Analog_system_lab_pro_manual_v103 Analog System Lab Pro Manual V103

User Manual: analog_system_lab_pro_manual_v103

Open the PDF directly: View PDF PDF.
Page Count: 104

DownloadAnalog_system_lab_pro_manual_v103 Analog System Lab Pro Manual V103
Open PDF In BrowserView PDF
Analog
System
Lab Kit PRO

MANUAL

Table of contents
Introduction

9

Analog System Lab

10

Organization of the Analog System Lab Course

11

Lab Setup

12

System Lab Kit ASLK PRO - An overview

13

Hardware

13

Software

13

Getting to know ASLK PRO

14

Organization of the Manual

16

Experiment 1:

Brief theory and motivation

18

1.1.1

Unity Gain Amplifier

18

1.1.2

Non-inverting Amplifier

19

1.1.3

Inverting Amplifier

19

Inverting Regenerative Comparator

24

2.1.2

Astable Multivibrator

24

2.1.3

Monostable Multivibrator (Timer)

25

Exercise Set 2

Experiment 3:
3.1

28

3.1.1

Integrators

28

3.1.2

Differentiators

28

3.2

Specifications

28

3.3

Measurements to be taken

28

3.4

What should you submit

29

3.5	Exercise Set 3 - Grounded Capacitor Topologies
of Integrator and Differentiator

Exercise Set 1

20

1.3

Measurements to be taken

20

Experiment 4:

1.4

What should you submit

21

Design of Analog Filters

1.5

Other related ICs

21

23

Study the characteristics of regenerative feedback system with
extension to design an astable and monostable multivibrator
2.1

Brief theory and motivation

Analog System Lab Kit PRO

27

Brief theory and motivation

1.2

Experiment 2:

26

Study the characteristics of integrators and differentiator circuits

17

Study the characteristics of negative feedback amplifiers and
design of an instrumentation amplifier
1.1

2.2

2.1.1

30

31

4.1

Brief theory and motivation

32

4.2

Specification

33

4.3

Measurements to be taken

33

4.4

What should you submit

33

4.5

Exercise Set 4

34

24

page 3

Table of contents
Experiment 5:

35

Brief theory and motivation

36

5.1.1

36

Multiplier as a Phase Detector

5.2

Specification

37

5.3

Measurements to be taken

37

5.3.1

37

5.4

Transient response

What should you submit

37

5.4.1

38

Exercise Set 5

39

Design a function generator and convert it to Voltage-Controlled
Oscillator/FM Generator
6.1

Brief theory and motivation

40

6.2

Specifications

40

6.3

Measurements to be taken

40

6.4

What should you submit

41

6.5

Exercise Set 6

41

Experiment 7:

43

Design of a Phase Lock Loop (PLL)

page 4

8.1

Brief theory and motivation

48

8.2

Specifications

48

8.3

Measurements to be taken

48

8.4

What should you submit

48

8.5

Exercise Set 8

49

Experiment 9:

		

Experiment 6:

47

Automatic Gain Control (AGC) Automatic Volume Control (AVC)

Design of a self-tuned filter
5.1

Experiment 8:

51

DC-DC Converter
9.1

Brief theory and motivation

52

9.2

Specification

52

9.3

Measurements to be taken

52

9.3.1

Time response

52

9.3.2

Transfer function

52

9.4

What should you submit

53

9.5

Exercise Set 9

53

Experiment 10:

55

Design a Low Dropout (LDO) regulator

7.1

Brief theory and motivation

44

10.1

Brief theory and motivation

56

7.2

Specifications

44

10.2

Specifications

56

7.3

Measurements to be taken

45

10.3

Measurements to be taken

56

7.4

What should you submit

45

10.4

What should you submit

57

7.5

Exercise Set 7

45

10.5

Exercise Set 10

57

Analog System Lab Kit PRO

Table of contents
Experiment 11:

59

To study the parameters of an LDO integrated circuit
11.1

Brief theory and motivation

60

11.2

Specifications

60

11.3

Measurements to be taken

60

11.4

What should you submit

61

Experiment 12:

63

To study the parameters of a DC-DC Converter using on-board
Evaluation module

14.2

Specifications

72

14.3

Measurements to be taken

72

14.4

What should you submit

72

14.5

Exercise Set 14

73

A ICs used in ASLK PRO
A.1

75

TL082: JFET-Input Operational Amplifier

76

A.1.1

Features

76

A.1.2

Applications

76

12.1

Brief theory and motivation

64

A.1.3

Description

76

12.2

Specifications

65

A.1.4

Download Datasheet

76

12.3

Measurements to be taken

65

12.4

What should you submit

Experiment 13:

A.2

65

67

Design of a Digitally Controlled Gain Stage Amplifier

A.3

MPY634: Wide Bandwidth Analog Precision Multiplier

77

A.2.1

Features

77

A.2.2

Applications

77

A.2.3

Description

77

A.2.4

Download Datasheet

77

DAC 7821: 12 Bit, Parallel, Multiplying DAC

78

13.1

Brief theory and motivation

68

A.3.1

Features

78

13.2

Specifications

68

A.3.2

Applications

78

13.3

Measurements to be taken

68

A.3.3

Description

78

13.4

What should you submit

68

A.3.4

Download Datasheet

78

13.5

Exercise Set 13

69

Experiment 14:

71

Design of a Digitally Programmable Square and Triangular wave
generator/oscillator
14.1

Brief theory and motivation

Analog System Lab Kit PRO

72

A.4	TPS40200: Wide-Input, Non-Synchronous Buck
DC/DC Controller

79

A.4.1

Features

79

A.4.2

Applications

79

A.4.3

Description

79

A.4.4

Download Datasheet

79

page 5

Table of contents

List of figures

A.5	TLV7250: Micropower Low-Dropout Voltage Regulator 80

A.6

A.7

Signal Chain in an Electronic System

10

A.5.1

Features

80

Analog System Lab Kit PRO

13

A.5.2

Applications

80

Picture of ASLK PRO

15

A.5.3

Description

80

A.5.4

Download Datasheet

80

Transistors: 2N3906, 2N3904, BS250

1.1	An ideal Dual-Input, Single-Output OP-Amp and its I-O
characteristic

18
18

81

1.2

A Unity Gain System

A.6.1

2N3906 Features, A.6.2 Download Datasheet 81

1.3

Magnitude and Phase response of a Unity Gain System 19

A.6.3

2N3904 Features, A.6.4 Download Datasheet 81

1.4

Time Response of an Amplifier for

A.6.5

BS250 Features, A.6.6 Download Datasheet

81

Diode: 1N4448 Small Signal Diode

82

A.7.1

Features

82

A.7.2

Download Datasheet

82

B Introduction to Macromodels

83

B.1

Micromodels

84

B.2

Macromodels

84

a step input of size Vp
1.5

19

(a) Non-inverting amplifier of gain 2,
(b) Inverting amplifier of gain 2

19

1.6

Negative Feedback Amplifiers

19

1.7

Frequency Response of Negative Feedback Amplifiers 20

1.8	Outputs VF1 , VF2 and VF3 of Negative Feedback
Amplifiers of Figure 2.6 for Square-wave Input VG1
1.9

20

Instrumentation Amplifiers with (a) three and (b) two
operational amplifiers

20

2.1	Inverting Schmitt-Trigger and

C 	Activity - Convert your
PC/laptop into an Oscilloscope
C.1

Introduction

88

C.2

Limitations

88

D	Analog System Lab Kit PRO
Connection Diagrams
Bibliography
page 6

87

89
99

2.2

its Hysteresis Characteristic

24

Symbol for an Inverting Schmitt Trigger

24

2.3	Non-inverting Schmitt Trigger
and its Hysteresis Curve

24

2.4

Astable Multivibrator and its characteristics

25

2.5

Trigger waveform

25

2.6

Monostable Multivibrator and its outputs

25

3.1

Integrator

28

3.2

Differentiator

28

3.3

Frequency Response of integrator and differentiator

29

3.4

Outputs of integrator and differentiator for
square-wave and triangular-wave inputs

30

Analog System Lab Kit PRO

List of figures
3.5

Circuits for Exercise 3

30

4.1

A Second-order Universal Active Filter

32

4.2	Magnitude and Phase Response of
5.1

12.2	Simulation waveforms - TP3 is the PWM waveform
and TP4 is the switching waveform

65

13.1

Circuit for Digital Controlled Gain Stage Amplifier

68

Equivalent Circuit for simulation

69

LPF, BPF, BSF, and HPF filters

32

13.2

Analog Multiplier

36

13.3	Simulation output of digitally controlled Oscillator when

5.2	A Self-Tuned Filter based on a Voltage Controlled
Filter or Voltage Controlled Phase Generator

the input pattern for the DAC 
36

5.3	Output of the Self-Tuned Filter

69

was selected to be 0x800
14.1

Circuit for Digital Controlled Oscillator

72

based on simulation

37

14.2

Circuit for Simulation

73

6.1

Function Generator

40

14.3

Simulation Results

73

6.2

Function Generator Output

40

A.1

TL082 - JFET-Input Operational Amplifier

76

6.3

Voltage-Controlled Oscillator (VCO)

41

A.2

MPY634 - Analog Multiplier

77

7.1

Phase Locked Loop (PLL) and its characterisitics

44

A.3

DAC 7821 - Digital to Analog Converter

78

A.4

TPS40200 - DC/DC Controller

79

7.2	Sample output waveform for
7.3

the Phase Locked Loop (PLL) Experiment

44

A.5	TPS7250 -Micropower Low-Dropout Voltage Regulator 80

Block Diagram of Frequency Optimizer

45

A.6

2N3906 PNP General Purpose Amplifier

81

A.7

2N3906 NPN General Purpose Amplifier

81

8.1 	Automatic Gain Control (AGC)/
Automatic Volume Control (AVC)

48

A.8

BS250 P-Channel Enh. Mode Vertical DMOS FET

81

8.2

Input-Output Characteristics of AGC/AVC

48

A.9

1N4448 Small Signal Diode

82

8.3

AGC circuit and its output

49

C.1

Buffer circuit needed to interface an Analog Signal to

9.1

DC-DC Converter and PWM waveform

52

9.2

(a) SMPS Circuit (b) Ouptut Waveforms

53

10.1

Low Dropout Regulator (LDO)

56

10.2	A regulator circuit and its simulated outputs - line
11.1

Oscilloscope

88

D.1

OP-Amp 1A connected in Inverting Configuration

90

D.2

OP-Amp 1B connected in inverting configuration

90

D.3	OP-Amp 2A can be used in both inverting 

regulation and load regulation

56

and non-inverting configuration

Schematic diagram of on-board evaluation module

60

D.4	OP-Amp 2B can be used in both inverting

11.2(a) Line regulation

61

and non-inverting configuration

11.2(b) Load regulation

61

12.1

64

Schematic of the on-board EVM

Analog System Lab Kit PRO

D.5

91
91

OP-Amp 3A can be used in unity gain configuration
or any other custom configuration

92

page 7

introduction

List of figures
D.6

3.1

OP-Amp 3B can be used in unity gain configuration
or any other custom configuration

92

D.7

Connections for analog multiplier MPY634 - SET I

92

D.8

Connections for analog multiplier MPY634 - SET II

93

3.2

-~20Q
3.3	Variation of Peak to Peak value of output
w.r.t. Peak value of Input

93

4.1

D.10	Connections for A/D converter DAC7821 - DAC I

94

4.2

D.11	Connections for A/D converter DAC7821 - DAC II

95

4.3

D.9

Connections for analog multiplier MPY634 - SET III

~~
0 0
~
H00 Q

~
~00
~H
0 0Q

29
H~
0Q
0 = 1 kHz
Transfer Functions of Active Filters~
0 =
H00 Q
=11kHz32
= 1 kHz ~Q
1 10 kHz
33
Frequency Response of a BPF with Q
~0=
=11 kHz , Q~=0 =
kHz
10
~
0
=
Q0 =
Frequency Response of a BSF with ~
= 110 kHz , Q = 10  33

kHz Q f==10
10
~
1 kHz37
0=
=10
Variation of output amplitude with Q
input
frequency
f
kHzkHz
1
=
Q
10
f
=
= 10
f=
1 kHz Voltage
6.1
Change in frequency as a function of
Control
41
f =410
1 kHz
$ VpkHz
f
kHz
10
=
7.1
Output Phase as a function of Input Frequency r $ H $ Q 45
0
f=
4 $ 10
Vp kHz 4 $ Vp
V
7.2
Control Voltage as a function of Input
Frequency
pH0 $ Q 45
$
r
$ H$ 0V$p Q
r4
Vp~0 = 2 $ r48
$ 10 4 rad/s
Vrp $ H0 $ Q
8.1
Transfer characteristic of the AGC circuit
2/s10
$ r $ 10 4 rad/s
0 rad
=
Vp0 = 2 $ r
0 =
~
$ 10~4H
9.1	Variation of output voltage with reference
voltage
s sin _100rt i + 0.1 sin
2 $ r $ 10Hy40 rad
/=
~
H00 = 10
_=t i10
in a DC-DC converter
53
H
10
_
i
t
t i +r0.1
y
_100
0
=
=+sin
_
i
t
t
t i sin _
sin
100
0.1
sin _r200
y
r
_
i
=
9.2	Variation of duty cycle with reference voltage
y _ t i = sin _100rt i + 0.1 sin _200rt i
in a DC-DC converter
53
5.1

D.12	Connections for TPS40200 Evaluation
step-down DC/DC converter

=
a- HsV0i $ 0 kbs12 + s 2+ s l
VV02i
2
+ 2 l ~0 Qs ~
b1 + ~0 Q ~
0
=
2 l $ H0
Vi
s V204 ~s 02 b1 + ~
+=~ 21l s 2 0 $ H 2
b1 + ~0sQ
+ ~s2 l 0s
b1 + V~04V022il $ H00b1 +
0
+~
b
V04
2l
=
s
~
0Q
=
Vi 2 l $ Hs 02
s
s2 0
b1 + s~
V
i
+
0 + b1 +
l
V04 b1 +
2
10 Q ~0
2l ~
~0sQ
1s 02~0 ~
Vi =
2Q 2
+
b1 +1~~
2l 1
0Q
1~
0
-0
~0 1 H
0 Q 2Q 2
2
2Q
1
~0 H1
H
1 0-Q 1 2
0 Q 2Q 2
4
1Q
1
1H
d1z- 4Q 2
-0 Q
2
4Q
1
d~
dz1 - 4Q 2 dz
~ = ~0
d~
dd~
z
~-=2Q
~0 29
Plot of Magnitude and Phase w.r.t. ~
Input
0
d~= ~Frequency
~
0
- 2Q
~
0
Plot of Magnitude and Phase w.r.t. Input
29
2=Q~Frequency

96

D.13	Connections for TP7250 low-dropout linear voltage reg.97
D.14

MOSFET socket

97

D.15

Bipolar Junction Transistor socket

97

D.16

Diode sockets

98

D.17

Trimmer-potentiometers

98

D.18

Main power supply

98

D.19

General purpose area (2.54mm / 100mills pad spacing) 98

10.1	Variation of Load Regulation with Load Current
in an LDO
10.2	Variation of Line Regulation with Input Voltage

List of tables
21

1.2	Plot of Magnitude and Phase variation
w.r.t. Input Frequency

21

1.3	Plot of DC output voltage and phase variation
2.1

page 8

in an LDO

57

11.1

Line regulation

61

11.2

Load regulation

61

12.1	Variation of the duty cycle of PWM waveform

1.1	Plot of Peak to Peak amplitude of output
Vpp w.r.t. Input Frequency

56

w.r.t. DC input voltage

21

Plot of Hysteresis w.r.t. Regenerative Feedback

25

with input voltage

66

12.2

Line regulation

66

12.3

Load regulation

66

13.1

Variation in output amplitude with bit pattern

68

14.1

Varying the bit pattern input to the DAC

72

B.1

Operational Amplifiers available from Texas Instruments85

Analog System Lab Kit PRO

Introduction
What you need to know before you get started

Analog System Lab Kit PRO

page 9

introduction

Analog System Lab
Although digital signal processing is the most common form of processing signals,
analog signal processing cannot be completely avoided since the real world is
analog in nature. Consider a typical signal chain (Figure below).

Typical signal chain
1

A sensor converts the real-world signal into an analog electrical signal.
This analog signal is often weak and noisy.

2

Amplifiers are needed to strengthen the signal. Analog filtering may be
necessary to remove noise from the signal. This “front end” processing
improves the signal-to-noise ratio. Three of the most important building
blocks used in this stage are (a) Operational Amplifiers, (b) Analog
multipliers and (c) Analog Comparators.

3

 n analog-to-digital converter transforms the analog signal into a
A
stream of 0s and 1s.

4

 he digital data is processed by a CPU, such as a DSP, a microprocessor,
T
or a microcontroller. The choice of the processor depends on how
intensive the computation is. A DSP may be necessary when realtime signal processing is needed and the computations are complex.
Microprocessors and microcontrollers may suffice in other applications.

5

 igital-to-analog conversion (DAC) is necessary to convert the stream of
D
0s and 1s back into analog form.

6

 he output of the DAC has to be amplified before the analog signal can
T
drive an external actuator.

Figure: Signal Chain in an Electronic System

It is evident that analog circuits play a
crucial role in the implementation of an
electronic system.
The goal of the Analog System Lab
Course is to provide students an
exposure to the fascinating world
of analog and mixed-signal signal
processing. The course can be adapted
page 10

for an undergraduate or a postgraduate
curriculum. As part of the lab course,
the student will build analog systems
using analog ICs and study their macro
models, characteristics and limitations.
Our philosophy in designing this lab
course has been to focus on system
design rather than circuit design. We
feel that many Analog Design classes

in the colleges focus on the circuit
design aspect, ignoring the issues
encountered in system design. In the
real world, a system designer uses
the analog ICs as building blocks. The
focus of the system designer are to
optimize system-level cost, power, and
performance. IC manufacturers such as
Texas Instruments offer a large number

of choices of integrated circuits keeping
in mind the diverse requirements
of system designers. As a student,
you must be aware of these diverse
offerings of semiconductors and select
the right IC for the right application. We
have tried to emphasize this aspect
in designing the experiments in this
manual.

Analog System Lab Kit PRO

introduction

Organization of the Course
In designing the lab course, we have assumed that there are about 12 during a semester. We have designed 14 experiments which can be carried out either individually or
by groups of two students. The experiments in Analog System Lab can be categorized as follows.

Part I - Learning the basics

Part II - Building analog systems

In the first part, the student will be exposed to the
operation of the basic building blocks of analog
systems. Most of the experiments in the Analog
System Lab Course are centered around the following
two components.

Part-II concentrates on building analog systems using the blocks mentioned above.

	The OP-amp TL082, a general purpose JFETinput operational amplifier, made by Texas
Instruments.
	Wide-bandwidth, precision analog multiplier
MPY634 from Texas Instruments.
Using these components, the student will build
gain stages, buffers, instrumentation amplifiers and
voltage regulators. These experiments bring out
several important issues, such as measurement of
gain- bandwidth product, slew-rate, and saturation
limits of the operational amplifiers.

What is our goal?

First, we introduce integrators and differentiators which are essential for implementing filters that can bandlimit a signal prior to the sampling process to avoid aliasing errors.
We then introduce the analog comparator, which is a mixed-mode device - its input is analog and output is digital.
In a comparator, the rise time, fall time, and delay time are important apart from input offset.
A function generator is also a mixed-mode system that uses an integrator and a regenerative comparator as
building blocks. The function generator is capable of producing a triangular waveform and square waveform as
outputs. It is also useful in Pulse Width Modulation in DC-to-DC converters, switched-mode power supplies, and
Class-D power amplifiers.
The analog multiplier, which is a voltage or current controlled amplifier, finds applications in communication
circuits in the form of mixer, modulator, demodulator and phase detector. We use the multiplier in building Voltage
Controlled Oscillators, Frequency Modulated waveform generators, or Frequency Shift Key waveform generators
in modems, Automatic Gain Controllers, Amplitude Stabilized Oscillators, Self-tuned Filters and Frequency Locked
Loop using voltage controlled phase generators and VCOs and multiplier as phase detector are built and their lock
range and capture range.
In the Analog System Lab, the frequency range of all applications has been restricted to 1-10 kHz, with the
following in mind - (a) The macromodels for the ideal device can be used in simulation, (b) A PC can be used
in place of an oscilloscope. We have also included an experiment that can help the student use a PC as an
oscilloscope. We also suggest an experiment on the development of macromodels for an OP-Amp.

At the end of Analog System Lab, we believe you will have the following knowhow about analog system design.
1. You will learn about the characteristics and specification of analog ICs used in
electronic systems.

Analog System Lab Kit PRO

2. You will learn how to develop a macromodel for an IC based on its terminal
characteristics, I/O characteristics, DC-transfer characteristics, frequency
response, stability characteristic and sensitivity characteristic.
3. You will be able to make the right choice for an IC for a given application.
4. You will be able to perform basic fault diagnosis of an electronic system.

page 11

introduction

Lab Setup
The setup for the Analog System Lab is very simple and requires the following.

In all the experiments of Analog System Lab, please note the following.

1

ASLK PRO and the associated Lab Manual from Texas Instruments India - the
lab kit comes with required connectors. Refer to Chapter 1.4 for an overview of
the kit.

1

When we do not explicitly mention the magnitude and frequency of the input
waveform, please use 0 to 1V as the amplitude of the input and 1 kHz as the
frequency.

2

Oscilloscope. We provide an experiment that helps you build a circuit to directly
interface analog outputs to an oscilloscope (See Chapter C).

2

Always use sinusoidal input when you plot the frequency response and use
square wave input when you plot the transient response.

3

Dual power supply with the operating voltages of ±10V.

3

4

Function generators which can operate in the range on 1 to 10 MHz and capable
of generating sine, square and triangular waves.

Precaution! Please note that TL082 is a dual OP-Amp. This means that the IC
has two OP-Amp circuits. If your experiment requires only one of the two ICs, do
not leave the inputs and output of the other OP- Amp open; instead, place the
second OP-Amp in unity-gain mode and ground the inputs.

5

A computer with installed circuit simulation software.

4

Advisory to Students and Instructors. We strongly advise that the student
performs the simulation experiments outside the lab hours. The student must
bring a copy of the simulation results to the class and show it to the instructor at
the beginning of the class. The lab hours must be utilized only for the hardware
experiment and comparing the actual outputs with simulation results.

page 12

Analog System Lab Kit PRO

introduction

System Lab Kit overview
Hardware
ASLK PRO has been developed at Texas Instruments India. This kit is designed for
undergraduate engineering students to perform analog lab experiments. The main
idea behind ASLK PRO is to provide a cost efficient platform or test bed for students
to realize almost any analog system using general purpose ICs such as OP-Amps and
analog multipliers.

The kit has a provision to connect ±10V DC power supply. The kit comes with the
necessary short and long connectors.
This comprehensive user manual included with the kit gives complete insight of how
to use ASLK PRO. The manual covers exercises of analog system design along with
brief theory and simulation results.
Refer to Appendix A for the details of the integrated circuits that are included in ASLK
PRO. Refer to Appendix D for additional details of ASLK PRO.

Software
The following software is necessary to carry out the experiments suggested in this
manual.

Analog System Lab Kit PRO

1. TINA or PSpice or any powerful simulator based on the SPICE Simulation Engine
2. FilterPro - A software program for designing analog filters
3. SwitcherPro - A software program for designing power supplies
We will assume that you are familiar with the concept of simulation and are able to
simulate a given circuit.

ASLK PRO comes with three general-purpose operational amplifiers (TL082) and three
wide-bandwidth precision analog multipliers (MPY634) from Texas Instruments. We
have also included two 12-bit parallel-input multiplying digital-to-analog converters
DAC7821, a wide-input non-synchronous buck-type DC/DC controller TPS40200, and
a low dropout regulator TPS7250 from Texas Instruments. A portion of ASLK PRO is
left for general-purpose prototyping which can be used for carrying out mini-projects.

Analog System Lab Kit PRO

FilterPro is a program for designing active filters. At the time of writing this manual,
FilterPro Version 3.1 is the latest. It supports the design of different types of filters,
namely Bessel, Butterworth, Chebychev, Gaussian, and linear-phase filters. The
software can be used to design low-pass filters, high-pass filters, band-stop filters,
and band-pass filters with up to 10 poles. The software can be downloaded from [9].

page 13

introduction

Getting to know ASLK PRO
The Analog System Lab kit ASLK PRO is divided into many sections. Refer to the photo of ASLK PRO when you read the following description.

1

LDO or DC/DC converter located on the board. Using Tri-state switches you
can set 12-bits of input data for each DAC to desired value. Click the Latch
Data button to trigger Digital-to-analog conversion.

There are three TL082 OP-Amp ICs labelled 1, 2, 3 on ASLK PRO. Each of these
ICs has two amplifiers, which are labelled A and B. Thus 1A and 1B are the two
OP-AMps on OP-AMP IC 1, etc. The six OP-amps are categorized as below.

OP-Amp

Type

Purpose

1A

TYPE I

Inverting Configuration only

1B

TYPE I

Inverting Configuration only

2A

TYPE II

Full Configuration

2B

TYPE II

Full Configuration

3A

TYPE III

Basic Configuration

3B

TYPE III

Basic Configuration

Thus, the OP-amps are marked TYPE I, TYPE II and TYPE III on the board. The
OP-Amps marked TYPE I can be connected in the inverting configuration only.
With the help of connectors, either resistors or capacitors can be used in the
feedback loop of the amplifier. There are two such TYPE I amplifiers. There
are two TYPE II amplifiers which can be configured to act as inverting or noninverting. Finally, we have two TYPE III amplifiers which can be used as voltage
buffers.

2

Three analog multipliers are included in the kit. These are wide-bandwidth
precision analog multipliers from Texas Instruments (MPY634). Each
multiplier is a 14-pin IC and operates on internally provided ±10V supply.

3

 here are two digital-to-analog converters (DAC) provided in the
T
kit, labeled DAC I and DAC II. Both the DACs are DAC7821 from Texas
Instruments. They are 12-bit, parallel-input multiplying DACs which can be
used in place of analog multipliers in circuits like AGC/AVC. Ground and power
supplies are provided internally to the DAC. DAC Logic Supply Jumper can
be used to connect logic power supplies of both DAC I and DAC II to either

page 14

4

 e have included a wide-input non-synchronous DC/DC buck
W
converter TPS40200 from Texas Instruments on ASLK PRO. The
converter provides an output of 3.3V over a wide input range
of 5.5-15V at output currents ranging from 0.125A to 2.5A.
Using Vout SEL jumper you can select output voltage to be either 5V or
3.3V. Another jumper allows you to select whether input voltage is provided
from the board (+10V), or externally using screw terminals.

5

 e have included two transistor sockets on the board, which are needed in
W
designing an LDO regulator (Experiment 10), or custom experiments.

6

 specialized LDO regulator IC (TPS7250) has been included on the
A
board, which can provide a constant output voltage for input voltage ranging
from 5.5V to 11V. Ground connection is internally provided to the IC. Using
ON/OFF jumper you can enable or disable LDO IC. Another jumper allows
you to select whether input voltage is provided from the board (+10V), or
externally using screw terminals.

7

 here are two 1kX trimmers (potentiometer) in the kit to enable the designer
T
to obtain a variable voltage if needed for a circuit. The potentiometers are
labeled P1 and P2. These operate respectively in the range 0V to +10V, and
-10V to 0V.

8

The kit has a screw terminals to connect ±10V power supply. All the
ICs on the board are internally connected to power supply. Please refer to
Appendix D for schematics of ASLK PRO.

9

 have included two diode sockets on the board, which can be used as
We
rectifiers in custom laboratory experiments.

10

The top right portion of the kit is a general-purpose area which can be
used as a proto-board. ± 10V points and GND are provided for this area.

Analog System Lab Kit PRO

5
introduction

4

6
10
9

7

8

3

2

1
Analog System Lab Kit PRO

Photo of ASLK PRO

1

1
page 15

introduction

Organization of the Manual
There are 14 experiments in this manual and the next 14 chapters are devoted
to them, We recommend that in the first cycle of experiments, the instructor
introduces the ASLK PRO and ensure that all the students are familiar with a
simulation software. A warm-up exercise can be included, where the students

are asked to use the simulation software. For each of the experiments, we have
clarified the goal of the experiment and provided the theoretical background.
The Analog System Lab can be conducted parallel to a theory course on Analog
Design or as a separate lab that follows a theory course.

