
Programming Guide
SDK Home (http://developer.anki.com/drive-sdk/)

Bluetooth LE Core Concepts
The Bluetooth 4.0 specification defines a wireless communication protocol for use with low energy devices. The
protocol is conceptually similar to a client-server architecture, in which a client device (central) can connect to and
communicate with a server device (peripheral). For more information on Bluetooth 4.0, see the Bluetooth 4.0 Core
specification (https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737).

Anki Drive vehicles are Bluetooth low energy peripheral (server) devices. Any device capable of acting as a central
(client), such as a smartphone or computer, can discover, connect to and control vehicles. Each vehicle advertises
identifying information and a service that consists of characteristics for sending and receiving data. This document
describes the format of the vehicle advertisement data, which can be used to decode the vehicle identifier, name
and model. Once connected, a central device can communicate with vehicles using the Anki Drive message protocol
outlined below.

Discovering Vehicles
Vehicles broadcast identifying information and service definitions in the form of advertising packets. An advertising
packet contains binary data in a parsable format defined by a generic attribute profile (GATT). Depending on the
bluetooth API available on the central, this information may be exposed in different ways. On iOS, CoreBluetooth
(https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts
/AboutCoreBluetooth/Introduction.html) parses this data internally and provides an NSDictionary containing the
profile data. On Linux and Android, the raw scan bytes are exposed via the bluetooth API (BlueZ
(http://www.bluez.org/), Linux; android.bluetooth (http://developer.android.com/guide/topics/connectivity/bluetooth-
le.html), Android) and must be parsed to obtain the GATT profile data members of interest.

Parsing Advertising Packet data
If raw scan data from the Extended Inquiry Response (EIR) is available, it needs to be parsed to obtain the
LOCAL_NAME and MANUFACTURER_DATA. These records types are defined as part of the GATT profile
specification (https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile). The Anki
Drive SDK provides methods (https://github.com/anki/drive-sdk/blob/master/include/ankidrive/advertisement.h) to
parse EIR data into records and to extract vehicle information from specific types of records.

Advertisement Data Format
Vehicle advertisements consist of the Anki Drive service UUID (service_id), along with a unique identifier
(mfg_data), name and state information (local_name).

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

1 von 7 29.06.17, 18:12

/**

 * Vehicle information present in Bluetooth LE advertising packets.

 *

 * flags: EIR flags

 * tx_power: transmission power

 * mfg_data: parsed data from the MANUFACTURER_DATA bytes

 * local_name: parsed data from the LOCAL_NAME string bytes

 * service_id: Anki Vehicle UUID (128-bit)

 */

typedef struct anki_vehicle_adv {

 uint8_t flags;

 uint8_t tx_power;

 anki_vehicle_adv_mfg_t mfg_data;

 anki_vehicle_adv_info_t local_name;

 uuid128_t service_id;

} anki_vehicle_adv_t;

The service_id for an Anki Drive vehicle is defined in the GATT profile for the vehicle, and will always be the same
128-bit UUID. This UUID can be used to identify vehicles during scanning, or as a handle to discover the read and
write characteristics after connecting to a vehicle.

#define ANKI_STR_SERVICE_UUID "BE15BEEF-6186-407E-8381-0BD89C4D8DF4"

The manufacturer data is a uint64_t value that uniquely identifies each vehicle. This value specifies the 'make/model'
of the vehicle (model_id) and a unique identifier for each vehicle of the specified model (identifier).

/**

 * Vehicle hardware information encoded in the MANUFACTURER_DATA

 * record of an advertising packet.

