) {
    vTextureCoord = aVertexTextureCoords;
    gl_Position = vec4(aVertexPosition, 0.0, 1.0);
}

Something to note here is that unlike every other vertex shader that we've worked with so 
far, this one doesn't make use of any matrices. That's because the vertices that we declared 
in the previous step are pre-transformed.
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Recall from Chapter 4, Camera, that typically we retrieve normalized device coordinates  
by multiplying the vertex position by the Perspective matrix, which maps the positions to  
a [-1,1] range on each axis, representing the full extents of the viewport. In this case our 
vertex positions are already mapped to that [-1,1] range, and as such no transformation  
is needed. They will map perfectly to the viewport bounds when we render.

The fragment shader is where most of the interesting work happens, and will be different 
based on the post-process effect that is desired. Let's look at a simple grayscale shader as  
an example:

uniform sampler2D uSampler;
varying vec2 vTextureCoord;

void main(void)
{
    vec4 frameColor = texture2D(uSampler, vTextureCoord);
    float luminance = frameColor.r * 0.3 + frameColor.g * 0.59 + 
frameColor.b * 0.11;
    gl_FragColor = vec4(luminance, luminance, luminance, 
frameColor.a);
}

Here we are sampling the original color rendered by our scene (available through 
uSampler), taking a weighted average of the red, green, and blue channels, and outputting 
the averaged result to all color channels. The output is a simple grayscale version of the 
original scene.
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Architectural updates
We've added a new class, PostProcess, to our architecture to assist in applying  
post-process effects. The code can be found in js/webgl/PostProcess.js.  
This class will create the appropriate framebuffer and quad geometry for us, compile  
the post-process shader, and perform the appropriate render setup needed to draw  
the scene out to the quad.

Let's see it in action!

Time for action – testing some post-process effects
1. Open the file ch10_PostProcess.html in an HTML5 browser.
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The buttons at the bottom allow you to switch between several sample effects. 
Try each of them to get a feel for the effect they have on the scene. We've already 
looked at grayscale, so let's examine the rest of filters individually.

2. The invert effect is similar to grayscale, in that it only modifies the color output;  
this time inverting each color channel.

uniform sampler2D uSampler;
varying vec2 vTextureCoord;

void main(void)
{
    vec4 frameColor = texture2D(uSampler, vTextureCoord);
    gl_FragColor = vec4(1.0-frameColor.r, 1.0-frameColor.g, 
1.0-frameColor.b, frameColor.a);
}
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3. The wavy effect manipulates the texture coordinates to make the scene swirl  
and sway. In this effect, we also provide the current time to allow the distortion  
to change as time progresses.

uniform sampler2D uSampler;
uniform float uTime;
varying vec2 vTextureCoord;

const float speed = 15.0;
const float magnitude = 0.015;

void main(void)
{
    vec2 wavyCoord;
    wavyCoord.s = vTextureCoord.s + (sin(uTime+vTextureCoord.t*spe
ed) * magnitude);
    wavyCoord.t = vTextureCoord.t + (cos(uTime+vTextureCoord.s*spe
ed) * magnitude);
    vec4 frameColor = texture2D(uSampler, wavyCoord);
    gl_FragColor = frameColor;
}

4. The blur effect samples several pixels to either side of the current one and uses a 
weighted blend to produce a fragment output that is the average of it's neighbors. 
This gives a blurry feel to the scene.

A new uniform used here is uInverseTextureSize, which is 1 over the 
width and height of the viewport, respectively. We can use this to accurately 
target individual pixels within the texture. For example, vTextureCoord.x + 
2*uInverseTextureSize.x will be exactly two pixels to the left of the original 
texture coordinate.
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uniform sampler2D uSampler;
uniform vec2 uInverseTextureSize;
varying vec2 vTextureCoord;

vec4 offsetLookup(float xOff, float yOff) {
    return texture2D(uSampler, vec2(vTextureCoord.x 
+ xOff*uInverseTextureSize.x, vTextureCoord.y + 
yOff*uInverseTextureSize.y));
}

void main(void)
{
    vec4 frameColor = offsetLookup(-4.0, 0.0) * 0.05;
    frameColor += offsetLookup(-3.0, 0.0) * 0.09;
    frameColor += offsetLookup(-2.0, 0.0) * 0.12;
    frameColor += offsetLookup(-1.0, 0.0) * 0.15;
    frameColor += offsetLookup(0.0, 0.0) * 0.16;
    frameColor += offsetLookup(1.0, 0.0) * 0.15;
    frameColor += offsetLookup(2.0, 0.0) * 0.12;
    frameColor += offsetLookup(3.0, 0.0) * 0.09;
    frameColor += offsetLookup(4.0, 0.0) * 0.05;

    gl_FragColor = frameColor;
}
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5. Our final example is a film grain effect. This uses a noisy texture to create a grainy 
look to the scene, which simulates the use of an old camera. This example is 
significant because it shows the use of a second texture besides the framebuffer 
when rendering.

uniform sampler2D uSampler;
uniform sampler2D uNoiseSampler;
uniform vec2 uInverseTextureSize;
uniform float uTime;
varying vec2 vTextureCoord;

const float grainIntensity = 0.1;
const float scrollSpeed = 4000.0;

void main(void)
{
    vec4 frameColor = texture2D(uSampler, vTextureCoord);
    vec4 grain = texture2D(uNoiseSampler, vTextureCoord * 2.0 + 
uTime * scrollSpeed * uInverseTextureSize);
    gl_FragColor = frameColor - (grain * grainIntensity);
}

What just happened?
All of these effects are achieved by manipulating the rendered image before it is output to 
the screen. Since the amount of geometry processed for these effects is quite small, they can 
often be performed very quickly regardless of the complexity of the scene itself. Performance 
may still be affected by the size of the canvas or the complexity of the post-process shader.
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Have a go hero – funhouse mirror effect
What would it take to create a post-process effect that stretches the image near the center 
of the viewport and squashes it towards the edges?

Point sprites
Common techniques in many 3D applications and games are particle effects. A particle effect 
is a generic term for any special effect created by rendering groups of particles (displayed as 
points, textured quads, or repeated geometry), typically with some simple form of physics 
simulation acting on the individual particles. They can be used for simulating smoke, fire, 
bullets, explosions, water, sparks, and many other effects that are difficult to represent  
as a single geometric model.

