
Open Beta for Zowe
Installation and User's Guide

Zowe | Contents | iii

Contents

Preface: About this documentation.. vii
Who should read this documentation.. vii
How to send your feedback on this documentation.. vii

Sending a GitHub pull request...vii
Opening an issue for the documentation... vii

Release notes for Open Beta... ix
Version 0.9.1 (October 2018)... ix

What's new...ix
What's changed... x

Version 0.9.0 (August 2018)...xi
What's new...xi
What's changed.. xi
What's removed... xi
Known issues... xi

Chapter 1: Zowe overview...13
Zowe Application Framework..14
Explorer server..14
Zowe CLI..14

Zowe CLI capabilities.. 15
Zowe CLI Third-Party software agreements..15

API Mediation Layer..16
Key features.. 16
API Mediation Layer architecture..16
Components...17
Zowe API Mediation Layer Third-Party software agreements..18

Chapter 2: Installing Zowe..21
Installation roadmap..22
System requirements...22

z/OSMF requirements...22
System requirements for the Zowe Application Framework, explorer server, and API Mediation

Layer.. 25
System requirements for Zowe CLI...26

Obtaining installation files... 29
Installing the Zowe Application Framework, explorer server, and API Mediation Layer.................................31

Installing the Zowe runtime on z/OS...31
Starting and stopping the Zowe runtime on z/OS... 33
Verifying installation.. 34

Installing Zowe CLI... 35
Methods to install Zowe CLI... 35
Creating a Zowe CLI profile..37
Testing Zowe CLI connection to z/OSMF.. 37

Troubleshooting the installation... 37
Troubleshooting installing the Zowe runtime.. 38
Troubleshooting installing Zowe CLI.. 41

Uninstalling Zowe...42

Zowe | Contents | iv

Uninstalling the Zowe Application Framework...42
Uninstalling explorer server... 43
Uninstalling API Mediation Layer...43
Uninstalling Zowe CLI...44

Chapter 3: Configuring Zowe... 47
Zowe Application Framework (zLUX) configuration... 48

Setting up terminal application plug-ins.. 48
Configuring the zLUX Proxy Server and ZSS.. 48
Zowe Application Framework logging.. 50

Configuring Zowe CLI... 51
Setting environment variables for Zowe CLI.. 51

Chapter 4: Using Zowe.. 53
Using the Zowe Desktop..54

Navigating the Zowe Desktop..54
Using Explorers within the Zowe Desktop..54
Zowe Desktop application plug-ins..55
Using the Workflows application plug-in..55

Using APIs..57
Using explorer server REST APIs... 57
Programming explorer server REST APIs...61
Using explorer server WebSocket services..63

API Catalog...63
View Service Information and API Documentation in the API Catalog... 63

Using Zowe CLI...66
Display Zowe CLI help..66
Zowe CLI command groups...66

Chapter 5: Extending the Zowe Application Framework (zLUX).................... 71
Creating application plug-ins..72

Setting the environment variables for plug-in development..72
Using the sample application plug-in...72

zLUX plug-ins definition and structure... 73
Application plug-in filesystem structure.. 73
Location of plug-in files...74
Plug-in definition file... 74
Plug-in attributes...74

zLUX dataservices.. 76
Defining a dataservice.. 76
Dataservice API.. 77

Zowe Desktop and window management.. 78
Loading and presenting application plug-ins... 78
Plug-in management... 78
Application management.. 79
Windows and Viewports.. 79
Viewport Manager.. 79
Injection Manager... 80

Configuration Dataservice.. 81
Resource Scope...82
REST API... 83
Application API.. 85
Internal and bootstrapping.. 85

Zowe | Contents | v

Plug-in definition.. 86
Aggregation policies... 86

URI Broker... 86
Accessing the URI Broker... 87
Functions... 87

Application-to-application communication.. 88
Why use application-to-application communication?.. 88
Actions...88
Recognizers... 90
Dispatcher..92
Registry... 92
Pulling it all together in an example..92

Error reporting UI...92
ZluxPopupManagerService... 92
ZluxErrorSeverity..93
ErrorReportStruct.. 93
Implementation..93

Logging utility.. 95
Logging objects...95
Logger IDs.. 95
Accessing logger objects.. 95
Logger API... 96
Component Logger API... 96
Log Levels.. 97
Logging verbosity... 97

Chapter 6: Extending Zowe CLI.. 99
Installing plug-ins... 100

Setting the registry..100
Meeting the prerequisites..100
Installing plug-ins... 100
Validating plug-ins..101
Updating plug-ins..101
Uninstalling plug-ins...101

Zowe CLI Plug-in for IBM CICS..102
Use cases...102
Prerequisites.. 102
Installing..102
Setting up profiles...103
Commands...103

Preface

About this documentation

This documentation describes how to install, configure, use, and extend Open Beta for Zowe.

Who should read this documentation
This documentation is intended for system programmers who are responsible for installing and configuring Zowe,
application developers who want to use Zowe to improve z/OS user experience, and anyone who wants to understand
how Zowe works or is interested in extending Zowe to add their own plug-ins or applications.

The information provided assumes that you are familiar with the mainframe and z/OSMF configuration.

How to send your feedback on this documentation
We value your feedback. If you have comments about this documentation, you can use one of the following ways to
provide feedback:

• Send a GitHub pull request to provide a suggested edit for the content by clicking the Propose content change in
GitHub link on each documentation page.

• Open an issue in GitHub to request documentation to be updated, improved, or clarified by providing a comment.

Sending a GitHub pull request

You can provide suggested edit to any documentation page by using the Propose content change in GitHub link on
each page. After you make the changes, you submit updates in a pull request for the Zowe content team to review and
merge.

Follow these steps:

1. Click Propose content change in GitHub on the page that you want to update.
2.

Click the Edit the file icon .
3. Make the changes to the file.
4. Scroll to the end of the page and enter a brief description about your change.
5. Optional: Enter an extended description.
6. Select Propose file change.
7. Select Create pull request.

Opening an issue for the documentation

You can request the documentation to be improved or clarified, report an error, or submit suggestions and ideas by
opening an issue in GitHub for the Zowe content team to address. The content team tracks the issues and works to
address your feedback.

Follow these steps:

1. Click the GitHub link at the top of the page.
2. Select Issues.
3. Click New issue.
4. Enter a title and description for the issue.
5. Click Submit new issue.

Release notes for Open Beta

Learn about what is new, changed, removed, and known issues in Open Beta for Zowe.

Zowe Open Beta includes the following releases:

• Version 0.9.1 (October 2018)
• Version 0.9.0 (August 2018)

Version 0.9.1 (October 2018)
Version 0.9.1 contains the following changes since the last version.

What's new

New in the Zowe Application Framework

The Workflows application plug-in was added to the Zowe Application Framework (zLUX).

The API Catalog plug-in was added to the Zowe Application Framework. This plug-in lets you view API services that
have been discovered by the API Mediation Layer.

Angular application plug-ins can be internationalized utilizing the ngx-i18n library.

New in Zowe CLI

Zowe CLI contains the following new features:

• Zowe CLI Plug-in for IBM® CICS®

The new plug-in lets you extend Zowe CLI to interact with CICS programs and transactions. It uses the IBM
CICS Management Client Interface (CMCI) API to achieve the interaction with CICS.

As an application developer, you can use the plug-in to perform various CICS-related tasks, such as the following:

• Deploy code changes to CICS applications that were developed with COBOL.
• Deploy changes to CICS regions for testing or delivery.
• Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.

For more information, see Zowe CLI Plug-in for IBM CICS.
• zos-jobs and zos-files commands and command options

Zowe CLI contains the following new commands and command options:

• zowe zos-jobs delete job command: Lets you cancel a job and purge its output by providing the
JOB ID.

• zowe zos-files upload file-to-uss command: Lets you upload a local file to a file on USS.
• zowe zos-files download uss-file command: Lets you download a file on USS to a local file.
• zowe zos-jobs submit local-file command: Lets you submit a job contained in a local file on

your PC rather than a data set.
• zowe zos-jobs download output command: Lets you download the complete spool output for a job

to a local directory on your PC.
• The zowe zos-jobs submit data-set command and the zowe zos-jobs submit local-

file command now contain a --view-all-spool-content option. The option lets you submit a job
and view its complete spool output in one command.

user-guide/summaryofchanges.md#version-091-october-2018
user-guide/summaryofchanges.md#version-090-august-2018

Zowe | Release notes for Open Beta | x

New in API Mediation Layer

API Mediation Layer Version 0.9.1 contains the following new functionality and features:

• You can now view the status of API Mediation Layer from the Zowe Desktop App (zLUX plug-in).
• API Mediation Layer now lets you define single instance services and route it through a gateway without having

to apply code changes to the service.
• API Catalog contains the following new functionality and features:

• The Mineral user interface framework was used to design the API Catalog user interface.
• The Swagger user interface component was implemented for more standardized look and feel.
• The Tile view now contains a Search bar.

• API Mediation Layer documentation now contains the following tutorials:

• Onboard an existing Java REST API service without Spring Boot with Zowe API Mediation Layer.
• Onboard an existing Spring Boot REST API service with Zowe API Mediation Layer.

Enhanced JES Explorer

A full-screen job output view is now available. You can view a single job output file in a full-screen text
area, which removes the need to navigate via the job tree. Note that this view is currently only available via
direct access to the explorer. It is not accessible via the Zowe Desktop app in this release. To open a file
in full screen, you can use the following URL/parameters: https://host:explorerSecurePort/explorer-jes/#/?
jobName=SAMPLEJOB&jobId=JOB12345&fileId=102

What's changed

Naming

MVD is renamed to Zowe Desktop.

JES Explorer

Fixed an issue where text would fall out of line in the content viewer caused by special characters. This fix includes
migration to the orion-editor-component as the content viewer.

MVS Explorer

Fixed an issue where deletion of a dataset member fails.

Zowe CLI

Important! Zowe CLI in Version 0.9.1 contains breaking changes. A breaking change can cause problems with
existing functionality when you upgrade to Zowe CLI Version 0.9.1. For example, scripts that you wrote previously
might fail, user profiles might become invalid, and the product might not integrate with plug-ins properly.

You will be impacted by the following changes if you update your version of Zowe to Version 0.9.1:

• The home directory for Zowe CLI, which contains the Zowe CLI logs, profiles, and plug-ins, was changed from
~/.brightside to ~/.zowe. The character "~" denotes your home directory on your computer, which is
typically C:/Users/<yourUserId> on Windows operating systems. When you update to Zowe CLI Version
0.9.1 and issue zowe commands, the profiles that you created previously will not be available.

To correct this behavior and migrate from an older version Zowe CLI, complete the following steps:

1. Issue any bright command to create the ~/.zowe home directory.
2. After you create the directory, copy the complete contents of the ~/.brightside directory to the newly

created ~/.zowe directory. Copying the contents of the ~/.brightside directory to the ~/.zowe
directory restores the profiles you created previously.

3. To help ensure that your plug-ins function properly, reinstall the plug-ins that you installed with older versions
of Zowe CLI.

https://mineral-ui.com/
https://host:explorerSecurePort/explorer-jes/#/?jobName=SAMPLEJOB&jobId=JOB12345&fileId=102
https://host:explorerSecurePort/explorer-jes/#/?jobName=SAMPLEJOB&jobId=JOB12345&fileId=102

Zowe | Release notes for Open Beta | xi

• The environment variables that control logging and the location of your home directory were previously prefixed
with BRIGHTSIDE_. They are now prefixed with ZOWE_. If you were not using the environment variables
before this change, no action is required. If you were using the environment variables, update any usage of the
variables.

The following environment variables are affected:

• BRIGHTSIDE_CLI_HOME changed to ZOWE_CLI_HOME
• BRIGHTSIDE_IMPERATIVE_LOG_LEVEL changed to ZOWE_IMPERATIVE_LOG_LEVEL
• BRIGHTSIDE_APP_LOG_LEVEL changed to ZOWE_APP_LOG_LEVEL

Version 0.9.0 (August 2018)
Version 0.9.0 is the first Open Beta version for Zowe. This version contains the following changes since the last
Closed Beta version.

What's new

New component - API Mediation Layer

Zowe now contains a component named API Mediation Layer. You install API Mediation Layer when you install
the Zowe runtime on z/OS. For more information, see API Mediation Layer and Installing the Zowe Application
Framework, explorer server, and API Mediation Layer.

What's changed

Naming

• The project is now named Zowe.
• Zoe Brightside is renamed to Zowe CLI.

Installation

• The System Display and Search Facility (SDSF) of z/OS is no longer a prerequisite for installing explorer server.
• The name of the PROC is now ZOWESVR rather than ZOESVR.

zLUX

The mainframe account under which the ZSS server runs must have UPDATE permission on the BPX.DAEMON and
BPX.SERVER facility class profiles.

Explorer server

The URL to access the explorer server UI is changed from https://<your.server>:<atlasport>/ui/#/
to the following ones:

• https://<your.server>:<atlasport>/explorer-jes/#/

• https://<your.server>:<atlasport>/explorer-mvs/#/

• https://<your.server>:<atlasport>/explorer-uss/#/

What's removed

Removed all references to SYSLOG.

Known issues

Security message when you open the Zowe Desktop

When you initially open the Zowe Desktop, a security message alerts you that you are attempting to open a site that
has an invalid HTTPS certificate. Other applications within the Zowe Desktop might also encounter this message. To
prevent this message, add the URLs that you see to your list of trusted sites.

user-guide/overview.html#api-mediation-layer
user-guide/install-zos.html#installing-the-zowe-runtime-on-z-os
user-guide/install-zos.html#installing-the-zowe-runtime-on-z-os

Note: If you clear the browser cache, you must add the URL to your trusted sites again.

Message ICH408I during runtime

During runtime, the information message ICH408I may present identifying insufficient write authority to a number of
resources, these resources may include:

• zowe/explorer-server/wlp/usr/servers/.pid/Atlas.pid

• zowe/zlux-example-server/deploy/site/plugins/

• zowe/zlux-example-server/deploy/instance/plugins/

Note: This should not affect the runtime operations of Zowe. This is a known issue and will be addressed in the next
build.

Zowe Application Framework APIs

Zowe Application Framework APIs exist but are under development. Features might be reorganized if it simplifies
and clarifies the API, and features might be added if applications can benefit from them.

Chapter

1
Zowe overview

Topics:

• Zowe Application Framework
• Explorer server
• Zowe CLI
• API Mediation Layer

Zowe offers modern interfaces to interact with z/OS and allows you to work
with z/OS in a way that is similar to what you experience on cloud platforms
today. You can use these interfaces as delivered or through plug-ins and
extensions that are created by clients or third-party vendors.

Zowe consists of the following main components.

• Zowe Application Framework: Contains a Web user interface (UI) that
provides a full screen interactive experience. The Web UI includes many
interactions that exist in 3270 terminals and web interfaces such as IBM z/
OSMF.

• Explorer server: Provides a range of APIs for the management of jobs,
data sets and z/OS UNIX System Services files.

• API Mediation Layer: Provides an API abstraction layer through which
APIs can be discovered, catalogued, and presented uniformly.

• Zowe CLI: Provides a command-line interface that lets you interact
with the mainframe remotely and use common tools such as Integrated
Development Environments (IDEs), shell commands, bash scripts, and
build tools for mainframe development. It provides a set of utilities
and services for application developers that want to become efficient in
supporting and building z/OS applications quickly.

For details of each component, see the corresponding section.

user-guide/overview.md#zowe-application-framework
user-guide/overview.md#explorer-server
user-guide/overview.md#api-mediation-layer
user-guide/overview.md#zowe-cli

Zowe | Zowe overview | 14

Zowe Application Framework
The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application
Framework, you can create applications to suit your specific needs. The Zowe Application Framework contains a web
UI that has the following features:

• The web UI works with the underlying REST APIs for data, jobs, and subsystem, but presents the information in a
full screen mode as compared to the command line interface.

• The web UI makes use of leading-edge web presentation technology and is also extensible through web UI plug-
ins to capture and present a wide variety of information.

• The web UI facilitates common z/OS developer or system programmer tasks by providing an editor for common
text-based files like REXX or JCL along with general purpose data set actions for both Unix System Services
(USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:

• Zowe Desktop

The desktop, accessed through a browser.
• Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plus the
Express.js as a webservices framework, and the proxy applications that communicate with the z/OS services and
components.

• ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server.
• Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe Application
Framework application plug-ins.

Explorer server
The explorer server is a z/OS® RESTful web service and deployment architecture for z/OS microservices. The server
is implemented as a Liberty Profile web application that uses z/OSMF services to provide a range of APIs for the
management of jobs, data sets and z/OS UNIX™ System Services (USS) files.

These APIs have the following features:

• These APIs are described by the Open API Specification allowing them to be incorporated to any standard-based
REST API developer tool or API management process.

• These APIs can be exploited by off-platform applications with proper security controls.

Any client application that calls RESTful APIs directly can use the explorer server.

As a deployment architecture, the explorer server accommodates the installation of other z/Tool microservices into its
Liberty instance. These microservices can be used by explorer server APIs and client applications.

Zowe CLI
Zowe CLI is a command-line interface that lets application developers interact with the mainframe in a familiar
format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing mainframe
applications, and exploit the ease-of-use of off-platform tools. Zowe CLI lets application developers use common
tools such as Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools for
mainframe development. It provides a set of utilities and services for application developers that want to become
efficient in supporting and building z/OS applications quickly.

user-guide/mvd-using.html#using-zowe-framework-application-plug-ins
user-guide/mvd-using.html#using-zowe-framework-application-plug-ins

Zowe | Zowe overview | 15

Zowe CLI provides the following benefits:

• Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS applications.
• Fosters the development of new and innovative tools from a PC that can interact with z/OS.
• Ensure that business critical applications running on z/OS can be maintained and supported by existing and

generally available software development resources.
• Provides a more streamlined way to build software that integrates with z/OS.

The following sections explain the key features and details for Zowe CLI:

Note: For information about prerequisites, software requirements, installing and upgrading Zowe CLI, see Installing
Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

• Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets) directly
from Zowe CLI.

• Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and download the output
automatically.

• Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe directly
from Zowe CLI.

• Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local tasks.
• Produce responses as JSON documents: Return data in JSON format on request for consumption in other

programming languages.

For more information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

Zowe CLI Third-Party software agreements

Zowe CLI uses the following third-party software:

Third-party Software Version File name

chalk 2.3.0 Legal_Doc_00002285_56.pdf

cli-table2 0.2.0 Legal_Doc_00002310_5.pdf

dataobject-parser 1.2.1 Legal_Doc_00002310_36.pdf

find-up 2.1.0 Legal_Doc_00002310_33.pdf

glob 7.1.1 Legal_Doc_00001713_45.pdf

js-yaml 3.9.0 Legal_Doc_00002310_16.pdf

jsonfile 4.0.0 Legal_Doc_00002310_40.pdf

jsonschema 1.1.1 Legal_Doc_00002310_17.pdf

levenshtein 1.0.5 See UNLICENSE

log4js 2.5.3 Legal_Doc_00002310_37.pdf

merge-objects 1.0.5 Legal_Doc_00002310_34.pdf

moment 2.20.1 Legal_Doc_00002285_25.pdf

mustache 2.3.0 Legal_Doc_mustache.pdf

node.js 6.11.1 Legal_Doc_nodejs.pdf

node-ibm_db 2.3.1 Legal_Doc_00002310_38.pdf

node-mkdirp 0.5.1 Legal_Doc_00002310_35.pdf

user-guide/cli-usingcli.html#zowe-cli-command-groups
https://github.com/gf3/Levenshtein/blob/master/UNLICENSE

Zowe | Zowe overview | 16

Third-party Software Version File name

node-progress 2.0.0 Legal_Doc_00002310_7.pdf

prettyjson 1.2.1 Legal_Doc_00002310_22.pdf

rimraf 2.6.1 Legal_Doc_00002310_8.pdf

Semver 5.5.0 Legal_Doc_00002310_42.pdf

stack-trace 0.0.10 Legal_Doc_00002310_10.pdf

string-width 2.1.1 Legal_Doc_00002310_39.pdf

wrap-ansi 3.0.1 Legal_Doc_00002310_12.pdf

yamljs 0.3.0 Legal_Doc_00002310_13.pdf

yargs 8.0.2 Legal_Doc_00002310_1.pdf

Note: All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

To read each complete license, navigate to the GitHub repository and download the file named
Zowe_CLI_TPSRs.zip. The .zip file contains the licenses for all of the third-party components that Zowe CLI uses.

More Information:

• System requirements for Zowe CLI
• Installing Zowe CLI

API Mediation Layer
The API Mediation Layer provides a single point of access for mainframe service REST APIs. The layer offers
enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery, consistent security, a
single sign-on experience, and documentation. The API Mediation Layer facilitates secure communication across
loosely coupled microservices through the API Gateway. The API Mediation Layer includes an API Catalog that
provides an interface to view all discovered microservices, their associated APIs, and Swagger documentation in a
user-friendly manner. The Discovery Service makes it possible to determine the location and status of microservice
instances running inside the ecosystem.

More Information: - Onboard an existing Spring Boot REST API service using Zowe API Mediation Layer - Using
API Catalog

Key features

• High availability of services in which application instances on a failing node are distributed among surviving
nodes

• Microservice UIs available through the API Gateway and API Catalog by means of reverse proxying
• Support for standardization and normalization of microservice URLs and routing to provide API Mediation Layer

users with a consistent way of accessing microservices.
• Minimal effort to register a microservice with the gateway (configuration over code)
• Runs on Windows, Linux, and z/OS (target platform)
• Written in Java utilizing Spring Boot (2.x), Angular 5, and the Netflix CloudStack
• Supports multiple client types for discovery (including Spring Boot, Java, and NodeJS)
• Contains enablers that allow for easy discovery and exposure of REST APIs and Swagger documentation for each

microservice

API Mediation Layer architecture

The following diagram illustrates the single point of access with the API Gateway and the interactions between the
API Gateway, API Catalog, and the Discovery Service:

Zowe | Zowe overview | 17

Components

The API Layer consists of the following key components:

API Gateway

The microservices that are contained within the ecosystem are located behind a reverse proxy. Clients interact with
the gateway layer (reverse proxy). This layer forwards API requests to the appropriate corresponding service through
the microservice endpoint UI. The gateway is built using Netflix Zuul and Spring Boot technology.

Discovery Service

The Discovery service is the central point in the API Gateway infrastructure that accepts "announcements of REST
services" and serves as a repository of active services. Back-end microservices register with this service either
directly by using a Eureka client. Non-Spring Boot applications register with the Discover Service indirectly through
a Sidecar. The Discovery Service is built on Eureka and Spring Boot technology.

API Catalog

The API Catalog is the catalog of published APIs and their associated documentation that are discoverable or can be
available if provisioned from the service catalog. The API documentation is visualized using the Swagger UI. The
API Catalog contains APIs of services available as product versions. A service can be implemented by one or more
service instances, which provide exactly the same service for high-availability or scalability.