 *

 * - identifier: Unique identifier for a physical vehicle

 * - model_id: The model type of a vehicle

 * - product_id: Value identifying the vehicle as Anki Drive hardware

 */

typedef struct anki_vehicle_adv_mfg {

 uint32_t identifier;

 uint8_t model_id;

 uint8_t _reserved;

 uint16_t product_id;

} anki_vehicle_adv_mfg_t;

The Bluetooth 4.0 specification requires that the LOCAL_NAME field be a UTF-8 encoded string of up to 248 bytes,
with shorter values terminated by a NULL (0x0) byte (Bluetooth 4.0, Part C, 3.2.2.3, 12.1 (https://www.bluetooth.org
/docman/handlers/downloaddoc.ashx?doc_id=229737)). However, Bluetooth LE devices may only advertise up to 20
bytes of the LOCAL NAME data (Bluetooth 4.0, Part C, 11.1.2 (https://www.bluetooth.org/docman/handlers
/downloaddoc.ashx?doc_id=229737)). To ensure that the entire LOCAL_NAME is available during advertising, Anki
Drive vehicles only use up to 20 bytes of LOCAL NAME data.

The LOCAL_NAME advertised by Anki Drive vehicles consists of the vehicle state (state), firmware version

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

2 von 7 29.06.17, 18:12

(version) and a user-defined vehicle name (name). The vehicle state and firmware version will always be non-null
values in the ASCII range from (0x01 -- 0x7f). However, the remaining data could be NULL, which would still satisfy
the requirement for a UTF-8 encoded string. This should be accounted for when parsing the data (https://github.com
/anki/drive-sdk/blob/master/include/ankidrive/advertisement.h). This strategy of including additional information in
the LOCAL NAME field enhances the user interface experience in the Anki Drive app, but may result in the
LOCAL_NAME data changing during repeated advertisements if, for example, a vehicle is removed from a charger.

/**

 * Vehicle information packed in the LOCAL_NAME string record

 * of an advertising packet.

 *

 * - state: Current vehicle state.

 * NOTE: Changes to the vehicle state will cause the LOCAL_NAME value

 * to change.

 * - version: Firmware version running on the vehicle

 * - name: User-defined name in UTF-8 encoding

 */

typedef struct anki_vehicle_adv_info {

 anki_vehicle_adv_state_t state;

 uint16_t version;

 uint8_t _reserved[5];

 unsigned char name[13]; // UTF8: 12 bytes + NULL.

} anki_vehicle_adv_info_t;

/**

 * The state of a vehicle recorded in the advertising packet.

 *

 * - full_battery: The vehicle battery is fully charged

 * - low_battery: The vehicle battery has a low charge and will die soon

 * - on_charger: The vehicle is currently on the charger

 */

typedef struct anki_vehicle_adv_state {

 uint8_t _reserved:4;

 uint8_t full_battery:1; // 4: TRUE if Car has full battery

 uint8_t low_battery:1; // 5: TRUE if Car has low battery

 uint8_t on_charger:1; // 6: TRUE if Car is on Charger

 uint8_t _unavailable:1; // 7: UNUSED to avoid NULL string

} anki_vehicle_adv_state_t;

Connecting to Vehicles
In order to establish a Bluetooth LE connection with a vehicle, the device address or a unique hardware identifier
must be known. On Android, or Linux and other platforms using BlueZ (http://www.bluez.org/), the device address is
exposed during the scanning process. On Apple platforms, CoreBluetooth hides the device address and instead
provides a unique identifier (UUID) that identifies each peripheral. The identifiers can be associated with vehicle
data obtained during scanning and stored for later use in connecting to vehicles without re-scanning peripherals.

Establishing a BLE connection
Three steps are required to establish bi-directional communication with a vehicle:

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

3 von 7 29.06.17, 18:12

Connect to the vehicle using the hardware identifier.

This step establishes a connection between the central device and the radio in the vehicle.

1.

Discover GATT services associated with the vehicle.

Once connected, this step provides access to the GATT service available on the vehicle, which provides
characteristics for reading and writing data.

2.

Discover characteristics of the vehicle service and register for notifications on the inbound (read)
characteristic.