One very efficient way of rendering the particles is to use point sprites. Typically, if you 
render vertices with the POINTS primitive type each vertex will be rendered as a single  
pixel on the screen. A point sprite is an extension of the POINTS primitive rendering  
where each point is provided a size and textured in the shader.

A point sprite is created by setting the gl_PointSize value in the vertex shader. It can be 
set to either a constant value or a value calculated from shader inputs. If it is set to a number 
greater than one, the point is rendered as a quad which always faces the screen (also known 
as a billboard). The quad is centered on the original point, and has a width and height equal 
to the gl_PointSize in pixels.
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When the point sprite is rendered, it also generates texture coordinates for the quad 
automatically, covering a simple 0-1 range from upper left to lower right.

The texture coordinates are accessible in the fragment shader as the built-in vec2  
gl_PointCoord. Combining these properties gives us a simple point sprite shader  
that looks like this:

//Vertex Shader
attribute vec4 aVertexPosition;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;

void main(void) {
    gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
    gl_PointSize = 16.0;
}

//Fragment Shader
precision highp float;

uniform sampler2D uSampler;

void main(void) {
    gl_FragColor = texture2D(uSampler, gl_PointCoord);
}
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This could be used to render any vertex buffer with the following call:

gl.drawArrays(gl.POINTS, 0, vertexCount);

As you can see, this would render each point in the vertex buffer as a 16 x 16 texture.

Time for action – using point sprites to create a fountain of 
sparks

1. Open the file ch10_PointSprites.html in an HTML5 browser.

2. This sample creates a simple fountain of sparks effect with point sprites. You can 
adjust the size and lifetime of the particles using the sliders at the bottom. Play with 
them to see the effect it has on the particles.

3. The particle simulation is performed by maintaining a list of particles that comprises 
of a position, velocity, and lifespan. This list is iterated over every frame and 
updated, moving the particle position according to the velocity and applying gravity 
while reducing the remaining lifespan. Once a particle's lifespan has reached zero, it 
gets reset to the origin with a new randomized velocity and a replenished lifespan.
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4. With every iteration of the particle simulation, the particle positions and lifespans 
are copied to an array which is then used to update a vertex buffer. That vertex 
buffer is what is rendered to produce the onscreen sprites.

5. Let's play with some of the other values that control the simulation and see how 
they affect the scene. Open up ch10_PointSprites.html in an editor.

6. First, locate the call to configureParticles at the bottom of the configure 
function. The number passed into it, initially set to 1024, determines how many 
particles are created. Try manipulating it to lower or higher values to see the effect it 
has on the particle system. Be careful, as extremely high values (for example, in the 
millions) could cause performance issues for your page!

7. Next, find the resetParticle function. This function is called any time a particle  
is created or reset. There are several values here that can have a significant effect  
on how the scene renders.

function resetParticle(p) {
    p.pos = [0.0, 0.0, 0.0];

    p.vel = [
        (Math.random() * 20.0) - 10.0,
        (Math.random() * 20.0),
        (Math.random() * 20.0) - 10.0,
    ];

    p.lifespan = Math.random() * particleLifespan;
    p.remainingLife = p.lifespan;
}

8. The p.pos is the x, y, z starting coordinates for the particle. Initially all points start 
at the world origin (0, 0, 0), but this could be set to anything. Often it is desirable 
to have the particles originate from the location of another object in the scene, to 
make it appear as if that object is producing the particles. You can also randomize 
the position to make the particles appear within a given area.

9. p.vel is the initial velocity of the particle. You can see here that it's randomized 
so that particles spread out as they move away from the origin. Particles that move 
in random directions tend to look more like explosions or sprays, while those that 
move in the same direction give the appearance of a steady stream. In this case, 
the y value is designed to always be positive, while the x and z values may be either 
positive or negative. Experiment with what happens when you increase or decrease 
any of the values in the velocity, or if you remove the random element from one of 
the components.
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10. Finally, p.lifespan determines how long a particle is displayed before being reset. 
This uses the value from the slider on the page, but it's also randomized to provide 
visual variety. If you remove the random element from the particle lifespan all the 
particles will expire and reset at the same time, resulting in fireworks-like bursts  
of particles.

11. Next, find the updateParticles function. This function is called once per frame 
to update the position and velocity of all particles and push the new values to the 
vertex buffer. The interesting part here, in terms of manipulating the simulation 
behavior, is the application of gravity to the particle velocity mid way through  
the function:

// Apply gravity to the velocity
p.vel[1] -= 9.8 * elapsed;
if(p.pos[1] < 0) {
    p.vel[1] *= -0.75; // Allow particles to bounce off the floor
    p.pos[1] = 0;
}

The 9.8 here is the acceleration applied to the y component over time. In other 
words, gravity. We can remove this calculation entirely to create an environment 
where the particles float indefinitely along their original trajectories. We can 
increase the value to make the particles fall very quickly (giving them a heavy 
appearance), or we could change the component that the deceleration is applied to 
change the direction of gravity. For example, subtracting from vel[0] makes the 
particles fall sideways.

12. This is also where we apply simple collision response for the floor. Any particles 
with a y position less than 0 (below the floor) have their velocities reversed and 
reduced. This gives us a realistic bouncing motion. We can make the particles less 
bouncy by reducing the multiplier (that is, 0.25 instead of 0.75) or even eliminate 
bouncing altogether by simply setting the y velocity to 0 at that point. Additionally, 
we can remove the floor by taking away the check for y < 0, which would allow the 
particles to fall indefinitely.

13. It's also worth seeing the different effects that can be achieved with different 
textures. Try changing path for the spriteTexture in the configure function  
to see what it looks like when you use different images.

What just happened?
We've seen how point sprites can be used to efficiently render particle effects, and seen 
some of the ways we can manipulate the particle simulation to achieve different effects.
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Have a go hero – bubbles!
The particle system in place here could be used to simulate bubbles or smoke floating 
upward just as easily as bouncing sparks. How would you need to change the simulation  
to make the particles float rather than fall?

Normal mapping
One technique that is very popular among real-time 3D applications today is normal 
mapping. Normal mapping creates the illusion of highly detailed geometry on a low-poly 
model by storing surface normals in a texture map, which is then used to calculate the 
lighting of the mesh. This method is especially popular in modern games, where it allows 
developers to strike a balance between high performance and detailed scenes.

Typically, lighting is calculated using nothing but the surface normal of the triangle being 
rendered, meaning that the entire polygon will be lit as a continuous, smooth surface.

