ENTERPRISE
PRODUCTS & SOLUTIONS

ooo

MARKET DATA
INITIATIVE

BLPAPI: Developer’s Guide

Version 1.34
February 14, 2012

Bloomberg

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions: The copyright notice below and this permission notice shall be included in all copies or substantial portions of
the Software.

THE SOFTWARE IS PROVIDED "AS 1S," WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

BLOOMBERG is a registered trademark of Bloomberg Finance L.P. or its affiliates.

All other trademarks and registered trademarks are the property of their respective owners.

Bloomberg
Table of Contents

Preface: About this Documentccccooiiiiiiiieeeeeme s e n e e nnrnnnes 9
PUIPOSE ..ttt ettt et et et e anannnane 9
AUAIENCE ... ————— 9
DOCUMENT HISTOTY ..ottt e e e a e e e e e e 9

1 Introduction to the Bloomberg APoo i 10
1.1 Overview of the Bloomberg APl ... e 10

T4 FRAMUIES .. 11
1.1.2 The Bloomberg PIatformoooiiiiii e 13
1.1.3 Managed B-PIPEo 14
1.1.4 The Desktop APl and Server API..........oooo i, 15
1.2 The Programming EXamPIEScooiiiiiiiiiiii e 18
1.3 Typical AppliCation STHUCLUIEueieiiiiiiiiiieieeeeeeee e e e e e e e e e e 19
1.4 Overview Of thiS GUIAE ettt e e e e e e e e e e e e eeeeeees 19

2 Sample Programs in TWo Paradigms.........cccccemriiiniiiiimmnnsnssssss s ssssnsnnes 20
B2 B O 1= o =SSP 20
2.2 The TWO ParadigmMsccuuuiiieiieeeeeeei ettt e s e e e e e e 21

2.2.1 ReQUESH/RESPONSE. ... oo i i e e 21
2.2.2 SUDSCIIPON .o 22
2.3 Using the Request/Response Paradigmcc.uviiiiiiiiiiiiiiiiieieceeeeie e 22
2.4 Using the Subscription Paradigm.............ccooiiiiiiiiiii e 26

3 SeSSIONS ANA SEIVICESccoiiiiiiiiiiiiiiiiei i 29
B Tt BT =TS~ o] o 1 PSSR 29
B 1= T Y T = PSP 29
3.3 EVENEHANAINGcoi i 29

3.3.1 Synchronous Event Handling............ooeeiiiiii e 31
3.3.2 Asynchronous Event Handlingccoooo e 32
3.4 MUKIPIE SESSIONS ...eeviiiiiiiiiieiiee ettt ettt eaaaaaaaaas 36

4 Requests and RESPONSESciiiiiiiiiicecciiis s rrnrmssss s ss s e s s s s mss s s s e s s e s s nmnsssssssseesennnnnnssssnnns 37
4.1 The Programming EXampPleoourimiiiiii e e 37
4.2 EIBMENES ..o e e 38
4.3 ReqUESE DEtalilS.......ccooiiiiii e a e ae e 38
4.4 ResSponSe DEtailS.......ccoouiiiuiiiiiie e e 40

5 SUDBSCHIPLIONS ... ——————— 45
5.1 The Programming EXamPIEccooo it e et e e e e e eeees 45

Table of Contents 3

Bloomberg

5.2 Starting @ SUDSCIIPLION.uuiiii bbb e e e e e ssassesssessesessrsseeeeeeeeees 45
5.3 Receiving Data from a SubSCriptioncccccciiiiiiiiiiie e 48
5.4 Modifying an EXxisting SUDSCFIPLIONuuuiiiiiiiiie e eeeeee 49
5.5 Stopping @ SUDSCHPLION........uuuiiii e e e e e eeeeeeeeaeeeeeeeeees 49
5.6 Overlapping SUDSCIIPHONSooiiiiiiiiiiee e e e 50
5.7 Conflation and the Interval Option ... 50
5.8 Delayed Data.........ooiiiiiiiiiiii e e e e e e e e eeaa 50
5.9 Subscription Life CYCIEueeiiiieiiieeee e 51
S0 o =TT VT - 52
6.1 COMMON CONCEPES ...oiieiiiiititii ettt e e e ettt e e e e e e s e e e e e e e s nnnneeeeeeas 52
6.1.1 SECUNLY/SECUNLIESeeiiiiiiiiiieie et e e e e e 52
6.1.2 PriCING SOUICE.uuiiiiiiii ettt e e e e e et e e e e s s e be e e e e e e e eans 53
B.1.3 FIEIAS ... e e e e e e e —aaa e e e e e aarraaaaaaaas 53

T I @ 1YY oy o =Y 54
6.1.5 Relative Dates.......ccooo oo, 54
6.2 Reference Data Service //blp/refdata..............euuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 56
6.2.1 Reference Data Request and Response OVEerviewccocceeeieeiiiciiiciicciinnnnnnnnns 57
6.2.2 Historical Data ReqUESL..........coooiiiiiii e 57
6.2.3 Intraday TiCK REQUESTuiiiiiiii e 58
6.2.4 Intraday Bar SEIrVICES.......cooouuiiiiiiiie et 59
6.2.5 Portfolio Data ReQUESLE.........coooiiiii 60
6.2.6 BEQS REQUEST.....cc o 61
6.3 Market Data Service //blp/mKtdata........cccoooiii s 61
6.4 Custom VWAP Service //bIp/MKIVWADuuuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeveee e veeeeeeeeees 62
6.5 Market Bar Subscription Service //blp/mKtbar.............ccccuviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 62
6.6 API Field Information Service //blp//apifldsSuuevmiiimiiiiiiiiiiiiiiiieeeeeeeeeeeee e 63
6.6.1 Field Information Request............ooooiiiiiii i 64
6.6.2 Field Search ReqUEST ... 64
6.6.3 Categorized Field Search ReqUEST............coooiiiiiiiiiiii e 65
6.7 Page Dat@ SEIVICE.....cccoiiiiiiie et 67
6.8 Technical ANAIYSIS SEIVICEccoiiiiiiiiiiiei e 70
6.8.1 Historical End of Day study requeSt............oooooiiiiiiiiiiiiiei e 70
6.8.2 Intraday bar Study FEQUESTccoiiiiiiiiieee e 72
6.8.3 Realtime Study reqUESTooiiiiiiii e 74
LSRR e TN o I U 1 9o =Y (o] o 75

Table of Contents 4

Bloomberg

7 Authorization and Permissioning Systems...........ccouviiiiiiiiiiiecisssss s ss s 76
7.1 OVEIVIBW ...ttt ettt e oot e e et e e ekttt e e e et e e e e e e e e e e e e e eas 76
7.2 UNAErlYing CONCEPLS ...uuuuiiiiiii bbb e e ass e b s s s s ssssssbessssssssssnesseneeees 76

T.2.1 EIDS ..o 76
7.2.2 Requirement for the Terminal ... 76
7.2.3 The //blp/apiauth SEIVICE........uuuiiiiieiiei e e e 77
7.2.4 The V3 Identity ODJECTuiiiiiiiee e e e 77
7.2.5 V3 Permissioning MOEISooiiiiiiiiiiiieie e 77
7.2.6 Authorization LIfetiMme ... 77
7.3 Server AP AUNOMZAtIONiiiiiiiii e 78
7.3.1 Authorization DY [P AdAreSsS........coeiiiiiiiiiiiiiiee e 78
7.4 Managed B-PIPE AUthOrization ... 84
741 AUtNENICAtION ... 85
7.4.2 TOKEN GENEIALIONeoiiiiiiiiiite et e e e e s e e e e e e 87
7.5 AUINOTIZALION ... e e e e e e e e e e e e nrae e e e 89
7.6 PerMISSIONINGttt e e e e et e e e e e e e bbb e e e e e e e e e e nbannee e 91
7.6.1 ENHEMENTS ..o 91
7.6.2 USEI IMOUE ...ttt e ettt e e e e e et e e e e e e e e e 94
7.6.3 CONENT BASEAueiiiiiiii it a e 94
7.7 Specific Application Types (Managed B-PIPE only)cccuviiiiiiiiiiiii e, 96
771 SINGIE-USEI ...ttt e e e e e e e e e e 96
T.7.2 IMURIEUSET ...ttt e e e e e st e e e e e e 96
7.7.3 Derived Data / NON-DiSplaycoooiiiiiiiiiiiiiiiiiiee e 96
7.8 V2 Authorization and Permissioning MOdEIScoooiiiiiiiiiiiiiiee e 96
7.8.1 USEIIMOUE ...ttt e e e e s e e e e e e e e 96
T7.8.2 AllFOr-NONE ... 97
7.8.3 Content-Based / Per-Product / Per-Security ... 97
7.8.4 Validating Logon Statusooiiiiiiiiiiiee e 98

8 PUDIISRING ... ———————————— 929
S T IO 1YY = SRR 99
8.2 The Programming EXamMPIEScoooiiiiiiiiiii e 99
8.3 SIMPIE BroadCastccoiiiiiiiii ettt neeeeeeeeas 99

8.3.1 Creating @ SESSION.....ccciiiiiiiiie it a e 99
8.3.2 AULNOTIZAtION ... e 100
8.3.3 Creating @ TOPIC. .. uuiiiiiiieiiii ettt 102
8.3.4 PUDIISNINGcoiiiiiiie e 103

Table of Contents 5

Bloomberg

8.4 Interactive PUbIiCation........ ... 104
8.4.1 RegiStratioN.....coceeeiiiiie e 105
8.4.2 Event HandliNg.........uoi oo 106
8.4.3 PUDICAtION .o 108

/NS o3 3 =Y o T T3 110

AT OVEIVIEW ...t 110

A.2 Reference Data Service //blp/refdata ... 110
N B @ o =T = 1] 1 PP PP 110
A.2.2 ReferenceDataRequest: SEQUENCE..........ccuiiiiiiiiiiiiic e 110
A.2.3 ReferenceDataResponse: ChOICEe..........ooccuuiiiiiiiiiiiiiieeee e 112
A.2.4 HistoricalDataRequest: SEQUENCE..........ceuviiiiiiiiiiiiiiiieeeeeeeeeeee e 113
A.2.5 HistoricalDataResponse: ChOICE..........uuuuiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e e e e e 118
A.2.6 IntradayTickRequest: SEQUENCE ...ooooiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 119
A.2.7 IntradayTickResponse: ChOICE..........couiiiiiiiiiiiiiie e 121
A.2.8 IntradayBarRequest: SEQUENCEeuviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 122
A.2.9 IntradayBarResponse: ChOICE..........ccoiiiiiiiiiiiiiiiee e 124
A.2.10 PortfolioDataRequest: SEQUENCEeevviiiiiiiiiiiieiieeeeeeeeeeeee e 125
A.2.11 PortfolioDataResponse: ChOICEuuuiiiiiiiiiiiiiiiiiiieieeeeeeeeee e e e 126
A.2.12 BEQSREQUEST: SEQUENCEeuiiiiiiiiiiiiiiiieiieeeeeeee ettt e e e e e e e e e e eeeeeeeeeeeeees 127
A.2.13 BEQSRESPONSE: CROICEuvvviiiiiiiiiiiiiieieeietee ettt e e e e e e e e e e e eeeeeaeeees 128
A.2.14 Reference Data Service RESPONSEuuviiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeee e 129

A.3 Schema for API Field Service //blp//apiflds ... 132
N I = To [1S3 £ T O o o] o P 132
F N =TT oTo] g Y= TS 0 o To (o= R 132
A.3.3 Field Information REQUESTuuiiiiiiiiiiiieiiiieeeee e e e e 132
A.3.4 Field Search REQUESLuuuiiiiiiiiiiiieieeeeeeeeeee ettt e e e e e e e e e eeeeeeeeeees 134
A.3.5 Categorized Field Search ReqUESL............ccuuiiiiiiiiiiii e 138
A.3.6 Field List REQUEST.........uuiiiiiiiiiiiieiii ettt e e e ee e e e e eeeeeeeeeeeeeees 141
A.3.7 Field Service Response Elements......... ... 143
A.3.8 Field Service Response Values............uueeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 144

A.4 Market Bar SUDSCHIPHONoooiiiiiiei 145
A.4.1 Market Bar Subscription Settingsccooiiiiiiiiiiiii e 145
A.4.2 Market Bar Subscription: Data Events ResSponsec.ccvvvvvviviieiiiiiiiiiieeiienneen. 145

A.5 Schema for Market Data and Custom VWAP ..., 147
A.5.1 MarketDataEvents: ChOICE.........uuuiiiiiiiiieiiieiee ettt 147
A.5.2 Market Data Service Subscription OptionS............eevviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 147

Table of Contents 6

Bloomberg

A.5.3 MarketDataUpdate: SEQUENCEuvviiiiiiieiiiieeeeeeeeeeee et 147
A.5.4 Market VWAP Service Subscription OptionS............cevveeviiiiiiiiiiiiieeieeiceeeieeeeeee e, 158
A.6 Schema for APl AUthOFIZAtioNcooiiiiiiiiiiiii e 159
A.6.1 Authorization ReqUESE ..o 159
A.6.2 Authorization Request RESPONSE...........ceeiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 160
A.6.3 Logon Status REQUEST........cooi i 161
A.6.4 Logon Status Request RESPONSE........cooiiiiiiiiiiiiie e 161
A.6.5 User Entitlements ReqUEST.............ooiiiiiiiiii e 162
A.6.6 User Entitlements Request ReSpoNSe............ooevviiiiiiiiiiiiiiee e 162
A.6.7 Security Entitlements ReqUest ... 163
A.6.8 Security Entitlements Request RESPONSEoevvviiiviiiiiiiiiiieeieeeeeeeeeeeeeeeeeee e 163
A.6.9 Authorization TOKEN REQUESTeuviiiiiiiiiiieieeeeeeeeeee e 164
A.6.10 Authorization Token Request RESPONSEcoeviviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 164
A.6.11 Field Service Response Elements............ouuviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 165
A.6.12 Field Service ReqQUESE VAIUESovviiiiiiiiiiiiieieieeeeeeeeeeeeeeeee et 165

S I - 1V T o T 1] o1 (= 166
B.1 Request ResSponse Paradigmeuuuuiiiiiiiiiiiiiiiiiieiiiieiieeeeeeeeeeseeseeeeeseeeeeeeeeseeeeeeseees 167
B.1.1 Request Response Paradigm OULPUL.........cccooiiiiiiiieeeeees 169
B.2 Subscription Paradigmcoooiiiiiiiiiieie s 170
B.3 Asynchronous Event Handlingcoooiiiiiiiiiii e 174
B.3.1 Asynchronous Event Handling: Outputoeiiiiiiiiii e 177
B.4 Request ReSPONSE MUILIDIEeiiiiiiiiiiiiiiieeeeeeee e e e e e e e e 178
B.4.1 Request Response Multiple: OQUEPUL...... ..o 181
B.5 SubsCription MUIIPIEueiiiiiiiiiiiiii ettt e e e e eeeeeeeeeeseneeeeeeees 182
B.5.1 Multiple Subscription: OQutput oo 185
B.6 Authorization by IP ADAreSS o 192
O 1= - 14 [198
C.1 RequestRespONSEParadigmuueeueiiiieiiiiiiiiiiiiieeeeeeeeeeee e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 199
C.1.1 Request Response Paradigm OUPUL..........ccooiiiiiiiieeees 201
C.2 Subscription Paradigmoiiiiiiiiiiieieee e 202
C.3 Asynchronous Event Handlingcc.uueiiiiiiiiiiiicce e 208
C.3.1 Asynchronous Event Handling: OUtpUtoooiiiiiiiiiiiii e 212
C.4 Request Response MUItIPIE eeeiiieiiiiiiiiiiie ettt e e e e e e e e e eeeeeees 213
C.4.1 Request Response Multiple: OQUIPUL.........ccooiiiiii e 216
C.5 Subscription MURIPIE eeee ettt e et e e e e e e e e e eeeeeeeeees 217
C.5.1 Multiple Subscription: Output ..o 220

Table of Contents 7

Bloomberg

[I 00 o =1 1 o == 225
D.1 RequestResponseParadigmcoooiiiiiiiiiii i e e e e e e e eeee 226
[JOZAS T8 oX=Ye g o] 1 o] T =r=T = To [T o IR 229
D.3 Asynchronous Event Handlingcooeuveiiiiiii it e e 234
D.4 Request Response MUMIPIEoeeeiiiiiiiiiiiiiiieeeee e 238
D.5 Subscription MUIIDIEeeiiiiieee e 242
o O =T o 1] o = 251
E.1 RequestResponseParadigm ... 252
E.2 Subscription Paradigmoooiiiiiiiiiii e 257
E.3 Asynchronous Event Handlingcooooiiiiiiiii e 266
E.4 Request ResSponse MURIPIEcooii i 271
E.5 Subscription MURIPIEcooviiiiiiiiieieeee 279

Table of Contents 8

Bloomberg
Preface: About this Document

Purpose

This document provides a guide to developing applications using the Bloomberg API.

Audience

This document is intended for developers who use the Bloomberg API.

Document History

Version Date Description of Changes

1.0 11/05/09 | This is the first release of the Bloomberg API Developer’s Guide.

1.23 01/10/11 | Updated “Core Services” on page 52 “Authorization and Permis-
sioning Systems” on page 76, and “‘Schemas” on page 110.

1.24 01/19/11 | Updated “Stopping a Subscription” on page 49.

1.25 02/04/11 | Updated “Security/Securities” on page 52, “HistoricalDataRequest:
Sequence” on page 113 ,and Figure A-1.

1.26 03/02/11 | Updated “Creating a Topic” on page 102.

1.27 05/18/11 | Added “Conflation and the Interval Option” on page 50 and
‘Delayed Data” on page 50.

1.28 05/25/11 | Add bsid to the Topic Prefix list in “Security/Securities” on page 52.
Updated “Authorization Lifetime” on page 77.

1.29 06/27/11 | Updated “IntradayTickRequest: Sequence” on page 119 and
added “BEQSRequest: Sequence” on page 127.

1.30 08/04/11 | Updated “Field Information Request Response” on page 133.
Updated “Entitlements” on page 91.

1.31 09/20/11 | Fixed code formatting on page 212.

1.32 11/08/11 | Added details to “Page Data Service” on page 67.

1.33 01/10/12 | Updated “Overrides” on page 54 to specify that 100 overrides can
be specified in a single request.
Added note to page 47 about creating subscriptions with C#.

1.34 02/13/12 Updated license notice on front page.

Preface: About this Document

Bloomberg

1 Introduction to the Bloomberg API

1.1 Overview of the Bloomberg API

The Bloomberg API provides developers with 24x7 programmatic access to data from the
Bloomberg Data Center for use in customer applications.

The Bloomberg API lets you integrate streaming real-time and delayed data, reference data,
historical data, intraday data, and Bloomberg derived data into your own custom and third-
party applications. You can choose which data you require down to the individual field level.

The Bloomberg API uses an event-driven model. The interface is thread-safe and thread-
aware, giving applications the ability to utilize multiple processors efficiently. The Bloomberg
API automatically breaks large results into smaller chunks and can provide conflated
streaming data to improve the bandwidth usage and the latency of applications.