This step registers the read and write characteristics for the vehicle service, and makes them available for
data transfer. To register for notifications when data is written from the vehicle, it is necessary to set a bit on
the Client Configuration Characteristic. This step is abstracted by CoreBluetooth (https://developer.apple.com
/library/ios/documentation/CoreBluetooth/Reference/CBPeripheral_Class/translated_content
/CBPeripheral.html#//apple_ref/occ/instm/CBPeripheral/setNotifyValue:forCharacteristic:) on Apple platforms.
When using the BlueZ (http://www.bluez.org/) API, it is necessary to set this value directly. See the vehicle-
tool (https://github.com/anki/drive-sdk/blob/master/examples/vehicle-tool/vehicle_cmd.c#L241) example utility
for an example.

3.

Once these steps are complete, it is possible to send and receive data from the vehicle by writing to and reading
from the characteristics.

Anki Vehicle GATT profile
Anki Drive Vehicles implement a Generic Attribute profile (GATT) that defines how attributes can be transmitted to
and from the vehicle. These data are provided in vehicle_gatt_profile.h (https://github.com/anki/drive-sdk/blob
/master/include/ankidrive/vehicle_gatt_profile.h), and also summarized below.

/** Anki Drive Vehicle Service UUID */

#define ANKI_STR_SERVICE_UUID "BE15BEEF-6186-407E-8381-0BD89C4D8DF4"

/** Anki Drive Vehicle Service READ Characteristic */

#define ANKI_STR_CHR_READ_UUID "BE15BEE0-6186-407E-8381-0BD89C4D8DF4"

/** Anki Drive Vehicle Service WRITE Characteristic */

#define ANKI_STR_CHR_WRITE_UUID "BE15BEE1-6186-407E-8381-0BD89C4D8DF4"

Best Practices for Connecting to Vehicles
The Anki Drive app connects to multiple vehicles and iOS devices simultaneously. Furthermore, both vehicles and
devices send data at the fastest possible rate. This is in contrast to many other Bluetooth LE devices, which may
advertise infrequently or sparingly send data in order to save power.

To minimize problems caused by this particular use case, we found it useful to adopt the following conventions:

Serialize connection attempts
Do not attempt to perform multiple connections simultaneously. Instead, serialize all connection attempts, so that
connection, service discovery and characteristic discovery for one peripheral are completed before attempting to
establish another connection.

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

4 von 7 29.06.17, 18:12

Avoid connections while scanning
It is possible to connect to peripherals while simultaneously scanning. However, our empirical evidence on iOS
suggests that the connection procedure is more robust if scanning is not in progress.

Vehicle Message Protocol
Vehicle messages are short, structured sequences of bytes that can represent driving commands, queries about the
vehicle state, or convey specific vehicle states or conditions.

Message Format
The current message format is designed for low-bandwidth wireless transmission protocols such as Bluetooth LE.
Each message must begin with a 2-byte sequence specifying the message size, and identifier. Certain types of
messages may require up to 18 bytes of additional data for a maximum size of 20 bytes.

Vehicle Message Packet Structure

 +---------------------------+--------+------------+

 | size_of(msg_id + payload) | msg_id | payload |

 +---------------------------+--------+------------+

 | 1 byte | 1 byte | 0-18 bytes |

 +---------------------------+--------+------------+

The message data structure is represented as a C struct that encapsulates data for vehicle communications.

/**

 * Basic vehicle message.

 *

 * - size: Size in bytes of the msg_id plus payload

 * - msg_id: Identifier for message

 * - payload: Optional message data for parameters or response info.

 *

 */

#define ANKI_VEHICLE_MSG_MAX_SIZE 20

#define ANKI_VEHICLE_MSG_PAYLOAD_MAX_SIZE 18

#define ANKI_VEHICLE_MSG_BASE_SIZE 1

typedef struct anki_vehicle_msg {

 uint8_t size;

 uint8_t msg_id;

 uint8_t payload[ANKI_VEHICLE_MSG_PAYLOAD_MAX_SIZE];

} anki_vehicle_msg_t;

Message Types
Each message or command is identified by a unique 1-byte identifier. This value identifies the command that the
vehicle should perform and is also used to determine whether additional data parameters are required. Because
message identifiers are shared with code running on the vehicle, they are inherently linked to the firmware version

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

5 von 7 29.06.17, 18:12

running on the vehicle. Although we do not expect these to change frequently, any changes that do occur in the
future may break compatibility with pre-1.0 releases of the SDK.