 

With normal mapping, the surface normals are replaced by normals encoded within a 
texture, which can give the appearance of a rough or bumpy surface. Note that the actual 
geometry is not changed when using a normal map, only how it is lit. If you look at a normal 
mapped polygon from the side, it will still appear perfectly flat.
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The texture used to store the normals is called a normal map, and is typically paired with a 
specific diffuse texture that complements the surface the normal map is trying to simulate. 
For example, here is a diffuse texture of some flagstones and the corresponding normal map:

      

You can see that the normal map contains a similar pattern to the diffuse texture. The two 
textures work in tandem to give the appearance that the stones are raised and rough, while 
the grout between them is sunk in.

The normal map contains very specifically formatted color information that can be 
interpreted by the shader at runtime as a fragment normal. A fragment normal is essentially 
the same as the vertex normals that we are already familiar with: a three-component vector 
that points away from the surface. The normal texture encodes the three components of the 
normal vector into the three channels of the texture's texel color. Red represents the X axis, 
green the Y axis, and blue the Z axis.

The normal encoded in the map is typically stored in tangent space as opposed to world or 
object space. Tangent space is the coordinate system that the texture coordinates for a face 
are defined in. Normal maps are almost always predominantly blue, since the normals they 
represent generally point away from the surface and thus have larger Z components.
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Time for action – normal mapping in action
1. Open the file ch10_NormalMap.html in an HTML5 browser.

2. Rotate the cube to see the effect that the normal map has on how the cube is lit. 
Also observe how the profile of the cube has not changed. Let's examine how this 
effect is achieved.

3. First, we need to add a new attribute to our vertex buffers. There are actually three 
vectors that are needed to calculate the tangent space coordinates that the lighting 
is calculated in: the normal, the tangent, and bitangent.
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We already know what the normal represents, so let's look at the other two vectors. 
The tangent essentially represents the up (positive Y) vector for the texture relative 
to the polygon surface. Likewise, the bitangent represents the left (positive X) vector 
for the texture relative to the polygon surface.

We only need to provide two of the three vectors as vertex attributes, traditionally 
the normal and tangent. The third vector can be calculated as the cross-product of 
the other two in the vertex shader code.

4. Many times 3D modeling packages will generate tangents for you, but if they 
aren't provided, they can be calculated from the vertex positions and texture 
coordinates, similar to how we can calculate the vertex normals. We won't cover 
the algorithm here, but it has been implemented in js/webgl/Utils.js as 
calculateTangents and used in Scene.addObject.

var tangentBufferObject = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, tangentBufferObject);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(Utils.
calculateTangents(object.vertices, object.texture_coords, object.
indices)), gl.STATIC_DRAW);

5. In the vertex shader, seen at the top of ch10_NormalMap.html, the tangent needs 
to be transformed by the Normal matrix just like the normal does to ensure that 
it's appropriately oriented relative to the world-space mesh. The two transformed 
vectors can be used to calculate the third as mentioned earlier.

vec3 normal = vec3(uNMatrix * vec4(aVertexNormal, 1.0));
vec3 tangent = vec3(uNMatrix * vec4(aVertexTangent, 1.0));
vec3 bitangent = cross(normal, tangent);

The three vectors can then be used to create a matrix that transforms vectors into 
tangent space.

mat3 tbnMatrix = mat3(
    tangent.x, bitangent.x, normal.x,
    tangent.y, bitangent.y, normal.y,
    tangent.z, bitangent.z, normal.z
);

6. Instead of applying lighting in the vertex shader, as we did previously, the bulk of the 
lighting calculations need to happen in the fragment shader here so that they can 
incorporate the normals from the texture. We do transform the light direction into 
tangent space in the vertex shader, however, and pass it to the fragment shader  
as a varying.

//light direction, from light position to vertex
vec3 lightDirection = uLightPosition - vertex.xyz;
vTangentLightDir = lightDirection * tbnMatrix;
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7. In the fragment shader, first we extract the tangent space normal from the 
normal map texture. Since textures texels don't store negative values, the normal 
components must be encoded to map from the [-1,1] range into the [0,1] 
range. Therefore, they must be unpacked back into the correct range before use  
in the shader. Fortunately, the algorithm to do so is simple to express in ESSL:

vec3 normal = normalize(2.0 * (texture2D(uNormalSampler, 
vTextureCoord).rgb - 0.5));

8. At this point, lighting is calculated almost identically to the vertex-lit model,  
using the texture normal and tangent space light direction.

// Normalize the light direction and determine how much light is 
hitting this point
vec3 lightDirection = normalize(vTangentLightDir);
float lambertTerm = max(dot(normal,lightDirection),0.20);

// Combine lighting and material colors
vec4 Ia = uLightAmbient * uMaterialAmbient;
vec4 Id = uLightDiffuse * uMaterialDiffuse * texture2D(uSampler, 
vTextureCoord) * lambertTerm;
gl_FragColor = Ia + Id;

The code sample also includes calculation of a specular term, to help accentuate  
the normal mapping effect.

What just happened?
We've seen how to use normal information encoded into a texture to add a new level of 
complexity to our lit models without additional geometry.

Ray tracing in fragment shaders
A common (if somewhat impractical) technique used to show how powerful shaders can be 
is using them to ray trace a scene. Thus far, all of our rendering has been done with polygon 
rasterization, which is the technical term for the triangle-based rendering that WebGL 
operates with). Ray tracing is an alternate rendering technique that traces the path of light 
through a scene as it interacts with mathematically defined geometry.
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Ray tracing has several advantages compared to polygonal rendering, the primary of which is 
that it can create more realistic scenes due to a more accurate lighting model that can easily 
account for things like reflection and reflected lighting. Ray tracing also tends to be far slower 
than polygonal rendering, which is why it's not used much for real-time applications.

Ray tracing a scene is done by creating a series of rays (represented by an origin and 
direction) that start at the camera's location and pass through each pixel in the viewport. 
These rays are then tested against every object in the scene to determine if there are any 
intersections, and if so the closest intersection to the ray origin is returned. That is then  
used to determine the color that pixel should be.

