

AP[®] Statistics 2006 Free-Response Questions

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSQT[®], and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

© 2006 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com. AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

Formulas begin on page 3. Questions begin on page 6. Tables begin on page 12.

Formulas

(I) Descriptive Statistics

$$\overline{x} = \frac{\sum x_i}{n}$$

$$s_x = \sqrt{\frac{1}{n-1}\sum (x_i - \overline{x})^2}$$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$

$$\hat{y} = b_0 + b_1 x$$

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$b_0 = \overline{y} - b_1 \overline{x}$$

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

$$b_1 = r \frac{s_y}{s_x}$$

$$s_{b_1} = \frac{\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}}{\sqrt{\sum (x_i - \overline{x})^2}}$$

(II) Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$E(X) = \mu_X = \sum x_i p_i$$

$$\operatorname{Var}(X) = \sigma_{x}^{2} = \sum \left(x_{i} - \mu_{x} \right)^{2} p_{i}$$

If *X* has a binomial distribution with parameters n and p, then:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $\mu_{\chi} = np$

$$\sigma_{\chi} = \sqrt{np(1-p)}$$

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

If \overline{x} is the mean of a random sample of size *n* from an infinite population with mean μ and standard deviation σ , then:

 $\mu_{\overline{x}} = \mu$

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

(III) Inferential Statistics

Standardized test statistic: $\frac{\text{statistic} - \text{parameter}}{\text{standard deviation of statistic}}$

Confidence interval: statistic \pm (critical value) • (standard deviation of statistic)

Single-Sample

Statistic	Standard Deviation of Statistic
Sample Mean	$rac{\sigma}{\sqrt{n}}$
Sample Proportion	$\sqrt{\frac{p(1-p)}{n}}$

Two-Sample

Statistic	Standard Deviation of Statistic
Difference of sample means	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	Special case when $\sigma_1 = \sigma_2$ $\sigma_1 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Difference of sample proportions	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
	Special case when $p_1 = p_2$
	$\sqrt{p(1-p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Chi-square test statistic =	$\sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$

STATISTICS SECTION II Part A Questions 1-5 Spend about 65 minutes on this part of the exam. Percent of Section II grade—75

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

1. Two parents have each built a toy catapult for use in a game at an elementary school fair. To play the game, students will attempt to launch Ping-Pong balls from the catapults so that the balls land within a 5-centimeter band. A target line will be drawn through the middle of the band, as shown in the figure below. All points on the target line are equidistant from the launching location.

If a ball lands within the shaded band, the student will win a prize.

The parents have constructed the two catapults according to slightly different plans. They want to test these catapults before building additional ones. Under identical conditions, the parents launch 40 Ping-Pong balls from each catapult and measure the distance that the ball travels before landing. Distances to the nearest centimeter are graphed in the dotplots below.

- (a) Comment on any similarities and any differences in the two distributions of distances traveled by balls launched from catapult A and catapult B.
- (b) If the parents want to maximize the probability of having the Ping-Pong balls land within the band, which one of the two catapults, A or B, would be better to use than the other? Justify your choice.
- (c) Using the catapult that you chose in part (b), how many centimeters from the target line should this catapult be placed? Explain why you chose this distance.

© 2006 The College Board. All rights reserved.

2. A manufacturer of dish detergent believes the height of soapsuds in the dishpan depends on the amount of detergent used. A study of the suds' heights for a new dish detergent was conducted. Seven pans of water were prepared. All pans were of the same size and type and contained the same amount of water. The temperature of the water was the same for each pan. An amount of dish detergent was assigned at random to each pan, and that amount of detergent was added to the pan. Then the water in the dishpan was agitated for a set amount of time, and the height of the resulting suds was measured.

A plot of the data and the computer output from fitting a least squares regression line to the data are shown below.

- (a) Write the equation of the fitted regression line. Define any variables used in this equation.
- (b) Note that s = 1.99821 in the computer output. Interpret this value in the context of this study.
- (c) Identify and interpret the standard error of the slope.

© 2006 The College Board. All rights reserved.

- 3. The depth from the surface of Earth to a refracting layer beneath the surface can be estimated using methods developed by seismologists. One method is based on the time required for vibrations to travel from a distant explosion to a receiving point. The depth measurement (*M*) is the sum of the true depth (*D*) and the random measurement error (*E*). That is, M = D + E. The measurement error (*E*) is assumed to be normally distributed with mean 0 feet and standard deviation 1.5 feet.
 - (a) If the true depth at a certain point is 2 feet, what is the probability that the depth measurement will be negative?
 - (b) Suppose three independent depth measurements are taken at the point where the true depth is 2 feet. What is the probability that <u>at least one</u> of these measurements will be negative?
 - (c) What is the probability that the <u>mean</u> of the three independent depth measurements taken at the point where the true depth is 2 feet will be negative?
- 4. Patients with heart-attack symptoms arrive at an emergency room either by ambulance or self-transportation provided by themselves, family, or friends. When a patient arrives at the emergency room, the time of arrival is recorded. The time when the patient's diagnostic treatment begins is also recorded.