The student should have the following skills to pursue Analog System Lab:

1. Basic understanding of electronic circuits
2. Basic computer skills required to run the
simulation tools
3. Ability to use the oscilloscope
4. Concepts of gain, bandwidth, transfer function,
filters, regulators and wave shaping

page 16

Analog System Lab Kit PRO

Chapter 1

Experiment 1
Study the characteristics of negative feedback
amplifiers and design of an instrumentation amplifier

Analog System Lab Kit PRO

page 17

experiment 1

(1.1)
V0 =A0 $ (V1 - V2)
(1.2)
V1 - V2 = V0
The goal of this experiment is two-fold. In the first part, we will understand
A
0
the application of negative feedback in designing amplifiers. In the second
A0 $ (AV11 V
00 =open-loop
In the above equations, A0 isV
part, we will build an instrumentation amplifier.
Vthe
V22))for real amplifiers, A0 is in the
0 =
-gain;
=A0 $ (V0A
range 10 to 10 and hence V1Vcs V2 . A1unity
feedback
circuit is shown in the Figure
+ V00
V =AV $=
(VA -$ (VV)- V )
V
1.2. It is easy to see that,
0
V
V110V122 =
-"V
=
V V
as A
A000 " 3
V - VV = VA = A
V0s
V
A
V A A
1.1 Brief theory andVV =motivation
(1.3)
V
A00
0 =
=
A0
V1 + A1 + A
=
V
1
A
s
0
+
A
=
V
1
A
s
+ 0
V V
_1 + s ~d1i_1 + s ~d2i
V
0
1.1.1 Unity Gain Amplifier V " V1 as" A1 as" A3 " 3
V0 "
1 as A
0 " 3
A A
(1.4)
V
s " 1 as
1 A0 " 3
A=A=
V
s
T
=
_1 + _s1 ~
+ si_1~+i_s1 ~
+ si ~ i
An OP-Amp [8] can be used in negative feedback mode
to build unity gain amplifiers,
V0 =A0 $ (V
V2+
) 1 A A
1-1
A00
A
=
T = While
T =1 an1ideal OP-Amp is assumed
non-inverting amplifiers and inverting amplifiers.
In
OP-amps,
closed
loop
gain
A
is
frequency
A = _1 +
1 + 11 A
+1 A
~
1 + sswhere
~dd11ii__1
~dd22ii1
1+
V=0 _below,
+ ss ~
to have infinite open-loop gain and infinite bandwidth, real OP-Amps1have
dependent, as shown in the equation
1 finite
2
V
= =
1 - V2 =
A
A0 ~
1
_1 of1
0 + s A0 ~d1 + s A0 ~d2 + s
sto+
A understand
s A+~s +
A~
s some
A+~s +As~ A~
~i ~ iare called the dominant
~
+ 1_1 A
+ 1+ A
numbers for these parameters. Therefore, it is_1important
and
the
OPA
0 poles+
1
V
T
=
$
V
A
V
V
(
0 =
0transfer
1 -function
2)
T
1 (GB
1). Similarly,
=
limitations of real OP-Amps, such as finite Gain-Bandwidth
Product
amp.
This
is
typical
OP-Amp
that
V
1
= =
V0 V0 =AA0 0=$ (11V1+
)
-11V2A
A
+
GB
s equally
A~
s A+~simportant.
GB
s $~
GBij$ ~ has
ij internal frequency
_s+
`1 amplifier
+ `_1s +GB
+
+
=
compensation. Please
view
the slew rate and saturation limits of an operational
are
11 s 2 GB $ ~d2ij
1 + A0know
VV
0s
GB +
s A1.2:
_ sabout
`1Vmore
0 ~d2 +
+
GB =GB
A=
~A~
the
[17] to get to=
Given an OP-amp, how do we measure these parameters?
Figure
V1recorded
- V2 =lecture
0
AV0 0 V1 - V2==_11 + 11 A
A0 ~Gain
s A0 ~d2 + s 22 A
0+s
d1 +System
frequency compensation.
A Unity
GB GB
A00 ~
~
_ AA3
+
00 ~d1 A0 + s A0 ~d1 + s A0 ~d2 + s
A0 =
" 1 asGB
"
V0
A0 Vs
1 1
1
T= T=
V0 GB=A0
1
1 + s1 ~
+ sQ ~
+ sQ +~s ~
Vs = 1 + A0
= 1= AA0
2
V
s
1
s
GB
s
A
0
+
_
+V
`
1
1
A
0 ~d2 +s 2 GB $ ~d2ij
+
+
=
(1.5)$ ~d2ij
Q=Q=
1
s
GB
s
A
s
GB
~
_
`
0
2
d
+
+
+
V
0
1 GB
~ ~ 1 GB
_10 + s ~d1i_1 + s 1~d2i
V
1
as
A
3
"
"
+
+
V
0
T 1=as
V = A [V -V ]
~ ~
GB GB
GB
A
A A
V =A $ (V - V ) "
13
=
A
"dd~
Vs
GB
A000 s~
~
1 0 Q + s 2 ~02
=
V
1
1
+
V
s
GB $ ~
~ =~ GB
= $~
V
T
=
-V
V-V =
A0+ 1GBA
A 1
Q Q
Acan
= now write the
01
GB
We
transfer
function
T for aAunity-gain
amplifier as,
Q
=
A
=
V
A
1
s
s
~
~
1
i
i
_
_
1
2
d
d
+
+
1
1
=
1
1
GB
~
2
d
p=p=
V
_1 + s ~d1i+
_11
1+A
+ s ~d2i
2Q 2 Q
=
1A
T
=
2
2 d2 2
1
V "
GB
T
=
A
s
A
A0 ~d1 ~d2i
1
~
1
_
~ ~
0
0
00~
+
+
+sss~
1
1
as
A
3
"
ss ~
~
2 A
2 d2 + s
0 Qd1+
+
T= V
1
1
Q
~
~
0
0
+
+
(1.6)
T
=
A
1
1
+
Figure 1.1: An ideal Dual-Input, Single-Output
OP-Amp
and its I-O characteristic
~ ~
~ ~
A
~
0+
=1 AGB $ ~11d12
1
A=
Q
=
s ~=i
~ i_1 + Q
_1 + s=
1 d2
V V
2
~
Q
1GB $ ~d2ij
=
1
s
GB
s +A011~d2 +GB
_
`
+
+
1
GB
~
d2
2s
V
GB
V
GB
$
1
$
1
T
=
=
A
s
A
s
A
s
1
~
~
1
_
Since the frequency and transient response of an amplifier are impacted by these
0 A
d2 + ~d2A0 ~d1 ~d2i
+1 + 1 A0 + _10 d11+ A
+
2
GB
A0 ~~
A0 ~d1 ~
0+s A
d1 +
GB
d2 s A0 ~d2 + s
1 2 1the frequency and transient
GB = A0p~d1+
1
parameters, we can measure the parameters ifQwe
have
1
2Q
1
=
=
2
2
=
response of the amplifier; you can obtain these response characteristics by applying
~ + $$s ~
~00 +
_1 + 1 A + s A~
(1.7)
=
GB
~
~Add22~ ~ 1i
=s2AQGB
p11
p11
2
=
GB
1
s
GB
s
A
s
GB
$
~
~
1
_
sinusoidal and square wave inputs respectively. We invite the reader to view the
` =+
0
d2 +
d2ij
+~
2
Q
10 +s_ sGBGB
s A0 ~d2 +s GB $ ~d2ij
~ ~
A` ~ +
$ ~ i+
`1 + _ s GB + s Q
j
recorded lecture [16].
1
_1 - 1_1 4-Q1 i4Q i
GB
A
~
=GB0= AdT1~=, also
The term
known
as
product of the operational
11d1gain 2bandwidth
GB
A~
~
0~
=
0the
2
dV dV
p
=
1
s
s
~
~
0 in OP-Amp negative feedback
0Q
+
+
An OP-Amp can be considered as a Voltage Controlled
Voltage
Source
(VCVS)
with
amplifier,
is
one
of
the
most
important
parameters
p = 2Q
dt dt
GB GB
21Qbe rewritten as
GBfunction
V
the voltage gain tending towards infinity. V
For finite
output voltage, the input
circuit. The above transfer
can
p
V
1
~
0
Q
T=
=
voltage is practically zero. This is the basic theory of OP-Amp in the negative
~
1 + s ~1Q + s ~
~d02
11 1GB
T=
V
feedback configuration. Figure 1.1 shows a differential-input, single-ended-output
2 p $ GB
2
+
1
T
~
~
Q+
= s ~0 Q +=
1
s
~
00 A
~d2 2
GB
2
~ ~0
1 GB
~
OP-Amp which uses dual supply !Vss for biasing.
+ A ~ 1 + s1 ~0 Q + s ~0
GB 1
Qpp 2
V
$ ~d2 1
~0$ ~= GB
Q = ~ = GB
V
2
Q
=
1
GB
~
d2
System Lab Kit PRO
page 18
Q
Q
1 GB
~1d2 1 Analog
+
V
GB
$
p1
p
~
GB
A
+
V
pd$2 GB 1
1
GB A ~d2