  

There are a lot of algorithms that can be used to determine the color of the intersection 
point, ranging from simple diffuse lighting to multiple bounces of rays off other objects to 
simulate reflection, but we'll be keeping it simple in our case. The key thing to remember  
is that everything about our scene will be entirely a product of the shader code.
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Time for action – examining the ray traced scene
1. Open the file ch10_Raytracing.html in an HTML5 browser. You should  

see a scene with a simple lit, bobbing sphere like the one shown in the  
following screenshot:

2. First, in order to give us a way of triggering the shader, we need to draw a full screen 
quad. Luckily for us, we already have a class that helps us do exactly that from the 
post-processing example earlier in this chapter! Since we don't have a scene to 
process, we're able to cut a large part of the rendering code out, and the entirety  
of our JavaScript drawing code becomes:

function render(){
    gl.viewport(0, 0, c_width, c_height);
    gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

    //Checks to see if the framebuffer needs to be resized to   
    match the canvas
    post.validateSize();
    post.bind();

    //Render the fullscreen quad
    post.draw();
}
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3. That's it. The remainder of our scene will be built in the fragment shader.

4. At the core of our shader, there are two functions: One which determines if a ray is 
intersecting a sphere and one that determines the normal of a point on the sphere. 
We're using spheres because they're typically the easiest type of geometry to 
raycast, and they also happen to be a type of geometry that is difficult to represent 
accurately with polygons.

// ro is the ray origin, rd is the ray direction, and s is the 
sphere
float sphereInter( vec3 ro, vec3 rd, vec4 s ) {
    // Transform the ray into object space
    vec3 oro = ro - s.xyz;

    float a = dot(rd, rd);
    float b = 2.0 * dot(oro, rd);
    float c = dot(oro, oro) - s.w * s.w; // w is the sphere radius

    float d = b * b - 4.0 * a * c;

    if(d < 0.0) { return d; }// No intersection
    
    return (-b - sqrt(d)) / 2.0; // Intersection occurred
}

vec3 sphereNorm( vec3 pt, vec4 s ) {
    return ( pt - s.xyz )/ s.w;

}

5. Next, we will use those two functions to determine where the ray is intersecting 
with a sphere (if at all) and what the normal and color of the sphere is at that point. 
In this case, the sphere information is hardcoded into a couple of global variables  
to make things easier, but they could just as easily be provided as uniforms  
from JavaScript.

vec4 sphere1 = vec4(0.0, 1.0, 0.0, 1.0);
vec3 sphere1Color = vec3(0.9, 0.8, 0.6);
float maxDist = 1024.0;

float intersect( vec3 ro, vec3 rd, out vec3 norm, out vec3 color ) 
{
    float dist = maxDist;
       float interDist = sphereInter( ro, rd, sphere1 ); 
    
    if ( interDist > 0.0 && interDist < dist ) {
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        dist = interDist;

        vec3 pt = ro + dist * rd; // Point of intersection
        norm = sphereNorm(pt, sphere1); // Get normal for that  
        point
        color = sphere1Color; // Get color for the sphere
    }

    return dist;
}

6. Now that we can determine the normal and color of a point with a ray, we need to 
generate the rays to test with. We do this by determining the pixel that the current 
fragment represents and creating a ray that points from the desired camera position 
through that pixel. To aid in this, we will utilize the uInverseTextureSize 
uniform that the PostProcess class provides to the shader.

vec2 uv = gl_FragCoord.xy * uInverseTextureSize;
float aspectRatio = uInverseTextureSize.y/uInverseTextureSize.x;

// Cast a ray out from the eye position into the scene
vec3 ro = vec3(0.0, 1.0, 4.0); // Eye position is slightly up and 
back from the scene origin
// Ray we cast is tilted slightly downward to give a better view 
of the scene
vec3 rd = normalize(vec3( -0.5 + uv * vec2(aspectRatio, 1.0), 
-1.0));

7. Finally, using the ray that we just generated, we call the intersect function to 
get the information about the sphere intersection and then apply the same diffuse 
lighting calculations that we've been using all throughout the book! We're using 
directional lighting here for simplicity, but it would be trivial to convert to a point 
light or spotlight model if desired.

// Default color if we don't intersect with anything
vec3 rayColor = vec3(0.2, 0.2, 0.2);

// Direction the lighting is coming from
vec3 lightDir = normalize(vec3(0.5, 0.5, 0.5));

// Ambient light color
vec3 ambient = vec3(0.05, 0.1, 0.1);

// See if the ray intesects with any objects. 
// Provides the normal of the nearest intersection point and color
vec3 objNorm, objColor;
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float t = intersect(ro, rd, objNorm, objColor);
    
if ( t < maxDist ) {
    float diffuse = clamp(dot(objNorm, lightDir), 0.0, 1.0); // 
diffuse factor
    rayColor = objColor * diffuse + ambient;
}
    
gl_FragColor = vec4(rayColor, 1.0);

8. Rendering with the preceding code will produce a static, lit sphere. That's great,  
but we'd also like to add a bit of motion to the scene to give us a better sense of 
how fast the scene renders and how the lighting interacts with the sphere. To add  
a simple looping circular motion to the sphere we use the uTime uniform to modify 
the X and Z coordinates at the beginning of the shader.

sphere1.x = sin(uTime);
sphere1.z = cos(uTime);

What just happened?
We've just seen how we can construct a scene, lighting and all, completely in a fragment 
shader. It's a simple scene, certainly, but also one that would be nearly impossible to render 
using polygon-based rendering. Perfect spheres can only be approximated with triangles.

Have a go hero – multiple spheres
For this example, we've kept things simple by having only a single sphere in the scene. 
However, all of the pieces needed to render several spheres in the same scene are in  
place! See if you can set up a scene with three of four spheres all with different coloring  
and movement.

As a hint: The main shader function that needs editing is intersect.

Summary
In this chapter, we tried out several advanced techniques and learned how we could use 
them to create more visually complex and compelling scenes. We learned how to apply  
post-process effects by rendering a framebuffer, created particle effects through the use  
of point sprites, created the illusion of complex geometry through the use of normal maps, 
and rendered a raycast scene using nothing but a fragment shader.