Zowe | Zowe overview | 18

More Information: - Onboard an existing Spring Boot REST API service using Zowe API Mediation Layer - Using
API Catalog

Zowe API Mediation Layer Third-Party software agreements

Zowe API Mediation Layer uses the following third-party software:

Third-party Software Version File name

angular 5.2.0 Legal_Doc_00002377_15.pdf

angular2-notifications 0.9.5 Legal_Doc_00002499_11.pdf

Apache Tomcat 8.0.39 Legal_Doc_00001505_6.pdf

Bootstrap 3.0.3 Legal_Doc_12955_5.pdf

Bootstrap 3.3.7 Legal_Doc_00001682_11.pdf

bootstrap-submenu 2.0.4 Legal_Doc_00001456_44.pdf

Commons Validator 1.6.0 Legal_Doc_00002105_1.pdf

copy-webpack-plugin 4.4.1 Legal_Doc_00002499_13.pdf

core-js 2.5.3 Legal_Doc_corejs_MIT.pdf

eureka-client 1.8.6 Legal_Doc_00002499_3.pdf

eventsource 1.0.5 Legal_Doc_00002499_9.pdf

google-gson 2.8.2 Legal_Doc_00002252_4.pdf

Guava 23.2-jre Legal_Doc_00002499_22.pdf

H2 1.4.196 Legal_Doc_00002499_19.pdf

hamcrest 1.3 Legal_Doc_00001170_33.pdf

httpclient 4.5.3 Legal_Doc_00001843_2.pdf

jackson 2.9.2 Legal_Doc_00002259_6.pdf

jackson 2.9.3 Legal_Doc_00001505_16.pdf

javamail 1.4.3 Legal_Doc_00000439_22.pdf

javax servlet api 3.1.0 Legal_Doc_00002499_23.pdf

javax.validation 2.0.1.Final Legal_Doc_00002499_27.pdf

Jersey 2.26 Legal_Doc_00002499_2.pdf

Jersey Media JSON Jackson 2.26 Legal_Doc_00002019_68.pdf

jquery 2.0.3 Legal_Doc_00000379_69.pdf

JSON Web Token 0.8.0 Legal_Doc_00002499_21.pdf

json-path 2.4.0 Legal_Doc_00001454_30.pdf

lodash 4.17.5 Legal_Doc_00002499_8.pdf

Logback 1.0.1 Legal_Doc_00002499_1.pdf

lombok 1.16.20 Legal_Doc_00002499_18.pdf

mockito 2.15.0 Legal_Doc_00002499_28.pdf

netflix-infix 0.3.0 Legal_Doc_00002499_4.pdf

ng2-cookies 1.0.12 Legal_Doc_00002499_15.pdf

Zowe | Zowe overview | 19

Third-party Software Version File name

ng2-destroy-subscribers 0.0.28 Legal_Doc_00002499_16.pdf

ng2-simple-timer 1.3.3 Legal_Doc_00002499_17.pdf

NPM 5.6.0 Legal_Doc_00002499_10.pdf

powermock 1.7.3 Legal_Doc_00002499_25.pdf

reactor-core 3.0.7.RELEASE Legal_Doc_00001938_51.pdf

Roaster 2.20.1.Final Legal_Doc_00002499_20.pdf

RxJS 5.5.6 Legal_Doc_rxjs_Apache.pdf

Spring Cloud Config 2.0.0.M9 Legal_Doc_00002499_33.pdf

Spring Hateoas 0.23.0.RELEASE Legal_Doc_00002377_10.pdf

Spring Retry 1.2.2 Legal_Doc_00002499_14.pdf

spring security 5.0.3.RELEASE Legal_Doc_00002499_29.pdf

spring-boot 2.0.0.RELEASE Legal_Doc_spring_boot_Apache.pdf

Spring-Cloud-Netflix 2.0.0.M8 Legal_Doc_00002499_30.pdf

Springfox 2.8.0 Legal_Doc_00002499_31.pdf

spring-ws 3.0.0.RELEASE Legal_Doc_00002499_32.pdf

swagger-core 1.5.18 Legal_Doc_00002499_24.pdf

swagger-jersey2-jaxrs 1.5.17 Legal_Doc__00001528_32.pdf

swagger-schema-ts 2.0.8 Legal_Doc_00002499_12.pdf

zone.js 0.8.20 Legal_Doc_zonejs_MIT.pdf

Note: All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

To read each complete license, navigate to the GitHub repository and download the file named
Zowe_APIML_TPSRs.zip. The .zip file contains the licenses for all of the third-party components that Zowe API
Mediation Layer uses.

Chapter

2
Installing Zowe

Topics:

• Installation roadmap
• System requirements
• Obtaining installation files
• Installing the Zowe Application

Framework, explorer server,
and API Mediation Layer

• Installing Zowe CLI
• Troubleshooting the installation
• Uninstalling Zowe

Zowe consists of four main components: the Zowe Application Framework
(zLUX), the explorer server, API Mediation Layer, and Zowe CLI. You
install the Zowe Application Framework, the explorer server, and API
Mediation on z/OS and install Zowe CLI on PC. The installations on z/OS
and on PC are independent.

To get started with installing Zowe, review the Installation roadmap topic.

Zowe | Installing Zowe | 22

Installation roadmap
Installing Zowe involves several steps that you must complete in the appropriate sequence. Review the following
installation roadmap that presents the task-flow for preparing your environment and installing and configuring Zowe
before you begin the installation process.

Tasks Description

1. Prepare your environment to meet the installation
requirements.

See System requirements.

2. Obtain the Zowe installation files. The Zowe installation files are released in a PAX file
format. The PAX file contains the runtimes and the
scripts to install and launch the z/OS runtime, as well
as the Zowe CLI package. For information about how
to download, prepare, and install the Zowe runtime, see
Obtaining the installation files.

3. Allocate enough space for the installation. The installation process requires approximately 1 GB of
available space. Once installed on z/OS, API Mediation
Layer requires approximately 150MB of space, the
Zowe Application Framework requires approximately 50
MB of space before configuration, and explorer server
requires approximately 200 MB. Zowe CLI requires
approximately 200 MB of space on your PC.

4. Install components of Zowe. To install Zowe runtime (Zowe Application Framework,
explorer server, and API Mediation Layer) on z/OS, see
Installing the Zowe runtime on z/OS. To install Zowe
CLI on PC, see Installing Zowe CLI.

5. Verify that Zowe is installed correctly. To verify that the Zowe Application Framework,
explorer server, and API Mediation Layer are installed
correctly, see Verifying installation. To verify that Zowe
CLI is installed correctly, see Testing connection to z/
OSMF.

6. Optional: Troubleshoot problems that occurred during
installation.

See Troubleshooting the installation.

To uninstall Zowe, see Uninstalling Zowe.

System requirements
Before installing Zowe, ensure that your environment meets all of the prerequisites.

1. Ensure that IBM z/OS Management Facility (z/OSMF) is installed and configured correctly. z/OSMF is a
prerequisite for the Zowe microservice that must be installed and running before you use Zowe. For details, see z/
OSMF requirements.

2. Review component specific requirements.

• System requirements for the Zowe Application Framework, explorer server, and API Mediation
• System requirements for Zowe CLI

z/OSMF requirements

The following information contains procedures and tips for meeting z/OSMF requirements. For complete information,
go to IBM Knowledge Center and read the following documents.

user-guide/install-zos.html#verifying-installation
user-guide/cli-installcli.html#testing-zowe-cli-connection-to-zosmf
user-guide/cli-installcli.html#testing-zowe-cli-connection-to-zosmf
user-guide/systemrequirements.md#zosmf-requirements
user-guide/systemrequirements.md#zosmf-requirements
user-guide/systemrequirements.md#system-requirements-for-the-zowe-application-framework-explorer-server-and-api-mediation-layer
user-guide/systemrequirements.md#system-requirements-for-zowe-cli
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3/en/homepage.html

Zowe | Installing Zowe | 23

• IBM z/OS Management Facility Configuration Guide
• IBM z/OS Management Facility Help

z/OS requirements

Ensure that the z/OS system meets the following requirements:

Requirements Description Resources in IBM Knowledge
Center

AXE (System REXX) z/OS uses AXR (System REXX)
component to perform Incident
Log tasks. The component enables
REXX executable files to run outside
of conventional TSO and batch
environments.

System REXX

Common Event Adapter (CEA)
server

The CEA server, which is a co-
requisite of the Common Information
Model (CIM) server, enables the
ability for z/OSMF to deliver z/OS
events to C-language clients.

Customizing for CEA

Common Information Model (CIM)
server

z/OSMF uses the CIM server to
perform capacity-provisioning and
workload-management tasks. Start
the CIM server before you start z/
OSMF (the IZU* started tasks).

Reviewing your CIM server setup

CONSOLE and CONSPROF
commands

The CONSOLE and CONSPROF
commands must exist in the
authorized command table.

Customizing the CONSOLE and
CONSPROF commands

IBM z/OS Provisioning Toolkit The IBM® z/OS® Provisioning
Toolkit is a command line utility that
provides the ability to provision z/
OS development environments. If
you want to provision CICS or Db2
environments with the Zowe CLI,
this toolkit is required.

What is IBM Cloud Provisioning and
Management for z/OS?

Java level IBM® 64-bit SDK for z/OS®, Java
Technology Edition V7.1 or later is
required.

Software prerequisites for z/OSMF

TSO region size To prevent exceeds maximum
region size errors, verify that the
TSO maximum region size is a
minimum of 65536 KB for the z/OS
system.

N/A

User IDs User IDs require a TSO segment
(access) and an OMVS segment.
During workflow processing and
REST API requests, z/OSMF might
start one or more TSO address spaces
under the following job names:
userid; substr(userid, 1, 6) CN
(Console).

N/A

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/systemrexx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zb100/custcea.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izsc300/cloudProvOverview.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izsc300/cloudProvOverview.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_SoftwarePrereqs.htm

Zowe | Installing Zowe | 24

Configuring z/OSMF

1. From the console, issue the following command to verify the version of z/OS:

/D IPLINFO

Part of the output contains the release, for example,

RELEASE z/OS 02.02.00.

2. Configure z/OSMF.

z/OSMF is a base element of z/OS V2.2 and V2.3, so it is already installed. But it might not be configured and
running on every z/OS V2.2 and V2.3 system.

In short, to configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS, and then start
the z/OSMF server. The z/OSMF configuration process occurs in three stages, and in the following order: - Stage
1 - Security setup - Stage 2 - Configuration - Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how to configure z/
OSMF, see Configuring z/OSMF if you use z/OS V2.2 or Setting up z/OSMF for the first time if V2.3.

Note: In z/OS V2.3, the base element z/OSMF is started by default at system initial program load (IPL). Therefore, z/
OSMF is available for use as soon as you set up the system. If you prefer not to start z/OSMF automatically, disable
the autostart function by checking for START commands for the z/OSMF started procedures in the COMMNDxx
parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator console
such as Zowe CLI's RestConsoles API require Version 2.3.

1. Verify that the z/OSMF server and angel processes are running. From the command line, issue the following
command:

/D A,IZU*

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

/S IZUANG1

After you see the message ""CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL"", issue the
following command to start the server:

/S IZUSVR1

The server might take a few minutes to initialize. The z/OSMF server is available when the message
""CWWKF0011I: The server zosmfServer is ready to run a smarter planet."" is displayed.

2. Issue the following command to find the startup messages in the SDSF log of the z/OSMF server:

f IZUG349I

You could see a message similar to the following message, which indicates the port number:

IZUG349I: The z/OSMF STANDALONE Server home page can be accessed at
 https://mvs.hursley.ibm.com:443/zosmf after the z/OSMF server is started
 on your system.

In this example, the port number is 443. You will need this port number later.

Point your browser at the nominated z/OSMF STANDALONE Server home page and you should see its Welcome
Page where you can log in.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

Zowe | Installing Zowe | 25

z/OSMF REST services for the Zowe CLI

The Zowe CLI uses z/OSMF Representational State Transfer (REST) APIs to work with system resources and extract
system data. Ensure that the following REST services are configured and available.

z/OSMF REST services Requirements Resources in IBM knowledge
Center

Cloud provisioning services Cloud provisioning services
are required for the Zowe CLI
CICS and Db2 command groups.
Endpoints begin with /zosmf/
provisioning/

Cloud provisioning services

TSO/E address space services TSO/E address space services are
required to issue TSO commands in
the Zowe CLI. Endpoints begin with
/zosmf/tsoApp

TSO/E address space services

z/OS console services z/OS console services are required to
issue console commands in the Zowe
CLI. Endpoints begin with /zosmf/
restconsoles/

z/OS console

z/OS data set and file REST interface z/OS data set and file REST interface
is required to work with mainframe
data sets and UNIX System Services
files in the Zowe CLI. Endpoints
begin with /zosmf/restfiles/

z/OS data set and file interface

z/OS jobs REST interface z/OS jobs REST interface is required
to use the zos-jobs command group
in the Zowe CLI. Endpoints begin
with /zosmf/restjobs/

z/OS jobs interface

z/OSMF workflow services z/OSMF workflow services is
required to create and manage z/
OSMF workflows on a z/OS system.
Endpoints begin with /zosmf/
workflow/

z/OSMF workflow services

Zowe uses symbolic links to the z/OSMF bootstrap.properties,
jvm.security.override.properties, and ltpa.keys files. Zowe reuses SAF, SSL, and LTPA
configurations; therefore, they must be valid and complete.

For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint into
your browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

Note:

• Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO user
credentials.

• The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw JSON format.

System requirements for the Zowe Application Framework, explorer server, and API
Mediation Layer

The Zowe Application Framework, explorer server, and API Mediation Layer are installed together. Before the
installation, make sure your system meets the following requirements:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_CloudProvSecuritySetup.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_TSOServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTCONSOLE.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTFILES.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_WorkflowServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_RESTServices.htm
https://mvs.ibm.com:443/zosmf/restjobs/jobs

Zowe | Installing Zowe | 26

• z/OS® Version 2.2 or later.
• 64-bit Java™ 8 JRE or later.
• 833 MB of HFS file space.
• Supported browsers:

• Chrome 54 or later
• Firefox 44 or later
• Safari 11 or later
• Microsoft Edge

• Node.js Version 6.11.2 or later on the z/OS host where you install the Zowe Application Server.

1. To install Node.js on z/OS, follow the procedures at https://developer.ibm.com/node/sdk/ztp. Note that
installation of the C/C++ compiler is not necessary for running the Zowe Application Framework.

2. Set the NODE_HOME environment variable to the directory where Node.js is installed. For example,
NODE_HOME=/proj/mvd/node/installs/node-v6.11.2-os390-s390x.

• npm 5.4 or later for building Zowe Application Framework applications.

To update npm, issue the following command:

npm install -g npm

Planning for installation

The following information is required during the installation process. Make the decisions before the installtion.

• The HFS directory where you install Zowe, for example, /var/zowe.
• The HFS directory that contains a 64-bit Java™ 8 JRE.
• The z/OSMF installation directory that contains derby.jar, for example, /usr/lpp/zosmf/lib.
• The z/OSMF configuration user directory that contains the following z/OSMF files:

• /bootstrap.properties

• /jvm.security.override.properties

• /resources/security/ltpa.keys

• The HTTP and HTTPS port numbers of the explorer server. By default, they are 7080 and 7443.
• The API Mediation Layer HTTP and HTTPS port numbers. You will be asked for 3 unique port numbers.
• The user ID that runs the Zowe started task.

Tip: Use the same user ID that runs the z/OSMF IZUSVR1 task, or a user ID with equivalent authorizations.
• The mainframe account under which the ZSS server runs must have UPDATE permission on the BPX.DAEMON

and BPX.SERVER facility class profiles.

System requirements for Zowe CLI

Before you install Zowe CLI, make sure your system meets the following requirements:

Supported platforms

You can install Zowe CLI on any Windows or Linux operating system. For more information about known issues and
workarounds, see Troubleshooting installing Zowe CLI.

Important!

• Zowe CLI is not officially supported on Mac computers. However, Zowe CLI might run successfully on some
Mac computers.

• Oracle Linux 6 is not supported.

Free disk space

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space consumed might
vary depending on the operating system where you install Zowe CLI.

https://developer.ibm.com/node/sdk/ztp
user-guide/troubleshootinstall.html#troubleshooting-installing-zowe-cli

Zowe | Installing Zowe | 27

Prerequisite software

Zowe CLI is designed and tested to integrate with z/OSMF running on IBM z/OS Version 2.2 or later. Before you
can use Zowe CLI to interact with the mainframe, system programmers must install and configure IBM z/OSMF in
your environment. This section provides supplemental information about Zowe CLI-specific tips or requirements that
system programmers can refer to.

Before you install Zowe CLI, also install the following prerequisite software depending on the system where you
install Zowe CLI:

Note: It's highly recommended that you update Node.js regularly to the latest Long Term Support (LTS) version.

Windows operating systems

Windows operating systems require the following software:

• Node.js V8.0 or later

Click here to download Node.js.
• Node Package Manager (npm) V5.0 or later

Note: npm is included with the Node.js installation.
• Python V2.7

The command that installs C++ Compiler also installs Python on Windows.
• C++ Compiler (gcc 4.8.1 or later)

From an administrator command prompt, issue the following command:

npm install --global --production --add-python-to-path windows-build-tools

Mac operating systems

Mac operating systems require the following software:

• Node.js V8.0 or later

Click here to download Node.js.
• Node Package Manager (npm) V5.0 or later

Note: npm is included with the Node.js installation.

Tip: If you install Node.js on a macOS operating system, it's highly recommended that you follow the instructions
on the Node.js website (using package manager) to install nodejs and nodejs-legacy. For example, you
can issue command sudo apt install nodejs-legacy to install nodejs-legacy. With nodejs-
legacy, you can issue command node rather than nodejs.

• Python V2.7

Click here to download Python 2.7.
• C ++ Compiler (gcc 4.8.1 or later)

The gcc compiler is included with macOS. To confirm that you have the compiler, issue the command gcc –
help.

Linux operating systems

Linux operating systems require the following software:

• Node.js V8.0 or later

Click here to download Node.js.
• Node Package Manager (npm) V5.0 or later

Note: npm is included with the Node.js installation.

Tip: If you install Node.js on a Linux operating system, it's highly recommended that you follow the instructions
on the Node.js website (using package manager) to install nodejs and nodejs-legacy. For example, you

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://www.python.org/download/releases/2.7/
https://nodejs.org/en/download/

Zowe | Installing Zowe | 28

can issue command sudo apt install nodejs-legacy to install nodejs-legacy. With nodejs-
legacy, you can issue command node rather than nodejs.

• Python V2.7

Included with most Linux distributions.
• C ++ Compiler (gcc 4.8.1 or later)

Gcc is included with most Linux distributions. To confirm that gcc is installed, issue the command gcc –
version.

To install gcc, issue one of the following commands:

• Red Hat

sudo yum install gcc

• Debian/Ubuntu

sudo apt-get update

sudo apt-get install build-essential

• Arch Linux

sudo pacman -S gcc

• Libsecret

To install Libsecret, issue one of the following commands:

• Red Hat

sudo yum install libsecret-devel

• Debian/Ubuntu

sudo apt-get install libsecret-1-dev

• Arch Linux

sudo pacman -S libsecret

• Make

Make is included with most Linux distributions. To confirm that Make is installed, issue the command make –-
version.

To install Make, issue one of the following commands:

• Red Hat

sudo yum install devtoolset-7

• Debian/Ubuntu

sudo apt-get install build-essential

• Arch Linux

sudo pacman -S base-devel

Zowe | Installing Zowe | 29

Obtaining installation files
The Zowe installation files are distributed as a PAX file that contains the runtimes and the scripts to install and launch
the z/OS runtime and the runtime for the command line interface. For each release, there is a PAX file named zowe-
v.r.m.pax, where

• v indicates the version
• r indicates the release number
• m indicates the modification number

The numbers are incremented each time a release is created so the higher the numbers, the later the release. Use your
web browser to download the PAX file by saving it to a folder on your desktop.

You can download the PAX file from the Zowe website. After you obtain the PAX file, verify the PAX file and
prepare it to install the Zowe runtime.

Follow these steps:

1. Verify the downloaded PAX file.

After you download the PAX file, verify the integrity of the PAX file to ensure that the file you download is
officially distributed by the Zowe project.

Notes:

• The commands in the following steps are tested on both Mac OS X V10.13.6 and Ubuntu V16.04 and V17.10.
• Ensure that you have GPG installed. Click here to download and install GPG.
• The v.r.m in the commands of this step is a variable. You must replace it with the actual PAX file version,

for example, 0.9.0.

a. Verify the hash code.

Download the hash code file zowe-v.r.m.pax.sha512 from the Zowe website. Then, run the following
commands to check:

(gpg --print-md SHA512 zowe-v.r.m.pax > zowe-v.r.m.pax.sha512.my) && diff
zowe-v.r.m.pax.sha512.my zowe-v.r.m.pax.sha512 && echo matched || echo "not
match"

When you see "matched", it means the PAX file that you download is the same one that is officially distributed by
the Zowe project. You can delete the temporary "zowe-v.r.m.pax.sha512.my" file.

You can also use other commands such as sha512, sha512sum, or openssl dgst -sha512 to generate
SHA512 hash code. These hash code results are in a different format from what Zowe provides but the values are
the same.

b. Verify with signature file.

In addition to the SHA512 hash, the hash is also verifiable. This is done by digitally signing the hash text file with
a KEY from one of the Zowe developers.

Follow these steps:

a. Download the signature file zowe-v.r.m.pax.asc from Zowe website, and download the public key
KEYS from https://github.com/zowe/release-management/.

b. Import the public key with command gpg --import KEYS.
c. If you never use gpg before, generate keys with command gpg --gen-key.
d. Sign the downloaded public key with command gpg --sign-key DC8633F77D1253C3.
e. Verify the file with command gpg --verify zowe-v.r.m.pax.asc zowe-v.r.m.pax.
f. Optional: You can remove the imported key with command: gpg --delete-key DC8633F77D1253C3.

When you see output similar to the followin one, it means the PAX file that you download is the same one that is
officially distributed by the Zowe project.

https://zowe.org/download/
https://www.gnupg.org/
https://projectgiza.org/Downloads/verify.html
https://projectgiza.org/Downloads/verify.html
https://github.com/zowe/release-management/

Zowe | Installing Zowe | 30

gpg: Signature made Tue 14 Aug 2018 08:29:46 AM EDT gpg: using RSA key
DC8633F77D1253C3 gpg: Good signature from "Matt Hogstrom (CODE SIGNING KEY)
" [full]

2. Transfer the PAX file to z/OS.

a. Open a terminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory where
you downloaded the Zowe PAX file.

b. Connect to z/OS using SFTP. Issue the following command:

sftp <userID@ip.of.zos.box>

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:

ftp <userID@ip.of.zos.box>

Note: When you use FTP, switch to binary file transfer mode by issuing the following command:

bin

c. Navigate to the target directory that you wish to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter into the Unix file system. The following
commands are useful:

• To see what directory you are in, type pwd.
• To switch directory, type cd.
• To list the contents of a directory, type ls.
• To create a directory, type mkdir.

d. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:

put <pax-file-name>.pax

Where pax-file-name is a variable that indicates the full name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with l to have
them issued against your desktop. To list the contents of a directory on your desktop, type lls where ls will list
contents of a directory on z/OS.

3. When the PAX file is transferred, expand the PAX file by issuing the following command in an ssh session:

pax -ppx -rf <pax-file-name>.pax

Where pax-file-name is a variable that indicates the name of the PAX file you downloaded.

This will expand to a file structure.

