
Managing Big Data with MySQL Dr. Jana Schaich Borg, Duke University

1
	

WEEK 2 TERADATA EXERCISE GUIDE

Specific Goals for Week 2 Teradata Exercises

Use these exercises to:

-‐ Become comfortable with the SQL Scratchpad
-‐ Become familiar with the Dillard’s database
-‐ Recognize syntax differences between Teradata and MySQL
-‐ Ensure you understand how to implement all the SQL syntax we learned this week

Getting started with Teradata

 Please refer to the “How to Login to and Use Teradata Viewpoint (written instructions)”
handout (https://www.coursera.org/learn/analytics-mysql/supplement/nyfp1/how-to-login-to-
and-use-teradata-viewpoint-written-instructions) and the “How to Use Teradata Viewpoint and
SQL Scratchpad” video to learn how to gain access to the Dillard’s dataset, and how to navigate
the SQL Scratchpad interface. This guide assumes you have signed into your Teradata account
successfully and know how to execute queries in the query window.

 SQL Scratchpad is exclusively configured for SQL, so unlike Jupyter, you do not need to
write a line of code to tell it to load an SQL library or include “%sql” or “%%sql” before your
queries (in fact, the query will crash if you do). However, it is a good idea to make the Dillard’s
database your default database. To do that, execute the following command:

DATABASE ua_dillards;

I suggest that you execute this command at the beginning of every Teradata session.

Get to know your data in Teradata

As I told you in the Jupyter exercises, one of the first things you should do when you start

working with a database is confirm how many tables each database has, and identify the fields
contained in each table of the database. You use different commands to do this in Teradata than
you use in MySQL. Instead of using SHOW or DESCRIBE to get a list of columns in a table,
use:

HELP TABLE [name of table goes here; don’t include the
brackets when executing the query]

To get information about a single column in a table, you could write:

Managing Big Data with MySQL Dr. Jana Schaich Borg, Duke University

2
	

HELP COLUMN [name of column goes here; don’t include the
brackets when executing the query]

The output of these commands will be a table with many columns. The important columns for
you to pay attention to are “Column Name” which tells you the name of the column, and
“Nullable” which will have a “Y” if null values are permitted in that column and an “N” if null
values are not permitted.

One thing that is missing from the information outputted by HELP is whether or not a
column is a primary or foreign key. In order to get that information, use a SHOW command:

SHOW table [insert name of table here; don’t include the
brackets when executing the query];

However, SHOW does something different in Teradata than it does in MySQL. Teradata uses
SHOW to give you the actual code that was written to create the table. You can ignore much of
the SHOW output for our purposes, but the end of the create table statement tells you what
defaults were set for each column in the table. For example, in the following output:

STORE INTEGER NOT NULL,
CITY CHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
STATE CHAR(2) CHARACTER SET LATIN NOT CASESPECIFIC,
ZIP CHAR(5) CHARACTER SET LATIN NOT CASESPECIFIC,
PRIMARY KEY (STORE))

The STORE column was configured so that it would not accept null values, the CITY, STATE,
and ZIP columns were configured so their values would not be case-specific, and the column
STORE was defined as the primary key of the table.

Exercise 1. Use HELP and SHOW to confirm the relational schema provided to us for the
Dillard’s dataset shows the correct column names and primary keys for each table.

The relational schema can be found in the “Dillard’s Database Information” reading in the “Meet
Your Business Data sets” lesson.

Look at your raw data

Most of the syntax you use to look at your data in Teradata is the same you use in
MySQL. One of the main differences is Terdata uses a TOP operator instead of a LIMIT
operator to restrict the length of a query output. Whereas LIMIT comes at the end of a MySQL
query, TOP comes immediately after SELECT in a Teradata query. The following statement
would select the first 10 rows of the strinfo table as they are stored in the native database:

SELECT TOP 10 *
FROM strinfo

Managing Big Data with MySQL Dr. Jana Schaich Borg, Duke University

3
	

The following statement would select the first 10 rows of the strinfo table, ordered in ascending
alphabetical order by the city name (you would retrieve names that start with “a”):

SELECT TOP 10 *
FROM strinfo
ORDER BY city ASC

The following statement would select the first 10 rows of the strinfo table, ordered in descending
alphabetical order by the city name (you would retrieve names that start with “w” and “y”):

SELECT TOP 10 *
FROM strinfo
ORDER BY city DESC

The documentation for the TOP function can be found here:

http://www.info.teradata.com/htmlpubs/db_ttu_13_10/index.html#page/SQL_Reference/B035_1
146_109A/ch01.3.095.html

The Teradata TOP function does not allow you to start the number of rows you select at a certain
row number. To select specific rows you need to use functions such as RANK or
ROW_NUMBER within subqueries, but we will not learn about subqueries until the last week of
the course. The SQL Scratchpad does allow you to page through your output, though. In
addition, there is a function available in Teradata (but not MySQL) called SAMPLE that allows
you to select a random sampling of the data in a table:

http://www.teradatawiki.net/2013/10/Teradata-SAMPLE-Function.html

The following query would retrieve 10 random rows from the strinfo table:

SELECT *
FROM strinfo
SAMPLE 10

The following query would retrieve a random 10% of the rows from the strinfo table:

SELECT *
FROM strinfo
SAMPLE .10

Every time you run the queries, they will return a different selection of rows.