Goal of the experiment

5

0

00

10

1

21

0

0

21

0
2
0

s

s

0

0

s

s

6

2

0

0

0

0

0

0

0

0

0

0

d1

d1

0

0

d2

0

d1 0

d2

d1

0

d2 0

2
d2

0

2

d1 0 d2 d1

d2

O

S

0

d1 0

0

d2 0

2
d2

2

d2

d2

d1

0

0

2

22
0

2
0

SS

d2

2

o

o

1

d2

2

d2

d2

0

0

1

2

1

2

1

0

d2

0

d2

SS

0

0

0

0

s

0

0

0

0

0

s

0

0

p

p

p

p

0

d1

d2

0

0

0

2

p

d1

0

2

0

0

0

d1

0

p

2

0

2
0

d2

d2

0

d2

0

d2

2

d2

2

d2

0

d1

d2

GB = A=
0 ~d1
Vs 1 + A0
GB V0
" 1 as A0 " 3
Vs
1
V =A $ (V - V )
T=
2
2
A
0
where
called slew rate. It can therefore be determined by applying a square wave of Vp at
1A+=
s ~0 Q + s V ~
0 $ (V - V
A V$ (V - V )
=A
V -VV) ==
$ (V - V )
V =A
V =
A A $ (V - V ) certain high frequency and increasing the magnitude of the input.
V =A $ (V - V )
V =A V$ (V A
V
)
1
s
s
~
~
1
i
i
_
_
V
1
2
d
d
+
+
V V -A
)
= $ (V - V 1
V =
Q=
V - V =V V=A $ (V - V ) V - V = AV =
A V
VV
1
AV = A
V-V = V
V - V V= VV ~AdV
+
1
GB
2 1 V
=
A
A
V
A
V
A
2R
R
V T =AV -AV+
= A
= 1 GB
V
A
V VVA
AA ~Vd2= 1 + AVV "V 1=asVV1A=+"1A+A3A
1
1
+AA
+
=
=
V
V V1V+ =
1+A
A 1V A A
V " 1 as A "V 3" 1 as A A" 3
R
R
+A=" 3
asV
" 1 GB
A =V V1 " 1 as A " 3
V
1~
$
+
V " 1 as A " 3
V~"
V
0 =
d2A
V
1Vas "
A=
3
"
1
s
s
~
~
1
i
i
_
_
V
+
+
V
V
1V
as A "A3
V
V
A
A=
2
A s= A0 ~d1A+
V d2i
A ss ~
A~s0 ~~
A0 ~d1 ~
_A"1 1+as1A "A3
1s
0+
di2_1+
AV=
Q
V
A
1
i
_
A
1
s
s
~
1
+
+
i
i
_
_
=
+
+
T
=
A=
A=
1+s ~ i
_1 + s ~ i_A
1 + 1 A_1 + s ~ i_1 + s ~ i
~A i=
1 + si_1~ isA~ i
_1 + s ~ i_1 + s ~ _i1A+=s _1
1
1 1T=
+ _s ~
+
1
T
=
1
T =1
_1 + s ~ i_1 + s 1~+i1 A= T1 =
1
+ 1 A1
+ 11 A
T=
Tp==T 1 1 =
2+
A
1
1
A
s
A
s A ~ +s A ~ ~ i
1
~
1
_
+
+
+
=
A
1 +1 A
1 +2
1Q
1
1
2ij 1
1+
T 1`
=1A + _ s GB1+
= s A0 ~d=2 +s GB $ 1~dFigure
1 +i sNon-inverting
1.5:
1= _1 1 A1 + 1s A
1
A
s
A
A ~ ~ i amplifier of gain 2, (b) Inverting amplifier of gain 2
1
~
1
_
A
s
A
s
A
1
~
~~~(a)
~
1
+
+
_
=
+
+ s+ sA A
A ~ ~ _1i +
=
=0
+
+ A ~ + s 1A ~ ++ s= +
A
s
A
1
~
+
+
~
=
1 +i _ s 1GB + s A ~ 1+s GBs $ ~A ~
ij + s A ~ ~ i
A
A
A
s
s
A
1 _~
~
~
0A~
1~s iA ~ + s 1A ~ `~
d+
_1 + 1 A + s A ~ +
_1s+GB
=
+
+
A~ ~ i
1 A + s A 1~ + s= A ~ + s =
1 +=
0

1

0

1

2

0

2

0
0

0

1
2

1

0

0
s

0

0

0

1

0

0

1

1

0

s

0

0

d1

1
0 0

1

0

2 0

0

0

s

0

0

0

0

s

0

0

0 0

0

s

I

0

d1

s

d2

0

d2
0

d2

O

d2

d1

d2

d2

d2

0

0
0 0 d1 d1

O

I

0

d2 d1

d1

d1

0
2

2

0

0

0

s

2

1

0

0

d1

d1

0

20

0

0

2

0

0
0
s

0

0

0
0

2

0

0

1

1

0

s

0

20

1

0
0
0
s

2

0

0

0

s 0

d2

0

1

2

0

02

0

s

d1

2

0

00

0

s 0

s

1
0

01

0

0 s

0

0

s

0

2

0 0

02

s 0

s

0

0

20

1

0

0

1
2

0

d1
d2

0

d2
2

20

d1

0

0

d2

d1

0

0

d1

0
0 0

0

2

d1

d02

d2

0

d2

2

0 0 d1 d2 d2
2d1
d02

0

2

d2

d1

d2

0
2

d1

0

d2
d1

d2

0
0
0
d1
d2
d1
d2
1
A0 ~
s d2+
=
_1 + 1 A0 + s A0 ~
d1 + s GB
d1 ~d22i
A+0`~
1
1A0A
=d2+
s0 ~
$ ~d2ij
~dd22ij+s 2 GB
_~
s1=
2 `1 + _ s GB
d2GB
+s+ sGBA$0~
1
=
=
2
1
s
GB
s
A
s
GB
$
~
~
i
_
`
j
0
2
2
d
d
+
+
+
~
~
0=2
1
s
GB
s
A
GB $ ~d2ij
_
`
2
0 ~d2 +s
+
+
GB
1
GB
A
GB
$
$
~
~
i
`1 + _ s GB + s A0 ~d`21++s _ s`GB
j
0 ~d2 +s
2ij GB GB
d2s
+
2 dA
A
~
=
GB
~
0
1
d
=
0 $d~
1 d2ij
+ s A0 ~d2 +s= GB
GB = A10+
~d_1 s`1GB
2
GB
A
0 ~d1
=
s
GB
s
A
GB
$
~
_
j
0 ~d2 +s
d2i
+
+
GB = A0 ~d1
GB
A0 ~d1 A ~
Vp =GBGB
GB
= 0 d1
T =GB GB 1
2
2
T =GB = A0 ~d1 1
GB
GB GB
2
2 11 + s ~0 Q +1s ~0
1
s
Q
s
~
~
1
T
0
0
+
+
T
=
=
GB
2
Vp $ TGB
= 1
1s =
1 + s Q~=
1
+~s 012~0 Q +1s 2 ~A022non-inverting
0 Q +T
2
amplifier with a gain of 2 is shown in Figure 1.5 (a).
T=
T = T 1 + s1 ~0 Q2 1+ s2 2 ~02
~d2 1 +1s ~GB
=
1 + s ~0 Q + s 2 ~02 1 +
s 1~0TQs+~s1 Q~0 s 2 1~12
+ A 1 ~0 Q + s ~0
1
0
0
+
+
Q
=
GB
Q
=
Figure 1.3: Magnitude
and
response of2 a
Gain System
=Unity
2
Q
1d2
Q=
1 =~Phase
0Q + s
1
1 d2 1 +
1 Q GB
~d2
=~d2 + 1 GB
1~s d2~
GB
Q=
QQ=2Q
1 ~0 GB
~0+=A GB~$dGB
~d2 ~d2A 1~d2 GB
+
=
GB
2
1
1 GB
1
GB
~d2
~
2
d
+A ~
2 GB
A 1 ~GB
2
d+
Q~=
d2
and
~GBd2Q$ ~~d2 0 = GB $ GB
GB + A ~d2
GB + GB
A d2 +~GB
d 2 d2
GB
~
~d2
0 =
~d12 A~
+
GB
$
~
~
0 =
d2 A
GB
$
~
~
0 =
d2
p
1
1
~
GB
A
2
d
~0 = GB $ ~d2
~0 = ~GB $ ~GB
d2
1
$ ~d2 $ ~d2 Q
0 =
p =Q Q
Q ~
0 =
GB $ ~d2
~0 = GB
2Q
An inverting amplifier with a gain of 2 is shown in Figure 1.5 (b).
Q
Q
1 ~ p= 1
Q~10
p=
0
1
p1 =Q Q
2
Q
2
Q
1
p
=
p=
p = p 2Q1 2
2Qnatural
~ ~
= 24QQis ithe
12~Q0 1
~00 is the
Q is the2Qquality factor _and
and
1 damping ~factor,
0
p=
~
0
~0
~0 When
12Q response
frequency
of the system.
Vp ~with
~0 magnitude
~ ~is plotted
~ the frequency
0

0

d1

0

d02

0

d2

0

d21

d2
0

1.1.2 Non-inverting Amplifier

1.1.3 Inverting Amplifier

~ =
dV0~ p
0

0

~0
~ ~0
vs ~ ~0 and phase vs ~ ~0, ~
it appears
as shown in Figure
1.3.Vp $ GB
2Q
Vp 1
Vp
Vp ~0 ~ ~0
dt
Vp
Vp
Vp
Vp $ GB 1 Q 2Vp1$ GB 1
Vp~0
V
p $ GB 1
V
V
p
p
to
the
unity
gain
amplifier,
and
if
If one
voltage
2 Vp $ GB 1 slew
Vp $ applies
GB 1 a step of peak
Vp $ GB
1 p 1Q12 1
V1
p $ GB 1
1
Q
2
rate, then the output appearsQas
shown
in
Figure
2.4
if
or
. 2 1
Vp 0$ GB 1
~ ~
2
2
Q2
Q21
Q 2 1Q 22 1
2
2112
p~
10 1 2
p11
p
Q21
2 1
1 4presponse
Q1
2 of visible peaks~in the
_1 i
Q ispapproximately
equal
total
step
and
p to
11
1 the
1 pV
p number
~
0
1~
10
0
p
1
1
~20
dV
2 0
the frequency
of
ringing
is
.
~0
~0
1
1
4
Q
_
i
1
1
4
Q
_
i
2
40Q i
_1 - 1p2 ~
dt
_1 1 4Q 2i
0
Q i$ GB ~1
_1 - 1 4Q 2i
_1 - 1 _41V
dV0 dV0
dV0 - 1 4Q 2i
V
p
2
1 - 1 4Q i
dt dV0
dt
dV0
dV0maximum
Slew-rate
is known as the
dtdV0 _rate
dt
1
dt
V
V
p
dV
p
0is
at which
the output ofdttheVOP-Amps
Q 2dt
p dt
Vp
Vp
Vp
2
Vp
capable of rising; in other words,
slew
Vp
rate is the maximum value that
dVo/dt
p11
can attain. In this experiment, as we go
~0
on increasing the amplitude of the step
input, at some amplitude the_1rate
- 1at 4Q 2i
which the output starts rising remains
dV0 with Figure 1.4: Time Response of an
constant and no longer increases
the peak voltage of input; thisdtrate is
Amplifier for a step input of size Vp
0

Unity gain

Non-inverting amp

Inverting amplifier

R2

R4

R1
VF1

VG1
+

R3

U1

VF2
U2

VF3
U3

Figure 1.6: Negative Feedback Amplifiers

Figure 1.6 shows all the three negative feedback amplifier configurations. Figure
1.7 illustrates the frequency response (magnitude and phase) of the three different
negative feedback amplifier topologies. Figure 1.8 shows the output of the three types
of amplifiers for a square-wave input, illustrating the limitations due to slew-rate.

Vp
Analog System Lab Kit PRO

page 19

experiment 1

0

experiment 1

1.2 Exercise Set 1
1

Design the following amplifiers - (a) a unity gain amplifier, (b) a non-inverting
amplifier with a gain of 2 (Figure 1.5(a)) and an inverting amplifier with the
gain of 2.2 (Figure 1.5(b)).

2

Design an instrumentation amplifier using three OP-Amps with a controllable
differential-mode gain of 3. Refer to Figure 1.9(a) for the circuit diagram.
Assume that the resistors have 1% tolerance and determine the Common
Mode Rejection Ratio (CMRR) of the setup and estimate its bandwidth. We
invite the reader to view the recorded lecture [18].

3

1.3 Measurements to be taken
1

Transient response - Apply a square wave of fixed magnitude and study the
effect of slew rate on unity gain, inverting and non-inverting amplifiers.

2

Frequency Response - Obtain the gain bandwidth product of the unity gain
amplifier, the inverting amplifier and the non-inverting amplifier from the
frequency response.

3

DC Transfer Characteristics - Study the saturation limits for an OP-Amp.

Design an instrumentation amplifier using two OP-Amps with a controllable
differential-mode gain of 5. Refer to Figure 1.9 for the circuit diagrams of the
instrumentation amplifiers and determine the values of the resistors. Assume
that the resistors have 1% tolerance and determine the CMRR of the setup
and estimate its bandwidth.

Figure 1.8: Outputs VF1, VF2 and VF3 of Negative Feedback
Amplifiers of Figure 1.6 for Square-wave Input VG1

4

Determine the second pole of an OP-Amp and develop the macromodel for the
given OP-Amp IC TL082. See Appendix B for an introduction to the topic of
analog macromodels.

Figure 1.7: Frequency Response of Negative Feedback Amplifiers
page 20

Analog System Lab Kit PRO

1.5 Other related ICs

1

Submit the simulation results for Transient response, Frequency response and
DC transfer characteristics.

2

Take the plots of Transient response, Frequency response and DC transfer
characteristics from the oscilloscope and compare it with your simulation
results.

3

Apply square wave of amplitude 1V at the input. Change the input frequency
and study the peak to peak amplitude of the output. Take the readings in
Table 1.1 and compute the slew-rate.

Specific ICs from Texas Instruments which can be used as instrumentation Amplifiers
are INA114, INA118 and INA128. Additional ICs from Texas Instruments which can
be used as general purpose OP-Amps are OPA703, OPA357, etc. See CHAPTER 2,
EXPERIMENT 1.

S. No.

Input Frequency

Magnitude Variation

Phase Variation

1
2

nR

V1
R
R
nR

3

R

R
R
VO

R
R

R

4

R
V1

V2

VO

R

V2

S. No.

Figure 1.9: Instrumentation Amplifiers with (a) three
and (b) two operational amplifiers
S. No.

Input Frequency

Table 1.2: Plot of Magnitude and Phase variation w.r.t. Input Frequency

Peak to Peak Amplitude of output (Vpp)

DC Input Voltage

DC Output Voltage

Phase Variation

1
2
3

1
4
2

Table 1.3: Plot of DC output voltage and phase variation w.r.t. DC input voltage

3
4
Table 1.1: Plot of Peak to Peak amplitude of output Vpp w.r.t. Input frequency

4

Frequency Response - Apply sine wave input to the system and study the
magnitude and phase response. Take your readings in Table 1.2.

5

DC transfer Characteristics - Vary the DC input voltage and study its effect on
the output voltage. Take your readings in Table 1.3.

Analog System Lab Kit PRO

Further Reading
Datasheets of all these ICs are available at http://www.ti.com.
An excellent reference about operational amplifiers is the “Handbook of
Operational Amplifier Applications” by Carter and Brown [5].

page 21

experiment 1

1.4 What should you submit

experiment 1

Notes on Experiment 1:

page 22

Analog System Lab Kit PRO

Chapter 2

Experiment 2
Study the characteristics of regenerative feedback
system with extension to design an astable and
monostable multivibrator

Analog System Lab Kit PRO

page 23

experiment 2

V0b
V0 =V0-=A-0 $ A
_V0 i$ i V0 i
_Vib1
V0 V0 A $
0 A $ V 1 bV
V0 = A 0$ _ i - 0 i
Vi =Vi =- 10-1A-0 $ Ab0 $ b
R1bR
1
VA01i0 $
V0 = -bA0=$ _VV0i =bVR
=
i1+
R11R+2 R21 - A0 V$ 0b= - A0 $ _Vi - bV0 i
V0
V0 = - A0 $ _Vi - bV0 i
=- A00 $ b = 1 R1 , it becomes
1
Vi A
V0
However,
when
$ 0biA0=$ b1
V0 = b1b0 V
0 $ _Vi -A
=
A0 $
=R1 + R2
1
VA0 0 $ b A $
V
i
1
1
$
A
b
1
R
0
1
unstable
as
amplifier
as
output
satu=- 0
V0 = - AA
0 0$ _
$V
bi -1b1V0 i
V0 b =
V
i
1
A0 $ b
A0 R$ 1 + R12A0 $ b = 1
=R
Vi When
rates.
b =of 1
b 1&
0 $A
The goal of this experiment is to understand the basics of hysteresis and
1the
V0 1A11 region
Ab0A00$0$$ &
b
R1 + R2 b = R1
A
$
b
1
1
A
0 $ b==
RV
is $regenerative
i1 this
b
1 A
R1 + R2
b+VV
V0operation
0 iss circuit
= -bA=0 $ _Viof
the need of hysteresis in the switching circuits.
A0 $ b = 1
+ Vss - 0
RA10+
21 1 A0 $ b & 1
$ bRThis
R
1is the
comparator.
A0 $ b = 1
V0 =mixed-mode
- A0 $ _Vi - bV0 i
1
V0
V
b
ss
=
VR
A0 $ b 1 1
ss 2
$ A0=$ b1 &
=-AA0 $0 b
R1is
+
V
ss
1+stable
Vicircuit.
Output
two
1 - Ab
0$ b
A0 $ b 1 1
1
V0 onlyA in
$V
ss
$
0
=1
$
A
b
$
V
b
0
=
$b & 1
A
ss
1
AR
1
0 $1 b V
V
V
ss
stages
. When
the 1input
i
+ ss and
-0 A0 $ b
b=
A0 $ b & 1
RA
1 + R2 A0 $V
1
ss 1
R1 + Vss
1 bss Vvalue
0$ b
is large
negative
$ Vss output
b
V&
ss
b = saturates
Vss 2.2: Symbol for an Inverting
+
Figure
Aat
R
R
0$ b = 1
1+
2 V
ss
1ss$ increased
A $2b$ b&$ Vb
Vss
output
+ Vss bas
$ Vss0input2V$ssin
Vss Schmitt Trigger
1
$
A
b
0
=
1
Aremain
0 $ b 1 at
1+b
- Vss Vss + VssTuntil
$sslnreaches
d$ ln d 1 +nbb$ nVss
=T22=$$input
$ $VRC
bRC
2
b $ Vss
1 state
b1 1
& 1 - Vssit changes Ato0 $ stable
Aat
0$ b
1bthis
Vb
b $ Vpoint
ss
2 $ b $ Vss
11+ssb
1
V
ss
&
$
A
b
0
1
V
input
is
decreased
$ ln 2 $ bnit$ Vss
+ ss . Now when
=RC
$2ln$ d$RC
=xTRC
b $ Vxss the
ln
=
d b dn1 nb
Vss
1b1at
1
b
+
V
2
can
change
state
only
hysteresis of $ b $ Vss is seen around 0. This kind
- Vss
$ ln d + ss .nThus
T Vss2 t$ RC
1
1+b
+txx
2 $ b $ V=
ss
-while
x 1RC
$Vbln d driving
+must
=
$ RC $ ln d as a switch
n
In the earlier experiment we had discussed the use of only negative feedback. Let b of
comparator
is
a
in ON-OFF controllers
- ss 1 - bTn= a2 MOSFET
$ Vss
1=
-2b$ RC $ ln d 1 + b n
2
b $ Vss 1 + b
$
1
T
b
1
+
b
1
+
x
$
RC
ln
=
d
n
us now introduce the case of regenerative positive feedback as shown in Figure 2.1.
SMPS
(Switched
Mode
Power
Supply),
pulse
width
modulators
1 -and
b class-D audio
$ lnnbd$ ln
x
+1 RC
Vdssb n n
=
Vss T = 2 $ RC $xln=dxt1RC
b 1$ +
-$ ln d 1type
= RC
b bfor xthis
n Schmitt1 trigger is shown in
The reader will benefit by listening to the recorded lecture at [20].
power amplifiers.
The
symbol
inverting
1b RC $ ln
$ ln V
d
1n+ b
x=
+Tx=!21$V!RC
n
2 $ b $ xVss tRC
1x1V
ln dbSchmitt
n+ xtrigger is as shown ind 1Figure
=n RC1ss$ - b 2.3.
$ ln d non-inverting
Figure=2.2. The
t
b
1
b
b
1
R
+
$
2
b
$
V
1
1
ss
b$dln d Rn1 n
1b+
t+x
x=
$=
ln
x RC
RC
=
11V+b1R-2 b
b!nR
=
1+b
(2.1) T = 2t $+RC
x $ ln d 1 - b
V0 = - A0 $ _Vi - bV0 i
R1 + R2
x =1RC
+ b$ ln d b n
1+b
! 1tV+1xR11 +
x = RC $ ln d
n
Rb1 b= T R=1 2 $ RC $ ln d 1 - b n
b
RC
x
$
ln
x
$
RC
ln
d
n
=
=
d
n
R1 + RV20 = ! 1VA0 $ _Vi - bV0 i
1
V0
RbR
2 1b
1
b
1
+
1
R
2
! 1V
A $
b=
1 d
RC $Rln
x=
x = nRC $ ln d
n
RR
1 + R2
Vi =- 0 1 - A0 $ b
t + x ! 1V
b
- b R1
b1=
R
R
R
R
1
2
+
R2
R1 !R1V
b1
= R 1R
t R+2 xV0 =- A0 $
1 b
1+
1+
2
b=
R1
R
1
x = RC
$ lnRRd21 + R2f =
n fR1= =1 1,5
kHz
1,5VkHz
= SS
i
1
T1 T +V
b
b+V=
R
R
b
1
1 A0 $ b
+
SS
b=
x = RC $ ln dR2
n
R1 + R2
Rms
1+
2 1
! 1V R1 R R1 xR=
VI
4 ms= 1,5 kHz b R1
xf4=
R2
=
VI
T ! 1Vb = R
R2R1 R1 1 RC
V
O
A
0 $ b =VO1
RC
b=
kHz
R1 + R2 R
4 ms
x=
+
RR1 + Rf 2=R2T = 1,5
R1 f = 1 = 1,5 kHz
b
=
T
R1
4 ms RC -VSS RA
x=
1 + R2
f = 1 = 1,5 kHz
A
11
1 R 1,5 kHz
0$ b = 1
-V0
SS $ b
T
ms
4
x
f
=
=
=
R1
R2
TRC
1
4 ms
x
=
VR
fV
0 $ _kHz
i - bV0 i
=0 =
=A1,5
RC
x = 4 ms
AR02 $ b & 1
T2
A
0$ b 1 1
R
RC
R1
1
msA $
xV
=0 4
RC
Vi =- 0 1 R- A0 $A
b $b & 1
f = 1 =Figure
1,5 kHz
+ Vss
Schmitt Trigger and its Hysteresis Curve
RC 2.3: Non-inverting
T
1 0 1,5
R
1
f
kHz
=
=
b=
x = 4 ms
T
R1 + R2
- Vss
V
ss
+
RC
A0 $ b = 1 x = 4 ms
Figure 2.1: Inverting Schmitt-Trigger
and
its
Hysteresis
Characteristic
b $ Vss
A0 $ b 1 1 RC
V

Goal of the experiment

2.1 Brief theory and motivation

2.1.1 Inverting Regenerative Comparator

page 24

Vss
V00 =
-A
bV
V00 ii
Vii A00 $$ __V
-b
$ V2V
$ b=
ss
11
V
V00 =- A
0$
1
+0 b
$
A
0
=V
$ bn
T=
Vii 2 $ RC $ ln11 dA
0$ b
-1 A
b
R
R11
b
b=
=R
1 + R2 1
x = RCR1$ +
ln dR2
1 - bn
A
0$ b = 1
A0 $ b = 1
t+x
A
A00 $$ b
b 1
1 11
1+b

- ss
2.1.2 Astable Multivibrator
A $b & 1
b $ Vss
V
+
An astable multivibrator
is shown in Figure 2.4. The square and the triangular
-V
waveforms shown
in the figure
Vss are both generated using the astable multivibrator.
We refer to b $ as
V the regenerative feedback. The time period of the multivibrator is
2 $ b $ Vss
given by V
2$b$V
1+b
(2.4)
1T
+b
n
=n 2 $ RC $ ln d
T = 2 $ RC $ ln d
1-b
1-b
1
x = RC $ ln d
n
1
1 -x
b = RC $ ln d
n
1 - bSystem
t+x
Analog
Lab Kit PRO
1 + tb + x
x = RC $ ln d
n
0

ss
ss

(2.2)

ss

ss

ss

(2.3)

0

i

0

0

0

0

SS

1

C

0

0

i

0

SS

i

0

0

0

i

0

i

0

0

0

0

i

0

1

2

1

0

0

0

0

0

0

2

0

ss

2

i

0

1

O

0

0

0

i

0

0

ss

= RR1 1 R
= R 1R
- Vss
- Vss
1+
2
1+
2
$=
V
b$ bV
ss ss1
A0 $ b = 1
A0b $ Vss
b $ Vss
A0 $ b 1 1
A0 $ b 1 1
Vss
Vss
bss$ Vss
V
& 1 2.4: Astable
&1
A0 $ b Figure
A0 $ b Multivibrator
$
2
b
$
V
2
$ b $ Vss
ss
and its characteristics
ss
+ Vss
+ V2
Vss$ b $ Vss
1+b
1+b
T = 2 $ RC $ ln d
n T = 2 $ RC $ ln d
n
1
b
V
V
ss
ss
The monostable remains in the “on” state until it is triggered; at this time, the circuit 1 - b
$ Vss equal to 1x .=+
2ss $ b
bequation
b $ Vssto the “off” state
b $ Vfor
$n
RC
ln d 1 for
x=
$ ln d 1 n
switches
is RC
shown
2 $ RC
$ ln d The
T =a period
1 - bn
1-b
11t ++
Vss
below.Vss
-x b
b
t+x
2 $ RC $ ln d1
n 1 b
=
2 $ b $ Vss
2$T
b$V
ss
1+b
$ ln d
n
lnbd 1x =-RC
nb$ ln d +b n x = RC(2.5)
1 + b x = RC 1$ +
b
T = 2 $ RC $ ln d
Tn = 2 $ RC $ ln d
n1 - b
1-b
1-b
1
! 1V
x+=xRC1$ ln d ! 1V n
1
t
R1
R1
1 -b b
x = RC $ ln d
n x = RC $ ln d
=
= applied
1 -monostable
1 - bt,n the next
b
After triggering the
at time
trigger
mustbbe
R1 + Rpulse
R1 + R2
2
t +tx+
after t + x . The formula for
is x
given below. 1 +R1b
R1
x = RC
n
1+b
1 +$ bln d
R
R2
2
x = RC $ ln d
n x = RC $ ln d
n 1 bb
+R
b
b
R
x
n
=V RC $ ln d
V 1
! 1V
! 1!
b 1
f = = 1,5 kHz
f = 1 = 1,5 kHz
R1
R1
T
T
b=
b=
!
R1 + R2
R11 V
+ R2 R1
ms
4
x
4 ms
x
=
=
b
=R R
R1
R1
1+
2
RC
RC
R1
S. No.
Regenerative
Feedback
Hysteresis
R2
R2 b

R1 = R1 + R2
1
f = 1 = 1,5 kHz
f =R112 = 1,5 kHz
T
T
2 x = 4 ms
x=
R42 ms
RC
RC
3
Rf 1 1,5 kHz
=T =
4
1 1,5 kHz
=
xf =
= T4 ms
Table 2.1: Plot of Hysteresis w.r.t. Regenerative Feedback
x
RC= 4 ms
Analog System LabRC
Kit PRO
R

experiment 2

V0 = - A0 $ _Vi - bV0 i
2.1.3 MonostableV00Multivibrator
V0 i
- AA00$$_Vi -1b(Timer)
=
=Vi
1 - 1A0 $ b
V
0
The circuit diagram for a monostable
multivibrator
is shown in 2.6. The trigger
$
A
0
=R1 to1 the
V2.5i =is applied
0$ b
- Amonostable.
waveform shown in Figure b
The negative edge
R1 +
R
2
triggers the monostable, which produces
the
square
waveform
shown
V = - A $ _V - bV iin Figure
V = - 2.6.
A $ _ V - bV i
R1
bA=
1
1
0$ b
=
1
V
V
R1 + R2 V =- A $
A $
1 - A $ b V =1-A $b
R
+V
R
A0 $ b =
11
b=
b=
R +R
R +R
R
V
A $b = 1
A $b = 1
A0 $ b V &
11
V = - A $ _ V - bV i V = - A $ _ V - b V i
A $b 1 1
A $b 1 1
+AV0 ss$ b C&
1
1
-V 1
V
V
1
&
$
A
b
A $b & 1
A $
=- A $
V =1-A $b V
1-A $b
+V
+V
+ VRss
R R
b
b

Figure 2.5: Trigger waveform

+VSS
R

C
Trigger V
-VSS

VC
C

D

R
R

R

Figure 2.6: Monostable Multivibrator and its outputs
page 25

experiment 2

1+b
2 $ b $ Vss
1 + b Vss
T = 2 $ RC1$ +
ln db
n
T = 2 $ RC $ ln d
n
1n- b
1
b
2
$
$
T
RC
ln
d
=
1+b
$
2
b
$
V
1
b
ss
T = 2 $ RC $ ln d
1
1n
x = RC $ ln
x = RC $ 1lndb
n
1 + bx = RC $ ln d 1 d 1n- b n
1
b
T = 2 $ RC $ ln d
n
1
1-b
x = RC
1-b
t+x
t +$ ln
x d1 - b n
t
x
+
1
1+b
t+x
1 + b x = RC $ ln d 1 - b n
x = RC1$ +
ln db
n
x = RC $ ln d
n
b
RC
x
$
ln
d
nb
=
1+b
b
t
x
+ the hysteresis of ! 1V . Obtain the
x = RC
lnfeedback
d
n circuit with
Design a regenerative
! 1$ V
b
1 + b ! 1V
DC transfer characteristics
of
the
system.
and Rsee
how
1
! 1V b
RC $ ln d the hysteresis
x =Estimate
R1
n
b=
=
b
R
1 R1 + R2
R
R
it can be controlled by
varying
the
regenerative
feedback
.
b=
R 1+ 2
R
! 1V
b = R1 1
R11 + R2
R1 + R2
R1
R1 the triangular Rwaveform
2
. Apply
with
Vary either R1 or R2 in order to vary b =
3
R2
R1 + R2
the peak voltage
of
10V
at
a
given
frequency
to
both
circuits
and
observe
the
R
R2
R
R1
R
output waveform.
1 1,5 kHz
R
1
R
2
f = = 1,5 kHz
1f = 1,5
T =kHz
T
f
=
=
1 1,5 kHz
Tx = 4 ms
R for DC transfer characteristics.
= T x=
ms
= 4simulation
a) Sfubmit
the
results
x = 4 ms
ms
x = 4RC
f = 1 = 1,5 kHz RC RC
T
b) TRC
ake the plots of DC transfer characteristics from oscilloscope and
x = 4 ms
compare it with simulation results.
RC

2.2 Exercise Set 2
1

2

T = 2 $ RC $ ln d
1-b
1n+ b
T = 2 $ RC1$ ln db
n
1
1
b
x = RC $ ln d
1
x = RC $ ln d
1 - bn
n
x = RC1$ ln db 1 n
t+x
1-b
t+x
t+x
1+b
1+b
x = RC $ ln d
n
x = RC $ ln d
n
b
b d1 + b n
x = RC $ ln
! 1V
b
! 1V
c) Vary the regenerative feedback
! 1V and see the variation in
R1 the
b=
R1
R1 + R2
hysteresis, hysteresis bis=directly
proportional
to
regenerative
R
R
+ R2 1
b1 =
R1
feedback.
R1 + R2
R1
R1
R2
R2
Design an astable multivibrator using charging
and
discharging
R2
R of capacitor
R
C through resistance R between input and
output
of
the
Schmitt
trigger.
See
R
1 1,5
f
kHz
=
=
Figure 2.4. Assume that frequency f = 1 = 1,5
T
kHz .
Tf = 1 = 1,5 kHz
x = 4 ms
x = 4 ms T
ms
4
x
and estimate RC using the
Design a monostable multivibrator for =
RC
formula 2.5.
RC

Notes on Experiment 2:

page 26

Analog System Lab Kit PRO

Chapter 3

Experiment 3
Study the characteristics of integrators and
differentiator circuits

Analog System Lab Kit PRO

page 27

experiment 3

A = GB s

Goal of the experiment
The goal of the experiment is to understand the advantages and
disadvantages of using integrators or differentiators as a building block in
solving N th order differential equations or building an N th order filter.

A = GB s

A = GB s

- 1
V0
sCR
=
s
Vi
a1 + GB 1$ RC + GB
k

- 1
V0
sCR
=
s
Vi
a1 + GB 1$ RC + GB
k

- 1
V
0
sCR
3.1.2 Differentiators
Vi = a1 +
1 + s k
GB $ RC GB
A differentiator circuit that uses an OP-Amp is shown in Figure 3.2.
C
V0
Vi =

- sRC
s
s 2 $ RC
b1 + GB
+ GB l
- sRC
=
s
s2
b1 + ~0 Q + ~02 l

3.1 Brief theory and motivation

C
C
V0
V0
sRC
- sRC
=
= differentiators
Integrators Vand
can be used as a buildingVi block
for sfilters.
2
i
s 2 $ Filters
RC
s
s
RC
$
1 + signal
b
l
+
b1 +block
l
+
form the essential
in
analog
signal
processing
to
improve
to
GB
GBnoise
GB
GB
sRC
sRC
ratio. An OP-Amp
can
be
used
to
construct
an
integrator
or
a
differentiator.
This
=
=
2
s
sinstead
s
s 2 advantage of integrators as building
experiment is to understand
+~
b1 + ~blocks
b1 + ~0 Q + the
l
2l
~02
0Q
0
of differentiators. Differentiators are rejected because of their
poor
high-frequency
~0
~0
noise response.
~ GB
~ GB
Vpp
Vpp
Vp
Vp
C

Vpp = Vp $ T
2 $ RC
T =1 f
VI
f

R

N th

A = GB s
(3.1)
- 1
V0
sCR
=
Vi
a1 + GB 1$ RC +

C
(3.2)
V0
- sRC
=
2
Vi
s
$
b1 + GB + s GB

- sRC
~0
=
s
s2
b1 + ~0 Q + ~0
The output of the differentiator remains at input offset (approximately 0). However,
~at GB
any sudden disturbance
the input causes it to ring at natural frequency ~0 .
~ GB

Vpp
Vp

Vpp
Vp

R

Vp $ T
V
V pp =
2 $ RC
T =1 f
C

Vpp = Vp $ T
2 $ RC
T =1 f
VO = -Vf I/SCR

I

VO = -SCRVI

Vpp = Vp $ T
2 $ RC
T =1 f
f

f
Figure 3.2: Differentiator

3.2 Specifications

Figure 3.1: Integrator

Fix the RC time constant of the integrator or differentiator so that the phase shift
and magnitude variation of the ideal block remains unaffected by the active device
parameters.

3.1.1 Integrators
N th

N circuit that uses an OP-Amp is shown in Figure 3.1.
An integrator
Assuming A = GB s , A = GB s
th

- 1
V0
sCR
=
- 1
s
N th Vi
a1 + GB 1V
k
0 +
sCR
$ RC =GB
A =CGB s
Vi
1 + s
1+
1
GB
$ RC GB
V0
sRC
V0 Vi = - sCR
2
s
s
RC
$
=
1 +1 C
l
Vi
GB + sGBk practice.
a1 +bto
The output goes
For making it work a high valued resistance
GBsaturation
$ RC + GBin
- sRC
in0 order
to bring the
OP-Amp to the active region where it
across C must=be added
2
V
- sRC
s
s
1 + sRC
+
b
=
2l
can act Vas
an
integrator.
0
- ~0 QVi ~0
s
s 2 $ RC
2
Vi =~0
s
s
RC
$
1
+
+
b1 + GB + GB l
GB
GB
page 28 ~ GB - sRC
=
- sRC
Vpp 1
s
s2
+ 2 l=
b +
2

a

b

k

l

3.3 Measurements to be taken
1

Transient Response - Apply the step input and square wave input to the
integrator and study the output response. Apply the triangular and square
input to the differentiator and study the output response.

2

Frequency Response - Apply the sine wave input and study the phase error
and magnitude error for integrator and differentiator.

Analog System Lab Kit PRO

b1 + GB + GB
l
- sRC
C - sRC2
=
V0
- sRC
s
s2
s
s
RC
$
2
- sRC
b1 + ~0 Q + ~02 l
b1 +
l=
Vi =
s
$R
V0 GB + GB
sRC
2
1
b + GB + s GB
s
s
2
Vi =
1
s
s
RC
$
+
+
b
l
~l0~0 Q ~02
- sRC
b1 + GB
+
=
- sRC
s
s 2 ~0 GB ~ GB
=
b1 + ~0 Q + ~
l
s
s2
2
0 sRC
b1 + ~0 Q + ~0
=
2
s
s
V
GB
~
~0
b1 + ~0 Q + ~02 l pp
~0
Vp
Vpp
~ GB ~0
~ GB
Transient response - Apply the
$ T an input to integrator, vary
Vp squareV waveVpas
Vpp
pp =
GB
~
Vpp value
the peak amplitude of the square wave and
the peak to peak
RC
2 $obtain
Vp $ T
Vp
pp =
T
f
1
=
of output wave. Vpp is directlyVproportional
to
peak
voltage
of
input
Vp and is
2 $ RC
given by Vpp = VpV$pT , where T = 1 f , f being the input frequency.
2 $ RC
Vpp = Vp $ T
2 $ RC
V
T
$
f
p
T = 1 f Vpp =
T
1
=
RC
$
2
Figure 3.4 shows sample output waveforms obtained through simulation. f
f
T =1 f
f
f

3.4 What should you submit
1

Simulate the integrator and differentiator and obtain the transient response
