

The Angular Firebase Survival Guide
Build Angular Apps on a Solid Foundation with Firebase

Jeff Delaney

This book is for sale at http://leanpub.com/angularfirebase

This version was published on 2018-05-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 - 2018 Jeff Delaney

http://leanpub.com/angularfirebase
http://leanpub.com/
http://leanpub.com/manifesto

To my loving wife, you inspire me daily.

Contents

Introduction . 1
Why Angular? . 1
Why Firebase? . 2
Why Angular and Firebase Together? . 2
This Book is for Developers Who… . 2
Angular Firebase Starter App . 3
Package Versions . 3
Watch the Videos . 3
Join the Angular Firebase Slack Team . 4

The Basics . 5
1.1 Top Ten Best Practices . 5
1.2 Start a New App from Scratch . 5
1.3 Separating Development and Production Environments 8
1.4 Importing Firebase Modules . 9
1.5 Deployment to Firebase Hosting . 10

Cloud Firestore . 12
2.0 Cloud Firestore versus Realtime Database . 12
2.1 Data Structuring . 13
2.2 Collection Retrieval . 17
2.3 Document Retrieval . 20
2.4 Include Document Ids with a Collection . 21
2.5 Add a Document to Collections . 21
2.6 Set, Update, and Delete a Document . 22
2.7 Create References between Documents . 23
2.8 Set a Consistent Timestamp . 23
2.9 Use the GeoPoint Datatype . 24
2.10 Atomic Writes . 24
2.11 Order Collections . 25
2.12 Limit and Offset Collections . 26
2.13 Querying Collections with Where . 27
2.14 Creating Indices . 28

CONTENTS

2.15 Backend Firestore Security Rules . 29

Realtime Database . 33
3.0 Migrating from AngularFire Version 4 to Version 5 33
3.1 Data Modeling . 35
3.2 Database Retrieval as an Object . 36
3.3 Show Object Data in HTML . 38
3.4 Subscribe without the Async Pipe . 39
3.5 Map Object Observables to New Values . 40
3.6 Create, Update, Delete a FirebaseObjectObservable data 41
3.7 Database Retrieval as a Collection . 42
3.8 Viewing List Data in the Component HTML . 43
3.9 Limiting Lists . 44
3.10 Filter Lists by Value . 45
3.11 Create, Update, Delete Lists . 45
3.12 Catch Errors with Firebase Operations . 46
3.13 Atomic Database Writes . 47
3.14 Backend Database Rules . 47
3.15 Backend Data Validation . 49

User Authentication . 51
4.1 Getting Current User Data . 51
4.2 OAuth Authentication . 53
4.3 Anonymous Authentication . 54
4.4 Email Password Authentication . 55
4.5 Handle Password Reset . 56
4.6 Catch Errors during Login . 57
4.7 Log Users Out . 57
4.8 Save Auth Data to the Realtime Database . 58
4.9 Creating a User Profile . 59
4.10 Auth Guards to Protect Routes . 60

Firebase Cloud Storage . 62
5.1 Creating an Upload Task . 62
5.2 Handling the Upload Task . 63
5.3 Saving Data about a file to the Realtime Database . 64
5.4 Uploading a Single File . 65
5.5 Delete Files . 66
5.6 Validate Files on the Frontend . 67
5.7 Upload Images in Base64 Format . 68
5.8 Validating Files on the Backend . 68

Firebase Cloud Functions . 70

CONTENTS

6.1 Initialize Cloud Functions in an Angular Project . 70
6.2 Deploy Cloud Cloud Functions . 71
6.3 Setup an HTTP Cloud Function . 72
6.4 Setup an Auth Cloud Function . 74
6.5 Setup a Database Cloud Function . 74
6.6 Setup a Firestore Cloud Function . 75
6.7 Setup a Storage Cloud Function . 76

Real World Combined Examples . 79
7.1 Auth with Firestore Custom User Data . 79
7.2 Role-based Access Control . 80
7.3 Drag and Drop File Uploads . 80
7.4 Firestore NoSQL Data Modeling . 80
7.5 Server Side Rendering . 81

Introduction
The Angular Firebase Survival Guide is about getting stuff done. No effort is made to explicitly cover
high level programming theories or low level Angular architecture concepts – there are plenty of
other books for that purpose. The focus of this book is building useful app features. Each section
starts with a problem statement, then solves it with code.

Even for experienced JavaScript developers, the learning curve for Angular is quite steep. Mastering
this framework is only possible by putting forth the effort to build your own features from scratch.
Your journey will inevitably lead to moments of frustration - you may even dream about switching
to VueJS or React - but this is just part of the learning process. Once you have Angular down, you
will arrive among a rare class of developers who can build enterprise-grade realtime apps for web,
mobile, and desktop.

The mission of this book is to provide a diverse collection of snippets (recipes) that demonstrate the
combined power of Angular and Firebase. The format is non-linear, so when a client asks you to
build a “Custom Username” feature, you can jump to section 6.1 and start coding. By the end of the
book, you will know how to authenticate users, handle realtime data streams, upload files, trigger
background tasks with cloud functions, process payments, and much more.

I am not sponsored by any of the brands or commercial servicesmentioned in this book. I recommend
these tools because I am confident in their efficacy through my experience as a web development
consultant.

Why Angular?

Angular can produce maintainable cross-platform JavaScript apps that deliver an awesome user
experience. It’s open source, backed by Google, has excellent developer tooling via TypeScript, a
large community of developers, and is being adopted by large enterprises. I see more and more
Angular2+ job openings every week.

Introduction 2

Why Firebase?

Firebase eliminates the need for managed servers, scales automatically, dramatically reduces
development time, is built on Google Cloud Platform, and is free for small apps.

Firebase is a Backend-as-a-Service (BaaS) that also offers Functions-as-a-Service (FaaS). The Firebase
backend will handle your database, file storage, and authentication – features that would normally
take weeks to develop from scratch. Cloud functions will run background tasks and microservices
in a completely isolated NodeJS environment. On top of that, Firebase provides hosting with free
SSL, analytics, and cloud messaging.

Furthermore, Firebase is evolving with the latest trends in web development. In March 2017, the
platform introduced Cloud Functions for Firebase. Then in October 2017, the platform introduced
the Firestore Document Database. I have been blown away at the sheer pace and quality of new
feature roll-outs for the platform. Needless to say, I stay very busy keeping this book updated.

Why Angular and Firebase Together?

When you’re a consultant or startup, it doesn’t really matter what languages or frameworks
you know. What does matter is what you can produce, how fast you can make it, and how
much it will cost. Optimizing these variables forces you to choose a technology stack that won’t
disappoint. Angular does take time to learn (I almost quit), but when you master the core patterns,
development time will improve rapidly. Adding Firebase to the mix virtually eliminates your
backend maintenance worries and abstracts difficult aspects of app development - including user
authentication, file storage, push notifications, and a realtime pub/sub database. The bottom line
is that with Angular and Firebase you can roll out amazing apps quickly for your employer, your
clients, or your own startup.

This Book is for Developers Who…

• Want to build real world apps
• Dislike programming books the size of War & Peace

Introduction 3

• Have basic JavaScript (TypeScript), HTML, and SCSS skills
• Have some Angular experience – such as the demo on Angular.io
• Have a Firebase or GCP account
• Enjoy quick problem-solution style tutorials

Note for Native Mobile Developers
I am not going to cover the specifics of mobile or desktop frameworks, such as Ionic,
Electron, NativeScript. However, most of the core principles and patterns covered in this
book can be applied to native development.

Angular Firebase Starter App

To keep the recipes consistent, most of the code examples are centered around a book sharing app
where users can post information about books and their authors.

The Firestarter App¹ provides an open-source live demo that shares much of its codebase with this
book.

Package Versions

Change happens fast in the web development world. The package versions used in this book are as
follows:

• Angular v6.0
• Angular CLI v6.0
• TypeScript v2.8
• Firebase JS SDK v5.0
• Firebase Functions v1.0
• Cloud Firestore vBeta

Everything else we build from the ground up.

Watch the Videos

The book is accompanied by an active YouTube channel that produces quick tutorials on relevant
Angular solutions that you can start using right away. I will reference these videos throughout the
book.

https://www.youtube.com/c/AngularFirebase

¹https://github.com/codediodeio/angular-firestarter/blob/master/package.json

https://github.com/codediodeio/angular-firestarter/blob/master/package.json
https://github.com/codediodeio/angular-firestarter/blob/master/package.json

Introduction 4

Join the Angular Firebase Slack Team

My goal is to help you ship your app as quickly as possible. To facilitate this goal, I would like to
invite you to join our Slack room dedicated to Angular Firebase development. We discuss ideas, best
practices, share code, and help each other get our apps production ready. Get the your Slack invite
link here².

²https://angularfirebase.com

https://angularfirebase.com/
https://angularfirebase.com/
https://angularfirebase.com/

The Basics
The goal of the first chapter is discuss best practices and get your first app configured with Angular
4 and Firebase. By the end of the chapter you will have solid skeleton app from which we can start
building more complex features.

1.1 Top Ten Best Practices

Problem

You want a few guidelines and best practices for building Angular apps with Firebase.

Solution

Painless development is grounded in a few core principles. Here are my personal top ten ten tips for
Angular Firebase development.

1. Learn and use the Angular CLI.
2. Use AngularFire when working with Firebase.
3. Create generic services to handle data logic.
4. Create components/directives to handle data presentation.
5. Unwrap Observables in the template with the async pipe when practical.
6. Deploy your production app with Ahead-of-Time compilation to Firebase hosting.
7. Always define backend database and storage rules on Firebase.
8. Take advantage of TypeScript static typing features.
9. Setup separate Firebase projects for development and production.
10. Don’t be afraid to use Lodash to simplify JavaScript.

1.2 Start a New App from Scratch

Problem

You want start a new Angular project, using Firebase for the backend.

Solution

Let’s start with the bare essentials. (You may need to prefix commands with sudo).

The Basics 6

1 npm install -g @angular/cli@latest

2 npm install -g typescript

3 npm install -g firebase-tools

Then head over to https://firebase.com and create a new project.

Setting up an Angular app with Firebase is easy. We are going to build the app with the Angular
CLI, specifying the routing module and SCSS for styling. Let’s name the app fire.

1 ng new fire --routing --style scss

2 cd fire

Next, we need to get AngularFire2, which includes Firebase as a dependency.

npm install angularfire2 firebase --save

In the environments/environment.ts, add your credentials. Make sure to keep this file private by
adding it to .gitignore. You don’t want it exposed in a public git repo.

The Basics 7

1 export const environment = {

2 production: false,

3 firebaseConfig: {

4 apiKey: '<your-key>',

5 authDomain: '<your-project-authdomain>',

6 databaseURL: '<your-database-URL>',

7 projectId: '<your-project-id>',

8 storageBucket: '<your-storage-bucket>',

9 messagingSenderId: '<your-messaging-sender-id>'

10 }

11 };

In the app.module.ts, add AngularFire2 to the imports. You only need to import the modules you
plan on using.