 /files
 /install
 /scripts
 ...

Note: The PAX file will expand into the current directory. A good practice is to keep the installation directory
apart from the directory that contains the PAX file. To do this, you can create a directory such as /zowe/paxes
that contains the PAX files, and another such as /zowe/builds. Use SFTP to transfer the Zowe PAX file into
the /zowe/paxes directory, use the cd command to switch into /zowe/builds and issue the command pax
-ppx -rf ../paxes/<zowe-v.r.m>.pax. The /install folder will be created inside the zowe/
builds directory from where the installation can be launched.

Zowe | Installing Zowe | 31

Installing the Zowe Application Framework, explorer server, and API
Mediation Layer

You install the Zowe Application Framework, explorer server, and API Mediation Layer on z/OS.

Before you install the runtime on z/OS, ensure that your environment meets the requirements. See System
requirements.

Installing the Zowe runtime on z/OS

To install API Mediation Layer, the Zowe Application Framework, and explorer server, you install the Zowe runtime
on z/OS.

Follow these steps:

1. Navigate to the directory where the installation archive is extracted. Locate the /install directory.

 /install
 /zowe-install.sh
 /zowe-install.yaml

2. Review the zowe-install.yaml file which contains the following properties:

• install:rootDir is the directory that Zowe will be installed into to create a Zowe runtime. The default
directory is ~/zowe/0.9.1. The user's home directory is the default value to ensure that the installing user
has permission to create the directories that are required for the install. If the Zowe runtime will be maintained
by multiple users it might be more appropriate to use another directory, such as /var/zowe/v.r.m.

You can run the installation process multiple times with different values in the zowe-install.yaml file to
create separate installations of the Zowe runtime. The directory that Zowe is installed into must be empty. The
install script exits if the directory is not empty and creates the directory if it does not exist.

• API Mediation Layer has three ports - two HTTP ports and one HTTPS port, each for a micro-service.
• Explorer-server has two ports - one for HTTP and one for HTTPS. The liberty server is used for the explorer-

ui components.
• zlux-server has three ports - the HTTP and HTTPS ports that are used by the Zowe Application Server, and the

port that is used by the ZSS Server.

install:
 rootDir=/var/zowe/0.9.1

api-mediation:
 catalogHttpPort=7552
 discoveryHttpPort=7553
 gatewayHttpsPort=7554

explorer-server:
 httpPort=7080
 httpsPort=7443

http and https ports for the node server
zlux-server:
 httpPort=8543
 httpsPort=8544
 zssPort=8542

If all of the default port values are acceptable, then you do not need to change them. The ports must not be in use
for the Zowe runtime servers to be able to allocate them.

To determine which ports are not available, follow these steps:

Zowe | Installing Zowe | 32

• To display a list of ports that are in use, issue the following command:

TSO NETSTAT

• To display a list of reserved ports, issue the following command:

TSO NETSTAT PORTLIST

The zowe-install.yaml also contains the telnet and SSH port with defaults of 23 and 22. If your z/OS
LPAR is using different ports, edit the values. This is to allow the TN3270 terminal desktop application to
connect as well as the VT terminal desktop application. Unlike the ports needed by the Zowe runtime for its Zowe
Application Framework and explorer server which must be unused, the terminal ports are expected to be in use.

Ports for the TN3270 and the VT terminal to connect to
terminals:
 sshPort=22
 telnetPort=23

3. Execute the zowe-install.sh script.

With the current directory being the /install directory, execute the script zowe-install.sh by issuing the
following command:

zowe-install.sh

You might receive the following error that the file cannot be executed.

zowe-install.sh: cannot execute

The error is due to that the install script does not have execute permission. To add execute permission, issue the
following command:

chmod u+x zowe-install.sh.

4. Configure Zowe as a started task.

The ZOWESVR must be configured as a started task (STC) under the IZUSVR user ID.

• If you use RACF, issue the following commands:

RDEFINE STARTED ZOWESVR.* UACC(NONE) STDATA(USER(IZUSVR) GROUP(IZUADMIN)
 PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
SETROPTS REFRESH RACLIST(STARTED)

• If you use CA ACF2, issue the following commands:

SET CONTROL(GSO)
INSERT STC.ZOWESVR LOGONID(IZUSVR) GROUP(IZUADMIN) STCID(ZOWESVR)
F ACF2,REFRESH(STC)

• If you use CA Top Secret, issue the following commands:

TSS ADDTO(STC) PROCNAME(ZOWESVR) ACID(IZUSVR)

5. Add the users to the required groups, IZUADMIN for administrators and IZUUSER for standard users.

• If you use RACF, issue the following command:

CONNECT (userid) GROUP(IZUADMIN)

Zowe | Installing Zowe | 33

• If you use CA ACF2, issue the following commands:

ACFNRULE TYPE(TGR) KEY(IZUADMIN) ADD(UID(<uid string of user>) ALLOW)
F ACF2,REBUILD(TGR)

• If you use CA Top Secret, issue the following commands:

TSS ADD(userid) PROFILE(IZUADMIN)
TSS ADD(userid) GROUP(IZUADMGP)

When the zowe-install.sh script runs, it performs a number of steps broken down into sections. These are
covered more in the section Troubleshooting the installation.

Starting and stopping the Zowe runtime on z/OS

Zowe has three runtime components on z/OS, the explorer server, the Zowe Application Server, and API Mediation
Layer. When you run the ZOWESVR PROC, it starts all these components. The Zowe Application Server startup
script also starts the zSS server, so starting the ZOWESVR PROC starts all the four servers, and stopping it stops all
four.

Starting the ZOWESVR PROC

To start the ZOWESVR PROC, run the zowe-start.sh script at the Unix Systems Services command prompt:

cd $ZOWE_ROOT_DIR/scripts
./zowe-start.sh

where $ZOWE_ROOT_DIR is the directory where you installed the Zowe runtime. This script starts the ZOWESVR
PROC for you so you don't have to log on to TSO and use SDSF.

Note: The default startup allows self signed and expired certificates from the Zowe Application Framework proxy
data services such as the explorer server.

If you prefer to use SDSF to start Zowe, start ZOWESVR by issuing the following operator command in SDSF:

/S ZOWESVR

By default, Zowe uses the runtime version that you most recently installed. To start a different runtime, specify its
server path on the START command:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR/explorer-server'

To test whether the explorer server is active, open the URL https://<hostname>:7443/explorer-mvs.

The port number 7443 is the default port and can be overridden through the zowe-install.yaml file before the
zowe-install.sh script is run. See Installing Zowe runtime on z/OS.

Stopping the ZOWESVR PROC

To stop the ZOWESVR PROC, run the zowe-stop.sh script at the Unix Systems Services command prompt:

cd $ZOWE_ROOT_DIR/scripts
./zowe-stop.sh

If you prefer to use SDSF to stop Zowe, stop ZOWESVR by issuing the following operator command in SDSF:

/C ZOWESVR

Either of the methods will stop the explorer server, the Zowe Application Server, and the zSS server.

Zowe | Installing Zowe | 34

When you stop the ZOWESVR, you might get the following error message:

IEE842I ZOWESVR DUPLICATE NAME FOUND- REENTER COMMAND WITH 'A='

This is because there is more than one started task named ZOWESVR. To resolve the issue, stop the required
ZOWESVR instance by issuing the following commands:

/C ZOWESVR,A=asid

You can obtain the asid from the value of A=asid when you issue the following commands:

/D A,ZOWESVR

Verifying installation

After you complete the installation of API Mediation, Zowe Application Framework, and explorer server, use the
following procedures to verify that the components are installed correctly and are functional.

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort/ZLUX/plugins/
com.rs.mvd/web/index.html

where:

• myHost is the host on which you installed the Zowe Application Server.
• httpPort is the port number that is assigned to node.http.port in zluxserver.json.
• httpsPort is the port number that is assigned to node.https.port in zluxserver.json. For example, if the

Zowe Application Server runs on host myhost and the port number that is assigned to node.http.port is 12345, you
specify https://myhost:12345/ZLUX/plugins/com.rs.mvd/web/index.htm.

Verifying explorer server installation

After explorer server is installed and the ZOWESVR procedure is started, you can verify the installation from an
Internet browser by using the following case-sensitive URL:

https://<your.server>:<atlasport>/Atlas/api/system/version

where your.server is the host name or IP address of the z/OS® system where explorer server is installed, and atlasport
is the port number that is chosen during installation. You can verify the port number in the server.xml file that
is located in the explorer server installation directory, which is /var/zowe/explorer-server/wlp/usr/
servers/Atlas/server.xml by default. Look for the httpsPort assignment in the server.xml file, for
example: httpPort="7443".

This URL sends an HTTP GET request to the Liberty Profile explorer server. If explorer server is installed correctly,
a JSON payload that indicates the current explorer server application version is returned. For example:

{ "version": "V0.0.1" }

Note: The first time that you interact with the explorer server, you are prompted to enter an MVS™ user ID and
password. The MVS user ID and password are passed over the secure HTTPS connection to establish authentication.

After you verify that explorer server is successfully installed, you can access the UI at the following URLs:

• https://<your.server>:<atlasport>/explorer-jes/#/

• https://<your.server>:<atlasport>/explorer-mvs/#/

• https://<your.server>:<atlasport>/explorer-uss/#/

If explorer server is not installed successfully, see Troubleshooting installation for solutions.

Zowe | Installing Zowe | 35

Verifying the availability of explorer server REST APIs

To verify the availability of all explorer server REST APIs, use the Liberty Profile's REST API discovery feature
from an internet browser with the following URL. This URL is case-sensitive.

https://<your.server>:<atlasport>/ibm/api/explorer

With the discovery feature, you can also try each discovered API. The users who verify the availability must have
access to their data sets and job information by using relevant explorer server APIs. This ensures that your z/OSMF
configuration is valid, complete, and compatible with the explorer server application. For example, try the following
APIs:

Explorer server: JES Jobs APIs

GET /Atlas/api/jobs

This API returns job information for the calling user.

Explorer server: Data set APIs

GET /Atlas/api/datasets/userid.**

This API returns a list of the userid.** MVS data sets.

Verifying API Mediation installation

Use your preferred REST API client to review the value of the status variable of the API Catalog service that is routed
through the API Gateway using the following URL:

https://hostName:basePort/api/v1/apicatalog/application/state

The hostName is set during install, and basePort is set as the gatewayHttpsPort parameter.

Example:

The following example illustrates how to use the curl utility to invoke API Mediation Layer endpoint and the grep
utility to parse out the response status variable value

$ curl -v -k --silent https://hostName:basePort/api/v1/apicatalog/
application/state 2>&1 | grep -Po '(?<=\"status\"\:\")[^\"]+'
UP

The response UP confirms that API Mediation Layer is installed and is running properly.

Installing Zowe CLI
As a systems programmer or application developer, you install Zowe CLI on your PC.

Methods to install Zowe CLI

You can use either of the following methods to install Zowe CLI. - Install Zowe CLI from local package - Install
Zowe CLI from Bintray registry

Installing Zowe CLI from local package

Install Zowe CLI on PCs that are running a Windows, Linux, or macOS operating system.

Follow these steps:

1. Address the prerequisites.
2. Obtain the Zowe installation files, which includes the zowe-cli-bundle.zip file. Use FTP to distribute the zowe-cli-

bundle.zip file to client workstations.

user-guide/cli-installcli.md#installing-zowe-cli-from-local-package
user-guide/cli-installcli.md#installing-zowe-cli-from-bintray-registry
user-guide/cli-installcli.md#installing-zowe-cli-from-bintray-registry

Zowe | Installing Zowe | 36

3. Open a command line window. For example, Windows Command Prompt. Browse to the directory where you
downloaded the Zowe CLI installation bundle (.zip file). Issue the following command to unzip the files:

unzip zowe-cli-bundle.zip

The command expands four TGZ packages into your working directory - Zowe CLI, one plug-in, and the odbc_cli
folder.

4. Issue the following command to install Zowe CLI on your PC:

npm install -g zowe-cli-2.0.0-next.201809251404

Important! On Windows, you must run as an Administrator to install the product and plug-ins.

Note: On Linux, you might need to prepend sudo to your npm commands so that you can issue the install and
uninstall commands. For more information, see Troubleshooting installing Zowe CLI.

Zowe CLI is installed on your PC. See Installing Plug-ins for information about the commands for installing plug-
ins from the package.

5. Create a zosmf profile so that you can issue commands that communicate with z/OSMF.

Note: For information about how to create a profile, see Creating a Zowe CLI profile.

Tip: Zowe CLI profiles contain information that is required for the product to interact with remote systems.
For example, host name, port, and user ID. Profiles let you target unique systems, regions, or instances for a
command. Most Zowe CLI command groups require a Zowe CLI zosmf profile.

After you install and configure Zowe CLI, you can issue the zowe --help command to view a list of available
commands. For more information, see Display Help.

Installing Zowe CLI from Bintray registry

If your PC is connected to the Internet, you can use the following method to install Zowe CLI from an npm registry.

Follow these steps:

1. Issue the following command to set the registry to the Zowe CLI scoped package on Bintray. In addition to setting
the scoped registry, your non-scoped registry must be set to an npm registry that includes all of the dependencies
for Zowe CLI, such as the global npm registry:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

2. Issue the following command to install Zowe CLI from the registry:

npm install -g @brightside/core@next

Important! On Windows, you must run as an Administrator to install the product and plug-ins.

Zowe CLI is installed on your PC. For information about plug-ins for Zowe CLI, see Extending Zowe CLI.
3. (Optional) To install all available plug-ins to Zowe CLI, issue the following command:

bright plugins install @brightside/cics@next

4. Create a zosmf profile so that you can issue commands that communicate with z/OSMF. For information about
how to create a profile, see Creating a Zowe CLI profile.

Tip: Zowe CLI profiles contain information that is required for the product to interact with remote systems.
For example, host name, port, and user ID. Profiles let you target unique systems, regions, or instances for a
command. Most Zowe CLI command groups require a Zowe CLI zosmf profile.

After you install and configure Zowe CLI, you can issue the zowe --help command to view a list of available
commands. For more information, see How to display Zowe CLI help.

user-guide/troubleshootinstall.html#troubleshooting-installing-zowe-cli
user-guide/cli-installcli.md#creating-a-zowe-cli-profile
user-guide/cli-usingcli.html#zowe-cli-command-groups
user-guide/cli-usingcli.html#displaying-zowe-cli-help
user-guide/cli-installcli.md#creating-a-zowe-cli-profile
user-guide/cli-usingcli.html#zowe-cli-command-groups
user-guide/cli-usingcli.html#displaying-zowe-cli-help

Zowe | Installing Zowe | 37

Note: You might encounter problems when you attempt to install Zowe CLI depending on your operating system and
environment. For more information and workarounds, see Troubleshooting installing Zowe CLI.

Creating a Zowe CLI profile

Profiles are a Zowe CLI functionality that let you store configuration information for use on multiple commands. You
can create a profile that contains your username, password, and connection details for a particular mainframe system,
then reuse that profile to avoid typing it again on every command. You can switch between profiles to quickly target
different mainframe subsystems.

Important! A zosmf profile is required to issue most Zowe CLI commands. The first profile that you create
becomes your default profile. When you issue any command that requires a zosmf profile, the command executes
using your default profile unless you specify a specific profile name on that command.

Follow these steps:

1. To create a zosmf profile, issue the following command. Refer to the available options in the help text to define
your profile:

zowe profiles create zosmf-profile --help

Note: After you create a profile, verify that it can communicate with z/OSMF. For more information, see (#Testing
Zowe CLI connection to z/OSMF).

Testing Zowe CLI connection to z/OSMF

After you configure a Zowe CLI zosmf profile to connect to z/OSMF on your mainframe systems, you can issue
a command at any time to receive diagnostic information from the server and confirm that your profile can
communicate with z/OSMF.

Tip: In this documentation we provide command syntax to help you create a basic profile. We recommend that you
append --help to the end of commands in the product to see the complete set of commands and options available
to you. For example, issue zowe profiles --help to learn more about how to list profiles, switch your default
profile, or create different profile types.

After you create a profile, run a test to verify that Zowe CLI can communicate properly with z/OSMF. You can test
your default profile and any other Zowe CLI profile that you created.

Default profile

• Verify that you can use your default profile to communicate with z/OSMF by issuing the following command:

zowe zosmf check status

Specific profile

• Verify that you can use a specific profile to communicate with z/OSMF by issuing the following command:

zowe zosmf check status --zosmf-profile <profile_name>

The commands return a success or failure message and display information about your z/OSMF server. For example,
the z/OSMF version number and a list of installed plug-ins. Report any failure to your systems administrator and use
the information for diagnostic purposes.

Troubleshooting the installation
Review the following troubleshooting tips if you have problems with Zowe installation.

user-guide/troubleshootinstall.html#troubleshooting-installing-zowe-cli

Zowe | Installing Zowe | 38

Troubleshooting installing the Zowe runtime

1. Environment variables

To prepare the environment for the Zowe runtime, a number of ZFS folders need to be located for prerequisites on
the platform that Zowe needs to operate. These can be set as environment variables before the script is run. If the
environment variables are not set, the install script will attempt to locate default values.

• ZOWE_ZOSMF_PATH: The path where z/OSMF is installed. Defaults to /usr/lpp/zosmf/lib/
defaults/servers/zosmfServer

• ZOWE_JAVA_HOME: The path where 64 bit Java 8 or later is installed. Defaults to /usr/lpp/java/
J8.0_64

• ZOWE_EXPLORER_HOST: The IP address of where the explorer servers are launched from. Defaults to
running hostname -c

The first time the script is run if it has to locate any of the environment variables, the script will add lines to the
current user's home directory .profile file to set the variables. This ensures that the next time the same user
runs the install script, the previous values will be used.

Note: If you wish to set the environment variables for all users, add the lines to assign the variables and their
values to the file /etc/.profile.

If the environment variables for ZOWE_ZOSMF_PATH, ZOWE_JAVA_HOME are not set and the install script
cannot determine a default location, the install script will prompt for their location. The install script will not
continue unless valid locations are provided.

2. Expanding the PAX files

The install script will create the Zowe runtime directory structure using the install:rootDir value in the
zowe-install.yaml file. The runtime components of the Zowe server are then unpaxed into the directory
that contains a number of directories and files that make up the Zowe runtime.

If the expand of the PAX files is successful, the install script will report that it ran its install step to completion.
3. Changing Unix permissions

After the install script lay down the contents of the Zowe runtime into the rootDir, the next step is to set the file
and directory permissions correctly to allow the Zowe runtime servers to start and operate successfully.

The install process will execute the file scripts/zowe-runtime-authorize.sh in the Zowe runtime
directory. If the script is successful, the result is reported. If for any reason the script fails to run because of
insufficient authority by the user running the install, the install process reports the errors. A user with sufficient
authority should then run the zowe-runtime-authorize.sh. If you attempt to start the Zowe runtime
servers without the zowe-runtime-authorize.sh having successfully completed, the results are
unpredictable and Zowe runtime startup or runtime errors will occur.

4. Creating the PROCLIB member to run the Zowe runtime

Note: The name of the PROCLIB member might vary depending on the standards in place at each z/OS site,
however for this documentation, the PROCLIB member is called ZOWESVR.

At the end of the installation, a Unix file ZOWESVR.jcl is created under the directory where the runtime is
installed into, $INSTALL_DIR/files/templates. The contents of this file need to be tailored and placed
in a JCL member of the PROCLIB concatenation for the Zowe runtime to be executed as a started task. The
install script does this automatically, trying data sets USER.PROCLIB, other PROCLIB data sets found in the
PROCLIB concatenation and finally SYS1.PROCLIB.

If this succeeds, you will see a message like the following one:

PROC ZOWESVR placed in USER.PROCLIB

Otherwise you will see messages beginning with the following information:

Failed to put ZOWESVR.JCL in a PROCLIB dataset.

In this case, you need to copy the PROC manually. Issue the TSO oget command to copy the ZOWESVR.jcl
file to the preferred PROCLIB:

Zowe | Installing Zowe | 39

oget '$INSTALL_DIR/files/templates/ZOWESVR.jcl' 'MY.USER.PROCLIB(ZOWESVR)'

You can place the PROC in any PROCLIB data set in the PROCLIB concatenation, but some data sets such as
SYS1.PROCLIB might be restricted, depending on the permission of the user.

You can tailor the JCL at this line

//ZOWESVR PROC SRVRPATH='/zowe/install/path/explorer-server'

to replace the /zowe/install/path with the location of the Zowe runtime directory that contains the
explorer server. Otherwise you must specify that path on the START command when you start Zowe in SDSF:

/S ZOWESVR,SRVRPATH='$ZOWE_ROOT_DIR/explorer-server'

Troubleshooting installing the Zowe Application Framework

To help Zowe research any problems you might encounter, collect as much of the following information as possible
and open an issue in GitHub with the collected information.

• Zowe version and release level
• z/OS release level
• Job output and dump (if any)
• Javascript console output (Web Developer toolkit accessible by pressing F12)
• Log output from the Zowe Application Server
• Error message codes
• Screenshots (if applicable)
• Other relevant information (such as the version of Node.js that is running on the Zowe Application Server and the

browser and browser version).

Troubleshooting installing explorer server

If explorer server REST APIs do not function properly, check the following items:

• Check whether your Liberty explorer server is running.

You can check this in the Display Active (DA) panel of SDSF under ISPF. The ZOWESVR started task should be
running. If the ZOWESVR task is not running, start the explorer server by using the following START operator
command:

/S ZOWESVR

You can also use the operator command /D A,ZOWESVR to verify whether the task is active, which alleviates
the need for the DA panel of SDSF. If the started task is not running, ensure that your ZOWESVR procedure
resides in a valid PROCLIB data set, and check the task’s job output for errors.

• Check whether the explorer server is started without errors.

In the DA panel of SDSF under ISPF, select the ZOWESVR job to view the started task output. If the explorer
server is started without errors, you can see the following messages:

CWWKE0001I: The server Atlas has been launched.

CWWKF0011I: The server Atlas is ready to run a smarter planet.

If you see error messages that are prefixed with "ERROR" or stack traces in the ZOWESVR job output, respond
to them.

• Check whether the URL that you use to call explorer server REST APIs is correct. For example: https://
your.server:atlasport/Atlas/api/system/version. The URL is case-sensitive.

• Ensure that you enter a valid z/OS® user ID and password when initially connecting to the explorer server.

https://your.server:atlasport/Atlas/api/system/version
https://your.server:atlasport/Atlas/api/system/version

Zowe | Installing Zowe | 40

• If testing the explorer server REST API for jobs information fails, check the z/OSMF IZUSVR1 task output for
errors. If no errors occur, you can see the following messages in the IZUSVR1 job output:

CWWKE0001I : The server zosmfServer has been launched.

CWWKF0011I: The server zosmfServer is ready to run a smarter planet.

If you see error messages, respond to them.

For RESTJOBS, you can see the following message if no errors occur:

CWWKZ0001I: Application IzuManagementFacilityRestJobs started in n.nnn
 seconds.

You can also call z/OSMF RESTJOBS APIs directly from your Internet browser with a URL, for example,

https://your.server:securezosmfport/zosmf/restjobs/jobs

where the securezosmfport is 443 by default. You can verify the port number by checking the izu.https.port
variable assignment in the z/OSMF bootstrap.properties file.