An administrator of a large hospital wanted to determine whether the mean wait time (time between arrival and diagnostic treatment) for patients with heart-attack symptoms differs according to the mode of transportation. A random sample of 150 patients with heart-attack symptoms who had reported to the emergency room was selected. For each patient, the mode of transportation and wait time were recorded. Summary statistics for each mode of transportation are shown in the table below.

Mode of Transportation	Sample Size	Mean Wait Time (in minutes)	Standard Deviation of Wait Times (in minutes)
Ambulance	77	6.04	4.30
Self	73	8.30	5.16

- (a) Use a 99 percent confidence interval to estimate the difference between the mean wait times for ambulance-transported patients and self-transported patients at this emergency room.
- (b) Based only on this confidence interval, do you think the difference in the mean wait times is statistically significant? Justify your answer.

© 2006 The College Board. All rights reserved.

- 5. A biologist is interested in studying the effect of growth-enhancing nutrients and different salinity (salt) levels in water on the growth of shrimps. The biologist has ordered a large shipment of young tiger shrimps from a supply house for use in the study. The experiment is to be conducted in a laboratory where 10 tiger shrimps are placed randomly into each of 12 similar tanks in a controlled environment. The biologist is planning to use 3 different growth-enhancing nutrients (A, B, and C) and two different salinity levels (low and high).
 - (a) List the treatments that the biologist plans to use in this experiment.
 - (b) Using the treatments listed in part (a), describe a completely randomized design that will allow the biologist to compare the shrimps' growth after 3 weeks.
 - (c) Give one <u>statistical</u> advantage to having only tiger shrimps in the experiment. Explain why this is an advantage.
 - (d) Give one <u>statistical</u> disadvantage to having only tiger shrimps in the experiment. Explain why this is a disadvantage.

STATISTICS SECTION II Part B

Question 6

Spend about 25 minutes on this part of the exam.

Percent of Section II grade—25

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy and completeness of your results and explanations.

6. A manufacturer of thermostats is concerned that the readings of its thermostats have become less reliable (more variable). In the past, the variance has been 1.52 degrees Fahrenheit (F) squared. A random sample of 10 recently manufactured thermostats was selected and placed in a room that was maintained at 68°F. The readings for those 10 thermostats are given in the table below.

Thermostat	1	2	3	4	5	6	7	8	9	10
Temperature (°F)	66.8	67.8	70.6	69.3	65.9	66.2	68.1	68.6	67.9	67.2

(a) State the null and alternative hypotheses that the manufacturer is interested in testing.

It can be shown that if the population of thermostat temperatures is normally distributed, the sampling distribution of $\frac{(n-1)s^2}{\sigma^2}$ follows a chi-square distribution with n-1 degrees of freedom.

(b) Calculate the value of
$$\frac{(n-1)s^2}{1.52}$$
 for these data.

- (c) Assume that the population of thermostat temperatures follows a normal distribution. Use the test statistic $\frac{(n-1)s^2}{1.52}$ from part (b) and the chi-square distribution to test the hypotheses in part (a).
- (d) For the test conducted in part (c), what is the smallest value of the test statistic that would have led to the rejection of the null hypothesis at the 5 percent significance level?

Mark this value of the test statistic on the graph of the chi-square distribution below. Indicate the region that contains all of the values that would have led to the rejection of the null hypothesis.

© 2006 The College Board. All rights reserved.

(e) Using simulation, 1,000 samples, each of size 10, were randomly generated from 3 populations with different variances. Each population was normally distributed with mean 68 and variance greater than 1.52.

The histograms below show the simulated sampling distribution of $\frac{(n-1)s^2}{1.52}$ for each population.

Mark the region identified in part (d) on each of the histograms below.

(f) Based on the regions that you marked in part (e), identify the simulated sampling distribution that corresponds to the population with the largest variance. Then identify the simulated sampling distribution that corresponds to the population with the smallest variance. Justify your choices.

STOP

END OF EXAM

© 2006 The College Board. All rights reserved.

Table entry for z is the probability lying below z.

Table A	Standard	normal	probabilities
---------	----------	--------	---------------

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Table entry for z is the probability lying below z.