1 import { AngularFireModule } from 'angularfire2';

2 import { AngularFireDatabaseModule } from 'angularfire2/database';

3 import { AngularFireAuthModule } from 'angularfire2/auth';

4 import { AngularFirestoreModule } from 'angularfire2/firestore';

5 import { AngularFireStorageModule } from 'angularfire2/storage';

6

7 import { environment } from '../environments/environment';

8 export const firebaseConfig = environment.firebaseConfig;

9 // ...omitted

10 @NgModule({

11 imports: [

12 BrowserModule,

13 AppRoutingModule,

14 AngularFireModule.initializeApp(environment.firebaseConfig),

15 AngularFireDatabaseModule,

16 AngularFireAuthModule,

17 AngularFirestoreModule

18],

19 // ...omitted

20 })

That’s it. You now have a skeleton app ready for development.

1 ng serve

The Basics 8

1.3 Separating Development and Production
Environments

Problem

You want maintain separate backend environments for develop and production.

Solution

It’s a good practice to perform development on an isolated backend. You don’t want to accidentally
pollute or delete your user data while experimenting with a new feature.

The first step is to create a second Firebase project. You should have two projects named something
likeMyAppDevelopment andMyAppProduction.

Next, grab the API credentials and update the environment.prod.ts file.

The Basics 9

1 export const environment = {

2 production: true,

3 firebaseConfig: {

4 apiKey: "PROD_API_KEY",

5 authDomain: "PROD.firebaseapp.com",

6 databaseURL: "https://PROD.firebaseio.com",

7 storageBucket: "PROD.appspot.com"

8 }

9 };

Now, in your app.module.ts, your app will use different backend variables based on the environ-
ment.

1 import { environment } from '../environments/environment';

2 export const firebaseConfig = environment.firebaseConfig;

3 // ... omitted

4 imports: [

5 AngularFireModule.initializeApp(firebaseConfig)

6]

Test it by running ng serve for development and ng serve --prod for production.

1.4 Importing Firebase Modules

Problem

You want to import the AngularFire2 or the Firebase SDK into a service or component.

Solution

Take advantage of tree shaking with AngularFire2 to only import the modules you need. In many
cases, you will only need the database or authentication, but not both. Here’s how to import them
into a service or component.

The Basics 10

1 import { AngularFirestore } from 'angularfire2/firestore';

2 import { AngularFireDatabase } from 'angularfire2/database';

3 import { AngularFireAuth } from 'angularfire2/auth';

4

5 ///... component or service

6

7 constructor(

8 private afs: AngularFirestore,

9 private db: AngularFireDatabase,

10 private afAuth: AngularFireAuth

11) {}

You can also import the firebase SDK directly when you need functionality not offered by
AngularFire2. Firebase is not a NgModule, so no need to include it in the constructor.

1 import * as firebase from 'firebase/app';

1.5 Deployment to Firebase Hosting

Problem

You want to deploy your production app to Firebase Hosting.

Solution

It is a good practice to build your production app frequently. It is common to find bugs and
compilation errors when specifically when running an Ahead-of-Time (AOT) build in Angular.

During development, Angular is running with Just-In-Time (JIT) compilation, which is more
forgiving with type safety errors.

1 ng build --prod

Make sure you are logged into firebase-tools.

1 npm install -g firebase-tools

2 firebase login

The Basics 11

Then initialize the project.

1 firebase init

1. Choose hosting.
2. Change public folder to dist/<your-app-name> when asked (it defaults to public).
3. Configure as single page app? Yes.
4. Overwrite your index.html file? No.

1 firebase deploy

If all went well, your app should be live on the firebase project URL.

Cloud Firestore
Firestore was introduced into the Firebase platform on October 3rd, 2017. It is a superior alternative
(in most situations) to the Realtime Database that is covered in Chapter 3.

What is Firestore?

Firestore is a NoSQL document-oriented database, similar to MongoDB, CouchDB, and AWS
DynamoDB.

It works by storing JSON-like data into documents, then organizes them into collections that can
be queried. All data is contained on the document, while a collection just serves as a container.
Documents can contain their own nested subcollections of documents, leading to a hierarchical
structure. The end result is a database that canmodel complex relationships andmakemulti-property
compound queries.

Unlike a table in a SQL database, a Firestore document does not adhere to a data schema. In other
words, document-ABC can look completely different from document-XYZ in the same collection.
However, it is a good practice to keep data structures as consistent as possible across collections.
Firestore automatically indexes documents by their properties, so your ability to query a collection
is optimized by a consistent document structure.

The goal of this chapter is to introduce data modeling best practices and teach you how perform
common tasks with Firestore in Angular.

2.0 Cloud Firestore versus Realtime Database

Problem

You’re not sure if you should use Firestore or the Realtime Database.

Cloud Firestore 13

Solution

I follow a simple rule - use Firestore, unless you have a good reason not to.

However, if you can answer TRUE to ALL statements below, the Realtime Database might worth
exploring.

1. You make frequent queries to a small dataset.
2. You do not require complex querying, filtering, sorting.
3. You do not need to model data relationships.

If you responded FALSE to any of these statements, use Firestore.

Realtime Database billing is weighted heavily on data storage, while Cloud Firestore is weighted
on bandwidth. Cost savings could make Realtime Database a compelling option when you have
high-bandwidth demands on a lightweight dataset.

Why are there two databases in Firebase?

Firebase won’t tell you this outright, but the Realtime Database has its share of frustrating caveats.
Exhibit A: querying/filtering data is very limited. Exhibit B: nesting data is impossible on large
datasets, requiring you to denormalize at the global level. Lucky for you, Firestore addresses these
issues head on, which means you’re in great shape if you’re just starting a new app. Realtime
Database is still around because it would be risky/impossible to migrate the gazillions of bytes
of data from Realtime Database to Firestore. So Google decided to add a second database to the
platform and not deal with the data migration problem.

2.1 Data Structuring

Firestore Quick Start Video Lesson
https://youtu.be/-GjF9pSeFTs

Problem

You want to know how to structure your data in Firestore.

jb091180
Highlight

Cloud Firestore 14

Solution

You already know JavaScript, so think of a collection as an Array and a document as an Object.

What’s Inside a Document?

Adocument contains JSON-like data that includes all of the expected primitive datatypes like strings,
numbers, dates, booleans, and null - as well as objects and arrays.

Documents also have several custom datatypes. A GeoPointwill automatically validate latitude and
longitude coordinates, while a DocumentReference can point to another document in your database.
We will see these special datatypes in action later in the chapter.

Best Practices

Firestore pushes you to form a hierarchy of data relationships. You start with (1) a collection in the
root of the database, then (2) add a document inside of it, then (3) add another collection inside that
document, then (4) repeat steps 2 and 3 as many times as you need.

1. Always think about HOW the data will be queried. Your goal is to make data retrieval fast
and efficient.

2. Collections can be large, but documents should be small.
3. If a document becomes too large, consider nesting data in a deeper collection.

Let’s take a look at some common examples.

Example: Blog Posts and Comments

In this example, we have a collection of posts with some basic content data, but posts can also receive
comments from users. We could save new comments directly on the document, but would that scale
well if we had 10,000 comments? No, the memory in the app would blow up trying to retrieve this
data. In fact, Firestore will throw an error for violating the 1 Mb document size limit well before

jb091180
Highlight

Cloud Firestore 15

reaching this point. A better approach is to nest a comments subcollection under each document
and query it separately from the post data. Document retrieval is shallow - only the top level data
is returned, while nested collections can be retrieved separately.

1 ++postsCollection

2 postDoc

3 - author

4 - title

5 - content

6 ++commentsCollection

7 commentDocFoo

8 - text

9 commentDocBar

10 - text

Example: Group Chat

For group chat, we can use two root level collections called users and chats. The user document is
simple - just a place to keep basic user data like email, username, etc.

A chat document stores basic data about a chat room, such as the participating users. Each room
has a nested collection of messages (just like the previous example). However, the message makes
a reference to the associated user document, allowing us to query additional data about the user if
we so choose.

A document reference is very similar to a foreign key in a SQL database. It is just a pointer to a
document that exists at some other location in the database.

Cloud Firestore 16

1 ++usersCollection

2 userDoc

3 - username

4 - email

5

6 ++chatsCollection

7 chatDoc

8 - users[]

9 ++messagesCollection

10 messageDocFoo

11 - text

12 - userDocReference

13 messageDocBar

14 - userDocReference

Example: Stars, Hearts, Likes, Votes, Etc.

In the graphic above, we can see how the movies collection and users collection have a two-way
connection through the middle-man stars collection. All data about a relationship is kept in the star
document - data never needs to change on the connected user/movie documents directly.

Having a root collection structure allows us to query both “Movie reviews” and “User reviews”
independently. This would not be possible if stars were nested as a sub collection. This is similar to
a many-to-many-through relationship in a SQL database.

jb091180
Highlight

Cloud Firestore 17

1 ++usersCollection

2 userDoc

3 - username

4 - email

5

6 ++starsCollection

7 starDoc

8 - userId

9 - movieId

10 - value

11

12 ++moviesCollection

13 movieDoc

14 - title

15 - plot

2.2 Collection Retrieval

Problem

You want to retrieve a collection of documents.

Solution

A collection of documents in Firestore is like a table of rows in a SQL database, or a list of objects
in the Realtime Database. When we retrieve a collection in Angular, the endgame is to generate an
Observable array of objects [{...data}, {...data}, {...data}] that we can show the end user.

The examples in this chapter will use the TypeScript Book interface below. AngularFire requires a
type to be specified, but you can opt out with the any type, for example AngularFirestoreCollec-
tion<any>.

What is a TypeScript interface?
An interface is simply a blueprint for how a data structure should look - it does not contain
or create any actual values. Using your own interfaces will help with debugging, provide
better developer tooling, and make your code readable/maintainable.

jb091180
Highlight

Cloud Firestore 18

1 export interface Book {

2 author: string;

3 title: string:

4 content: string;

5 }

I am setting up the code in an Angular component, but you can also extract this logic into a service
to make it available (injectable) to multiple components.

Reading data in AngularFire is accomplished by (1) making a reference to its location in Firestore,
(2) requesting an Observable with valueChanges(), and (3) subscribing to the Observable.

Steps 1 and 2: book-info.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import { Observable } from 'rxjs';

3 import {

4 AngularFirestore,

5 AngularFirestoreCollection,

6 AngularFirestoreDocument

7 } from 'angularfire2/firestore';

8

9 @Component({

10 selector: 'book-info',

11 templateUrl: './book-info.component.html',

12 styleUrls: ['./book-info.component.scss']

13 })

14 export class BookInfoComponent implements OnInit {

15

16 constructor(private afs: AngularFirestore) {}

17

18 booksCollection: AngularFireCollection<Book>;

19 booksObservable: Observable<Book[]>;

20

21 ngOnInit() {

22 // Step 1: Make a reference

23 this.booksCollection = this.afs.collection('books');

24

25 // Step 2: Get an observable of the data

26 this.booksObservable = this.booksCollection.valueChanges();

27 }

28

29 }

jb091180
Highlight

Cloud Firestore 19

Step 3: book-info.component.html

The ideal way to handle an Observable subscription is with the async pipe in the HTML. Angular
will subscribe (and unsubscribe) automatically, making your code concise and maintainable.