The Bloomberg API supports run-time downloadable schemas for the services it provides
and provides methods to query these schemas at runtime. This means the Bloomberg API
can support additional services without additions to the interface. It also makes writing
applications that can adapt to changes in services or entirely new services simple.

1 Introduction to the Bloomberg API 10

Bloomberg

1.1.1 Features

Feature Details

Four Languages, One | API 3.0 provides all new programming interfaces in:
Interface

Java
C

C++
.Net

The Java, .Net and C++ object models are identical, while the C
interface provides a C-style version of the object model. You are
able to effortlessly port applications among these languages as
the needs of your applications change.

Lightweight Interfaces | The API 3.0 programming interface implementations are
extremely lightweight. The lightweight design makes the process
of receiving data from Bloomberg and delivering it to
applications as efficient as possible.

It is now possible to get the maximum performance out of the
Java, .Net, C, and C++ versions of the interface.

Extensible Service- The new API generically understands the notions of subscription
Oriented Data Model and request-response services.

The subscribe method and request method allow you to send
requests to different data services with potentially different or
overlapping data dictionaries and different response schemas.

This, in combination with the new canonical data form, means
that Bloomberg can deliver new data services via the API
without having to extend the interface to support the new

services.
Field Level You are now able to request updates for only the fields of
Subscriptions interest to your application, rather than receiving all trade and

quote fields when you establish a subscription.

This reduces the overhead of processing unwanted data within
both the API and your application, and also reduces network
bandwidth consumption between Bloomberg and its customers.

For example, if quotes are of no interest to an application,
processing and bandwidth consumption can be cut by as much
as 90%.

1 Introduction to the Bloomberg API 11

Bloomberg

Feature Details

Summary events

When you subscribe to market data for a security, the API
performs two actions:

1. It retrieves a summary of the current state of the security
and delivers it to you.

A summary is made up of data elements known as fields.
The set of summary fields varies depending on the asset
class of the requested security.

2. The API streams all market data updates to you as they
occur and continues to do so until you cancel the
subscription.

About 300 market data fields are available via the API
subscription interface, most of them derived from trade and
quote events.

Interval-based
Subscriptions

Many users of API data are interested in subscribing to large
sets of streaming data but only need summaries of each
requested security to be delivered at periodic intervals.

The API subscription model allows you to specify the minimum
interval at which to receive streaming updates. This reduces
processing and bandwidth consumption by delivering only an
updated summary at the interval you define.

It is also possible to establish multiple subscriptions such that a
summary arrives periodically but other fields, such as
traderelated fields are delivered in real-time.

No Request Size
Restrictions

API 3.0 allows you to request a potentially unlimited number of
securities and fields without having to manage request rates
yourself.

The API infrastructure manages the distribution of these
requests across Bloomberg's back end data servers, which in
turn ensure that all arriving data requests are given equal access
to the available machine resources.

Canonical Data Format

Each data field returned to an application via the API is now
accompanied by an in-memory dictionary element that indicates
the data type (for example, integer, double) and provides a
description of the field - the data is self-describing.

Data elements may be simple, such as a price field, or complex,
such as historical prices or bulk fields. All data is represented in
the same canonical form and developers do not have to deal
with multiple data formats or be exposed to the details of the
underlying transport protocol.

1 Introduction to the Bloomberg API 12

Bloomberg

Thread-Safe All language bindings for the new API are now fully thread-safe.
Applications can safely process responses and make requests
simultaneously from multiple threads of execution.

32- and 64-bit The Java and .Net API work on both 32- and 64-bit platforms.
Programming Support | The C and C++ APl libraries come in a 32-bit version with a
64- bit version coming in the future.

Pure Java The Java APl is implemented entirely in Java. Bloomberg did not

Implementation use JNI to wrap either our existing C library or the new C++
library.

Fully Introspective data | An application can discover a service and its attributes at

model runtime.

Simplified Release 3.0 of the Server API provides a simplified

Permissioning Model permissioning model that allows you to simply provide a user’s

UUID and IP address. The API returns the permissions to you.

The Bloomberg API is the interface to the following Bloomberg products:
The Bloomberg Platform
Managed B-PIPE
Server API
Desktop API

1.1.2 The Bloomberg Platform

The Bloomberg Platform is a revolutionary step in market data distribution — a new managed
service that extends well beyond traditional industry solutions. Providing real-time delayed,
and historical market data, as well as global publishing, trusted entitlements, and much more,

1 Introduction to the Bloomberg API 13

Bloomberg

the Bloomberg Platform is a complete high-volume, low-latency service to end users,
applications, and displays throughout your entire financial firm (see Figure 1-1).

s ~
Bloomberg Data Center

+ Entit 1entfAutie on
* Histo
A v
. \ ™
Client Site
Bloomberg Appliance
W
Sl N=l=
-] - — |
— [e— e—
“'.I .'F:II I':I:':',mf_"l'i % Market Data Market Data
h . Only User Only User
Server
g A

Figure 1-1: The Bloomberg Platform

1.1.3 Managed B-PIPE

Managed B-PIPE leverages the Bloomberg distribution platform and managed entitlements
system. Managed B-PIPE allows clients to connect applications providing solutions that work
with client proprietary and 3rd party applications. Managed B-PIPE provides the tools to
permission data to entitled users only. Client applications will use the Bloomberg entitlements
system to ensure distribution of data to only appropriately entitled users (see Figure 1-2).

1 Introduction to the Bloomberg API 14

Bloomberg

- Y
Bloomberg Data Center

ntitlement/ Authents

- J
M
(4
Client Site
Bloomberg Appliance
Mon
Bloomberg Bloomberg Bloomberg Blackbox
User User User
- [r—1
Lot} P —
| s— E
3" Party Intemal |:=
Application Prop App Internal
Prop App Algorithmic
Trading
\ Application y

Figure 1-2: Managed B-PIPE

1.1.4 The Desktop APl and Server API

The Desktop API and Server API have the same programming interface and behave almost
identically. The chief difference is that customer applications using the Server APl have some
additional responsibilities. Those additional requirements will be detailed later in this
document (see Bloomberg API Developer’s Guide: Authorization and Permissioning);
otherwise, assume the two deployments are identical.

Note that in both deployments, the end-user application and the customer’s active
BLOOMBERG PROFESSIONAL service share the same display/monitor(s).

1 Introduction to the Bloomberg API 15

Bloomberg

The Desktop API

The Desktop APl is used when the end-user application resides on the same machine as the
installed BLOOMBERG PROFESSIONAL service and connects to the local Bloomberg
Communications Server (BBComm) to obtain data from the Bloomberg Data Center (see
Figure 1-3).

g Bloomberg Data Center A

Ticker Plant

»« Fead Handlers

« Entitlement/Authentication
« History

» Analytics

RN
/ A\

-
Client Site
s N 7 ,\
bbcomm
.
Bloomberg Bloomberg
Termina Terminal
User 1 User 2
- S y
~ A

Figure 1-3: The Desktop API
The Server API

The Server API allows customer end-user applications to obtain data from the Bloomberg
Data Center via a dedicated process, known as the Server API process. Introduction of the
Server API process allows, in some circumstances, better use of network resources.

When the end-user applications interact directly with the Server API process they are using
the Server APl in User Mode (see Figure 1-4).

1 Introduction to the Bloomberg API 16

Bloomberg

(Bloomberg Data Center A

« Ticker Plant
+ Fead Handlers
« Entitlemmant/Authentication
History
Analylics
A A
' ™y
Client Site Server APl Process
' ™ '
))
Bloomberg Bloomberg
Terminal Tearminal
User 1 User 2
‘e A \ v
(. S

Figure 1-4: The Server API: User Mode

When the customer implements a Customer Server Application to interact with the Server
API process (see Figure 1-5), the Server API is then being used in Server Mode (by the
Customer Server Application). Interactions between the Customer Server Application and the

Customer End-User Application(s) are handled by an application protocol of the customer’s
design.

1 Introduction to the Bloomberg API 17

Bloomberg

= [Icker FPlant

4 p
Bloomberg Data Center

s« Fead Handlars
= Enfitlemant/Authentication
* Hislory
» Analytics
b A
M
-
Client Site
Server APl Process
Froprietary Customer Proprietary Customer
Application Protocol Application Protocol
' ™ '
Bloomberg Bloomberg
Tarminal Taerminal
User 1 User 2
N A LN
\

Figure 1-5: The Server API: Server Mode

1.2 The Programming Examples

The Bloomberg APl is provided as Java, .Net, C++, and C libraries. The libraries share the

same object model, class and method names, and programming paradigm to make it easy for
developers to switch languages. In this document, Java is used for the sample code and for
the programming interface specification.

1 Introduction to the Bloomberg API

18

Bloomberg

Complete, contiguous listings of the Java code examples are provided in “Java Examples” on
page 166 and the programming interface specification is found in
‘Schemas” on page 116.

For the sample programs in the other supported languages see:
“.Net Examples” on page 198

“C++ Examples” on page 225

“C Examples” on page 251

1.3 Typical Application Structure

The Bloomberg API object model contains a small number of key objects which applications
use to request, receive and interpret data.

An application creates a Session object to manage its connection with the Bloomberg
infrastructure. (Some applications may choose to create multiple Session objects for
redundancy).

Using the Session object, an application creates a Service object and then “opens’ each
Bloomberg service that it will use. For example, Bloomberg provides streaming market data
and reference data as services.

There are two programming paradigms that can be used with the Service object. The client
can make individual requests (via a Request object) for data or the client can start a
subscription (managed via a Subscription object) with the service for ongoing data
updates. Depending on the services being used, a customer application may be written to
handle both paradigms. Whichever paradigm or paradigms are used, the Bloomberg
infrastructure replies with events (received at the client as Event objects) which the client
must handle asynchronously.

Programmatically, the customer application obtains Event objects for the Session and then
extracts from those Event objects one or more Message objects containing the Bloomberg
data.

1.4 Overview of this Guide

The rest of this guide is arranged as follows

First a small but complete example program is presented to illustrate the most
common features of the Bloomberg API. See “Sample Programs in Two Paradigms”

on page 20.

This is followed by detailed descriptions of the key scenarios in using the Bloomberg
API: creating a session; opening services; sending requests and processing their
responses; subscribing to streaming data and processing the results. See “Sessions
and Services” on page 29, “Requests and Responses” on page 37, and
“Subscriptions” on page 45.

1 Introduction to the Bloomberg API 19

Bloomberg
2 Sample Programs in Two Paradigms

2.1 Overview

This chapter demonstrates the most common usage patterns of the Bloomberg API. The
major programming issues are addressed at a high level and working example code is
provided as a way to quickly get started with your own applications. Later chapters will
provide additional details that are covered lightly here. The Bloomberg API has two different
models for providing data (the choice usually depends on the nature of the data): request/
response and subscription. Both models are shown in this chapter.

The major steps required of an application are:

The creation and startup of a Session object which the application uses to specify
the data it wants and then receive that data.

Data from the Bloomberg infrastructure is organized into various “services”. The
application "opens" the service that can provide the needed data (e.g., reference
data, current market data).

The application asks the service for specific information of interest. For example,
the last price for a specific security.

The application waits for the data to be delivered.

Data from the service will arrive in one or more asynchronously delivered Event objects. If
an application has several outstanding requests for different data, the data arriving from
these multiple requests may be interleaved with each other; however, data related to a
specific request always arrives in order.

Note: To assist applications in matching incoming data to requests, the Bloomberg
API allows applications to provide a|CorrelationID object with each request.
Subsequently, the Bloomberg infrastructure uses that identifier to tag the events
sent in response. On receipt of the [Event| object, the client can use the identifier it
supplied to match events to requests.

Even if an application (such as the examples in this chapter) makes only a single request for

data, the application must also be prepared to handle status events from the service in
addition to the requested data.

2 Sample Programs in Two Paradigms 20

Victor

Victor

Bloomberg

The following display provides an outline of the organization used in these examples.

import classes
public class Examplel {
private static void handleDataEvent (Event event) throws Exception

private static handleOtherEvent (Event event) throws Exception

public static void main (String[] args) throws Exception
{
create and start Session

use Session to open service

ask service for data
(provide id for service to label replies)

loop waiting for data; pass replies to event handlers

The additional details needed to create a working example are provided below.

2.2 The Two Paradigms

Before exploring the details for requesting and receiving data, we describe the two different

paradigms used by the Bloomberg API - Request/Response and Subscription

The Service defines which paradigm is used to access it. For example, the streaming real-

time market data service uses the subscription paradigm whereas the reference data service
uses the request/response paradigm. See for more information

on the Core Services provided by the Bloomberg API.

Note: Applications that make heavy use of real-time market data should use the streaming

real-time market data service. However, real-time information is available through the
reference data service requests where you will get a snapshot of the current value in the
response.

2.2.1 Request/Response

In this case, data is requested by issuing a Request and is returned in a sequence
consisting of zero or more Events of type PARTIAL RESPONSE followed by exactly one
Event of type RESPONSE. The final RESPONSE indicates that the Request has been
completed.

2 Sample Programs in Two Paradigms

21

Victor

Victor

Bloomberg

In general, applications written to this paradigm will perform extra processing after receiving

the final RESPONSE from a Request.

2.2.2 Subscription

In this case a Subscription is created which results in a stream of updates being delivered
in Events of type SUBSCRIPTION DATA until the Subscription is explicitly cancelled by

the application.

2.3 Using the Request/Response Paradigm

A main function for a small but complete example using the Request/Response paradigm is

shown below:

System.exit (1) ;
}

if (!session.openService ("//blp/refdata")) {
System.out.println ("Could not open service " +
"//blp/refdata") ;

System.exit (1) ;

public static void main(String[] args) throws Exception {
SessionOptions sessionOptions = new SessionOptions();

sessionOptions.setServerHost ("localhost"); // default value
sessionOptions.setServerPort (8194) ; // default value
Session session = new Session(sessionOptions) ;

if (!session.start()) {

System.out.println ("Could not start session.");

2 Sample Programs in Two Paradigms

22

Victor

Bloomberg

CorrelationID requestID = new CorrelationID(1l) ;
Service refDataSvc = session.getService ("//blp/refdata");
Request request =
refDataSvc.createRequest ("ReferenceDataRequest") ;
request.append ("securities", "IBM US Equity");
request.append ("fields", "PX LAST");
session.sendRequest (request, requestID) ;
boolean continueToLoop = true;
while (continueToLoop) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.RESPONSE: // final event
continueToLoop = false; // fall through
case Event.EventType.Constants.PARTIAL RESPONSE:
handleResponseEvent (event) ;
break;
default:
handleOtherEvent (event) ;
break;

The major steps are:

A Session is created and started; then that Session is used to open a service
named "/ /blp/refdata", a service that provides data according to the Request/
Response paradigm.

In this example, the values explicitly set for host and port correspond to the default
values for Session; supply the values for your installation. If the default values
suffice then Session construction can be simplified to:

Session session = new Session () ;

The Session is used to obtain refDataSvc, a handle for the service, which is
used to obtain an empty Request object for the "ReferenceDataRequest"
operation.

The empty request object is customized to the data needed for this application: the
security of interestis "IBM US Equity", the Bloomberg field of interest is
"PX_LAST" (last price).

The request is sent to the service along with request 1D, an application specified
CorrelationID. (The value chosen is not important for this example.)

The application enters a loop that makes a blocking request for nextEvent from
the Session. Each Event is handled according to its type.

Both PART IAL RESPONSE and (final) RESPONSE events are handled by the
user defined handleResponseEvent method. The only difference is that

2 Sample Programs in Two Paradigms 23

Bloomberg

the (final) RESPONSE changes the state of continueToLoop so that the
looping stops and the application terminates.

Event objects of any other type are handled by a different user defined
handler, handleOtherEvent.

In this application, the event handlers simply output some information about the received
events.

private static void handleResponseEvent (Event event) throws Exception

System.out.println ("EventType =" + event.eventType())
Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {

Message message = iter.next();

System.out.println ("correlationID=" +
message.correlationID()) ;
System.out.println ("messageType =" +
message.messageType ()) ;
message.print (System.out) ;

This handler outputs the key features of the received Event.

Each Event has a type and possibly some associated Messages which can be
obtained via the MessageIterator obtained from the Event.

Each Message from these response events shows the same CorrelationID
that was specified when the Request was sent. Additionally, each Message has
a type.

Finally, there is a print method to output the details of the Message in a default
format.

Sample output is shown below:

EventType =RESPONSE
correlationID=User: 1

messageType =ReferenceDataResponse
ReferenceDataResponse (choice) = {

securityDatal[] = {
securityData = {
security = IBM US Equity
sequenceNumber = 0
fieldData = {

PX LAST = 82.14

2 Sample Programs in Two Paradigms 24

Bloomberg

However, this response to our query is not the only output from this program. This
application also receives Events of type neither PARTIAL RESPONSE nor RESPONSE.

EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted
SessionStarted = {

}

EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened
ServiceOpened = {

}

This output comes from the event handling function called from the default case of the
switch statement. The events reported here are returned in response to the applications
starting of a session and opening of a service.

private static void handleOtherEvent (Event event) throws Exception
{
System.out.println ("EventType=" + event.eventType())
Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {
Message message = iter.next();
System.out.println ("correlationID=" +
message.correlationID()) ;
System.out.println ("messageType=" + message.messageType ())
message.print (System.out) ;
if (Event.EventType.Constants.SESSION STATUS ==

event.eventType () .intValue ()
&& "SessionTerminated" ==
message.messageType () .toString()) {
System.out.println ("Terminating: " +

message.messageType ()) ;
System.exit (1) ;

The overall organization of handleOtherEvent is quite similar to that of
handleResponseEvent but there are some notable differences:

Some messages (e.g., system messages) may not have a CorrelationID. The
handler must be able to handle such cases.

Note: The SERVICE STATUS correlation ID has type Internal because it was

automatically generated. The RESPONSE correlation ID that was explicitly specified
by the application is typed User.

There may be events that do not arise from application request; for example, an
unexpected session shutdown.

2 Sample Programs in Two Paradigms 25

Bloomberg
2.4 Using the Subscription Paradigm

Our example application requesting subscription data is quite similar to that shown to
illustrate the request/response paradigm. The key differences are shown in bold font.

public static void main (String[] args) throws Exception {
Create and start session.
if (!session.openService ("//blp/mktdata")) {

System.err.println ("Could not start session.");
System.exit (1) ;
}

CorrelationID subscriptionID = new CorrelationID(2) ;

SubscriptionlList subscriptions = new SubscriptionList() ;
subscriptions.add (new Subscription ("AAPL US Equity",
"LAST PRICE",

subscriptionlID)) ;
session.subscribe (subscriptions) ;
int updateCount = 0;
while (true) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.SUBSCRIPTION DATA:
handleDataEvent (event, updateCount++) ;
break;
default:
handleOtherEvent (event) ;
break;

The service opened by this application has been changed from"//blp/refdata"
(reference data) a service that follows the request/response paradigm to
"//blp/mktdata" (market data), a service that follows the subscription paradigm.

Instead of creating and initializing a Request; here we create and initialize a
SubscriptionList and then subscribe to the contents of that list. In this first
example, we subscribe to only one security, "AAPL US Equity", and specify only
one Bloomberg field of interest, LAST PRICE (the subscription analog for

PX LAST, the field used in the request/response example).