You might get error message IZUG846W, which indicates that a cross-site request forgery (CSRF) was attempted.
To resolve the issue, update your browser by adding the X-CSRF-ZOSMF-HEADER HTTP custom header to
every cross-site request. This header can be set to any value or an empty string (""). For details, see the z/OSMF
documentation. If calling the z/OSMF RESTJOBS API directly fails, fix z/OSMF before explorer server can use
these APIs successfully.

• If testing the explorer server REST API for data set information fails, check the z/OSMF IZUSVR1 task output
for errors and confirm that the z/OSMF RESTFILES services are started successfully. If no errors occur, you can
see the following message in the IZUSVR1 job output:

CWWKZ0001I: Application IzuManagementFacilityRestFiles started in n.nnn
 seconds.

You can also call z/OSMF RESTFILES APIs directly from your internet browser with a URL, for example,

https://your.server:securezosmfport/zosmf/restfiles/ds?dslevel=userid.**

where the securezosmfport is 443 by default. You can verify the port number by checking the izu.https.port
variable assignment in the z/OSMF bootstrap.properties file.

You might get error message IZUG846W, which indicates that a cross-site request forgery (CSRF) was attempted.
To resolve the issue, update your browser by adding the X-CSRF-ZOSMF-HEADER HTTP custom header to
every cross-site request. This header can be set to any value or an empty string (""). For details, see the z/OSMF
documentation. If calling the z/OSMF RESTFILES API directly fails, fix z/OSMF before explorer server can use
these APIs successfully.

Tip: The z/OSMF installation step of creating a valid IZUFPROC procedure in your system PROCLIB might be
missed. For more information, see the z/OSMF Configuration Guide.

The IZUFPROC member resides in your system PROCLIB, which is similar to the following sample:

//IZUFPROC PROC ROOT='/usr/lpp/zosmf' /* zOSMF INSTALL ROOT */
//IZUFPROC EXEC PGM=IKJEFT01,DYNAMNBR=200
//SYSEXEC DD DISP=SHR,DSN=ISP.SISPEXEC
// DD DISP=SHR,DSN=SYS1.SBPXEXEC
//SYSPROC DD DISP=SHR,DSN=ISP.SISPCLIB
// DD DISP=SHR,DSN=SYS1.SBPXEXEC
//ISPLLIB DD DISP=SHR,DSN=SYS1.SIEALNKE
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPTLIB DD RECFM=FB,LRECL=80,SPACE=(TRK,(1,0,1))
// DD DISP=SHR,DSN=ISP.SISPTENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU

https://your.server:securezosmfport/zosmf/restjobs/jobs
https://your.server:securezosmfport/zosmf/restfiles/ds?dslevel=userid.**
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc278419?OpenDocument

Zowe | Installing Zowe | 41

//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPROF DD DISP=NEW,UNIT=SYSDA,SPACE=(TRK,(15,15,5)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//IZUSRVMP DD PATH='&ROOT./defaults/izurf.tsoservlet.mapping.json'
//SYSOUT DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//

Note: You might need to change paths and data sets names to match your installation.

A known issue and workaround for RESTFILES API can be found at TSO SERVLET EXCEPTION
ATTEMPTING TO USE RESTFILE INTERFACE.

• Check your system console log for related error messages and respond to them.

If the explorer server cannot connect to the z/OSMF server, check the following item:

By default, the explorer server communicates with the z/OSMF server on the localhost address. If your z/OSMF
server is on a different IP address to the explorer server, for example, if you are running z/OSMF with Dynamic
Virtual IP Addressing (DVIPA), you can change this by adding a ZOSMF_HOST parameter to the server.env file.
For example: ZOSMF_HOST=winmvs27.

Troubleshooting installing Zowe CLI

The following topics contain information that can help you troubleshoot problems when you encounter unexpected
behavior using Zowe CLI.

npm install -gCommand Fails Due to an EPERM Error

Valid on Windows

Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm GitHub
repository to fix the defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields success. Some
users also report success using the following workarounds:

• Issue the npm cache clean command.
• Uninstall and reinstall Zowe CLI. For more information, see Install Zowe CLI.
• Add the --no-optional flag to the end of the npm install command.

Sudo syntax required to complete some installations

Valid on Linux

Symptom:

The installation fails on Linux.

Solution:

Depending on how you configured Node.js on Linux or Mac, you might need to add the prefix sudo before the npm
install -g command or the npm uninstall -g command. This step gives Node.js write access to the
installation directory.

npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error

Valid on Windows or Linux

Symptom:

http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398
http://www-01.ibm.com/support/docview.wss?crawler=1&uid=isg1PI63398

Zowe | Installing Zowe | 42

You receive the error message npm ERR! Cannot read property 'pause' of undefined when you
attempt to install the product.

Solution:

This behavior is due to a problem with Node Package Manager (npm). If you encounter this problem, revert to a
previous version of npm that does not contain this defect. To revert to a previous version of npm, issue the following
command:

npm install npm@5.3.0 -g

Node.js commands do not respond as expected

Valid on Windows or Linux

Symptom:

You attempt to issue node.js commands and you do not receive the expected output.

Solution:

There might be a program that is named *node* on your path. The Node.js installer automatically adds a program that
is named *node* to your path. When there are pre-existing programs that are named *node* on your computer, the
program that appears first in the path is used. To correct this behavior, change the order of the programs in the path so
that Node.js appears first.

Installation fails on Oracle Linux 6

Valid on Oracle Linux 6

Symptom:

You receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.

Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CLI is not compatible with Oracle
Linux 6.

Uninstalling Zowe
You can uninstall Zowe if you no longer need to use it. Follow these procedures to uninstall each Zowe component.

• Uninstalling the Zowe Application Framework
• Uninstalling explorer server
• Uninstalling API Mediation Layer
• Uninstalling Zowe CLI

Uninstalling the Zowe Application Framework

Follow these steps:

1. The Zowe Application Server (zlux-server) runs under the ZOWESVR started task, so it should terminate
when ZOWESVR is stopped. If it does not, use one of the following standard process signals to stop the server:

• SIGHUP

• SIGTERM

• SIGKILL

2. Delete or overwrite the original directories. If you modified the zluxserver.json file so that it points to
directories other than the default directories, do not delete or overwrite those directories.

user-guide/uninstall.md#uninstalling-the-zowe-application-framework
user-guide/uninstall.md#uninstalling-explorer-server
user-guide/uninstall.md#uninstalling-api-mediation-layer
user-guide/uninstall.md#uninstalling-zowe-cli

Zowe | Installing Zowe | 43

Uninstalling explorer server

Follow these steps:

1. Stop your Explorer Liberty server by running the following operator command:

C ZOWESVR

2. Delete the ZOWESVR member from your system PROCLIB data set.

To do this, you can issue the following TSO DELETE command from the TSO READY prompt or from ISPF
option 6:

delete 'your.zowe.proclib(zowesvr)'

Alternatively, you can issue the TSO DELETE command at any ISPF command line by prefixing the command
with TSO:

tso delete 'your.zowe.proclib(zowesvr)'

To query which PROCLIB data set that ZOWESVR is put in, you can view the SDSF JOB log of ZOWESVR and
look for the following message:

IEFC001I PROCEDURE ZOWESVR WAS EXPANDED USING SYSTEM LIBRARY
 your.zowe.proclib

If no ZOWESVR JOB log is available, issue the /$D PROCLIB command at the SDSF COMMAND INPUT
line and BROWSE each of the DSNAME=some.jes.proclib output lines in turn with ISPF option 1, until
you find the first data set that contains member ZOWESVR. Then issue the DELETE command as shown above.

3. Remove RACF® (or equivalent) definitions with the following command:

RDELETE STARTED (ZOWESVR.*)
SETR RACLIST(STARTED) REFRESH
REMOVE (userid) GROUP(IZUUSER)

where userid indicates the user ID that is used to install Zowe.
4. Delete the z/OS® UNIX™ System Services explorer server directory and files from the explorer server installation

directory by issuing the following command:

rm -R /var/zowe #*Explorer Server Installation Directory*

Or

rm -R /var/zowe/<v.r.m> #*Explorer Server Installation Directory*

Where <v.r.m> indicates the package version such as 0.9.0.

Notes:

• You might need super user authority to run this command.
• You must identify the explorer server installation directory correctly. Running a recursive remove command

with the wrong directory name might delete critical files.

Uninstalling API Mediation Layer

Note: Be aware of the following considerations:

• You might need super-user authority to run this command.
• You must identify the API Mediation installation directory correctly. Running a recursive remove command with

the incorrect directory name can delete critical files.

Zowe | Installing Zowe | 44

Follow these steps:

1. Stop your API Mediation Layer services using the following command:

C ZOWESVR

2. Delete the ZOWESVR member from your system PROCLIB data set.

To do this, you can issue the following TSO DELETE command from the TSO READY prompt or from ISPF
option 6:

delete 'your.zowe.proclib(zowesvr)'

Alternatively, you can issue the TSO DELETE command at any ISPF command line by prefixing the command
with TSO:

tso delete 'your.zowe.proclib(zowesvr)'

To query which PROCLIB data set that ZOWESVR is put in, you can view the SDSF JOB log of ZOWESVR and
look for the following message:

IEFC001I PROCEDURE ZOWESVR WAS EXPANDED USING SYSTEM LIBRARY
 your.zowe.proclib

If no ZOWESVR JOB log is available, issue the /$D PROCLIB command at the SDSF COMMAND INPUT
line and BROWSE each of the DSNAME=some.jes.proclib output lines in turn with ISPF option 1, until
you find the first data set that contains member ZOWESVR. Then issue the DELETE command as shown above.

3. Remove RACF® (or equivalent) definitions using the following command:

RDELETE STARTED (ZOWESVR.*)
SETR RACLIST(STARTED) REFRESH
REMOVE (userid) GROUP(IZUUSER)

where userid indicates the user ID that is used to install Zowe.
4. Delete the z/OS® UNIX™ System Services API Mediation Layer directory and files from the API Mediation

Layer installation directory using the following command:

rm -R /var/zowe_install_directory/api-mediation #*Zowe Installation
 Directory*

Uninstalling Zowe CLI

Important! The uninstall process does not delete the profiles and credentials that you created when using the product
from your PC. To delete the profiles from your PC, delete them before you uninstall Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe CLI.

Follow these steps:

1. Open a command line window.

Note: If you do not want to delete the Zowe CLI profiles from your PC, go to Step 5.
2. List all profiles that you created for a Command Group by issuing the following command:

 zowe profiles list <profileType>

Example:

$ zowe profiles list zosmf
The following profiles were found for the module zosmf:

user-guide/cli-usingcli.html#zowe-cli-command-groups

Zowe | Installing Zowe | 45

'SMITH-123' (DEFAULT)
smith-123@SMITH-123-W7 C:\Users\SMITH-123
$

3. Delete all of the profiles that are listed for the command group by issuing the following command:

Tip: For this command, use the results of the list command.

Note: When you issue the delete command, it deletes the specified profile and its credentials from the
credential vault in your PC's operating system.

zowe profiles delete <profileType> <profileName> --force

Example:

zowe profiles delete zosmf SMITH-123 --force

4. Repeat Steps 2 and 3 for all Zowe CLI command groups and profiles.
5. Uninstall Zowe CLI by issuing one of the following commands:

• If you installed Zowe CLI from the package, issue the following command

npm uninstall --global @brightside/core

• If you installed Zowe CLI from the online registry, issue the following command:

npm uninstall --global brightside

The uninstall process removes all Zowe CLI installation directories and files from your PC.
6. Delete the C:\Users\<user_name>\.brightside directory on your PC. The directory contains the Zowe

CLI log files and other miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your PC.
7. If you installed Zowe CLI from the online registry, issue the following command to clear your scoped

npm registry:

npm config set @brightside:registry

Chapter

3
Configuring Zowe

Topics:

• Zowe Application Framework
(zLUX) configuration

• Configuring Zowe CLI

Follow these procedures to configure the components of Zowe.

Zowe | Configuring Zowe | 48

Zowe Application Framework (zLUX) configuration
After you install Zowe, you can optionally configure the terminal application plug-ins or modify the Zowe
Application Server (zLUX Proxy Server) and ZSS configuration, if needed.

Setting up terminal application plug-ins

Follow these optional steps to configure the default connection to open for the terminal application plug-ins.

Setting up the TN3270 mainframe terminal application plug-in

_defaultTN3270.json is a file in tn3270-ng2/, which is deployed during setup. Within this file, you can
specify the following parameters to configure the terminal connection:

 "host": <hostname>
 "port": <port>
 “security”: {
 type: <”telnet” or “tls”>
 }

Setting up the VT Terminal application plug-in

_defaultVT.json is a file in vt-ng2/, which is deployed during setup. Within this file, you can specify the
following parameters to configure the terminal connection:

 “host”:<hostname>
 “port”:<port>
 “security”: {
 type: <”telnet” or “ssh”>
 }

Configuring the zLUX Proxy Server and ZSS

Configuration file

The zLUX Proxy Server and ZSS rely on many parameters to run, which includes setting up networking, deployment
directories, plug-in locations, and more.

For convenience, the zLUX Proxy Server and ZSS read from a JSON file with a common structure. ZSS reads
this file directly as a startup argument, while the zLUX Proxy Server as defined in the zlux-proxy-server
repository accepts several parameters, which are intended to be read from a JSON file through an implementer of
the server, such as the example in the zlux-example-server repository, the js/zluxServer.js file. This
file accepts a JSON file that specifies most, if not all, of the parameters needed. Other parameters can be provided
through flags, if needed.

An example JSON file can be found in the zlux-example-server repository, in the zluxserver.json in the
config directory.

Note: All examples are based on the zlux-example-server repository.

Network configuration

Note: The following attributes are to be defined in the server's JSON configuration file.

The zLUX Proxy Server can be accessed over HTTP, HTTPS, or both, provided it has been configured for either (or
both).

HTTP

To configure the server for HTTP, complete these steps:

1. Define an attribute http within the top-level node attribute.

Zowe | Configuring Zowe | 49

2. Define port within http. Where port is an integer parameter for the TCP port on which the server will listen.
Specify 80 or a value between 1024-65535.

HTTPS

For HTTPS, specify the following parameters:

1. Define an attribute https within the top-level node attribute.
2. Define the following within https:

• port: An integer parameter for the TCP port on which the server will listen. Specify 443 or a value between
1024-65535.

• certificates: An array of strings, which are paths to PEM format HTTPS certificate files.
• keys: An array of strings, which are paths to PEM format HTTPS key files.
• pfx: A string, which is a path to a PFX file which must contain certificates, keys, and optionally Certificate

Authorities.
• certificateAuthorities (Optional): An array of strings, which are paths to certificate authorities files.
• certificateRevocationLists (Optional): An array of strings, which are paths to certificate revocation list (CRL)

files.

Note: When using HTTPS, you must specify pfx, or both certificates and keys.

Network example

In the example configuration, both HTTP and HTTPS are specified:

 "node": {
 "https": {
 "port": 8544,
 //pfx (string), keys, certificates, certificateAuthorities, and
 certificateRevocationLists are all valid here.
 "keys": ["../deploy/product/ZLUX/serverConfig/server.key"],
 "certificates": ["../deploy/product/ZLUX/serverConfig/server.cert"]
 },
 "http": {
 "port": 8543
 }
 }

Deploy configuration

When the zLUX Proxy Server is running, it accesses the server's settings and reads or modifies the contents of its
resource storage. All of this data is stored within the Deploy folder hierarchy, which is spread out into a several
scopes:

• Product: The contents of this folder are not meant to be modified, but used as defaults for a product.
• Site: The contents of this folder are intended to be shared across multiple zLUX Proxy Server instances, perhaps

on a network drive.
• Instance: This folder represents the broadest scope of data within the given zLUX Proxy Server instance.
• Group: Multiple users can be associated into one group, so that settings are shared among them.
• User: When authenticated, users have their own settings and storage for the application plug-ins that they use.

These directories dictate where the Configuration Dataservice stores content.

Deploy example

// All paths relative to zlux-example-server/js or zlux-example-server/bin
// In real installations, these values will be configured during the
 installation process.
 "rootDir":"../deploy",
 "productDir":"../deploy/product",
 "siteDir":"../deploy/site",

Zowe | Configuring Zowe | 50

 "instanceDir":"../deploy/instance",
 "groupsDir":"../deploy/instance/groups",
 "usersDir":"../deploy/instance/users"

Application plug-in configuration

This topic describes application plug-ins that are defined in advance.

In the configuration file, you can specify a directory that contains JSON files, which tell the server what application
plug-in to include and where to find it on disk. The backend of these application plug-ins use the server's plug-in
structure, so much of the server-side references to application plug-ins use the term plug-in.

To include application plug-ins, define the location of the plug-ins directory in the configuration file, through the top-
level attribute pluginsDir.

Note: In this example, the directory for these JSON files is /plugins. Yet, to separate configuration files
from runtime files, the zlux-example-server repository copies the contents of this folder into /deploy/
instance/ZLUX/plugins. So, the example configuration file uses the latter directory.

Plug-ins directory example

// All paths relative to zlux-example-server/js or zlux-example-server/bin
// In real installations, these values will be configured during the install
 process.
//...
 "pluginsDir":"../deploy/instance/ZLUX/plugins",

Logging configuration

For more information, see Logging Utility.

ZSS configuration

Running ZSS requires a JSON configuration file that is similar or the same as the one used for the zLUX Proxy
Server. The attributes that are needed for ZSS, at minimum, are:*rootDir*, productDir, siteDir, instanceDir,
groupsDir, usersDir, pluginsDir and zssPort. All of these attributes have the same meaning as described above for
the server, but if the zLUX Proxy Server and ZSS are not run from the same location, then these directories can be
different.

The zssPort attribute is specific to ZSS. This is the TCP port on which ZSS listens in order to be contacted by the
zLUX Proxy Server. Define this port in the configuration file as a value between 1024-65535.

Connecting the zLUX Proxy Server to ZSS

When you run the zLUX Proxy Server, specify the following flags to declare which ZSS instance the Zowe
Application Framework will proxy ZSS requests to:

• -h: Declares the host where ZSS can be found. Use as "-h <hostname>"
• -P: Declares the port at which ZSS is listening. Use as "-P <port>"

Zowe Application Framework logging

The Zowe Application Framework log files contain processing messages and statistics. The log files are generated in
the following default locations:

• Zowe Proxy Server: zlux-example-server/log/nodeServer-yyyy-mm-dd-hh-mm.log
• ZSS: zlux-example-server/log/zssServer-yyyy-mm-dd-hh-mm.log

The logs are timestamped in the format yyyy-mm-dd-hh-mm and older logs are deleted when a new log is created at
server startup.

Controlling the logging location

The log information is written to a file and to the screen. (On Windows, logs are written to a file only.)

Zowe | Configuring Zowe | 51

ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables

To control where the information is logged, use the environment variable ZLUX_NODE_LOG_DIR, for the zLUX
Proxy Server, and ZSS_LOG_DIR, for ZSS. While these variables are intended to specify a directory, if you specify a
location that is a file name, Zowe will write the logs to the specified file instead (for example: /dev/null to disable
logging).

When you specify the environment variables ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR and you
specify directories rather than files, Zowe will timestamp the logs and delete the older logs that exceed the
ZLUX_NODE_LOGS_TO_KEEP threshold.

ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

If you set the log file name for the zLUX Proxy Server by setting the ZLUX_NODE_LOG_FILE environment
variable, or if you set the log file for ZSS by setting the ZSS_LOG_FILE environment variable, there will only be one
log file, and it will be overwritten each time the server is launched.

Note: When you set the ZLUX_NODE_LOG_FILE or ZSS_LOG_FILE environment variables, Zowe will not
override the log names, set a timestamp, or delete the logs.

If the directory or file cannot be created, the server will run (but it might not perform logging properly).

Retaining logs

By default, the last five logs are retained. To specify a different number of logs to retain, set
ZLUX_NODE_LOGS_TO_KEEP (zLUX Proxy Server logs) or ZSS_LOGS_TO_KEEP (ZSS logs) to the number of
logs that you want to keep. For example, if you set ZLUX_NODE_LOGS_TO_KEEP to 10, when the eleventh log is
created, the first log is deleted.

Configuring Zowe CLI
After you install Zowe, you can optionally perform Zowe CLI configurations.

Setting environment variables for Zowe CLI

You can set environment variables on your operating system to modify Zowe CLI behavior, such as the log level and
the location of the .brightside directory, where the logs, profiles, and plug-ins are stored. Refer to your PC operating
system documentation for information about how to set environmental variables.

Setting log levels

You can set the log level to adjust the level of detail that is written to log files:

Important! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,
command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default

BRIGHTSIDE_APP
_LOG_LEVEL

Zowe CLI logging level Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

BRIGHTSIDE
_IMPERATIVE_LOG
_LEVEL

Imperative CLI Framework
logging level

Log4JS log levels (OFF,
TRACE, DEBUG, INFO,
WARN, ERROR, FATAL)

DEBUG

Setting the .brightside directory

You can set the location on your PC where Zowe CLI creates the .brightside directory, which contains log files,
profiles, and plug-ins for the product:

Environment Variable Description Values Default

BRIGHTSIDE_CLI
_HOME

Zowe CLI home directory
location

Any valid path on your PC Your PC default home
directory

Chapter

4
Using Zowe

Topics:

• Using the Zowe Desktop
• Using APIs
• API Catalog
• Using Zowe CLI

After you install and start Zowe, you can perform tasks with each component.
See the following sections for details.

Zowe | Using Zowe | 54

Using the Zowe Desktop
You can use the Zowe Application Framework to create application plug-ins for the Zowe Desktop. For more
information, see Exending the Zowe Application Framework.

Navigating the Zowe Desktop

From the Zowe Desktop, you can access Zowe applications.

Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort/ZLUX/plugins/
com.rs.mvd/web/index.html

where:

• myHost is the host on which you are running the Zowe Application Server.
• httpsPort is the value that was assigned to node.https.port in zluxserver.json. For example, if you run the

Zowe Application Server on host myhost and the value that is assigned to node.https.port in zluxserver.json
is 12345, you would specify https://myhost:12345/ZLUX/plugins/com.rs.mvd/web/
index.html.

Logging in and out of the Zowe Desktop

1. To log in, enter your mainframe credentials in the Username and Password fields.
2. Press Enter. Upon authentication of your user name and password, the desktop opens.

To log out, click the the avatar in the lower right corner and click Sign Out.

Pinning applications to the task bar

1. Click the Start menu.
2. Locate the application you want to pin.
3. Right-click the on the application icon and select Pin to taskbar.

Using Explorers within the Zowe Desktop

The explorer server provides a sample web client that can be used to view and manipulate the Job Entry Subsystem
(JES), data sets, z/OS UNIX System Services (USS), and System log.

The following views are available from the explorer server Web UI and are accessible via the explorer server icon
located in the application draw of Zowe Desktop (Navigation between views can be performed using the menu draw
located in the top left corner of the explorer server Web UI):

JES Explorer

Use this view to query JES jobs with filters, and view the related steps, files, and status. You can also purge jobs from
this view.