1 <!-- Step 3: Subscribe to the data -->

2

3 <li *ngFor="let book of booksObservable | async">

4 {{ book.title }} by {{ book.author }}

5

6

Step 3 (alternative): book-info.component.ts

It is also possible to subscribe directly in the Typescript. You just need to remember to unsubscribe
to avoid memory leaks. Modify the component code with the following changes to handle the
subscription manually.

1 import { Subscription } from 'rxjs';

2

3 /// ...omitted

4

5 sub: Subscription;

6

7 ngOnInit() {

8

9 /// ...omitted

10

11 // Step 3: Subscribe

12 this.sub = this.booksObservable.subscribe(books => console.log(books))

13 }

14

15 ngOnDestroy() {

16 this.sub.unsubscribe()

17 }

18

19 }

jb091180
Highlight

jb091180
Highlight

Cloud Firestore 20

2.3 Document Retrieval

Inferring Documents vs. Collections
The path segment to a collection is ODD, while the path to a document is EVEN. For
example, root(0)/collection(1)/document(2)/collection(3)/document(4). This rule
always holds true in Firestore.

Problem

You want to retrieve a single document.

Solution

Every document is created with a auto-generated unique ID. If you know the unique ID, you can re-
trieve the documentwith the same basic process as a collection, but using the afs.doc('collection/docId')
method.

1 export class BookInfoComponent implements OnInit {

2

3 constructor(private afs: AngularFirestore) {}

4

5 bookDocument: AngularFireDocument<Book>;

6 bookObservable: Observable<Book>;

7

8 ngOnInit() {

9 // Step 1: Make a reference

10 this.bookDocument = this.afs.doc('books/bookID');

11

12 // Step 2: Get an observable of the data

13 this.bookObservable = this.bookDocument.valueChanges();

14 }

15

16 }

book-info.component.html

When working with an individual document, it is useful to set the unwrapped Observable as a
template variable in Angular. This little trick allows you to use the async pipe once, then call any
property on the object - much cleaner than an async pipe on every property.

Cloud Firestore 21

1 <!-- Step 3: Subscribe to the data -->

2 <div *ngIf="bookObservable | async as book">

3 {{ book.title }} by {{ book.author }}

4 </div>

2.4 Include Document Ids with a Collection

Problem

You want the document IDs included with a collection.

Solution

By default, valueChanges() does not map the document ID to the document objects in the array.
In many cases, you will need the document ID to make queries for individual documents. We can
satisfy this requirement by pulling the entire snapshot from Firestore and mapping it’s metadata to
a new object.

1 this.booksObservable = booksCollection.snapshotChanges().map(arr => {

2 return arr.map(snap => {

3 const data = snap.payload.doc.data();

4 const id = snap.payload.doc.id;

5 return { id, ...data };

6 });

7 });

8

9 // Unwrapped data: [{ id: 'xyz', author: 'Jeff Delaney', ...}]

This is not the most beautiful code in the world, but it’s the best we can do at this point. If you
perform this operation frequently, I recommend building a generic Angular service that can apply
the code to any collection.

2.5 Add a Document to Collections

Problem

You want to add a new document to a collection.

jb091180
Highlight

Cloud Firestore 22

Solution

Collections have an add() method that takes a plain JavaScript object and creates a new document
in the collection. The method will return a Promise that resolves when the operation is successful,
giving you the option to execute additional code after the operation succeeds or fails.

1 const collection = this.afs.collection('books');

2

3 new data = {

4 author: 'Jeff Delaney'

5 title: 'The Angular Firebase Survival Guide',

6 year: 2017

7 }

8

9 collection.add(data)

10 /// optional Promise methods

11 .then(() => console.log('success'))

12 .catch(err => console.log(err))

2.6 Set, Update, and Delete a Document

Problem

You want to set, update, and delete individual documents.

Solution

Write operations are easy to perform in Firestore. You have the following three methods at your
disposal.

• set() will destroy all existing data and replace it with new data.
• update() will only modify existing properties.
• delete() will destroy the document.

jb091180
Highlight

jb091180
Highlight

Cloud Firestore 23

1 const doc = this.afs.doc('books/bookID');

2

3 const data = {

4 author: 'Jeff Delaney'

5 title: 'The Angular Firebase Survival Guide',

6 year: 2017

7 };

8

9 doc.set(data); // reset all properties with new data

10 doc.update({ publisher: 'LeanPub' }); // update individual properties

11 doc.delete(); // update individual properties

All operations return a Promise that resolves when the operation is successful, giving you the option
to execute additional code after the operation succeeds or fails.

1 doc.update(data)

2 .then(() => console.log('success'))

3 .catch(err => console.log(err))

2.7 Create References between Documents

Problem

You want to create a reference between two related documents.

Solution

Document references provide a convenient way to model data relationships, similar to the way
foreign keys work in a SQL database. We can set them by sending a DocumentReference object to
firestore. In AngularFire, this is as simple as calling the ref property on the document reference.
Here’s how we can host a reference to a user document on a book document.

1 const bookDoc = this.afs.doc('books/bookID');

2 const userDoc = this.afs.doc('users/userID');

3

4 bookDoc.update({ author: userDoc.ref });

2.8 Set a Consistent Timestamp

Problem

You want to maintain a consistent server timestamp on database records.

jb091180
Highlight

Cloud Firestore 24

Solution

Setting timestamps with the JavaScript Date class does not provide consistent results on the server.
Fortunately, we can tell Firestore to set a server timestamp when running write operations.

I recommend setting up a TypeScript getter to make the timestamp call less verbose. Simply pass the
object returned from FieldValue.serverTimestamp() as the value to any property that requires a
timestamp.

1 const bookDoc = this.afs.doc('books/bookID');

2 bookDoc.update({ updatedAt: this.timestamp });

3

4 get timestamp() {

5 return firebase.firestore.FieldValue.serverTimestamp();

6 }

2.9 Use the GeoPoint Datatype

Problem

You want to save geolocation data in Firestore.

Solution

We need to send geolocation data to Firestore as an instance of the GeoPoint class. I recommend
setting up a helper method to return the instance from the Firebase SDK. From there, you can use
the GeoPoint as the value to any property that requires latitude/longitude coordinates.

1 const bookDoc = this.afs.doc('books/bookID');

2 const geopoint = this.geopoint(38.23, -119.77);

3

4 bookDoc.update({ location: geopoint });

5

6

7 geopoint(lat: number, lng: number) {

8 return new firebase.firestore.GeoPoint(lat, lng);

9 }

2.10 Atomic Writes

Problem

You want to perform multiple database writes in a batch that will succeed or fail together.

jb091180
Highlight

jb091180
Highlight

Cloud Firestore 25

Solution

Using the firebase SDK directly, we can create batch writes that will update multiple documents
simultaneously. If any single operation fails, none of the changes will be applied. It works setting
all operations on the batch instance, then runs them with batch.commit(). If any operation in the
batch fails, the database rolls back to the previous state.

1 const batch = firebase.firestore().batch();

2 /// add your operations here

3

4 const itemDoc = firebase.firestore().doc('items/itemID');

5 const userDoc = firebase.firestore().doc('users/userID');

6

7 const currentTime = this.timestamp

8

9 batch.update(itemDoc, { timestamp: currentTime });

10 batch.update(userDoc, { timestamp: currentTime });

11

12 /// commit operations

13 batch.commit();

2.11 Order Collections

Problem

You want a collection ordered by a specific document property.

Solution

Let’s assume we have the following documents in the books collection.

Keep in mind, Firestore does not order by ID, so it is important to set documents with an property
that makes sense for ordering, such as a timestamp.

1 afs.doc('books/atlas-shrugged').set({ author: 'Ayn Rand', year: 1957 })

2 afs.doc('books/war-and-peace').set({ author: 'Leo Tolstoy', year: 1865 })

To order by year in ascending order (oldest to newest).

jb091180
Highlight

Cloud Firestore 26

1 const books = afs.collection('books', ref => ref.orderBy('year'))

2

3 // { author: 'Leo Tolstoy', year: 1865 }

4 // { author: 'Ayn Rand', year: 1957 }

To order by year in descending order (newest to oldest).

1 const books = afs.collection('books', ref => ref.orderBy('year', 'desc'))

2

3 // { author: 'Ayn Rand', year: 1957 }

4 // { author: 'Leo Tolstoy', year: 1865 }

Ordering is not just limited to numeric values - we can also order documents alphabetically.

1 const books = afs.collection('books', ref => ref.orderBy('name')

2.12 Limit and Offset Collections

Problem

You want a specific number of documents returned in a collection.

Solution

As your collections grow larger, you will need to limit collections to a manageable size.

For the sake of this example, let’s assume we have millions of books in our collection.

The limit()method will return the first N documents from the collection. In general, it will always
be used in conjunction with orderBy() because documents have no order by default.

1 afs.collection('books', ref => ref.orderBy('year').limit(100))

When it comes to offsetting data, you have four methods at your disposal. I find it easier write them
out in a sentence.

• startAt - Give me everything after this document, including this document
• startAfter - Give me everything after this document, excluding this document.
• endAt - Give me everything before this document, including this document.
• endBefore - Give me everything before this document, excluding this document.

If we want all books written after a certain year, we run the query like so:

jb091180
Highlight

jb091180
Highlight

Cloud Firestore 27

1 afs.collection('books', ref => ref.orderBy('year').startAt(1969))

2

3 /// Like saying books where year >= 1969

If we change it to startAfter(), books from 1969 will be excluded from the query.

1 afs.collection('books', ref => ref.orderBy('year').startAfter(1969))

2

3 /// Like saying books where year > 1969

These methods are very useful when it comes to building pagination and infinite scroll features in
apps.

2.13 Querying Collections with Where

Problem

You want query documents with equality and/or range operators.

Solution

The where() method provides an expressive way to filter data in a collection. The beauty of the
method is that it works just like it reads. It requires three arguments ref.where(field, operator,

value).

• field is any property on your document, i.e. author or year
• operator is any of the following logical operators: ==, <, <=, >, or >=. (notice != is not
included)

• value is the value you’re comparing. i.e. ‘George Orwell’ or 1984

Let’s look at some examples and read them like sentences. First, we can filter by equality.

1 afs.collection('books', ref => ref.where('author', '==', 'James Joyce'))

2

3 // Give me all books where the author is James Joyce

Our we can use logical range operators

jb091180
Highlight

Cloud Firestore 28

1 afs.collection('books', ref => ref.where('year', '>=', 2001))

2

3 // Books where the year published is greater-than or equal-to 2001.

1 afs.collection('books', ref => ref.where('year', '<', 2001))

2

3 // Books where the year published is less-than 2001.

We can also chain the where method to make multi-property queries.

1 afs.collection('books', ref => ref.where('author', '==', 'James Joyce').where('y\

2 ear', '>=', 1920))

3

4 // Books where author is James Joyce AND year is greater-than 1920.

But there is one major exception! You cannot combine range operators on multiple properties.

1 afs.collection('books', ref => ref.where('year', '>=', 2003).where('author', '>'\

2 , 'B'))

3

4 // ERROR

2.14 Creating Indices

Problem

You want to order a collection by multiple properties, which requires a custom index.