The request/response example had application logic to detect the final event of the
request and then break out of the event-wait-loop. Here, there is no final event. A
subscription will continue to send update events until cancelled (not done in this
example) or until the session shut down (handled, as we did before, in the
handleOtherEvent method).

The event type of particular interest is now SUBSCRIPTION DATA. In this
example, these events are passed to the handleEventData method.

2 Sample Programs in Two Paradigms 26

Bloomberg

The handleDataEvent method is quite similar to handleResponseMethod. The
additional parameter, updateCount, is used in this simple example just to enhance the
output.

private static void handleDataEvent (Event event, int updateCount)
throws Exception

System.out.println ("EventType=" + event.eventType()):;
System.out.println ("updateCount = " + updateCount) ;
Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {
Message message = iter.next();
System.out.println ("correlationID = " +
message.correlationID()) ;
System.out.println ("messageType =" +
message.messageType ()) ;
message.print (System.out) ;

Despite these many similarities, the output from the subscription is considerably different

from that of the request/response. Examine the output for a random event in the sequence:

EventType=SUBSCRIPTION DATA
updateCount = 54
correlationID = User: 2
messageType MarketDataEvents
MarketDataEvents = {
LAST PRICE = 85.71
VOLUME = 18969874
LAST TRADE = 85.71
LAST ALL SESSIONS = 85.71
EQY TURNOVER REALTIME = 1.6440605281984758E9
ALL PRICE SIZE = 100
ALL PRICE = 85.71
SIZE LAST TRADE TDY = 100
RT PX CHG NET 1D = -4.29
RT PX CHG PCT 1D = -4.767
VOLUME TDY = 18969874
LAST PRICE TDY = 85.71
LASTZ_PRICE = 85.719
LAST DIR = -1
LAST2 DIR = 1
SIZE_LAST TRADE = 100
TIME = 19:06:30.000+00:00
TRADE SIZE ALL SESSIONS RT = 100
EVENT TIME = 19:06:30.000+00:00
EID = 14005
IS DELAYED STREAM = false

2 Sample Programs in Two Paradigms

27

Bloomberg

Clearly, this subscription event provides much data in addition to LAST PRICE, the
specifically requested field (shown in bold above). A later example will demonstrate how a
customer application can extract and use the value of interest.

Note: The Bloomberg infrastructure is at liberty to package additional fields in the
data returned to a client; however, the client cannot validly expect any data except
the requested fields. This sample output shows that the requested field is the first
data out of message; that is happenstance and cannot be assumed.

The output of the otherEventHandler method also shows differences from the first
example.

EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted
SessionStarted = {

}
EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened
ServiceOpened = {

}

EventType=SUBSCRIPTION STATUS
correlationID=User: 2
messageType=SubscriptionStarted

SubscriptionStarted = {

}

In addition to the events for the start of session and opening of a service, which were seen in
the request/response example, we also see here an event signaling that a subscription has
been initiated. The empty SubscriptionStarted message indicates successful
starting of the subscription; otherwise, there would have been error information. The value of
the CorrelationID informs the customer application which subscription (of possibly
many subscription requests) has been successfully started.

2 Sample Programs in Two Paradigms 28

Bloomberg

3 Sessions and Services

3.1 Sessions

The Session object provides the context of a customer application's connection to the
Bloomberg infrastructure via the Bloomberg API. Having a Session object, customer
applications can use them to create Service objects for using specific Bloomberg services.
Depending on the service, a client can send Request objects or start a subscription. In
both cases, the Bloomberg infrastructure responds by sending Event objects to the
customer application.

3.2 Services

All Bloomberg data provided by the Bloomberg API is accessed through a "service" which
provides a schema to define the format of requests to the service and the events returned
from that service. The customer application's interface to a Bloomberg service is a
Service object.

Accessing a Service is a two step process.

Open the Service using either the openService orthe openServiceAsync
methods of the Session object.

Obtain the Service object using the get Service method of the Session
object.

In both stages above, the service is identified by its "name", an ASCII string formatted as
"//namespace/service"; for example, "/ /blp/refdata".

Once a service has been successfully opened, it remains available for the lifetime of that
Session object.

3.3 Event Handling

The Bloomberg API is fundamentally asynchronous - applications initiate operations and
subsequently receive Event objects to notify them of the results; however, for developer
convenience, the Session class also provides synchronous versions of some operations.
The start, stop, and openService methods seen in earlier examples encapsulate the
waiting for the events and make the operations appear synchronous.

The Session class also provides two ways of handling events. The simpler of the two is to
call the nextEvent method to obtain the next available Event object. This method will

block until an Event becomes available and is well-suited for single threaded customer
applications.

3 Sessions and Services 29

Bloomberg

Alternatively, one can supply an EventHandler object when creating a Session. In this
case, the user-defined processEvent method in the supplied EventHandler will be
called by the Bloomberg APl when an Event is available. The signature for
processEvent method is:

public void processEvent (Event event, Session session)
// Note: no exceptions are thrown

The calls to the processEvent method will be executed by a thread owned by the
Bloomberg API, thereby making the customer application multi-threaded; consequently
customer applications must, in this case, ensure that data structures and code accessed from
both its main thread and from the thread running the EventHandler object are thread-
safe.

The two choices for event handling are mutually exclusive:

If a Session is provided with an EventHandler when it is created calling the
nextEvent method will throw an exception.

If no EventHandler is provided then the only way to retrieve Event object is by
calling the nextEvent method.

3 Sessions and Services 30

Bloomberg
3.3.1 Synchronous Event Handling

The following code fragments use synchronous methods on the Session and single
threaded event handling using the nextEvent method.

public static void main(String[] args) throws Exception {
SessionOptions sessionOptions = new SessionOptions () ;
sessionOptions.setServerHost ("localhost") ;
sessionOptions.setServerPort (8194) ;
Session session = new Session(sessionOptions) ;
if (!session.start()) {
System.out.println ("Could not start session.");
System.exit (1) ;
}
if (!session.openService ("//blp/refdata")) {
System.out.println ("Could not open service " +
"//blp/refdata") ;
System.exit (1) ;
}
Construct a request
Send the request via session.
boolean continueToLoop = true;
while (continueToLoop) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.PARTIAL RESPONSE:
Handle Partial Response
break;
case Event.EventType.Constants.RESPONSE: // final event
Handle Final Event
continueToLoop = false;
break;
default:
Handle Other Events
break;

}
session.stop () ;
System.exit (0) ;

3 Sessions and Services

31

Bloomberg
3.3.2 Asynchronous Event Handling

Use of asynchronous event handling shifts many programmatic details from the main
function to the event handler.

public static void main(String[] args) throws Exception {
SessionOptions sessionOptions = new SessionOptions () ;
sessionOptions.setServerHost ("localhost") ;
sessionOptions.setServerPort (8194) ;
Session session = new Session (sessionOptions,
new MyEventHandler());
session.startAsync () ;
// Wait for events
Object object = new Object();
synchronized (object) {
object.wait () ;

}

The status for starting the asynchronous session will be received as an event and checked in
the handler. Also, there is no exit from main; logic in the event handler will determine when
the process should be terminated.

The MyEventHandler class is in this example a non-public class (it is used only by
main)implementing the EventHandler interface. The class also defines dumpEvent, a
"helper" function.

class MyEventHandler implements EventHandler ({

void dumpEvent (Event event) {
Output event type.
For each message, output the type and correlation ID.

public void processEvent (Event event, Session session) {
Details below.

}

3 Sessions and Services 32

Bloomberg

The processEvent method is organized to each of the expected events as well as
unexpected events:

public void processEvent (Event event, Session session) {

switch (event.eventType () .intValue()) {
case Event.EventType.Constants.SESSION STATUS: ({
If session started, open service.
break;

}

case Event.EventType.Constants.SERVICE STATUS: ({
If service opened successfully, send request.
break;

case Event.EventType.Constants.PARTIAL RESPONSE: ({
Handle partial response.
break;

}

case Event.EventType.Constants.RESPONSE:
Handle final response.
break;

}

default: {
Handle unexpected response.
break;

}

Each case in processEvent will now be examined in greater detail.

We first show the processing of the event returned for starting the session. If successful, the
code will attempt to open the needed service. Since the openServiceAsync method
throws an exception on failure, but processEvent is not allowed to emit an exception, that
call must be surrounded by a try-catch block. In event of failure, this simple example
chooses to terminate the process.

3 Sessions and Services 33

Bloomberg

case Event.EventType.Constants.SESSION STATUS: ({
Messagelterator iter = event.messagelterator();

while (iter.hasNext()) {
Message message = iter.next();
if (message.messageType () .equals ("SessionStarted")) ({
try {

session.openServiceAsync ("//blp/refdata",
new CorrelationID(99)) ;
} catch (Exception e) {
System.err.println (

System.exit (1) ;
}

} else {
Handle error.

break;

"Could not open //blp/refdata for async");

On receipt of a SERVICE STATUS type event, the messages are searched for one

indicating that the openServiceAsync call was successful: the message type must be
"ServiceOpened" and the correlation ID must match the value assigned when the request

was sent.

3 Sessions and Services

34

Bloomberg

If the service was successfully opened, we can create, initialize and send a request as has

been shown in earlier examples. The only difference is that the call to sendRequest must

be guarded against the transmission of exceptions, not a concern until now.

case Event.EventType.Constants.SERVICE STATUS: ({
Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {
Message message = iter.next();
if (message.correlationID() .value() == 99
&& message.messageType () .equals ("ServiceOpened")) {
//Construct and issue a Request

Request request =

request.append ("securities", "IBM US Equity");
request.append("fields", "LAST PRICE");
try {

} catch (Exception e) {
System.err.println ("Could not send request"):;
System.exit (1) ;
}
} else {
Handle other message types, 1f expected.

break;

Service service = session.getService("//blp/refdata");

service.createRequest ("ReferenceDataRequest") ;

session.sendRequest (request, new CorrelationID(86)) ;

The handling of events containing the requested data is quite similar to the examples already

seen. One difference is that, in this example, on the final event, we terminate the process

from the event handler, not from main.

3 Sessions and Services

35

Bloomberg

case Event.EventType.Constants.PARTIAL RESPONSE: {
dumpEvent (event); // Handle Partial Response
break;

case Event.EventType.Constants.RESPONSE: {
dumpEvent (event); // Handle final response

// Example complete; shut-down.

try {
session.stop(Session.StopOption.ASYNC) ;

} catch (InterruptedException e) {
e.printStackTrace () ;

}

System.out.println ("terminate process from handler");

System.exit (0) ;

break;

Finally, for completeness, there is a default case to handle events of unexpected types.

default: {
System.err.println ("unexpected Event") ;
dumpEvent (event) ;
System.exit (1) ;
break;

3.4 Multiple Sessions

Most applications will only use a single Session; however, the Bloomberg API allows the
creation of multiple Session objects. Multiple instances of the Session class contend for
nothing and thus allow for efficient multi-threading.

For example, a customer application can increase its robustness by using multiple Session
objects to connect to different instances of the Server API process.

For another example, a customer application may need from a service both large,
heavyweight messages that require much processing as well as small messages that can be
quickly processed. If both were obtained through the same session, then the processing of
the heavy messages would increase latency on the lightweight messages. That situation can
be mitigated by handling the two categories of data with different Session objects and
different threads.

3 Sessions and Services 36

Bloomberg
4 Requests and Responses

The examples in earlier chapters have shown how to send requests for data and how to
handle the corresponding responses. This chapter examines in greater depth the techniques
for composing those requests and for extracting data from the response.

The example to be used here, a variation on those already covered, has the same overall
organization.

import classes
public class RequestResponseExample {
private static void handleResponseEvent (Event event) throws
Exception {

private static void handleOtherEvent (Event event) throws Exception {

}

public static void main (String[] args) throws Exception {
create session,; start session; open service
create and initialize request
send request

loop until final response is received

Our focus will be on the creation and initialization of the request in main and, later, on the
extraction of data from the response in the user-defined handleResponseEvent method.

4.1 The Programming Example

The example explored in this chapter is RequestResponseMultiple.java. A complete
listing of this example and its output can be found in “Request Response Multiple” on

page 178.

Translations of RequestResponseMultiple. java to the other supported programming
languages are also provided:

RequestResponseMultiple.cs (‘Request Response Multiple” on page 213)

RequestResponseMultiple.cpp (‘Request Response Multiple” on
page 238)

RequestResponseMultiple.c (‘Request Response Multiple” on page 271)

4 Requests and Responses 37

Bloomberg

4.2 Elements

The services provided by the Bloomberg API collectively accept a great variety of different
types of requests which, in turn, often take many different parameters and options. The data
returned in response is correspondingly diverse in type and organization. Consequently,
requests and responses are composed of E1lement objects: instances of a class with great
flexibility in representing data.

Firstly, an Element object can contain a single instance of a primitive type such as
an integer or a string. Secondly, E1ement objects can also be combined into
hierarchical types by the mechanism of SEQUENCE or CHOICE.

A SEQUENCE is an Element object that contains one or more Element
objects, each of which may be of any type, similarto a struct inthe C
language.

A CHOICE is an Element object that contains exactly one Element object
of a type from a list of possible E1ement types. That list can be composed of
any Element types, similar to a union in the C language.

Element objects of the SEQUENCE and CHOICE categories can be nested to
arbitrary levels.

Finally, every Element is capable of representing an array of instances of its type.

The Element class also provides introspective methods (in addition to the introspective
methods provided by the Java language) which allow the programmatic discovery of the
structure of an Element object and any constituent E1lement objects. However, that level
of generality is required in few applications. Most applications can be written to a known
structure for request and response, as defined in the schema for a service. Should an
application’s structural assumptions prove incorrect (e.g., service schemas can be
redefined), then an Exception is generated at run-time.

Note: Incompatible changes to the schema of a Bloomberg core service are very
rare. In fact, so far there have been none. Should such changes ever be necessary,
they will be phased in and announced with ample warning.

4.3 Request Details

An earlier example showed how to request a single data item (a Bloomberg "field") for a
single security from the Reference Data Service. However, the Reference Data Service
accepts more general requests. The service specifies that each
"ReferenceDataRequest" can contain three Element objects:

a list of fields of interest, each a string type,

a list of securities of interest, each a string type, and

a list of overrides, each of type FieldOverride, a non-primitive type. This last
Element is optional and will not be used in this example.

Our present example begins much as before:

4 Requests and Responses 38

Bloomberg

the Session is created and started

the Service is opened and a handle to that Service is obtained.

These steps are performed by the following code fragment:

Session session = new Session();

session.start () ;

session.openService ("//blp/refdata") ;

Service refDataSvc = session.getService ("//blp/refdata");

Given the handle to the service, here named refDataSvc, a Request can be created for
the request type named "ReferenceDataRequest".

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;

As described in the schema, this request consists of three E1ement objects named
"securities", "fields", and "overrides", each initially empty. These elements
represent arrays of strings so their values can be set by appending strings to them specifying
the securities and fields required, respectively.

request.getElement ("securities") .appendValue ("AAPL US Equity");
request.getElement ("securities") .appendValue ("IBM US Equity");
request.getElement ("securities") .appendValue ("BLAHBLAH US Equity");
request.getElement ("fields") .appendValue ("PX LAST"); // Last Price
request.getElement ("fields") .appendvValue ("DS002") ; // Description
request.getElement ("fields") .appendValue ("VWAP VOLUME") ;

// Volume used to calculate the Volume Weighted Average Price (VWAP)

The request is now ready to be sent. Note that one of the securities was deliberately set to
an invalid value; later, we will examine the error returned for that item.

Note: This usage pattern of appending values of arrays of E1ements occurs so
frequently that the Request class provides convenience methods that are more
concise (but also obscure the Element sub-structure):

request.append ("securities", "AAPL US Equity");
request.append ("securities", "IBM US Equity");
request.append ("securities", "BLAHBLAH US Equity"):;
request.append("fields", "PX LAST");

request.append ("fields", "DS002");

request.append ("fields", "VWAP VOLUME") ;

4 Requests and Responses 39

Bloomberg

The rest of main, specifically the event-loop for the response, is essentially the same as that
used in earlier examples. The main function is shown in its entirety below;

public static void main(String[] args) throws Exception {
Session session = new Session();
session.start () ;
session.openService ("//blp/refdata") ;
Service refDataSvc = session.getService ("//blp/refdata");

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;

request.getElement ("securities") .appendValue ("AAPL US Equity");
request.getElement ("securities") .appendValue ("IBM US Equity");
request.getElement ("securities") .appendValue ("BLAHBLAH US Equity");
request.getElement ("fields") .appendvValue ("PX LAST"); // Last Price
request.getElement ("fields") .appendValue ("DS002") ; // Description
request.getElement ("fields") .appendValue ("VWAP VOLUME") ;

// Volume used to calculate Volume Weighted Average Price (VWAP)

session.sendRequest (request, new CorrelationID(1l))
boolean continueToLoop = true;
while (continueToLoop) {

Event event = session.nextEvent () ;

switch (event.eventType () .intValue()) {

case Event.EventType.Constants.RESPONSE: // final response
continueToLoop = false; // fall through

case kvent.EventType.Constants.PARTIAL RESPONSE:
handleResponseEvent (event) ;
break;
default:
handleOtherEvent (event) ;
break;

4.4 Response Details

The response to a "ReferenceDataRequest" request is an element named
"ReferenceDataResponse", an Element object which is a CHOICE of an Element
named "responseError" (sent, for example, if the request was completely invalid or if the
service is down) or an array of Element object named "securityData", each containing
some requested data. The structure of these responses can be obtained from the service

4 Requests and Responses 40

Bloomberg

schema, but is also conveniently viewed, as we have done earlier, by printing the response in
the response event handler code.

ReferenceDataResponse (choice) = {
securityDatal[] = {
securityData = {
security = AAPL US Equity
sequenceNumber = 0
fieldData = {

PX_LAST = 173.025
DS002 = APPLE INC
VWAP_VOLUME = 3.0033325E7

The fact that the element named "ReferenceDataResponse" is an array allows each
response event to receive data for several of the requested securities. The Bloomberg API
may return a series of Message objects (each containing a separate
"ReferenceDataResponse") within a series of Event objects in response to a request.

However, each security requested will appear in only one array entry in only one Message
object.

Each element of the "securityData" array is a SEQUENCE that is also named
"securityData". Each"securityData" SEQUENCE contains an assortment of data
including values for the fields specified in the request. The reply corresponding to the
invalidly named security, "BLAHBLAH US Equity", shows that the number and types of
fields in a response can vary between entries.

ReferenceDataResponse (choice) = {
securityDatal[] = {
securityData = {

security = BLAHBLAH US Equity

securityError = {
source = 100: :bbdbsl
code = 15
category = BAD SEC
message = Unknown/Invalid security [nid:100]

subcategory = INVALID SECURITY
}
sequenceNumber = 2
fieldData = {
}

This response message has an Element not previously seen, named "securityError".
This E1ement provides details to explain why data could not be provided for this security.
Note that sending one unknown security did not invalidate the entire request.

4 Requests and Responses 41

Bloomberg

Just printing the response in the default format is educational but to perform any real work
with the response the values must be extracted from the received message and assigned
elsewhere for use. The following event handler shows how to navigate the Element
structure of the "ReferenceDataResponse".