Data set Explorer

Use this view to browse the MVS™ file system by using a high-level qualifier filter. With the Dataset Explorer, you
can complete the following tasks:

• List the members of partitioned data sets.
• Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").
• Submit data sets that contain JCL to Job Entry Subsystem (JES).
• Edit sequential data sets and partitioned data set members with basic syntax highlighting and content assist for

JCL and REXX.
• Conduct basic validation of record length when editing JCL.
• Delete data sets and members.

Zowe | Using Zowe | 55

• Open data sets in full screen editor mode, which gives you a fully qualified link to that file. The link is then
reusable for example in help tickets.

UNIX file Explorer

Use this view to browse the USS files by using a path. With the UNIX file Explorer, you can complete the following
tasks:

• List files and folders.
• Create new files and folders.
• Edit files with basic syntax highlighting and content assist for JCL and REXX.
• Delete files and folders.

Zowe Desktop application plug-ins

Application plug-ins are applications that you can use to access the mainframe and to perform various tasks.
Developers can create application plug-ins using a sample application as a guide. The following application plug-ins
are installed by default:

Hello World Sample

The Hello World sample application plug-in for developers demonstrates how to create a dataservice and how to
create an application plug-in using Angular.

IFrame Sample

The IFrame sample application plug-in for developers demonstrates how to embed pre-made webpages within the
desktop as an application and how an application can request an action of another application (see the source code for
more information).

z/OS Subsystems

This z/OS Subsystems plug-in helps you find information about the important services on the mainframe, such as
CICS, Db2, and IMS.

TN3270

This TN3270 plug-in provides a 3270 connection to the mainframe on which the Zowe Application Server runs.

VT Terminal

The VT Terminal plug-in provides a connection to UNIX System Services and UNIX.

API Catalog

The API Catalog plug-in lets you view API services that have been discovered by the API Mediation Layer. For
more information about the API Mediation Layer, Discovery Service, and API Catalog, see API Mediation Layer
Overview.

Workflows

From the Workflows application plug-in you can create, manage, and use z/OSMF workflows to manage your system.

Using the Workflows application plug-in

The Workflows application plug-in is available from the Zowe Deskstop Start menu. To launch Workflows, click the
Start menu in the lower-left corner of the desktop and click the Workflows application plug-in icon. The Users/Tasks
Workflows window opens.

To refresh the display, click the circular arrow in the upper right corner of the window.

Configuration

From the Configuration tab, you can view, add, and remove servers.

user-guide/mvd-using.md#api-mediation-layer-architecture
user-guide/mvd-using.md#api-mediation-layer-architecture

Zowe | Using Zowe | 56

Adding a z/OSMF server

Complete these steps to add a new z/OSMF server:

1. Click the Configuration tab.
2. Click the plus sign (+) on the left side of the window.
3. In the Host field, type the name of the host.
4. In the Port field, type the port number.
5. Click OK.

To test the connection, click Test. When the server is online the Online indicator next to the server Host and Port is
green.

Setting a server as the default z/OSMF server

Complete these steps to set a default z/OSMF server:

1. Click Set as default.
2. Enter your user ID and password.
3. Click Sign in.

Note: You must specify a default server.

Removing a server

To remove a server, click x next to the server in the list that you want to remove.

Workflows

Click the Workflows tab to display all workflows on the system.

Tip: To search for a particular workflow, type the search string in the search box in the upper right portion of the tab.

The following information is displayed on the Workflows tab.

Workflow

The name of the workflow.

Description

The description of the workflow.

Version

The version number.

Owner

The user ID of the workflow owner.

System

The system identifier.

Status

The status of the workflow (for example, In progress, Completed, and so on.)

Progress

Progress indicator.

Defining a workflow

Complete these steps to define a workflow: 1. From the Workflows tab, click Action in the upper left corner of the
tab. 2. Click New workflow. 3. Specify the Name, Workflow definition file, System, and Owner. 4. Click OK.

Zowe | Using Zowe | 57

Viewing tasks

To view your tasks, click the My Tasks tab. This tab displays Workflow tasks that belong to you. You can choose to
view Pending, Completed, or All tasks. Workflows that have tasks that are assigned to you are shown on the left side
of the window. For each workflow, you can click the arrow to expand or collapse the task list. Your assigned tasks
display below each workflow. Hovering over each task displays more information about the task, such as the status
and the owner.

Each task has a indicator of PERFORM (a step needs to be performed) or CHECK (Check the step that was
performed). Clicking CHECK or PERFORM opens a work area on the right side of the window.

Note: When a task is complete, a green clipboard icon with a checkmark is displayed.

Hovering over the task description in the title bar of the work area window on the right side displays more
information corresponding workflow and the step description.

Task work area

When you click CHECK or PERFORM a work area on the right side of the window is displayed.

• When you click CHECK, you can view the JESMSGLG, JESJCL, JESYSMSG, or SYSTSPRT that is associated
with the selected task.

• When you click PERFORM, you can use the work area to perform the steps associated with the selected task.
Click Next to advance to the next step for the task.

Viewing warnings

Click the Warnings tab to view any warning messages that were encountered.

The following information is displayed on the Warnings tab.

Message Code

The message code that is associated with the warning.

Description

A description of the warning.

Date

The date of the warning.

Corresponding Workflow

The workflow that is associated with the warning.

Using APIs
Access and modify your z/OS resources such as jobs, data sets, z/OS UNIX System Services files by using APIs.

Using explorer server REST APIs

Explorer server REST APIs provide a range of REST APIs through a Swagger defined description, and a simple
interface to specify API endpoint parameters and request bodies along with the response body and return code. With
explorer server REST APIs, you can see the available API endpoints and try the endpoints within a browser. Swagger
documentation is available from an Internet browser with a URL, for example, https://your.host:atlas-port/ibm/api/
explorer.

Data set APIs

Use data set APIs to create, read, update, delete, and list data sets. See the following table for the operations available
in data set APIs and their descriptions and prerequisites.

https://your.host:atlas-port/ibm/api/explorer
https://your.host:atlas-port/ibm/api/explorer

Zowe | Using Zowe | 58

REST API Description Prerequisite

GET /Atlas/api/datasets/
{filter}

Get a list of data sets by filter. Use
this API to get a starting list of data
sets, for example, userid.**.

z/OSMF restfiles

GET /Atlas/api/datasets/
{dsn}/attributes

Retrieve attributes of a data set(s).
If you have a data set name, use this
API to determine attributes for a
data set name. For example, it is a
partitioned data set.

z/OSMF restfiles

GET /Atlas/api/datasets/
{dsn}/members

Get a list of members for a
partitioned data set. Use this API to
get a list of members of a partitioned
data set.

z/OSMF restfiles

GET /Atlas/api/datasets/
{dsn}/content

Read content from a data set or
member. Use this API to read the
content of a sequential data set or
partitioned data set member. Or use
this API to return a checksum that
can be used on a subsequent PUT
request to determine if a concurrent
update has occurred.

z/OSMF restfiles

PUT /Atlas/api/datasets/
{dsn}/content

Write content to a data set or
member. Use this API to write
content to a sequential data set or
partitioned data set member. If a
checksum is passed and it does
not match the checksum that is
returned by a previous GET request,
a concurrent update has occurred and
the write fails.

z/OSMF restfiles

POST /Atlas/api/datasets/
{dsn}

Create a data set. Use this API to
create a data set according to the
attributes that are provided. The
API uses z/OSMF to create the data
set and uses the syntax and rules
that are described in the z/OSMF
Programming Guide.

z/OSMF restfiles

POST /Atlas/api/datasets/
{dsn}/{basedsn}

Create a data set by using the
attributes of a given base data set.
When you do not know the attributes
of a new data set, use this API to
create a new data set by using the
same attributes as an existing one.

z/OSMF

DELETE /Atlas/api/
datasets/{dsn}

Delete a data set or member. Use this
API to delete a sequential data set or
partitioned data set member.

z/OSMF restfiles

Job APIs

Use Jobs APIs to view the information and files of jobs, and submit and cancel jobs. See the following table for the
operations available in Job APIs and their descriptions and prerequisites.

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc278420?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc278420?OpenDocument

Zowe | Using Zowe | 59

REST API Description Prerequisite

GET /Atlas/api/jobs Get a list of jobs. Use this API to get
a list of job names that match a given
prefix, owner, or both.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids

Get a list of job identifiers for a
given job name. If you have a list of
existing job names, use this API to
get a list of job instances for a given
job name.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids/{jobId}/
steps

Get job steps for a given job. With
a job name and job ID, use this
API to get a list of the job steps,
which includes the step name, the
executed program, and the logical
step number.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids/{jobId}/
steps/{stepNumber}/dds

Get data set definitions (DDs) for a
given job step. If you know a step
number for a given job instance,
use this API to get a list of the DDs
for a given job step, which includes
the DD name, the data sets that are
described by the DD, the original DD
JCL, and the logical order of the DD
in the step.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids/{jobId}/
files

Get a list of output file names for a
job. Job output files have associated
DSIDs. Use this API to get a list of
the DSIDs and DD name of a job.
You can use the DSIDs and DD
name to read specific job output files.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids/{jobId}/
files/{fileId}

Read content from a specific job
output file. If you have a DSID or
field for a given job, use this API to
read the output file's content.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids/{jobId}/
files/{fileId}/tail

Read the tail of a job's output file.
Use this API to request a specific
number of records from the tail of a
job output file.

z/OSMF restjobs

GET /Atlas/api/jobs/
{jobName}/ids/{jobId}/
subsystem

Get the subsystem type for a job. Use
this API to determine the subsystem
that is associated with a given job.
The API examines the JCL of the job
to determine if the executed program
is CICS®, Db2®, IMS™, or IBM®

MQ.

z/OSMF restjobs

POST /Atlas/api/jobs Submit a job and get the job ID back.
Use this API to submit a partitioned
data set member or UNIX™ file.

z/OSMF restjobs

Zowe | Using Zowe | 60

REST API Description Prerequisite

DELETE /Atlas/api/jobs/
{jobName}/{jobId}

Cancel a job and purge its associated
files. Use this API to purge a
submitted job and the logged output
files that it creates to free up space.

z/OSMF Running Common
Information Model (CIM) server

System APIs

Use System APIs to view the version of explorer server. See the following table for available operations and their
descriptions and prerequisites.

REST API Description Prerequisite

GET /Atlas/api/system/
version

Get the current explorer server
version. Use this API to get the
current version of the explorer server
microservice.

None

USS File APIs

Use USS File APIs to create, read, update, and delete USS files. See the following table for the available operations
and their descriptions and prerequisites.

REST API Description Prerequisite

POST /Atlas/api/uss/files Use this API to create new USS
directories and files.

z/OSMF restfiles

DELETE /Atlas/api/uss/
files{path}

Use this API to delete USS
directories and files.

z/OSMF resfiles

GET /Atlas/api/files/
{path}

Use this API to get a list of files in
a USS directory along with their
attributes.

z/OSMF restfiles

GET /Atlas/api/files/
{path}/content

Use this API to get the content of a
USS file.

z/OSMF restfiles

PUT /Atlas/api/files/
{path}/content

Use this API to update the content of
a USS file.

z/OSMF resfiles

z/OS System APIs

Use z/OS system APIs to view information about PARMLIB, SYSPLEX, and USER. See the following table for
available operations and their descriptions and prerequisites.

REST API Description Prerequisite

GET /Atlas/api/zos/
parmlib

Get system PARMLIB information.
Use this API to get the PARMLIB
data set concatenation of the target z/
OS system.

None

GET /Atlas/api/zos/
sysplex

Get target system sysplex and system
name. Use this API to get the system
and sysplex names.

None

GET /Atlas/api/zos/
username

Get current userid. Use this API to
get the current user ID.

None

Zowe | Using Zowe | 61

Programming explorer server REST APIs

You can program explorer server REST APIs by referring to the examples in this section.

Sending a GET request in Java

Here is sample code to send a GET request to explorer server in Java™.

public class JobListener implements Runnable {

 /*
 * Perform an HTTPs GET at the given jobs URL and credentials
 * targetURL e.g "https://host:port/Atlas/api/jobs?
owner=IBMUSER&prefix=*"
 * credentials in the form of base64 encoded string of user:password
 */
 private String executeGET(String targetURL, String credentials) {
 HttpURLConnection connection = null;
 try {
 //Create connection
 URL url = new URL(targetURL);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.setRequestProperty("Authorization", credentials);

 //Get Response
 InputStream inputStream = connection.getInputStream();
 BufferedReader bufferedReader = new BufferedReader(new
 InputStreamReader(inputStream));
 StringBuilder response = new StringBuilder();
 String line;

 //Process the response line by line
 while ((line = bufferedReader.readLine()) != null) {
 System.out.println(line);
 }

 //Cleanup
 bufferedReader.close();

 //Return the response message
 return response.toString();
 } catch (Exception e) {
 //handle any error(s)
 } finally {
 //Cleanup
 if (connection != null) {
 connection.disconnect();
 }
 }
 }
}

Sending a GET request in JavaScript

Here is sample code written in JavaScript™ using features from ES6 to send a GETrequest to explorer server.

const BASE_URL = 'hostname.com:port/Atlas/api';

// Call the jobs GET api to get all jobs with the userID IBMUSER
function getJobs(){
 let parameters = "prefix=*&owner=IBMUSER";

Zowe | Using Zowe | 62

 let contentURL = `${BASE_URL}/jobs?${parameters}`;
 let result = fetch(contentURL, {credentials: "include"})
 .then(response => response.json())
 .catch((e) => {
 //handle any error
 console.log("An error occoured: " + e);
 });
 return result;
}

Sending a POST request in JavaScript

Here is sample code written in JavaScript™ using features from ES6 to send a POST request to explorer server.

// Call the jobs POST api to submit a job from a data set
 (ATLAS.TEST.JCL(TSTJ0001))
function submitJob(){
 let payload = "{\"file\":\"'ATLAS.TEST.JCL(TSTJ0001)'\"}";
 let contentURL = `${BASE_URL}/jobs`;
 let result = fetch(contentURL,
 {
 credentials: "include",
 method: "POST",
 body: payload
 })
 .then(response => response.json())
 .catch((e) => {
 //handle any error
 console.log("An error occoured: " + e);
 });
 return result;
}

Extended API sample in JavaScript

Here is an extended API sample that is written using JavaScript™ with features from ES62015 (map).

///
// Extended API Sample
// This Sample is written using Javascript with features from ES62015 (map).
// The sample is also written using JSX giving the ability to return HTML
 elements
// with Javascript variables embedded. This sample is based upon the
 codebase of the
// sample UI (see- hostname:port/explorer-mvs) which is written using
 Facebook's React, Redux,
// Router and Google's material-ui
///

// Return a table with rows detailing the name and jobID of all jobs
 matching
// the specified parameters
function displayJobNamesTable(){
 let jobsJSON = getJobs("*","IBMUSER");
 return (<table>
 {jobsJSON.map(job => {
 return <tr><td>{job.name}</td><td>{job.id}</td></tr>
 })}
 </table>);
}

// Call the jobs GET api to get all jobs with the userID IBMUSER
function getJobs(owner, prefix){

Zowe | Using Zowe | 63

 const BASE_URL = 'hostname.com:port/Atlas/api';
 let parameters = "prefix=" + prefix + "&owner=" + owner;
 let contentURL = `${BASE_URL}/jobs?${parameters}`;
 let result = fetch(contentURL, {credentials: "include"})

 .then(response => response.json())

 .catch((e) => {
 //handle any error
 console.log("An error occoured: " + e);

 });
 return result;
}

Using explorer server WebSocket services

The explorer server provides WebSocket services that can be accessed by using the WSS scheme. With explorer
server WebSocket services, you can view the system log in the System log UI that is refreshed automatically when
messages are written. You can also open a JES spool file for an active job and view its contents that refresh through a
web socket.

Server Endpoint Description Prerequisites

/api/sockets/jobs/
{jobname}/ids/{jobid}/
files/{fileid}

Tail the output of an active job. Use
this WSS endpoint to read the tail of
an active job's output file in real time.

z/OSMF restjobs

API Catalog
As an application developer, use the API Catalog to view what services are running in the API Mediation Layer.
Through the API Catalog, you can also view the associated API documentation corresponding to a service,
descriptive information about the service, and the current state of the service. The tiles in the API Catalog can be
customized by changing values in the mfaas.catalog-ui-tile section defined in the application.yml of a service. A
microservice that is onboarded with the API Mediation Layer and configured appropriately, registers automatically
with the API Catalog and a tile for that service is added to the Catalog.

Note: For more information about how to configure the API Catalog in the application.yml, see: Add API
Onboarding Configuration.

View Service Information and API Documentation in the API Catalog

Use the API Catalog to view services, API documentation, descriptive information about the service, the current state
of the service, service endpoints, and detailed descriptions of these endpoints.

Note: Verify that your service is running. At least one started and registered instance with the Discovery Service is
needed for your service to be visible in the API Catalog.

Follow these steps:

1. Use the search bar to find the service that you are looking for. Services that belong to the same product family are
displayed on the same tile.

Example: Sample Applications, Endevor, SDK Application
2. Click the tile to view header information, the registered services under that family ID, and API documentation for

that service.

Notes:

• The state of the service is indicated in the service tile on the dashboard page. If no instances of the service are
currently running, the tile displays a message displays that no services are running.

Zowe | Using Zowe | 64

• At least one instance of a service must be started and registered with the discovery service for it to be visible in
the API Catalog. If the service that you are onboarding is running, and the corresponding API documentation
is displayed, this API documentation is cached and remains visible even when the service and all service
instances stop.

• Descriptive information about the service and a link to the home page of the service is displayed.

Example:

3. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint, the
endpoint description, and the full structure of the endpoint.

Example:

Zowe | Using Zowe | 65

Notes:

• If a lock icon is visible on the right side of the endpoint panel, the endpoint requires authentication.
• The structure of the endpoint is displayed relative to the base URL.
• The URL path of the abbreviated endpoint relative to the base URL is displayed in the following format:

Example:

/api/v1/{yourServiceId}/{endpointName}

The path of the full URL that includes the base URL is also displayed in the following format:

https://hostName:basePort/api/v1/{yourServiceId}/{endpointName}

Zowe | Using Zowe | 66

Both links target the same endpoint location.

Using Zowe CLI
This section contains the following articles about using Zowe CLI.

Display Zowe CLI help

Zowe CLI contains a help system that is embedded directly into the command-line interface. When you want help
with Zowe CLI, you issue help commands that provide you with information about the product, syntax, and usage.

Display top-level help

To begin using the product, open a command line window and issue the following command to view the top-level
help descriptions:

zowe --help

Tip: The command zowe initiates the product on a command line. All Zowe CLI commands begin with zowe.

Help structure

The help displays the following types of information:

• Description: An explanation of the functionality for the command group, action, or option that you specified in a
--help command.

• Usage: The syntax for the command. Refer to usage to determine the expected hierarchical structure of a
command.

• Options: Flags that you can append to the end of a command to specify particular values or booleans. For
example, the volume size for a data set that you want to create.

• Global Options: Flags that you can append to any command in Zowe CLI. For example, the --help flag is a
global option.

Displaying command group, action, and object help

You can use the --help global option get more information about a specific command group, action, or object. Use
the following syntax to display group-level help and learn more about specific command groups (for example, zos-
jobs and zos-files):

zowe <group, action, or object name> --help

zowe zos-files create --help

Zowe CLI command groups

Zowe CLI contains command groups that focus on specific business processes. For example, the zos-files
command group provides the ability to interact with mainframe data sets. This article provides you with a brief
synopsis of the tasks that you can perform with each group. For more information, see Display Zowe CLI Help.

The commands available in the product are organized in a hierarchical structure. Command groups (for example,
zos-files) contain actions (for example, create) that let you perform actions on specific objects (for example,
a specific type of data set). For each action that you perform on an object, you can specify options that affect the
operation of the command.

Important! Before you issue these commands, verify that you completed the steps in Create a Zowe CLI profile
and Test Connection to z/OSMF to help ensure that Zowe CLI can communicate with z/OS systems.

Zowe CLI contains the following command groups:

user-guide/cli-usingcli.md#displaying-zowe-cli-help
user-guide/cli-installcli.html#creating-a-zowe-cli-profile
user-guide/cli-installcli.html#testing-zowe-cli-connection-to-zosmf

Zowe | Using Zowe | 67

plugins

The plugins command group lets you install and manage third-party plug-ins for the product. Plug-ins extend the
functionality of Zowe CLI in the form of new commands.

With the plugins command group, you can perform the following tasks:

• Install or uninstall third-party plug-ins.
• Display a list of installed plug-ins.
• Validate that a plug-in integrates with the base product properly.

Note: For more information about plugins syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe plugins -h

profiles

The profiles command group lets you create and manage profiles for use with other Zowe CLI command groups.
Profiles allow you to issue commands to different mainframe systems quickly, without specifying your connection
details with every command.

With the profiles command group, you can perform the following tasks:

• Create, update, and delete profiles for any Zowe CLI command group that supports profiles.
• Set the default profile to be used within any command group.
• List profile names and details for any command group, including the default active profile.

Note: For more information about profiles syntax, actions, and options, open Zowe CLI, and issue the following
command:

zowe profiles -h

provisioning

The provisioning command group lets you perform IBM z/OSMF provisioning tasks with templates and provisioned
instances from Zowe CLI.

With the provisioning command group, you can perform the following tasks:

• Provision cloud instances using z/OSMF Software Services templates.
• List information about the available z/OSMF Service Catalog published templates and the templates that you used

to publish cloud instances.
• List summary information about the templates that you used to provision cloud instances. You can filter the

information by application (for example, DB2 and CICS) and by the external name of the provisioned instances.
• List detail information about the variables used (and their corresponding values) on named, published cloud

instances.

Note: For more information about provisioning syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe provisioning -h

zos-console

The zos-console command group lets you issue commands to the z/OS console by establishing an extended Multiple
Console Support (MCS) console.

With the zos-console command group, you can perform the following tasks: Important! Before you issue z/OS
console commands with Zowe CLI, security administrators should ensure that they provide access to commands
that are appropriate for your organization. - Issue commands to the z/OS console. - Collect command responses and
continue to collect solicited command responses on-demand.

Zowe | Using Zowe | 68

Note: For more information about zos-console syntax, actions, and options, open Zowe CLI and issue the
following command:

zowe zos-console -h

zos-files

The zos-files command group lets you interact with data sets on z/OS systems.

With the zos-files command group, you can perform the following tasks:

• Create partitioned data sets (PDS) with members, physical sequential data sets (PS), and other types of data sets
from templates. You can specify options to customize the data sets you create.

• Download mainframe data sets and edit them locally in your preferred Integrated Development Environment
(IDE).

• Upload local files to mainframe data sets.
• List available mainframe data sets.
• Interact with VSAM data sets directly, or invoke Access Methods Services (IDCAMS) to work with VSAM data

sets.

Note: For more information about zos-files syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-files -h

zos-jobs

The zos-jobs command group lets you submit jobs and interact with jobs on z/OS systems.

With the zos-jobs command group, you can perform the following tasks:

• Submit jobs from JCL that resides on the mainframe or a local file.
• List jobs and spool files for a job.
• View the status of a job or view a spool file from a job.

Note: For more information about zos-jobs syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-jobs -h

zos-tso

The zos-tso command group lets you issue TSO commands and interact with TSO address spaces on z/OS systems.

With the zos-tso command group, you can perform the following tasks:

• Excecute REXX scripts
• Create a TSO address space and issue TSO commands to the address space.
• Review TSO command response data in Zowe CLI.