Solution

Firestore will automatically create an index for every individual property in your collection.
However, it would result in an enormous amount of indices if Firestore indexed every combination
of properties. A document with just 7 properties has 120 possible index combinations if you follow
the rule of Eularian numbers.

The best way to create an index is to simply wait for Firestore to tell you when one is necessary. If
we try to order by two different properties, we should get an error in the browser console.

Cloud Firestore 29

1 afs.collection('books', ref => ref.orderBy('year').orderBy('author'))

2

3 // Error, you need to create an index for the query

The error message will provide a URL link to the Firestore console to create the index. Create the
index, and the error will have disappeared the next time you run the query.

2.15 Backend Firestore Security Rules

Problem

You want to secure your backend data to authorized users with firestore security rules.

Solution

All Firestore rules must evaluate to a boolean value (true or false). Writing a rule is like saying “If
some condition is true, I grant you permission to read/write this data”.

There are thousands of possible security rule scenarios and I can’t cover them all, but I can show
you what I consider the most useful configurations.

Firestore Rules do NOT Cascade
If you’ve used rules in the Realtime Database you might be used to cascading rules, where
higher level rules apply to nested data. It does not work like this in Firestore unless you
explicitly use the =** wildcard operator.

Applying Rules to Documents

Before we write any rules, let’s look at how we target rules to specific documents. There are three
different options, as outlined below.

1. Apply to exact document:

jb091180
Highlight

Cloud Firestore 30

1 match /itemsCollection/itemXYZ

1. Apply to all documents at this level:

1 match /itemsCollection/{itemID}

1. Apply to all documents at this level AND its nested subcollections:

1 match /itemsCollection/{itemID=**}

No Security: Everybody can read and write

To make your database completely accessible to anyone.

1 service cloud.firestore {

2 match /databases/{database}/documents {

3 match /{document=**} {

4 allow read;

5 allow write;

6 }

7 }

8 }

Note: From here on out, I am going to omit the code surrounding the database to avoid repeating
myself.

Full Security: Nobody can read or write

If you need to lock down your database completely, add this rule.

1 match /{document=**} {

2 allow read: if false;

3 allow write: if false;

4 }

Authenticated Security: Logged in users can read or write

This allows logged-in users full access to the database. Keep in mind, it does not secure data at the
user level - for example, userA can still read/write data that belongs to userB. You can also combine
actions on a single line to avoid duplicating identical rules.

Cloud Firestore 31

1 match /{document=**} {

2 allow read, write: if request.auth != null;

3 }

User Security: Users can only write data they own

This is perhaps the most common and useful security pattern for apps. It locks down anything nested
under a userID to that specific user.

1 match /users/{userId} {

2 allow read, write: if request.auth.uid == userID;

3 }

Role Based Security: Only Moderators can Write Sata

Many apps give certain users special moderator/admin privileges. These types of rules can get quite
verbose, but Firestore allows you to define your own custom reusable functions.

This rule will only allow users who have the isModerator == true attribute on their user account
to delete posts in the forum.

1 function isModerator(userId) {

2 get(/databases/$(database)/documents/users/$(userId)).data.isModerator =\

3 = true;

4 }

5

6 match /forum/{postID} {

7 allow delete: if isModerator(request.auth.uid);

8 }

Regex Security

You can perform a a regular expression match to ensure data adheres to a certain format. For
example, this rule will only allow writes of the email address ends in @angularfirebase.com

1 match /{document} {

2 allow write: if document.matches('.*@angularfirebase\.com')

3 }

Time Security

You can also get the exact timestamp in UTC format from the request to compare to an existing
timestamp in the database.

jb091180
Highlight

jb091180
Highlight

jb091180
Highlight

jb091180
Highlight

Cloud Firestore 32

1 match /{document} {

2 allow write: if request.time < resource.data.timestamp + duration.value(\

3 1, 'm');

4 }

Realtime Database
Firebase provides a realtime NoSQL database. This means all clients subscribe to one database
instance and listen for changes. As a developer, it allows you to handle database as an asynchronous
data stream. Firebase has abstracted away the pub/sub process you would normally need to build
from scratch using something like Redis.

Here are the main things you should know when designing an app with Firebase.

• It is a NoSQL JSON-style database
• When changes occur they are published to all subscribers.
• Operationsmust be executed quickly (SQL-style joins on thousands of records are not allowed)
• Data is retrieved in the form of an RxJS Observable
• Data is unwrapped asynchronously by subscribing to Observables

Injecting the AngularFire Database
ALL code examples in this chapter assume you have injected the AngularFireDatabase

into your component or service. Example 3.2 is the only snippet that shows this process
completely.

Would you rather use the Firestore database?
In most cases, the Firestore (section 2) document database is superior to the realtime
database. It provides better querying methods and data structuring flexibility. You should
have good reason to use Realtime Database over Firestore.

3.0 Migrating from AngularFire Version 4 to Version 5

Problem

You want to migrate an existing app from AngularFire <= v4 to v5. (If you’re brand new to
AngularFire, skip this snippet).

Realtime Database 34

Solution

AngularFire v5.0.0 was released in October 2017 and was a complete rewrite of the realtime database
API. It introduced significant breaking changes to previous versions, so I want to provide a quick
migration guide for developers in the middle of existing projects.

Quick Fix

After you upgrade to v5, your database codewill break catastrophically. Fortunately, the AngularFire
core team realized this issue and kept the old API available under a different namespace of database-
deprecated. You can make your code work by simply updating your imports.

Do a project search for “angularfire2/database” and replace all instanceswith “angularfire2/database-
deprecated”.

You code should now look like this:

1 import {

2 AngularFireDatabase,

3 FirebaseObjectObservable,

4 FirebaseListObservable

5 } from 'angularfire2/database-deprecated';

Full Fix

Fully migrating to the new API is going to be a little more tedious. The main difference in v5 is the
decoupling of the Observable from its reference to firebase.

Let’s compare the APIs.

1 /// *** Version 4 ***

2

3 const item: FirebaseObjectObservable<Item[]> = db.object('items/someKey')

4 item.update(data)

5 item.remove()

6

7 item.subscribe(data => console.log(data))

8

9 /// *** Version 5 ***

10

11 const item: AngularFireObject<Item> = db.object('items/someKey')

12 item.update(data)

13 item.remove()

14

15 // Notice how the Observable is separate from write options

16 const itemObservable: Observable<Item> = object.valueChanges()

17 itemObservable.subscribe(data => console.log(data))

Realtime Database 35

Here is the basic process you will need to follow to update from v4 to v5:

1. For database write operations (push, update, set, remove), you will need to convert every
Firebase(List | Object)Observable into the new AngularFire(List | Object) reference.

2. To read data as an Observable you will need to call valueChanges() or snapshotChanges()
on the reference created in the previous step.

3.1 Data Modeling

Firebase NoSQL Data Modeling
https://youtu.be/2ciHixbc4HE

Problem

You want to know how to model data for Firebase NoSQL.

Solution

In NoSQL, you should always ask “How am I going to be querying this data?”, because operations
must be executed quickly. Usually, that means designing a database that is shallow or that avoids
large nested documents. You might even need to duplicate data and that’s OK - I realize that might
freak you out if you come from a SQL background. Consider this fat and wide design:

1 -|users

2 -|userID

3 -|books

4 -|bookID

5 -|comments

6 -|commentID

7 -|likes

Now imagine you wanted to loop over the users just to display their usernames. You would also
need load their books, the book comments, and the likes – all that data just for some usernames. We
can do better with a tall and skinny design - a denormalized design.

Realtime Database 36

1 -|users

2 -|userID

3

4 -|books

5 -|userId

6 -|bookID

7

8 -|comments

9 -|bookID

10

11 -|likes

12 -|commentID

3.2 Database Retrieval as an Object

Build a Firebase CRUD App
https://youtu.be/6N_1vUPlhvk

Problem

You want to retrieve and subscribe to data from Firebase as a single object.

Solution

You should retrieve data as an object when you do not plan iterating over it. For example, let’s
imagine we have a single book in our database.

The AngularFireObject<T> requires a TypeScript type to be specified. If you want to opt out, you
can use AngularFireObject<any>, but it’s a good idea to statically type your own interfaces:

What is a TypeScript interface?
An interface is simply a blueprint for how a data structure should look - it does not contain
or create any actual values. Using your own interfaces will help with debugging, provide
better developer tooling, and mke your code readable/maintainable.

Let’s create a custom type for your Book data.

Realtime Database 37

1 export interface Book {

2 author: string;

3 title: string:

4 content: string;

5 }

AngularFireList<>

We can observe this data in an Angular Component.

1 import { Component, OnInit } from '@angular/core';

2 import { Observable } from 'rxjs';

3 import {

4 AngularFireDatabase,

5 AngularFireObject,

6 AngularFireList

7 } from 'angularfire2/database';

8

9 @Component({

10 selector: 'book-info',

11 templateUrl: './book-info.component.html',

12 styleUrls: ['./book-info.component.scss']

13 })

14 export class BookInfoComponent implements OnInit {

15

16 constructor(private db: AngularFireDatabase) {}

17

18 bookRef: AngularFireList<Book>;

19 bookObservable: Observable<Book>;

20

21

22 ngOnInit() {

Realtime Database 38

23 // Step 1: Make a reference

24 this.bookRef = this.db.object('books/atlas-shrugged');

25

26 // Step 2: Get an observable of the data

27 this.bookObservable = this.bookRef.valueChanges()

28 }

29

30 }

3.3 Show Object Data in HTML

Problem

You want to show the Observable data in the component HTML template.

Solution

We have a Observable<Book>. How do we actually get data from it? The answer is we subscribe to
it. Angular has a built async pipe³ that will subscribe (and unsubscribe) to the Observable from the
template.

1 <article>

2 {{ bookObservable | async | json }}

3

4 {{ (bookObservable | async)?.content }}

5 </article>

We unwrap the Observable in parenthesis before trying to call its attributes. Calling bookObserv-

able.author would not work because that attribute does not exist on the Observable itself, but
rather its emitted value. The result should look like this:

³https://angular.io/api/common/AsyncPipe

https://angular.io/api/common/AsyncPipe
https://angular.io/api/common/AsyncPipe
jb091180
Highlight

Realtime Database 39

If you have an object withmany properties, consider setting the unwrappedObservable as a template
variable in Angular. This little trick allows you to use the async pipe once, then call any property
on the object - much cleaner than an async pipe on every property.

1 <article *ngIf="bookObservable | async as book">

2 {{ book.author }}

3 {{ book.title }}

4 {{ book.content }}

5 </article>

3.4 Subscribe without the Async Pipe

Problem

You want to extract Observable data in the component TypeScript before it reaches the template.

Solution

Sometimes you need to play with the data before it reaches to the template. We can replicate the
async pipe in the component’s TypeScript, but it takes some extra code because we must create the
subscription, then unsubscribe when the component is destroyed to avoid memory leaks.

Realtime Database 40

1 //// book-info.component.ts

2 import { Subscription } from 'rxjs';

3

4 subscription: Subscription;

5 bookRef: AngularFireList<Book>;

6 bookData: Book;

7

8 ngOnInit() {

9 this.bookRef = this.db.object('books/atlas-shrugged');

10

11 this.subscription = this.bookRef.valueChanges()

12 .subscribe(book => {

13 this.bookData = book

14 })

15 }

16

17 ngOnDestroy() {

18 this.subscription.unsubscribe()

19 }

In the HTML, the async pipe is no longer needed because we unwrapped the raw data in the
TypeScript with subscribe.