The asElement method of Message provides a handle for navigating the contents of the
Message objects using Element methods. If an Element objectis an array (e.g.,
securityDataArray)then the numvalues method provides the number of items in the
array.

Note: The Element class also provides similarly named method, numElements
(not used in this example), which returns the number of E1ement objects in a
SEQUENCE.

4 Requests and Responses 42

Bloomberg

private static void handleResponseEvent (Event event) throws Exception ({

Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {

Message message = iter.next ();

Element ReferenceDataResponse = message.asElement () ;

if (ReferenceDataResponse.hasElement ("responseError")) ({

handle error
}
Element securityDataArray =
ReferenceDataResponse.getElement ("securityData") ;

int numItems = securityDataArray.numValues () ;

for (int i = 0; 1 < numItems; ++1) {
Element securityData = securityDataArray.getValueAsElement (i) ;
String security = securityData.getElementAsString ("security");
int sequenceNumber =

securityData.getElementAsInt32 ("sequenceNumber") ;
if (securityData.hasElement ("securityError")) {
Element securityError =
securityData.getElement ("securityError") ;
handle error

return;

} else {
Element fieldData = securityData.getElement ("fieldData") ;
double px last = fieldData.getElementAsFloat64 ("PX LAST");
String ds002 = fieldData.getElementAsString ("DS002") ;

double vwap volume = fieldData.getElementAsFloat64 (
"VWAP VOLUME") ;

// Individually output each value

System.out.println ("* security =" + security);
System.out.println ("* sequenceNumber=" + sequenceNumber) ;
System.out.println("* px last =" + px last);
System.out.println ("* ds002 =" + ds002);
System.out.println ("* vwap volume =" + vwap volume) ;

(

System.out.println("");

When stepping through the securityData array, the requested Bloomberg fields are
accessed by the name and type (e.g., getElementAsFloat64,
getElementAsInt32) as specified in the schema. Once values have been assigned to

4 Requests and Responses 43

Bloomberg

local variables they can be used as needed. In this simple example, they are merely output

individually in a distinctive format. The program output is shown below.

[nid:100]

* security =AAPL US Equity
* sequenceNumber=0
* px last =173.025
* ds002 =APPLE INC
* vwap_ volume =3.0033325E7
* security =IBM US Equity
* sequenceNumber=1
* px last =126.46
* ds002 =INTL BUSINESS MACHINES CORP
* vwap_ volume =2885962.0
* security =BLAHBLAH US Equity
securityError = {
source = 100: :bbdbsl
code = 15
category = BAD SEC
message = Unknown/Invalid security
subcategory = INVALID SECURITY
}

The sequenceNumber is provided to allow the ordering of PARTIAL RESPONSE events

from the reference data service.

4 Requests and Responses

44

Bloomberg
5 Subscriptions

Subscriptions are ideal for data that changes frequently and/or at unpredictable intervals.
Instead of repeatedly polling for the current value your application gets the latest value as
soon as it is available without wasting time and bandwidth when there has been no change.

This chapter contains more details on how you can start, modify, and stop subscriptions as
well as what to expect as the result of a subscription and how to handle those results. This
chapter uses examples from the "/ /blp/mktdata" service.

Currently, the Bloomberg API services that provide a subscription service are market data
and Custom VWAP. In the future, the Bloomberg APl may support delivering information
other than market data through a subscription service.

5.1 The Programming Example

The example explored in this chapteris SubscriptionMultiple. java. A complete listing
of this example and its output can be found in

Translations of SubscriptionMultiple.java to the other supported programming
languages are also provided:
SubscriptionMultiple.cs ()
SubscriptionMultiple.cpp ()
SubscriptionMultiple.c ()

5.2 Starting a Subscription

There are four parts to creating a subscription; however several have default values:

The service name (for example, "/ /blp/mktdata"). If you do not specify the
service name the defaultSubscriptionService ofthe SessionOptions
object is used.

The topic. In the case of "/ /blp/mktdata" the topic value consists of an optional
symbology identifier followed by an instrument identifier. For example, "/ cusip/
097023105"and"/sedol11/2108601" include the symbology identifier
whereas "IBM US Equity" omits the symbology identifier. If you do not specify
the symbology identifier then the defaultTopicPrefix of the
SessionOptions objectis used.

Note: The topic's form may be different for different subscription services.

The options. These are qualifiers that can affect the content delivered. Examples in
"//blp/mktdata" include specifying which fields an application requires or
specifying an interval for conflated data.

5 Subscriptions 45

Bloomberg

The correlation ID. Data for each subscription is tagged with a correlation 1D
(represented as a CorrelationID object) which must be unique to the session.
The customer application can specify that value when the subscription is created. If
the customer application does not specify a correlation ID, the Bloomberg
infrastructure will supply a suitable value; however, in practice, the internally
generated correlation ID is rarely used. Most customer applications assign
meaningful correlation ids that allow the mapping of incoming data to the originating
request or subscription.

You can represent any subscription as a single string that includes the service name, topic
and options. For example:

“//blp/mktdata/cusip/

097023105?fields=LAST PRICE, LAST TRADE ACTUAL"represents a
subscription using the market data service to an instrument (BA) specified by CUSIP
where any changes to the fields LAST PRICE or LAST TRADE ACTUAL from
the Bloomberg data model should generate an update.

"TBM US Equity?fields=BID,ASK&interval=2"representsa
subscription using the market data service to an instrument (IBM) specified by
Bloomberg Ticker where any changes to the fields BID or ASK from the Bloomberg
data model should generate an update subject to conflation restriction of at least two
seconds between updates. In this case, we are assuming that the Session has a
defaultSubscriptionServiceof"//blp/mktdata"and a
defaultTopicPrefixof"ticker/"

The Bloomberg API provides methods which accept the subscription specification as a single
string as well as methods in which the different elements of the subscription are specified as

separate parameters. Subscriptions are typically manipulated in groups so the Bloomberg
API provides methods that operate on a list of subscriptions. This example shows

subscription creation by several of these methods.

SubscriptionlList subscriptions new SubscriptionList();

CorrelationID subscriptionID IBM = new CorrelationId(10);
subscriptions.add (new Subscription ("IBM US Equity",
"LAST TRADE",

subscriptionID IBM))) ;
subscriptions.add (new Subscription("/ticker/GOOG US Equity",

"BID,ASK,LAST PRICE",

new CorrelationID(20)));
subscriptions.add (new Subscription ("MSFT US Equity",

"LAST PRICE",

"interval=.5",

new CorrelationID(30)));
subscriptions.add (new Subscription (

new CorrelationID(40)));
session.subscribe (subscriptions) ;

"/cusip/097023105?fields=LAST PRICE&interval=5.0", //BA US

Equity

5 Subscriptions

46

Bloomberg

NOTE: SubscriptionList in C# is simply an alias to
System.Collections.Generic.List<Bloomberglp.Blpapi.Subscription>, created with:

using SubscriptionList =
System.Collections.Generic.List<Bloomberglp.Blpapi.Subscription>;

SubscriptionList sl = new SubscriptionList () ;

sl.Add (new Subscription("4444 US Equity"));

Subscribing to this list of subscriptions returns an Event of type SUBSCRIPTION STATUS
consisting of a Message object of type SubscriptionStarted for each
CorrelationID. For example, the user-defined "dump" method used previous examples
shows:

eventType=SUBSCRIPTION STATUS
messageType=SubscriptionStarted
CorrelationID=User: 10
SubscriptionStarted = {

}
messageType=SubscriptionStarted
CorrelationID=User: 20
SubscriptionStarted = {

}
messageType=SubscriptionStarted
CorrelationID=User: 30
SubscriptionStarted = {

}
messageType=SubscriptionStarted
CorrelationID=User: 40
SubscriptionStarted = {

}

In case of an error, there is an Event to report the subscriptions that failed. For example, if
the specification for MSFT (correlation ID 30) above was mistyped (MSFTT) we would get the
event:

eventType=SUBSCRIPTION STATUS
messageType=SubscriptionFailure
CorrelationID=User: 30
SubscriptionFailure = {
reason = {

source = BBDB@plll

errorCode = 2

category = BAD SEC

description = Invalid security

5 Subscriptions 47

Bloomberg

5.3 Receiving Data from a Subscription

Once a subscription has started, the application will receive updates for the requested data in
Message objects arriving Event objects of type SUBSCRIPTION DATA. With each
message there is a CorrelationID to identify the subscription that requested the data.

The "/ /blp/mktdata" service typically responds with Message's which have more data
than was requested for the subscription. In our example, only updates to the LAST TRADE
field of IBM were requested in the subscription corresponding to CorrelationID 10.
Applications must be prepared to extract the data they need and to discard the rest.

See for more details onthe "/ /blp/mktdata" service.

eventType=SUBSCRIPTION DATA
messageType=MarketDataEvents
CorrelationID=User: 10
MarketDataEvents = {

IND BID FLAG false

IND ASK FLAG = false

IS DELAYED STREAM = true

TIME = 14:34:44.000+00:00

VOLUME = 7589155

RT OPEN INTEREST = 8339549

RT PX CHG PCT 1D = -0.32

VOLUME TDY = 7589155

LAST PRICE = 118.15

HIGH = 118.7

ILOW = 116.6

LAST TRADE = 118.15

OPEN = 117.5

PREV_SES LAST PRICE = 118.53

EQY TURNOVER REALTIME = 8.93027456E8

RT PX CHG NET 1D = -0.379999

OPEN _TDY = 117.5

LAST PRICE TDY = 118.15

HIGH TDY = 118.7

LOW _TDY = 116.6

RT API MACHINE = p240

API MACHINE = p240

RT PRICING SOURCE = US

EXCH CODE LAST = D

EXCH CODE BID = O

SES START = 09:30:00.000+00:00

SES END = 16:30:00.000+00:00

5 Subscriptions 48

Bloomberg
5.4 Modifying an Existing Subscription

Once you have created a subscription you may modify the options (for example, to change
the fields you wish to receive) using the resubscribe method of Session.

Note: Use of the resubscribe method is generally preferred to cancelling the subscription
(using the unsubscribe method) and creating a new subscription because updates might
be missed between the unsubscribe and subscribe calls.

As we saw with the subscribe method, the resubscribe method takes a
SubscriptionList. For example, to change the fields reported in the subscription
created earlier with the correlation ID of subscriptionID IBM we can use the following
code fragment:

SubscriptionList subscriptions = new SubscriptionList();
subscriptions.add (new Subscription ("IBM US Equity",
"BID,ASK",

subscriptionID IBM)) ;
session.resubscribe (subscriptions) ;

The client receives an Event object indicating successful re-subscription (or not) before
receipt of any data from that subscription.

Note: The behavior is undefined if the topic of the subscription (e.g., the security
itself) is changed.

5.5 Stopping a Subscription

The Bloomberg API provides an unsubscribe method that will cancel a single
subscription (specified by its CorrelationID)and another method that will cancel a list of
subscriptions. The following code fragment cancels all of the subscriptions created earlier.

SubscriptionList subscriptions = new SubscriptionList ()
for (int id = 10; id <= 40; id += 10) {
subscriptions.add (new Subscription ("IBM US Equity",
new CorrelationID(id)));
// Note: The topic string is ignored for unsubscribe.
}

session.unsubscribe (subscriptions) ;

Note: No Event is generated for unsubscribe.

5 Subscriptions 49

Bloomberg
5.6 Overlapping Subscriptions

Your application may make subscriptions that "overlap".

One form of overlap occurs when a single incoming update may be relevant to more than one
subscription. For example, two or more subscriptions may specify the updates for the same
data item. This can easily happen inadvertently by "topic aliasing": one subscription specifies
a security by ticker, the other by CUSIP.

Another form of overlap occurs when separate data items intended for different subscriptions
on the customer application process arrive in the same Message object.

For example, the Bloomberg infrastructure is at liberty to improve performance by packaging
two data items within the same Me ssage object. This can occur when a customer's
application process has made two separate subscriptions, where one includes a request for
"IBM US Equity"and "LAST TRADE", while the second one includes

"IBM US Equity"and "LAST TRADE".

The customer application developer can specify how the Bloomberg API should handle
overlapping subscriptions. The behavior is controlled by for the
allowMultipleCorrelatorsPerMsg option to the SessionOptions object
accepted by the Session constructor.

Ifthe allowMultipleCorrelatorsPerMsg optionis false (the default) then a
Message object that matches more than one subscription will be returned multiple times
from the MessageIterator, each time with a single, different CorrelationID.

Ifthe allowMultipleCorrelatorsPerMsg objectis true then a Message object
that matches more than one subscription will be returned just once from the
Messagelterator. The customer application developer must supply logic to examine the
multiple correlation ID values (see the numCorrelationIds and correlationIDAt
methods of the Message class) and dispatch the appropriate data to the correct application
software.

5.7 Conflation and the Interval Option

The API will conflate data only when requested with the Interval option on a subscription. If
multiple subscriptions exist for the same security across a range of intervals then the API will
have a single subscription from the Bloomberg cloud which is then "intervalized" as
appropriate and distributed to individual subscribers.

5.8 Delayed Data

Delayed Data (data for users / applications that are not explicitly entitled to real-time data) is
generally pre-conflated before leaving the Bloomberg cloud for client-side applications.

5 Subscriptions 50

Bloomberg

Please note that Desktop API and Server API will have automatic access to delayed data
(where available), whereas Managed B-Pipe requires explicit permission for access.

5.9 Subscription Life Cycle

There are several key points in the life cycle of a subscription:

Start-up: Subscriptions are started by the subscribe method of Session. An
Event object is generated to report the successful creation of any subscriptions
and separate events for each failure, if any.

Data Delivery: Data is delivered in Event objects of type SUBSCRIPTION DATA,;
each such event has one or more messages; each such Message object has one
or more correlation IDs to identify the associated subscriptions. Since each
Message object may contain more data than requested in any individual
subscription, the code managing each subscription must be prepared to extract its
data of interest from the Message object.

Note: customer applications must not rely on the delivery of data that was not
explicitly requested in the subscription.

Modification: A list of subscriptions (each subscription identified by its correlation
ID) can be modified by the resubscribe method of Session.

Cancellation: Subscriptions (each subscription identified by its correlation ID) can
be cancelled by the unsubscribe method of Session.

Failure: A subscription failure (e.g., a server-side failure) is indicated by an Event
of type SUBSCRIPTION STATUS containing a Message to describe the problem.

5 Subscriptions 51

Bloomberg
6 Core Services

There are two core and five additional services for accessing Bloomberg data. Each API
service operates with either the subscription or request/response paradigm through following
well-defined schema. The schema defines the request and request options, with detailed

information in . This chapter provides an overview of each of these
services.

Reference Data Service "//blp/refdata"

Market Data Service "//blp/mktdata"

Custom VWAP Service "//blp/mktvwap"

Market Bar Subscription Service "//blp/mktbar"

API Field Information Service "//blp/apiflds"

Page Data Service "//blp/pagedata”

Technical Analysis Service "//blp/tasve"

API Authorization "//blp/apiauth"

Important Note: Each Bloomberg data product using the Bloomberg API may vary in the
services available and also the entirety of the service available. Please see the specific
product overview to determine which services are available.

6.1 Common Concepts

6.1.1 Security/Securities

Where a request allows only a single security to be supplied, the field in the schema is named
"security" and is a simple string. Where a single request can handle multiple securities the
field in the schema is named "securities" and is defined as an array. For example, each
IntradayTickRequest can only return information on a single security, whereas
ReferenceDataRequest can return information on many securities.

A security must conform to the following syntax:

/[Topic Prefix]/SYMBOLOGY [@Pricing Source] [Exchange]

6 Core Services 52

Bloomberg

Where [Topic Prefix] is one of the following:

ticker cusip wpk isin buid
sedoll sedol?2 sicovam common bsid
svm cins cats bbgid

The default format for a security is the Bloomberg ticker format, for example,
"IBM US Equity". This format consists of:
SYMBOLOGY [Exchange] <Yellow Key>

SYMBOLOGY is required and is the ticker name

[Exchange] is optional and is a two character mnemonic for the exchange where
the security is traded. If you do not specify [Exchange] then the default value for the
user or for the Server API process will be used.

<Yellow Key> is the text equivalent of one of the Bloomberg yellow function keys.

Govt Corp Mtge
M-Mkt Muni Pfd
Equity Comdy Index
Curncy Client

6.1.2 Pricing Source

Bloomberg allows you to specify a provider's pricing for a specific security or for a universe of
securities. However, you must have the providing firm's approval to use their pricing
information. If you do not specify a pricing source then the default value for the user of the
Server API process is used.

If you wish to specify which pricing source should be used append ¢ followed by the pricing
source to the security, for example, "/cusip/912828GM6@BGN" Or "MSFTRETPX US Equity".
Note for securities in the curncy Yellow Key use a space instead of @ to separate the security
from the pricing source, for example, "GBPUSD BAAM Curncy".

To find what pricing sources are available for a security, load the security then type
PCS<GO> on your Bloomberg. This will also tell you what your preferences for pricing source
are for that class of securities. If a pricing is not listed on this screen, then it is not available
through the Bloomberg API.

6.1.3 Fields

Some requests (for example, ReferencebDataRequest OF HistoricalDataRequest) as well
as subscriptions require you to specify which fields from the Bloomberg data model you wish
to receive. When using the Reference Data Service you can specify fields using either the

6 Core Services 53

Bloomberg

field mnemonic or the CALCRT ID. Returned values have the same name (field mnemonic or
CALCRT ID) specified in the request. However, when creating subscriptions you will only
receive the mnemonic, even if you are passing the CALCRT ID. Therefore, you will want to
use the mnemonic for subscriptions.

You can retrieve information about available fields programmatically using the Bloomberg API
Field Information Service ("//blp/apiflds") or you can use FLDS<GO> on your
BLOOMBERG PROFESSIONAL service.

6.1.4 Overrides

You can use overrides to change the basis on which Bloomberg calculates a derived field.
You can use this facility to perform "what if?" analysis. For example, override the bid price of
a bond (px_BID) and request the bid yield to maturity (vLp yTM BID) based on the value you
supplied for the bid price.

You can retrieve information about which fields react when a particular field is overridden
programmatically by using the Bloomberg API Field Information Service, "/ /blp/apiflds",
or you can use FLDS<GO> on your BLOOMBERG PROFESSIONAL service.

You can specify up to 100 overrides in a single request. The overrides are specified in the
request as an array of name/value pairs.
The value you supply is always represented as a string. If the override field requires:

A date, then the format is <vyyy><Mm><DD>, where <yyvy> is a 4-digit year, <vMm> is
a 2-digit month and <pp> is a 2-digit day. Therefore, August 4, 2010 would be
specified as 20100804.

A decimal value, then you must always use a "." (period) character as the decimal
separator regardless of any preferences you may have set in your operating system.

6.1.5 Relative Dates

The start and end date of a HistoricalbDataRequest are specified using relative dates.
These are represented in a string format and allow a great deal of flexibility.

The syntax of the Relative Date is:
[A] [+/-nCU]

where [aA] is the Anchor Date (details below) and [+/-ncu] is the Offset from the Anchor
Date (details below). Both parts are optional and the date is the result of applying the
specified Offset to the specified Anchor.