The other important differences between Teradata and MySQL you need to know about are:

Managing Big Data with MySQL Dr. Jana Schaich Borg, Duke University

4
	

-‐ DISTINCT and LIMIT can be used in the same query statement in MySQL, but
DISTINCT and TOP cannot be used together in Teradata

-‐ MySQL accepts either double or single quotation marks around strings of text in queries,
but Teradata will only accept single quotation marks

-‐ MySQL will accept the symbols “!=” and “<>” to indicate “does not equal” but Teradata
will only accept “<>” (other operators, like “IN”, “BETWEEN”, and “LIKE” are the
same: http://www.teradatawiki.net/2013/09/Teradata-Operators.html)

Keep these differences in mind, and remember that the Dillard’s database was configured so that
the names of the tables and columns are case insensitive.

Exercise 2. Look at examples of data from each of the tables. Pay particular attention to
the skuinfo table.

Some things to note:

-‐ There are two types of transactions: purchases and returns. We will need to make sure
we specify which type we are interested in when running queries using the transaction
table.

-‐ There are a lot of strange values in the “color”, “style”, and “size” fields of the skuinfo
table. The information recorded in these columns is not always related to the column title
(for example there are entries like "BMK/TOUR K” and “ALOE COMBO” in the color
field, even though those entries do not represent colors).

-‐ The department descriptions seem to represent brand names. However, if you look at
entries in the skuinfo table from only one department, you will see that many brands are
in the same department.

Exercise 3. Examine lists of distinct values in each of the tables.

Note which tables have fewer distinct rows that they have total rows.

Exercise 4. Examine instances of transaction table where “amt” is different than “sprice”.
What did you learn about how the values in “amt”, “quantity”, and “sprice” relate to one
another?

Exercise 5. Even though the Dillard’s dataset had primary keys declared and there were
not many NULL values, there are still many bizarre entries that likely reflect entry errors.
To see some examples of these likely errors, examine:
(a) rows in the trsnact table that have “0” in their orgprice column (how could the original
price be 0?),
(b) rows in the skstinfo table where both the cost and retail price are listed as 0.00, and

Managing Big Data with MySQL Dr. Jana Schaich Borg, Duke University

5
	

(c) rows in the skstinfo table where the cost is greater than the retail price (although
occasionally retailers will sell an item at a loss for strategic reasons, it is very unlikely that a
manufacturer would provide a suggested retail price that is lower than the cost of the item).	

Exercise 6. Write your own queries that retrieve multiple columns in a precise order from
a table, and that restrict the rows retrieved from those columns using “BETWEEN”, “IN”,
and references to text strings. Try at least one query that uses dates to restrict the rows
you retrieve.

Dates in the Dillard’s database

Write a query to look at the sale price and date of transactions in the trnsact table. You will see
that the dates of the transactions are outputted in the format YY/MM/DD. Seeing this result, you
might make the reasonable assumption that you should use the YY/MM/DD format when
referring to dates in your queries. If you follow that assumption, though, you will get an error
that looks something like this:

Error Message - [Teradata Database] [TeraJDBC 15.10.00.05] [Error 3535] [SQLState
22003] A character string failed conversion to a numeric value.

The reason you get that answer can be learned through entering the query:

HELP TABLE trnsact

The result of this query shows you that saledate was configured as a date in the format of
“YYYY-MM-DD”, so although date data were permitted to be entered in a different format, the
“YYYY-MM-DD” format is what you must use in your queries. If you use the “YYYY-MM-
DD” format in your queries, you will not get the character string error discussed above.

We will not be exporting data from the Dillard’s database
	
We made an agreement with University of Arkansas and Teradata that we will not export or
share the data in the Dillard’s data set. Please honor this agreement, so that we can make sure
this terrific resource remains available for future students!

Managing Big Data with MySQL Dr. Jana Schaich Borg, Duke University

6
	

What to do when you don’t know how to answer an exercise

If you are having trouble writing some of your queries, don’t worry! Here are some things you
can try:

1.	 	 Make	 sure	 your	 query	 is	 consistent	 with	 the	 requirements	 listed	 in	 the	 Syntax	 Error	 Checklist:	
https://www.coursera.org/learn/analytics-‐mysql/resources/AaIGu	 	

2.	 	 Break	 down	 your	 query	 into	 the	 smallest	 pieces,	 or	 clauses,	 possible.	 	 Once	 you	 make	 sure	 each	 small	
piece	 works	 on	 its	 own,	 add	 in	 another	 piece	 or	 clause,	 one	 by	 one,	 always	 making	 sure	 the	 modified	
query	 works	 before	 you	 add	 in	 another	 clause.	

3.	 	 Search	 the	 previous	 Discussion	 forum	 posts	 to	 see	 if	 other	 students	 had	 similar	 questions	 or	
challenges.	
	
4.	 	 If	 you’ve	 exhausted	 all	 your	 other	 options,	 ask	 for	 help	 in	 the	 Discussion	 forums.	 	 Remember	 to	 (a)	 list	
the	 exercise	 name	 and	 question	 number	 in	 the	 title	 of	 the	 post	 or	 at	 the	 very	 beginning	 of	 the	 post,	 and	
(b)	 copy	 and	 paste	 the	 text	 of	 the	 question	 you	 are	 trying	 to	 answer	 at	 the	 beginning	 of	 the	 post.	 	 If	 you	
would	 like	 help	 troubleshooting	 a	 query,	 include	 what	 query	 (or	 queries)	 you	 tried,	 the	 error(s)	 you	
received,	 and	 the	 logic	 behind	 why	 you	 wrote	 the	 query	 (or	 queries)	 the	 way	 you	 did.	 	 	

Test your understanding using this week’s graded quiz once you feel you fully understand
how to do the following in both MySQL and Teradata:

-‐ retrieve multiple columns in a precise order from a table
-‐ select distinct rows from a table
-‐ rename columns in a query output
-‐ restrict the data you retrieve to meet certain criteria
-‐ sort your output
-‐ reference parts of text “strings”
-‐ use “BETWEEN” and “IN” in your query statements