1 {{ bookData | json }}

2

3 {{ bookData?.content }}

3.5 Map Object Observables to New Values

RxJS Quick Start Video Lesson
https://youtu.be/2LCo926NFLI

Problem

Problem you want to alter Observable values before they are emitted in a subscription.

Realtime Database 41

Solution

RxJS ships with all sorts to helpful operators to change the behavior of Observables. For now, I will
demonstrate map because it is the most frequently used in Angular.

Let’s get the object Observable, then map its author property to an uppercase string.

1 this.bookObserbable = this.bookRef

2 .map(book => book.author.toUpperCase())

The HTML remains the same.

1 {{ bookObservable | async }}

But the result will be a string of AYN RAND, instead of the JS object displayed in section 3.3.

3.6 Create, Update, Delete a
FirebaseObjectObservable data

Problem

You know how to retrieve data, but now you want to perform operations on it.

Solution

You have three available operators to manipulate objects.

1. Set - Destructive update. Deletes all data, replacing it with new data.
2. Update - Only updates specified properties, leaving others unchanged.
3. Remove - Deletes all data.

Here are three methods showing you how to perform these operations on an AngularfireObject.

Realtime Database 42

1 createBook() {

2 const book = { title: 'War and Peace' }

3 return this.db.object('/books/war-and-peace')

4 .set(book)

5 }

6

7 updateBook(newTitle) {

8 const book = { title: newTitle }

9 return this.db.object('/books/war-and-peace')

10 .update(book)

11 }

12

13 deleteBook() {

14 return this.db.object('/books/twilight-new-moon')

15 .remove()

16 }

3.7 Database Retrieval as a Collection

Problem

You want to retrieve data from Firebase as a list or array.

Solution

The AngularFireList is ideal when you plan on iterating over objects, such as a collection of books.
The process is exactly the same as an object, but we expect an Array of objects.

Realtime Database 43

RxJS Observable Naming Preferences
It is common for Observable streams to be named with an ending $, such as book$. Some
love it, some hate it. I will not be doing it here, but you may see this come up occasionally
in Angular tutorials.

1 //// books-list.component.ts

2

3 booksRef: AngularFireList<Book>;

4 booksObservable: Observable<Book[]>; // <-- notice the [] here

5

6 ngOnInit() {

7 // Step 1: Make a reference

8 this.booksRef = this.db.list('books');

9

10 // Step 2: Get an observable of the data

11 this.bookObservable = this.booksRef.valueChanges();

12 }

3.8 Viewing List Data in the Component HTML

Problem

You want to iterate over an Observable list in the HTML template.

Realtime Database 44

Solution

Again, you should take advantage of Angular’s async pipe to unwrap the Observable in the template.
This will handle the subscribe and unsubscribe process automagically.

1

2 <li *ngFor="let book of booksObservable | async">

3 {{ book.title }} by {{ book.author }}

4

5

The result should look like this:

3.9 Limiting Lists

Problem

You want to limit the number of results in a collection.

Solution

You can pass a second callback argument to db.list(path, queryFn) to access Firebase realtime
database query methods. In this example, we limit the results to the first 10 books in the database.

Realtime Database 45

1 queryBooks() {

2 return this.db.list('/books' ref => ref.limitToFirst(10))

3 }

3.10 Filter Lists by Value

Never use orderByPrority
Firebase has an option to orderByPrority, but it only exists for legacy support. Use other
ordering options instead.

Problem

You want to return list items that have a specific property value.

Solution

This time, let’s filter the collection to all books with an author property of Jack London.

1 queryBooks() {

2 return this.db.list('/books', ref => {

3 return ref.orderByChild('author').equalTo('Jack London')

4 })

5 }

3.11 Create, Update, Delete Lists

Problem

You want create, update, or remove values in a list Observable.

Solution

When creating new books, we push them to the list. This will create a push key automatically, which
is an encoded timestamp that looks like “-Xozdf2i23sfdf73”. You can think of this the unique ID for
an item in a list.

Update and delete operations are similar to objects, but require the key of the item as an argument.
The key is not returned with valueChanges(), so I included a helper method booksWithKeys that
will return an Observable array with the pushKeys included.

Realtime Database 46

1 /// Helper method to retrieve the keys as an Observable

2 booksWithKeys(booksRef) {

3 return this.booksRef.snapshotChanges().map(changes => {

4 return changes.map(c => ({ key: c.payload.key, ...c.payload.val() }));

5 });

6 }

7

8 pushBook() {

9 const book = { title: 'Call of the Wild' }

10 return this.db.list('/books').push(book)

11 }

12

13 updateBook(pushKey) {

14 const data = { title: 'White Fang' }

15 return this.db.list('/books').update(pushKey, data)

16 }

17

18 deleteBook(pushKey) {

19 return this.db.list('/books').remove(pushKey)

20 }

Obtain the Push Key on New Items
When pushing to a list, you might want the $key from new item. You can obtain it with
this.db.list('/books').push(book).key

3.12 Catch Errors with Firebase Operations

Problem

You want to handle errors gracefully when a Firebase operation fails.

Solution

Data manipulation (set, update, push, remove) functions return a Promise, so we can determine
success or error by calling then and/or catch. In this example, a separate error handler is defined
that can be reused as needed. You might want to add some logging, analytics, or messaging logic to
the handleError function.

Realtime Database 47

1 this.createBook()

2 .then(() => console.log('book added successfully'))

3 .catch(err => handleError(err));

4

5 this.updateBook()

6 .then(() => console.log('book updated!'))

7 .catch(err => handleError(err));

8

9 private handleError(err) {

10 console.log("Something went horribly wrong...", err)

11 }

3.13 Atomic Database Writes

Problem

You want to update multiple database locations atomically, to prevent data anomalies.

Solution

You will often find situations where you need to keep multiple collections or documents in sync
during a single operation. In database theory, this is known as an atomic operation. For example,
when a user comments on a book, you want to update the user’s comment collection as well as the
book’s comment collection simultaneously. If one operation succeeded, but the other failed, it would
lead to a data mismatch or anomaly.

In this basic example, we will update the tag attribute on two different books in a single operation.
But be careful - this example will perform at destructive set, even though it calls update.

1 atomicSet() {

2 let updates = {};

3 updates['books/atlas-shrugged/tags/epic'] = true;

4 updates['tags/epic/atlas-shrugged'] = true

5

6 this.db.object('/').update(updates)

7 }

3.14 Backend Database Rules

Database Rules Video Lesson
https://youtu.be/qLrDWBKTUZo

Realtime Database 48

Problem

You want to secure read/write access to your data on the backend.

Solution

Firebase allows you to define database security logic in JSON format that mirrors to the structure of
your database. You just write logical statements that evaluate to true or false, giving users access
to read or write data at a given location.

First, let’s go over a few special built-in variables you should know about.

auth – The current user’s auth state. root – The root of the database and can be traversed with
.child(‘name’). data –Data state before an operation (the old data) newData –Data after an operation
(the new data) now – Unix epoch timestamp ${wildcard} – Wildcard, used to compare keys.

Common Pitfall - Cascading Rules
You cannot grant access to data, then revoke it later. However, you can do the opposite –
revoke access, then grant it back later. That being said, it is usually best to deny access by
default, then grant access when the ideal conditions have been satisfied deeper in the tree.

Let’s start by locking down the database at the root. Nothing goes in, nothing comes out.

1 "rules": {

2 ".read": false,

3 ".write": false

4 }

Now, let’s give logged in users read access

1 "rules": {

2 ".read": "auth != null",

3 ".write": false

4 }

Now let’s allow users to write to the books collection, but only if the data is under their own UID.

Realtime Database 49

1 "rules": {

2 ".read": "auth != null",

3 "books": {

4 "$uid": {

5 ".write": "$uid === auth.uid"

6 }

7 }

8 }

Now, let’s assume we have moderator users, who have access to write to any user’s book. Notice the
use of the OR || operator in the rule to chain an extra condition. You can also use AND && when
multiple conditions must be met.

1 "rules": {

2 ".read": "auth != null",

3 "books": {

4 "$uid": {

5 ".write": "$uid === auth.uid

6 || root.child('moderators').child(auth.uid).val() === true"

7 }

8 }

9 }

3.15 Backend Data Validation

Problem

You want to validate data before it’s written to the database.

Solution

Firebase has a third rule, .validate, which allows you to put constraints on the type of data that
can be saved on the backend. The incoming data will be in the newData Firebase variable.

Difference between Write and Validate
(1) Validation rules only apply to non-null values. (2) They do not cascade (they only apply
to the level at which they are defined.)

Realtime Database 50

1 "rules": {

2 "books": {

3 "$bookId": {

4 "title": {

5 ".validate": "newData.isString()"

6 }

7 }

8 }

9 }

10

11 You will likely want to chain multiple validations together.

12

13 ```json

14 {

15 ".validate": "newData.isString()

16 && newData.val().matches('regex-expression')"

17 }

You might have a list of allowed values in your database, let’s image categories. You can validate
against them by traversing the database.

1 {

2 ".validate": "root.child('categories/' + newData.val()).exists()"

3 }

When creating an object, you might want to validate it has all the required attributes.

1 {

2 "$bookId": {

3 ".validate": "newData.hasChildren(['title', 'body', 'author'])",

4 "title": {

5 ".validate": "newData.isString()"

6 },

7 "body": {},

8 "author": {}

9 }

10 }

User Authentication
Firebase provides a flexible authentication system that integrates nicely with Angular and RxJS. In
this chapter, I will show you how use three different paradigms, including:

• OAuth with Google, Facebook, Twitter, and Github
• Email/Password
• Anonymous

Injecting AngularFire Auth and Database
Most code examples in this chapter assume you have injected the AngularFireDatabase

and AngularFireAuth into your component or service. If you do not know how to inject
these dependencies, revisit section 1.4.

4.1 Getting Current User Data

Problem

You want to obtain the current user data from Firebase.

User Authentication 52

Solution

AngularFire2 returns an authState Observable that contains the important user information, such
as the UID, display name, email address, etc. You can obtain the current user as an Observable like
so.

1 import { Component, OnInit } from '@angular/core';

2 import { AngularFireAuth } from 'angularfire2/auth';

3 import { auth } from 'firebase/app';

4 import { Observable } from 'rxjs';

5

6 @Component({

7 selector: 'app-user',

8 templateUrl: './user.component.html',

9 styleUrls: ['./user.component.scss']

10 })

11 export class UserComponent implements OnInit {

12

13 currentUser: Observable<auth.User>;

14

15 constructor(private afAuth: AngularFireAuth) { }

16

17 ngOnInit() {

18 this.currentUser = this.afAuth.authState;

19 }

20

21 }

Alternatively, you can unwrap the auth observable by by subscribing to it. This may be necessary
if you need the UID to load other data from the database

1 currentUser = null;

2

3 // or ngOnInit for components

4 constructor(afAuth: AngularFireAuth) {

5 afAuth.authState.subscribe(userData => {

6 this.currentUser = userData

7 });

8 }

At this point, the authStatewill be null. In the following sections, it will be populated with different
login methods.