and phase response.

2

Take the plots of transient response and phase response on an oscilloscope
and compare it with simulation results.
S. No.

Input Frequency

Magnitude

Phase

4

experiment 3

V0
Vi =

1
2
3
4
5
Table 3.1: Plot of Magnitude and Phase w.r.t. Input Frequency
S. No.

Input Frequency

Magnitude

Phase

1
2
3

Figure 3.3: Frequency Response of integrator and differentiator

N th
A = GB s

- 1
V0
sCR
=
s
Vi
a1 + GB 1$ RC + GB
k
5
C
Table 3.2: Plot of Magnitude and
Input Frequency
V0 Phase w.r.t.
- sRC
2
Vi =
s
$ RC
b1 + GB + s GB
l
Frequency Response - Apply a sine wave to the integrator (similarly to the
- sRC
= to obtain
2
differentiator) and vary the input frequency
phase
and magnitude
1 + s + s 2l
b
Q
~
error. Prepare a Table of the form 3.1. Figure 3.3 ~
shows
the
typical
frequency
0
0
~0
response for integrators and differentiators.
For an integrator, the plot shows
a phase lag which is proportional to ~ GB . The magnitude decreases with
increasing frequency. For the differentiator,
the phase will change rapidly at
Vpp
natural frequency in direct proportion Vtop quality factor. The magnitude peaks
at natural frequency and is directly proportional to the quality factor.
Vpp = Vp $ T
2 $ RC
4

3

Analog System Lab Kit PRO

T =1 f
f

S. No.

Peak Value of input Vp

Peak to Peak value of output

1
2
3
4
Table 3.3: Variation of Peak to Peak value of
output w.r.t. Peak value of Input
page 29

experiment 3

C1

R2
C2

R1
VF1

+
U1

VF2
U2

3.5 Exercise Set 3 - Grounded
Capacitor Topologies of Integrator
and Differentiator
Determine the function of the circuits shown in Figure 3.5. What are the advantages
and disadvantages of these circuits when compared to their conventional
counterparts?
R

C
R

R

VI

VI

R

VO = sCRVI/2

R
R

VO = 2VI/SCR

R
R

C

Figure 3.5: Circuit for Exercise 3

Notes on Experiment 3:

Figure 3.4: Outputs of integrator and differentiator
for square-wave and triangular-wave inputs
page 30

Analog System Lab Kit PRO

Chapter 4

Experiment 4
Design of Analog Filters

Analog System Lab Kit PRO

page 31

experiment 4

2
N
2
N
20 = 1 RC
~
20 = 1 RC
~
~
0 = 1 RC
H
~
H000 = 1 RC
H
Goal of the experiment
V0300
+H
H
VV03i =
H00 s 2
+
s
Low Pass Filter
VV03i = b1 + +s H0+ s 2 l
VV03 = 1 + ~+0 Q
H0 ~022
To understand the working of four types of second order filters, namely, Low
s 022 l
Pass, High Pass, Band Pass, and Band Stop filters, and study their frequency
Vii = bb1 + ~0ssQ +
+
s 2l
2 ~
~0 Qs+
b1 +b H
2 ~02 l
characteristics (phase and magnitude).
~00 $Qs 22 l~0
0$ ~
bH
s 0022 l
V01
0$ ~
s 2l 2
bb H
VV01i =
H
$
~
02 l s 2
VV01i = b1 + 0ss ~+
High Pass Filter
0
s 22 l
VV01 = 1 + ~0 Q +
~
i = b
s
s 0022 l
~0sQ + ~
Vi
s 2l
bb11 +
4.1 Brief theory and motivation
s~
+a-~
0Q +
H
$
N
0
k 002 l
s0 ~
~H
0Q
V
02
0$ ~
a
s0 k
N22
VV02i =
N
H
N
0$ ~
a
sk2
N
Second
order
filters
(or
biquard
filters)
are
important
since
they
are
the
building
s
V
H
02 =
0 $ ~0 ks 2
a
N
N
N
1
N
2 2 in the construction
+ s 22 l
N 2 2of N order filters, for N 2 2 . When N is odd, the N order
i
b + 0sQ ~
VV
Band Pass Filter
blocks
V02i =
= b11 + ~
sQ +0 ~
s 0022 l
N22
N22
1 second
-2
N
~
V
0
filter can be realizedNusing N N
order filters
When
i
sQ2 + ~
s 2l
bb1 +
N2
2
2
N and one first order filter.
2
N
~
~
s
+
+
0
02 l
N
2
Nis 1even, we need N - 1 second
order filters. Please
H
$
1
Q
~
~
00
+
0s
N - 1listen to the recordedN lecture
b
l
NN
2
2
1 for a detailed explanation
N22
N-1
0
b11 + ~
s 0022 l $$ H
V04
at
[19]
2 N - 1of active filters. 2
~
+
s
b
V
N2
2 N-1
N
04 =
2 l H02
N
~ =21 RC
2
i =
s0
0 l$ H
b1 + s~
VV
04
2N
2
N
2
~02 + s 222 l
i = b1 +
s
VV
04
Second
order filter can
types of filters.
TheNtransfer
2 = 1 RC
H
~
2
RCNto construct four different
~ be
= 1used
Q
~
Vi = b1 + 0s + ~
~ = 1 RC
s 0022 l
Band Stop Filter
2
2 and
~ = 1 RCfor the different filter
~0sQ + ~
Vi
functions
are
s
bb11 +
V ~ types
+ HshownHin Table 4.1, where ~ = 1~RC
H
H
1
1
RC
RC
=
=
=
Q
~
~
+ 1~0 Q + ~022 ll
V of the transfer
s
s function. The filter names
H is the low frequency gain
are
often
H
1
0
0
1
~
0
- 2Q
12
V
V
+H
+bH+ ~ Q + ~ lV
HFilter),
H Filter),
H (Band Pass
=
1
~
abbreviated
asHLPFs (Low-pass
HPF
(High-pass
Filter),+BPF
0
1
=
V =
+
2
V
s
s
s
V
H
+
V
s
s
~0 1 - 2Q
+b H~ $+
b1 +(Band
l
b1 +
lsHl we
12
V~
H
V =BSF
+ ~ Q +a~universal
b1 describe
lV = V active
sQ +
~s Filter).
and
Stop
In
this
will
=Q experiment,
= s + +s l
~0 Hof10 Active
Q- 2Q
+
~
b1 + ~
l
Table
4.1:
Transfer
functions
Filters
V
1
2
+
b
V
V
s
s
s
s
Q
~ provides
~ all the four
=
Q
~
s
~
s
2
Q
H
Q
1
1
0
+
+
+
+
b
l
b
l
filter, which
filter
functionalities.
Figure
4.1
shows
a
second
s
V bH $
s~
b H $ ~s l
l s~ Q
Q
~
~
H
$
b
l
1
H
Q
+
+
b
l
~
0
V
1
s
~ Qintegrators.
b H $ ~filter
l V realized
order
using two
=
bH $ ~ l s
s ~ V = Note that~ thereV are different
1H-0 Q 1 2
V = universal
s
s V
s
bs Hl $ ~
l V
bH $ ~ l
s
s
s
=
1
1
+
+
1 - 4Q
b
l
+
+
b
=
12
outputs
of
the
circuit
that
realize
LPF,
HPF,
BPF
and
BSF
functions.
V ~ Q a-~H $ k
V
1
V
+
+
b
l
s
s
Q
~
~
V
s
s
V V =
~
~ Q ~
1 - 4Q
b1 + ~ Q + ~ l
12
bV1 +=~ Q + ~
l s
s
s
s
=
s
s
1
4
Q
z
d
Va- H $b1 +k s
+s ~ l
b1 + ~ Q + ~ l
s
H
$
a
k
Q
1
~
H
$
+
+
b
l
a
k
s
V
~~ Q ~ V
4Q 2
dz
s
~
a- H $ ~ k V =
=
a- H $ k s
s
th

th

th

th

th

th

th

th

0

0

0
0

0

0

0

03

0

0

0

0

0

03
i

03

2

0

i

0
0

01

0

01
i
i

2

2
0
2
0

i

0

0

0

i

2
00

01 0
i

2

2
2 0

0

0

i

i

i

2

0

0

2

01

2
0

i

2

0

0

2
2 0
0
02

2

2
0

0

2

2
0

01

2 0

03

2

2
0

2
0

0

03

2
0

0

2

0

02

02

2
0

0

0

i

0

0
2

i

03

2

2

2
0

01

2

0

02

0
2

2

0

0

2
0

2
00

03 0
01 i

2
0
2
0

0

0

i

2
0
2
0

0

0

0

0

2

i

0
03

2

01

2

i

2
0

0

0

0

2
0

0

2
0 0

2
0

2

2
0

0
0
0
0
V02
i
s ~0 s 2 Vi
s
s 2 2 0 $ k Vi =
a~
-0H02$ ~ k
s
s 2 V02 = V02
b1 +V02~0 Qb1++a~-0s2H
l l $~
2l
1
00
0
Vi = b1 + ~0sQ + ~
+
+
b
l
H
s
2
0
V
2
i
C l
s
s
=
=
Q
~
~
0
0
~
b1 + ~0 Q2 + ~
2
0
V
2
04Vi
bV1i + ~0 Q + ~
2
s C 2s
s 02 l s 2
0
=
s
2
s
1
1
+
+
+
+
b
l
b
l
s
Vb1i + 2 l $ Hs0~0 Q s ~02
b1 + ~s02 l $ H0
~02
0Q
b1 + ~02 l $ H0R
b10 + ~0 Q +2 ~02 lV04
~
V04
V04
s2 ~
1
+
2
b
2 l $ H20
H
$
1
=
=
b + ~02 l s0
2 s
R
=
V04
i
s~0 s Vi
s b1s+
b1 + ~02 l $ H0
s
s 2 V04 = V04
+1~ 2 l~02 l $ H0 Vi
b1~+
VR~10 Q
1
Vi = b1 + ~0sQ + ~s02 l
+
+
b
2l
0 04
V
0
i
s
s2
2
=
=
~
~
0Q
0
2
b1 + ~0 Q + ~02 l
2
Q
1
R
+
+~
b
V
V
2l
i
i
s
s
s
s2
Q
~
1
1H0 Q b1 +
+ ~2l
b01 + ~0 Q0 + ~02 l
1
BPF
~0 1 1
~
0
~
0Q
0
2
2
1~
0
1
LPF
2Q
1
2Q 2
~0 1 - 2Q 2
~0 1 - HPF
10- 11-2 1 2
H0 Q 2Q
H0 Q ~
1 2- 1 2
~
0 2Q
H
Q
0
4Q 2Q
2Q
H0 Q1
H
0Q
1
1 - 12
1 - dz2 H0 Q
H0 Q
1- 1 2
4
Q
4
Q
4Q
1d~
1- 1 2 1
4Q 2
dz
4Q1 dz
1~- 1 2 R
dz R
~
0 4Q
=
4Q 2
z
dz
dd~
d~
~
d
z
z
d
d
2Q
d~
~d~
~ = ~0-Q•R
= ~0
~ = ~0
d~
~d0~
~ = ~0
~
= ~0
- 2Q
- 2Q ~0~ = ~0
~ = ~0
2Q
-BSF
-~20Q
~0
- 2Q
~0
VI
H0Q2Q
~0 - 2Q
~0~0
~0

~0

H0 Q
H0 Q
~0 = 1 kHz
~0 = 1 kHz
Q=1
Q=1
~0 = 10 kHz
~
0 = 10 kHz
page
32
Q
= 10
Q = 10
f = 1 kHz

H0 Q

0

R/H~
0
0
~0 = 1 kHz
~0

~0

H0 Q

~0

~0
~0

H0 Q
QH
1
=0 Q
~0 = 1 kHz
H0 Q
~0 = 1 kHz
~0 = 1 kHz
101kHz
Figure
Second-order
Universal
Active
Filter
Q =4.1:
1 ~A0~=
kHz
~
0 =
0 = 1 kHz
Q=1
Q=1
10
=
~0 = 10QkHz
Q=1
Q=1
~0 = 10 kHz
~0 = 10 kHz
1 kHz
Q = 10 f =
~0 = 10 kHz
~0 = 10 kHz
Q = 10
f = 10 kHz
f = 1 kHz

Q = 10

z
d~
z
d~
d~= ~0
~
d~= ~0
~
~
0
=Q~
-2
~
~0
=
2
Q
-~20Q
-~20Q
~~
0 0
~~
0 0
~
0
H
Q
~
H00 Q
0

H00 Q
~
= 11 kHz
H00 Q
~
= kHz
~
0 = 1 kHz
Q
1
=
~
Q0 =11 kHz
=

Q0=
kHz
~
=1110
Q0=
~
10 kHz
=
~
10 kHz
=10
Q00=
~
10 kHz
=
Q 10

= 10
Q
= 110
f
kHzBPF, BSF, and HPF filters
=
Q
=of1LPF,
Figure 4.2: Magnitude and Phase response
f=
kHz
ff = 110kHz
kHz
110kHz
=
f Analog
kHz
=
System Lab Kit PRO
f=
10
4 $10
Vp kHz
f=
kHz

b1 + ~0+
l 02
=0
+
+
l
a- H0 0 $ ~0 k 0
QQ ~~0V0 V=
~
Q ~02~
~00N
N2sb1+
V02
i b1 +
s 1~~0s202lQs 2 ~02
i
Vi = ~0 Q
N22
N th
~s0 Q
s 2
2 2
N
1Hb+
+++
s s 2l
01$ + 2 l
1 +s 2Hs $ +
l
VV03i = N a- +
2l
b
0
2
s
b
2
s
H
$
V
H
0H
k
03
0
s
Q
~
s
s
~
0
0
2
Q
~
~
a
k
0
~
00
H
$
1
~
00Q
V
0
0
+
b
l
01
H
$
VV02i = b21 + s ~
0
2 l
b
l
1
N
2
=
2
0
s
H
$
2
0
a
k
H
$
1
+
2
0
+
l
V02 b
s 022
~0~0 =
N
N22
Vi V02bsH0 N
s0
$1s 2s2 2ls
Q ~
~02 s~20VV04012 =
b10 +
1 00sRC
Vi = ~
=~
2Vi V0122 ~
s 02 l V04 =
+
+~
b11+
~220~
RC
0 b=
2 l2
Vi =
si i =
Q2 +
~
1=
0
Hs0 $ +
l2$0lH
b10 +~1~
2Q
2V
b
l
ss
ssV =
+
Q
V
~
b1 + ~
V
0s
2
i-+
s
2l
1
V
s
+
i
b
l
s
s
2
N-1
2
~
N
Q
~
0
2
~
0
0
1
0
~00
V01b1 + ~0+
NQ +
+~
+~
V0i 20042ll = H
l
s~b01=+1s~RC
b1 +~0 Q022sl2 $ H
2 +
l 02 bb1+
= ~0 Q Q2 ~02 ~
~00Q
~
~02
0
+H0~$ s20s2lQ
b1H+
2
V04 H0 b H0~
$
V
i
0 Q~0 Q
s
V
i
s
s
2
2l
s
b
l
0
N-1
k + s202l2
1H
+0 $ ~Q
VV01i = V03b1 + s ~
b11b1++~0sQ2 l+$ H~002 l
l0 $ H02 0
1 0 $ Vs021k
Va01bN
H000 bs1 +~~
0 0 l $ H0
H
~V0 1 - a-2H
~
VV04i = b1 += s~02 + +ss H
2 l
0 = =RC V03= 1~
2
2
~
0
2
1
~
V
0
2
04
2
~
2
1
02
=
2
H20 $ s ks s ~0 s s 2
2Q
i Va
Vi 0V022 VV
04
sQ
ss 022 l s
2
1i + ~b0s1Q++ ~
i 4
Vi = bV
1b1bV
+~0 + +2H
l
=
+
N
l Vi = 21Q a- H
s s Vski2 H=0 Q
03 ~20lQ +~
s
s b1 +
0 Q + ~0 l+
1 -~
b1 + 1~
Vi02Q
21 +
s ~0 0s2 l20
~
2
~~
~02 H
0~0 2Q
0Q
V020 Q b + ~ Q0 $ +
~
=
~0 2 l b1 + H0 + V~i 20=
0 = 1 RC
l
Q
s
s
2
z
d
~
0Q
0
1
+ ~2 lQs +s ~ 2 l s
2
~02
~0 1 0
s s2
~0 Q ~0 b1 + s 2 Vbi +
2
0 2
0+
1 and
Vi =1 of LPF,
H
s BPF,
s1 -BSF,
2
Q
0 $ and
ak phase
b01in
V03HPF
H0~shown
~
The
magnitude
response
filters
are
2l
0 Q$aH
H
0$ +
s
H
Q
k
0+
2
~
d
1
1
H
0
H
1
+
V
1
RC
~
~
b
l
Q
~
~
b
l
0
+
+
02
0
00 $
=
b
l
0
2
0
s i V=
1~0 Q ~02 4Q1 V
V02s ~02 s22 b H10 $ ~02 l
1~1V~0 =
2
~02
2
$H
01
0
0 41
b + peaks
=
~0 21s 2 Simulate the circuits and obtain the Steady-State response and Frequency
Qfilter
s -l$2H
2 l04
Vi ~
2
011
2=Q
~
Vi H0 Q
Figure
4.2.
Note
thats 2the
low-pass
frequency
response
at
=
00 + 1
s
=
1
~
2
2
Q
+
V
b
0
s
s
1
V
2
0
+
2
2
04
b
l
=
1
2
V03
H0
dz =
+ H0
Vi V042 + s 2 l sdz
bV1i +
2 ~
s2Q H $2
Q
~+
04
i Qs b1
0 +
H0
1 + s 2l$ V
+QV
+00 ~20lsQ2 +b+~0s02 2l~l02 l response.
b12~
l
1H-0 Q 1 2 ~b10 Q+ ~~
s
s =
Vi =
s
s2
~s0 2Q
HbsV0101Q+~
~d02~ V04 H0 Q b
~0 d~i
0~0 Q
0Q
=
1
2
+
+
4Q
b
l
V
~
0
i 2z
s
2
1
V
H
2
+
+ ~2l
d
03
0
+
b
s
1
H
=
s
s
~
0 $+ 2 lVi + s l
~
0Q
0 b
1
2
b
1
~
Q
=
~
0
0
0
2
H
$
1
. The
phase
sensitivity
and
hasb a2+value
s to i1 0
l equal
~~
s
s
bH1at
0 0Q
V01~0 d1~-is 1maximum
b1 1+ ~
l $sH00Q + ~02 l
d04z1 0 2+
Vi
s
s2
0
402Q ~02a- H0 $ ~0 k~ =V~
V
2
b1Q+2 ~0 Q +~~=02 l~0
0 $ ~k
= ~0 V2V04Q
2~
2 1 - 2 a4
1
1
+
+
b
V
s
2l
=
4
Q
~
V
02
0
i
s
s
2
Take
the
plots
of
the
Steady-State
response
and
Frequency
response
from
the
~2
=1+
0
~0 Q ~0 b H0 $ 2 l
d
= s
22 s
i
z
dV~
Q 1 - 2Q 2
~
10 +
=1~
V
2l s
~bH
-i0 di 2z=
~0
ss 2 l s-2 2dQz
V01s 2
+~
a- sHs202l$ ~0 koscilloscope and compare it with simulation results.
bV1i + 1Q+given
s +
~
Q0 ~
0
0H
1
+
Qb21bV
Q0VQ
+ ~ 2 l~0. This
~
information
phase
variation
can
be
02+used
1
0 by
~
+
0 about
l
d~= ~0 and~b0is
1
Q
~
~
2
0
0
H
Q
H
$ i =2 l
2
~0 Q
0
0V
0~0
b
d~
s
s2
- 2HQ01Q d~s Vi =~0 Q ~
0
2
2
Q
~0 b1 +
V01
s
s
+ ~2l
H
2 a desired frequency ~0 . This is demonstrated
0 $ kHz
k 1next
1 filter sto
1 -~~a0to
the
~
2
th
0 =
Q~
2 1in
1
-02=tune
=
~
1
+
+
~
0Q
0
b
l
~
0 ~ =H
V
~
0
02
2
2
1 0- the
0
~
s
N
4Q~0~ =
2 b1 +
0Q
1~021 +2 2 l ~
Vi
1~0
s
s
l $ H0
0
Q ~0 $ H0 Q
1its+input
~02
s
4Q 2 Vi d=z ~10Q-=Vs1104 2 sb2
+
b
V04 2Q
Frequency
Response
Apply
a
sine
wave
input
and
vary
frequency
experiment.
2l
H
0Q
2
3
-~20Q
th
H
$
1
Q
~
~
0
a
k
H
Q
0
0
2Q
0
+
b1 + ~40Q
N22
N
=
H0 QVi =
Q~02 l s b1 + ss2 2 l $ H
0Q
~~
s
s2 - 1 dz
QH2
0
0 0
4.2 and 4.3V02to=snote your ~0 2
d~dH
b1 + ~0 Q + ~~020 l=~10 kHz4Q 2
~0 = 1 kHz
Q0 =Vi10
z0~
bV1104+=~0 Q + ~~020 l to obtain the phase and magnitude error. Use Table
2~0kHz
1
a- HV0i $ ~0 kb1 + s + s l
N
N
2
2
~
d
s
~
- 4Q
02
H00 1Qthe
2
1 02Vi0 2 by
H
The nature of graphs should be as shown V
above.
For
bandpass
filter, the~dmagnitude
response
at ~ =
and
is
s2
0z
b0 10=+
l $4given
~~
d~
=
~0 Q ~02
~
Q~==1~peaks
Q 1 b1 + s + readings.
kHz
1~
0
1
Q
10
V
=
04
2l
0
V
i
s1
s2
Q
1
=
N
N
~
d
~
~
1
~
0Q
0
0
=
2
H
Q
1
1
~
~
~
0
+
+
0
b
l
2
0
=
The
response at 2Q
kHzbandstop
~
dz
s2
0 =. 1
2
H0 Q a null magnitude
2Q filter shows
d.z 0 Q s 2Q 2
~
~-0 2
2 0 Q ~0b1 + ~02 l $ H0
=Q10 kHz Vi - bQ1 +
=
f =1 s1HkHz
~ 10
~
+
0
=
1
kHz
~
2l
0 =
1
N
V
~
~
d
04
0
2
Q
0
d~
~
=11 kHzH0 Q
- 2Q ~
Q0=
s $H
H0 ~
Q~00 1 - 2Q 2
~0 = 1 kHz
~kHz
0 = 1 kHz
b1N+ ~
l 0
Q~
Vi02 =
2
=0 10
s
s2
10
2Q
~0 ~
~ = ~0
Q =-10
~00f==
~0 1
1~10
1
= kHz
V
04
2
b1 + ~0 Q + ~02 l
Q0=
1
1
~
1
H
Q
~
kHz
10
~
0
0
0
=
Q
1
2 1 =
2
=
N
~
2
0
2
Q
1
2Q
4Q
f = 1 kHz
10
Vi
4VQ
$2
p = 4Q
H0 ~
QQ0 =
RCs l
~0 =s 1 +
- 2Q
f = 1 kHz
1
2
b1 +
10
~
0=
=
~00= 10 kHz
H0 Q
Q~
10
H0HQf Qr 1$ HkHz
dzkHz
~
~~
- 4Q 2
0Q
$ 0Q= 101kHz
0z
1~-02 1 2
d
0
0
~
~
f
kHz
10
0
=
0
=
~0 = 1 kHz
H
~
0
0 = 1 RC
2Q
f
kHz
10
=
Band Pass
Band
d~
Q
1 Stop
Vp ~d0 ~ dz
= 110
~
~0 = 1 kHz
f 0=
kHz
0 Q10
QH=
1 -~f0 1=
~0 1 - V 2 H0 Q H
Q
= 10
4 $ Vp
kHz
kHz
Q =41Q 2 110~
H
03
0
+
0
2
Q
~
~
4
V
$
0
=
p
~d0$ 10
Phase Magnitude
f 0=Q110kHz
2=$ r
~0 H
~ 4 rad/s S.No. Input Frequency Phase Magnitude
=0 Q
1 kHz
H
Q$ =
kHz
0 =
H01$ Q
r
f~=
1 kHz
Vi = 1 - 1 s
s2
dz~0 Q
r$H
f
kHz
1
0$ Q
H
=
0Q
1
4
V
$
=
p
kHz
10
1
V
H
2
=
03
+ 0 b +4~
2Q
-kHz
2Q ~ = ~0
Q0 Q + ~02 l
V
p 0 = 10 kHz d~
=
f
10
H
10
=
0~
=
Q
1
kHz
~
1
~
4
V
$
2
=
0
=
p
V
H
Q
$
$
r
p
f
kHz
10
0
kHz
1
1
=
Design ~
a0 Band Pass and a Band Stop filter. For the BPF, assume
Vi
f==
10 kHzand
1
kHz
~0 = 100 ~
2
- 4sQ 2 +dsz 2 l
0
Q~
=
b11+
$p Q
r 4$ H$ V
2Q rt i 0.1 sin _200rt i
-_100
4
=
2 $ .r $ 10~4 rad
/sV0 10
= 10
p y_ t i
~0 Q ~0 b H0 $ s 2 l
kHz
~402=
Q
= 01.~
For
the BSF, assume
and
=41sin
+
rad
/s ~Q0 =
~0 =
$ $Vr10
0
Q
p $ 10
=
~
0
~
d
~
V
$ p~4 0
0
Vs012
10
Vrp $ H0 $ Q
f =Q 1=kHz
dz
H010
$Q
r
Hf0=
$=
r$ H
$ 10
=110
Q$10
kHz
~0 = 10
kHz - 2Q ~0 =~2H0 r
Qrad/s
b H0 $ V~i 02=
l = ~0 s
=
0 $kHz
~
H0 =
s2
2
~
0
0 Q 10
~
d
Vp0 = 2H$0rQ$ 10 4 rad/s
1
V
f
kHz
1
+
+
01
=
b
~
~f0 = 10 kHzV
2l
Vp
=
Q
~
~
0
0
10=_p200
0 = sin
t isin
y0.1
rt i +H0.1
r0 tQi
_100
= _sin
f=
1 kHz
Q = 10
f_=
kHz
10
= sin
Vi ~ = ~0 s
22Q
kHz
~$0r=$ 10
1
s
Q
10
4
_
i
200
t
t
t
100
y
r
r
_
i
i
H
+
kHz
~
1
0
=
~
0
4
rad
s
2
/
~
b1 + ~ Q + ~
H00 = 10
4f $=
Vp 10 kHz
4
~0 = 2 $ r $ 10 rad/s
H $ s
~2 l
radsin
2$r
/s _3200rt i
~0 =_100
y0_$tQi f=
rt$1i10
+ 0.1
f = 10 kHz
f = 1 kHz
4 $ Vp
Q=1
- 2Q 0 V02 s= 00 a- 0 ~0 k
1 1kHz
kHz
~0 =
r$H
Q=sin
=
H
0Q
H_0 t=i =
10
4
V
$
p
~
200
t
sin _100rt i + 0.1 sin _H
y
r
0
i
10
0 =
r $ H0 $ Q
$i k 1
~0 a- H0 V
s
s2
H0 = 10
V=p r
4 $ Vp
f = 10~kHz
V02
~0 b +
Q=
$ H0 $f~
+ ~2l
0 = 10 kHz
kHz
10
Q
1
=
kHz
10
0 =
kHz
~
1
0
=
Q
~
t isin _100rt iV+
y _ t i = sin _100rt i + 0.1 sin _y200
0
0
p 0.1 sin _200rt i
Hs0 Q
2
r_ t$ iHr=
0$ Q
Vi ~0
s
_$ V
t4iprad
sin
rt i +40.1 sin _200rt i
_100
=0 =
/s 10
~01V=p 2 $ rQ$4y10
4 $ VQ
p = 10
b1 + ~0 Q + ~02 l
kHz
~
s2 $ H
10
=
Q4 =
V
~
p
0 = 2 $ r $ 10 rad/s
1
kHz
~
0
H
Q
+
b
l
0
=
0
2
r $ H0 $ Q
$ Q4 rad/s
~0
2r$ $rH$ 010
0 =
H0 ~
10
=(Try
f = 1 kHz
Q = 10
sV204, Q
Steady
State Response
square
wave ~
input
and
=0 1
kHzVf = 1 kHz
0 = 10
$ r $ 10a4 rad
~0 =- 2Apply
V1
H/s0 = 10
p
1 1+kHz
Table 4-2: Frequency Response of a BPF with ~0 =
b
V
s
s2
p
2il $ H=
~0
0 = 10
V04
b1 + ~0 Q + ~02 l
tHioutputs.
t=
100
sin _200rt i
y _10
rf kHz
i +1 0.1
f = 10 kHz
to both BPF and BSF circuits and observe
the
= sinf _=
kHz
4
10
=
Q
=
4
2
H0 = 10
~0 = 2 $ r $ 10 rad/s
10 kHz
y _ t i = sin _100rt i + 0.1~sin
_200
Vi Q = 1 s ~0s =
2 $ rrt$ i10 rad/s
0 =
_ t i = sin
0.1 sin _200rt i
rt10
i +kHz
b1 + ~0 Q + ~02 l 1
4 $ Vp
4 $_100
Vpf =
f=
1iykHz
1
~
0
H0 = 10
Q
10
_
i
200
t
t
t
sin
100
0.1
sin
y
r
r
kHz
_
i
_
10
~
=
=
+
0 =
Hr0 =
2Q 2
r $ H0 $ Q Band Pass output will output the fundamental frequency
	
$ H10
0 $ Qof the
1
4 $ Vp
f
kHz
10
=
1
~
0
H
f 0=Q1 kHz
t i + 0.1wave
sin _200
Q = 210
y _ t i =Vpsin _100r
rt i
V_pt i = rsin
square
multiplied
by the gain at the centre y
frequency.
Q2
$ H_100
$ Qrt i + 0.1 sin _200rt i
0The
1 kHz
4
H
Q
f-= 10
f
kHz
~0 = 2 $ ramplitude
$ 10 4 rad/s at this frequency is given by 4 $ Vp , where
1
0
=
1
therad/s
~0 = 2V$p ris$ 10
4Q 2
r $ H0 $ Q
Band Pass
Band
Stop
H0 = 10 peak amplitude of the input square wave. Vp
kHz
1 -f =110
~0 = 2 $ r $ 10 4 rad/s
H0 = 10
dz 4 $ Vp
4Q 2
S.No. Input Frequency Phase Magnitude
Phase
Magnitude
	
~ r $ H0 $ Q
d
4
4
V
$
p
y _ t i = sin _100rt i + 0.1 sin _200rt i
H
10
0
=
dz
~0 = 2 $ r $ 10
i =/ssin _100rt i + 0.1 sin _200rt i
y _ trad
Vp
H
$
r
0 $ Q ~ = ~0
The Band Stop filter’s output will carry all the harmonics of the
d~
y _ t i = sin _100r1t i + 0.1 sin _200rt i
H0 = 10
4
square wave, other than fundamental. This illustrates the application
Q0 = 2 $ r $ 10 rad/s
~=V
~p0
- 2~
y _ t i = sin _100rt i + 0.1 sin _200rt i
~0H40 rad
/s
= 10
of BSF as a distortion analyzer.
- 2Q~0 = 2 $ r $ 10
2
~
0
~0 H0 = 10
y _ t i = sin _100rt i + 0.1 si
H0 Q
~0
2 Frequency Response - Apply the sine wave input and obtain the magnitude
y _ t i = sin _100rt i + 0.1 sin _200rt i
3
and the phase response.
~0 = 1 kHz
H0 Q

4.4 What you should submit

experiment 4

Frequency Response of Filters

4.2 Specification

4.3 Measurements to be taken

4

~0 = 1 kHz

Q=1

Q=1

~0 = 10 kHz

Table 4-3: Frequency Response of a BSF with ~0 = 10 kHz , Q = 10

Analog System Lab Kit PRO

Q = 10
f = 1 kHz
f = 10 kHz

f = 1 kHz
page 33
f = 10 kHz
4 $ Vp

H0 Q

experiment 4

~0
~0 = 1 kHz

~0 = 1 kHz

Q=1
H0 Q
Q=1
~0 = 10 kHz
~0 = 1 kHz
~0 = 10 kHz
Q = 10
Q=1
Q = 10
f = 1 kHz
~0 = 10 kHz
f = 1 kHz
f = 10 kHz
Q = 10
Higher
order filters are normally
f = 10 kHz
4 $ Vp designed by cascading second order filters
f = 1 kHz
$ Q Design a third order Butterworth Lowpass
r $ H0filter.
and,
ifp needed, one first- order
4$V
f=
kHz
V
p
Q
$ H10
$
r
Filter
using
FilterPro
and
obtain
the frequency response as well as the
0
4
Vp 4 $ Vp response of the ~
rad/s
$ r $ 10
0 = 2The
transient
filter.
specifications
are bandwidth of the filter
r $ H0 $ Q
~0 = 2 $ r $ 10 4 rad/s and H0 = 10.
Vp
H0 = 10
y _ t i = sin _100rt i + 0.1 sin _200rt i
~0 = 2 $ r $ 10 4 rad/s
Design
a
notch
filter
(band-stop
_
i
t
t
sin
100
0.1
sin
y
r i+
_
_200rt i filter) to eliminate the 50Hz power
=
H0 = frequency.
10
life
In order to test this circuit, synthesize a waveform
y _ t i = sin _100rt i + 0.1 sin _200rt i Volts and use it as the input to the filter.
What output did you obtain?

4.5 Exercise Set 4
1

2

Related Circuits
The circuit described in Figure 4.1 is a universal active filter circuit. While
this circuit can be built with OP-Amps, a specialized IC called UAF42 from
Texas Instruments provides the functionality of the Universal Active Filter.
We encourage you to use this circuit and understand its function.
Datasheet of UAF42 is available from http://www.ti.com.
Also refer to the application notes [7], [11], and [12].

Notes on Experiment 4:

page 34

Analog System Lab Kit PRO

Chapter 5

Experiment 5
Design of a self-tuned filter

Analog System Lab Kit PRO

page 35

Vyy
l
V = V V cos z
2V
V
yyr # Vx
RC
V
Vrr # VxxRCK # V #KV +=pdV
V =RC
V + KV#=V V+ K+#KV #+VK+#KV ## VV +
V
rry #
V#+xxrVr Vp=+Vp + K # dVz+ K # V + K # V # V + p
#VV
V
V
#
V
V
K
V
K
V
K
p
#
#
#
=
+
+
+
V
V
#
y
p
K
y
r
p
p
V through the low-pass
V
V
#
yyr #
rr
V
c
z
= 90
V
V
After
passing
filter,
the
high
frequency
component gets
Goal of the experiment
Vrr
V
V only the average value
V V out and
filtered
of output V remains.
V
RC
r = VV
Vyy ~V
Vr
#V
V
V #V
V0r0 =
Vxxx #
V #VV
The goal of this experiment is to learn the concept of tuning a filter. The idea
y V rr K
V = V 0+ K # V
K
#
+
+ #V #V +p
V #V
is to adjust the RC time constants of the filter so that in phase response of
V
V
V #VV# V V # V
0
xxp #
yy V
rr
=
l
V
V
V
pV
V
V
V
V
#
0
=
~
= V $ RC
(5.3)
p
pp V
V
#pplV cos z
0 = VV
V
V
#
a lowpass filter, the output phase w.r.t. input is exactly 90 at the incoming
V
V
V
00 = 2Vr cos z
V
~
d~
1
V
frequency. This principle is utilized in distortion analyzers and spectrum
V2Vpp Vrrppll cos
= V RC = V
V =VV # V VV = V # V V
V
0
dVz
V
cos
z
dV
0 =
=
av
V
V
analyzers, such self tuned filters are used to lock on to the fundamental
K pd =
2VdV
V=rravavV # VdzV
=2
V = Vl # V V V V l
V = V V cosVz = 2V cosVz# V K pd
(5.4)
zavV V ldV
d
pd
frequency and harmonics of the input.
2V V V l
dV
d=z
VdV
cos z
av
V =
cos z dV V # V K
pd
=
2
V
z
z
d
d
K
dV
pd
=
~
d
2
V
K =
K =
dz
K pdpdpd Kd
z= dV dV = d~ $ dV
dz
dz
V
K = dV K
K is called
+ H in Volts/radians.
dzthe sensitivity of the
K
detector
c dzVVand= is measured
90
zVpdpdphase
=V 90
K
V =Vz
#
Kc
s
s
5.1 Brief theory and motivation
=
c
K
90
z
=
z = 90c
b1 + ~ Q + ~ l
l
V
V
c
c= is90used
zc
z
=
Vavavcos
This
to tune the~voltage controlled
For
90
= z90
V z = 90c , V becomes V0.=
2z
Vinformation
V
av
b~ Q
l
V
In order to design self-tuned filters and
filter
(VCF)
automatically.
The
voltage-controlled
filter,
along with
phase
detector, is
~
~ V
z = tan
V
av
K = dV
~
0
V
av
~
~
other analog systems in subsequent
called
a
self-tuned
filter.
See
Figure
5.2.
of
the
VCF
is
given
by
z 00
d~
~
d1 - b ~ ln
~ = V K
~ = V
V $ RC
experiments, we need to introduce
V
V $ RCV
~
0
VccV $ RCdz
~ =
0
~ ~
d~~
1
V
one more building block, the Analog
c~0 =
d~ ~ = 1V $ RC
c
= - 2Q ~
= V RCz==V90~
=
=
0
=
$
V
RC
r
dV
0
d~$VRC
1d~ ~
dV d~ V RC 1 V ~
multiplier. The reader will benefit
V
=
rr Vcc=
V
=
=
V
dV 1 V RC
dz
dz ~
~
0
dz dV
V
V RC
~
~
d~
0 =
=
0 V $ RC
- 20Q V
from viewing the recorded lecture at
Therefore,
~
dV
drrz$ RC
dV== ~
d
1
00 =
V
dV dz
Figure 5.1: Analog Multiplier
Vcc000
dV
RC PRO, we have used to
[21]. In ASLK
c =dVVr RCV =
dz
dz d~
= 0~
dz dV dz d~
~
d
1
V
V
0
V
RC
dV
r
c
$
=
c
~
~
d
1
c0
~ =
$ dV
=
=
dz r dz1 kHz
MPY634
analog
Texas
d~ 0
V = V multiplier
V +K #V #V +p
$ RC
+ K # V from
+K #
RC
dV =
dV d~ d~ dV V d
dzd~ dz
=
=
z
RC
$
=
V
V
RC
dV
c
r
c
$
z
ddV
dVVr RC
d~ dV Vc
+dH
~
~
1 c
Instruments.
the symbol of an analog multiplier.
V dV = d+
~VH dV
V = V +p
K Refer
V +to
K Figure
K # which
V # V shows
p
# RC
# V + 5.1,
+ RC
Q +H
V = V + K # VV =
p =s V
+ K # V s+VK=#sV # V s+
dV
c = V
RC
RC
dV
z
d
V b1 +
H
1
+
lzcc
b +
=
d
+~
l ~ dQz+ ~dV
=
V V = V + K # V +RC
p
V
K # V V+ =
K V# V +
V+
#K
V s
$sQ $+
~
Q
V + K # V + Kp# V # V + p
#p
s VCFsis
+H
zc
zb1Now
dz
dz
The V
sensitivity
of
~
d~~
+ ~ ldV~ radians/sec/Volts.
b1 + ~
dV
Q0 ~ l
d
d
~
dV
(5.1)
V
V
K
V
K
V
K
V
V
p
V
Q
c
#
#
#
#
0
offset
x
x
y
y
0
x
y
=
+
+
+
+
V
d
$
p
0
=
b~ Ql
RC
V = V p+ K # V + K # V + K # V # V + p
0
b~ Ql
~
dV
dd
0 $ dV
c~ l
zzcd=
dz
dd
~
~ d
z =b tan
z
b~
z = tan
~
d
V
0 Q
~
dV
dV
l
z
z
d
d
c$c
00 d
cc0
=
V =VV# V+ K # V + K # V +
K # VV# V + p
V
p
~
~
~~ Q
dV
dn~ dV
p
z = tan$$ + H0
=
d1 - b ~ ln d1 - b ~ ldV
z = tan
V00 cc+=
~
V # V p isV a#non-linear
V
term in V and V . For a precision multiplier, V # V and
where
V
H d
~
V
~00 +dV
dV
d~
dV
=
-cc00b ~ ln 2
d1H
0
dd1z- b ~ ln V = Vi =
s
s 22
s
s
d
z
VxV V #isVthe referenceV voltageV #ofVthe multiplier. Hence, forV precision
V # V , Vwhere
#V
2Q ~ b1V
+00ii ~ Q +
0
sH
+l ~+
= - 2Q ~
V
b11d~z+
V
H
0+ s 2 l
+
d~ = d
~
=
d
z
+
b
Q
~
0
Q
~
2
amplifiers,
.
-s
= ~ =~
#V V
V
V V = VV #
V
V #V V #V
V
s 2200022 l
~
00 Q
V
dz d~ = - 2dQz ~
ii b ~ d
s
s
V
y
l
Q
V
2
1
=
+
+
b
- 2Q VdV
1dz+ ~20QQV~+r ~022 ll
~bQ
V = V #VV#VV = VV V l cos z
V = V # V V dV =
V #V V
dz
z = tan
~0bQ~rr ~
2
V
Q
V
In Experiment
4, if we replace the integrator with a multiplier followed by integrator,
= - 2V = 0
~
dV = l#
VVV
V xdV
b~
~~00 Q
Q ll 0
= V #V V
Vz V
r #
V = V #V V
V V l cos z V =dV0
V
d1 - b ~ l-n1
V = Vthe
cos
V
r
=
0
V
then
circuit
becomes
a
Voltage
Controlled
Filter
(or
a
Voltage
Controlled
Phase
z = tan=--11 b ~0 r l2
2V K =
V = 0 1 kHz
2V
1 kHz
d=zV V l cos z
V
V = V #VV self-tuned
VV V l
b~
dz z = tan
~rlr22
Generator).
ThisV
The
Q
= 2V cos zfilter. See Figure 5.2.dV
1 kHz
V
rforms
1
~00 ~
Q
2V the basic circuit for
K = dVVyK#
- 2Q ~tan
Q
K =
- 1 d1 - b
Q 1 kHz
z
d~ = z
=
Vz =
l
# V V dV filter for a square-wave
V
V
1
tan
z
d
d
=
outputdof
theV self-tuned
input,
including
the
control
voltage
~r0r220 llnn
b~
V =
cos zdV
Q
K
Q
=
H
Q
V
$
$
2
V
c
K
90
z
d
z
=
K
=
~r0 ln
H $Q$V
~
V l cos zin
dzFigure 5.3. The figure brings
r isV shown
waveform,
12Q V H $ Q $ d
dz out the aspect ofKautomatic
VV=
- bb ~
dV1
ln
dV = - dz
H $Q$V
2VK
0
K = dVK
z
= 90candVself-tuning.
~
c
90
z
control
=
dz
V = 0 dz = - 2Q ~0 0
dV
V
V
V
V
x # y
r
= - 2Q ~0
K 0=
dd~
~
~= z =
V
V
K
z = 90c
z
dz 90c