Table A(Continued)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

 Table B
 t distribution critical values

	Tail probability p											
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.0/1	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
1/	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.088	.802	1.067	1.330	1.734	2.101	2.214	2.552	2.8/8	3.197	3.011	3.922
19	.088	.801	1.060	1.328	1.729	2.093	2.205	2.539	2.801	3.174	3.579	3.883
20	.087	.800	1.064	1.323	1.725	2.080	2.197	2.528	2.843	3.135	2.502	2.830
21	.080	.839	1.003	1.323	1.721	2.080	2.189	2.518	2.851	3.133	3.327 2.505	3.819
22	.080	.030	1.001	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.305	3.792
23	685	857	1.000	1.319	1.714	2.009	2.177	2.500	2.807	3.001	3.467	3 745
24	.085 684	856	1.059	1 316	1.711	2.004	2.172	2.492	2.797	3.078	3.450	3 725
25	684	856	1.058	1 315	1.706	2.000	2.167	2.403	2.779	3.067	3 4 3 5	3 707
20	684	855	1.057	1 314	1 703	2.052	2.152	2 473	2.771	3.057	3 421	3 690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	.679	.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	.678	.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	.675	.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
∞	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%
					(Confidence l	evel C					

Table entry for p is the point (χ^2) with probability p lying above it.

Table C	χ^2 critical value	s
---------	-------------------------	---

						Tail prol	bability p					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83	12.12
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82	15.20
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27	17.73
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47	20.00
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.51	22.11
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46	24.10
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32	26.02
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12	27.87
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88	29.67
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59	31.42
11	13.70	14.63	15.77	17.28	19.68	21.92	22.62	24.72	26.76	28.73	31.26	33.14
12	14.85	15.81	16.99	18.55	21.03	23.34	24.05	26.22	28.30	30.32	32.91	34.82
13	15.98	16.98	18.20	19.81	22.36	24.74	25.47	27.69	29.82	31.88	34.53	36.48
14	17.12	18.15	19.41	21.06	23.68	26.12	26.87	29.14	31.32	33.43	36.12	38.11
15	18.25	19.31	20.60	22.31	25.00	27.49	28.26	30.58	32.80	34.95	37.70	39.72
16	19.37	20.47	21.79	23.54	26.30	28.85	29.63	32.00	34.27	36.46	39.25	41.31
17	20.49	21.61	22.98	24.77	27.59	30.19	31.00	33.41	35.72	37.95	40.79	42.88
18	21.60	22.76	24.16	25.99	28.87	31.53	32.35	34.81	37.16	39.42	42.31	44.43
19	22.72	23.90	25.33	27.20	30.14	32.85	33.69	36.19	38.58	40.88	43.82	45.97
20	23.83	25.04	26.50	28.41	31.41	34.17	35.02	37.57	40.00	42.34	45.31	47.50
21	24.93	26.17	27.66	29.62	32.67	35.48	36.34	38.93	41.40	43.78	46.80	49.01
22	26.04	27.30	28.82	30.81	33.92	36.78	37.66	40.29	42.80	45.20	48.27	50.51
23	27.14	28.43	29.98	32.01	35.17	38.08	38.97	41.64	44.18	46.62	49.73	52.00
24	28.24	29.55	31.13	33.20	36.42	39.36	40.27	42.98	45.56	48.03	51.18	53.48
25	29.34	30.68	32.28	34.38	37.65	40.65	41.57	44.31	46.93	49.44	52.62	54.95
26	30.43	31.79	33.43	35.56	38.89	41.92	42.86	45.64	48.29	50.83	54.05	56.41
27	31.53	32.91	34.57	36.74	40.11	43.19	44.14	46.96	49.64	52.22	55.48	57.86
28	32.62	34.03	35.71	37.92	41.34	44.46	45.42	48.28	50.99	53.59	56.89	59.30
29	33.71	35.14	36.85	39.09	42.56	45.72	46.69	49.59	52.34	54.97	58.30	60.73
30	34.80	36.25	37.99	40.26	43.77	46.98	47.96	50.89	53.67	56.33	59.70	62.16
40	45.62	47.27	49.24	51.81	55.76	59.34	60.44	63.69	66.77	69.70	73.40	76.09
50	56.33	58.16	60.35	63.17	67.50	71.42	72.61	76.15	79.49	82.66	86.66	89.56
60	66.98	68.97	71.34	74.40	79.08	83.30	84.58	88.38	91.95	95.34	99.61	102.7
80	88.13	90.41	93.11	96.58	101.9	106.6	108.1	112.3	116.3	120.1	124.8	128.3
100	109.1	111.7	114.7	118.5	124.3	129.6	131.1	135.8	140.2	144.3	149.4	153.2