These effects are only a tiny preview of the vast variety of effects possible with WebGL. 
Given the power and flexibility of shaders, the possibilities are endless!
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states  46, 47
validation, adding  47
var aBuffer = createBuffer(void) method  30

BUFFER_USAGE parameter  46
bvec2  69
bvec3  69
bvec4  69

C
camera

about  10
camera axis  130
light positions, updating  134, 135
Nissan GTX, exploring  131-133
right vector  130
rotating, around location  129
tracking  129
tracking camera  129
translating, in line of sight  129
types  128
up vector  130

camera axis  130
CameraInteractor class  131, 270
CameraInteractor.js  290
camera interactor, WebGL properties

creating  298
Camera.js  290
camera matrix

about  120
camera rotation  123
camera transform  127
camera translation  121-123
matrix multiplications, in WebGL  127, 128
rotations, combining  126, 127
rotations, exploring  124-126
translations, combining  126, 127

camera position  298
camera rotation

about  123
and camera translations, combining  126, 127
exploring  124-126

camera space
versus world space  122-126

camera transform  127
camera translation

about  121
and camera rotation, combining  126, 127
exploring  122, 123

camera, types
about  128
orbiting camera  129

camera variable  298
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camera, WebGL properties
setting up  298

canvas
about  10
clicking on  264, 265

canvas element  264
canvas.onmouseup function  264
checkKey function  17
c_height  266
CLAMP_TO_EDGE  317
CLAMP_TO_EDGE wrap mode  244
clear function  17
client-based rendering  9
clientHeight  266
cMatrix. See  camera matrix 
colors

constant coloring  179
per-fragment coloring  181
pre-vertex coloring  180, 181
storing, by creating texture  259
using, in lights  185
using, in objects  179
using, in scene  206
using, in WebGL  178

colors, using in lights
about  185
getUniformLocation function  185
uniform4fv function  185

compileShader function  91
Cone First button  223
configure function

about  144, 184, 200, 248, 264, 278, 308
updating  193, 194

configureGLHook  143
configure, JavaScript functions  289
configureParticles  328
constant coloring

about  179
and per-fragment coloring,  comparing  181-184

context
used, for accessing WebGL API  18

context attributes, WebGL
setting up  15-18

copy operation  116
cosine emission law  66
createProgram(), WebGL function  91

createShader function  91
creation operation  116
cross product

used, for calculating normals  61
cube

texturing  231-233
cube maps

about  250, 251
cube map-specific function  251
using  252-254

D
deleteBuffer(Object aBuffer) method  30
depth buffer  208
depth function

about  210
gl.ALWAYS parameter  210
gl.EQUAL parameter  210
gl.GEQUAL parameter  210
gl.GREATER parameter  210
gL.LEQUAL parameter  210
gl.LESS parameter  210
gl.NEVER parameter  210
gl.NOTEQUAL parameter  210

depth information
storing, by creating Renderbuffer  260

depth testing  208, 209
dest  137
diffuse  67
diffuseColorGenerator function  275, 276
diffuse material property  179
directional lights  99
directional point light  202-204
discard command  207
div tags  292
d, materials uniforms  296
doLagrangeInterpolation function  173
doLinearInterpolation function  173
drawArrays function

about  33, 34, 288
using  34, 35

drawElements function  
about  33, 43, 288
using  36, 37
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draw function
about  144, 151, 200, 220, 248, 263, 270
updating  194, 195

drawScene function  39
drawSceneHook  143
dropped frames  153
dx function  281
dy function  281
DYNAMIC_DRAW  31

E
E  81
ELEMENT_ARRAY_BUFFER_BINDING value  45
ELEMENT_ARRAY_BUFFER value  45
end picking mode  273
ESSL

about  68
and WebGL, gap bridging  93-95
fragment shader  75
functions  71, 72
operators  71, 72
programs, writing  75, 76
storage qualifier  69
uniforms  72, 73
varyings  73
vector, components  70
vertex attributes  72
vertex shader  73, 74

ESSL programs, writing
Lambertian reflection model, Goraud shading  

with  76, 77
Phong reflection model, Goraud shading  with  

80-83
Phong shading  86-88

Euclidian Space  106
exponential attenuation factor  205
Export OBJ panel

Apply Modifiers  302
Material Groups  303
Objects as OBJ Objects  302
Triangulate Faces  302
Write Materials  302

eye position  258

F
f  81
far  137
Field of View. See  FOV
filter modes, texture

about  234, 235
LINEAR filter  238, 239
magnification  235
minification  235
NEAREST filter  238
setting  236
texels  235
using  237

first-person camera  129
flagX variable  275
flagZ variable  275
float  69
Floor.js  143, 290
fountain sparks

creating, point sprites used  327-329
FOV  136
fovy  137
fragment shader

about  25
ray tracing  334, 335
unique labels, using  277, 278
updating  191-193

fragment shader, ESSL  75
framebuffer

about  25, 316
creating, for offscreen rendering  260, 261

framebuffer, post processing effect
creating  316, 317

frozen frames  154
frustum  110
functions, ESSL  71, 72

G
generateMipmap  241
generatePosition function  165
geometry

rendering, in WebGL  26
geometry, post processing effect

creating  317, 318
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getBufferParameter(type, parameter) parameter  
45

getGLContext function  17, 39
getParameter function  287
getParameter(parameter) parameter  45
getProgramParameter(Object program, Object 

parameter), WebGL function  91
getShader function  90, 91
getUniformLocation function  185
getUniform(program, reference), WebGL  

function   93
gl.ALWAYS parameter  210
gl.ARRAY_BUFFER option  28
gl.bindTexture  246
gl.blendColor ( red, green, blue, alpha) function  

215
gl.blendEquation function  213
gl.blendEquation(mode) function  215
gl.blendEquationSeparate(modeRGB,  

modeAlpha) function  215
gl.blendFuncSeparate(sW_rgb, dW_rgb, sW_a, 

dW_a) function  214
gl.blendFunc (sW, dW) function  214
gl.ELEMENT_ARRAY_BUFFER option  28
gl.enable|disable (gl.BLEND) function  214
gl.EQUAL parameter  210
gl_FragColor variable  261
gl.GEQUAL parameter  210
gl.getParameter function  186
gl.getParameter(pname) function  215
gl.GREATER parameter  210
gL.LEQUAL parameter  210
gl.LESS parameter  210
glMatrix operations

copy operation  116
creation operation  116
identity operation  116
inverse operation  116
rotate operation  116
transpose operation  116

gl.NEVER parameter  210
gl.NOTEQUAL parameter  210
Globals.js  143, 289
gl_PointSize value  325
glPolygonStipple function  207

gl.readPixels(x, y, width, height, format, type, 
pixels) function  267

ESSL
bool  69
bvec2  69
bvec3  69
bvec4  69
float  69
int  69
ivec2  69
ivec3  69
ivec4  69
mat2  69
mat3  70
mat4  70
matrices in  117, 118
sampler2D  70
samplerCube  70
vec2  69
vec3  69
vec4  69
void  69