User Authentication 53

4.2 OAuth Authentication

OAuth Video
https://youtu.be/-3rkY8X2EWc

Problem

You want to authenticate users via Google, Facebook, Github, or Twitter.

Solution

Firebase makes OAuth a breeze. In the past, this was the most difficult form of authentication for
developers to implement. From the Firebase console, you need to manually activate the providers
you want to use. Google is ready to go without any configuration, but other providers like Facebook
or Github, require you to get your own developer API keys.

Here’s how to handle the login process in a service.

1 googleLogin() {

2 const provider = new auth.GoogleAuthProvider()

3 return this.socialSignIn(provider);

4 }

5

6 facebookLogin() {

7 const provider = new auth.FacebookAuthProvider()

8 return this.socialSignIn(provider);

9 }

10

11 private socialSignIn(provider) {

12 return this.afAuth.auth.signInWithPopup(provider)

13 }

Now you can create login buttons in your component HTML that trigger the login functions on the
click event and Firebase will handle the rest.

1 <button (click)="googleLogin()"></button>

2 <button (click)="facebookLogin()"></button>

User Authentication 54

4.3 Anonymous Authentication

Anonymous Auth Video
https://youtu.be/dyQDAaDq2ag

Problem

You want lazily register users with anonymous authentication.

Solution

Anonymous auth simply means creating a user session without collecting credentials to re-
authenticate, such as an email address and password. This approach is beneficial when you want a
guest user to try out the app, then register later.

1 anonymousLogin() {

2 return this.afAuth.auth.signInAnonymously()

3 }

That was easy, but the trick is upgrading their account. Firebase supports account upgrading, but
it’s not supported by AngularFire2, so let’s tap into the Firebase SDK. You can link or upgrade any
account by calling linkWithPopup.

1 import { AngularFireAuth } from 'angularfire2/auth';

2 import { auth } from 'firebase/app';

3

4 linkGoogle() {

5 const provider = new auth.GoogleAuthProvider()

6 auth().currentUser.linkWithPopup(provider)

7 }

8

9 linkFacebook() {

10 const provider = new auth.FacebookAuthProvider()

11 auth().currentUser.linkWithPopup(provider)

12 }

jb091180
Highlight

User Authentication 55

4.4 Email Password Authentication

Problem

You want a user to sign up with their email and password.

Solution

Email/password auth is the most difficult to setup because we need to run some form validation
and generate different views for new user sign up and returning user sign in. Here’s how you might
handle the process in a component.

Full Code Example
The code below is a minimal implementation for the book. Checkout the full example in
the demo app at https://github.com/codediodeio/angular-firestarter

1 userForm: FormGroup;

2

3 constructor(private fb: FormBuilder, private afAuth: AngularFireAuth) {}

4

5 ngOnInit() {

6 this.userForm = this.fb.group({

7 'email': ['', [

8 Validators.required,

9 Validators.email

10]

11],

12 'password': ['', [

13 Validators.pattern('^(?=.*[0-9])(?=.*[a-zA-Z])([a-zA-Z0-9]+)$'),

14 Validators.minLength(6),

15 Validators.maxLength(25)

16]

17]

18 });

19 }

20

21 emailSignUp() {

22 let email = this.userForm.value['email']

23 let password = this.userForm.value['password']

User Authentication 56

24 return this.afAuth.auth.createUserWithEmailAndPassword(email, password)

25 }

26

27 emailLogin() {

28 let email = this.userForm.value['email']

29 let password = this.userForm.value['password']

30 return this.afAuth.auth.signInWithEmailAndPassword(email, password)

31 }

Then create the form in the HTML

1 <form [formGroup]="userForm" (ngSubmit)="emailSignUp()">

2

3 <label for="email">Email</label>

4 <input type="email" formControlName="email" required>

5

6 <label for="password">Password</label>

7 <input type="password" formControlName="password" required>

8

9 <button type="submit">Submit</button>

10

11 </form>

4.5 Handle Password Reset

Problem

You need a way for users to reset their password.

Solution

Firebase has a built-in flow for resetting passwords. It works by sending the user an email with a
tokenized link to update the password - you just need a way to trigger the process directly via the
Firebase SDK.

User Authentication 57

1 userEmail: string;

2

3 resetPassword() {

4 const fbAuth = auth();

5 fbAuth.sendPasswordResetEmail(userEmail)

6 }

Use ngModel in the HTML template to collect the user’s email address. Then send the reset password
email on the button click.

1 <input type="email" [(ngModel)]="userEmail" required>

2

3 <button (click)="handlePasswordReset()">Reset Password</button>

4.6 Catch Errors during Login

Problem

You want to catch errors when login fails.

Solution

The login process can fail⁴ for a variety of reasons, so let’s refactor the social sign in function from
section 4.2. It is a good idea to create an error handler, especially if you use multiple login methods.

1 private socialSignIn(provider) {

2 return this.afAuth.auth.signInWithPopup(provider)

3 .then(() => console.log('success'))

4 .catch(error => handleError(error));

5 }

6

7 private handleError(error) {

8 console.log(error)

9 // alert user via toast message

10 }

4.7 Log Users Out

Problem

You want to end a user session.

⁴https://firebase.google.com/docs/reference/js/firebase.auth.Error

https://firebase.google.com/docs/reference/js/firebase.auth.Error
https://firebase.google.com/docs/reference/js/firebase.auth.Error

User Authentication 58

Solution

As you can imagine, logging out is a piece of cake. Calling signOut() will destroy the session and
reset the current authState to null.

1 logout() {

2 this.afAuth.auth.signOut();

3 }

4.8 Save Auth Data to the Realtime Database

Problem

You want to save a user’s auth information to the realtime database.

Solution

The Firebase login function returns a Promise. We can catch a successful response by calling then

and running some extra code to update the database. Let’s refactor the our sign in function from
section 4.2 to save the user’s email address to the realtime database after sign in.

A good database structure for this problem has data nested under each user’s UID.

1 -| users

2 -| $uid

3 email: string

4 moderator: boolean

5 birthday: number

In the component, we call the desired signin function, which returns a Promise. When resolved, the
Promise provides a credential object with the user data that can be saved to the database.

User Authentication 59

1 private socialSignIn(provider) {

2 return this.afAuth.auth.signInWithPopup(provider)

3 .then(credential => {

4 const user = credential.user

5 this.saveEmail(user)

6 })

7 }

8

9 private saveEmail(user) {

10 if (!user) { return; }

11

12 const path = `users/${user.uid}`;

13 const data = { email: user.email }

14

15 this.db.object(path).update(data)

16 }

4.9 Creating a User Profile

Problem

You want to display user data in profile page.

Solution

The Firebase auth object has some useful information we can use to build a basic user profile,
especially when used with OAuth. This snippet is designed to show you the default properties
available.

Let’s assume we have subscribed to the currentUser from section 4.1. You can simply call its
properties in the template.

1 <aside>

2 <p>{{ currentUser?.displayName }}</p>

3

4 </aside>

Here are the Firebase default properties you can use to build user profile data.

• uid
• displayName

User Authentication 60

• photoUrl
• email
• emailVerified
• phoneNumber
• isAnonymous

You can add additional custom user details to the realtime database using the technique described
in section 4.9.

4.10 Auth Guards to Protect Routes

Problem

You want to prevent unauthenticated users from navigating to certain pages.

Solution

Guards provide a way to lock down routes until its logic resolves to true. This may look complex
(most of it is boilerplate), but it’s actually very simple. We take the first emission from the AuthState
Observable, map it to a boolean, and if false, the user is redirected to a login page. You can generate
the guard with the CLI via ng generate guard auth;

1 import { Injectable } from '@angular/core';

2 import { CanActivate, ActivatedRouteSnapshot, RouterStateSnapshot, Router } from\

3 '@angular/router';

4 import { Observable } from 'rxjs';

5 import { tap, map, take } from 'rxjs/operators';

6 import { AngularFireAuth } from 'angularfire2/auth';

7

8 @Injectable()

9 export class AuthGuard implements CanActivate {

10 constructor(private afAuth: AngularFireAuth, private router: Router) {}

11

12 canActivate(

13 next: ActivatedRouteSnapshot,

14 state: RouterStateSnapshot): Observable<boolean> | boolean {

15

16 return this.afAuth.authState

17 .pipe(

18 take(1)

User Authentication 61

19 map(user => !!user)

20 tap(loggedIn => {

21 if (!loggedIn) {

22 console.log("access denied")

23 this.router.navigate(['/login']);

24 }

25 })

26)

27 }

28 }

In the routing module, you can activate the guard by adding it to the canActivate property.

1 { path: 'private-page', component: SomeComponent, canActivate: [AuthGuard] }

Firebase Cloud Storage
File storage used to be a major development hassle. It could take weeks of development fine tuning
and optimizing a web app’s file uploading process. With Firebase, you have a GCP Storage Bucket
integrated into every project, along with security, admin console management, and a robust API.

First, let’s start with this shell of a component to handle the file uploading process.

1 import { Component, OnInit } from '@angular/core';

2 import { AngularFireStorage, AngularFireUploadTask } from 'angularfire2/storage';

3

4 @Component({

5 selector: 'app-upload',

6 templateUrl: './upload.component.html',

7 styleUrls: ['./upload.component.scss']

8 })

9 export class UploadComponent implements OnInit {

10

11 selectedFiles: FileList;

12 uploadTask: AngularFireUploadTask;

13

14 constructor(private storage: AngularFireStorage) { }

15

16 ngOnInit() {

17 }

18

19

20 }

5.1 Creating an Upload Task

File Storage DropZone
https://youtu.be/wRWZQwiNFnM

Problem

You want to initiate an Upload task.

Firebase Cloud Storage 63

Solution

Important Caveat
The path to a file in a storage bucket must be unique. If two users upload a file to
/images/my_pet_pug.jpg, only the first file will be persisted. If this could be a problem
with your file structure, you may want to add a unique token or timestamp to every file
name.

An AngularFireUploadTask is an async object (that allows us to get progress data as an Observable)
used to store a file in Firebase Storage. You create the task like so:

1. Get a JavaScript File object via a form input (See Section 5.4)
2. Make a reference to the location you want to save it in Firebase
3. Call the upload to immediately start the upload process to your storage bucket

1 upload(file: File): AngularFireUploadTask {

2 const path = 'awesome/image.jpg';

3

4 this.uploadTask = this.storage.upload(path, file);

5 }

5.2 Handling the Upload Task

Problem

You want to handle the progress, success, and failure of the upload task.

Solution

Let’s modify the example in 5.1. AngularFireUploadTask provides a few observables that we can
use to obtain more information.

Firebase Cloud Storage 64

1 upload(file: File): AngularFireUploadTask {

2 const path = 'awesome/image.jpg';

3

4 this.uploadTask = this.storage.upload(path, file);

5

6 // Number ranging from 0 to 100

7 this.percentage = this.task.percentageChanges();

8 }

In the HTML, we can unwrap the percentage with the async pipe to display and animate a progress
bar.