Note: For more information about zos-tso syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zos-tso -h

zosmf

The zosmf command group lets you work with Zowe CLI profiles and get general information about z/OSMF.

With the zosmf command group, you can perform the following tasks:

Zowe | Using Zowe | 69

• Create and manage your Zowe CLI zosmf profiles. You must have at least one zosmf profile to issue most
commands. Issue the zowe help explain profiles command in Zowe CLI to learn more about using
profiles.

• Verify that your profiles are set up correctly to communicate with z/OSMF on your system. For more information,
see Test Connection to z/OSMF.

• Get information about the current z/OSMF version, host, port, and plug-ins installed on your system.

Note: For more information about zosmf syntax, actions, and options, open Zowe CLI and issue the following
command:

zowe zosmf -h

user-guide/cli-installcli.html#testing-zowe-cli-connection-to-zosmf

Chapter

5
Extending the Zowe Application Framework (zLUX)

Topics:

• Creating application plug-ins
• zLUX plug-ins definition and

structure
• zLUX dataservices
• Zowe Desktop and window

management
• Configuration Dataservice
• URI Broker
• Application-to-application

communication
• Error reporting UI
• Logging utility

You can create plug-ins to extend the capabilities of the Zowe Application
Framework.

Zowe | Extending the Zowe Application Framework (zLUX) | 72

Creating application plug-ins
An application plug-in is an installable set of files that present resources in a web-based user interface, as a set of
RESTful services, or in a web-based user interface and as a set of RESTful services.

Before you build an application plug-in, you must set the UNIX environment variables that support the plug-in
environment.

Setting the environment variables for plug-in development

To set up the environment, the node must be accessible on the PATH. To determine if the node is already on the
PATH, issue the following command from the command line:

node --version

If the version is returned, the node is already on the PATH.

If nothing is returned from the command, you can set the PATH using the NODE_HOME variable. The
NODE_HOME variable must be set to the directory of the node install. You can use the export command to set the
directory. For example:

export NODE_HOME=node_installation_directory

Using this directory, the node will be included on the PATH in nodeServer.sh. (nodeServer.sh is located in
zlux-example-server/bin).

Using the sample application plug-in

You can experiment with the sample application plug-in called sample-app that is provided.

To build the sample application plug-in, node and npm must be included in the PATH. You can use the npm run
build or npm start command to build the sample application plug-in. These commands are configured in
package.json.

Note:

• If you change the source code for the sample application, you must rebuild it.
• If you want to modify sample-app, you must run _npm install_ in the Zowe Desktop and the sample-

app/webClient. Then, you can run _npm run build_ in sample-app/webClient.
• Ensure that you set the MVD_DESKTOP_DIR system variable to the Zowe Desktop plug-in location. For example:

<ZLUX_CAP>/zlux-app-manager/virtual-desktop.

1. Add an item to sample-app. The following figure shows an excerpt from app.component.ts:

export class AppComponent { items = ['a', 'b', 'c', 'd'] title = 'app';
helloText: string; serverResponseMessage: string;

2. Save the changes to app.component.ts.
3. Issue one of the following commands:

• To rebuild the application plug-in, issue the following command: npm run build
• To rebuild the application plug-in and wait for additional changes to app.component.ts, issue the

following command: npm start
4. Reload the web page.
5. If you make changes to the sample application source code, follow these steps to rebuild the application:

a. Navigate to the sample-app subdirectory where you made the source code changes.
b. Issue the following command: npm run build
c. Reload the web page.

Zowe | Extending the Zowe Application Framework (zLUX) | 73

zLUX plug-ins definition and structure
The zLUX Application Server (zlux-proxy-server) enables extensiblity with application plug-ins. Application
plug-ins are a subcategory of the unit of extensibility in the server called a plug-in.

The files that define a plug-in are located in the pluginsDir directory.

Application plug-in filesystem structure

An application plug-in can be loaded from a filesystem that is accessible to the zLUX Application Server, or it can be
loaded dynamically at runtime. When accessed from a filesystem, there are important considerations for the developer
and the user as to where to place the files for proper build, packaging, and operation.

Root files and directories

The root of an application plug-in directory contains the following files and directories.

pluginDefinition.json

This file describes an application plug-in to the zLUX Application Server. (A plug-in is the unit of extensibility
for the zLUX Application Server. An application plug-in is a plug-in of the type "Application", the most common
and visible type of plug-in.) A definition file informs the server whether the application plug-in has server-side
dataservices, client-side web content, or both.

Dev and source content

Aside from demonstration or open source application plug-ins, the following directories should not be visible on a
deployed server because the directories are used to build content and are not read by the server.

nodeServer

When an application plug-in has router-type dataservices, they are interpreted by the zLUX Application Server by
attaching them as ExpressJS routers. It is recommended that you write application plug-ins using Typescript, because
it facilitates well-structured code. Use of Typescript results in build steps because the pre-transpilation Typescript
content is not to be consumed by NodeJS. Therefore, keep server-side source code in the nodeServer directory. At
runtime, the server loads router dataservices from the lib directory.

webClient

When an application plug-in has the webContent attribute in its definition, the server serves static content for a
client. To optimize loading of the application plug-in to the user, use Typescript to write the application plug-in and
then package it using Webpack. Use of Typescript and Webpack result in build steps because the pre-transpilation
Typescript and the pre-webpack content are not to be consumed by the browser. Therefore, separate the source code
from the served content by placing source code in the webClient directory.

Runtime content

At runtime, the following set of directories are used by the server and client.

lib

The lib directory is where router-type dataservices are loaded by use in the zLUX Application Server. If the JS
files that are loaded from the lib directory require NodeJS modules, which are not provided by the server base
(the modules ZLUX-proxy-server requires are added to NODE_PATH at runtime), then you must include these
modules in lib/node_modules for local directory lookup or ensure that they are found on the NODE_PATH
environment variable. nodeServer/node_modules is not automatically accessed at runtime because it is a dev
and build directory.

web

The web directory is where the server serves static content for an application plug-in that includes the webContent
attribute in its definition. Typically, this directory contains the output of a webpack build. Anything you place in this
directory can be accessed by a client, so only include content that is intended to be consumed by clients.

Zowe | Extending the Zowe Application Framework (zLUX) | 74

Location of plug-in files

The files that define a plug-in are located in the pluginsDir directory.

pluginsDir directory

At startup, the server reads from the pluginsDir directory. The server loads the valid plug-ins that are found by
the information that is provided in the JSON files.

Within the pluginsDir directory are a collection of JSON files. Each file has two attributes, which serve to locate
a plug-in on disk:

location: This is a directory path that is relative to the server's executable (such as zlux-example-server/
bin/nodeServer.sh) at which a pluginDefinition.json file is expected to be found.

identifier: The unique string (commonly styled as a Java resource) of a plug-in, which must match what is in the
pluginDefinition.json file.

Plug-in definition file

pluginDefinition.json is a file that describes a plug-in. Each plug-in requires this file, because it defines
how the server will register and use the backend of an application plug-in (called a plug-in in the terminology of the
proxy server). The attributes in each file are dependent upon the pluginType attribute. Consider the following
pluginDefinition.json file from sample-app:

{
 "identifier": "com.rs.mvd.myplugin",
 "apiVersion": "1.0",
 "pluginVersion": "1.0",
 "pluginType": "application",
 "webContent": {
 "framework": "angular2",
 "launchDefinition": {
 "pluginShortNameKey": "helloWorldTitle",
 "pluginShortNameDefault": "Hello World",
 "imageSrc": "assets/icon.png"
 },
 "descriptionKey": "MyPluginDescription",
 "descriptionDefault": "Base MVD plugin template",
 "isSingleWindowApp": true,
 "defaultWindowStyle": {
 "width": 400,
 "height": 300
 }
 },
 "dataServices": [
 {
 "type": "router",
 "name": "hello",
 "serviceLookupMethod": "external",
 "fileName": "helloWorld.js",
 "routerFactory": "helloWorldRouter",
 "dependenciesIncluded": true
 }
]
}

Plug-in attributes

There are two categories of attributes: General and Application.

Zowe | Extending the Zowe Application Framework (zLUX) | 75

General attributes

identifier

Every application plug-in must have a unique string ID that associates it with a URL space on the server.

apiVersion

The version number for the pluginDefinition scheme and application plug-in or dataservice requirements. The default
is 1.0.0.

pluginVersion

The version number of the individual plug-in.

pluginType

A string that specifies the type of plug-in. The type of plug-in determines the other attributes that are valid in the
definition.

• application: Defines the plug-in as an application plug-in. Application plug-ins are composed of a collection
of web content for presentation in the zLUX web component (such as the Zowe Desktop), or a collection of
dataservices (REST and websocket), or both.

• library: Defines the plug-in as a library that serves static content at a known URL space.
• node authentication: Authentication and Authorization handlers for the zLUX Application Server.

Application attributes

When a plug-in is of pluginType application, the following attributes are valid:

webContent

An object that defines several attributes about the content that is shown in a web UI.

dataServices

An array of objects that describe REST or websocket dataservices.

configurationData

An object that describes the resource structure that the application plug-in uses for storing user, group, and server
data.

Application web content attributes

An application that has the webContent attribute defined provides content that is displayed in a zLUX web UI.

The following attributes determine some of this behavior:

framework

States the type of web framework that is used, which determines the other attributes that are valid in webContent.

• angular2: Defines the application as having an Angular (2+) web framework component. This is the standard for
a "native" framework zLUX application.

• iframe: Defines the application as being external to the native zLUX web application environment, but instead
embedded in an iframe wrapper.

launchDefinition

An object that details several attributes for presenting the application in a web UI.

• pluginShortNameDefault: A string that gives a name to the application when i18n is not present. When i18n is
present, i18n is applied by using the pluginShortNameKey.

• descriptionDefault: A longer string that specifies a description of the application within a UI. The description is
seen when i18n is not present. When i18n is present, i18n is applied by using the descriptionKey.

• imageSrc: The relative path (from /web) to a small image file that represents the application icon.

Zowe | Extending the Zowe Application Framework (zLUX) | 76

defaultWindowStyle

An object that details the placement of a default window for the application in a web UI.

• width: The default width of the application plug-in window, in pixels.
• height: The default height of the application plug-in window, in pixels.

IFrame application web content

In addition to the general web content attributes, when the framework of an application is "iframe", you must specify
the page that is being embedded in the iframe. To do so, incude the attribute startingPage within webContent.
startingPage is relative to the application's /web directory.

Specify startingPage as a relative path rather than an absolute path because the pluginDefinition.json file is
intended to be read-only, and therefore would not work well when the hostname of a page changes.

Within an IFrame, the application plug-in still has access to the globals that are used by zLUX for application-to-
application communication; simply access window.parent.RocketMVD.

zLUX dataservices
Dataservices are a dynamic component of the backend of a zLUX application. Dataservices are optional, because the
proxy server might only serve static content for a particular application. However, when included in an application, a
dataservice defines a URL space for which the server will run the extensible code from the application. Dataservices
are primarily intended to be used to create REST APIs and Websocket channels.

Defining a dataservice

Within the sample-app repository, in the top directory, you will find a pluginDefinition.json file. Each
zLUX application requires this file, because it defines how the server registers and uses the backend of an application
(called a plug-in in the terminology of the proxy server).

Within the JSON file, there is a top level attribute, dataServices:

 "dataServices": [
 {
 "type": "router",
 "name": "hello",
 "serviceLookupMethod": "external",
 "fileName": "helloWorld.js",
 "routerFactory": "helloWorldRouter",
 "dependenciesIncluded": true
 }
]

Dataservices defined in pluginDefinition

The following attributes are valid for each dataservice in the dataServices array:

type

Specify one of the following values:

• router: Router dataservices are dataservices that run under the proxy server, and use ExpressJS Routers for
attaching actions to URLs and methods.

• service: Service dataservices are dataservices that run under ZSS, and utilize the API of ZSS dataservices for
attaching actions to URLs and methods.

name

Zowe | Extending the Zowe Application Framework (zLUX) | 77

The name of the service that must be unique for each pluginDefinition.json file. The name is used to
reference the dataservice during logging and it is also is used in the construction of the URL space that the dataservice
occupies.

serviceLookupMethod

Specify external unless otherwise instructed.

fileName

The name of the file that is the entry point for construction of the dataservice, relative to the application's /lib
directory. In the case of sample-app, upon transpilation of the typescript code, javascript files are placed into the /
lib directory.

routerFactory (Optional)

When you use a router dataservice, the dataservice is included in the proxy server through a require() statement.
If the dataservice's exports are defined such that the router is provided through a factory of a specific name, you must
state the name of the exported factory using this attribute.

dependenciesIncluded

Must be true for anything in the pluginDefinition.json file. (This setting is false only when adding
dataservices to the server dynamically.)

Dataservice API

The API for a dataservice can be categorized as Router-based or ZSS-based, and Websocket or not.

Note: Each Router dataservice can safely import express, express-ws, and bluebird without requiring the modules
to be present, because these modules exist in the proxy server's directory and the NODE_MODULES environment
variable can include this directory.

Router-based dataservices
HTTP/REST router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon success. For
more information, see the ExpressJS guide on use of Router middleware: Using Router Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from a root '/' path, as
the paths specified in the router are later prepended with the unique URL space of the dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the pluginDefinition
specification for routerFactory above, or by the module constructor.

An example is available in sample-app/nodeServer/ts/helloWorld.ts

Websocket router dataservices

ExpressJS routers are fairly flexible, so the contract to create the Router for Websockets is not significantly different.

Here, the express-ws package is used, which adds websockets through the ws package to ExpressJS.
The two changes between a websocket-based router and a normal router are that the method is 'ws', as in
router.ws(<url>,<callback>), and the callback provides the websocket on which you must define event
listeners.

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API for
websocket router dataservices is primarily provided in these packages.

An example is available in zlux-proxy-server/plugins/terminal-proxy/lib/
terminalProxy.js

Router dataservice context

Every router-based dataservice is provided with a Context object upon creation that provides definitions of its
surroundings and the functions that are helpful. The following items are present in the Context object:

http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://www.npmjs.com

Zowe | Extending the Zowe Application Framework (zLUX) | 78

serviceDefinition

The dataservice definition, originally from the pluginDefinition.json file within a plug-in.

serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a zLUX Logger, which has its component name as the unique name of the dataservice within a plug-
in.

makeSublogger

A function to create a zLUX Logger with a new name, which is appended to the unique name of the dataservice.

addBodyParseMiddleware

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.

plugin

An object that contains more context from the plug-in scope, including:

• pluginDef: The contents of the pluginDefinition.json file that contains this dataservice.
• server: An object that contains information about the server's configuration such as:

• app: Information about the product, which includes the productCode (for example: ZLUX).
• user: Configuration information of the server, such as the port on which it is listening.

Zowe Desktop and window management
The Zowe Desktop is a web component of Zowe, which is an implementation of MVDWindowManagement, the
interface that is used to create a window manager.

The code for this software is in the zlux-app-manager repository.

The interface for building an alternative window manager is in the zlux-platform repository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in.
Application plug-ins are plug-ins of the type "application", and therefore the Zowe Desktop operates around a
collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window
management, such as application-to-application communication, Logging, URI lookup, and Auth are not described
here.

Loading and presenting application plug-ins

Upon loading the Zowe Desktop, a GET call is made to /plugins?type=application. The GET call returns
a JSON list of all application plug-ins that are on the server, which can be accessed by the user. Application plug-ins
can be composed of dataservices, web content, or both. Application plug-ins that have web content are presented in
the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an icon
with a description. The icon that is used, and the description that is presented are based on the application plug-in's
PluginDefinition's webContent attributes.

Plug-in management

Application plug-ins can gain insight into the environment in which they were spawned through the Plugin Manager.
Use the Plugin Manager to determine whether a plug-in is present before you act upon the existence of that plug-in.
When the Zowe Desktop is running, you can access the Plugin Manager through RocketMVD.PluginManager

Zowe | Extending the Zowe Application Framework (zLUX) | 79

The following are the functions you can use on the Plugin Manager:

• getPlugin(pluginID: string)
• Accepts a string of a unique plug-in ID, and returns the Plugin Definition Object (DesktopPluginDefinition) that is

associated with it, if found.

Application management

Application plug-ins within a Window Manager are created and acted upon in part by an Application Manager.
The Application Manager can facilitate communication between application plug-ins, but formal application-to-
application communication should be performed by calls to the Dispatcher. The Application Manager is not normally
directly accessible by application plug-ins, instead used by the Window Manager.

The following are functions of an Application Manager:

Function Description

spawnApplication(plugin:
DesktopPluginDefinition,
launchMetadata: any):
Promise<MVDHosting.InstanceId>;

Opens an application instance into the Window Manager,
with or without context on what actions it should
perform after creation.

killApplication(plugin:ZLUX.Plugin,
appId:MVDHosting.InstanceId): void;

Removes an application instance from the Window
Manager.

showApplicationWindow(plugin:
DesktopPluginDefinitionImpl): void;

Makes an open application instance visible within the
Window Manager.

isApplicationRunning(plugin:
DesktopPluginDefinitionImpl): boolean;

Determines if any instances of the application are open in
the Window Manager.

Windows and Viewports

When a user clicks an application plug-in's icon on the taskbar, an instance of the application plug-in is started
and presented within a Viewport, which is encapsulated in a Window within the Zowe Desktop. Every instance
of an application plug-in's web content within Zowe is given context and can listen on events about the Viewport
and Window it exists within, regardless of whether the Window Manager implementation utilizes these constructs
visually. It is possible to create a Window Manager that only displays one application plug-in at a time, or to have a
drawer-and-panel UI rather than a true windowed UI.

When the Window is created, the application plug-in's web content is encapsulated dependent upon its framework
type. The following are valid framework types:

• "angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in framework
objects are given through @injectables and imports.

• "iframe": The web content can be written using any framework, but is included through an iframe tag. Application
plug-ins within an iframe can access framework objects through parent.RocketMVD and callbacks.

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager

Viewports encapsulate an instance of an application plug-in's web content, but otherwise do not add to the UI (they
do not present Chrome as a Window does). Each instance of an application plug-in is associated with a viewport,
and operations to act upon a particular application plug-in instance should be done by specifying a viewport for an
application plug-in, to differentiate which instance is the target of an action. Actions performed against viewports
should be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

Zowe | Extending the Zowe Application Framework (zLUX) | 80

Function Description

createViewport(providers:
ResolvedReflectiveProvider[]):
MVDHosting.ViewportId;

Creates a viewport into which an application plug-in's
webcontent can be embedded.

registerViewport(viewportId:
MVDHosting.ViewportId, instanceId:
MVDHosting.InstanceId): void;

Registers a previously created viewport to an application
plug-in instance.

destroyViewport(viewportId:
MVDHosting.ViewportId): void;

Removes a viewport from the Window Manager.

getApplicationInstanceId(viewportId:
MVDHosting.ViewportId):
MVDHosting.InstanceId | null;

Returns the ID of an application plug-in's instance from
within a viewport within the Window Manager.

Injection Manager

When you create Angular application plug-ins, they can use injectables to be informed of when an action occurs.
iframe application plug-ins indirectly benefit from some of these hooks due to the wrapper acting upon them, but
Angular application plug-ins have direct access.

The following topics describe injectables that application plug-ins can use.

Plug-in definition

@Inject(Angular2InjectionTokens.PLUGIN_DEFINITION) private pluginDefinition:
 ZLUX.ContainerPluginDefinition

Provides the plug-in definition that is associated with this application plug-in. This injectable can be used to gain
context about the application plug-in. It can also be used by the application plug-in with other application plug-in
framework objects to perform a contextual action.

Logger

@Inject(Angular2InjectionTokens.LOGGER) private logger: ZLUX.ComponentLogger

Provides a logger that is named after the application plug-in's plugin definition ID.

Launch Metadata

@Inject(Angular2InjectionTokens.LAUNCH_METADATA) private launchMetadata: any

If present, this variable requests the application plug-in instance to initialize with some context, rather than the default
view.

Viewport Events

@Inject(Angular2InjectionTokens.VIEWPORT_EVENTS) private viewportEvents:
 Angular2PluginViewportEvents

Presents hooks that can be subscribed to for event listening. Events include:

resized: Subject<{width: number, height: number}>

Fires when the viewport's size has changed.

Zowe | Extending the Zowe Application Framework (zLUX) | 81

Window Events

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:
 Angular2PluginWindowActions

Presents hooks that can be subscribed to for event listening. The events include:

Event Description

maximized: Subject<void> Fires when the Window is maximized.

minimized: Subject<void> Fires when the Window is minimized.

restored: Subject<void> Fires when the Window is restored from a minimized
state.

moved: Subject<{top: number, left:
number}>

Fires when the Window is moved.

resized: Subject<{width: number,
height: number}>

Fires when the Window is resized.

titleChanged: Subject<string> Fires when the Window's title changes.

Window Actions

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:
 Angular2PluginWindowActions

An application plug-in can request actions to be performed on the Window through the following:

Item Description

close(): void Closes the Window of the application plug-in instance.

maximize(): void Maximizes the Window of the application plug-in
instance.

minimize(): void Minimizes the Window of the application plug-in
instance.

restore(): void Restores the Window of the application plug-in instance
from a minimized state.

setTitle(title: string):void Sets the title of the Window.

setPosition(pos: {top: number,
left: number, width: number, height:
number}): void

Sets the position of the Window on the page and the size
of the window.

spawnContextMenu(xPos: number, yPos:
number, items: ContextMenuItem[]):
void

Opens a context menu on the application plug-in
instance, which uses the Context Menu framework.

registerCloseHandler(handler: () =>
Promise<void>): void

Registers a handler, which is called when the Window
and application plug-in instance are closed.

Configuration Dataservice
The Configuration Dataservice is an essential component of the zLUX framework, which acts as a JSON resource
storage service, and is accessible externally by REST API and internally to the server by dataservices.

Zowe | Extending the Zowe Application Framework (zLUX) | 82

The Configuration Dataservice allows for saving preferences of applications, management of defaults and privileges
within a zLUX ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the zLUX framework is a plug-in. The Configuration Dataservice works
with data for plug-ins. Every resource that is stored in the Configuration Service is stored for a particular plug-in,
and valid resources to be accessed are determined by the definition of each plug-in in how it uses the Configuration
Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each plug-
in lists the valid resources, and the administrators can set permissions for the users who can view or modify these
resources.

Resource Scope

Data is stored within the Configuration Dataservice according to the selected Scope. The intent of Scope within the
Dataservice is to facilitate company-wide administration and privilege management of zLUX data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the broader scopes
that encompass the Scope from which they are viewing the data.

When a user stores a resource, the resource is stored within a Scope but only if the user has access privilege to update
within that Scope.

Scope is one of the following:

Product

Configuration defaults that come with the product. Cannot be modified.

Site

Data that can be used between multiple instances of the zLUX Server.

Instance

Data within an individual zLUX Server.

Group

Data that is shared between multiple users in a group.

User

Data for an individual user.

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login, User and
Group scope queries will be rejected if not logged in due to the requirement to pull resources from a specific user.
Because of this, User and Group scopes will not be functional until the Security Framework is available.

Where Product is the broadest scope and User is the narrowest scope.