z000 = - 2Q ~00
1 kHz dd
V
~
~
z00 = - 2Q ~0
z = 90cV Detector
~ =VVp Vpl
Q
5.1.1KVVMultiplier
asza Phase
dd~
~
V $ RC cos
z
= - 2Q Vc
0 =c ~
90
z
~
V
=
~ =
dV
c = - 2Q Vcc
H $ Q $ VdV
~ = V
d
z
V $ RCd~ =2V1r = ~
V $ RC
dzcc = - 2Q Vc
RCV V
V 1 dV ~ V
V
~
= Vav5.1,
d~the circuit
~ =
V
=0- 2Q Vc
dV
av =
~
d~
1
In
of Figure
the output of the
multiplier
is
$
RC
=
=
dV
z
d
c
$
V
RC
=
=
VdV
av
V~K
RCpd =V
dV
av c= 0
V
V
V
RC
dV
~
~
d
1
~
=
dV
~
~
1
d=zV RC = V
V $dRC
dz
VavavkHz
=
dz
dVpdz
VV
0
=0
Vp$ld$~ cos z d~ cos
dV = V RC = V
~V=dz =
(5.2)
11VFilter
kHz
~
1
dV
~
t
z
_
i
dV
B
+
Figure
5.2:
A
Self-Tuned
based on a Voltage Controlled Filter
K0pddV=V $ dRC
zd~ dV8
=
=
z
d
V
V
RC
dV
2
V
r
dz
ddz~ d~ dV
11QControlled
kHz
dz
dz d~
kHz Phase Generator
or Voltage
dV
$ V= 1 =+~H
= d~ $ dV
dz
Q
dV = d~
dV=V90
V
RC
dV
dV
c
z
z
d
d
z
=
V
~
d
z
z
d
d
s
s
~
d
dV
$
= d~ +
b1 +
V
$
=
dz + H dV
Q
V
+H
H00 $$ Q
Q $$ V
Vii Analog System Lab Kit PRO
~ Q dV
~ l
Q
=
page
z d~d~ dV
dz
ddV
V = 36dV s
H
s
V
s
s
0
i
+
$
V
H
l
b1 +V~
~
=
+
av
1
V
H
+
+
+
l
b
Q
~
dV
d~ =dV
~Q ~
dz
dz
H
V =d~ b ~ Q
sl
s
V
s
s
H0 $$ Q
Q $$ V
Vi
p

x offset y

offset

0

experiment 5

r

x 0

offset

0

x

xy

x

x 0

y

yx

y

yy

x

0

x

y

x

ø

x

y

r

x

r

y

r

r

r

0

x

0

x

x
r

p

x

p

r

0

x

y
0

p

x
r

y

r

p

av

pd

av

x

y

r

c

y

r

0

x

y

offsetx

0

0

offset

0

r

0

y

yx

x

x

x

y

y

y

y

offset

0

x

0

r

x

x

x

y

y

xx

0

y

y

2x

0

y

x

y

r

r

x

r

yr

y

r

x

0r

0

yx

r
0x

rp

yr

r

r

y

x

0

y

r

y

x

r

2
r
0

r

0

x

r y

p

py

p

y

0

y

r

r

r

x

0

p

0

y

p

y

r

r

p

av

0

0

0

r

0

r

0

0

c

0c

i

0
i

c

c r

0

c 2

0
i

2
0
-1

0

0

c

r

0

c

c

r

0

c

0

2
0
2
c0

0

0

c

0

c

c

c

0

0

c

0

0

2

c

c

0

0

0
0
i

c

0

2

i

0

2

0

2
0

i

0

U1•U2

R4

+

U3

U4

R6

R9

VF2

+

0

R10

R3
c

i

VF3

C3

0

c

U5

0

c

r

c

0

r

0

0

0

r

c

c

0

c

0

0

VG1

c

0

c

c

c

0

0

0

0

r

r

0

r

c

c

0

c

0

r

c

c

c

00

U1•U2

R7

c

R11

R5

Uav
2

R8

r

c

c

r0

VF1

i

0

0

av

0

c

av

av

r
0

0

R2
i

0

av

c

av

0

c

2
rc

C1

i

0

pd

0

r

0

-1

U1

0

pd

c

R1
0

pd

0

2
0

c

U1•U2

av
pd

pd

0

C2

av

r pd

pd

c

0

p

0

i

av0

av

pd

2
r

2

av

r

p

0

-1

0

c

av

c

r

0

c

0

0

c

c

av

p

av

pd

av

p

r

0

r

r

0

p

av

rp

y

r

pd

pd

x

0

0

pd
x

y

0

p

r
av

x

0

r

av

pd

r

pd

x

2
0

0

2
r

0

2

i

0

r

0

c

0

i

0

r

r

0

r

c
0

c

0

c0

r

2
0

0

0

0

2

c

0

x

0

0c

c

-1

r

av

r

0

2
r 0

0

r

2

2
0

y

y

x

y

2
0

c

c

c

00

0

yx

c

0

c

0
i

c

r

c

0

0

0

0
0 0
i 0

0

c

0

y

0

0

0

av

0

-1

r

c

r
0

cc

0

y

0

c

r

c

c

2
r

0

r

0

-1

pd

c c

-1

x
offset x

2
0

r

0

c

0
x
i

x

2

0

p

c

0 r

c

0

y

y

x

y

y

x

0

i

0

c

0

c

0

av

r

c

x

c

av

0 0

c

y

0

av

pd

c

0

c

y

c

0

0

r

offset

r

0

x

pd

0

x

y

p

pd

0

0

0

x

r

av

0

x

0

c

r

r

r

av

av

x

y

r

p

p

offset

x

y

0

0

r

pd

0

0

c

c

0

x

r

pd

pd

0

y

x

0

0

0

r

pd

y

r

p

r

p

av

y
x

y

r0

y

pd

y

y

pd

0

offset

r

0

y

x

y

y

x

y

x

av

r

0

r

y

x

av

y
pd

offset

x

y

y

r

offset

x

0

0

x

x

0

p

0

RC

V3

Vr # Vx
V
zK= 90c
Vy # Vr
c
90
z
~
V =
Vy # Vr
Vr # Vx
~V
~ = V
V $ RC
Vr
~
V
= V $ RC=
~
d~
1
Input~voltage
V0y =
# Vrx # Vy Vr
V
dV = V RC = V
~
=
V0 = Vx # Vy Vr
~
~
d
1
S.No.
Input Frequency
= V $ RC = VOutput Amplitude
dz
Vr Vp Vpl
dV
~
d~ V RC
1
V0 = Vp Vpl cos z
dV
= V RC = V
z
d
1
dV
V
V00 =
z
dz
dz d~
V
dV
#rr Vcos
y Vr
= V2
$
dz
2xdV
V
dV = d~ dV
av
z
ddV
dz d~
K pd =VpdV
2
$
=
V
+H
dV
dz d~
dz dV
K0pd== dVzpavl cos z
V =
s
s
V
$ dH~
=
1
+
V
b
+
dV
d~ dV
z
d
2
V
r
~ Q+~ l
=
3
VV
K pd
s H s
+~ l
b1 + ~ +
~
Q
dV
K
b~ Ql
av RC
pd
V =
s
s
K
1
+
+
pd =
l
b
~ ~
z = tan
~b Q
z = 90dcz V = V + K # V + K # V + K # V # V + p 4
~
~~
Ql
d1 - b ~ ln
z = 90c
RC
z = tan
b ~~Q l
p
Kavpd
V
tan d1 - bwith
z =amplitude
V = V +K #V +K #V +K #V #V +p
dz
Table 5.1: Variation of output
~~lninput frequency
Vav
2Q ~
V
1
d
n
l
b
d
~ =dz
~
z
~0= 90c V p
2Q ~
=
dz
d~
~0
dz
2Q V
V
dV = = - 2Q ~
V
V
#
d
z
d
~
V
V
av
c
V
Q
V
2
5.2
Specification
=V =0
~0 = Vc V # V
dV
dz
V
r $ RC V # V
2Q V
=
~
0
=
1
kHz
0
V
=
dV
0
Figure 5.3: Output~
Self-Tuned
based on simulation
Vr $ RC
dof~the
1V VFilter
0
# V~0
0
=
Q
and
design
a
highBand pass filter
Assume that the input frequency is 1 V
kHz
V ==
V #~
V 0V
~c0 = VVrc1RC
ddV
V
c
whose
centre
frequency
gets
tuned
to
.
V=
H $Q$V
Q1 kHz
~
0 ==
l c
RC
V =V V=VVV
cos z
HQ$ Q $ V
zc Vr V$ rRC
ddV
2V # V V
zc 0
d~
1K V==dVV~V0l cos z
H $Q$V
dV
=
=
dz2VV
5.3
Measurements
to be taken
dV
c
r RC
K d
zcc then
ddV
dVz
If we consider the low-pass output,
0 dV
K~=
dzc = dd~
z0z$ =ddV
90cc0 dz
dV
$ K~
=
5.3.1 Transient response
dVc d~0V dV
c
V
0
+
zH
=090c
dV0iz= dz ~+dsV~
V
H s2
Apply a square wave input and observe the amplitude of the Band Pass output for
$ s 0+
V s 22 l
Vi c==b1d+
~
dV
dV
0~
c
~ 0=
Q
~
~
0
fundamental and its harmonics.
$ RC 2 l
b1 + ~0 QV +
~
0
~
d~
1
V0
H
0 r V
+~==~
= V
RC
2
$ RC
Vi = - 1 ddVzsbbd~~~V0 VQ
r l
s
1 2l ~
l
1
+
+
b
= V
z = tan - 1 ~
~0=QV~
5.4 What should you submit
Q
0 dV
0
2RC
~
z = tan dV
r
z
d
z
z
d
d
2
d~
d1 b~
r $ ln
=~
db~~r0ldV
ddV1bdV
~0 Q
~d+z0 Hlnd~
dz
1 Simulate the circuits and obtain the transient response of the system.
-1 V =
zdz
= tan V dV = d~s2 $ dV s
l
b10+~r +
~
z0 = - 2dQ1 Vdd~
then
2Q V~=b0 ~~0 Ql~+ns H~ s
2 Take the plots of transient response from oscilloscope and compare it with
=
dd~
0
1 +b ~ Q l+
l
b
simulation results.
z
~
z =Vtan
Q
2
d
z
c
=
dzc
~~
d1 - bb~
dV
=--22QQ zV~
c 0
=
~ lQn l
3 Measure the output amplitude of the fundamental (Band Pass output) at
d
~
tan
=
0
dV
c
~
Vav = 0
dz
varying input frequency at fixed input amplitude.
d1 - b ~ ln
2Q ~
Vdavz= 0
d~ = = - 2Qdz Vdzc
1dV
kHz
Hence, sensitivity of VCF(KVCF)
Output amplitude should remain constant for varying input frequency within
=
cis equal to
2Q- 2VQ. ~
1 kHz
dV d=~the lock range of the system.
V
V =
dz0
Qav = 0
Q
V
2
=
For varying input frequencyQ
the output phasedV
will always lock to the input phase
1 kHz
with 90˚ phase difference between
1HkHz
$ VitwoQif V = 0.
0 $ Q the
H0 $ Q $ Vi
1 kHz
H $Q$V
Q
Q
pd

av

0

av

0av

c

0

r

0

0

r

0
0

c

r

c

c

r

0

0

c

r

c

0

0

c

c

r

c

0

c

c

0

c

c

c

i

c

0

0

0

x

x

y

y

x

0

offset

0

x

x

y

y

0

x

r

0

-1

2
0

2
r

r

0

2
0 r

-1

y

2
0

0

2
0 2

r

0

-1

2

2

0

y

0

i

0

0

offset

0

0

0c

0

i

0

c

0

0 2
r

x

0

0

0

0

y

0

x

r

0

y

y

c

x

y

r

c

av

c

r

av

x

y

r

r

0

p

0

0

i

p

r

x

y

avp

pd

av

c

r

r

0

c

c

0

x

r

i

0

p

0

i

0

r

pd

av

pd

pd

av

0

av

c

0

0

r

0

c

0

c

0

c

r r

0

0

c

r

c

c

0

c

c

c

0

0

0

i

c

0

c

0

0

2

2
0 0

0

2

r

i

2
0

00

-1

2
r r
00

-1

2
r

0

0

0

0

c

0

c

av

c

c

av

Analog System Lab Kit PRO

H0 $ Q $ Vi

0

i

page 37

H0 $ Q $ Vi

experiment 5

c

0

~2
d1 - b ~r ln

experiment 5

0

dz
2Q ~0
d~0 = dz
2Q Vc
dVc = Vav = 0
kHzself-tuned filter you designed. The lock range
Determine the lock range of1the

5.4.1 Exercise Set 5
1

Q frequencies where the amplitude of the output
is defined as the range of input
voltage remains constant at H0 $ Q $ Vi

Related Circuits
Texas Instruments also manufactures the following related ICs - Voltagecontrolled amplifiers (e.g. VCA820) and multiplying DAC (e.g. DAC7821).
Refer to http://www.ti.com for application notes.

Notes on Experiment 5:

page 38

Analog System Lab Kit PRO

Chapter 6

Experiment 6
Design a function generator and convert it to
Voltage-Controlled Oscillator/FM Generator

Analog System Lab Kit PRO

page 39

Goal of the experiment

6.1 Brief theory and motivation

+

experiment 6

f = _1 4RC i $ _ R2 R1i
1kHz
1
! Vss
_R R i
4RC # 2 1
Vc
f = _1 4RC i $ _ R2 R1i
Sensitivity of the VCO is the important parameter and is given as KVCO , where it is
Vc $ R2
given as
df
! Vss f l =
dVc
4
RC
V
$
$
r $ R1
To understand a classic mixed mode circuit that uses two-bit A to D Converter
f = _1 4RC i $ _ R2 R1i
1V
along with an analog integrator block. The architecture of the circuit is similar
df l
f
R2
Vc $ R2
(6.1)
l
1kHz
f
=
K
Hz
Volts
VCO =
to that of a sigma delta converter.
4 $ RC
$ Vr $ R1dVc = 4RC $ Vr V1 = Vc
10kHz
df l
f
R
KVCO =
Hz Volts
=_4RC $2V V = Vc
1 4RC
fdV=
R1i
r 1 i $ _ R2
c
where f = _1 4RC i $ _ R2 R1i
1kHz 1kHz
VCO is an1important analog circuit as it is used in FSK/FM generation and constitutes
_ R1
2 R1i
4RC # part
_ RMODEM.
2 R1i As a VCO, it can be used in Phase Locked Loop
the modulator
of#the
4
RC
The feedback loop is made up of a two-bit A/D converter (at ! Vss levels), also
(PLL). ItVcis a basic building block forming sigma delta converter. It can also be used
Vc
KVCO oscillator
for a Class D amplifier.
called Schmitt trigger, and an integrator. The circuit is also known
function
_1 a4RC
i $ _ R2 R1i as reference
f = as
df
generator and is shown in Figure 6.1. The output of the function generator
is
Vc $ R2
fl =
dVc KVCO
4 $ RC $ Vr $ R1
shown in Figure 6.2.
1
df l
f V
R
KVCO =
= 4RC $2V V = Vc Hz Volts
df
dV
c
1kHz
The function generator produces a square wave at the Schmitt Trigger output
and r 1
f = _1 4RC i $ _ R2 R1i
! Vss
10kHz dVc
a triangular
wave at the integrator output with the frequency of oscillation
equal
1
kHz
1V
to f = _1 4RC i $ _ R2 R1i . The function generator circuit can be converted as a linear
1
VCOf lby using
the
multiplier
integrator
combination
as
shown
in
Figure
6.3.
V $R
_R R i
= 4 $ RCc $ V2 $ R
4RC # 2 1
1kHz
r
1
V
c
df l
f
R2
KVCO =
Hz Volts
10kHz
dVc = 4RC $ Vr V1 = Vc
KVCO
f = _1 4RC i $ _ R2 R1i
df
VG
dVc
1kHz
1V
1
C
_R R i
4RC # 2 1
1kHz
Vc
10kHz
R
KVCO
U
1•U2
VF1
10
df
VF2
dVc
Figure 6.2: Function Generator Output
R1
U1 R2
1V
U2
1kHz
10kHz

6.2 Specifications

Figure 6.1: Function Generator

! Vss

f = _1 4RC i $ _ R2 R1i
Vc $ R2
fl =
4 $ RC $ Vr $ R1
df l
f
R2
KVCO =
Hz Volts
=
=
dVc 4RC $ Vr V1 Vc

The frequency of oscillation of the VCO becomes

page 40

Design of a function generator which can generate square and triangular wave for
a frequency of 1 kHz.
! Vss

f = _1 4RC i $ _ R2 R1i
Vc $ R2
fl =
4 $ RC $ Vr $ R1
df l
f
R2
K =
Hz Volts
Determine the frequency ofVCOoscillations
Vc triangular wave. Frequency of
RCsquare
$ Vr V1 =and
dVc = 4of
= _1 4RC i $ _ R2 R1i . Convert the function generator into a
oscillation should be equalfto
1kHz
Voltage Controlled Oscillator
(VCO) or FM/FSK generator also called “mod of modem.”
1
_R R i
4RC # 2 1
Analog System Lab Kit PRO
Vc
KVCO

6.3 Measurements to be taken

1

experiment 6

6.4 What should you submit

Notes on Experiment 6:

Simulate the circuits and obtain the Transient response of the system.
C
R2
R1

VC

R1

! Vss

2
3

f = _1 4RC i $ _ R2 R1i
Vc $ R2
fl =
4 $ RC $ Vr $ R1
df l
f
R2
K
Hz Oscillator
Volts
VCO = 6.3:
Figure
(VCO)
4RC $ Vr V1 = Vc
dVc =Voltage-Controlled
f = _1 4RC i $ _ R2 R1i
1
kHzof time response from oscilloscope and compare it with
Take the plots
1
simulation results.
_R R i
4RC # 2 1
Vc
Vary the control voltage of the VCO and see the effect on the frequency of
KVCO
the output waveform
also measure the sensitivity (KVCO) of the VCO which is
nothing but df . Use Table 6.1 to note your readings.
dVc
1V
1kHz
S.No.
Control Voltage (Vc)
Change in Frequency
10kHz
1
2
3
4
Table 6.1: Change in frequency as a function of Control Voltage

6.5 Exercise Set 6
Apply 1V, 1kHz square wave over 2V DC and observe the FSK for a VCO which is
designed for 10kHz frequency.

Analog System Lab Kit PRO

page 41

experiment 6

Notes on Experiment 6:

page 42

Analog System Lab Kit PRO

Chapter 7

Experiment 7
Design of a Phase Lock Loop (PLL)

Analog System Lab Kit PRO

page 43

Vc
Vc
V
dVc
~=
d~
dVc
~ = Vc c
4Vr $ RC
4Vr $ RC
4
$ RC
V
V
dV
c
rV$r RC
c
V
~=
d
V
~
c
~
= 4V $ cRC
d~
Vc
4Vr $ RC=
Vc
~c
~ dV
r
=
dVc Vr $ RC
dVc = Vr $ RC
dVc Vr $ RC
d~
Vc
d~
Vc
KVCO
Vc
Vc Vc
~
Vc ~ Vc
~ =
dVc = V~r $ RC
~=
dVc = Vr $ RC
4Vr $ RC
~0Q
~ Vc KVCO = ~ Vc
KVCO = no
~ Vc
c
Vc system oscillates~atVthe
VCO = ~ the
When
voltage is applied to the K
system,
free
d~
Vinput
c
=
V
~
CQ
Q
0
K
VCO = ~ Vc
~
0Qc
V
RC
$
dV
K
r
VCO
c
= ~ Vof
~
Q
0
with corresponding control voltage
running frequency of the VCO, given by
~CQ Vc
V
V
0
CQ
~
K
Q
0
VCO
V
~
Q
0
. If the input is applied to the system Vwith
the same frequency as
, the PLL
CQ
K0VCO continue
= ~ Vc to run
Vi V
V0 free running
VCQ at the
d~frequency
will
and the phase difference
V
VCQ between
0
dVc Vref is 0 (already explained in Experiment 5
~i 0Q two signals V0 and Vi as 90˚ since
the
V
V0
Vi Vc
~
= 4signal
of
Chapter
6).
As
the
frequency
of
input
will
Vref
CQ
r is changed, the control Vvoltage
Vref
Vi
V
RC
$
V
r
i
KV
# 2 # A0 # KVCO
pdref
change
correspondingly,
so
as
to
lock
the
output
frequency
to
the
input
frequency.
d~
Vc
V0
Vref
r
Vref
= V $ RC
K pd # r # A0 #
K pd a# result,
A there
KVCO is a change
dVKc VCO
K pdr # r # Abetween
0 # KVCO
As
difference
the two signals away
2 of phase
2 # 0#
Vi
2
r
r
K pd #of input
A KVCO ~ Vc for which output frequenciesKgets
A K
pd # locked
from 90˚. The range
2 # 0 #frequencies
2 # 0 # VCO
Vref
KVCO
Vc
~ system.
to the input is called the lock range
of=the
The lock range is defined as
K pd # r # A0 # KVCO on either side of ~0Q .
2
VCQ
V0

Goal of the experiment
The goal of this experiment is to make you aware of the functionality of
the Phase Lock Loop commonly referred to as PLL which is primarily used
for a frequency synthesizer in high frequency stable clock generators. From
a crystal of some kHz range, it is possible to generate waveform of GHz
frequency range using a PLL.

7.1 Brief theory and motivation

7.2 Specifications

Vi
V

V

ref
VI
Input Frequency r
ref K pd # 2
W(Input)

K pd #

C

V1
+

KVCO in experiment number 5 if we replace the
In the loop of self-tuned filter studied
Vi
Voltage Control Filter (VCF) with Voltage Control Oscillator (VCO) (discussed
in
KVCO
d~
Vref
VCO
experiment 6) then it becomes PLL as K
shown in Figure 7.1. The readerKwill
Design a PLL to get locked to frequency of 1 kHz.
d~benefit
dV
c VCO
K pd # r # A0 # KVCO
from viewing the recorded lecture at [22].
d~ dVc
U4
2
d~
VF3
K
VCO
Vc
dVc ~ =
Vc
C2
R4
~ =dVc
U4
4cVr $ RC
C
2
d
~
+
V
C1
R4 VF3
4=V
RC
~
The sensitivity of the PLL is given by K~VCO
and
,
r $Vis
c equal to
VG1
dVc , where =d~
4V=
r $ RCVc
4
V
r $ RC
+
Vc d~ dVc VV
C1
c r $ RC
d~ dd~~ VVcc
~=
= Vc $ RC
VG1
=
c =
U3
4Vr $ RCbut
dV
,
which
is
nothing
frequency of oscillation of VCO. Hence dV
r
c~ V
R5
RC
dVc dVc VrVVr$c$RC
R1
d~
Vc ~ VKc VCO = ~ Vc
U3
R5
~
= V $ RC
~ =Vc4Vr $ RC
R
1
dV
r
c
+
~ Vc
KVCO~=
~ Vc
V2
Q
0
+
dK~VCO = ~VcVc
~ Vc
U1
= V $ RC
+
~0Q VCQ (7.1)
r
c
V2
~=
KVCO~dV
V
~
0Q
K
c
VCO = ~ Vc
Vc
VCQ V0
VCQ
U1
~0Q
~0Q KVVCO = ~ Vc
V0 Vi
0
VCQ
~0Q Voltage
Vc Control
Vi Vref
V
i
V0
V
CQ V
CQ
Vref
(Output)
VrefR
Vi
K pd # r # A0 # KVCO
VO
V
0
2
V0
VCO
K pd # r # A0 # KVCO
r
2
VKi pd # 2 # A0 # KVCO Vref

+

VF2

VF2

V1

-

R2

R2
+

U2

U2
R3
R3

VF1

10.00

K pd # r # A0 # KVCO
2

KVCO
# A0 #Vref=0

5.00

r

A K
2 # 0 # VCO

Output

experiment 7

~
=
KVCO

0.00

-5.00

-10.00
0.00

20.00m

10.00m

30.00m

Time (s)

Figure 7.1: Phase Locked Loop (PLL) and its characteristics
page 44

Figure 7.2: Sample output waveform for the Phase Locked Loop (PLL) Experiment

Analog System Lab Kit PRO

VF1

1

Measure the lock range of the system and measure the change in the phase of
the output signal as input frequency is varied within the lock range.

2

Vary the input frequency and obtain the change in the control voltage and plot
the output. A sample output characteristic of the PLL is shown in Figure 7.2.

7.5 Exercise Set 7
Design a Frequency Synthesizer to generate a waveform of 1MHz frequency from a
100kHz crystal as shown in Figure 7.3.

7.4 What you should submit
1

Simulate the circuits and obtain the characteristics of the system.

2

Take the plots of characteristics from oscilloscope and compare it with
simulation results.

3

Measure the change in the phase of the output signal as input frequency is
varied within the lock range.

4

Vary the input frequency and obtain the change in the control voltage. Use
Table 7.2 to record your readings.

S.No.

Input Frequency

Figure 7.3: Block Diagram of Frequency Optimizer

Notes on Experiment 7:

Output Phase

1
2
3
4
Table 7.2: Control Voltage as a function of Input Frequency
S.No.

Input Frequency

Control Voltage

1
2
3
4
Table 7.1: Output Phase as a function of Input Frequency

Analog System Lab Kit PRO

page 45

experiment 7

7.3 Measurements to be taken

experiment 7

Notes on Experiment 7:

page 46

Analog System Lab Kit PRO

Chapter 8

Experiment 8
Automatic Gain Control (AGC) Automatic Volume
Control (AVC)

Analog System Lab Kit PRO

page 47

In the front-end electronics of a system, we may require that the gain of the
amplifier be adjustable, since the amplitude of the input keeps varying. Such
a system can be designed using feedback. This experiment demonstrates
one such system.

Transfer Characteristics - Plot the input versus output characteristics for the AGC/AVC.

8.4 What you should submit
1

Simulate the circuit of Figure 8.1 and obtain the Transfer Characteristic of the
system. Assume that the input comes from a function generator; use a sine
wave input of a single frequency.

2

Build the circuit shown on Figure 8.1. Plot/print the transfer characteristic
using the oscilloscope and compare it with simulation results.

8.1 Brief theory and motivation
The reader will benefit from the recorded lectures at [25]. Another useful reference
is the application note on Automatic Level Controller for Speech Signals using PID
Controllers [2].
In the signal chain of an electronic system, the output of the sensor can vary
depending on the strength of the input. To adapt to wide variations in the magnitude
of the input, we can design an amplifier whose gain can be adjusted dynamically.
This is possible when the input signal has a narrow bandwidth and the control
system is called Automatic Gain Control or AGC. Since we may wish to maintain the
output voltage of the amplifier at a constant level, we also use the term Automatic
Volume Control (AVC). Figure 8.1 shows an AGC circuit. The typical I/O characteristics
Vr Voutput
ref
of AGC/AVC circuit is shown in Figure 8.2. As shown in Figure 8.2, 2the
value
of the system remains constant at 2Vr Vref beyond input voltage Vpi = 2Vr Vref .
Vpi = 2Vr Vref

]

VI =Vpi•sinωt

]

VC
Vpi•sinωt
VR

VC

Figure 8.2: Input-Output Characteristics of AGC/AVC
S.No.

R

]

experiment 8

8.3 Measurements to be taken

Goal of the experiment

]

2

VC•Vpi 1
VR
VR

Input Voltage

Output Voltage

1
2

C
Vref=

2

3

VOP
2VR

4
Figure 8.1: Automatic Gain Control (AGC)/Automatic Volume Control (AVC)

8.2 Specification
Design AGC/AVC system to maintain the peak amplitude of the sine wave at 2V.
page 48

Table 8.1: Transfer characteristic of the AGC circuit

3

Plot the output as a function of input voltage. Enter sufficient number of
readings in Table 8.2. Does the output remain constant as the magnitude of
the input is increased? Beyond what value of the input voltage does the gain
begin to stabilize? We have included sample output waveform for the AGC
circuit in Figure 8.3.

Analog System Lab Kit PRO

+

C1

V2
U1

+
VG1

Notes on Experiment 8:

R4

VF2

experiment 8

R3

VF1

VXVY
10

U2

R1
R2

VXVY
10

V1

+

Figure 8.3: AGC circuit and its output

8.5 Exercise Set 8
Determine the lock range for the AGC, which is defined as the range of input values
for which output voltage remains constant.

Analog System Lab Kit PRO

page 49

experiment 8

Notes on Experiment 8:

page 50

Analog System Lab Kit PRO

Chapter 9

Experiment 9
DC-DC Converter

Analog System Lab Kit PRO

page 51

experiment 9

_1 _1 V-ref VrefVpiVpi
T =
2 2T =
T T
T =T 1= 1f f
Vp
Vav Vav
f
!
V
ss
V
!
V
ss
between
depending upon the value of ref . Hence circuit becomes SMPS system
Vp
where Vav V=av 1 _1 V V i
x
=V-ref V$ refVss$ VVssp .Vp
ref
p
=
f
T
2
x x
The goal of the experiment is to design a high-efficient DC-DC converter using
Vref Vref
T
T
V
T
If we replace LC filter with MOSFET, and apply audio input as ref to the comparator
a general purpose OP-Amp and a comparator and study its characteristics.
T T of the MOSFET amplified audio
x
T = 1 output
f
then
atxoutput
is obtained,
1 this is Class D
x
We also aim to study the characteristics of a DC-DC converter IC, and for
= 2 _1 - Vref Vpi
T
V
av
Power
Amplifier
operation.
this purpose we selected the wide-input non synchronous buck DC/DC
T
! Vss
controller TPS40200 from Texas Instruments. This IC is included in ASLK
T =1 f
PRO as evaluation module.
Vav = - Vref $ Vss Vp
Vav
x
Vref
! Vss
T
x T
Vp Vav = - Vref $ Vss Vp
Design a DC-DC converter which has 10 kHz oscillator whose ftriangular
wave output
x
Vref is connected to
with peak amplitude Vp is fed to a comparator whose otherVrefinput
T
x T
Vref (reference voltage).
1 1 V V
x
T = 2 _ - ref pi
T
The reader will benefit from viewing the recorded lecture at [24]. Also refer to the
application note, Design Considerations for Class-D Audio Power Amplifiers [15].
T =1 f
Vp
Vav
Vp
p
Vp
Function generator
is the basic block for DC-DC converter. VThe
triangular
output
f Vp
! Vss
Vp
f
f
f is fed to the
of the function
Vref f generator with peak amplitude Vp and frequency
Vav = - Vref $ Vss Vp
f
comparator
input is connected to the reference
voltage
Vref.
Vref
Vref
Vref The output
f
1 _1 other
x whose
V
ref
x
V
V
i
ref
p
of this comparator
is the
PWM
(Pulse width modulation)
waveform
cycle
Obtain the time response
system and plot Vref versus T Vref .
T =2 1whose
x
1 _the
x of
1duty
Vref
V_1x -=Vref
V
1
pi Vref Vpi
=
ref Vpi
=
1
_
1
x
T
T
2 T wave
T
2
1 V V
2 and is
is given by
1 1 xV T V
x
T = 2 _ - ref pi , where T is time xperiod
1 _1of triangular
V
V
T
p
ref Vpi T
=
T
T = 2 _ - ref pi
equal to T =T1 f . This duty cycle is directly proportional
T
2 to reference voltage Vref.
T
f
T = 1offTthe
T =1 f
f
T at the output
= 1comparator
If we connect
low-pass filter (LC filter)
Vav Tthe
f
= 1lossless
T =1 f
V
V
ref
as shown !inVFigure
9.1,
it
is
possible
to
get
stable
DC
voltage
Obtain
the
high
efficiency
versus Vav characteristics.
av withV
T =1 f
av
ssVav
Vav
1 1 !VVss V
x
! Vss
! Vss
Vav
Vav =
!VssVref $ Vss Vp
T = 2 _ - ref pi
! Vss
$ VVav = - Vref
Vav = - Vref $ Vss Vp
ss Vref
p $ Vss Vp
! Vss
av =
x Vav = - Vref $ Vss Vp
T
V
Vav = - Vref $ Vss Vp
T ref
x
Vav = - Vref $ Vxss VVrefp x V
V
T =1 f
ref
x Tx Vref
T
T ref
T
x
T
x
Vref
Vav
Vref
x T
x T
x T
T
T
x T
T
x
! Vss
x T
Vav = - Vref $ Vss Vp

Goal of the experiment

9.2 Specifications

9.1 Brief theory and motivation

9.3 Measurements to be taken

9.3.1 Time response

9.3.2 Transfer function

Function
Generator

x

+VSS
Vg

VO
-VSS

T

L
Vav
C

Vref

x T

RL

Vref

Figure 9.1: DC-DC Converter and PWM waveform
page 52

Analog System Lab Kit PRO

1
2
3
4

VF1

+

p

f time response and transfer characteristics
Simulate the circuits and obtain the
of the system.
Vref

VG1

R3

+

R1

VF2

U2

1 1 V Vi
x
- ref p
T = 2 _ and
Take the plots of transfer characteristics
time response from oscilloscope
Vp
T
and compare it with simulation results.
f
T =1 f
Plot the average output voltage Vav as a function of reference voltage Vref and
Vp
Vp
obtain the plot; the plot will be linear.
1 1 V V
x
! Vss
f
T = 2 _ - ref pi
f
Vav = - Vref $ Vss Vp
T the
Plot the duty cycle Vref as a function
of reference voltage Vref and obtain
x
Vrefincluded the typical output waveform
1 _1We V
plot, the plot will be xlinear.
have
TV
1 1 VT =V1off
x
T = 29.2- refx Tpi
T = 2 _ - Vrefav pi
the SMPS circuit in Figure
T
T
! Vss
T =1 f
= 1Vp f
S.No.
Reference Voltage
OutputTVoltage
Vav = - Vref $ Vss Vp
Vav
Vav f
x
V
1
! Vss
T ref
! Vss Vref
T
x
Vav = - Vref $ Vss Vp
Vav = x Vref 1$ Vss Vp
_1 - Vref Vpi
=
2
T
2
x
x
V
V
T ref
T ref T
3
x T
x T T =1 f
Vav
4
! Vss

L

R4

C1

R2

U1
V2

Figure 9.2: (a) SMPS Circuit (b) Output Waveforms

Vav =converter
- Vref $ Vss Vp