/** Identifier for a vehicle message */

enum {

 // BLE Connections

 ANKI_VEHICLE_MSG_C2V_DISCONNECT = 0xd,

 // Ping request / response

 ANKI_VEHICLE_MSG_C2V_PING_REQUEST = 0x16,

 ANKI_VEHICLE_MSG_V2C_PING_RESPONSE = 0x17,

 // Messages for checking vehicle version info

 ANKI_VEHICLE_MSG_C2V_VERSION_REQUEST = 0x18,

 ANKI_VEHICLE_MSG_V2C_VERSION_RESPONSE = 0x19,

 // Lights

 ANKI_VEHICLE_MSG_C2V_SET_LIGHTS = 0x1D,

 // Driving Commands

 ANKI_VEHICLE_MSG_C2V_SET_SPEED = 0x24,

 ANKI_VEHICLE_MSG_C2V_CHANGE_LANE = 0x25,

 ANKI_VEHICLE_MSG_C2V_CANCEL_LANE_CHANGE = 0x26,

 ANKI_VEHICLE_MSG_C2V_TURN_180 = 0x32,

 // Light Patterns

 ANKI_VEHICLE_MSG_C2V_LIGHTS_PATTERN = 0x33,

 // SDK Mode

 ANKI_VEHICLE_MSG_C2V_SDK_MODE = 0x90,

};

Messages with parameters
Some messages require additional data parameters. The required parameters for each message are defined as
packed structs for clarity and convenience. In addition, each type of message has a corresponding function that fills
in a generic anki_vehicle_msg_t struct parameter. These methods allow callers to control memory allocation, but
provide an abstracted way to generate messages with multiple parameters.

SDK Mode
Anki Drive vehicles have a special mode that allows the commands listed above to be used without any additional
data or overhead that is required control vehicles in the Anki Drive iOS app. To enable this mode, send the vehicle a
message with the ANKI_VEHICLE_MSG_C2V_SDK_MODE . This can be easily created using one of the message helper
methods.

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

6 von 7 29.06.17, 18:12

© 2015 Anki, Inc.

Thanks to GitHub (http://github.com), Jekyll (http://jekyllbootstrap.com/), and Bootstrap (http://getbootstrap.com).

anki_vehicle_msg_t msg;

memset(&msg, 0, sizeof(msg));

uint8_t size = anki_vehicle_msg_set_sdk_mode(&msg, 1, ANKI_VEHICLE_SDK_OPTION_OVERRIDE_

LOCALIZATION);

In this example anki_vehicle_msg_set_sdk_mode writes { 0x03, 0x90, 0x01, 0x01 } to msg and returns 4.
Both the buffer and size, should be passed to a function that sends 4 bytes from the buffer to vehicle.

Set vehicle speed
The procedure for creating a message to set the vehicle speed is similar.

anki_vehicle_msg_t msg;

memset(&msg, 0, sizeof(msg));

uint8_t size = anki_vehicle_msg_set_speed(&msg, 1000, 25000);

All of the available functions are listed in protocol.h (https://github.com/anki/drive-sdk/blob/master/include/ankidrive
/protocol.h). For more examples of how to use these functions and send data, see the vehicle-tool
(https://github.com/anki/drive-sdk/blob/master/examples/vehicle-tool/vehicle_cmd.c#L471) example utility.

Revision History
2014-01-23 Initial version.

Anki Drive Programming Guide https://anki.github.io/drive-sdk/docs/programmi...

7 von 7 29.06.17, 18:12