If the Anchor Date is omitted then the current date is used.
If the Offset is omitted then no offset is applied to the Anchor.
An empty string is equal to the current date

6 Core Services 54

Bloomberg

In the Offset, +/- defines the direction of the offset, n is a non-negative integer multiplier, c is
a Calendar Type, and u is a Period Unit. The integer multiplier in the Offset is optional

You may specify the Anchor portion in any of the following formats
<YYYY><MM><DD> format. The valid range is from 19000101 to 99991231.

The symbol £D is only valid in a start date and represents the supplied end date
anchor.

The symbol sD is only valid in an end date and represents the supplied start date
anchor.

<C><U><n><YYYY>, where:
<c> represents the calendar type, which can be either c (calendar) or r (fiscal).

<U> represents the period unit, which can be either ¢ (quarterly), s (semi-
annually) or v (yearly).

<n> represents a valid integer value for the specified period unit. So, for
Quarterly, <n> must be either 1, 2, 3, or 4. For Semi-annually, <n> must be
either 1 or 2. For Yearly, <n> must be 1 or it may be omitted.

<YYYY> represents the year. The valid range is from 1900 to 9999.

If you supply an offset it must always be in the form <+|->[n]<C><U>, where:

The first character is always a plus (+) or minus (-) sign to indicate the direction of
the offset from the Anchor date.

The second character (<n>) is an optional multiplier. It must be between 0 and
32767 and the default if it is not specified is 0.

The third character, <c> is either a (actual), ¢ (calendar) or r (fiscal).

For Actual or Calendar types the fourth character, <u> is either b (daily), w
(weekly), M (monthly), o (quarterly), s (semi-annually), or Y (yearly).

For Fiscal calendar types the fourth character, <u>, is either ¢ (quarterly), s
(semi-annually) or v (yearly).

If you use the Actual calendar type, the offset is applied precisely with no "rounding". For
example, +2aw from a Tuesday will result in the Tuesday two weeks hence. +12M from the
16th will result in the 16th of the following month.

If you use the Calendar or Fiscal calendar types, the resulting date is rounded down to the
last active date of the previous period. For example, +1cw from a Tuesday will result in the
Friday of the same week, +1cM from the 16th will result in the last active day of that month,
+cM from the 16th will result in the last active day of the previous month.

If the multiplier is not specified and defaults to 0 the resulting date will be the same as the
Anchor if the Actual calendar type is used. If the Anchor is Calendar or Fiscal calendar type
then the resulting date will be the end of the prior period.

6 Core Services 55

Bloomberg

20080409 represents 9 April 2008.
Q42007 represents 31 December 2007
20080409-1AM represents 9 March 2008 - exactly one month previous to the anchor.

20080409-1cM represents 29 February 2008 - the end of the month prior to 9 March
2008.

A start date of 20080409-3cM and an end date of 20080409-cM will provide a range
that covers the three calendar months prior to the anchor date of 9 April 2008 (that
is, January, February and March).

-3cq evaluated on 23 June 2008 represents 29 June 2007 (because 30 June 2007
was a Saturday).

A start date of 20080409-220 and an end date of sp+1aD represents a range from 9
October 2007 to 10 April 2008 (Note that the s refers only to the Anchor part of the
start date not the result after adding the offset to the Anchor).

6.2 Reference Data Service //blp/refdata

The reference data service provides the ability to access the following Bloomberg data with
the request/response paradigm:

Reference Data Request

A Reference Data Request provides a snapshot of the current value of a security/
field pair.

Historical End-of-Day Data

A Historical Data Request provides end-of-day data over a defined period of time for
a security/field pair.

Historical Intraday Ticks

An Intraday Tick Request provides each tick over a defined period of time for a
security and event type pair.

Historical Intraday Bars

An Intraday Bar Request provides a series of intraday summaries over a defined
period of time for a security and event type pair.

Portfolio Data Request

The Portfolio Data Request enables retrieval of change information and portfolio
positions with respect to a specific date in order to see how current market
movements have affected user's portfolio's constituent weights.

BEQS (Bloomberg Equity Screening) Request

BEQS (Bloomberg Equity Screening) request returns security data for a selected
screen created using the Bloomberg EQS <GO> function.

6 Core Services 56

Bloomberg

6.2.1 Reference Data Request and Response Overview

The rReferenceDataRequest enables a snapshot of the current data available for a security/
field pair. A list of fields is available via the BLOOMBERG PROFESSIONAL service function
FLDS<GO> or using the API fields service. A ReferenceDataRequest must specify at least
one or more securities and one or more fields. The API will return data for each security/field
pair, or alternatively a message indicating otherwise. This example shows how to construct a
ReferenceDataRequest:

Assume we have already opened the //blp/refdata service

Service refDataService = session.getService("//blp/refdata");

Request request = refDataService.createRequest ("ReferenceDataRequest") ;
request.append ("securities", "IBM US Equity");

request.append ("securities", "/cusip/912828GM6E@BGN") ;
request.append("fields", "PX LAST");

request.append ("fields", "DS002");

d cid = session.sendRequest (request, null);

A PARTIAL_RESPONSE or RESPONSE message will be returned. For large requests, a
PARTIAL_RESPONSE will be provided returning part of the information. A RESPONSE
message indicates the request has been fully served. Further information is available in

. This example shows how to process a ReferenceDataResponse..

private void processReferenceDataResponse (Message msg) throws Exception

{

Element securityDataArray = msg.getElement ("securityData") ;

for (int 1 = 0; 1 < securityDataArray.numValues(); ++1i) {
Element securityData = securityDataArray.getValueAsElement (i) ;
System.out.println (securityData.getElementAsString ("security"));
Element fieldData = securityData.getElement ("fieldData");

for (int j = 0; j < fieldData.numElements(); ++3j) {
Element field = fieldData.getElementAt (J);
System.out.println(field.name() + " = " +
field.getValueAsString()) ;
}
System.out.println ("\n") ;

6.2.2 Historical Data Request

The HistoricalDataRequest enables the retrieval of end-of-day data for a set of securities
and fields over a specified period, which can be set to daily, monthly, quarterly, bi-annually or
annually. At least one security and one field are required, along with start and end dates.
There are a range of options that can be specified in the request, which are outlined in

6 Core Services 57

Bloomberg

. This example shows how to construct a HistoricalDataRequest
for monthly last price data for 2010.

Service refDataService = session.getService ("//blp/refdata");
Request request =

refDataService.createRequest ("HistoricalDataRequest") ;
request.append ("securities", "IBM US Equity");

request.append ("securities", "MSFT US Equity");
request.append ("fields", "PX LAST");

request.append ("fields", "OPEN");

request.set ("startDate", "20100101");

request.set ("endDate", "20101231");

request.set ("periodicitySelection", "MONTHLY") ;

A successful HistoricalDataResponse holds information on a single security. It contains a
HistoricalDataTable With one HistoricalDataRow for each interval returned.

private void processHistoricalDataResponse (Message msg) throws
Exception {
Element securityData = msg.getElement ("securityData") ;
Element fieldDataArray = securityData.getElement ("fieldData");

for (int j = 0; j < fieldDataArray.numValues(); ++3j) {
Element fieldData = fieldDataArray.getValueAsElement (J);

for (int k = 0; k < fieldData.numElements (); ++k) {
Element field = fieldData.getElementAt (k) ;

System.out.println ("\t" + field.name () + =
+ field.getValueAsString());

6.2.3 Intraday Tick Request

Bloomberg maintains a tick-by-tick history going back 140 days for all securities where
streaming data is available. This intraday data can be used to draw detailed charts, for
technical analysis, or to retrieve the initial data for a monitoring graph function such as the
GIP<GO> function on the BLOOMBERG PROFESSIONAL service.

The IntradayTickRequest enables retrieval of tick-by-tick history for a single security. In

addition, the event type(s), interval and date/time start and end-points in UTC must be
specified.

6 Core Services 58

Bloomberg

This example shows how to construct an IntradayTickRequest:

Service refDataService
Request request =

refDataService.createRequest ("IntradayTickRequest") ;

request.set ("security", "VOD LN Equity");

request.append ("eventTypes", "TRADE") ;

request.append ("eventTypes", "AT TRADE");

request.set ("startDateTime", new Datetime (2010, 07, 26, 10, 30, 0, 0));
request.set ("endDateTime", new Datetime (2010, 07, 26, 14, 30, 0, 0));

session.getService ("//blp/refdata") ;

A successful IntradayTickResponse Will contain an array of IntradayTickData providing
information on each tick in the specified time range. The time taken to respond to this request
is influenced by the date and time range of your request and the level of market activity
during that period.

private void processIntradayTickResponse (Message msg) throws Exception

{

Element data = msg.getElement ("tickData") .getElement ("tickData") ;
int numItems = data.numValues() ;
for (int 1 = 0; 1 < numItems; ++1) {

Element item = data.getValueAsElement (i) ;

Datetime time = item.getElementAsDate("time");

String type = item.getElementAsString ("type")

double value
int size
String el
if (item.hasElement ("conditionCodes")) {

cc = item.getElementAsString("conditionCodes") ;
}

Process values

item.getElementAsFloat64 ("value") ;
item.getElementAsInt32 ("size") ;

6.2.4 Intraday Bar Services

Bloomberg maintains a tick-by-tick history going back 140 days for all securities where
streaming data is available. This intraday data can be used to draw detailed charts, for
technical analysis, or to retrieve the initial data for a monitoring graph function such as the
GIP<GO> function on the BLOOMBERG PROFESSIONAL service.

The Intraday Bar Request enables retrivial of summary intervals for intraday data covering

five event types, TRADE, BID, ASK, BEST_BID, and BEST_ASK, over a period of time. Note
that only one event type can be specified per request.

6 Core Services 59

Bloomberg

Each bar contains OPEN, HIGH, LOW, CLOSE, VOLUME, and NUMBER_OF_TICKS. The
interval size of the bars can be set to as low as 1 minute and to as high as 1440 minutes (24

hours).

Each intradayBarRequest can only submit one single instrument. In addition, the event
type, interval, and date/time start and end-points in UTC must be specified. This example
shows how to construct an IntradayBarRequest.

Service
Request

request.
request.
request.
request.
request.

refDataService = session.getService ("//blp/refdata");

request = refDataService.createRequest ("IntradayBarRequest") ;
set ("security", "IBM US Equity");

set ("eventType", "TRADE");

set ("interval", 60); // bar interval in minutes

set ("startDateTime", new Datetime (2010, 03, 26, 13, 30, 0, 0))
set ("endDateTime", new Datetime (2010, 03, 26, 21, 30, 0, 0))

A successful IntradayBarResponse Will contain an array of BarTickbData each of which
contains open, high, low, close, number of events and volume values. Further information is

available in

. This example shows how to interpret an

IntradayBarResponse.

{

private void processIntradayBarResponse (Message msg) throws Exception
Element data = msg.getElement ("barData") .getElement ("barTickData") ;
int numBars = data.numValues/() ;
for (int i = 0; 1 < numBars; ++i) {
Element Dbar = data.getValueAsElement (1) ;
Datetime time = bar.getElementAsDate ("time") ;
double open = bar.getElementAsFloat64 ("open") ;
double high = bar.getElementAsFloat64 ("high") ;
double low = bar.getElementAsFloat64 ("low") ;
double close = bar.getElementAsFloat64 ("close");
int numEvents = bar.getElementAsInt32 ("numEvents") ;
long volume = bar.getElementAsInt64 ("volume") ;
Process values
}
}

6.2.5 Portfolio Data Request

The PortfolioDataRequest enables retrieval of change information and portfolio positions with
respect to a specific date in order to see how current market movements have affected their
portfolio's constituent weights.

Note: The user's portfolio is identified by its Portfolio ID, which can be found on the upper
right hand corner of the toolbar on the portfolio's PRTU<GO> page. This information
can also be accessed historically by using the REFERENCE_DATE override field
and supplying the date in 'YYYYMMDD' format. .

6 Core Services

60

Bloomberg

A PARTIAL_RESPONSE or RESPONSE message will be returned. For large requests a
PARTIAL_RESPONSE will be provided returning part of the information. A RESPONSE
message indicates the request has been fully served. Further information is available in

6.2.6 BEQS Request

BEQS (Bloomberg Equity Screening) request returns security data for a selected screen
created using the Bloomberg EQS Terminal function.

A PARTIAL_RESPONSE or RESPONSE message will be returned. For large requests a
PARTIAL_RESPONSE will be provided returning part of the information. A RESPONSE
message indicates the request has been fully served. Further information is available in

6.3 Market Data Service //blp/mktdata

The Market Data service enables retrieval of streaming data for securities which are priced
intraday, by using the API subscription paradigm. Update messages are pushed to the
subscriber once the field value changes at the source. These updates can be real time or
delayed, based upon the requestors exchange entitlements or through setting a delayed
subscription option. All fields desired must explicitly be listed in the subscription to receive
their updates.

Once a subscription is established, the stream will supply messages in
SUBSCRIPTION_DATA events. The initial message returned, known as a "SUMMARY"
message, will contain a value for all the fields specified in the subscription. Subsequent
messages may contain values for some or all of the requested Bloomberg fields. It is possible
that a message contains none of the requested Bloomberg fields as the messages are only
filtered based on the fields they could contain rather than the fields they actually contain and
many fields in the streaming events are optional. The Bloomberg API will ensure all
messages that contain any of the fields you have explicitly subscribed for are pushed to your
application. Finally the stream may return additional fields in these messages, for which were
not included in the subscription. These additional fields are not filtered for the purpose of
speed, and their inclusion is subject to change at any time.

Some of the fields that are returned also have a null state. For example the fields BID and
ASK have values of type float and usually give positive values that you can use to populate
your own caches. However there are times when these fields will be set to a null value. In the
case of BID and ASK fields this is usually interpreted as an instruction to clear the values in
your caches. Therefore it is important to test to see if the field is null before you try and
retrieve a value from it.

6 Core Services 61

Bloomberg

This example shows how to subscribe for streaming data.

Assume that session already exists and the "//blp/mktdata" service has
been successfully opened.
SubscriptionList subscriptions = new SubscriptionList ()
subscriptions.add ("IBM US Equity",

"LAST PRICE,BID,ASK",

"");

subscriptions.add ("/cusip/912828GM6Q@BGN",
LAST PRICE,BID,ASK,BID YIELD,ASK YIELD",

"");

session.susbcribe (subscriptions);

6.4 Custom VWAP Service //blp/mktvwap

The Custom Volume Weighted Average Price (VWAP) Service provides streaming VWAP
values for equities. This service allows for a customized data stream with a series of
overrides which are documented in

Assume that session already exists and the "//blp/mktvwap'" service has
been successfully opened.

SubscriptionlList subscriptions = new SubscriptionList();
subscriptions.add("//blp/mktvwap/ticker/IBM US Equity" +
"?VWAP_START TIME=10:00&VWAP_END TIME=16:00",
"LAST PRICE,BID,ASK",
"

session.susbcribe (subscriptions) ;

The response will return a message containing a selection of VWAP fields.

6.5 Market Bar Subscription Service //blp/mktbar

The Market Bar Service provides streaming (real time and delayed) intraday bars. This
service provides the functionality to obtain intraday bars for trade volume, number of ticks,
open, close, high, low and time of last trade. The major advantage of the service is for clients
wishing to retrieve HIGH/LOW prices for a specified time interval in streaming format. A
subscription to a market bar requires the service to be explicitly specified in the topic.

For example: "/ /blp/mktbar/ticker/VOD LN Equity"

6 Core Services 62

Bloomberg

"//blp/mktbar/isin/GB00B16GWD56 LN"

The only field that can be submitted for this service is LAST PRICE. The following code
shippet shows a subscription to market bars: .

Assume that the blp/mktbar service has already been opened successfully.

SubscriptionList d subscriptions = new SubscriptionList();

d subscriptions.add("//blp/mktbar/ticker/VOD LN Equity","LAST PRICE",
"interval=5",CorrelationId(l)) ;

d session.subscribe (d subscriptions) ;

There are three types of messages that can occur in a SUBSCRIPTION DATA event. The
first event received is MarketBarStart, this occurs at every new bar; therefore the
frequency of this will depend upon the interval setting. A MarketBarStart will return all
fields (). Subsequently, on every last price update
a MarketBarUpdate will be sent. This will only include fields that have updated since the bar
start or last update. Fields that are always updated are VOLUME, NUMBER OF TICKS,
TIME and CLOSE. MarketBarEnd only occurs when the last market bar has been
received - i.e., the end_time has been reached. This message only contains TIME.

Please note there is no initial summary returned for streaming intraday bars, a reference data
request or a subscription will be required to get an initial snapshot if required.

When a market bar subscription is set to return delayed data, the market bar start message
will not be returned until the delayed period has passed.

6.6 API Field Information Service //blp//apiflds

The Field Information service provides details and a search capability on fields in the
Bloomberg data model using the API request/response paradigm. Information can be
retrieved in three ways:

Field Information Request

A Field Information Request provides a description on the specified fields in the
request.

Field Search Request

A Field Information Request provides the ability to search the Bloomberg data model
with a search string for field mnemonics.

Categorized Field Search Request

A Categorized Field Search Request provides the ability to search the Bloomberg
data model based on categories with a search string for field mnemonics.

6 Core Services 63

Bloomberg
6.6.1 Field Information Request

A FieldInfoRequest returns a description for the specified fields included in the request.
The request requires one or more fields specified as either a mnemonic or an alpha-numeric
identifier. It is also possible to specify in the request to return the documentation as per
FLDS<GO>. This example shows how to construct a FieldInfoRequest.

session.getService ("//blp/apiflds") ;

Service fieldInfoService
Request request =
fieldInfoService.createRequest ("FieldInfoRequest") ;
request.append("id", "LAST PRICE");

request.append ("id", "pg005");

request.append ("id", "ds002");

request.set ("returnFieldDocumentation", true);
request.append ("properties", "fieldoverridable");

A successful FieldResponse Will contain an array of Fieldbata. The Fieldbata contains
the field's unique id and information about the field. This example shows how to process a
single FieldResponse.

private void processFieldResponse (Message msg) throws Exception ({
Element fieldDataArray = msg.getElement ("fieldData") ;

for (int 1 = 0; 1 < fieldDataArray.numValues(); ++i) {
Element fieldData fieldDataArray.getValueAsElement (1) ;
Element fieldInfo = fieldData.getElement ("fieldInfo");
System.out.println (
fieldData.getElementAsString ("id") + " " +
fieldInfo.getElementAsString ("mnemonic") + " (" +
(
(

fieldInfo.getElementAsString ("description™) + ") " +
fieldInfo.getElementAsString ("datatype")) ;

6.6.2 Field Search Request

A FieldSearchRequest returns a list of fields matching a specified search criterion. The
request specifies a search string and it may also contain criteria used to filter the results. This
criterion allows for the filtering by category, product type and field type. Detailed information

6 Core Services 64

Bloomberg

on these settings is located in . This example shows how to construct
a FieldSearchRequest.

session.getService ("//blp/apiflds") ;

Service fieldInfoService
Request request =
fieldInfoService.createRequest ("FieldSearchRequest") ;
request.set ("searchSpec", "last price");

Element exclude = request.getElement ("exclude") ;
exclude.setElement ("fieldType", "Static")

A FieldSearchRequest returns a FieldResponse just as a FieldInfoRequest does.