Table 9.1: Variation of output voltage with reference voltage in a DC-DC
x

S.No.

Reference Voltage

T

Vref

Duty Cycle x T

1
2
3
4
Table 9.2: Variation of duty cycle with reference voltage in a DC-DC converter

9.5 Exercise Set 9
Perform the same experiment with the specialized IC for DC-DC converter from
Texas Instrument TPS40200 and compare the characteristics of both systems.

Analog System Lab Kit PRO

page 53

experiment 9

9.4 What should Vyou submit

experiment 9

Notes on Experiment 9:

page 54

Analog System Lab Kit PRO

Chapter 10

Experiment 10
Design a Low Dropout (LDO) regulator

Analog System Lab Kit PRO

page 55

10.3 Measurements to be taken

experiment 10

Goal of the experiment
The goal of this experiment is to design a Low Dropout regulator using
general purpose OP-Amp and PMOS and study its characteristics with
extension to study characteristics of TPS7250 IC. We aim to design a
linear voltage regulator with high efficiency which is used in low noise high
efficiency applications.

1
2
3

10.1 Brief theory and motivation

dV
Measure the output impedance of the LDO, which is given by dI 0 . We have shown
0
the sample output of load regulation and line regulation in Figure 10.2.

S.No.

Reference Voltage

Output Voltage

1
2
3

+

LDO is used to produce regulated voltage for high efficiency low noise applications.
Please view the recorded lectures at [23] for a detailed description of voltage
regulators. In case of DC-DC converter switching takes place (as shown by PWM
waveform) and switching is a source of noise but in LDO no switching takes place
hence it is used as voltage regulator in low noise high efficient systems. As shown
in the circuit below LDO uses PMOS along with OP-Amp so that power dissipation in
OP-Amp is minimal and efficiency is high. The regulated output voltage is given by
V0 = Vref _1 + R2 R1i.
VUN
dV0 V0

4

V0 = Vref _1 +
R2 R1i the load regulation of the system. Load regulation
Output Characteristics
- Measure
is given by dV0 V0 when Io is varying from minimum to maximum value.
V0 = Vref _1 + R2 R1i
V0
dV
V1i0 the line regulation of the system. Line regulation
1
V
V
_
0
20 R
ref
=
+
Transfer Characteristics
-R
Measure
dV0
V
V
is given by dV
when
is
varying from minimum to maximum value.
dI0 0
0
V0
dV0
V0 = Vref _1 + R2 R1i
dI0 by applying the ripple input voltage and measuring
Measure thedVripple
rejection
0
dV0 V0
dI0 voltage.
the output ripple
V0

V0
dV0
dI0

4
Table 10.1: Variation of Load Regulation with Load Current in an LDO
R
Vref

R2 10k

R2

R1

VF1

R 10k

R6 10k

R2
VO = Vref [1+
]
R1
RL

Z1

R4 10k
+

R5 2k

V1
D1

Figure 10.1: Low Dropout Regulator (LDO)

R3 10k

10.2 Specifications
Generate 3V output when input voltage is varying from 4V to 5V.
page 56

Figure 10.2: A regulator circuit and its simulated
outputs - line regulation and load regulation

Analog System Lab Kit PRO

Input resistance (ohms)

Take the plots of output characteristics, transfer characteristics and ripple rejection
from the Oscilloscope and compare it with simulation results.

3

Obtain the Load Regulation - Vary the load such that load current varies and obtain
the output voltage, see the point till where output voltage remains constant.
After that output will fall as the load current increases.

4

Obtain the Ripple Rejection - Apply the input ripple voltage and see the output
ripple voltage, with the input ripple voltage output ripple voltage will rise.

5

Obtain the Line Regulation - Vary the input voltage and plot the output voltage as
a function of the input voltage. Until the input reaches a certain value, the output
voltage remains constant; after this point, the output voltage will rise as the input
voltage is increased.

6

Calculate the output impedance.
S.No.

Input Voltage

Line Regulation

Ripple Input Voltage

Ripple Output Voltage

1
2
3
4
S.No.
1
2
3
4

Input voltage (V)

10.4 What should you submit
1

Simulate the circuits and compute the output characteristics, transfer
characteristics, and ripple rejection.

Analog System Lab Kit PRO

Figure 10.3: Variation of Line Regulation with Input Voltage in an LDO

10.5 Exercise Set 10
Perform the same experiment with the specialized IC for LDO from Texas Instrument
TPS7250 and compare the characteristics of both systems.
page 57

experiment 10

2

experiment 10

Notes on Experiment 10:

page 58

Analog System Lab Kit PRO

Chapter 11

Experiment 11
To study the parameters of an LDO integrated circuit

Analog System Lab Kit PRO

page 59

The ASLK Pro kit includes an on-board voltage regulator evaluation module
TPS7250. The goal of this experiment is to study the parameters of the
Low Dropout Regulator (LDO) IC TPS7250 from Texas Instruments using
the on-board evaluation module.

The regulator can be enabled/disabled using the ON/OFF jumper JP7. The “Enable”
pin (EN) must never be left floating. Connecting a shorting jumper wire between pins
1 (GND) and pin 2 (EN) of JP7 enables the regulator. Connecting a jumper wire between
pins 2 (EN) and pin 3 (VIN) disables the regulator. Output voltage is available on screw
terminal CN4, or Vout pin header, and the typical load current is 200mA.

11.2 Specifications

11.1 Brief theory and motivation

To study the parameters (Line regulation, Load regulation) of LDO TPS7250 using the
on-board evaluation module.

TPS7250 evaluation module helps us evaluate the operation and performance of
the TPS7250 family of linear regulators. The linear regulator TPS7250 from Texas
Instruments is capable of 200mA output current at 5V fixed output voltage level.
It is a low quiescent current, low noise, high PSRR, fast start-up LDO with excellent
line and transient response. See Figure 11.1 for the schematic diagram of the
evaluation module.
The input supply voltage VIN is fed at screw terminal CN3 and falls in the range
5.5V to 11V. The leads to the input supply must be as short as possible and must
be twisted to reduce EMI transmission. The capacitor C102 improves the transient
response of the regulator. The capacitor C101 helps to reduce the ringing on input
when supply wires are too long.

11.3 Measurements to be taken
1

Obtain the Line Regulation: Vary the input voltage (from 5.5V to 11V in steps of
0.5V) and plot the output voltage as the function of the input voltage for a fixed
output load.

2

Obtain the Load Regulation: Vary the load (within the permissible limits) such that
load current varies and obtain the output voltage for a fixed input voltage.  Plot
the output voltage as function of the load current.

HD118

VOUT

R4
4K7

R101
247K
LD4

IC1
1
2
3
4

SENSE
PG
GND
EN

OUT
OUT
IN
IN

GND

C103
10uF

8

VCC+10

7

JP6

6
5

IN
C101
1u F

VOUT

HD117

REG IN

VIN

C102
100nF

GND
HD116

ENABLE

VIN

CN3

JP7

VIN 5.5 -10 V

OUT

OUT

VOUT 5 V
@250mA

CN4

TPS7250

experiment 11

Goal of the experiment

GND

OFF
ON

Figure 11.1: Schematic diagram of on-board evaluation module
page 60

Analog System Lab Kit PRO

1

Simulate the circuit using a simulator such as PSPICE Capture (version 15.7 or
higher) or Cadence 16.0. The typical characteristics will be of the form as shown
in Figure 11-2(a) and Figure 11-2(b).

2

Vary the input voltage for constant load and observe the output voltage. Use
Table 11-1 for taking the readings for line regulation.
S.No.

1.8032V

Input voltage (VIN)

Output voltage (VOUT)

1
2
3

1.8028V

VOUT

4
Table 11.1: Line regulation

1.8024V

3
1.8020V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

VIN

Vary the load so that load current varies; observe the output voltage for
constant input voltage. Use Table 11-2 for taking the readings for load
regulation.
S.No.

Load current (IOUT)

Output voltage(VOUT)

1

Figure 11.2(a): Line regulation

2

1.8040V

3
4
VOUT

Table 11-.2: Load regulation

1.8035V

1.8030V
21.5mA

30.0mA

40.0mA

50.0mA

60.0mA

70.0mA

IOUT

Figure 11.2(b): Load regulation

Analog System Lab Kit PRO

page 61

experiment 11

11.4 What should you submit?

experiment 11

Notes on Experiment 11:

page 62

Analog System Lab Kit PRO

Chapter 12

Experiment 12
To study the parameters of a DC-DC Converter using
on-board Evaluation module

Analog System Lab Kit PRO

page 63

experiment 12

Goal of the experiment

P–channel Power FET and Schottky diode to produce a low cost buck converter. The
regulated output of the EVM is resistance-selected and can be adjusted within the
limited range by making the changes in the feedback loop, as shown below.

The goal of the experiment is to configure the on-board evaluation module
TPS40200 on the ASLK PRO Kit as a switched mode power supply that
can provide a regulated output voltage of 5V or 3.3V for an input whose
range is 6V-15V.

Vout = Vref
b

Vref = 0.7V
R209
V =V b =
b
R209 + R207
V = 0.7V
Vout = Vin $ duty cycle
R
The feedback factor b =
can
be
by changing feedback resistance R209 to
R +changed
R
TP
205
adjust the output. ButVin =
ASLK
PRO,
we
do
V $ duty cycle not have the provision of changing R209.
We can therefore achieve
this
task by connecting an external resistance of suitable
TP
TP207 the ground.
value between the terminals TP8 and
TP
1MX
1MX
R
R209
TP
TP208
J
TP
J201
TP
TP203
R
C
TP204
R201
C213

12.1 Brief theory and motivation

ref

out
ref

The TPS40200 evaluation module included on ASLK PRO. Kit uses the TPS40200
non synchronous buck converter to provide a resistor-selected, 3.3V or 5V output that
delivers up to 2.5A from up to 16V input bus. See Figure 12-1 for a schematic diagram
of the EVM. The evaluation module operates from a single supply and uses the single

209

209

out

207

in

205
207

209

201

JP9
VIN

203

TP2

TP3
HD121

R201
100K

C203
220nF

RC

1

SS

2

COMP 3
R210
1M

4

C214
470nF

U4
RC
SS
COMP
FB

VDD
ISNS
DRV
GND

8

C205

R202
0.03

R203

204

201

1K

470pF

7

ISNS

6

DRV

R204

GATE

213

0E

5

Q101
FDC5614P

3

C208
100nF

TP4
HD126

DRAIN

C213
470pF

C204
220nF

R 205
100K

L201

TP6
HD124

FB

C206
4.7nF

TP8
HD123
JP8
3.3V
5V
R211
41K2

D201
MBRS340

VOUT

C202
68pF
R 206
25.5E

VOUT

CN6

33uH
C207
33pF

HD143

TP5
HD128

TP7
HD127

C209
330uF

C210
330uF

C211
10uF

C212
10uF

R3
4K7

VOUT
LD3

TP9
HD125

R207

R208

100K

49.9

R209
27K4

Figure 12.1: Schematic of the on-board EVM
page 64

Analog System Lab Kit PRO

VOUT 3.3V or 5V
@ 0.125 – 2.5A

C201
220uF

HD120

4

DC/DC IN

VIN

208

SRC

Vin

TP1
HD122

1
2
5
6

CN5

VCC+10

TPS40200

VIN 6 – 15V

HD142

The unregulated input is connected at screw terminal CN5. Output load is connected
to screw terminal at CN6.The switching
Vout = Vref waveform can be observed at the terminal
TP4.The evaluation module has a switching
frequency of 200 kHz. This frequency
b
is decided by the combination of R201 and C213. The duty cycle of thisVwaveform
Vref = 0.7V
Vout = ref
varies linearly with the input voltage for a constant output voltage, bas shown
Vref = 0.7V
below.
R209

b=

R209 + R207
Vout = Vin $ duty cycle
TP205

What should be the value of the external resistance to be connected between
TP8 and Ground to configure the evaluation module to generate regulated
output voltage of 5V?

2

Simulate the configured circuit using a simulator. The typical waveforms will
be of the form shown in Figure 12.2.

R209
R209 + R207
Vout = Vin $ duty cycle

12.2 Specifications

12.3

1

b=

TP205
TP207
The output ripple voltage can be measured across terminals TP5 and
TP7 by simply
M
X impedance,
1
placing the oscilloscope probes.
The
oscilloscope
must
be
set
for
TP207
AC coupling. The same terminals can be used for the measurement Rof209the regulated
1MX
output DC voltage using a voltmeter.
TP208
J201
R209
TP203
TP208
TP204
R201
J201
C213
In this experiment, we wish to study the line and load regulation for
the TPS40200
203
integrated circuit when it isTP
configured
to generate a 5V DC output.

TP204
R201
Measurements
C213

12.4 What should you submit?

1.00
TP3
0.00
20.00
TP4
-10.00
10.00
Vin
10.00
5.01
Vout
4.98
10.00m

to be taken

1

2

Obtain the Load Regulation: Vary the load (within the permissible limits) such
that load current varies and obtain the output voltage for constant input
voltage. Plot the output voltage as a function of the load current.

Analog System Lab Kit PRO

10.05m

10.07m

10.10m

Figure 12.2: Simulation waveforms - TP3 is the PWM waveform
and TP4 is the switching waveform

Configure the on board evaluation module to generate constant 5V DC output by
making the changes in the feedback path using the available terminals.
Obtain the Line Regulation: Vary the input voltage from 10V to 15V in steps
of 0.5V and plot the output voltage as the function of the input voltage for a
constant output load.

10.02m

3

Configure the on board evaluation module to generate a regulated output
voltage of 5V, and observe the waveforms mentioned in Figure 12.2 and
compare with the simulation results.

4

Vary the input voltage for a regulated output voltage of 5V and observe the
change in the duty cycle of the PWM waveform. Use Table 12.1 to record the
readings. Compare the readings with simulation results and plot the graph
between the input voltage and duty cycle. Is the plot linear?

page 65

experiment 12

What should be the value of the external
resistance for the regulated output of 5V?

experiment 12

S.No.

Input voltage (Vin)

Duty cycle

Notes on Experiment 12:

1
2
3
4
Table 12.1: Variation of the duty cycle of PWM waveform with input voltage

5

Vary the input voltage for a fixed load and observe the output voltage. Use
Table 12.2 for taking the readings for line regulation
S.No.

Input voltage (Vin)

Output voltage (Vout)

1
2
3
4
Table 12.2: Line regulation

6

Vary the load so that load current varies; observe the output voltage for a
fixed input voltage. Use Table 12.3 for taking the readings.
S.No.

Load current

Output voltage (Vout)

1
2
3
4
Table 12.3: Load regulation

page 66

Analog System Lab Kit PRO

Chapter 13

Experiment 13
Design of a Digitally Controlled Gain Stage Amplifier

Analog System Lab Kit PRO

page 67

experiment 13

13.2 Specifications

Goal of the experiment
The goal of the experiment is to design a negative feedback amplifier whose
gain is digitally controlled using a multiplying DAC.

13.1 Brief theory and motivation
More and more, we see the trend of using Digital Signal Processors and/or
Microcontrollers to control the behavior of the front-end signal conditioning circuits
in an instrumentation or RF system. Examples of such systems are Automatic Gain
Control system and Automatic Voltage Control systems. In this experiment, we will
demonstrate the use of a multiplying DAC to control the gain of a programmable gain
amplifier; we include an exercise at the end of this chapter to illustrate the use of a
microcontroller for controlling the gain of a programmable gain amplifier.
See Figure 13.1 for the circuit of an inverting amplifier; the gain of this amplifier
can be digitally controlled by changing the bit pattern presented to the input of the
multiplying DAC, DAC7821.

To study the variation in gain when the bit pattern applied to the input of the DAC is
changed.
_ A11 A10 ... A0i
Vout = Vin $ R2 $ 114096
R1
/ An 2 n

13.3 Measurements to be taken
0

R2

VIN

IOUT1
TL082

RFB

VDD

13.4 What should you submit?

GND

1

2
3

The circuit of Figure 13.1 cannot be directly simulated, since the macro-model for
DAC7821 is not available at the time of writing. For the purpose of simulation,
we will use the macro model of a different 12-bit DAC, the MV95308. Simulate
the circuit schematic shown in Figure 13.2, which is equivalent to the circuit
of Figure 13.1. Observe the output waveforms for different bit patterns. The
typical simulation waveforms are of the form shown in Figure 13.3.
Use the circuit shown in Figure 13.1 for practical implementation of the Digital
programmable gain stage amplifier.
Apply the sine wave of fixed amplitude and vary the bit pattern, as shown
in Table 13.1. Note the Peak to Peak amplitude of the output. Compare the
simulation results with the practical results.

R1
VOUT

TL082

Figure 13.1: Circuit for Digital Controlled Gain Stage Amplifier
Let the 12-bit input pattern to DAC be given by _ A11 A10 ... A0i. The expression for the
output voltage of the negative feedback amplifier
$ 114096
V is given
V $ R2 by
_ A11 A10 ... A0i out = in R1 /
An 2 n

Vout = Vin $ R2 $ 11V4096
R1 R R n
/ An 2

0

S.No.

BIT Pattern

1

100000000000

2

010000000000

3

001000000000

4

000100000000

in

2

0

page 68

Vin
R2 R1

1

0

Vin
R2 R1

DAC7821 VREF

IOUT2

0

Apply a 100 Hz sine waveVinof 100mV peak amplitude at Vin and measure the output
_ A11 A10 ... A0i and
voltage amplitude. Select R2 R1 to be 2.2. Vary the input bit
R2 pattern
R1
measure the amplitude of the output voltage.
Vout = Vin $ R2 $ 114096
R1
/ An 2 n

VDD
C1

_ A11 A10 ... A0i
Vout = Vin $ R2 $ 114096
R1
/ An 2 n

Peak to Peak Amplitude of the output

Table 13.1: Variation in output amplitude with bit pattern

Analog System Lab Kit PRO

+ V1
5V

+

E
0
1
2
A
3
RO
4
5
RI
6
7
8 GND
9
10
11
MV95308

V2
10V

+ V3
10V
J2

R4 1k
R2
R1

J1
TL082
J2

+
VIN

R3 1k

experiment 13

J1

J2
TL082

VOUT

J1

Figure 13.2: Equivalent Circuit for simulation

500.00m

Output

Amplitude(volts)

-500.00m
100.00m

Notes on Experiment 13:

Input

Amplitude(volts)

-100.00m

0.00

5.00m

10.00m
Time(s)

15.00m

20.00m

Figure 13.3: Simulation output of digitally controlled gain stage amplifier
when the input pattern for the DAC was selected to be 0x800

13.5 Exercise Set 13
Design a digitally programmable non-inverting amplifier whose gain varies
from 6.4 and above.

Analog System Lab Kit PRO

page 69

experiment 13

Notes on Experiment 13:

page 70

Analog System Lab Kit PRO

Chapter 14

Experiment 14
Design of a Digitally Programmable Square and
Triangular wave generator/oscillator

Analog System Lab Kit PRO

page 71

experiment 14

14.2 Specifications

Goal of the experiment
To design a digitally controlled oscillators where the oscillation frequency of
the output square and triangular wave forms is controlled by a binary pattern.
Such systems are useful in digital PLL and in FSK generation in a MODEM.

14.1 Brief theory and motivation
In Experiment 6, we used an analog multiplier in conjunction with an integrator to
build a VCO. In this experiment, we will use a multiplying DAC7821 (instead of a
multiplier) and an integrator to implement a digitally controlled square and triangular
wave generator. See Figure 14.1 for the circuit schematic of a digitally programmable
square and triangular wave generator. VOUT is the square wave output and the
output of the integrator is the triangular waveform.
VDD

C 1u
C1
IOUT1

R 1k

TL082

TL082

14.3 Measurements to be taken
Implement the Digitally programmable Square and Triangular wave generator using
the circuit as shown in Figure 14.1.Observe the frequency of Oscillations of system
and vary it by varying bit pattern input to the DAC.

14.4 What Should you Submit
1

VDD

RFB

DAC7821 VREF

IOUT2

GND

VOUT

TL082

Design a Digitally Programmable Oscillator that can generate square and triangular
waveforms with a maximum frequency of 400 Hz.

Simulate the circuit using any simulator and observe the frequency of oscillation
of the square and triangular waveforms. See Figure 14.2 for the result of
simulation. The typical simulation waveforms are of the form shown in Figure
14.3. For this simulation, we used the macro-model of MV95308 since the
macro-model for the DAC is not available at the time of writing.

2

Vary the bit pattern input to the DAC in manner specified in Table 14.1 and
note down the change in the frequency of oscillations and compare the
practical results with the simulation results.

3

Plot a graph where the x-axis shows the analog equivalent of the bit pattern
and the y-axis shows the frequency of oscillations. Note that the 12-bit input
to the DAC is interpreted as an unsigned number.

R2

R1

Figure 14.1: Circuit for Digital Controlled Oscillator
Frequency of oscillations of digital programmable oscillator is given by

S.No.

BIT Pattern

1

100000000000

2

010000000000

3

001000000000

4

000100000000

Peak to Peak Amplitude of the output

11

/A 2

1 $ 1 R2 $ 0
4RC b + R1 l 4096
Q = 10
n

f=

page 72

n

Table 14.1: Varying the bit pattern input to the DAC

Analog System Lab Kit PRO

+ V1

J1

5V

0
E
1
2
A
3
4
RO
5
6
RI
7
8 GND
9
10
11
MV95308

+ V2

10V

+ V3

10V

J2

R 1k

experiment 13

C 1u

V tri
R4 1k

J2

J2

TL082

TL082

J1

J1

R3 1k

J2
TL082

V squ

J1

R2
R1

Figure 14.2: Circuit for Simulation

10.00

Notes on Experiment 14:

V squ

-10.00
3.00
V tri

-3.00

0.00

25.00m

50.00m
Time(s)

75.00m

100.00m

Figure 14.3: Simulation Results

14.5 Exercise Set 14

11

/A 2

f = 1 $ b1 + R2 l $ 0
R1
4096
4RC
Design a digitally programmable band-pass filter with Q = 10 and gain of 1 at
the centre frequency.

Analog System Lab Kit PRO

n

n

page 73

experiment 14

Notes on Experiment 14:

page 74

Analog System Lab Kit PRO

Appendix A

ICs used in
ASLK PRO
Texas Instruments Analog ICs used in ASLK PRO

Analog System Lab Kit PRO

page 75

appendix A

TL082

JFET-Input Operational Amplifier
A.1.1 Features

A.1.2 Applications

A.1.4 Download Datasheet

• Low Power Consumption
• Wide Common-Mode and Differential Voltage Ranges
• Input Bias and Offset Currents
• Output Short-Circuit Protection
• Low Total Harmonic Distortion...0.003% Typ
• High Input Impedance...JFET-Input Stage
• Latch-Up-Free Operation
• High Slew Rate...13 V/μs Typ
• Common-Mode Input Voltage Range Includes VCC+

• Input Buffer
• High-Speed Integrators
• D/A Converters
• Sample And Hold Circuits

http://www.ti.com/lit/gpn/tl082

Figure A.1: TL082 - JFET-Input Operational Amplifier

A.1.3 Description
The TL08x JFET-input operational amplifier family
is designed to offer a wider selection than any
previously developed operational amplifier family.
Each of these JFET-input operational amplifiers
incorporates well-matched, high-voltage JFET

page 76

and bipolar transistors in a monolithic integrated
circuit. The devices feature high slew rates, low
input bias and offset currents, and low offset
voltage temperature coefficient. Offset adjustment
and external compensation options are available

within the TL08x family. The C-suffix devices are
characterized for operation from 0˚C to 70˚C. The
I-suffix devices are characterized for operation
from -40˚C to 85˚C. The Q-suffix devices are
characterized for operation from -40˚C to 125˚C.

Analog System Lab Kit PRO

Wide Bandwidth Analog Precision Multiplier

A.2.1 Features

A.2.2 Applications

A.2.4 Download Datasheet

• Wide Bandwidth: 10MHz Typ
• 0.5% Max Four-Quadrant Accuracy
• Internal Wide-Bandwidth Op Amp
• Easy To Use
• Low Cost

• Precision Analog Signal Processing
• Modulation And Demodulation
• Voltage-Controlled Amplifiers
• Video Signal Processing
• Voltage-Controlled Filters And Oscillators

http://www.ti.com/lit/gpn/mpy634

X Input
±10V FS
±12V PK
+15V
50kΩ

+VS

X2

O ut

MPY634

470k Ω

–15V
O ptional O ffset
Trim C ircuit

X1

SF

Z1

Y1

Z2

Y2

–VS

+15V

VO UT, ±12V PK
=

(X1 – X2) (Y1 – Y2)
10V

+ Z2

1kΩ

Y Input
±10V FS
±12V PK

–15V

O ptional
S umming
Input,
Z, ±10V PK

Figure A.2: MPY634 - Analog Multiplier

A.2.3 Description
The MPY634 is a wide bandwidth, high accuracy,
four-quadrant analog multiplier. Its accurately
laser-trimmed multiplier characteristics make it
easy to use in a wide variety of applications with
a minimum of external parts, often eliminating
all external trimming. Its differential X, Y, and Z
inputs allow configuration as a multiplier, squarer,

Analog System Lab Kit PRO

divider, square-rooter, and other functions while
maintaining high accuracy. The wide bandwidth
of this new design allows signal processing
at IF, RF, and video frequencies. The internal
output amplifier of the MPY634 reduces design
complexity compared to other high frequency
multipliers and balanced modulator circuits.

It is capable of performing frequency mixing,
balanced modulation, and demodulation with
excellent carrier rejection. An accurate internal
voltage reference provides precise setting of