When you specify Scope User, the service manages configuration for your particular username, using the
authentication of the session. This way, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do this is to use the
REST API to retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in Instance,
then the data in Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but might
have only been the settings they saved within their own User scope (if the broader scopes do not have data for the
resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this action
is rejected because of the preferences set by the administrator to disallow changes to the Instance scope by ordinary
users.

Zowe | Extending the Zowe Application Framework (zLUX) | 83

REST API

When you reach the Configuration Service through a REST API, HTTP methods are used to perform the desired
operation.

The HTTP URL scheme for the configuration dataservice is:

<Server>/plugins/com.rs.configjs/services/data/<plugin ID>/<Scope>/<resource>/
<optional subresources>?<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

Think of a resource as a collection of elements, or a directory. To access a single element, you must use the query
parameter "name="

REST query parameters

Name (string)

Get or put a single element rather than a collection.

Recursive (boolean)

When performing a DELETE, specifies whether to delete subresources.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code editor".

GET

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

• This returns JSON with the attribute "content" being a JSON resource that is the entire configuration that was
requested. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/
sessions/default?name=tabs

The parts of the URL are:

• Plugin: org.openmainframe.zowe.codeeditor
• Scope: user
• Resource: sessions
• Subresource: default
• Element = tabs

The response body is a JSON config:

{
 "_objectType" : "com.rs.config.resource",
 "_metadataVersion" : "1.1",
 "resource" : "org.openmainframe.zowe.codeeditor/USER/sessions/default",
 "contents" : {
 "_metadataVersion" : "1.1",
 "_objectType" : "org.openmainframe.zowe.codeeditor.sessions.tabs",
 "tabs" : [{
 "title" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "filePath" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "isDataset" : true
 }, {
 "title" : ".profile",
 "filePath" : "/u/tsspg/.profile"

Zowe | Extending the Zowe Application Framework (zLUX) | 84

 }
]
 }
}

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

This returns JSON with the attribute content being a JSON object that has each attribute being another JSON
object, which is a single configuration element.

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

(When subresources exist.)

This returns a listing of subresources that can, in turn, be queried.

PUT

PUT /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

Stores a single element (must be a JSON object {...}) within the requested scope, ignoring aggregation policies,
depending on the user privilege. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/
sessions/default?name=tabs

Body:

{
 "_metadataVersion" : "1.1",
 "_objectType" : "org.openmainframe.zowe.codeeditor.sessions.tabs",
 "tabs" : [{
 "title" : ".profile",
 "filePath" : "/u/tsspg/.profile"
 }, {
 "title" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "filePath" : "TSSPG.REXX.EXEC(ARCTEST2)",
 "isDataset" : true
 }, {
 "title" : ".emacs",
 "filePath" : "/u/tsspg/.emacs"
 }
]
}

Response:

{
 "_objectType" : "com.rs.config.resourceUpdate",
 "_metadataVersion" : "1.1",
 "resource" : "org.openmainframe.zowe.codeeditor/USER/sessions/default",
 "result" : "Replaced item."
}

DELETE

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
recursive=true

Deletes all files in all leaf resources below the resource specified.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?
name=<element>

Deletes a single file in a leaf resource.

Zowe | Extending the Zowe Application Framework (zLUX) | 85

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

• Deletes all files in a leaf resource.
• Does not delete the directory on disk.

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a user might
be privileged to access or modify items that they do not own.

In the simplest case, it might mean that the user is able to do a PUT, POST, or DELETE to a level above User, such
as Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is different.
Compare the following two commands:

GET /plugins/com.rs.configjs/services/data/<plugin>/user/<resource>

Gets the content for the current user.

GET /plugins/com.rs.configjs/services/data/<plugin>/users/<username>/<resource>

Gets the content for a specific user if authorized.

This is the same structure that is used for the Group scope. When requesting content from the Group scope, the user is
checked to see if they are authorized to make the request for the specific group. For example:

GET /plugins/com.rs.configjs/services/data/<plugin>/group/<groupname>/
<resource>

Gets the content for the given group, if the user is authorized.

Application API

Retrieves and stores configuration information from specific scopes.

Note: This API should only be used for configuration administration user interfaces.

ZLUX.UriBroker.pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope:
string, resourcePath:string, resourceName:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration information,
is simply to "consume" it. It "asks" for configurations using the User scope, and allows the configuration service to
decide which configuration information to retrieve and how to aggregate it. (See below on how the configuration
service evaluates what to return for this type of request).

ZLUX.UriBroker.pluginConfigUri(pluginDefinition: ZLUX.Plugin,
resourcePath:string, resourceName:string): string;

Internal and bootstrapping

Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is stored
within the Configuration Dataservice structure, but it is not accessible through the REST API.

Within the deploy directory of a Zowe installation, each plug-in might optionally have an _internal directory.
An example of such a path is:

deploy/instance/ZLUX/pluginStorage/<pluginName>/_internal

Within each _internal directory, the following directories might exist:

• services/<servicename>: Configuration resources for the specific service.
• plugin: Configuration resources that are visible to all services in the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice context
Object.

Zowe | Extending the Zowe Application Framework (zLUX) | 86

Plug-in definition

Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their resource
structure to make use of the Configuration Dataservice. The resource structure definition is included in the plug-in's
pluginDefinition.json file.

For each resource and subresource, you can define an aggregationPolicy to control how the data of a broader
scope alters the resource data that is returned to a user when requesting a resource from a narrower scope.

For example:

 "configurationData": { //is a direct attribute of the pluginDefinition
 JSON
 "resources": { //always required
 "preferences": {
 "locationType": "relative", //this is the only option for now, but
 later absolute paths may be accepted
 "aggregationPolicy": "override" //override and none for now, but
 more in the future
 },
 "sessions": { //the name at this level represents the name
 used within a URL, such as /plugins/com.rs.configjs/services/data/
org.openmainframe.zowe.codeeditor/user/sessions
 "aggregationPolicy": "none",
 "subResources": {
 "sessionName": {
 "variable": true, //if variable=true is present, the resource
 must be the only one in that group but the name of the resource is
 substituted for the name given in the REST request, so it represents more
 than one
 "aggregationPolicy": "none"
 }
 }
 }
 }
 }

Aggregation policies

Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different Scopes
together when a user requests a resource. If the user requests a resource from the User scope, the data from the User
scope might replace or be merged with the data from a broader scope such as Instance, to make a combined resource
object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration Service, as
the attribute aggregationPolicy within a resource.

The following policies are currently implemented:

• NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent, unless there
are no user-saved settings for the query, in which case the dataservice attempts to send data that is found at a
broader scope.

• OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the broadest level
found, and joins the resource's properties from narrower scopes, overriding broader attributes with narrower ones,
when found.

URI Broker
The URI Broker is an object in the application plug-in web framework, which facilitates calls to the zLUX
Application Server by constructing URIs that use the context from the calling application plug-in.

Zowe | Extending the Zowe Application Framework (zLUX) | 87

Accessing the URI Broker

The URI Broker is accessible independent of other frameworks involved such as Angular, and is also accessible
through iframe. This is because it is attached to a global when within the Zowe Desktop. For more information, see
Zowe Desktop and window management. Access the URI Broker through one of two locations:

Natively:

window.RocketMVD.uriBroker

In an iframe:

window.parent.RocketMVD.uriBroker

Functions

The URI Broker builds the following categories of URIs depending upon what the application plug-in is designed to
call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see zLUX dataservices.

HTTP Dataservice URI

pluginRESTUri(plugin:ZLUX.Plugin, serviceName: string, relativePath:string):
string

Returns: A URI for making an HTTP service request.

Websocket Dataservice URI

pluginWSUri(plugin: ZLUX.Plugin, serviceName:string, relativePath:string):
string

Returns: A URI for making a Websocket connection to the service.

Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the
Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are a few URIs that can be built:

Standard configuration access

pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string,
resourceName?:string): string

Returns: A URI for accessing the requested resource under the user's storage.

Scoped configuration access

pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string,
resourcePath:string, resourceName?:string): string

Returns: A URI for accessing a specific scope for a given resource.

Accessing static content

Content under an application plug-in's web directory is static content accessible by a browser. This can be accessed
through:

pluginResourceUri(pluginDefinition: ZLUX.Plugin, relativePath: string): string

Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure.

user-guide/mvd-plugindefandstruct.html#application-plug-in-filesystem-structure

Zowe | Extending the Zowe Application Framework (zLUX) | 88

Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other points that you
must access on that application plug-in, you can get the root:

pluginRootUri(pluginDefinition: ZLUX.Plugin): string

Returns: A URI to the root of the application plug-in.

Server queries

A client can find different information about a server's configuration or the configuration as seen by the current user
by accessing specific APIs.

Accessing a list of plug-ins

pluginListUri(pluginType: ZLUX.PluginType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as "Application"
or "all".

Application-to-application communication
zLUX application plug-ins can opt-in to various application framework abilities, such as the ability to have a Logger,
use of a URI builder utility, and more. One ability that is unique to a zLUX environment with multiple application
plug-ins is the ability for one application plug-in to communicate with another. The application framework provides
constructs that facilitate this ability. The constructs are: the Dispatcher, Actions, Recognizers, Registry, and the
features that utilize them such as the framework's Context menu.

1. Why use application-to-application communication?
2. Actions
3. Recognizers
4. Dispatcher

Why use application-to-application communication?

When working with a computer, people often use multiple applications to accomplish a task, for example checking
a dashboard before digging into a detailed program or checking email before opening a bank statement in a browser.
In many environments, the relationship between one program and another is not well defined (you might open one
program to learn of a situation, which you solve by opening another and typing or pasting in content). Or perhaps a
hyperlink is provided or an attachment, which opens program by using a lookup table of which the program is the
default for handling a certain file extension. The application framework attempts to solve this problem by creating
structured messages that can be sent from one application plug-in to another. An application plug-in has a context of
the information that it contains. You can use this context to invoke an action on another application plug-in that is
better suited to handle some of the information discovered in the first application plug-in. Well-structured messages
facilitate knowing what application plug-in is "right" to handle a situation, and explain in detail what that application
plug-in should do. This way, rather than finding out that the attachment with the extension ".dat" was not meant for
a text editor, but instead for an email client, one application plug-in might instead be able to invoke an action on an
application plug-in, which can handle opening of an email for the purpose of forwarding to others (a more specific
task than can be explained with filename extensions).

Actions

To manage communication from one application plug-in to another, a specific structure is needed. In the application
framework, the unit of application-to-application communication is an Action. The typescript definition of an Action
is as follows:

export class Action implements ZLUX.Action {
 id: string; // id of action itself.
 i18nNameKey: string; // future proofing for I18N

user-guide/mvd-apptoappcommunication.md#why-application-to-application-communication
user-guide/mvd-apptoappcommunication.md#actions
user-guide/mvd-apptoappcommunication.md#recognizers
user-guide/mvd-apptoappcommunication.md#dispatcher

Zowe | Extending the Zowe Application Framework (zLUX) | 89

 defaultName: string; // default name for display purposes, w/o I18N
 description: string;
 targetMode: ActionTargetMode;
 type: ActionType; // "launch", "message"
 targetPluginID: string;
 primaryArgument: any;

 constructor(id: string,
 defaultName: string,
 targetMode: ActionTargetMode,
 type: ActionType,
 targetPluginID: string,
 primaryArgument:any) {
 this.id = id;
 this.defaultName = defaultName;
 // proper name for ID/type
 this.targetPluginID = targetPluginID;
 this.targetMode = targetMode;
 this.type = type;
 this.primaryArgument = primaryArgument;
 }

 getDefaultName():string {
 return this.defaultName;
 }
}

An Action has a specific structure of data that is passed, to be filled in with the context at runtime, and a specific
target to receive the data. The Action is dispatched to the target in one of several modes, for example: to target a
specific instance of an application plug-in, an instance, or to create a new instance. The Action can be less detailed
than a message. It can be a request to minimize, maximize, close, launch, and more. Finally, all of this information is
related to a unique ID and localization string such that it can be managed by the framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the application
plug-in you are targeting. You can instruct the framework how to target the application plug-in with a target mode
from the ActionTargetMode enum:

export enum ActionTargetMode {
 PluginCreate, // require pluginType
 PluginFindUniqueOrCreate, // required AppInstance/ID
 PluginFindAnyOrCreate, // plugin type
 //TODO PluginFindAnyOrFail
 System, // something that is always present
}

Action types

The application framework performs different operations on application plug-ins depending on the type of an Action.
The behavior can be quite different, from simple messaging to requesting that an application plug-in be minimized.
The types are defined by an enum:

export enum ActionType { // not all actions are meaningful for all
 target modes
 Launch, // essentially do nothing after target mode
 Focus, // bring to fore, but nothing else
 Route, // sub-navigate or "route" in target
 Message, // "onMessage" style event to plugin
 Method, // Method call on instance, more strongly
 typed
 Minimize,

Zowe | Extending the Zowe Application Framework (zLUX) | 90

 Maximize,
 Close, // may need to call a "close handler"
}

Loading actions

Actions can be created dynamically at runtime, or saved and loaded by the system at login.

Dynamically

You can create Actions by calling the following Dispatcher method: makeAction(id: string,
defaultName: string, targetMode: ActionTargetMode, type: ActionType,
targetPluginID: string, primaryArgument: any):Action

Saved on system

Actions can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{
 "actions": [
 {
 "id":"org.zowe.explorer.openmember",
 "defaultName":"Edit PDS in MVS Explorer",
 "type":"Launch",
 "targetMode":"PluginCreate",
 "targetId":"org.zowe.explorer",
 "arg": {
 "type": "edit_pds",
 "pds": {
 "op": "deref",
 "source": "event",
 "path": [
 "full_path"
]
 }
 }
 }
]
}

Recognizers

Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a messaging
window if you have no one to message. Recognizers are objects within the application framework that use the context
that the application plug-in provides to determine if there is a condition for which it makes sense to execute an
Action. Each recognizer has statements about what condition to recognize, and upon that statement being met, which
Action can be executed at that time. The invocation of the Action is not handled by the Recognizer; it simply detects
that an Action can be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

export class RecognitionRule {
 predicate:RecognitionClause;
 actionID:string;

 constructor(predicate:RecognitionClause, actionID:string){
 this.predicate = predicate;
 this.actionID = actionID;
 }

Zowe | Extending the Zowe Application Framework (zLUX) | 91

}

A clause, in turn, is associated with an operation, and the subclauses upon which the operation acts. The following
operations are supported:

export enum RecognitionOp {
 AND,
 OR,
 NOT,
 PROPERTY_EQ,
 SOURCE_PLUGIN_TYPE, // syntactic sugar
 MIME_TYPE, // ditto
}

Loading Recognizers at runtime

You can add a Recognizer to the application plug-in environment in one of two ways: by loading from Recognizers
saved on the system, or by adding them dynamically.

Dynamically

You can call the Dispatcher method, addRecognizer(predicate:RecognitionClause,
actionID:string):void

Saved on system

Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

{
 "recognizers": [
 {
 "id":"<actionID>",
 "clause": {
 <clause>
 }
 }
]
}

clause can take on one of two shapes:

"prop": ["<keyString>", <"valueString">]

Or,

"op": "<op enum as string>",
"args": [
 {<clause>}
]

Where this one can again, have subclauses.

Recognizer example

Recognizers can be simple or complex. The following is an example to illustrate the mechanism:

{
 "recognizers":[
 {
 "id":"org.zowe.explorer.openmember",
 "clause": {
 "op": "AND",
 "args": [

Zowe | Extending the Zowe Application Framework (zLUX) | 92

 {"prop":["sourcePluginID","com.rs.mvd.tn3270"]},{"prop":
["screenID","ISRUDSM"]}
]
 }
 }
]
}

In this case, the Recognizer detects whether it is possible to run the org.zowe.explorer.openmember
Action when the TN3270 Terminal application plug-in is on the screen ISRUDSM (an ISPF panel for browsing PDS
members).

Dispatcher

The dispatcher is a core component of the application framework that is accessible through the Global ZLUX Object
at runtime. The Dispatcher interprets Recognizers and Actions that are added to it at runtime. You can register
Actions and Recognizers on it, and later, invoke an Action through it. The dispatcher handles how the Action's
effects should be carried out, acting in combination with the Window Manager and application plug-ins themselves to
provide a channel of communication.

Registry

The Registry is a core component of the application framework, which is accessible through the Global ZLUX Object
at runtime. It contains information about which application plug-ins are present in the environment, and the abilities
of each application plug-in. This is important to application-to-application communication, because a target might not
be a specific application plug-in, but rather an application plug-in of a specific category, or with a specific featureset,
or capable of responding to the type of Action requested.

Pulling it all together in an example

The standard way to make use of application-to-application communication is by having Actions and Recognizers
that are saved on the system. Actions and Recognizers are loaded at login, and then later, through a form of
automation or by a user action, Recognizers can be polled to determine if there is an Action that can be executed.
All of this is handled by the Dispatcher, but the description of the behavior lies in the Action and Recognizer that
are used. In the Action and Recognizer descriptions above, there are two JSON definitions: One is a Recognizer that
recognizes when the Terminal application plug-in is in a certain state, and another is an Action that instructs the MVS
Explorer to load a PDS member for editing. When you put the two together, a practical application is that you can
launch the MVS Explorer to edit a PDS member that you have selected within the Terminal application plug-in.

Error reporting UI
The zLUX Widgets repository contains shared widget-like components of the Zowe Desktop, including Button,
Checkbox, Paginator, various pop-ups, and others. To maintain consistency in desktop styling across all applications,
use, reuse, and customize existing widgets to suit the purpose of the application's function and look.

Ideally, a program should have little to no logic errors. Once in a while a few occur, but more commonly an
error occurs from misconfigured user settings. A user might request an action or command that requires certain
prerequisites, for example: a proper ZSS-Server configuration. If the program or method fails, the program should
notify the user through the UI about the error and how to fix it. For the purposes of this discussion, we will use the
Workflow application plug-in in the zlux-workflow repository.

ZluxPopupManagerService

The ZluxPopupManagerService is a standard popup widget that can, through its reportError() method,
be used to display errors with attributes that specify the title or error code, severity, text, whether it should block the

Zowe | Extending the Zowe Application Framework (zLUX) | 93

user from proceeding, whether it should output to the logger, and other options you want to add to the error dialog.
ZluxPopupManagerService uses both ZluxErrorSeverity and ErrorReportStruct.

`export declare class ZluxPopupManagerService {`

 eventsSubject: any;
 listeners: any;
 events: any;
 logger: any;
 constructor();
 setLogger(logger: any): void;
 on(name: any, listener: any): void;
 broadcast(name: any, ...args: any[]): void;
 processButtons(buttons: any[]): any[];
 block(): void;
 unblock(): void;
 getLoggerSeverity(severity: ZluxErrorSeverity): any;
 reportError(severity: ZluxErrorSeverity, title: string, text: string,
 options?: any): Rx.Observable<any>;
`}`

ZluxErrorSeverity

ZluxErrorSeverity classifies the type of report. Under the popup-manager, there are the following types: error,
warning, and information. Each type has its own visual style. To accurately indicate the type of issue to the user, the
error or pop-up should be classified accordingly.

`export declare enum ZluxErrorSeverity {`

 ERROR = "error",
 WARNING = "warning",
 INFO = "info",
`}`

ErrorReportStruct

ErrorReportStruct contains the main interface that brings the specified parameters of reportError()
together.

`export interface ErrorReportStruct {`

 severity: string;
 modal: boolean;
 text: string;
 title: string;
 buttons: string[];
`}`

Implementation

Import ZluxPopupManagerService and ZluxErrorSeverity from widgets. If you are using additional
services with your error prompt, import those too (for example, LoggerService to print to the logger or
GlobalVeilService to create a visible semi-transparent gray veil over the program and pause background
tasks). Here, widgets is imported from node_modules\@zlux\ so you must ensure zLUX widgets is used in your
package-lock.json or package.json and you have run npm install.

import { ZluxPopupManagerService, ZluxErrorSeverity } from '@zlux/widgets';

Zowe | Extending the Zowe Application Framework (zLUX) | 94

Declaration

Create a member variable within the constructor of the class you want to use it for. For example, in the Workflow
application plug-in under \zlux-workflow\src\app\app\zosmf-server-config.component.ts is
a ZosmfServerConfigComponent class with the pop-up manager service variable. To automatically report the
error to the console, you must set a logger.

`export class ZosmfServerConfigComponent {`

 constructor(
 private popupManager: ZluxPopupManagerService,)
 { popupManager.setLogger(logger); } //Optional
`}`

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the method.
The following example describes an instance of the reload() method in Workflow that catches an error when the
program attempts to retrieve a configuration from a configService and set it to the program's this.config.
This method fails when the user has a faulty zss-Server configuration and the error is caught and then sent to the class'
popupManager variable from the constructor above.

`reload(): void {`

 this.globalVeilService.showVeil();
 this.configService
 .getConfig()
 .then(config => (this.config = config))
 .then(_ => setTimeout(() => this.test(), 0))
 .then(_ => this.globalVeilService.hideVeil())
 .catch(err => {
 this.globalVeilService.hideVeil()
 let errorTitle: string = "Error";
 let errorMessage: string = "Server configuration not found. Please
 check your zss server.";
 const options = {
 blocking: true
 };
 this.popupManager.reportError(ZluxErrorSeverity.ERROR,
 errorTitle.toString()+": "+err.status.toString(), errorMessage
+"\n"+err.toString(), options);
 });
`}`

Here, the errorMessage clearly describes the error with a small degree of ambiguity as to account for all types of
errors that might occur from that method. The specifics of the error are then generated dynamically and are printed
with the err.toString(), which contains the more specific information that is used to pinpoint the problem.
The this.popupManager.report() method triggers the error prompt to display. The error severity is set
with ZluxErrorSeverity.ERROR and the err.status.toString() describes the status of the error
(often classified by a code, for example: 404). The optional parameters in options specify that this error will
block the user from interacting with the application plug-in until the error is closed or it until goes away on its own.
globalVeilService is optional and is used to create a gray veil on the outside of the program when the error
is caused. You must import globalVeilService separately (see the zlux-workflow repository for more
information).

HTML

The final step is to have the recently created error dialog display in the application plug-in. If you do
this.popupManager.report() without adding the component to your template, the error will not be
displayed. Navigate to your component's .html file. On the Workflow application plug-in, this file will be in

Zowe | Extending the Zowe Application Framework (zLUX) | 95

\zlux-workflow\src\app\app\zosmf-server-config.component.html and the only item left is to
add the popup manager component alongside your other classes.

<zlux-popup-manager></zlux-popup-manager>

So now when the error is called, the new UI element should resemble the following:

The order in which you place the pop-up manager determines how the error dialog will overlap in your UI. If you
want the error dialog to overlap other UI elements, place it at the end of the .html file. You can also create custom
styling through a CSS template, and add it within the scope of your application plug-in.

Logging utility
The zlux-shared repository provides a logging utility for use by dataservices and web content for an application
plug-in.

Logging objects

The logging utility is based on the following objects:

• Component Loggers: Objects that log messages for an individual component of the environment, such as a REST
API for an application plug-in or to log user access.

• Destinations: Objects that are called when a component logger requests a message to be logged. Destinations
determine how something is logged, for example, to a file or to a console, and what formatting is applied.

• Logger: Central logging object, which can spawn component loggers and attach destinations.