6.6.3 Categorized Field Search Request

A categorizedFieldSearchRequest returns a list of fields matching a specified search
criterion. The request specifies a search string and it may also contain criteria used to filter
the results. This criterion allows for the filtering by category, product type and field type.
Detailed information on these settings is located in . This example
shows how to construct a categorizedFieldSearchRequest.

Service fieldInfoService = session.getService ("//blp/apiflds");
Request request = fieldInfoService.createRequest (

"CategorizedFieldSearchRequest") ;
request.set ("searchSpec", "last price");

6 Core Services 65

Bloomberg

A successful CategorizedFieldResponse Will contain an array of cCategorybData that
contains a flattened representation of the matching fields arranged by the category tree. This
example shows how to process a single CategorizedFieldResponse.

private void processCategorizedFieldResponse (Message msg) throws

Exception {
Element categoryArray = msg.getElement ("category"):;

for (int 1 = 0; 1 < categoryArray.numValues(); ++i) {
Element categoryData = categoryArray.getValueAsElement (1) ;
System.out.println (
"Category:" + categoryData.getElementAsString ("categoryName")) :;
Element fieldDataArray = categoryData.getElement ("fieldData");

for (int j = 0; j < fieldDataArray.numValues(); ++3) {
Element fieldData = fieldDataArray.getValueAsElement (i) ;
Element fieldInfo = fieldData.getElement ("fieldInfo");
System.out.println (
fieldData.getElementAsString ("id") + " " +
fieldInfo.getElementAsString ("mnemonic") + " (" +
fieldInfo.getElementAsString ("description™) + ") " +
fieldInfo.getElementAsString ("datatype")) ;

6 Core Services

66

Bloomberg
6.7 Page Data Service

The Page Data service of the API provides access to GPGX pages and the data they contain.
This is a subscription service, where the GPGX number, the monitor number, the page
number and the required rows (fields) must be provided.

The topic is constructed as follows:-

0708/012/0001

where:
0708 is the GPGX number
012 is the monitor number
0001 is the page number
An array of strings is used to specify the rows on the page that are of interest. These can be

specified as individual rows, multiple rows separated by commas, or ranges of rows, as
follows:

String Rows Specified

"1” The first row on the page
"1,2,3” Rows 1,2 and 3 on the page
"1,6-10,15,16" Row 1, rows 6 to 10 and rows 15 and 16

The following example shows how to create a subscription, and demonstrates how the
subscription fields are used to pass the rows the user wants to subscribe to.

String topic = "0708/012/0001"

List<string> fields = new List<string>();
fields.Add ("15-18") ; // subscribing to rows 15 to 18

subscriptions.Add (new Subscription("//blp/pagedata/" + topic,
fields,
null,
new CorrelationID (topic)));

Once a subscription has been created, and the subscription status messages have been
processed, two event types might be received:

PageUpdate

A PageUpdate event contains a current view of the entire page. It provides the dimensions of
the page, followed by a rowUpdate element for each row on the page. A full page update will

6 Core Services 67

Bloomberg

be received first (all the rows on the page), regardless of the requested rows, and acts as an

initial paint of the page, prior to receiving ongoing updates.

PageUpdate = {

{

80

{

DARKBLUE
WHITE

{
1

80

{

WHITE
DARKBLUE

numRows = 23
numCols = 80
rowUpdate[] = {
rowUpdate = {
rowNum = 1
spanUpdate[] = {
spanUpdate =
startCol = 1
length =
text =
attr[] =
}
fgColor =
bgColor =
}
}
}
rowUpdate = {
rowNum = 23
spanUpdate[] = {
spanUpdate =
startCol =
length =
text =
attr[] =
}
fgColor =
bgColor =

RowUpdate

A RowUpdate event consists of a row number, and one or more spanUpdate elements. Each
spanUpdate element describes the location and size of the data (startCol, length), the data

itself (text), any attributes associated with that piece of data, and the foreground and
background colors. The RowUpdate event is structured in exactly the same way as the

rowUpdate element of the PageUpdate event.

6 Core Services

68

Bloomberg

RowUpdate = {
rowNum = 15
spanUpdate[] = {
spanUpdate = {
startCol = 61
length =1
text = 9
attr[] = {
}
fgColor =
bgColor =

WHITE
DARKBLUE

Possible Attribute Values:

BLINK

DOUBLEWIDTH

INTENSIFY

POINTANDCLICK

REVERSE
UNDERLINE

Possible Color Values for foreground and background:

6 Core Services

AMBER
BLACK
DARKBLUE
DARKGREEN
DEEPBLUE
FLASHINGBLUE
FLASHINGRED
GRAY

LIGHTBLUE
LIGHTGREEN
ORANGE
PINK

RED

VIOLET
WHITE
YELLOW

69

Bloomberg
6.8 Technical Analysis Service

Technical Analysis is a method of evaluating securities by analyzing statistics generated by
market activity, such as past prices and volume. Technical analysts do not attempt to
measure a security's intrinsic value, but instead use charts and other tools to identify patterns
that can suggest future activity. The Technical Analysis Service enables you to download this
data and bring it into your application using Bloomberg API.

Table 6-1 details the different Technical Analysis data types:

Table 6-1: Data Type Description Table

Historical End of Day End-of-day data for a specified period of time in increments of
days, weeks, months, quarters, or years.

Intraday Intraday data for a specified period of time in increments of
minutes. Based on Bid, Ask, or Trade events, data such as
open, high, low, close, and volume can be retrieved for the
interval of time specified.

Real-time Real-time data and events.

6.8.1 Historical End of Day study request

The Historical study request enables the retrieval of end-of-day technical analysis data for a
specified security and study attributes over the specified time periods of daily, weekly,

6 Core Services 70

Bloomberg

monthly, bi-annually and annually. Each Historical study request can submit only a single

instrument.
Service tasvcService = session.GetService ("//blp/tasve");
Request request = tasvcService.CreateRequest ("studyRequest") ;

// set security name
request.GetElement ("priceSource") .
GetElement ("securityName") .SetValue ("IBM US Equity");
// set historical price data
request.GetElement ("priceSource") .
GetElement ("dataRange") .SetChoice ("historical") ;
Element historicalEle = request.GetElement ("priceSource") .

GetElement ("dataRange") .GetElement ("historical") ;
historicalEle.GetElement ("startDate") .SetValue ("20100501"); // set
study start date
historicalEle.GetElement ("endDate") .SetValue ("20100528"); // set study
end date
// DMI study example - set study attributes
request.GetElement ("studyAttributes") .SetChoice ("dmiStudyAttributes") ;
Element dmiStudyEle = request.GetElement ("studyAttributes") .

GetElement ("dmiStudyAttributes") ;
dmiStudyEle.GetElement ("period") .SetValue (15); // DMI study interval
// set historical data price sources for study
dmiStudyEle.GetElement ("priceSourceLow") .SetValue ("PX LOW") ;
dmiStudyEle.GetElement ("priceSourceClose") .SetValue ("PX LAST") ;

A successful studyResponse holds information on the requested security. It contains a
studyDataTable with one studyDataRow for each interval returned.

6 Core Services 71

Bloomberg

private void processResponseEvent (Message msqg)
{
Element security = msg.GetElement (SECURITY NAME) ;
string ticker = security.GetValueAsString() ;
System.Console.WriteLine ("\nTicker: " + ticker);
if (security.HasElement ("securityError"))
{
printErrorInfo ("\tSECURITY FAILED: ",
security.GetElement (SECURITY ERROR)) ;
continue;
}
Element fields = msg.GetElement (STUDY DATA);
if (fields.NumValues > 0)
{
int numValues = fields.NumValues;
for (int j = 0; j < numValues; ++73)

{

{
Element element = field.GetElement (k) ;

element.GetValueAsString()) ;
}

System.Console.WriteLine ("") ;

Element field = fields.GetValueAsElement (j) ;
for (int k = 0; k < field.NumElements; k++)

System.Console.WriteLine ("\t" + element.Name + " = " +

6.8.2 Intraday bar study request

The Intraday Bar type study request enables the retrieval of summary intervals of intraday

technical analysis data for a specified study attributes for five event types, TRADE, BID, ASK,

BEST_BID, and BEST_ASK, over a period of time. Each Intraday study request can only

submit only a single instrument. In addition, the event type, interval and date/time start and

end-points in UTC must be specified.

6 Core Services

72

Bloomberg

Service tasvcService = session.GetService ("//blp/tasvc");
Request request = tasvcService.CreateRequest ("studyRequest") ;
// set security name
request.GetElement ("priceSource") .
GetElement ("securityName") .SetValue ("IBM US Equity");

Element intradayEle = request.GetElement ("priceSource").

GetElement ("dataRange") .GetElement ("intraday") ;
// set intraday price data
intradayEle.GetElement ("eventType") .SetValue ("TRADE"); // intraday
event type
intradayEle.GetElement ("interval") .SetValue (60); // intraday interval

intradayEle.GetElement ("startDate") .SetValue ("2010-05-26T13:30:00"); //
set study start date
intradayEle.GetElement ("endDate") .SetValue ("2010-05-27T13:30:00"); //

set study end date

// smavg study example - set study attributes

request.GetElement ("studyAttributes") .SetChoice ("smavgStudyAttributes")

Element smavgStudyEle = request.GetElement ("studyAttributes") .
GetElement ("smavgStudyAttributes") ;

smavgStudyEle.GetElement ("period") .SetValue (15); // SMAVG study

interval

smavgStudyEle.GetElement ("priceSourceClose") .SetValue ("close") ;

Response Behaviour

A successful studyResponse holds information on the requested security. It contains a
studyDataTable with one studyDataRow for each bar interval returned.

6 Core Services 73

Bloomberg

private void processResponseEvent (Message msqg)
{
Element security = msg.GetElement (SECURITY NAME) ;
string ticker = security.GetValueAsString() ;
System.Console.WriteLine ("\nTicker: " + ticker);
if (security.HasElement ("securityError"))
{
printErrorInfo ("\tSECURITY FAILED: ",
security.GetElement (SECURITY ERROR)) ;
continue;
}
Element fields = msg.GetElement (STUDY DATA);
if (fields.NumValues > 0)
{
int numValues = fields.NumValues;
for (int j = 0; j < numValues; ++73)
{
Element field = fields.GetValueAsElement (j) ;
for (int k = 0; k < field.NumElements; k++)
{
Element element = field.GetElement (k) ;
System.Console.WriteLine ("\t" + element.Name + " = " +
element.GetValueAsString()) ;

6.8.3 Realtime study request

The Real time study request provides the ability to subscribe to real time technical analysis
data points for a specified study field attributes and period. Each Real time study subscription
can only subscribe to a single study field.

Assume that session already exists and the "//blp/tasvc" service hasbeen successfully
opened.

SubscriptionList subscriptions = new SubscriptionList () ;
subscriptions.Add (new Subscription ("//blp/tasvc/ticker/IBM US
Equity?fields=WLPR&" +
"priceSourceClose=LAST PRICE&" +
"priceSourceHigh=HIGH&" +
"priceSourceLow=LOW&" +
"periodicitySelection=DAILY&" +
"period=14", new CorrelationID("IBM US
Equity WLPR")));
session.susbcribe (subscriptions);

6 Core Services 74

Bloomberg

Once a subscription is established, the stream will supply messages in
SUBSCRIPTION_DATA events. Apart from study field subscribed, you may receive
additional study fields in these messages which were not subscribed. These additional fields
are not filtered for the purpose of speed and their inclusion is subject to change at any time.

6.9 API Authorization

The Authorization service enables an application to handle the Bloomberg concept of
Permissioning, by checking authorization and entitlement through the creation of Identities
which represent users and/or applications. These Identities contain the entitlement identifiers
for data enabled under the user/application. The entitlements are then used in combination
with those retrieved from market or reference data to decide whether the entity is allowed to
view the data. Detailed explanation is documented in

The response message indicates a pass or fail.

6 Core Services 75

Bloomberg

7 Authorization and Permissioning
Systems

7.1 Overview

It is necessary to restrict access to data to users who are entitled to view it. With the
Bloomberg API data products this is essentially a three step process.

Authentication

Who is the consumer?

Authorization

What data is the consumer entitled to see?
Permissioning

The process of enforcing data distribution to only entitled consumer.

7.2 Underlying Concepts

7.2.1 EIDs

EIDs are integers that represent the entitlement for a security's source (e.g. a level 1
entittlement for MSFT UQ Equity would have an EID of 14005, level 2 data would be
additional EIDs).

Instruments from a common source (e.g., NASDAQ) will share an EID; for example, MSFT
UQ Equity and INTC UQ Equity both come from NASDAQ and so have EID 14005 (if
requested by someone with level 1 access).

Users and applications can have EIDs associated with them to represent their entitiements.
For a BLOOMBERG PROFESSIONAL service user, this is the same as the entitlements on
the BLOOMBERG PROFESSIONAL service.

7.2.2 Requirement for the Terminal

The licence for distribution of data to existing BLOOMBERG PROFESSIONAL service users
requires that they are logged into the Bloomberg Terminal in order to view the data. In this
respect the data products can be seen, for Bloomberg users, as an extension of the Terminal
product and thus sharing entitlements and exchange fees with their Terminal account.

7 Authorization and Permissioning Systems 76

Bloomberg

Authentication in Bloomberg's data products for Bloomberg users is performed by identifying
a user as being logged into the Terminal. The Terminal's use of a biometric device will have
already proven the identity of the logged in user.

Please note that the Terminal is not a requirement for Managed B-PIPE's non-BPS (Market
Data) users or applications.

7.2.3 The /Iblp/apiauth service

The authentication and permissioning systems of Server APl and Managed B-PIPE require
use of the //blp/apiauth service. This defines the requests and responses that will
come from the API.

7.2.4 The V3 Identity Object

V3 permissioning, on both Server APl and Managed B-PIPE, revolves around the use of a
class called the Tdentity. These objects represent a user (or an application in Managed
B-PIPE) and can be used to check that a user is entitled for data, is logged onto a terminal,
switches terminals, and can be passed with a request to receive data permissioned just for
that user or application.

7.2.5 V3 Permissioning Models
The V3 API provides a couple of permissioning models for developers to follow.
User mode

When user mode permissioning is used, an Tdentity is passed as a parameter when
sending a request. This means that all data returned will be already permissioned for that
TIdentity, butis only for distribution to that particular user or application represented by the
Identity.

Content based

When content based permissioning is used, the entitiement identifiers (EIDs) of incoming
pieces of data is taken and the data is only distributed to users whose Tdent ity contains
the same EIDs as the data.

7.2.6 Authorization Lifetime

Before designing and developing your Server AP| or Managed B-PIPE application, it is
important that you understand the following guidelines concerning the authorization lifetime
of a Bloomberg user:

1. An application requires only one Tdentity object per session per Bloomberg user.
This means that your application is not required to authorize the user each time the
user makes a request for data.

7 Authorization and Permissioning Systems 77

Bloomberg

2.

A Bloomberg user's authorization remains valid until that user logs out from
Bloomberg Professional service and logs in from another host. At that time, your
application will receive an event of type AUTHORIZATION_STATUS, containing a
message of type AuthorizationRevoked.

This is the only time that an Identity must be re-established.

Simply logging out or logging back in from the same host will not invalidate a user's
authorization.

User Authorization is needed when the session is destroyed or when the
authorization is revoked.

If any entitlements change for the user, the existing Identity object is
automaticaly updated by Bloomberg’s infrastructure and SDK.

Failiure to observe these practices will result in exceeding the maximum
authorizations limit for a user, thereby resulting in further authorizations failing with
error code MAX_AUTHORIZATIONS_EXCEEDED.

7.3 Server API Authorization

7.3.1 Authorization by IP Address

Authorization by IP address consists of sending to the Bloomberg infrastructure an
authorization request containing a user identify (UUID) and the IP address of the host where
that user is believed to be using the BLOOMBERG PROFESSIONAL service. If that user
indeed has a Bloomberg session at that IP address, the authorization is successful.

When the customer application has a User Mode deployment, the authorization request is
submitted by the end-user application.

7 Authorization and Permissioning Systems 78

Bloomberg

Bloomberg Data Center

Authorize Request

SarverAP| Process

Authorization Authorization
raquest Using request Using
LD and IP Address LILID and IP Address

(o

Customear End-Usar
Application

Customer End-User
Application

USER 1

Figure 7-1: Server API: User Mode: Authorization by IP Address

When the customer application has a Server Mode deployment, the authorization request is
submitted by the customer server application using values obtained by the end-user
applications by some customer defined protocol.

7 Authorization and Permissioning Systems 79

Bloomberg

Bloomberg Data Center

Authorization Requests
for Usars

ServerAP| Pracess

Authorize Lsers using
their UUID & IPAddress

Customer Sarver Application

UUID and IP Address // / \ \ \\ UUID and IP Address

Proprietary Customer Proprietary Customer
Application Protocol Application Protocol

| |\

Customer
End-Liser
Anslication

Customer
End-Lser
Application

USER 1

USER 2

Figure 7-2: Server API: Server Mode: Authorization by IP Address

The above diagram does not show the subordinate customer application that will be receiving
the Bloomberg data. That application must report its user’s UUID and IP address to the
customer application using the Server API. The customer application developer must define
the protocol for transferring that information.

To authorize a UUID/IP address pair, open "//blp/apiauth", the authorization service,

and send an authorization request. The following code fragment shows how to create such a
request and one method for blocking until receipt of the corresponding response.

7 Authorization and Permissioning Systems 80

Bloomberg

<Java>
int uuid = ... ; // Obtain UUID for user of interest.
String ipAddress = ... ; // Obtain IP address for user of interest.

......... Create and start 'session'. ...

if (!session.openService ("//blp/apiauth"))
System.out.println ("Could not open service " + "//blp/apiauth");
System.exit (1) ;

éervice apiAuthSvc = session.getService ("//blp/apiauth") ;

Request authorizationRequest = apiAuthSvc.createAuthorizationRequest () ;

authorizationRequest.set ("uuid", uuid) ;
authorizationRequest.set ("ipAddress", ipAddress);

Identity identity = session.createldentity();
CorrelationID authorizationRequestID = new CorrelationID(10) ;

session.sendAuthorizationRequest (authorizationRequest, identity,
authorizationRequestID) ;

System.out.println ("sent Authorization Request using ipAddress") ;

// Wait for 'AuthorizationSuccess' message which indicates
// that 'identity' can be used.

7 Authorization and Permissioning Systems

Bloomberg

The “helper" method, handleAuthenticationResponseEvent, examines the received
messages for one of type "aAuthorizationSuccess”, "AuthorizationFailure", etc.

7 Authorization and Permissioning Systems

Bloomberg

For a valid UUID/IP address pair, the program output is:

sent Authorization Request using ipAddress
EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted

SessionStarted = {

}

EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened

ServiceOpened =

}

Authorization OK

Successful authorization loads identity with information (i.e., entitlement data) later used

in the Permissioning phase.