1 <progress [value]="percentage | async"></progress>

5.3 Saving Data about a file to the Realtime Database

Problem

You want to save properties from an uploaded file to the Firestore database.

Solution

Saving upload information to the database is very often required, as you will want to probably
reference the download URL at a later time. Here’s what we can get from a file snapshot.

https://firebase.google.com/docs/reference/js/firebase.storage.UploadTaskSnapshot

• downloadURL
• totalBytes
• metadata (contentType, contentLanguage, etc)

When the upload task completes, we can use the snapshot to save information to the database. Again,
we are building on the upload function in examples 5.1 and 5.2.

jb091180
Highlight

jb091180
Highlight

Firebase Cloud Storage 65

1 this.snapshot = this.task.snapshotChanges()

2 .pipe(

3 tap(snap => {

4 if (snap.bytesTransferred === snap.totalBytes) {

5 // Update firestore on completion

6 this.db.collection('photos').add({ path, size: snap.totalBytes })

7 }

8 }),

9 finalize(() => {

10 this.downloadURL = this.storage.ref(path).getDownloadURL()

11 })

12)

13 .subscribe()

The downloadURL is also an Observable, so we can simply unwrap it into the image src.

1

5.4 Uploading a Single File

Problem

You want to enable users to upload a single file from Angular.

Solution

Now that you know how to upload files on the backend, how do you actually receive the necessary
File object from a user?

Here we have an input element for a file, that triggers a detectFiles function when it changes
(when they select a file on their device). Then the user can start the upload process by clicking the
button attached to uploadSingle.

1 <input type="file" (change)="detectFiles($event)">

2

3 <button (click)="uploadSingle()">

Now let’s define these event handlers in the TypeScript. The change event on the form input will
contain a FileList, which can be obtained with $event.target.files. When the upload button is
clicked, the file is sent to Firebase with upload function from section 5.1.

Firebase Cloud Storage 66

1 selectedFiles: FileList;

2

3 detectFiles($event) {

4 this.selectedFiles = $event.target.files;

5 }

6

7 uploadSingle() {

8 let file: File = this.selectedFiles.item(0)

9 this.upload(file)

10 }

5.5 Delete Files

Problem

You want users to be able to delete their files.

Solution

Deleting files follows the same process as uploading, but you need to know the location of the file. In
most cases, this means you should have the image name or path saved in the database. Let’s imagine
looping through some images in the database.

Firebase Cloud Storage 67

1 <div *ngFor="let image of databaseImages | async">

2 <button (click)="deleteFile(image.name)">

3 Delete {{ image.name }}

4 </button>

5 </div>

Now, we can pass that image name to a storage reference and delete it.

1 deleteFile(name) {

2 storage.ref(`/images`).child(name).delete();

3 }

5.6 Validate Files on the Frontend

Problem

You want to alert a user when their file is not valid.

Solution

You should always validate files on the frontend because it creates a better user experience (but
validate the backend also, see the next section). To do this, we use the built-in File object in
javascript to collect some useful information about the file blob. The size and type attributes are
probably the most common for validation.

1 validateFile(file: File) {

2 const sizeMb = file.size / 1024 / 1024

3 const mimeType = file.type.split('/')[0]

4

5 validationErrors = []

6 const sizeError = "Must be less than 10 Megabytes"

7 const mimeError = "Must be an image"

8

9 if (sizeMb > 10) validationErrors.push(sizeError)

10 if (mimeType != 'image') validationErrors.push(mimeError)

11

12 return validationErrors

13 }

Firebase Cloud Storage 68

5.7 Upload Images in Base64 Format

Problem

You want to put a base64 encoded file into storage

Solution

You might have images encoded as a Base64 to avoid depending on an external file. There is no need
to convert it - you can still upload it via putString, which also returns an upload task Promise.

1 uploadBase64() {

2 const imageString = '5c6p7Y+2349X44G7232323...'

3 return this.storage.ref('/images').putString(imageString)

4 }

5.8 Validating Files on the Backend

Problem

You want to prevent users from uploading extremely large files or certain file types to your storage
bucket.

Solution

Backend validation is extremely important when dealing with file uploads from users. File storage
rules are similar to database rules in principle, but use a slightly different syntax.

Here’s the default security settings in Firebase. Users can only read/write if they are logged in.

1 service firebase.storage {

2 match /b/{bucket}/o {

3 match /{allPaths=**} {

4 allow read, write: if request.auth != null;

5 }

6 }

7 }

Let’s authorize writes for the image owner only, but allow any user to read the images.

Firebase Cloud Storage 69

1 match /images/{userId}/{allImages=**} {

2 allow read;

3 allow write: if (request.auth.uid == userId);

4 }

Now let’s validate file size and type. It must be less than 10 Mb and have an image MIME type.

1 match /{imageId} {

2 allow read;

3 allow write: if request.resource.size < 10 * 1024 * 1024

4 && request.resource.contentType.matches('image/.*')

You can also give buckets their own unique rules

1 match /b/bucket-PUBLIC.appspot.com/o {

2 match /{allPaths=**} {

3 allow read, write;

4 }

5 }

6

7 match /b/bucket-PRIVATE.appspot.com/o {

8 match /{allPaths=**} {

9 allow read, write: if request.auth != null;

10 }

11 }

Firebase Cloud Functions
Cloud functions are Functions-as-a-Service (FaaS) that allow you to run code on demand without
ever worrying about server deployment.

• No server management
• Isolated codebase
• Billed on demand

When you deploy to a Platform-as-a-Service (PaaS), such as Heroku, you are billed a monthly rate
even if the volume is miniscule. I find it annoying to pay $X per month for a background task that
only runs 500 times per month.

The great thing about Cloud Functions is that you’re billed by the millisecond. Your function runs
for 400ms, then you’re billed $0.00001 or whatever the actual cost.

It’s also really helpful to isolate code outside of Angular, because you really need your Angular app
to stay lean and agile. If you think of an app like a retail store, Angular is the customer service team
and the cloud functions are the warehouse workers. The reps need to be available quickly and offer
a responsive and engaging experience. Meanwhile, the warehouse workers need to handle all the
heavy lifting and maintenance behind the scenes.

6.1 Initialize Cloud Functions in an Angular Project

Problem

You want to initialize cloud functions in your project

Solution

Cloud functions are managed with the firebase-tools CLI.

Run firebase init, choose functions and install dependencies, then cd functions and npm in-

stall.

Firebase Cloud Functions 71

From there, you have an isolated NodeJS environment to buildmicroservices, setup HTTP endpoints,
and run background tasks. You may also need to save environment variables, such as API keys.

firebase functions:config:set someApiKey="XYZ"

You can access your environment variables by calling functions.config().someApiKey inside the
environment.

The index.js file is where you will define the function. Most commonly, you will import the
admin database to override any read/write/validate rules (see 2.14). You define functions calling
exports.functionName, which we will see in the upcoming examples in this chapter.

1 var functions = require('firebase-functions');

2 const admin = require('firebase-admin');

3 admin.initializeApp();

4

5 exports.emptyFunction = functions.https.onRequest((req, res) => {

6 // log to the firebase console

7 console.log('hello')

8

9 // send an HTTP response

10 res.send('hello from the cloud!')

11 })

6.2 Deploy Cloud Cloud Functions

Problem

You want to deploy your cloud functions.

Solution

Let’s deploy the function from 6.1. It’s as simple as:

Firebase Cloud Functions 72

firebase deploy --only functions

Firebase should have returned the endpoint URL to trigger this function. We can hit it with a request
using cURL, then check the logs to see if it’s working.

curl your-project.cloudfunctions.net/emptyFunction

Or simply paste the function URL into your web browser. It should respond with hello from the
cloud.

In the firebase console, you should see something like this:

Tip: If you have a custom domain in your project, requests can be proxied to that domain when
calling HTTP functions.

6.3 Setup an HTTP Cloud Function

Problem

You want to create a cloud function that is triggered over HTTP.

Solution

An HTTP cloud function will allow you arbitrarily execute code from any event, such as a button
click, form submission, etc. It gives you an API endpoint without the need to manage a backend
server.

HTTP cloud functions have a request req and a response res. In most cases, you will parse the
request parameters, then finish by calling response.send() to send JSON back to the requester.

In this example, the HTTP function returns a word count in JSON format for a specific book in the
database. It makes a reference to the database and calls once('value') - this will return a single
snapshot of the data at this location. From there, we can parse the data into a word count object,
convert it to JSON, then send the response.

Firebase Cloud Functions 73

1 exports.bookWordCount = functions.https

2 .onRequest((req, res) => {

3

4 const bookId = req.body.bookId

5

6 if (!bookId) return;

7

8 return admin.database()

9 .ref(`/books/${bookId}`)

10 .once('value')

11 .then(data => {

12 return data.val()

13 })

14 .then(book => {

15 const wordCount = book.content.split(' ').length;

16 const json = JSON.stringify({ words: wordCount })

17 res.status(200).send(json)

18 })

19

20 })

Deploy it, then test it using cURL.

1 curl -H "Content-Type: application/json" -d '{"bookId":"atlas-shrugged"}' https:\

2 //your-endpoint

Or you can call it from Angular using the HTTP module.

1 import { HttpClient, Response } from '@angular/common/http';

2

3 constructor(private http: HttpClient) {}

4

5 getWordCount(bookId) {

6 const path = 'https://your-endpoint/bookWordCount';

7 const params = { bookId };

8

9 return this.http.get(path, { params });

10 }

Firebase Cloud Functions 74

6.4 Setup an Auth Cloud Function

Problem

You want to trigger a function when a user signs up or deletes their account.

Solution

Firebase offers two triggers for authentication events of onCreate and onDelete. Common use cases
for the onCreate event could be sending a transactional email or updating a notification feed. The
onDelete function can be used to delete a user’s data when they close their account.

1 exports.deleteUserData = functions.auth

2 .user()

3 .onDelete((userRecord, context) => {

4

5 const userId = userRecord.uid;

6 const email = userRecord.email;

7

8 return admin.database()

9 .ref(`users/${userId}`).remove();

10

11 });

6.5 Setup a Database Cloud Function

Problem

You want to update a user’s notification feed when their content is liked.

Solution

Database triggers are the most useful type of Firebase Cloud Functions because they solve many
common background situations that are impractical/difficult to perform in Angular.

You invoke functions by referencing a specific point in the database, then specify the type of
operation trigger. There are four possible triggers.

onWrite() - All operations onCreate() - New data created onUpdate() - Existing data updated
onDelete() - Data removed

In this example, we will update the user’s toast notification feed when they gain a new follower.

Firebase Cloud Functions 75

1 exports.sendToast = functions.database

2 .ref('/followers/{userId}/{username}')

3 .onCreate(event => {

4

5 const data = event.data.after.val();

6 const userId = event.params.userId;

7 const follower = event.params.username;

8

9 const message = { message: `You've been followed by ${username}` }

10

11 return admin.database()

12 .ref(`toasts/${userId}`)

13 .push(message);

14

15 });

Choose the Reference Point Carefully
The database reference point you choose for a cloud function will also fire on any child
nodes nested within it. A function that references /users will be invoked on a write to
users/userId/deep/data. You should always point functions to deepest level possible to
avoid unnecessary invocations.