the scale factor. The differential Z input allows
user-selected scale factors from 0.1 to 10 using
external feedback resistors.

page 77

appendix A

MPY634

appendix A

DAC 7821

12 Bit, Parallel, Multiplying DAC
A.3.1 Features
• 2.5V to 5.5V supply operation
• Fast Parallel Interface: 17ns Write Cycle
• Update Rate of 20.4MSPS
• 10MHz Multiplying Bandwidth
• 10V input
• Low Glitch Energy: 5nV-s
• Extended Temperature Range: -40˚C to +125˚C
• 20-Lead TSSOP Packages
• 12-Bit Monotonic
• 1LSB INL
• Read back Function
• Power-On Reset with Brownout Detection

• Industry-Standard Pin Configuration
• 4-Quadrant Multiplication

A.3.4 Download Datasheet
http://www.ti.com/lit/gpn/dac7821

A.3.2 Applications
• Portable Battery-Powered Instruments
• Analog Processing
• Waveform Generators
• Programmable Amplifiers and Attenuators
• Digitally Controlled Calibration
• Programmable Filters and Oscillators
• Composite Video
• Ultrasound

Figure A.3: DAC 7821 - Digital to Analog Converter

A.3.3 Description
The DAC7821 is a CMOS 12-bit current output
digital-to-analog converter (DAC). This device
operates from a single 2.5V to 5.5V power supply,
making it suitable for battery-powered and many
other applications. This DAC operates with a fast
parallel interface. Data read back allows the user

page 78

to read the contents of the DAC register via the DB
pins. On power-up, the internal register and latches
are filled with zeroes and the DAC outputs are at
zero scale. The DAC7821 offers excellent 4-quadrant
multiplication characteristics, with a large signal
multiplying and width of 10MHz. The applied

external reference input voltage (VREF) determines
the full-scale output current. An integrated feedback
resistor (RFB) provides temperature tracking and
full-scale voltage output when combined with an
external current-to-voltage precision amplifier. The
DAC7821 is available in a 20-lead TSSOP package.

Analog System Lab Kit PRO

A.4.1 Features
• Input Voltage Range 4.5 to 52 V
• Output Voltage (700 mV to 90% VIN)
• 200 mA Internal P-Channel FET Driver
• Voltage Feed-Forward Compensation
• Undervoltage Lockout
• Programmable Fixed Frequency (35-500 kHz)
Operation
• Programmable Short Circuit Protection
• Hiccup Overcurrent Fault Recovery
• Programmable Closed Loop Soft Start

Wide-Input, Non-Synchronous Buck DC/DC Controller
• 700 mV 1% Reference Voltage
• External Synchronization
• Small 8-Pin SOIC (D) and QFN (DRB) Packages

A.4.4 Download Datasheet
http://www.ti.com/lit/gpn/tps40200

A.4.2 Applications
• Industrial Control
• DSL/Cable Modems
• Distributed Power Systems
• Scanners
• Telecom

Figure A.4: TPS40200 - DC/DC Controller

A.4.3 Description
The TPS40200 is a flexible non-synchronous
controller with a built in 200-mA driver for P-channel
FETs. The circuit operates with inputs up to 52V with
a power-saving feature that turns off driver current
once the external FET has been fully turned on. This

Analog System Lab Kit PRO

feature extends the flexibility of the device, allowing
it to operate with an input voltage up to 52V without
dissipating excessive power. The circuit operates
with voltage-mode feedback and has feed-forward
input-voltage compensation that responds instantly

to input voltage change. The internal 700mV
reference is trimmed to 1%, providing the means to
accurately control low voltages. The TPS40200 is
available in an 8-pin SOIC, and supports many of the
features of more complex controllers.

page 79

appendix A

TPS40200

appendix A

TPS7250

Micropower Low-Dropout (LDO) Voltage Regulator
A.5.1 Features

A.5.2 Applications

A.5.4 Download Datasheet

• Available in 5-V, 4.85-V, 3.3-V, 3.0-V, and 2.5-V
Fixed-Output and Adjustable Versions
• Dropout Voltage <85 mV Max at IO = 100 mA
(TPS7250)
• Low Quiescent Current, Independent of Load, 180
mA Typ
• 8-Pin SOIC and 8-Pin TSSOP Package
• Output Regulated to ±2% Over Full Operating
Range for Fixed-Output Versions
• Extremely Low Sleep-State Current, 0.5 mA Max
• Power-Good (PG) Status Output

• Wireless Handsets
• Smart Phones, PDAs
• MP3 Players
• ZigBeeTM Networks
• BluetoothTM Devices
• Li-Ion Operated Handheld Products
• WLAN and Other PC Add-on Cards

http://www.ti.com/lit/gpn/tps7250

TPS7250
VI

0.1 F

5
6

4

IN
IN

PG
SENSE
OUT

EN

OUT
GND
3

2

PG

1

250 k

7

VO

8
+

CO
10 F

CSR = 1 

Figure A.5: TPS7250 -Micropower Low-Dropout (LDO) Voltage Regulator

A.5.3 Description
The TPS72xx family of low-dropout (LDO) voltage
regulators offers the benefits of low-dropout
voltage, micropower operation, and miniaturized
packaging. These regulators feature extremely low
dropout voltages and quiescent currents compared to
conventional LDO regulators. Offered in small-outline
integrated-circuit (SOIC) packages and 8-terminal
thin shrink small-outline (TSSOP), the TPS72xx

page 80

series devices are ideal for cost-sensitive designs
and for designs where board space is at a premium.
A combination of new circuit design and process
innovation has enabled the usual pnp pass transistor
to be replaced by a PMOS device. Because the PMOS
pass element behaves as a ue resistor, the dropout
voltage is very low – maximum of 85 mV at 100 mA
of load current (TPS7250) – and is directly proportional

to the load current. Since the PMOS pass element
is a voltage-driven device, the quiescent current is
very low (300 mA maximum) and is stable over the
entire range of output load current (0 mA to 250 mA).
Intended for use in portable systems such as laptops
and cellular phones, the low-dropout voltage and
micropower operation result in a significant increase
in system battery operating life.

Analog System Lab Kit PRO

Transistors

2N3906, 2N3904, BS250
A.6.1 2N3906 Features

A.6.3 2N3904 Features

A.6.5 BS250 Features

• PNP General Purpose Transistor
• Collector-Emiter Breakdown Voltage:
V(BR)CEO = 40V
• Collector-Base Breakdown Voltage:
V(BR)CBO = 40V
• hFE: 100 @ IC = 10mA DC, VCE = 1V DC
• Transition Frequency: f = 100MHz @ VCE = 20V DC,
IC = 10mA DC

• NPN General Purpose Transistor
• Collector-Emiter Breakdown Voltage:
V(BR)CEO = 40V
• Collector-Base Breakdown Voltage:
V(BR)CBO = 60V
• hFE: 100 @ IC = 10mA DC, VCE = 1V DC
• Transition Frequency: f = 100MHz @ VCE = 20V DC,
IC = 10mA DC

• P-CHANNEL ENHANCEMENT MODE VERTICAL
DMOS FET
• Drain-Source Voltage: VDS = -45V
• Continuous Drain Current ID = -230 mA
@ TAMB = 25°C
• Gate-Source Voltage: VGS = ±20 V
• Static Drain-Source on-State Resistance:
RDS(ON) = 14Ω @ VGS = -10V, ID = -200mA
• Gate-Source Threshold Voltage:
VGS(TH) Min -1V; Max: -3.5V @ ID=-1mA, VDS=VGS

E B

C

Figure A.6: 2N3906
PNP General Purpose Amplifier

E B

C

Figure A.7: 2N3906
NPN General Purpose Amplifier

DGS
Figure A.8: BS250
P-Channel Enhancement
Mode Vertical DMOS FET

A.6.2 Download Datasheet

A.6.4 Download Datasheet

A.6.6 Download Datasheet

http://61.222.192.61/mccsemi/
up_pdf/2N3906(TO-92).pdf

http://61.222.192.61/mccsemi/
up_pdf/2N3904(TO-92).pdf

http://www.diodes.com/datasheets/BS250P.pdf

Analog System Lab Kit PRO

page 81

DIODE

1N4448 Small Signal Diode

Figure A.9:
1N4448 Small Signal Diode

A.7.1 Features
• Breakdown Voltage: VR = 100V @ IR = 100μA
• Forward Voltage: VF = 620-720mV @ IF = 5mA
• Reverse Leakage: IR = 25uA @ VR = 20V
• Total Capacitance: CT = 4pF, VR = 0, f = 1MHz
• Reverse Recovery Time: tRR = 4nS @ IF = 10mA, VR = 6.0V, RL = 100Ω

A.7.2 Download Datasheet
http://www.fairchildsemi.com/ds/1N/1N914.pdf

page 82

Analog System Lab Kit PRO

Appendix B

Introduction to
Macromodels
Analog System Lab Kit PRO

page 83

appendix B

Simulation models are very useful in the design phase of an electronic system.
Before a system is actually built using real components, it is necessary to perform
a ‘software breadboarding’ exercise through simulation to verify the functionality
of the system and to measure its performance. If the system consists of several
building blocks B1, B2, ..., Bn, the simulator requires a mathematical representation
of each of these building blocks in order to predict the system performance. Let us
consider a very simple example of a passive component such as a resistor. Ohm’s law
can be used to model the resistor if we intend to use the resistor in a DC circuit. But
if the resistor is used in a high frequency application, we may have to think about
the parasitic inductances and capacitances associated with the resistor. Similarly,
the voltage and current may not have a strict linear relation due to the dependence
of the resistivity on temperature of operation, skin effect, and so on. This example
illustrates that there is no single model for an electronic component. Depending
on the application and the accuracy desired, we may have to use simpler or more
complex mathematical models.
We will use another example to illustrate the above point. The MOS transistor,
which is the building block of most integrated circuits today, is introduced at the
beginning of the course on VLSI design. In a digital circuit, the transistor may be
simply modeled as an ideal switch that can be turned on or off by controlling the
gate voltage. This model is sufficient if we are only interested in understanding
the functionality of the circuit. If we wish to analyze the speed of operation of the
circuit or the power dissipation in the circuit, we will need to model the parasitics
associated with the transistors. If the same transistor is used in an analog circuit,
the model that we use in the analysis would depend on the accuracy which we want
in the analysis. We may perform different kinds of analysis for an analog circuit DC analysis, transient analysis, and steady-state analysis. Simulators such as SPICE
require the user to specify the model for the transistor. There are many different
models available today for the MOS transistor, depending on the desired accuracy.
The level-1 model captures the dependence of the drain-to-source current on the
gate-to-source and drain-to-source voltages, the mobility of the majority carrier,
the width and length of the channel, and the gate oxide thickness. It also considers
non-idealities such as channel length modulation in the saturation region, and the
dependence of the threshold voltage on the source-to-bulk voltage. More complex
models for the transistor are available, which have more than 50 parameters.

B.1 Micromodels
If you have built an operational amplifier using transistors, a straight-forward way
to analyze the performance of the OP-Amp is to come up with the micromodel of the
OPAMAP, where each transistor is simply replaced with its corresponding simulation
model. Micromodels will lead to accurate simulation, but will prove computationally
page 84

intensive. As the number of nodes in the circuit increases, the memory requirement
will be higher and the convergence of the simulation can take longer.
A macromodel is a way to address the problem of space-time complexity mentioned
above. In today’s electronic systems we make use of analog circuits such as
operational amplifiers, data converters, PLL, VCO, voltage regulators, and so on.
The goal of the system designer is not only to get a functionally correct design,
but also to optimize the cost and performance of the system. The system-level
cost and performance depend on the way the building blocks B1, B2,..., Bn have
been implemented. For example, if B1 is an OP-Amp, we may have several choices
of operational amplifiers. Texas Instruments offers a large number of operational
amplifiers that a system designer can choose from. Refer to Table B.1. As you
will see, there are close to 2000 types of operational amplifiers available! These
are categorized into 17 different bins to make the selection simpler. However,
you will notice that 240 varieties are available in the category of Standard Linear
amplifers! How does a system designer select from this large collection? To
understand this, you must look at the characteristics of a standard linear amplifier
- these include the number of operational amplifiers in a single package, the
Gain Bandwidth Product of the amplifier, the CMRR, Vs (min), Vs (max), and so
on. See http://tinyurl.com/ti-std-linear. The website allows you to specify these
parameters and narrow your choices.
But how does one specify the parameters for the components? The overall
system performance will depend on the way the parameters for the individual
components have been selected. For example, the gain-bandwidth product of an
operational amplifier B1 will influence a system-level parameter such as the noise
immunity or stability. If one has n components in the system, and there are m
choices for each component, there are m·n possible system configurations. Even
if we are able to narrow the choices through some other considerations, we may
still have to evaluate several system configurations. Performing simulations using
micromodels will be a painstaking and non-productive way of selecting system
configurations.

B.2 Macromodels
A macromodel is a mathematical convenience that helps to reduce simulation
complexity. The idea is to replace the actual circuit by something that is simpler,
but is nearly equivalent in terms of input characteristics, output characteristics, and
feedforward characteristics. Simulation of a complete system becomes much more
simple when we use macromodels for the blocks. Manufacturers of semiconductors
provide macromodels for their products to help system designers in the process of
system configuration selection. The macromodels can be loaded into a simulator.   

Analog System Lab Kit PRO

Number of Varieties

1

Standard Linear Amplifier

240

2

Fully Differential Amplifier

28

3

Voltage Feedback

68

4

Current Feedback

47

5

Rail to Rail

14

6

JFET/CMOS

23

7

DSL/Power Line

19

8

Precision Amplifier

641

9

Low Power

144

10

High Speed Amplifier (≥50MHz)

182

11

Low Input Bias Current/FET Input

38

12

Low Noise

69

13

Wide Bandwidth

175

14

Low Offset Voltage

121

15

High Voltage

16

High Output Current

54

17

LCD Gamma Buffer

22

appendix B

Characteristic

Notes on Appendix B:

4

Table B.1: Operational Amplifiers available from Texas Instruments
As you can guess, there is no single macromodel for an IC. A number of macromodels
can be derived, based on the level of accuracy desired and the computational
complexity that one can afford. A recommended design methodology is to start
with a simple macromodel for the system components and simulate the system. A
stepwise refinement procedure may be adopted and more accurate models can be
used for selected components when the results are not satisfactory.

Analog System Lab Kit PRO

page 85

appendix B

Notes on Appendix B:

page 86

Analog System Lab Kit PRO

Appendix C

Activity
Convert your PC/laptop into
an Oscilloscope

Analog System Lab Kit PRO

page 87

appendix C

C.1 Introduction
In any analog lab, an oscilloscope is required to display
waveforms at different points in the circuit under
construction in order to verify circuit operation and, if
necessary, redesign the circuit. High-end oscilloscopes
are needed for measurements and characterization
in labs. Today, solutions are available to students for
converting a PC into an oscilloscope. These solutions
require some additional hardware to route the analog
signals to the PC for observation; they also require
software that provides the graphical user interface to
convert a PC display into an oscilloscope. Since most
students have access to a PC or laptop today, we have
designed the Analog System Lab such that a PC-based
oscilloscope solution can be used along with ASLK
PRO. We believe this will reduce the dependence of

the student on a full-edged lab. In this chapter, we
will review a solution for a PC-based oscilloscope. The
components on the ASLK PRO can be used to build
the interface circuit needed to convert the PC into an
oscilloscope.
One of the solutions for a “PC oscilloscope” is Zelscope
[33] which works on personal computers running
Microsoft Windows XP. The hardware requirements for
the PC are modest (300+ MHz clock, 64+ MB memory).
It uses the sound card in the PC for converting the
analog signals into digital form. The Zelscope software,
which requires about 1 MB space, is capable of using
the digitized signal to display waveforms as well as
the frequency spectrum of the analog signal. At the
‘line in’ jack of the sound card, the typical voltage

should be about 1 volt AC; hence it is essential to
protect the sound card from over voltages. A buffer
amplifier circuit is required to protect the sound card
from overvoltages. Two copies of such a circuit are
needed to implement a dual-channel oscilloscope. The
buffer amplifier circuit is shown in Figure C.1 and has
been borrowed from [32].

Limitations
• Not possible to display DC voltages (due to input
capacitor of sound card blocks DC)
• Low frequency range (10 Hz-20 kHz)
• Measurement is not very accurate

+12V

BNC

R2
47k 1/2W

C1
0.1uF

C3
100pF
R1
1M

Zin=1M
IVinl<150V

D1
1N914

TI082

C2
20pF

D2
1N914
R4
3k

R3
4.7k

D3
1N914

IVoutl<12V

RS
27k

R6
100k

RCA

S1

-12V

Figure C.1:
Buffer circuit
needed to
interface an
Analog Signal
to Oscilloscope

page 88

Analog System Lab Kit PRO

Appendix D

Connection
diagrams
Analog System Lab Kit PRO

page 89

appendix D

OP AMP TYPE I - A - INVERTING

OP AMP TYPE I - B - INVERTING

HD21

R15

HD21

R15

R25

HD25

R25

HD25

R15

10K

R15

10K

10K

R25

10K

R25

HD19

R14

HD19 C14

R14HD20

HD7

R24

HD7

R14

4K7

R14

1uF

4K7 C14

1uF

R24

4K7

R24

HD17

R13

HD17 C13

R13HD18

HD6 R23

C23

HD5

R23

HD5

R13

2K2

R13

2K2 C13

C23 2K2

0.1uF R23

2K2

R23

HD15

R12

HD15 C12

R12HD16

HD4 R22

C22

R22

HD3

R12

1K

R12

1K

C22 1K

0.1uF R22

1K

R22

HD13

R11

HD13 C11

R11HD14

HD2 R21

C21

R21

HD1

R11

1K

R11

1K

C21 1K

0.01uFR21

1K

R21

0.1uF

0.1uF

0.01uF

C14

HD11
HD9

OP1A INGND

HD11
HD9

0.1uF
2
OP1A IN3
GND
C20

HD18

HD6

C23

C13

C23

0.1uF

HD16

HD4

C22

C12

C22

0.1uF

HD14

HD2

C21

C11

C21

0.01uF

VCC+10
HD10

HD119

HD119

+10V

0.1uF

+10V

+10V

+10V

2
HD23
3
OP1A OUT

HD12
-10V

OPAMP1A
HD26
1
OP1

C20
0.1uF
VCC-10

OPAMP1B
HD23
7

OP1B OUT
OP1A OUT
HD12
-10V

OP1

6
HD26
5
OP1B OUT

OPAMP1B
7
OP1

HD181

HD181

-10V

-10V
VCC-10

HD3

HD1

VCC+10

HD10

Figure D.1: OP-Amp 1A connected in Inverting Configuration

page 90

VCC+10

C10

OP1

VCC-10

C13

0.01uF

OPAMP1A
1

0.1uF

1uF

C11

C11

C24 4K7

C24

0.1uF

C24

HD8 R24

C14

C12

C12

C24

HD8

1uF

0.1uF

VCC+10
C10

HD20

HD24
6
HD22
5

OP1B INGND

HD24
HD22

OP1B INGND

VCC-10

Figure D.2: OP-Amp 1B connected in inverting configuration

Analog System Lab Kit PRO

OP AMP TYPE II - B - FULL

HD41

R35

HD41

R35

R45

HD63

R45

HD63

R35

1K

R35

1K

1K

R45

1K

R45

HD45

R34

HD45

R34

R44

HD65

R44

HD65

R34

2K2

R34

2K2

2K2

R44

2K2

R44

HD44

R33

C33 HD44

R43

HD57

R33

10K

R33
0.01uF

10K

R43

HD42

R32

C32 HD42

R42

HD56

R32

4K7

0.1uFR32

4K7

R42

HD40

R31

C31 HD40

R41

HD55

R31

1K

1uF R31

1K

R41

HD43

R33

C33

10K

HD47

R32

C32

4K7

HD46

R31

C33

C32

HD38
HD36

0.1uF
2
OP2A INOP2A IN+

C31

HD46
HD58

C41

1uF

C31
C41

1uF

C34 HD35

R36

1K

1uF R36

HD31

R37

C35 HD31

R37

10K

0.1uFR37

HD32

R38

C36 HD32

R38

2K2

0.1uFR38

C43

R42

HD66

4K7

C42

R41

HD58

1K

C41

+10V

0.1uF

+10V +10V

+10V

HD52
OP2A OUT

HD39
-10V

2
HD62

3
OP2B OUT
OP2

HD180HD39

0.1uF

-10V

R36

C34

1K

HD30

R37

C35

10K

HD34

R38

C36

2K2

C34

VCC-10

C34C44

1uF

C35

HD30
HD48

C45

C36
0.1uF

HD34
HD50
C36C46

HD55

C41

R41

1uF

HD53
HD51

OP2B INOP2B IN+

VCC-10

HD54

1uF

C35C45

0.1uF

-10V

C44

0.1uF

R42

C42

HD180

HD33
HD60

GND

HD56

0.01uF

HD62

-10V

VCC-10

R43

C43

HD53
OPAMP2B
6
OP2B IN7
HD51
5
OP2B OUT
OP2 OP2B IN+

6
HD52

5
OP2 OP2A OUT

C40

HD54
HD33

OPAMP2B
OPAMP2A
1
7

HD57

VCC+10

VCC+10
HD183

Figure D.3: OP-Amp 2A can be used in both inverting
and non-inverting configuration

Analog System Lab Kit PRO

10K

HD183HD37

VCC-10
R36

0.1uF

HD64

HD37

0.1uF

HD35

C32
C42

VCC+10

C40

C42

R43

C30

OPAMP2A
HD38
1
OP2A INHD36
OP2
OP2A IN+

3

0.01uF

HD47
HD66

0.1uF

VCC+10
C30

C33
C43

0.01uF

1K

C31

C43

HD43
HD64

appendix D

OP AMP TYPE II - A - FULL

GND

0.1uF
C46
0.1uF

R46

HD60

1K

C44

R47

HD48

10K

C45

R48

HD50

2K2

C46

HD61

C44

R46

1uF

HD59

C45

R47
HD49
R48

0.1uF
C46
0.1uF

R46

HD61

1K

R46

R47

HD59

10K

R47

R48

HD49

2K2

R48

Figure D.4: OP-Amp 2B can be used in both inverting
and non-inverting configuration

page 91

appendix D

OP AMP TYPE III - A - BASIC

ANALOG MULTIPLIER - SET I

VCC+10

HD70
HD69

C59

HD67

0.1uF

+10V

2
OP3A IN-

OPAMP3A
1

3

OP3A OUT

OP3

OP3A IN+
C58

HD72

HD68
-10V

0.1uF
VCC-10

HD75

VCC+10

VCC+10
HD90

GND

VCC+10
VCC+10
C59

HD67
HD179

+10V
+10V gain configuration
Figure D.5: OP-Amp 3A can
be used in unity
0.1uF
or any other26 custom
configuration
OPAMP3A
OPAMP3B
HD70
HD73
HD69
HD71

OP3A
INOP3B INOP3A
IN+
OP3B IN+

C71
100nF

HD68
OP AMP TYPE III - HD182
B
- BASIC
-10V
-10V
HD75
GND

HD84
HD83

2

HD82

4
5

HD85

C72
100nF

U1
1

3

VCC-10

-10V

VCC+10

X2

GND

C58

VCC-10
VCC-10

X1

SF

OP3A
OUT
OP3B OUT

OP3
OP3

0.1uF

HD86

HD72
HD74

1
7

3
5

+10V

Y1
Y2

HD81
HD80

VCC

6
7

X1

+VS

X2

NC

NC

OUT

SF

MPY634

Z1

NC

Z2

Y1

NC

Y2

-VS

14

C81
100nF

13
12
11
10

HD89
HD88
HD87

OUT
Z1
Z2

9
8

C82
100nF
VCC-10

HD179
+10V
HD73
HD71

6
OP3B INOP3B IN+

5

OPAMP3B
7

HD74
OP3B OUT

OP3
HD182
-10V
VCC-10

Figure D.6: OP-Amp 3B can be used in unity gain configuration
or any other custom configuration

page 92

VC

Figure D.7: Connections for analog multiplier MPY634 - SET I

Analog System Lab Kit PRO

VCC+10
VCC+10

0

89
HD89

88
HD88

87
HD87

VCC+10
VCC+10

HD106
HD106
+10V
+10V
C81C81
100nF
100nF

HD93
HD93
GND
GND

OUT
OUT
Z1 Z1
Z2 Z2

HD96
HD96
X1 X1
HD95
HD95
X2 X2
HD94
HD94
SF SF

-10V
-10V
C82C82
100nF
100nF

2 2

4 4
5 5

HD92
HD92
Y1 Y1
HD91
HD91
Y2 Y2

6 6
7 7

X1 X1

+VS+VS

X2 X2

NC NC

NC NC

OUT
OUT

12 12

MPY634
MPY634Z1 Z1 11 11
Z2 Z2

Y1 Y1

NC NC

Y2 Y2

-VS-VS

C91C91
100nF
100nF

13 13

SF SF

NC NC

+10V
+10V

14 14

10 10

HD103
HD103
OUT
OUT
HD101
HD101
Z1 Z1
HD100
HD100
Z2 Z2

8 8

HD108
HD108
GND
GND

HD105
HD105
X1 X1
HD104
HD104
X2 X2

HD107
HD107
-10V
-10V
C92C92
100nF
100nF

U3 U3
1 1
2 2
3 3

HD102
HD102
SF SF

VCC-10
VCC-10

9 9

Figure D.8: Connections for analog multiplier MPY634 - SET II

Analog System Lab Kit PRO

VCC+10
VCC+10

HD112
HD112

VCC-10
VCC-10

0

VCC+10
VCC+10

U2 U2
1 1

3 3

VCC-10
VCC-10
HD97
HD97

ANALOG MULTIPLIER - SET III

appendix D

ANALOG MULTIPLIER - SET II

4 4
5 5

HD99
HD99
Y1 Y1
HD98
HD98
Y2 Y2

6 6
7 7

X1 X1

+VS+VS

X2 X2

NC NC

NC NC

OUT
OUT

14 14
13 13
12 12

MPY634
MPY634Z1 Z1 11 11

SF SF

NC NC

Z2 Z2

Y1 Y1

NC NC

Y2 Y2

-VS-VS

10 10

HD111
HD111
OUT
OUT
HD110
HD110
Z1 Z1
HD109
HD109
Z2 Z2

9 9
8 8

VCC-10
VCC-10

Figure D.9: Connections for analog multiplier MPY634 - SET III

page 93

appendix D

DAC I

VCC+5

HD137

JP3

CS

VCC+5

DA1
CS A

T1

IOUT1
C51
100nF

DBA11
DBA10
DBA9
DBA8
DBA7
DBA6
DBA5
DBA4
DBA3
DBA2
DBA1
DBA0

DC/DC VOUT

R51
10K

DBA11
DBA10
DBA9
DBA8
DBA7
DBA6
DBA5
DBA4
DBA3
DBA2
DBA1
DBA0

HD144

IOUT2

HD153
HD151

1
2
3

DBA11

4

DBA10

5

DBA9

6

DBA8

7

DBA7

8

DBA6

9

DBA5

10

IOUT1

RFB

IOUT2

VREF

GND

VDD

DB11

R/W

DB10

CS

DB9

DAC7821

DB0

DB8

DB1

DB7

DB2

DB6

DB3

DB5

DB4

20
19

VCC+5
HD171
HD169

VREF
HD184

17
16

CS A

15

DBA0

14

DBA1

13

DBA2

12

DBA3

11

DBA4

R/W
R54
10k

HD145

VCC+10

220R

SW1

HD176

+1 2 3 4

+10V
HD136

_

R52

CS

18

+ 1 2 3 4 5 6 7 8 9 10 11 12

VCC+5

HD138

C52
100nF

RFB

DBB11
DBB10
DBB9
DBB8

OUT

DBB11
DBB10
DBB9
DBB8

LDO

VCC+5

VCC-10
R53
220R

GND
HD175

VCC+5

-10V

Figure D.10: connections for analog-to-digital converter DAC7821 - DAC I

page 94

Analog System Lab Kit PRO

_

R62
220R

SW2

HD138

C52
100nF

RFB
VREF

R61
10K

CS

CS B
T2

IOUT1
C61
100nF

HD184
R/W
R54
10k

HD145

VCC+10

HD176

GND
HD175
-10V

IOUT2

HD154
HD152

1
2
3

DBB11

4