ESSL uniforms
JavaScript, mapping  116, 117

gl.TEXTURE_CUBE_MAP_* targets  251
Goraud interpolation method  65
Goraud shading

about  83-85
with Lambertian reflection model  76, 77
with Phong reflection model  80-83

GUI
about  292, 293
WebGL support, adding  293, 295

H
hardware-based rendering  8
height attribute  12
hitPropertyCallback(object) callback  273
hitProperty function  279
hits

looking for  268
processing  269

hits function  280
homogeneous coordinates  106-108
hook()  143
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HTML5 canvas
attributes  12
creating, steps for  10
CSS style, defining  12
height attribute  12
id attribute  12
not supported  12
width attribute  12

I
IBOs  24
id attribute  12
identity operation  116
illum, materials uniforms  296
Index Buffer Objects. See  IBOs
index parameter  32, 275
indices  24
initBuffers function  39, 40
initLights function  90
initProgram function  39, 90, 94
initTransforms function  144, 157
initWebGL function  17
int  69
interactivity

adding, with JQuery UI  196
interactor function  280
interpolation

about  170
B-Splines  172
linear interpolation  170
polynomial interpolation  170, 171

interpolation methods
about  65
Goraud interpolation method  65
Phong interpolation method  65, 66

interpolative blending, alpha blending mode  
216

intersect function  338
INVALID_OPERATION  28
inverse of matrix  127
inverse operation  116
ivec2  69
ivec3  69
ivec4  69

J
JavaScript

mapping, to ESSL uniforms  116, 117
JavaScript array

used, for defining geometry  26, 27
JavaScript elements

JavaScript timers  152
requestAnimFrame function  151

JavaScript matrices  116
JavaScript Object Notation. See  JSON
JavaScript timers

about  152
used, for implementing animation sequence  

158
JQuery UI

interactivity, adding with  196
JQuery UI widgets

URL  196
JSON

about  48
decoding  50, 51
encoding  50, 51
JSON-based 3D models, defining  48-50

K
Khronos Group web page

URL  8
KTM  114

L
Lambert coefficient  76
Lambertian reflection model

Goraud shading with  76, 77
light, moving  78, 80
uniforms, updating  77, 78

Lambertian reflection model, light reflection 
models  66

Lambert’s emission law  66
left  137
life-cycle functions, WebGL

about  144
configure function  144
draw function  144
load function  144
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light ambient term  83
light color (light diffuse term)  83
light diffuse term  78
lighting  64
light positions

about  185
updating  134, 135

light reflection models
about  66
Lambertian reflection model  66
Phong reflection model  67

lights
about  10, 60, 63, 178, 188
colors, using  185
multiple lights, using  186
objects, support adding for  187, 188
properties  186

Lights.js  290
light specular term  84
lights, WebGL properties

creating  299
light uniform arrays

uLa[NUM_LIGHTS]  297
uLd[NUM_LIGHTS]  297
uLs[NUM_LIGHTS]  297

LINEAR filter  238, 239
linear interpolation  170
LINEAR_MIPMAP_LINEAR filter  241
LINEAR_MIPMAP_NEAREST filter  240
LINE_LOOP mode  44
LINES mode  43
LINE_STRIP mode  44
linkProgram(Object program), WebGL function  

91
loadCubemapFace  252
load function  144, 162, 194, 200, 301, 308
load, JavaScript functions  289
loadObject function  277
loadSceneHook  143
local transformations, with matrix stacks

about  158
dropped and frozen frames, simulating  160
simple animation  158, 159

local transforms  149

M
magnification  235
mat2  69
mat3  70
mat4  70
mat4.ortho(left, right, bottom, top, near, far, 

dest) function  137
mat4.perspective(fovy, aspect, near, far, dest) 

function  137
material ambient term  84
Material Groups, Export OBJ panel  303
materials  62, 63
material specular term  84
materials uniforms

d  296
illum  296
uKa  296
uKd  296
uKs  296
uNi  296
uNs  296

Material Template Library (MTL)  291
Math.random function  275
Matirx Stack Operations

diagrammatic representation  150
matrices

in ESSL  117, 118
uMVMatrix  117
uNMatrix  117
uPMatrix  117

matrix handling functions, WebGL
initTransforms  144
setMatrixUniforms  146
updateTransforms  145

matrix multiplications
in WebGL  127, 128

matrix stacks
about  150
connecting  158
support, adding for  157
used, for implementing local transformations  

158
minification  235
mipmap chain  240
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mipmapping
about  239
generating  241, 242
LINEAR_MIPMAP_LINEAR filter  241
LINEAR_MIPMAP_NEAREST filter  240
mipmap chain  240
NEAREST_MIPMAP_LINEAR filter  240
NEAREST_MIPMAP_NEAREST filter  240

MIRRORED_REPEAT wrap mode  245, 246
miss  268
model matrix  108
Model-View matrix

about  115-119
fourth row  120
identity matrix  119
rotation matrix  120
translation vector  120
updating  150

Model-View transform
and projective transform, integrating  140-142
updating  150

modes
LINE_LOOP mode  44
LINES mode  43
LINE_STRIP mode  44
POINTS mode  43
rendering  41, 42
TRIANGLE_FAN mode  44
TRIANGLES mode  43
TRIANGLE_STRIP mode  44

moveCallback(hits,interactor, dx, dy) callback  
273

movePickedObjects function  280
multiple lights

handling, uniform arrays used  196, 197
multiplicative blending, alpha blending mode  