However, if incorrect data is given, say an incorrect IP address, the output is:

sent Authorization Request using ipAddress
EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted
SessionStarted = {
}
EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened
ServiceOpened =
}
Authorization Problem
eventType=RESPONSE
messageType=AuthorizationFailure
CorrelationID=User: 10
AuthorizationFailure = {
reason = {

code = 102

category = NO AUTH
subcategory = NOT LOGGED IN
source = [nydsmeterl]

}

}

Authorization Failed

message = User not logged on to the Bloomberg Professional Service

7 Authorization and Permissioning Systems

83

Bloomberg
7.4 Managed B-PIPE Authorization

Note: Managed B-PIPE requires an Tdentity to be passed with every subscription and
data request; this can either be a User or an Application.

Managed B-PIPE Authorization requires prior administrative action to enable each user and/
or application.

Please contact your firm's Bloomberg EMRS administrator.

There are two programmatic stages to Managed B-PIPE Authorization:
© "Authentication" of identity. This can be by user and/or by application
o "Authorization" which is the process of obtaining the entitlements of the
authenticated user and/or application

Managed B-PIPE authentication and authorization is displayed in Figure 7-3.

Setup desktop application to
get Token for either

05 _LOGON or an Active
Directory property

ual

Client's Desktop
Machine

do

uonesnuUayINy

Send Token to Server App

E ® Token

§- g | § Client's Server
5 3 2

o ty ‘3

=

Figure 7-3: Obtaining a User’s Identity in Managed B-PIPE

7 Authorization and Permissioning Systems 84

Bloomberg

Figure 7-3 shows the procedure for the user authorization system. It is important to note that
the "authentication" section of the diagram MUST be performed on the user's desktop
machine. The "authorization" section can be performed on the server-side application or on
the user's desktop, depending on the application.

For an application authorization system, the OS_LOGIN or DIRECTORY_SERVICE request
is replaced with one for the Application Name as defined on EMRS and this can be run on
any machine.

For a combined application and user authorization system both the user authentication and
the application authentication occurs in a single call and this must be run on the user desktop
machine.

7.4.1 Authentication

The first stage of authentication is creating an Authentication Options string. This is attached
to the SessionOptions object and thus passed into the session when it is created.

For a User

A user's identity can be authenticated by the user's Window's logon identity or a value from
the Active Directory (e.g., email address) associated with the login. The correct
authentication value for each user is made known to the Bloomberg Data Center using the
EMRS<GO> function.

The client application specifies this choice using the setAuthenticationOptions method of the
SessionOptions class. Note that neither option requires the user to input or even be aware of
the value that is used for authentication.

The two options are OS_LOGON and DIRECTORY_SERVICE.

An example of their use is as follows:

const char *authenticationOptions = "AuthenticationType=0S_ LOGON"
const char *authenticationOptions = "AuthenticationType=DIRECTORY_ SERVICE;

DirSvcProperty=mail";

"mail" is the property name to lookup under Active Directory rather than the value itself. The
libraries will obtain the value from Active Directory using this property name for the currently
logged in user.

A code example demonstrating the use of these can be found below in
For an Application

An application "authenticates" in much the same way as a user. However, instead of using
Active Directory or a Logon, an application name is used as defined in EMRS <GO>.

7 Authorization and Permissioning Systems 85

Bloomberg

Rather than using OS_LOGON and DIRECTORY_SERVICE with the
AuthenticationType parameter of the authentication options string, we introduce two
new parameters; AuthenticationMode and ApplicationAuthentication.

AuthenticationMode will take the value APPLICATION_ONLY and
ApplicationAuthentication will take the value APPNAME_AND_KEY.

Finally we use the parameter ApplicationName. The value for this parameter will be the
value stored on EMRS for that application.

const char *authenticationOptions = "AuthenticationMode=APPLICATION_ONLY;
ApplicationAuthenticationType=APPNAME AND KEY;
ApplicationName=TestApplication"

The above code snippet can be inserted in the following code example to generate a token
for an application registered on EMRS as "TestApplication".

After the token is generated, it should then be used to generate an Identity in the same
way that a user has an identity created using a token.

7 Authorization and Permissioning Systems 86

Bloomberg

Application obtains a token
based on application name
r
=
—
=
(18]
=
=
"]
b
=2 >
o o Token
> 3
(1]
- Q
. o
5 3
o
o
1]
> E Application uses token lo
£ S create identity
—
=
=) Token
N i
=
(]
=
Identity

There is one last possible value for AuthenticationMode: USER_AND_APPLICATION.

This allows use of the AuthenticationType parameter with OS_LOGON and
DIRECTORY_SERVICE alongside the AuthenticationMode,
ApplicationAuthenticationType, and ApplicationName parameters.

const char *authenticationOptions =
"AuthenticationMode=USER AND APPLICATION;
ApplicationAuthenticationType=APPNAME AND KEY;
ApplicationName=TestApplication;
AuthenticationType=0S_LOGON"

Typically this will be used for authorizing specific users for specific applications and will return
the intersection of the entitlements of the application and the user.

7.4.2 Token Generation

The authentication occurs when the client application requests the generation of a "token". A
failure to authenticate is indicated by a message of type "TokenGenerationFailure". If a
"TokenGenerationSuccess" message is received, the application can extract a token for use
in the subsequent Authorization stage. By passing the Authentication Options string in as

7 Authorization and Permissioning Systems 87

Bloomberg

part of the session options, the call to session.generateToken will submit a token
generation request.

7 Authorization and Permissioning Systems 88

Bloomberg

for (Messagelterator messagelterator (tokenEvent) ;
messagelterator.next ();)

{

Message message = messagelterator.message();

if (TOKEN FAILURE == message.messageType ())

{
std::cerr << "Failed to obtain token" << std::endl;
return 1;

}

assert (TOKEN_ SUCCESS == message.messageType ()) ;
token.assign (message.getElementAsString ("token")) ;
break;

The token is a long alphanumeric string that has a limited lifespan for validity and needs to be
used in an Authorization request before it expires.

7.5 Authorization

For Managed B-PIPE Authorization, the client application must set as an attribute of the
Authorization request the token obtained during Authentication. Then, as in the other cases,
an "AuthorizationFailure" message indicates failure (with details) and an
"AuthorizationSuccess" message indicates that the identity has been set with the user's or
application's entitlements.

The Identity is then used in the same way as it would be in Permissioning in Server API.

Please note that for an application that has been named in EMRS, all requests for data must
have the Tdent ity passed with it, so that only the securities that the application is entitled
for are accessible rather than everything associated with the Managed B-PIPE.

7 Authorization and Permissioning Systems 89

Bloomberg

7 Authorization and Permissioning Systems

Bloomberg

7.6 Permissioning

7.6.1 Entitlements

Entitlement Identifiers (EIDs) are numeric values associated with data provided by
Bloomberg. The following table contains some EID examples:

Table 1:

EID Description Source Examples
14005 NASDAQ Level 1 NASDAQ MSFT UQ Equity,
INTC UQ Equity?
b BGN Bloomberg Generic | CT2@BGN Govt
23599 U.S. Treasures Merrill Lynch CT2@ML Govt
14014, 14076° London Stock LSE VOD LN Equity

Exchange Level 1 & 2

a. In the example above, MSFT UQ Equity and INTC UQ Equity are both NASDAQ Level 1, and have
the same EID.

b. There can be cases where there are no entitlements associated with the associated instrument. In
such cases the data is to be considered free for all BBA users. Bloomberg Generic Pricing has no
EID and is therefore, free for all Bloomberg users.

c. In the example above, we show that separate EIDs are used to represent London Stock Exchange
Level 1 and Level 2.

The user's EIDs (in the first row, above) are returned in the AuthorizationResponse and are
held in an "ITdentity". Each Message contained in a SUBSCRIPTION_DATA,
PARTIAL_RESPONSE or RESPONSE Event may contain an EID field.

Note that for reference data, EIDs are currently assigned at the instrument level, not at the
field level. However, for subscription data, EIDs are currently assigned at the instrument and
field level.

The following code fragments show how the entitlements loaded into the Tdent ity during
the authorization stage and can be used to check a user's eligibility to receive given data.

7 Authorization and Permissioning Systems 91

Bloomberg

First, the data request must be modified to request that entitlement identifiers be included

with the returned data. For example:

request.append ("securities",

session.sendRequest (request,

<Java>
Service refDataSvc = session.getService ("//blp/refdata");
Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;

"VOD LN Equity"):;

request.append ("fields", "PX LAST");
request.append ("fields", "DS002");
request.append("fields", "VWAP VOLUME") ;
request.set ("returnEids", true); // new
CorrelationID requestID = new CorrelationID(20) ;

requestID) ;

7 Authorization and Permissioning Systems

92

Bloomberg

Then, the handler for the resulting events can be modified to use the identity acquired during
authorization:

<Java>

{

while

{

if

{

}

{

private static void handleResponseEvent (Event event,

int numItems =
for (int i = 0; 1 < numlItems; ++1i)

throws IOException

Messagelterator iter = event.messagelterator();

(iter.hasNext ())

Message message = iter.next();
Element ReferenceDataResponse = message.asElement () ;

(ReferenceDataResponse.hasElement ("responseError"))

handle error

Element securityDataArray =

ReferenceDataResponse.getElement ("securityData") ;
securityDataArray.numValues () ;

Element securityData =
securityDataArray.getValueAsElement (1) ;
String security =
securityData.getElementAsString ("security") ;
int sequenceNumber =
securityData.getElementAsInt32 ("sequenceNumber") ;
if (securityData.hasElement ("securityError"))
{
handle error
}
ArraylList missingEntitlements = new ArrayList();
Element neededEntitlements =
securityData.hasElement ("eidData")
? securityData.getElement ("eidData")
null;
if (null == neededEntitlements)
{
forward data to the user
}
else if (identity.hasEntitlements (neededEntitlements,
message.service (),
missingEntitlements))
{
forward data to the user
}
else

{

Identity identity)

7 Authorization and Permissioning Systems

93

Bloomberg

do not forward data to the user

}

In this example, data is forwarded to a user who has the entitlements for the security, or if the
security has no entitlements.

7.6.2 User Mode

In User-Mode permissioning, each request or subscription is accompanied by the
Tdentity object, which was obtained when authorizing the user or application. This is the
model that must be followed when requesting data as a named Application.

Data received as a result of requests and subscriptions must be carefully segregated by the
application both in memory and in any permanent storage to ensure it is only available to the
user whose ITdentity object was used in the request or subscription. Thus, the
requirements here are much more complicated than in the earlier models.

Since, in this scenario, a request can be made on behalf of only one user, the User-Mode
model may require creation of multiple requests (or subscriptions) that might have been
coalesced into a single request (or subscription) under the other models.

Fortunately, the Bloomberg infrastructure improves efficiency by bundling its replies for
subscriptions. (Note that this is not done for requests.) Furthermore, although the replies may
be bundled, the customer application is (by default) presented with that data presented
multiple times, each with a single CorrelationId. If the customer application wishes to
handle fewer albeit more complicated responses, the
allowMultipleCorrelationsPerMsg option of SessionOptions should be set to
true.

One implication of User-Mode permissioning is that there is no way for an application to
retrieve data when none of its users are using the BLOOMBERG PROFESSIONAL service.

Whereas, when using Application-Mode / Server-Mode permissioning, it is possible to
retrieve data when none of an application's users are logged in.

7.6.3 Content Based

In this approach, the customer application retrieves and stores the entitlements of each of its
users. The customer application makes requests and subscriptions using the Tdentity of
the Application. All data returned from the Bloomberg infrastructure is requested to be
tagged with the Entitlement Identifiers (EIDs) for that data.

7 Authorization and Permissioning Systems 94

Bloomberg

For example,

<Java>

......... create and open 'session'....

Service refDataSvc = session.getService ("//blp/refdata");

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;
request.append ("securities", "VOD LN Equity");

request.append ("fields", "PX LAST");

request.append ("fields", "DS002");

request.append ("fields", "VWAP VOLUME") ;

request.set ("returnkEids", true);

When the response arrives, the customer application must check that EID against the
entitlements of a user before actually delivering the data to that user. A user's entitlements
can be checked by using the hasEntitlements method of the Tdent ity object.

<Java>

......... Extract 'securityData' from response message.....
ArraylList missingEntitlements = new ArrayList();
Element neededEntitlements =
securityData.hasElement ("eidData")
? securityData.getElement ("eidData")
null;
if (null == neededEntitlements)
{
forward data to the user
}
else if (identity.hasEntitlements (neededEntitlements,
message.service (),
missingEntitlements))
{
forward data to the user
}
else
{

do not forward data to the user

Of course, using this strategy, some requests may be satisfied and other rejected.

7 Authorization and Permissioning Systems 95

Bloomberg
7.7 Specific Application Types (Managed B-PIPE only)

Managed B-PIPE introduced the concepts of Named Applications. These are setup on
EMRS <GO> and allow an application to be given entitlements and services to consume.
Using the Application authentication system described earlier will result in an Identity
that represents the Application and can be used in a user mode style to get data based on the
EMRS records.

7.7.1 Single-User

Single-User applications are Desktop applications that take a user identity which has been
authorized using the USER_AND_APPLICATION authorization mode. This is used in a User
Mode style and results are passed directly back to the specific user.

7.7.2 Multi-User

Multi-User applications are typically Client-Server (N-tier, etc.) architectures and can either
follow the user mode or content-based permissioning models. User Identities would be again
created using the USER_AND_APPLICATION authorization mode (which also checks to see
if the user is entitled to use that application according to records on EMRS).

The application could then either send the user identities with separate requests and
correlation IDs to get data for individual users, or it can use its own Identity (created just
for the application) to request data (the application Tdentity is the parameter to the
request or subscription function). EIDs could be extracted from the returned data and thus
can be used in a Server-mode style by distributing to entitled users.

7.7.3 Derived Data / Non-Display
Use of Derived Data and Non-display applications carries a fee. These are essentially
applications where users will never see the raw data going into them. The application would

simply make requests using its own Identity and the raw incoming data would never be
sent to users.

Derived Data applications may pass "resultant data" to users, and the definition of this
"resultant data" is clearly defined in the contract.

7.8 V2 Authorization and Permissioning Models

If you have previously worked with prior versions of the API (the pre-V3 C and .NET API)
then it is important to note the changes between pre-V3 and V3 style permissioning.

7.8.1 User Mode

Pre-V3 user mode was tied to an application.

7 Authorization and Permissioning Systems 96

Bloomberg

In the C API this involved using the bb_connect_server_user call which set the entire
application as tied to that user. All requests would be processed using that user's
entitlements and settings.

.NET used configuration files (or XmINode objects) with the ServerApiLicense node to
determine the credentials of the user on whose behalf the application was to connect. After
MarketDataAdapter.Startup() was called, all requests would have been serviced as that user.

V3 avoids the issue of having to dedicate the entire program to a single user and instead
allows multiple users in the same application by using Identities as parameters to requests
and subscriptions. The same distribution restrictions as pre-V3 still apply, data downloaded
on behalf of a single user cannot be distributed to another user.

7.8.2 All-or-None

All-or-none permissioning simply compared the set of entitlements of a user against the set of
entitlements of the server. If the user had all of the entitiements of the server then that user
was permitted to receive any data from the server without further checks.

Pre-V3 provided calls to check this.

The C APl used the bb_get_authorization function to check this. If any EIDs were returned
then that user did not match the Server on those EIDs and thus would have to be denied
access to all data from the server application.

The .NET API used the LicenseManager.GetRestrictions call. If it returned EIDs then the
user had to be denied access to all data.

V3 removes support for all-or-none systems as these are not considered to be flexible
enough. In addition problems were caused by entitlements sometimes being applied to users
non-homogenously.

7.8.3 Content-Based / Per-Product / Per-Security

The pre-V3 implementation of the content-based, originally known as per-product or per-
security, permisisoning system involved downloading lists of EIDs for each user and for each
security. When data was to be passed to users the application developer was responsible for
checking that the security's EIDs were a subset of the user's.

In the C API, the EIDs for securities and users were retrieved via the
bb_get_security_entitlements and bb_get_user_entitlements function calls.

In .NET this was performed using the LicenseManager.GetSecurityEntitlements and
LicenseManager.GetUserEntitlements methods.

This is implemented in the V3 system with some minor changes; the logon check and the
user entitlements retrieval are now combined into the request to populate an Tdentity.
This request currently differs between Server APl and Managed B-PIPE and these processes
are detailed later in this document.

7 Authorization and Permissioning Systems 97

Bloomberg
7.8.4 Validating Logon Status

In the pre-V3 API it was necessary to perform a separate check to see if a user was logged
into the terminal on at a specified IP address.

The C API used the bb_validate_blbg_logon function and took the user's UUID, SID, SID
Instance, Terminal SID, Terminal SID Instance, and the IP address of the user's terminal as
parameters.

The .NET API worked the same way using the TerminalMonitor.GetLogonStatus method.

In V3 this is implemented as part of the authorization process that eventually populates an
Identity. In Server API the user's UUID and IP address of the terminal is passed as part
of the authorization request. In Managed B-PIPE, the operating system logon, or Active
Directory property, is used to match a user against values stored in the EMRS administrative
function on the terminal in order to obtain a Token to pass in instead of the UUID and IP
address.

7 Authorization and Permissioning Systems 98

Bloomberg
8 Publishing

8.1 Overview

The Bloomberg API allows customer applications to publish data as well as consume it.
Customer data can be published for distribution within the customer’s enterprise, contributed
to the Bloomberg infrastructure, distributed to others, or used for warehousing.

Publishing applications might simply broadcast data or they can be “interactive”, responding
to feedback from the infrastructure about the currently active subscriptions from data
consumers. This chapter will illustrate both paradigms.

8.2 The Programming Examples

The two examples explored in this chapter are BroadcastOneTopic.cpp and
InteractivePublisher.cpp.

8.3 Simple Broadcast

In a simple broadcast, the publishing application sends data but has no indication if anyone is
consuming that data. In this simple example, data will be produced for a single topic. The
major stages are:

Creating a session.

Obtaining authorization.

Creating the topic.

Publishing events for the topic to the designated service.

Each of these stages will now be examined in detail.

8.3.1 Creating a Session
Sessions for publication are created in the same manner as those for consuming data. The

key difference is that they are managed by an instance of ProviderSession instead of
Session.

8 Publishing 99

Bloomberg

// BroadcastOneTopic.cpp

int main ()

{
SessionOptions sessionOptions;
sessionOptions.setServerHost ("platform") ;
sessionOptions.setServerPort (8195) ;

sessionOptions.setAuthenticationOptions ("AuthenticationType=0S LOGON") ;
MyEventHandler myEventHandler;

ProviderSession session(sessionOptions, &myEventHandler, O0);
if (!session.start()) {
std::cerr <<"Failed to start session." << std::endl;
return 1;

The event handler plays no significant role in this example and will not be examined.

8.3.2 Authorization

The authorization stage, if successful, provides a valid Tdent ity object which is required
for later operations. Authorization is done by the "/ /blp/apiauth" service on receipt of
an authorization request.

See for details.