Logger IDs

Because Zowe application plug-ins have unique identifiers, both dataservices and an application plug-in's web content
are provided with a component logger that knows this unique ID such that messages that are logged can be prefixed
with the ID. With the association of logging to IDs, you can control verbosity of logs by setting log verbosity by ID.

Accessing logger objects

Logger

The core logger object is attached as a global for low-level access.

App Server

NodeJS uses global as its global object, so the logger is attached to: global.COM_RS_COMMON_LOGGER

Web

Browsers use window as the global object, so the logger is attached to: window.COM_RS_COMMON_LOGGER

Zowe | Extending the Zowe Application Framework (zLUX) | 96

Component logger

Component loggers are created from the core logger object, but when working with an application plug-in, allow the
application plug-in framework to create these loggers for you. An application plug-in's component logger is presented
to dataservices or web content as follows.

App Server

See Router Dataservice Context in the topic zLUX dataservices.

Web

(Angular App Instance Injectible). See Logger in Zowe Desktop and window management.

Logger API

The following constants and functions are available on the central logging object.

Attribute Type Description Arguments

makeComponentLogger function Creates a component logger
- Automatically done by
the application framework
for dataservices and web
content

componentIDString

setLogLevelForComponentNamefunction Sets the verbosity of an
existing component logger

componentIDString,
logLevel

Component Logger API

The following constants and functions are available to each component logger.

Attribute Type Description Arguments

SEVERE const Is a const for logLevel

WARNING const Is a const for logLevel

INFO const Is a const for logLevel

FINE const Is a const for logLevel

FINER const Is a const for logLevel

FINEST const Is a const for logLevel

log function Used to write a log,
specifying the log level

logLevel,
messageString

severe function Used to write a SEVERE
log.

messageString

warn function Used to write a WARNING
log.

messageString

info function Used to write an INFO log. messageString

debug function Used to write a FINE log. messageString

makeSublogger function Creates a new component
logger with an ID appended
by the string given

componentNameSuffix

Zowe | Extending the Zowe Application Framework (zLUX) | 97

Log Levels

An enum, LogLevel, exists for specifying the verbosity level of a logger. The mapping is:

Level Number

SEVERE 0

WARNING 1

INFO 2

FINE 3

FINER 4

FINEST 5

Note: The default log level for a logger is INFO.

Logging verbosity

Using the component logger API, loggers can dictate at which level of verbosity a log message should be visible. You
can configure the server or client to show more or less verbose messages by using the core logger's API objects.

Example: You want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show debugging
information.

logger.setLogLevelForComponentName('org.zowe.foo.bar',LogLevel.DEBUG)

Configuring logging verbosity

The application plug-in framework provides ways to specify what component loggers you would like to set default
verbosity for, such that you can easily turn logging on or off.

Server startup logging configuration

The server configuration file allows for specification of default log levels, as a top-level attribute logLevel, which
takes key-value pairs where the key is a regex pattern for component IDs, and the value is an integer for the log
levels.

For example:

"logLevel": {
 "com.rs.configjs.data.access": 2,
 //the string given is a regex pattern string, so .* at the end here will
 cover that service and its subloggers.
 "com.rs.myplugin.myservice.*": 4
 //
 // '_' char reserved, and '_' at beginning reserved for server. Just as
 we reserve
 // '_internal' for plugin config data for config service.
 // _unp = universal node proxy core logging
 //"_unp.dsauth": 2
 },

For more information about the server configuration file, see Zowe Application Framework (zLUX) configuration.

user-guide/mvd-configuration.html#zowe-application-framework-configuration

Chapter

6
Extending Zowe CLI

Topics:

• Installing plug-ins
• Zowe CLI Plug-in for IBM CICS

You can install plug-ins to extend the capabilities of Zowe CLI. Plug-ins add
functionality to the product in the form of new command groups, actions,
objects, and options.

Important! Plug-ins can gain control of your CLI application legitimately
during the execution of every command. Install third-party plug-ins at your
own risk. We make no warranties regarding the use of third-party plug-ins.

Note: For information about how to install, update, and validate a plug-in, see
Installing Plug-ins.

The following plug-ins are available:

CA Brightside Plug-in for IBM® CICS®

The Zowe CLI Plug-in for IBM CICS lets you extend Zowe CLI to interact
with CICS programs and transactions. The plug-in uses the IBM CICS®

Management Client Interface (CMCI) API to achieve the interaction with
CICS. For more information, see CICS management client interface on the
IBM Knowledge Center.

For more information, see CA Brightside Plug-in for IBM CICS.

Zowe | Extending Zowe CLI | 100

Installing plug-ins
Use commands in the plugins command group to install and manage plug-ins for Zowe CLI.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every command.
Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

You can install the following plug-ins: - Zowe CLI Plug-in for IBM CICS Use @brightside/cics in your
command syntax to install, update, and validate the plug-in.

Setting the registry

If you installed Zowe CLI from the zowe-cli-bundle.zip distributed with the Zowe PAX media, proceed to the Install
step.

If you installed Zowe CLI from a registry, confirm that NPM is set to target the registry by issuing the following
command:

npm config set @brightside:registry https://api.bintray.com/npm/ca/
brightside

Meeting the prerequisites

Ensure that you meet the prerequisites for a plug-in before you install the plug-in to Zowe CLI. For documentation
related to each plug-in, see Extending Zowe CLI.

Installing plug-ins

Issue an install command to install plug-ins to Zowe CLI. The install command contains the following
syntax:

zowe plugins install [plugin...] [--registry <registry>]

Important! On Windows, you must run as an Administrator to install the product and plug-ins.

• [plugin...] (Optional) Specifies the name of a plug-in, an npm package, or a pointer to a (local or remote)
URL. When you do not specify a plug-in version, the command installs the latest plug-in version and specifies the
prefix that is stored in npm save-prefix. For more information, see npm save prefix. For more information about
npm semantic versioning, see npm semver. Optionally, you can specify a specific version of a plug-in to install.
For example, zowe plugin install pluginName@^1.0.0.

Tip: You can install multiple plug-ins with one command. For example, issue zowe plugin install
plugin1 plugin2 plugin3

• [--registry <registry>] (Optional) Specifies a registry URL from which to install a plug-in when you
do not use npm config set to set the registry initially.

Examples: Install plug-ins

• The following example illustrates the syntax to use to install a plug-in that is distributed with the zowe-cli-
bundle.zip. If you are using zowe-cli-bundle.zip, issue the following command for each plug-in .tgz file:

zowe plugins install ./zowe-cli-cics-1.0.0-next.20180531.tgz

• The following example illustrates the syntax to use to install a plug-in that is named "my-plugin" from a specified
registry:

zowe plugins install @brightside/my-plugin

user-guide/cli-installplugins.md#installing-plug-ins
user-guide/cli-installplugins.md#installing-plug-ins
https://docs.npmjs.com/misc/config#save-prefix
https://docs.npmjs.com/misc/semver

Zowe | Extending Zowe CLI | 101

• The following example illustrates the syntax to use to install a specific version of "my-plugins"

 zowe plugins install @brightside/my-plugin@"^1.2.3"

Validating plug-ins

Issue the plug-in validation command to run tests against all plug-ins (or against a plug-in that you specify) to verify
that the plug-ins integrate properly with Zowe CLI. The tests confirm that the plug-in does not conflict with existing
command groups in the base application. The command response provides you with details or error messages about
how the plug-ins integrate with Zowe CLI.

Perform validation after you install the plug-ins to help ensure that it integrates with Zowe CLI.

The validate command has the following syntax:

zowe plugins validate [plugin]

• [plugin] (Optional) Specifies the name of the plug-in that you want to validate. If you do not specify a plug-in
name, the command validates all installed plug-ins. The name of the plug-in is not always the same as the name of
the NPM package.

Examples: Validate plug-ins

• The following example illustrates the syntax to use to validate a specified installed plug-in:

zowe plugins validate @brightside/my-plugin

• The following example illustrates the syntax to use to validate all installed plug-ins:

zowe plugins validate

Updating plug-ins

Issue the update command to install the latest version or a specific version of a plug-in that you installed
previously. The update command has the following syntax:

zowe plugins update [plugin...] [--registry <registry>]

• [plugin...]

Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not always the same
as the name of the NPM package. You can use npm semantic versioning to specify a plug-in version to which to
update. For more information, see npm semver.

• [--registry <registry>]

(Optional) Specifies a registry URL that is different from the registry URL of the original installation.

Examples: Update plug-ins

• The following example illustrates the syntax to use to update an installed plug-in to the latest version:

zowe plugins update @brightside/my-plugin@latest

• The following example illustrates the syntax to use to update a plug-in to a specific version:

zowe plugins update @brightside/my-plugin@"^1.2.3"

Uninstalling plug-ins

Issue the uninstall command to uninstall plug-ins from a base application. After the uninstall process completes
successfully, the product no longer contains the plug-in configuration.

https://docs.npmjs.com/misc/semver

Zowe | Extending Zowe CLI | 102

Tip: The command is equivalent to using npm uninstall to uninstall a package.

The uninstall command contains the following syntax:

zowe plugins uninstall [plugin]

• [plugin] Specifies the plug-in name to uninstall.

Example: Uninstall plug-ins

• The following example illustrates the syntax to use to uninstall a plug-in:

zowe plugins uninstall @brightside/my-plugin

Zowe CLI Plug-in for IBM CICS
The Zowe CLI Plug-in for IBM® CICS® lets you extend Zowe CLI to interact with CICS programs and transactions.
The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS.For
more information, see CICS management client interface on the IBM Knowledge Center.

• Use Cases
• Prerequisites
• Installing
• Setting up profiles
• Commands

Use cases

As an application developer, you can use Zowe CLI Plug-in for IBM CICS to perform the following tasks:

• Deploy code changes to CICS applications that were developed with COBOL.
• Deploy changes to CICS regions for testing or delivery. See the define command for an example of how you can

define programs to CICS to assist with testing and delivery.
• Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.
• Deploy build artifacts to CICS regions.
• Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Prerequisites

Before you install the plug-in, meet the following prerequisites:

• Install Zowe CLI on your PC.
• Verify that IBM® CICS® Management Client Interface (CMCI) API is installed and configured on your

mainframe systems.

Installing

There are two methods that you can use to install the Zowe CLI Plug-in for IBM CICS - install from Bintray or
install from the Zowe package.

Installing from Bintray

If you installed Zowe CLI from Bintray, complete the following steps:

1. Open a command line window and issue the following command:

zowe plugins install @brightside/cics Important! On Windows, you must run as an Administrator
to install the product and plug-ins.

1. After the command execution completes, issue the following command to validate that the installation completed
successfully.

https://docs.npmjs.com/cli/uninstall
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
user-guide/cli-cicsplugin.md#use-cases
user-guide/cli-cicsplugin.md#prerequisites
user-guide/cli-cicsplugin.md#installing
user-guide/cli-cicsplugin.md#setting-up-profiles
user-guide/cli-cicsplugin.md#commands
user-guide/cli-cicsplugin.md#defining-resources-to-cics
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html

Zowe | Extending Zowe CLI | 103

zowe plugins validate cics

Successful validation of the IBM CICS plug-in returns the response: Successfully validated.

To validate that the plug-in installed successfully, issue the following command:

 zowe plugins validate @brightside/cics

Note: For detailed information about how to install multiple plug-ins, update to a specific version of a plug-ins, and
install from specific registries, see Install Plug-ins.

Installing from local package

If you downloaded the Zowe installation package from Github, complete the following steps:

1. Open a command line window and change the directory to the location where you extracted the zowe-cli-
bundle.zip file. If you do not have the zowe-cli-bundle.zip file, see the topic Install Zowe CLI from
local package in Installing Zowe CLI for information about how to obtain and extract it.

2. Issue the following command to install the plug-in:

zowe plugins install zowe-cli-cics-1.1.0-next.201809271925.tgz

Important! On Windows, you must run as an Administrator to install the product and plug-ins.
3. After the command execution completes, issue the following command to validate that the installation completed

successfully.

zowe plugins validate cics

Successful validation of the CICS plug-in returns the response: Successfully validated.

Setting up profiles

A cics profile is required to issue commands in the CICS group that interact with CICS regions. The cics profile
contains your host, port, username, and password for the IBM CMCI server of your choice. You can create multiple
profiles and switch between them as needed.

Issue the following command to create a cics profile:

zowe profiles create cics <profile name> -H <host> -P <port> -u <user> -p
 <password>

Note: For more information about the` syntax, actions, and options, for aprofiles create` command,
open Zowe CLI and issue the following command:

zowe profiles create cics -h

The result of the command displays as a success or failure message. You can use your profile when you issue
commands in the cics command group.

Commands

The Zowe CLI Plug-in for IBM CICS adds the following commands to Zowe CLI:

• Defining resources to CICS
• Deleting CICS resources
• Discarding CICS resources
• Getting CICS resources
• Installing resources to CICS
• Refreshing CICS programs

user-guide/cli-installcli.html#installing-zowe-cli-from-local-package
user-guide/cli-installcli.html#installing-zowe-cli-from-local-package
user-guide/cli-cicsplugin.md#defining-resources-to-cics
user-guide/cli-cicsplugin.md#deleting-cics-resources
user-guide/cli-cicsplugin.md#discarding-cics-resources
user-guide/cli-cicsplugin.md#get-cics-resources
user-guide/cli-cicsplugin.md#installing-resources-to-cics
user-guide/cli-cicsplugin.md#refreshing-cics-programs

Zowe | Extending Zowe CLI | 104

Defining resources to CICS

The define command lets you define programs and transactions to CICS so that you can deploy and test the changes
to your CICS application. To display a list of possible objects and options, issue the following command:

zowe cics define -h

Example:

Define a program named myProgram to the region named myRegion in the CICS system definition (CSD) group
myGroup:

zowe cics define program myProgram myGroup --region-name myRegion

Deleting CICS resources

The delete command lets you delete previously defined CICS programs or transactions to help you deploy and test the
changes to your CICS application. To display a list of possible objects and options, issue the following command:

zowe cics delete -h

Example:

Delete a program named PGM123 from the CICS region named MYREGION:

zowe cics delete program PGM123 --region-name MYREGION

Discarding CICS resources

The discard command lets you remove existing CICS program or transaction definitions to help you deploy and test
the changes to your CICS application. To display a list of possible objects and options, issue the following command:

zowe cics discard -h

Example:

Discard a program named PGM123 from the CICS region named MYREGION:

zowe cics discard program PGM123 --region-name MYREGION

Getting CICS resources

The get command lets you get a list of programs and transactions that are installed in your CICS region so that you
can determine if they were installed successfully and defined properly. To display a list of objects and options, issue
the following command:

zowe cics get -h

Example:

Return a list of program resources from a CICS region named MYREGION:

zowe cics get resource CICSProgram --region-name MYREGION

Zowe | Extending Zowe CLI | 105

Installing resources to CICS

The install command lets you install resources, such as programs and transactions, to a CICS region so that you can
deploy and test the changes to your CICS application. To display a list of possible objects and options, issue the
following command:

zowe cics install -h

Example:

Install a transaction named TRN1 to the region named MYREGION in the CSD group named MYGRP:

zowe cics install transaction TRN1 MYGRP --region-name MYREGION

Refreshing CICS programs

The refresh command lets you refresh changes to a CICS program so that you can deploy and test the changes to your
CICS application. To display a list of objects and options, issue the following command:

zowe cics refresh -h

Example:

Refresh a program named PGM123 from the region named MYREGION:

zowe cics refresh PGM123 --region-name MYREGION

	Contents
	About this documentation
	Who should read this documentation
	How to send your feedback on this documentation
	Sending a GitHub pull request
	Opening an issue for the documentation

	Release notes for Open Beta
	Version 0.9.1 (October 2018)
	What's new
	New in the Zowe Application Framework
	New in Zowe CLI
	New in API Mediation Layer
	Enhanced JES Explorer

	What's changed
	Naming
	JES Explorer
	MVS Explorer
	Zowe CLI

	Version 0.9.0 (August 2018)
	What's new
	What's changed
	What's removed
	Known issues
	Security message when you open the Zowe Desktop
	Message ICH408I during runtime
	Zowe Application Framework APIs

	Zowe overview
	Zowe Application Framework
	Explorer server
	Zowe CLI
	Zowe CLI capabilities
	Zowe CLI Third-Party software agreements

	API Mediation Layer
	Key features
	API Mediation Layer architecture
	Components
	API Gateway
	Discovery Service
	API Catalog

	Zowe API Mediation Layer Third-Party software agreements

	Installing Zowe
	Installation roadmap
	System requirements
	z/OSMF requirements
	z/OS requirements
	Configuring z/OSMF
	z/OSMF REST services for the Zowe CLI

	System requirements for the Zowe Application Framework, explorer server, and API Mediation Layer
	Planning for installation

	System requirements for Zowe CLI
	Supported platforms
	Free disk space
	Prerequisite software
	Windows operating systems
	Mac operating systems
	Linux operating systems

	Obtaining installation files
	Installing the Zowe Application Framework, explorer server, and API Mediation Layer
	Installing the Zowe runtime on z/OS
	Starting and stopping the Zowe runtime on z/OS
	Starting the ZOWESVR PROC
	Stopping the ZOWESVR PROC

	Verifying installation
	Verifying Zowe Application Framework installation
	Verifying explorer server installation
	Verifying the availability of explorer server REST APIs

	Verifying API Mediation installation

	Installing Zowe CLI
	Methods to install Zowe CLI
	Installing Zowe CLI from local package
	Installing Zowe CLI from Bintray registry

	Creating a Zowe CLI profile
	Testing Zowe CLI connection to z/OSMF

	Troubleshooting the installation
	Troubleshooting installing the Zowe runtime
	Troubleshooting installing the Zowe Application Framework
	Troubleshooting installing explorer server

	Troubleshooting installing Zowe CLI
	npm install -gCommand Fails Due to an EPERM Error
	Sudo syntax required to complete some installations
	npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error
	Node.js commands do not respond as expected
	Installation fails on Oracle Linux 6

	Uninstalling Zowe
	Uninstalling the Zowe Application Framework
	Uninstalling explorer server
	Uninstalling API Mediation Layer
	Uninstalling Zowe CLI

	Configuring Zowe
	Zowe Application Framework (zLUX) configuration
	Setting up terminal application plug-ins
	Setting up the TN3270 mainframe terminal application plug-in
	Setting up the VT Terminal application plug-in

	Configuring the zLUX Proxy Server and ZSS
	Configuration file
	Network configuration
	HTTP
	HTTPS
	Network example

	Deploy configuration
	Deploy example

	Application plug-in configuration
	Plug-ins directory example

	Logging configuration
	ZSS configuration
	Connecting the zLUX Proxy Server to ZSS

	Zowe Application Framework logging
	Controlling the logging location
	ZLUX_NODE_LOG_DIR and ZSS_LOG_DIR environment variables
	ZLUX_NODE_LOG_FILE and ZSS_LOG_FILE environment variables

	Retaining logs

	Configuring Zowe CLI
	Setting environment variables for Zowe CLI
	Setting log levels
	Setting the .brightside directory

	Using Zowe
	Using the Zowe Desktop
	Navigating the Zowe Desktop
	Accessing the Zowe Desktop
	Logging in and out of the Zowe Desktop
	Pinning applications to the task bar

	Using Explorers within the Zowe Desktop
	Zowe Desktop application plug-ins
	Hello World Sample
	IFrame Sample
	z/OS Subsystems
	TN3270
	VT Terminal
	API Catalog
	Workflows

	Using the Workflows application plug-in
	Configuration
	Adding a z/OSMF server
	Setting a server as the default z/OSMF server
	Removing a server
	Workflows
	Defining a workflow
	Viewing tasks
	Task work area
	Viewing warnings

	Using APIs
	Using explorer server REST APIs
	Data set APIs
	Job APIs
	System APIs
	USS File APIs
	z/OS System APIs

	Programming explorer server REST APIs
	Sending a GET request in Java
	Sending a GET request in JavaScript
	Sending a POST request in JavaScript
	Extended API sample in JavaScript

	Using explorer server WebSocket services

	API Catalog
	View Service Information and API Documentation in the API Catalog

	Using Zowe CLI
	Display Zowe CLI help
	Display top-level help
	Help structure
	Displaying command group, action, and object help

	Zowe CLI command groups
	plugins
	profiles
	provisioning
	zos-console
	zos-files
	zos-jobs
	zos-tso
	zosmf

	Extending the Zowe Application Framework (zLUX)
	Creating application plug-ins
	Setting the environment variables for plug-in development
	Using the sample application plug-in

	zLUX plug-ins definition and structure
	Application plug-in filesystem structure
	Root files and directories
	pluginDefinition.json

	Dev and source content
	nodeServer
	webClient

	Runtime content
	lib
	web

	Location of plug-in files
	pluginsDir directory

	Plug-in definition file
	Plug-in attributes
	General attributes
	Application attributes
	Application web content attributes
	IFrame application web content

	zLUX dataservices
	Defining a dataservice
	Dataservices defined in pluginDefinition

	Dataservice API
	Router-based dataservices
	HTTP/REST router dataservices
	Websocket router dataservices
	Router dataservice context

	Zowe Desktop and window management
	Loading and presenting application plug-ins
	Plug-in management
	Application management
	Windows and Viewports
	Viewport Manager
	Injection Manager
	Plug-in definition
	Logger
	Launch Metadata
	Viewport Events
	Window Events
	Window Actions

	Configuration Dataservice
	Resource Scope
	REST API
	REST query parameters
	REST HTTP methods
	GET
	PUT
	DELETE

	Administrative access and group

	Application API
	Internal and bootstrapping
	Plug-in definition
	Aggregation policies

	URI Broker
	Accessing the URI Broker
	Functions
	Accessing an application plug-in's dataservices
	HTTP Dataservice URI
	Websocket Dataservice URI

	Accessing application plug-in's configuration resources
	Standard configuration access
	Scoped configuration access

	Accessing static content
	Accessing the application plug-in's root
	Server queries
	Accessing a list of plug-ins

	Application-to-application communication
	Why use application-to-application communication?
	Actions
	Action target modes
	Action types
	Loading actions
	Dynamically
	Saved on system

	Recognizers
	Recognition clauses
	Loading Recognizers at runtime
	Dynamically
	Saved on system

	Recognizer example

	Dispatcher
	Registry
	Pulling it all together in an example

	Error reporting UI
	ZluxPopupManagerService
	ZluxErrorSeverity
	ErrorReportStruct
	Implementation
	Declaration
	Usage
	HTML

	Logging utility
	Logging objects
	Logger IDs
	Accessing logger objects
	Logger
	App Server
	Web

	Component logger
	App Server
	Web

	Logger API
	Component Logger API
	Log Levels
	Logging verbosity
	Configuring logging verbosity
	Server startup logging configuration

	Extending Zowe CLI
	Installing plug-ins
	Setting the registry
	Meeting the prerequisites
	Installing plug-ins
	Validating plug-ins
	Updating plug-ins
	Uninstalling plug-ins

	Zowe CLI Plug-in for IBM CICS
	Use cases
	Prerequisites
	Installing
	Installing from Bintray
	Installing from local package

	Setting up profiles
	Commands
	Defining resources to CICS
	Deleting CICS resources
	Discarding CICS resources
	Getting CICS resources
	Installing resources to CICS
	Refreshing CICS programs