216
multitexturing

about  246
accessing  247
using  247-249

mvMatrix  128

N
NDC  111
near  137

NEAREST filter  238
NEAREST_MIPMAP_LINEAR filter  240
NEAREST_MIPMAP_NEAREST filter  240
Nissan GTX

example  102
exploring  131-133

Nissan GTX, asynchronous response
loading  56, 57

non-homogeneous coordinates  107
Non Power Of Two (NPOT) texture  242
Normalized Device Coordinates. See  NDC
normal mapping

about  330, 331
using  332-334

normal matrix
about  114, 115
calculating  113, 114

normals
about  61-63
calculating  61
calculating, cross product used  61
updating, for shared vertices  62

normal transformations
about  113
normal matrix, calculating  113, 114

normal vectors  113
norm parameter  32

O
objectLabelGenerator function  275
objects

about  10
colors, using  179

Objects as OBJ Objects, Export OBJ panel  302
OBJ files

parsing  306
OBJ format

about  303, 304
Vertex  305
Vertex // Normal  305
Vertex / Texture Coordinate  305
Vertex / Texture Coordinate / Normal  305

offscreen framebuffer
framebuffer, creating to offscreen rendering  

260, 261
pixels, reading from  266, 267
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Renderbuffer, creating to store depth informa-
tion  260

rendering to  262-264
setting up  259
texture, creating to store colors  259

offscreen rendering
framebuffer, creating  260, 261

offset parameter  32
onblur event  152
one color per object

assigning, in scene  261
onfocus event  152
onFrame function  162
onLoad event  90, 156
onmouseup event  264
OpenGL ES Shading Language. See  ESSL
OpenGL Shading Language ES specification

uniforms  186
operators, ESSL  71, 72
optimization strategies

about  166
batch performance, optimizing  167
translations, performing in vertex shader  168, 

169
orbiting camera  129
orthogonal projection  137, 139, 140

about  136

P
parametric curves

about  160
animation, running  163
animation timer, setting up  162
ball, bouncing  164, 165
ball, drawing in current position  163
initialization steps  161

particle effect  325
pcolor property  277, 279
per-fragment coloring

about  181
and constant coloring, comparing  181-184
cube, coloring  181-184

perspective division  111, 112
perspective matrix

about  110, 115, 135, 136
Field of view (FOV)  136

orthogonal projection  137-140
perspective projection  136-140
projective transform and Model-View  

transform, integrating  140-142
perspective projection  136, 137-140
per-vertex coloring  180, 181
Phong lighting

Phong shading with  88
Phong reflection model

about  295
Goraud shading with  80-83

Phong reflection model, light reflection models  
67

Phong shading
about  86, 88, 295
with Phong lighting  88

pickedObject  268
picker architecture

about  272
add hit to picking list  273
end picking mode  273
picker searches for hit  273
remove hit from picking list  273
user drags mouse in picking mode  273

picker configuration
for unique object labels  278- 282

Picker.js  290
Picker object  272
picker searches for hit  273
picking

about  257, 258
application architecture  269-272

Picking Image button  272
pixels  25

about  25
reading, from offscreen framebuffer  266, 267

POINTS mode  43
POINTS primitive type  325
point sprites

about  325
POINTS primitive type  325
using, to create sparks fountain  327-329

polygon rasterization  334
polygon stippling  207
polynomial interpolation  170, 171
pos_cone variable  158
positional lights
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about  61, 99
in action  100, 101

positionGenerator function  274
pos_sphere variable  158
PostProcess class  338
post processing effect

about  315
architectural updates  320
example  316
framebuffer, creating  316, 317
geometry, creating  317, 318
shader, setting up  318, 319
testing  320-324

previous property  280
processHitsCallback(hits) callback  273
processHits function  283, 285
program attributes, WebGL properties

mapping  300
Program.js  143, 290
projection transform  110
projective Space  106
projective transform

and Model-View transform, integrating  140, 
141, 142

projective transformations  106

R
R  81
ray casting  258
ray tracing

in fragment shaders  334, 335
scene, examining  336-339

removeHitCallback(object) callback  273
remove hit from picking list  273
removeHit function  279
Renderbuffer

creating, to store depth information  260
renderFirst(objectName)  223
render function  262, 263, 270, 278, 308
rendering

about  8, 308
application, customizing  310-312
client-based rendering  9
hardware-based rendering  8
server-based rendering  9
software-based rendering  8

rendering order  223
rendering pipeline

about  24
attributes  26
fragment shader  25
framebuffer  25
uniforms  26
updating  207, 208
varyings  26
Vertex Buffer Objects (VBOs)  25
vertex shader  25

rendering rate
configuring  157

render, JavaScript functions  289
renderLast(objectName)  223
renderLater(objectName)  223
renderLoop function  39
renderOrder()  224
renderSooner(objectName)  223
REPEAT wrap mode  244
requestAnimFrame function  151, 152
resetParticle function  328
RGBA model  178
right  137
right vector  130
rotate operation  116
rotation matrix  120
Runge’s phenomenon  171
runWebGLApp function  90, 156, 158, 263

S
sampler2D  70
sampler2D uniform  230
samplerCube  70
samplers  230
scalars array  183
scaleX variable  281
scaleY variable  281
scene

about  179
blue light, adding  190
color, using  206
one color per object, assigning  261
setting up  297

scene.js  143, 290
scene object  301, 309
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sceneTime variable  163
SceneTransform.js  290
SceneTransforms object  157
SceneTransforms object, WebGL properties  298
server-based rendering  9
setMatrixUniforms function  146, 157
shader

about  295
textures, using  230

shader, post processing effect
setting up  318, 319

shaderSource function  91
shading  64
sharing method. See  interpolation methods
shininess  84
size parameter  32
software-based rendering   8
specular  67
sphere color (material diffuse term)  77, 84
square

color, changing  41
drawScene function  39
getGLContext function  39
initBuffers function  39, 40
initProgram function  39
rendering  37, 38
renderLoop function  39

square.blend  303
startAnimation function  158, 162
STATIC_DRAW  31
storage qualifier, ESSL

attribute  69
const  69
uniform  69
varying  69

STREAM_DRAW  31
stride parameter  32
subtractive blending, alpha blending mode  216
system requisites, WebGL  8

T
tangent space  331
texels  235
texImage2D call  227
texParameteri  236, 242
texture

coordinates, using  228, 229
creating  226, 227
creating, to store colors  259
filter modes  234, 235
mapping  226
mipmapping  239
texImage2D call  227
uploading  227, 228
using, in shader  230

texture2D  231
texture coordinates

using  228, 229
TEXTURE_CUBE_MAP target  251
texture mapping  226
TEXTURE_MIN_FILTER mode  239, 240
texture, using in shader

about  230
cube, texturing  231-233

texture wrapping
about  242
CLAMP_TO_EDGE mode  244
MIRRORED_REPEAT mode  245, 246
modes  243
REPEAT mode  244

timing strategies
about  152
animation and simulation, combined approach  

154-156
animation strategy  153
simulation strategy  154

top  137
tracking camera

about  129
camera model  130
camera, rotating around location  129
camera, translating in line of sight  129
light positions, updating  134, 135
Nissan GTX, exploring  131-133

transforms.calculateModelView()  159
translation vector  120
transparent objects

creating  218, 219
face culling  218
face culling used  220, 221

transparent wall
creating  222
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transpose operation  116
TRIANGLE_FAN mode  44
TRIANGLES mode  43
TRIANGLE_STRIP mode  44
Triangulate Faces, Export OBJ panel  302
trilinear filtering  241
type parameter  32