DBB10

5

DBB9

6

DBB8

7

DBB7

8

DBB6

9

DBB5

10

appendix D

IOUT1

RFB

IOUT2

VREF

GND

VDD

DB11

R/W

DB10

CS

DB9

DAC7821

DB0

DB8

DB1

DB7

DB2

DB6

DB3

DB5

DB4

20
19

VCC+5
HD172
HD170

C62
100nF

RFB
VREF

18
HD185

17
16

CS B

15

DBB0

14

DBB1

13

DBB2

12

DBB3

11

DBB4

R/W
R64
10k

VCC+10

+ 1 2 3 4 5 6 7 8 9 10 11 12

+10V
HD136
VCC-10

VCC+5

DA2

DBB11
DBB10
DBB9
DBB8
DBB7
DBB6
DBB5
DBB4
DBB3
DBB2
DBB1
DBB0

9

VCC+5
VCC+5

DBB11
DBB10
DBB9
DBB8
DBB7
DBB6
DBB5
DBB4
DBB3
DBB2
DBB1
DBB0

1

DAC II

VCC+5

+10V
HD135

_

R62

SW2

220R

HD178

VCC-10
R63
220R

GND
HD177
-10V

Figure D.11: connections for analog-to-digital converter DAC7821 - DAC II

Analog System Lab Kit PRO

page 95

appendix D

DC/DC CONVERTER

VCC+10

TP1
HD122
JP9
VIN

TP2

TP3
HD121

R201
100K

C203
220nF

RC

1

SS

2

COMP 3
R210
1M

4

C214
470nF

U4
RC
SS
COMP
FB

VDD
ISNS
DRV
GND

8

C205

R202
0.03

R203
1K

470pF

7

ISNS

6

DRV

R204

GATE

Q101
FDC5614P

3

0E

5
C208
100nF

TP4
HD126

DRAIN

C213
470pF

C204
220nF

R205
100K

CN6

L201

VOUT

33uH
C207
33pF
TP6
HD124

FB

C206
4.7nF

TP8
HD123

C202
68pF
R206
25.5E

TP7

C209
330uF

C210
330uF

HD127

C211
10uF

C212
10uF

R3
4K7

VOUT

VOUT

LD3

TP9
HD125

JP8
3.3V

R207

R208

5V

100K

49.9

R211
41K2

D201
MBRS340

HD143

TP5
HD128

VOUT 3.3V or 5V
@ 0.125 – 2.5A

C201
220uF

HD120
VIN

SRC

DC/DC IN

4

CN5

1
2
5
6

VIN 6 – 15V

Vin

TPS40200

HD142

R209
27K4

Figure D.12: Connections for TPS40200 Evaluation step-down DC/DC converter

page 96

Analog System Lab Kit PRO

HD118

appendix D

LDO REGULATOR
VOUT

R101
247K

1
2

LD4

3
4

SENSE
PG
GND
EN

TPS7250

R4
4K7

IC1
OUT
OUT
IN
IN

GND

C103
10uF

8

VOUT

VCC+10

7

HD117

JP6

6

IN

5

C101
1uF

VIN

CN3
REG IN

VIN

C102
100nF

GND
HD116
JP7

ENABLE

VIN 5.5 -10 V

OUT

OUT

VOUT 5 V
@250mA

CN4

GND

OFF
ON

Figure D.13: Connections for TP7250 low-dropout linear voltage regulator

TRANSISTOR SOCKET (MOSFET)

TRANSISTOR SOCKET (BJT)

HD141B
HD115B
COLLECTOR
DRAIN

HD113B
SOURCE

Figure D.14: MOSFET socket

Analog System Lab Kit PRO

BASE
GATE

C

HD139B
HD113B
EMITTER
SOURCE

HD140B

2

TRANSISTOR
SOCKET
MOSFET SOCKET

B
BASE

1

TRANSISTOR SOCKET

3

BG 11

E

S

GATE

HD140B
HD114B

2
2

MOSFET SOCKET

3
3

1
3

G

E
S

2

HD114B

HD141B
COLLECTOR

C
D

D

HD115B
DRAIN

HD139B
EMITTER

Figure D.15: Bipolar Junction Transistor socket

page 97

appendix D

DIODES

TRIMMERS

VCC+10
HD76B

HD78B

D2

D2A

D2K

HD77B

HD79B

D1

D1A

D1K

Figure D.16: Diode sockets

POWER SUPPLY
CN1
VCC+10

VCC+10

HD131

HD133

+10V

-10V

HD132
S1

P1
1K

P2
1K

HD134
S2

HD129

HD130

GND

GND

Figure D.17: Trimmer-potentiometers

GENERAL PURPOSE AREA

HD29
+10V
HD28

+10V
CN2

GND

VCC-10

VCC-10

-10V
VCC+10

VCC-10

HD27
-10V

R1
6K8

LD1

R2
6K8

LD2

Figure D.18: Main power supply

page 98

VCC-10

Figure D.19: General purpose area (2.54mm / 100mills pad spacing)

Analog System Lab Kit PRO

Bibliography
List of references and related articles for
further reading

Analog System Lab Kit PRO

page 99

Bibliography 1 of 2
[01]	ADCPro (TM) - Analog to Digital Conversion Evaluation Software. Free. Available from http://focus.ti.com/docs/toolsw/folders/print/adcpro.html
[02]	F. Archibald. Automatic Level Controller for Speech Signals Using PID Controllers. Application Notes from Texas Instruments.
Available from http://focus.ti.com/lit/wp/spraaj4/spraaj4.pdf
[03]

High-Performance Analog. Available from www.ti.com/analog

[04]	Wide Bandwidth Precision Analog Multiplier MPY634, Burr Brown Products from Texas Instruments,
Available from http://focus.ti.com/lit/ds/sbfs017a/sbfs017a.pdf
[05]

B. Carter and T. Brown. Handbook Of Operational Amplifier Applications. Texas Instruments Application Report. 2001.
Available from http://focus.ti.com/lit/an/sboa092a/sboa092a.pdf

[06]

B. Carter. Op Amp and Comparators - Don’t Confuse Them! Texas Instruments Application Report, 2001.
Available from http://tinyurl.com/carteropamp-comp

[07]

B. Carter. Filter Design in Thirty Seconds. Application Report from Texas Instruments. Downloadable from http://focus.ti.com/lit/an/sloa093/sloa093.pdf

[08]

B. Carter and R. Mancini. OPAMPS For Everyone. Elsevier Science Publishers, 2009.

[09]	FilterPro (TM) - Active Filter Design Application. Free software. Available from http://tinyurl.com/lterpro-download
[10]	Thomas Kuehl and Faisal Ali. Active Filter Synthesis Made Easy With FilterPro V3.0. Tutorial presented in TI Technology Days 2010 (May), USA.
Available from http://www.ti.com/ww/en/techdays/2010/index.shtml.
[11]	J. Molina. DESIGN A 60Hz NOTCH FILTER WITH THE UAF42. Application note from Burr-Brown (Texas Instruments), 2000.
Available from http://focus.ti.com/lit/an/sbfa012/sbfa012.pdf
[12]	J. Molina. DIGITALLY PROGRAMMABLE, TIME-CONTINUOUS ACTIVE FILTER, 2000.
Application note from Burr-Brown (Texas Instruments), http://focus.ti.com/lit/an/sbfa005/sbfa005.pdf
[13]

George S. Moschytz. From Printed Circuit Boards to Systems-on-a-chip. IEEE Circuits and Systems magazine, Vol 10, Number 2, 2010.

[14]

Phase-locked loop. Wikipedia entry. http://en.wikipedia.org/wiki/Phaselocked loop

[15]

R. Palmer. Design Considerations for Class-D Audio Amplifiers. Application Note from Texas Instruments.
Available from http://focus.ti.com/lit/an/sloa031/sloa031.pdf

[16]	K.R.K. Rao. Electronics for Analog Signal Processing - Part II. OPAmp in Negative Feedback.
Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptel-lec7 and http://tinyurl.com/krkrao-nptel-lec8

page 100

Analog System Lab Kit PRO

Bibliography 2 of 2
[17]	K.R.K. Rao. Electronics for Analog Signal Processing - Part II. Frequency Compensation in Negative Feedback.
Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptel-lec16 and http://tinyurl.com/krkraonptel-lec17
[18]

K.R.K. Rao. Electronics for Analog Signal Processing - Part II. Instrumentation Amplifier.
Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptel-lec11

[19]	K.R.K. Rao. Electronics for Analog Signal Processing - Part II. Active Filters.
Recorded lecture available through NPTEL. http://tinyurl.com/krkraonptel-lec12
[20]	K.R.K. Rao. Electronics for Analog Signal Processing - Part II. Positive Feedback (Regenerative).
Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptel-lec9
[21]

K.R.K. Rao. Analog ICs. Self-Tuned Filter. Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptel-ic-lec23

[22]	K.R.K. Rao. Analog ICs. Phase Locked Loop. Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptelic-lec24,
http://tinyurl.com/krkrao-nptel-ic-lec25, http://tinyurl.com/krkraonptel-ic-lec26, and http:// tinyurl.com/krkrao-nptel-ic-lec27
[23]	K.R.K. Rao. Electronics for Analog Signal Processing - Part II. Voltage Regulators. Recorded lecture available through NPTEL.
http://tinyurl.com/krkrao-nptel-26, http://tinyurl.com/krkrao-nptel-27, and http:// tinyurl.com/krkrao-nptel-28
[24]

K.R.K. Rao. Electronics for Analog Signal Processing - Part II. Converters. Recorded lecture available through NPTEL. http://tinyurl.com/krkrao-nptel-28,

[25]	K.R.K. Rao. Electronics for Analog Signal Processing - Part II. AGC/AVC. http://tinyurl.com/krkrao-nptel-33, http://tinyurl.com/krkrao-nptel-34,
http://tinyurl.com/krkrao-nptel-35, http://tinyurl.com/krkrao-nptel-36
[26]	K.R.K.Rao. Analog Ics Voltage Controlled Oscillator. Recorded lectures available from links: http://tinyurl.com/krkrao-vco-1, http://tinyurl.com/krkrao-vco-2
[27]

Thomas Kugesstadt. Active Filter Design Techniques. Texas Instruments. Available from http://focus.ti.com/lit/ml/sloa088/sloa088.pdf

[28]

Oscilloscope Solutions from Texas Instruments - Available from http://focus.ti.com/docs/solution/folders/ print/437.html

[29]

PC Based Test and Instrumentation. Available from http://www.pctestinstruments.com/

[30]

SwitcherPro (TM) - Switching Power Supply Design Tool. http://focus.ti.com/docs/toolsw/folders/print/switcherpro.html

[31]

Texas Intruments Analog eLAB - SPICE Model Resources. Macromodels for TI analog ICs are downloadable from http://tinyurl.com/ti-macromodels

[32]

How to use PC as Oscilloscope. Available from http://www.trickswindows.com

[33]

Zelscope: Oscilloscope and Spectrum Analyzer. Available from http://www.zelscope.com

Analog System Lab Kit PRO

page 101

These materials are for academic and
training usage: for teaching and learning
purposes only. The materials are not
warranted in any way for production use.
Copyright © Texas Instruments 2012.

page 102

Analog System Lab Kit PRO

Analog
System
Lab Kit PRO

MANUAL
Authors
K.R.K. Rao and C.P. Ravikumar
Editor in Chief
Zoran Ristić
Assistant Editor
Miodrag Veljković
Cover Design
Danijela Krajnović
Graphic Design/DTP
Aleksandar Nikolić
Special Thanks to
Harmanpreet Singh
for his help in performing the additional experiments
(Experiments 11-14) included in the new release of ASLK Pro.
Publisher
MikroElektronika Ltd.
www.mikroe.com
June 2012.

Analog System Lab Kit PRO Manual
ver. 1.03b

0 100000 019382



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
XMP Toolkit                     : Adobe XMP Core 4.0-c006 1.236519, Wed Jun 14 2006 08:31:24
Instance ID                     : uuid:fba22aa5-2fd1-4f1e-85ed-42755bf19e32
Document ID                     : adobe:docid:indd:a558c214-6fe5-11e0-ad78-b24ec063d174
Rendition Class                 : proof:pdf
Manifest Link Form              : ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream, ReferenceStream
Manifest Placed X Resolution    : 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 350.00, 350.00, 350.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 350.00, 72.00, 72.00, 350.00, 72.00, 350.00, 350.00, 72.00, 72.00, 350.00, 350.00, 350.00, 350.00, 350.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00
Manifest Placed Y Resolution    : 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 350.00, 350.00, 350.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 350.00, 72.00, 72.00, 350.00, 72.00, 350.00, 350.00, 72.00, 72.00, 350.00, 350.00, 350.00, 350.00, 350.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00, 72.00
Manifest Placed Resolution Unit : Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches, Inches
Manifest Reference Instance ID  : uuid:d5638ab9-c79e-49a3-baad-9ea8b97da1d6, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:2f992c33-ff9e-4ce5-8827-b71aae392f1b, uuid:FCA77CCE4C7EE111A714C87BB7593086, uuid:83AE71114D7EE111A714C87BB7593086, uuid:83AE71114D7EE111A714C87BB7593086, uuid:ea4b625c-6955-40a3-8212-4b7b9dd5f650, uuid:b05c5f8a-d709-4607-945d-7d71f8e63341, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:ac31c80f-0a2d-4638-b85c-99771d9f3132, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:f2a81b95-ae6c-4c49-9726-2bb7b9c5f044, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:2cb90386-d899-40ea-8aa8-4cb78c737fc1, uuid:923d736f-3f38-40b0-a5d2-e2f02f0e9d40, uuid:277f6b36-e703-4e3d-b5e2-c6418c1d693a, uuid:5c02f051-a912-4b06-a1d9-a8af85ad0823, uuid:47d6614a-f579-47d2-ac23-bea7bd98657b, uuid:be6d680f-55bd-4e1e-a53f-63034680ca1d, uuid:b92ccf1f-89f5-452f-abd9-01761e7ac0fe, uuid:728fee83-37e3-4a2a-befd-d2028bdbb706, uuid:b6160a60-d9f4-447d-b2c8-246d07285bc9, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:b043d4ee-6e66-4830-9022-e79a6339e783, uuid:5f089d9c-0acf-4e72-bb77-13f73c793d77, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:cc5dff33-ad32-4cbb-b8d0-95e6332ffcf1, uuid:32033a1b-d17c-49d2-8a19-8f3685e5d6f8, uuid:cff6bcb7-fc80-4e83-96be-030bc7c054e5, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:126a473d-a4a4-4cd7-8a38-b035294060f8, uuid:585510f8-d990-4fac-aea7-e9de42656587, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:a34171fe-f7f9-4318-ac10-53523fa1230f, uuid:233071ab-4b5e-4524-b691-9138a02afc01, uuid:2cc6f312-8230-46bb-8fd0-e9f56c7cb523, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:ad9450d6-9a65-4b4a-a05a-ac2936b26156, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:5c541bf4-2339-4cb8-8a64-e299a91c33a6, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:d5605368-f58f-45fe-ba03-01965b6cf78c, uuid:5382334a-eea4-45db-9b72-897a508abc92, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:a6dd2b1e-fcfa-452e-a023-812e2b3debcb, uuid:bdc0124c-b015-4546-97c7-0d6e33b6ff22, uuid:283ac7a3-3ca3-4efe-8d98-9755bafc2092, uuid:ebca792d-5963-4de7-a9af-26be6bf65d20, uuid:7a639e01-4802-4063-939f-a5198931668c, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:6ea2e43d-5b0c-4d39-9117-805446acadf9, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c2181297-1ac6-43c7-9815-d64d628a697a, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:c78cda78-e70b-4bcd-9e34-ca6d51a238ae, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:2882dd14-55cc-4ea3-b2ed-0b3802985d2f, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:65d3a411-63c9-432b-98c5-23ed7b5a1817, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:038877c4-6d68-445f-a8d9-3751e6edb5b1, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:6c183f53-2903-417d-87a4-b23bbf9064d4, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:1a48ff8d-e79c-4cfb-b1b1-fdd9703223bc, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:c007d617-ef79-4698-85fd-cef0d0d2871e, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:b6135e52-31b5-4913-81bc-5b88386f5fee, uuid:51e60f9b-69e5-40b3-8216-464ddd5c4dae, uuid:863897f0-c47c-4e14-ae7d-cd01407e9383, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:e6f9445d-c5ff-45f1-b747-77d768066e2c, uuid:6ba5dc10-b0b3-448f-8ef5-f51909c7134f, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:467d77d9-d333-4ed5-b9f4-51f3417ef096, uuid:ea484c55-c440-4e0f-b4ee-f6b955faebdf, uuid:c87f7893-93bb-4387-9ce7-2b33b478c87b, uuid:bb5f1159-7e83-4d72-b4d1-8d555161eb1c, uuid:1e0c0e9b-e640-44f7-99b4-75aecb342f56, uuid:1e0c0e9b-e640-44f7-99b4-75aecb342f56, uuid:1e3d4c71-02ea-4b2c-b6a3-0facfb9b54d1, uuid:56dbb46d-07b4-4f9e-a2b7-1e2ea14904d4, uuid:4a29b9bf-e08e-4643-ab59-6571c73947d2, uuid:380c348b-c3e3-435a-8658-eed29149a096, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:c90d9c2b-3ee2-4488-9ada-ac018b8c8263, uuid:6c5ccfcd-e07b-4386-b3d4-1322c08a46d6, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:92b0400c-760b-42f1-aeff-7bfda0b2ed43, uuid:a285a0c8-37bf-405a-9628-4989f4402344, uuid:0bdbb176-42ad-4ae9-b9c7-18a0d31635e7, uuid:2ab8d6b3-73fa-4927-a47d-8119b02188ff, uuid:2ab8d6b3-73fa-4927-a47d-8119b02188ff, uuid:2ab8d6b3-73fa-4927-a47d-8119b02188ff, uuid:2ab8d6b3-73fa-4927-a47d-8119b02188ff, uuid:2ab8d6b3-73fa-4927-a47d-8119b02188ff, uuid:858bf0d9-a843-4fd7-b033-58af04b3d5d4, uuid:77aaf967-6db8-4fd2-929a-f90480949074, uuid:8a8268e8-27c6-4ec0-9fdb-c701c0fc7b74, uuid:1f434169-1536-4e71-9c9e-4791334a6b3c, uuid:ff56322b-41d9-4fcd-834a-c3a861a435f7, uuid:febbe835-b6d1-4ef4-8bfb-cead59f7b4b8, uuid:a9245378-3dcb-47a4-9422-b7d9877b3978, uuid:57c13ac4-d83e-48b6-92b9-7228dd7725e7, uuid:57c13ac4-d83e-48b6-92b9-7228dd7725e7, uuid:c8a4967b-4697-40ba-adfd-a17920ede16b, uuid:57c13ac4-d83e-48b6-92b9-7228dd7725e7, uuid:855ea0f2-ef3b-4293-94f0-6187e970ca83, uuid:57c13ac4-d83e-48b6-92b9-7228dd7725e7, uuid:59c9fb4e-91f7-4ca7-88b9-f0a9e93af199, uuid:59c9fb4e-91f7-4ca7-88b9-f0a9e93af199, uuid:59c9fb4e-91f7-4ca7-88b9-f0a9e93af199, uuid:9c2f41f3-dfdc-4c98-9025-fe05f68553e7, uuid:59c9fb4e-91f7-4ca7-88b9-f0a9e93af199, uuid:59c9fb4e-91f7-4ca7-88b9-f0a9e93af199, uuid:1e2148d7-dcee-4fb7-98de-2f637e720cef, uuid:ddae5ca9-de0e-4236-8a1f-f30a8cd510de, uuid:91cc1353-3ef5-438f-bdc3-2ea30e6e1b28, uuid:d569cd2c-0f45-4a13-b18e-29afdfe99a70, uuid:e59ac679-7427-495a-90b7-762792b16b16, uuid:d69ff883-e932-45b5-8b4a-5e043ec793b5, uuid:d569cd2c-0f45-4a13-b18e-29afdfe99a70, uuid:9B1CB765EE14E111A902B19F902458FE, uuid:a512e76d-848c-4304-915e-ec20534af1e6, uuid:d9ae9d95-ec72-4cd9-9789-f1919f6dbf5a, uuid:9C3B280CEE14E111A902B19F902458FE, uuid:30472c84-b6e0-4b60-9c31-fd3c69506ca0, xmp.iid:8E77854C5714E111B8C8DFC9B7B633D0, uuid:2CF05CF5ED14E111A902B19F902458FE, uuid:baf1eccf-fbca-4da7-b172-c5af53e5c5a2, uuid:d9499fa1-ca12-4982-bdc5-ab63c333f966, uuid:26F05CF5ED14E111A902B19F902458FE, uuid:4CF8CC36EF14E111A902B19F902458FE, uuid:A21CB765EE14E111A902B19F902458FE, uuid:53F8CC36EF14E111A902B19F902458FE, uuid:88F7B4FAED14E111A902B19F902458FE, uuid:da19bd57-581e-4a3e-892c-45166ceb5073, uuid:e8472f1d-8ec0-4729-b7d4-64003a585feb, uuid:e8472f1d-8ec0-4729-b7d4-64003a585feb, uuid:86fe768b-f619-4755-93c3-07ae6569640d, uuid:86fe768b-f619-4755-93c3-07ae6569640d, uuid:553a5ca1-8af8-4634-a45b-4a1b85c46e2e, uuid:80a212eb-fd51-4864-b213-802d137a13c4, uuid:80a212eb-fd51-4864-b213-802d137a13c4, uuid:553a5ca1-8af8-4634-a45b-4a1b85c46e2e, uuid:553a5ca1-8af8-4634-a45b-4a1b85c46e2e, uuid:27d625a4-2d07-4048-a5de-46fe38932463, uuid:27d625a4-2d07-4048-a5de-46fe38932463, uuid:27284c70-ce6b-4ea2-bdef-84c852b7766e, uuid:d8e5e94a-f369-4cb4-855d-7979f7431a4f, uuid:868011d3-fa4a-4858-be0e-3d533d016b34, uuid:868011d3-fa4a-4858-be0e-3d533d016b34, uuid:06876de9-a9ca-4e95-8e4f-ade2973f3f82, uuid:91b553c5-bf8a-4ab6-8125-0033ae0355be, uuid:44956a43-bf53-4a14-8d22-5252a4e08100, uuid:708856e5-9112-43fa-848e-2acf4137dad6, uuid:d5638ab9-c79e-49a3-baad-9ea8b97da1d6
Manifest Reference Document ID  : uuid:055A94D11882E111ACFAFAD7ECAF4D20, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:63F1035DF809E1118A70E82011E34EAF, uuid:A92B59BD477EE111A714C87BB7593086, uuid:319BF665437EE111A714C87BB7593086, uuid:319BF665437EE111A714C87BB7593086, uuid:60F1035DF809E1118A70E82011E34EAF, uuid:2C3A9AE9A47CE111AC00A80AE257AEC4, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:2A3A9AE9A47CE111AC00A80AE257AEC4, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:65F1035DF809E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:FC74251FF909E1118A70E82011E34EAF, uuid:432F2F8EAC7CE111AC00A80AE257AEC4, uuid:2E3A9AE9A47CE111AC00A80AE257AEC4, uuid:0175251FF909E1118A70E82011E34EAF, uuid:452F2F8EAC7CE111AC00A80AE257AEC4, uuid:445F6E9C050AE1118A70E82011E34EAF, uuid:465F6E9C050AE1118A70E82011E34EAF, uuid:492F2F8EAC7CE111AC00A80AE257AEC4, uuid:4B2F2F8EAC7CE111AC00A80AE257AEC4, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4E5F6E9C050AE1118A70E82011E34EAF, uuid:F238E3C2AE7CE111AC00A80AE257AEC4, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:B308B721160AE1118A70E82011E34EAF, uuid:F438E3C2AE7CE111AC00A80AE257AEC4, uuid:B108B721160AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:B508B721160AE1118A70E82011E34EAF, uuid:F638E3C2AE7CE111AC00A80AE257AEC4, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:B708B721160AE1118A70E82011E34EAF, uuid:B908B721160AE1118A70E82011E34EAF, uuid:F838E3C2AE7CE111AC00A80AE257AEC4, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:4B5F6E9C050AE1118A70E82011E34EAF, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:FA38E3C2AE7CE111AC00A80AE257AEC4, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:540827DBB67CE111AC00A80AE257AEC4, uuid:605851FB160AE1118A70E82011E34EAF, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:DA840F3AA20EE1118389DBA512FA5B7F, uuid:5A0827DBB67CE111AC00A80AE257AEC4, uuid:5C0827DBB67CE111AC00A80AE257AEC4, uuid:625851FB160AE1118A70E82011E34EAF, uuid:560827DBB67CE111AC00A80AE257AEC4, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:01185232B87CE111AC00A80AE257AEC4, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:E9C2084FB50AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:9550207DA80AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:EBC2084FB50AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:C7D35B05C70AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:86F0C1B0C37CE111BDE9AD65FAD5911E, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:EFC2084FB50AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:65D29FFBC40AE111AE6FDC293BF47B61, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:88F0C1B0C37CE111BDE9AD65FAD5911E, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:67D29FFBC40AE111AE6FDC293BF47B61, uuid:8AF0C1B0C37CE111BDE9AD65FAD5911E, uuid:CBD35B05C70AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:8CF0C1B0C37CE111BDE9AD65FAD5911E, uuid:6BD29FFBC40AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:6F485CF3DA0AE111AE6FDC293BF47B61, uuid:C3D35B05C70AE111AE6FDC293BF47B61, uuid:8EF0C1B0C37CE111BDE9AD65FAD5911E, uuid:C5D35B05C70AE111AE6FDC293BF47B61, uuid:67F35806ED0AE111AE6FDC293BF47B61, uuid:67F35806ED0AE111AE6FDC293BF47B61, uuid:88462A37CB7CE111BDE9AD65FAD5911E, uuid:67485CF3DA0AE111AE6FDC293BF47B61, uuid:69485CF3DA0AE111AE6FDC293BF47B61, uuid:8A462A37CB7CE111BDE9AD65FAD5911E, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:8E462A37CB7CE111BDE9AD65FAD5911E, uuid:6B485CF3DA0AE111AE6FDC293BF47B61, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:D206DC78D30EE1118389DBA512FA5B7F, uuid:6D485CF3DA0AE111AE6FDC293BF47B61, uuid:90462A37CB7CE111BDE9AD65FAD5911E, uuid:86AFA16A640FE11181AB99C094F7D9AD, uuid:86AFA16A640FE11181AB99C094F7D9AD, uuid:86AFA16A640FE11181AB99C094F7D9AD, uuid:86AFA16A640FE11181AB99C094F7D9AD, uuid:86AFA16A640FE11181AB99C094F7D9AD, uuid:92462A37CB7CE111BDE9AD65FAD5911E, uuid:578B013BCD7CE111BDE9AD65FAD5911E, uuid:A2BBA81BA619E111A04C8CD8A514CF37, uuid:A0BBA81BA619E111A04C8CD8A514CF37, uuid:BAC9DC7E201CE111BE2CB12D56118809, uuid:A4F7F6A30011E111B8BB8886971E3A03, uuid:1B19FEA93C11E111B8BB8886971E3A03, uuid:36A91AECB20EE1118389DBA512FA5B7F, uuid:36A91AECB20EE1118389DBA512FA5B7F, uuid:BDC9DC7E201CE111BE2CB12D56118809, uuid:36A91AECB20EE1118389DBA512FA5B7F, uuid:1E19FEA93C11E111B8BB8886971E3A03, uuid:36A91AECB20EE1118389DBA512FA5B7F, uuid:CE06DC78D30EE1118389DBA512FA5B7F, uuid:CE06DC78D30EE1118389DBA512FA5B7F, uuid:CE06DC78D30EE1118389DBA512FA5B7F, uuid:5B8B013BCD7CE111BDE9AD65FAD5911E, uuid:CE06DC78D30EE1118389DBA512FA5B7F, uuid:CE06DC78D30EE1118389DBA512FA5B7F, uuid:5D8B013BCD7CE111BDE9AD65FAD5911E, uuid:61D15286DE11E11199A3C0BBDD0FB5D9, uuid:5F8B013BCD7CE111BDE9AD65FAD5911E, uuid:D006DC78D30EE1118389DBA512FA5B7F, uuid:590A2C0ED07CE111BDE9AD65FAD5911E, uuid:BBC6B0CEF111E11199A3C0BBDD0FB5D9, uuid:D006DC78D30EE1118389DBA512FA5B7F, xmp.did:9377854C5714E111B8C8DFC9B7B633D0, uuid:1DFE8F2C8B0BE111B5779D8F4B7C8C01, uuid:1FFE8F2C8B0BE111B5779D8F4B7C8C01, xmp.did:8F77854C5714E111B8C8DFC9B7B633D0, uuid:209EE55B940BE111B5779D8F4B7C8C01, xmp.did:8D77854C5714E111B8C8DFC9B7B633D0, xmp.did:8B77854C5714E111B8C8DFC9B7B633D0, uuid:229EE55B940BE111B5779D8F4B7C8C01, uuid:4298CD4D5E1AE111B1EDE16C00D14EC6, xmp.did:9177854C5714E111B8C8DFC9B7B633D0, xmp.did:9577854C5714E111B8C8DFC9B7B633D0, uuid:A11CB765EE14E111A902B19F902458FE, uuid:52F8CC36EF14E111A902B19F902458FE, xmp.did:84F5EF175314E111B8C8DFC9B7B633D0, uuid:5B0A2C0ED07CE111BDE9AD65FAD5911E, uuid:AE1278470B11E1119350918567835028, uuid:AE1278470B11E1119350918567835028, uuid:B01278470B11E1119350918567835028, uuid:B01278470B11E1119350918567835028, uuid:D1921AE00B11E1119350918567835028, uuid:B21278470B11E1119350918567835028, uuid:B21278470B11E1119350918567835028, uuid:D1921AE00B11E1119350918567835028, uuid:D1921AE00B11E1119350918567835028, uuid:D3921AE00B11E1119350918567835028, uuid:D3921AE00B11E1119350918567835028, uuid:B61278470B11E1119350918567835028, uuid:B41278470B11E1119350918567835028, uuid:AC1278470B11E1119350918567835028, uuid:AC1278470B11E1119350918567835028, uuid:246512A50811E1119350918567835028, uuid:7B00293BF07EE111B139C4BB45355F57, uuid:226512A50811E1119350918567835028, uuid:1E6512A50811E1119350918567835028, uuid:055A94D11882E111ACFAFAD7ECAF4D20
Create Date                     : 2012:06:27 18:07:56+02:00
Modify Date                     : 2012:06:27 18:09:35+02:00
Metadata Date                   : 2012:06:27 18:09:35+02:00
Creator Tool                    : Adobe InDesign CS3 (5.0)
Thumbnail Format                : JPEG
Thumbnail Width                 : 256
Thumbnail Height                : 256
Thumbnail Image                 : (Binary data 8443 bytes, use -b option to extract)
Format                          : application/pdf
Producer                        : Adobe PDF Library 8.0
Trapped                         : False
Page Count                      : 104
Creator                         : Adobe InDesign CS3 (5.0)
EXIF Metadata provided by EXIF.tools

Navigation menu