6.6 Setup a Firestore Cloud Function

Problem

You want to trigger a cloud function when data changes in a Firestore document.

Solution

The cloud function triggers are identical for Firestore and the Realtime DB, just to recap:

onWrite() - All operations onCreate() - New document created onUpdate() - Existing document
updated onDelete() - Document removed

Because Firestore is so similar to the Realtime DB, let’s just highlight the important differences. It
boils down to slightly different terminology:

1. Get data with event.after.data().
2. Get the previous data state with event.previous.data().

Firebase Cloud Functions 76

1 exports.myFunctionName = functions.firestore

2 .document('books/bookID').onUpdate((event) => {

3

4 // Current data state

5 const data = event.after.data();

6

7 // Data state before the update

8 const previousData = event.previous.data();

9

10 // Update data on the document

11 return event.data.ref.update({

12 hello: 'world'

13 });

14 });

6.7 Setup a Storage Cloud Function

Problem

You want to resize images uploaded to firebase storage into thumbnails of various sizes.

Solution

Storage functions are similar to the database functions, but you have onFinalize() and onDelete()

triggers, which fire on create/overwrite or delete, respectively. You can also use on metadataUp-

dated() if you need a trigger that does not modify the underlying file object.

This final cloud function is by far the most complex. I wanted to demonstrate what a fully fledged,
relatively complex, cloud function can look like. Here we are using the sharp NPM package to resize
the image, save it to the function’s local storage on the underlying virtual instance, then upload it
to Firebase.

1 const functions = require('firebase-functions');

2 const gcs = require('@google-cloud/storage')();

3 const sharp = require('sharp')

4 const _ = require('lodash');

5 const path = require('path');

6 const os = require('os');

7

8 exports.thumbnail = functions.storage

9 .object('uploads/{imageName}')

Firebase Cloud Functions 77

10 .onFinalize((object, context) => {

11

12 const fileBucket = object.bucket;

13 const filePath = object.name;

14 const contentType = object.contentType;

15 const resourceState = object.resourceState;

16

17 const SIZES = [64, 256, 512]; // Resize pixel targets

18

19 if (!contentType.startsWith('image/') || resourceState == 'not_exists') {

20 console.log('This is not an image.');

21 return;

22 }

23

24 if (_.includes(filePath, '_thumb')) {

25 console.log('already processed image');

26 return;

27 }

28

29

30 const fileName = filePath.split('/').pop();

31 const bucket = gcs.bucket(fileBucket);

32 const tempFilePath = path.join(os.tmpdir(), fileName);

33

34 return bucket.file(filePath).download({

35 destination: tempFilePath

36 }).then(() => {

37

38 _.each(SIZES, (size) => {

39

40 let newFileName = `${fileName}_${size}_thumb.png`

41 let newFileTemp = path.join(os.tmpdir(), newFileName);

42 let newFilePath = `/thumbs/${newFileName}`

43

44 sharp(tempFilePath)

45 .resize(size, null)

46 .toFile(newFileTemp, (err, info) => {

47

48 bucket.upload(newFileTemp, {

49 destination: newFilePath

50 });

51 });

Firebase Cloud Functions 78

52 })

53 })

54 })

Real World Combined Examples
Now it’s time to bring everything together. In this section, I solve several real-world problems
by combining concepts from the Firestore, Realtime Database, user auth, storage, and functions
chapters.

I’ve selected these examples because they are (A) commonly needed by developers and (B)
implement many of the examples covered in this book. Each example also has a corresponding
video lesson.

Important Update for Version 6.0

In version 6.0 of this book I decided to remove all code examples from this section. Is it because I’m
lazy? Maybe. Is it because they were perpetually outdated by breaking changes? Getting warmer. Is
it because I can provide something more useful? That’s my goal!

Instead of dumping a bunch of complex examples in this section that will become quickly outdated,
I will provide you with a curated list of lessons from AngularFirebase.com that I believe are critical
to development success on this stack. These lessons are more thorough than what can be provided
in a book format, are kept up-to-date, and accompanied by video content. If you hate this change to
the book just send me a message on Slack - I’ll make it up to you.

7.1 Auth with Firestore Custom User Data

Problem

Youwant tomaintain custom user records that go beyond the basic information provided by Firebase
authentication.

Solution

Episode 55: https://angularfirebase.com/lessons/google-user-auth-with-firestore-custom-data/

An app’s auth system is the first thing I want to see when jumping into a new consulting project.
When the user auth flow is screwed up it creates a cascading set of problems that can turn
development into a nightmare.

After experimenting with various auth configurations in Firebase, I feel the approach presented in
episode 55 is a great starting point. Most apps require their users to save some custom account data,
so we wrap the Firebase user with a document in Cloud Firestore allowing us to add any custom data
we want. From the developer’s perspective, you get a centralized AuthService that can be injected
anywhere in app to observe the current user.

Real World Combined Examples 80

7.2 Role-based Access Control

Problem

Youwant to assign users unique roles, then secure backend and frontend data based on their assigned
roles.

Solution

Episode 75: https://angularfirebase.com/lessons/role-based-authorization-with-firestore-nosql-and-
angular-5/

Role-based use authorization is a challenging feature to implement on any stack. There are many
different ways to go about it, but I put together an approach that offers a high degree of flexibility.
But most importantly, it shows you how to create security mechanisms with both the frontend and
backend code. End-to-end security is critical for any access-control feature and this episode goes
into great detail.

7.3 Drag and Drop File Uploads

Problem

You want users to drag and drop files into your app and upload them to a Firebase storage bucket.

Solution

Episode 82: https://angularfirebase.com/lessons/firebase-storage-with-angularfire-dropzone-file-up-
loader/

The book has an entire chapter dedicated to file uploads, but building your own dropzone uploader
from scratch is a great exercise. In Episode 82 you will learn how to use angular to handle the drag
events, then mix in AngularFireStorage to upload the file.

7.4 Firestore NoSQL Data Modeling

Problem

You’re not sure how to model your Firestore data.

Real World Combined Examples 81

Solution

Episode 85: https://angularfirebase.com/lessons/firestore-nosql-data-modeling-by-example/

Modeling data in NoSQL is tricky. I have worked with MongoDB for many years, which is a
document-oriented database that shares fundamental similarities to Firestore. What I’ve found over
the years is that almost every data modeling problem has several viable solutions. Solution Amight
get you better performance, but require more data duplication. While Solution B might be less
performant, but have the ability to scale infinitely. In Episodes 85 and 86 I provide a ton of different
practical data modeling examples and discuss the tradeoffs for each.

7.5 Server Side Rendering

Problem

You need your Angular App to be search engine and social media linkbot friendly.

Solution

Episode 106 (Prerendering): https://angularfirebase.com/lessons/angular-6-universal-ssr-prerender-
ing-firebase-hosting/

Episode 99 (SSR): https://angularfirebase.com/lessons/server-side-rendering-firebase-angular-uni-
versal/

Server-side rendering was once the Achilles’ heal of AngularFirebase development. Universal SSR
simply did not work with the Firebase SDK. Thankfully, that all changed in March 2018 and opened
the door to building fully SEO optimized apps. There are two main strategies you can start using
today:

Prerendering creates an entry-point page for every route in your Angular app and renders it at
build-time. It’s great when you have a small number of pages that need to be SEO-optimized, such
as landing pages, product listings, etc.

SSR hosts your app on a NodeJS server and renders the app request-time. This means your
entire app becomes SEO-optimized, but you have to deal with the added complexity and cost of
deploying/scaling a server.

	Table of Contents
	Introduction
	Why Angular?
	Why Firebase?
	Why Angular and Firebase Together?
	This Book is for Developers Who…
	Angular Firebase Starter App
	Package Versions
	Watch the Videos
	Join the Angular Firebase Slack Team

	The Basics
	1.1 Top Ten Best Practices
	1.2 Start a New App from Scratch
	1.3 Separating Development and Production Environments
	1.4 Importing Firebase Modules
	1.5 Deployment to Firebase Hosting

	Cloud Firestore
	2.0 Cloud Firestore versus Realtime Database
	2.1 Data Structuring
	2.2 Collection Retrieval
	2.3 Document Retrieval
	2.4 Include Document Ids with a Collection
	2.5 Add a Document to Collections
	2.6 Set, Update, and Delete a Document
	2.7 Create References between Documents
	2.8 Set a Consistent Timestamp
	2.9 Use the GeoPoint Datatype
	2.10 Atomic Writes
	2.11 Order Collections
	2.12 Limit and Offset Collections
	2.13 Querying Collections with Where
	2.14 Creating Indices
	2.15 Backend Firestore Security Rules

	Realtime Database
	3.0 Migrating from AngularFire Version 4 to Version 5
	3.1 Data Modeling
	3.2 Database Retrieval as an Object
	3.3 Show Object Data in HTML
	3.4 Subscribe without the Async Pipe
	3.5 Map Object Observables to New Values
	3.6 Create, Update, Delete a FirebaseObjectObservable data
	3.7 Database Retrieval as a Collection
	3.8 Viewing List Data in the Component HTML
	3.9 Limiting Lists
	3.10 Filter Lists by Value
	3.11 Create, Update, Delete Lists
	3.12 Catch Errors with Firebase Operations
	3.13 Atomic Database Writes
	3.14 Backend Database Rules
	3.15 Backend Data Validation

	User Authentication
	4.1 Getting Current User Data
	4.2 OAuth Authentication
	4.3 Anonymous Authentication
	4.4 Email Password Authentication
	4.5 Handle Password Reset
	4.6 Catch Errors during Login
	4.7 Log Users Out
	4.8 Save Auth Data to the Realtime Database
	4.9 Creating a User Profile
	4.10 Auth Guards to Protect Routes

	Firebase Cloud Storage
	5.1 Creating an Upload Task
	5.2 Handling the Upload Task
	5.3 Saving Data about a file to the Realtime Database
	5.4 Uploading a Single File
	5.5 Delete Files
	5.6 Validate Files on the Frontend
	5.7 Upload Images in Base64 Format
	5.8 Validating Files on the Backend

	Firebase Cloud Functions
	6.1 Initialize Cloud Functions in an Angular Project
	6.2 Deploy Cloud Cloud Functions
	6.3 Setup an HTTP Cloud Function
	6.4 Setup an Auth Cloud Function
	6.5 Setup a Database Cloud Function
	6.6 Setup a Firestore Cloud Function
	6.7 Setup a Storage Cloud Function

	Real World Combined Examples
	7.1 Auth with Firestore Custom User Data
	7.2 Role-based Access Control
	7.3 Drag and Drop File Uploads
	7.4 Firestore NoSQL Data Modeling
	7.5 Server Side Rendering

	Notes / Bookmarks
	If all went well, your app should be live on the firebase project URL
	Firestore vs Realtime Db
	Doc datatypes
	Many to many #1

	Typescript interface
	Getting data from Firestore
	Observables / Async
	Async #2

	Getting doc id with collection
	Add doc
	set,update,delete
	set doc reference as property
	Timestamp value as doc property
	geolocation
	batching operations
	order by
	paging
	where
	firestore rules #1
	showing observable data in the html
	observable #2 in html

	firebase auth
	firebase upload
	save uploaded file meta data