U
uKa, materials uniforms  296
uKd, materials uniforms  296
uKs, materials uniforms  296
uLa[NUM_LIGHTS], light uniform arrays  297
uLd[NUM_LIGHTS], light uniform arrays  297
uLs[NUM_LIGHTS], light uniform arrays  297
uMVMatrix  117
uniform4fv function  185
uniform[1234][fi]v, WebGL function   93
uniform[1234][fi], WebGL function   93
uniform arrays

declaration  197, 198
JavaScript array mapping  198
light uniform arrays  297
using, to handle multiple lights  196, 197
white light, adding to scene  198-201

uniformList array  188
uniforms

about  26, 186
and attributes, differences  63
passing, to programs  188, 189

uniforms, ESSL  72
uniforms, WebGL properties

initialization  301
mapping  300

uNi, materials uniforms  296
unique object labels

implementing  274
picker, configuring for  278-282
random scene, creating  274- 277
scene, testing  282-284
using, in fragment shader  277, 278

uNMatrix  117
uNs, materials uniforms  296
unwrapping  229

uOffscreen uniform  262
updateLightPosition function  196
update method  163
updateParticles function  329
updateTransforms  145
updateTransforms function  139, 145, 157
uPMatrix  117
up vector  130
Use Lambert Coefficient button  184
useProgram(Object program), WebGL function   

91
user drags mouse in picking mode  273
Utils.js  144, 289
UV Mapping  230
UVs  230

V
var aBuffer = createBuffer(void) method  30
variable declaration

storage qualifier  69
Var reference = getAttribLocation(Object 

program,String name), WebGL function   
92

var reference= getUniformLocation(Object 
program,String uniform), WebGL function   
92

varyings  26
varyings, ESSL  73
VBOs

about  24, 25, 181
attribute, enabling  33
attribute, pointing  32
attributes, associating  31, 32
drawArrays function  33, 34
drawElements function  33, 34
index parameter  32
norm parameter  32
offset parameter  32
rendering  33
size parameter  32
stride parameter  32
type parameter  32

vec2  69
vec3  69
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vec4  69
vector components, ESSL  70, 71
vector sum  62
vertexAttribPointer  33
vertex attributes, ESSL  72
Vertex Buffer Objects. See  VBOs
Vertex // Normal, OBJ format  305
Vertex, OBJ format  305
Vertex Shader

about  25
updating  191

Vertex Shader attribute  181
vertex shader, ESSL  73, 74
Vertex / Texture Coordinate / Normal, OBJ 

format  305
Vertex / Texture Coordinate, OBJ format  305
vertex transformations

about  106, 109
homogeneous coordinates  106-108
model transform  108, 109
perspective division  111, 112
projection transform  110, 111
viewport transform  112

vertices  24
vertices array  183
vFinalColor[3]  70
vFinalColor variable  70
view matrix  109
viewport coordinates  112
viewport function  112, 141
viewport transform  112
Virtual Car Showroom application

about  18
application, customizing  310-312
bandwidth consumption  292
cars, loading in WebGl scene  307
creating  290, 291
finished scene, visualizing  19, 20
models, complexity  291
network delays  292
shader quality  291

void  69

W
wall

working on  95-98
Wall First button  223

Wavefront OBJ  301
WebGL

about  7
advantages  9
and ESSL, gap bridging  93-95
application, architecture  89, 90
attributes, initializing  92
buffers, creating  27-30
client-based rendering  9
colors, using  178
context attributes, setting up  15-18
geometry defining, JavaScript arrays used  26, 

27
geometry, rendering  26
hardware-based rendering  8
matrix multiplications  127, 128
program, creating  90-92
rendering  8
server-based rendering  9
software-based rendering   8
system requisites  8
uniforms, initializing  92

WebGL 3D scenes
lights  178
objects  178
scene  179

WebGL alpha blending API
about  214
gl.blendColor ( red, green, blue, alpha) function  

215
gl.blendEquation(mode) function  215
gl.blendEquationSeparate(modeRGB,  

modeAlpha) function  215
gl.blendFuncSeparate(sW_rgb, dW_rgb, sW_a, 

dW_a) function  214
gl.blendFunc (sW, dW) function  214
gl.enable|disable (gl.BLEND) function  214
gl.getParameter(pname) function  215

WebGL API
accessing, context used  18

WebGLApp class  152
WebGLApp.js  144, 289
WebGL application

creating  287, 288
structure  10
Virtual Car Showroom application  290, 291

WebGL application, structure
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about  10
camera  10
canvas  10
lights  10
objects  10

WebGLApp object  156
WEBGLAPP_RENDER_RATE  157
WebGLApp.run()  157
WebGL context

about  13
accessing, steps for  13, 14

WebGL examples, structure
about  142
life-cycle functions  144
matrix handling functions  144
objects supported  143

WebGL function
attachShader(Object program, Object shader)  

91
createProgram()  91
getProgramParameter(Object program, Object 

parameter)  91
getUniform(program, reference)  93
linkProgram(Object program)  91
uniform[1234][fi]  93
uniform[1234][fi]v  93
useProgram(Object program)  91
Var reference = getAttribLocation(Object 

program,String name)  92
var reference= getUniformLocation(Object 

program,String uniform)  92
WebGL, implementation

about  115
JavaScript matrices  116

JavaScript matrices, mapping to ESSL uniforms  
116, 117

matrices, in ESSL  117, 118
Model-View matrix  115
Normal matrix  115
Perspective matrix  115

WebGL index buffer  24
WebGL properties

camera interactor, creating  298
camera, setting up  298
configuring  297
lights, creating  299
program attributes, mapping  300
SceneTransforms object  298
uniform initialization  301
uniforms, mapping  300

WebGL vertex buffer  24
web server, asynchronous response

setting up  53
web server requirement, asynchronous response  

54
Web Workers

about  156
URL  156

width attribute  12
window.requestAnimFrame() function  151
world space

versus camera space  122-126
Write Materials, Export OBJ panel  302

Z
z-buffer. See  depth buffer
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