8 Publishing 100

Bloomberg

8 Publishing 101

Bloomberg

else 1if (event.eventType () == EventType.RESPONSE
|| event.eventType ()

for (Message msg: event) {

== EventType.REQUEST STATUS)

|| event.eventType () == EventType.PARTIAL RESPONSE

{

if (msg.correlationID() .equals(d authorizationResponseCorrelationId))
Object authorizationResponseMonitor =
msg.correlationID() .object () ;
synchronized (authorizationResponseMonitor) ({
if (msg.messageType () == AUTHORIZATION SUCCESS) {
d authorizationResponse = Boolean.TRUE;
authorizationResponseMonitor.notifyAll () ;
}
else if (msg.messageType () == AUTHORIZATION FAILURE) ({
d authorizationResponse = Boolean.FALSE;
System.err.println ("Not authorized: " +
msg.getElement ("reason")) ;
}
else {
assert d authorizationResponse == Boolean.TRUE;
System.out.println ("Permissions updated") ;

{

Before publishing data, the application must create a Topic object on the appropriate service.
This example uses synchronous method createTopics () of the ProviderSession to
create a Topicon //blp/test service from a topic string "testtopic".

8 Publishing 102

Bloomberg

const std::string myService = "//blp/test";

const std::string myTopic "testtopic";

TopicList topiclList;

topicList.add ((myService + "/ticker/" + myTopic).c str(),
CorrelationId((long long)l));

session.createTopics (
&topiclist,
ProviderSession: :AUTO REGISTER SERVICES,
providerIdentity) ;

Topic topic;

for (size t i = 0; i < topicList.size(); ++1i) {
if (topiclist.statusAt (i) == TopicList::CREATED) ({
topic = session.getTopic (topicList.messageAt (1))

8.3.4 Publishing

In this example, data is published by sending events to the designated service,
"//blp/test". Event objects are obtained from the service and populated with the topic
and the application specific data. In this simple example, each event contains a single data
message; however, in general, each event can contain multiple messages.

In this simple example, the data is just an integer value that is incremented and published
every ten seconds.

8 Publishing 103

Bloomberg

Name messageType ("MyMessageType") ;
Name fieldType ("MyFieldType")

Service service = session.getService (myService.c str());
for (int value = 1; true; +t+value, sleep(l10)) {
Event event = service.createPublishEvent () ;

EventFormatter eventFormatter (event) ;
eventFormatter.appendMessage (messageType, topic):;
eventFormatter.setElement (fieldName, value) ;

session.publish (event) ;
}

session.stop () ;

return 0;

Note: The standard C library 'sleep’ function is used above. The argument specifies the
number of seconds to sleep.

8.4 Interactive Publication

The Bloomberg infrastructure can send events to provider applications when data is needed
for a given topic. These events allow the customer applications to "interact" with the
Bloomberg infrastructure. Data for a topic need be published only when it is known to have
subscribers.

In this simple example, data is published, only as needed, for a set of topics on a single
service. The major steps are:

Creating a session.

Obtaining authorization.

Registering for subscription start and stop messages.

Handling subscription start and stop events, which add and remove topics to the
active publication set.

Creating a topic.
Publishing events for the active topics of the designated service.

The details for creating a session, obtaining a provider identity, and authorization are the
same as in the earlier example; they will not be detailed again.

This design requires the management of a collection of "active" topics for publication. That
collection will be populated (and depopulated) by event handling threads and accessed for

8 Publishing 104

Bloomberg

periodic publication by the main thread. A map will be used to store pairs of topic/CUSIP
pairs (keyed on topic). The topics are provided in the start and stop messages, and CUSIPs
are obtained by requesting resolution of the received topics.

The multiple threads of this application must not concurrently access the collection; STL
containers are not thread-safe in that respect. Since there is only one "reading" thread in this
application, a simple mutex suffices. A pthread mutex was chosen because it is familiar to
many readers.

// InteractivePublisher.cpp
int main(int argc, char **argv)
{
Publications activePublications;
pthread mutex t activePublicationsMutex;
pthread mutex init (&activePublicationsMutex, NULL);
MyEventHandler myEventHandler (&activePublications,
&activePublicationsMutex) ;

SessionOptions sessionOptions;

sessionOptions.setServerHost ("192.168.9.155");
sessionOptions.setServerPort (8195) ;
//sessionOptions.setAuthenticationOptions ("AuthenticationType=0S LOGON") ;

sessionOptions.setAuthenticationOptions ("AuthenticationMode=APPLICATION ONLY;
ApplicationAuthenticationType=APPNAME AND KEY;ApplicationName=blp:APP BBOX") ;
ProviderSession session(sessionOptions, &myEventHandler, O0);
if (!session.start()) {

std::cerr << "Failed to start session." << std::endl;
return -1;

As we will see later, the event handler is designed to hold pointers to the collection of active
topics and to the mutex that manages access to that collection.

8.4.1 Registration

On completion of service registration, the application can expect subscription start and
subscription stop messages in the context of subscription status events.

8 Publishing 105

Bloomberg

...... create ’activePublication’ collection, the managing mutex,
and the event handler
...... create ’session’ and obtain ’Identity’.. ..

const char *myService = "//blp/mktdata8";

if (!session.registerService (myService, providerIdentity)) {
std::cerr <<"Failed to register " << myService << std::endl;
return -1;

8.4.2 Event Handling

The event handler in this example is detailed below. The relevant event type is
TOPIC STATUS. The TOPIC STATUS event has three message types of interest:
TOPIC CREATED, TOPIC SUBSCRIBED, and TOPIC UNSUBSCRIBED.

On receipt of "started" type messages, the event handler adds the topic to a set of topics that
require asynchronous topic creation. Once all of the messages in the event have been
examined, that list (if non-empty) is sent for resolution. Use of the session’s
createTopicsAsync method means that the operation does not block. Rather, the
result is returned in a separate event of type TOPIC CREATED.

When messages indicating successful topic creation are received, the event handler extracts
the topic and the corresponding string, creates an item, and adds that item to the collection of
active publications. Since a topic may have received a "stop" message while it was being
created, there is first a check to see if the topic is still in the "needed" set before it is added to
the "active" collection.

On receipt of a "stopped" type, the event handler extracts the topic from the message and
deletes the corresponding item in the collection of active publications or the collection of
topics needing creation.

Note that all operations use the provided mutex to provide exclusive access for each other.

8 Publishing 106

Bloomberg

session)
{
switch (event.eventType()) {
case Event::TOPIC STATUS: {
TopicList topicList;
Messagelterator iter (event);
while (iter.next()) {
Message msg = iter.message() ;
std::cout << msg << std::endl;

if (msg.messageType () == TOPIC SUBSCRIBED) {
Topic topic;
try {
topic = session->getTopic (msqg) ;

}

catch (blpapi::Exception &) {

}

if (!topic.isValid()) {
topicList.add (msqg) ;

}

std::string topicStr =
msg.getElementAsString ("topic") ;
pthread mutex lock (d actMutex p);

d actPub p->insert (publicationItem) ;
pthread mutex unlock (d actMutex p);

}
else if (msg.messageType () == TOPIC UNSUBSCRIBED)

Topic topic;
try {
topic = session->getTopic (msqg) ;

pthread mutex lock(d actMutex p);

if (it != d_actPub p->end()) {
d actPub p->erase (it);

1
pthread mutex unlock(d actMutex p);

}
catch (blpapi::Exception &) {

}

bool MyEventHandler::processEvent (const Eventé& event, ProviderSession*

else if (d actPub p->find(topic) == d_actPub p->end())

PublicationItem publicationItem(topic, topicStr);

{

Publications::iterator it = d actPub p->find(topic);

{

8 Publishing

107

Bloomberg

else if (msg.messageType () == TOPIC CREATED)

try {
Topic topic = session->getTopic (msqg) ;

pthread mutex lock(d actMutex p);

d actPub p->insert (publicationItem) ;
pthread mutex unlock (d actMutex p);

} catch (blpapi::Exception &e) {
std::cerr

<< e.description/ ()
<< std::endl;
continue;

}
if (topicList.size()) {
session->createTopicsAsync (topicList) ;

}
} break;
default:
printMessages (event) ;

return true;

<< "Exception in Session::getTopic() :

{

std::string topicStr = msg.getElementAsString("topic");

PublicationItem publicationItem(topic, topicStr);

nw

8.4.3 Publication

The publication loop in this example is, in many ways, similar to that used in the first example.

There is a value that is incremented every ten seconds and is used to create an event for

publication.

8 Publishing

108

Bloomberg

Service service = session.getService (myService) ;

Name messageType ("MyMessageType") ;

Name fieldName ("MyFieldName") ;

for (int value = 1; true; ++ value, sleep(10)) {
pthread mutex lock (&activePublicationsMutex) ;

if (0 == activePublications.size()) {
continue;

}

Event event = service.createPublishEvent () ;

EventFormatter eventFormatter (event) ;

for (Publications::iterator iter = activePublications.begin () ;
|

iter != activePublications.end();
++iter) {
const std::string& cusip = iter->second;

eventFormatter.appendMessage (messageType, iter->first);
eventFormatter.setElement (fieldName, myValueFor (cusip,

value)) ;

}

pthread mutex unlock (&activePublicationsMutex) ;

session.publish (event) ;

session.stop () ;

return 0;

Note: The standard C library 'sleep' function is used above. The argument specifies the
number of seconds to sleep.

However, there are some differences (highlighted above):

8 Publishing

Rather than a single fixed topic, publication is made for all of the topics in the
collection of active publications.

Note that the mutex is acquired before iterating over that collection.

There is at most one published event per cycle. Each event may have multiple
messages, each with data for a specific topic.

Although sending an empty event would not be harmful, if the collection of active
publications is empty, no event is published for that cycle.

The published data might vary by topic. Details of the myValueFor function are

not important and, therefore, not shown.

109

Bloomberg

A Schemas

A.1 Overview

Each of the following sections provides an overview of the request options and response
structure for each request type within each of the Bloomberg API services. A service is
defined by a request and a response schema. In the following sections the request schema is
broken into tables detailing all options and arguments and example syntax. The response

schema is represented

graphically.

A.2 Reference Data Service //blp/refdata

Note: Managed B-PIPE supports only the ReferenceDataRequest type on the Reference
Data Service. All other request types on the ReferencefDataService are not supported by

Managed B-PIPE.

A.2.1 Operations

Operation Name
HistoricalDataRequest

Request Type
HistoricalDataRequest

Response Type
HistoricalDataResponse

Description

Request Historical
Data

IntraDayTickRequest IntraDayTickRequest IntraDayTickResponse Request Intraday Tlck
Data

IntraDayBarRequest IntraDayBarRequest IntraDayBarResponse Request Intraday Bar
Data

ReferenceDataRequest | ReferenceDataRequest | ReferenceDataResponse | Request Reference

Data

PortfolioDataRequest

PortfolioDataRequest

PortfolioDataResponse

Request Portfolio
Data

BegsRequest

BegsRequest

BeqsResponse

Request EQS Screen
Data

A.2.2 ReferenceDataRequest: Sequence

Securities: A stock or bond.

Element

Element Value | Type

Description

securities

string array string

See “Security/Securities” on page 52 for

additional details.

Example Syntax: Element
securities.AppendValu

securities =
e("VOD LN Equity")

request.GetElement ("securities") ;

A Schemas

110

Bloomberg

Fields: the reference fields desired which correspond to data points. See FLDS<GO> for a list of more

information.
Element Element Value | Type Description
fields string See “Fields” on page 53 for additional

details.

Example Syntax: Element fields =
fields.AppendValue ("PX LAST") ;

request.GetElement ("fields") ;

Overrides: Append overrides to modify the calculation

Element Element Value | Type Description

fieldID string field mnemonic, PRICING_SOURCE, or field
alpha-numeric, PR092. Review FLDS<GO>
for list of possible overrides.

value string the desired override value

Example Syntax: Element overrides =
Element overridel =
overridel.SetElement ("fieldId", "PRICING_SOURCE") ;
overridel.SetElement ("value",

request["overrides"];
overrides.AppendElement () ;

HCGH) ;

Return Entitlements: returns the entitlement identifiers associated with security.

Element Element Value | Type Description
returnEids TRUE or Boolean | Setting this to true will populate fieldData with
FALSE an extra element containing a name and

value for the EID date.

Example Syntax:

request.Set ("returnEids",

true) ;

Return Formatted Value: returns all data as a data type

string

Element Element Value | Type Description
returnFormattedValue TRUE or Boolean | Setting to true will force all data to be returned
FALSE as a string.

Example Syntax:

request.Set ("returnFormattedvValue",

true) ;

Use UTC Time: return date and time values as Coordinated Universal Time (UTC) values

Element Element Value | Type Description
useUTCTime TRUE or Boolean | Setting to true returns values in UTC. Setting
FALSE this to false will default to the TZDF<GO>

settings of the requestor.

Example Syntax:

request.Set ("useUTCTime",

true) ;

Forced Delay: returns the latest reference data up to the delay period.

Element Element Value | Type Description
forcedDelay TRUE or Boolean | Setting to true will return the latest data up to
FALSE the delay period specified by the exchange for

this security. For example requesting VOD LN
Equity and PX_LAST will return a snapshot of
the last price from 15mins ago.

Example Syntax: request.Set ("forcedDelay", true);

A Schemas

111

Bloomberg

A.2.3 ReferenceDataResponse: Choice

Figure A-1 provides the structure of a ReferenceDataResponse. See “Reference Data

Service Response” on page 129 for more information.

RefarenceDataResponsa
@f&r&nu&bata%p@n@ message has zer 1o one

(vesponseimor)

responseEmor

reaponseError elaments

_—.,/ [: sm.:rc:a j(: code __)(: category __)(: message)(:suhcategury__)

—E securityData[] |

—1 securityData |
(securily }(Numbar)

sacurityData elameant
has zera o ane TieldData] |
fraldCuatal |

securityData has
Fein 10 one

fimldgxceplions| |

fieldDats

fialdDatal] array
has ane to many
fialdData elaments

fieldExceptions| |

fleldExceptlon
fieleExeaplions] | _',/'I

has one to many (fieldid :](MEsSAge)

fieldExcaption
elemeants

SOUFCE
sacurityData has
ZEFC b many
secunlyErmo elements code
sSource) message)
(: code) (5ubc:ateg:ry>
message
e (_message)
subcategorny
Figure A-1: Reference Data Request Response
A Schemas 112

Bloomberg

A.2.4 HistoricalDataRequest: Sequence

Securities: A stock or bond.

Element

Element Value

Type

Description

securities

string

See “Security/Securities” on
page 52 for additional details.

Example Syntax: Element

securities = request.GetElement ("securities");

securities.AppendValue ("VOD LN Equity");

Fields: the reference fields desired which correspond to data points. See FLDS<GO> for a list of more

information.

Element Element Value Type Description

fields string See “Fields” on page 53 for
array additional details.

Example Syntax: Element fields = request.GetElement ("fields") ;
fields.AppendValue ("PX LAST") ;

Start Date: the first date of the period to retrieve data

Element

Element Value

Type

Description

startDate

yyyymmdd

string

The start date in a year/month/day
format.

Example Syntax: request.Set("startDate", "20090601") ;

End Date: the end date of the period to retrieve data

Element

Element Value

Type

Description

endDate

yyyymmdd

string

The end date in a year/month/day
format. This will default to the
current day if not specified.

Example Syntax: request.Set("endDate", "20100601") ;

with Period Selection.

Period Adjustment: Determine the frequency and calendar type of the output. To be used in conjunction

Element

Element Value

Type

Description

periodicityAdjustment

ACTUAL

string

These revert to the actual date from
today (if the end date is left blank)
or from the End Date

CALENDAR

string

For pricing fields, these revert to the
last business day of the specified
calendar period. Calendar Quarterly
(CQ), Calendar Semi-Annually (CS)
or Calendar Yearly (CY).

FISCAL

string

These periods revert to the fiscal
period end for the company - Fiscal
Quarterly (FQ), Fiscal Semi-
Annually (FS) and Fiscal Yearly
(FY) only

Example Syntax: request.Set ("periodicityAdjustment"

"ACTUAL") ;

A Schemas

113

Bloomberg

Period Selection: Determine the frequency of the output. To be used in conjunction with Period

Adjustment.

Element Element Value Type Description

periodicitySelection DAILY string Returns one data point per day
WEEKLY string Returns one data point per week
MONTHLY string Returns one data point per month
QUARTERLY string Returns one data point per quarter
SEMI_ANNUALLY string Returns one data point per half year
YEARLY string Returns one data point per year

Example Syntax: reques

t.Set("periodicitySelection",

"DAILY") ;

Currency: Amends the valu

e from local to desired currency

Element

Element Value

Type

Description

currency

Currency of the ISO code,
e.g., USD, GBP

string

The 3 letter ISO code. View
WCV<GO> on the BLOOMBERG
PROFESSIONAL service for a list
of currencies.

Example Syntax: reques

t.Set("currency", "USD

")

Override Options: Indicates

whether to use the average or the closing price in quote calculation.

Element Element Value Type Description

overrideOption OVERRIDE_OPTION_CL string Use the closing price in quote
OSE calculation
OVERRIDE_OPTION_GP string Use the average price in quote
A calculation

Example Syntax: request.Set("overrideOption", "OVERRIDE OPTION GPA") ;

Pricing Options: Sets quote to Price or Yield for a debt instrument whose default value is quoted in yield
(depending on pricing source).

Element Element Value Type Description
pricingOption PRICING_OPTION_PRICE | string Set quote to price
PRICING_OPTION_YIELD | string Set quote to yield

Example Syntax: reques

t.Set("pricingOption",

"PRICING OPTION PRICE") ;

Non Trading Day Fill Option: Sets to include/exclude no

n trading days where no data was generated.

Element Element Value Type Description
nonTradingDayFillOption | NON_TRADING_WEEKDA | string Include all weekdays (Monday to
YS Friday) in the data set
ALL _CALENDAR _DAYS string Include all days of the calendar in
the data set returned
ACTIVE_DAYS_ ONLY string Include only active days (days

where the instrument and field pair
updated) in the data set returned

Example Syntax: request.Set("nonTradingDayFillOption", "NON_TRADING WEEKDAYS") ;

A Schemas

114

Bloomberg

returned.

Non Trading Day Fill Method: If data is to be displayed for non trading days what is the data to be

Element

Element Value

Type

Description

nonTradingDayFillMethod

PREVIOUS_VALUE

string

Search back and retrieve the
previous value available for this
security field pair. The search back
period is up to one month.

NIL_VALUE

string

Returns blank for the "value" value
within the data element for this field.

Example Syntax: request.Set ("nonTradingDayFillMethod", "PREVIOUS VALUE") ;

Max Data Points: the maximum number of data points to return.

Element

Element Value

Type

Description

maxDataPoints

integer

The response will contain up to X
data points, where X is the integer
specified. If the original data set is
larger than X, the response will be a
subset, containing the last X data
points. Hence the first range of data
points will be removed.

Example Syntax: reques

t.Set ("maxDataPoints",

100) ;

Return Entitlements: returns the entitlement identifiers a

ssociated with security.

Element Element Value Type Description

returnEids TRUE or FALSE Boolean | Setting this to TRUE will populate
fieldData with an extra element
containing a name and value for the
EID date.

Example Syntax: request.Set("returnEIDs", true);

Return Relative Date: returns data with a relative date.

Element Element Value Type Description

returnRelativeDate TRUE or FALSE Boolean | Setting this to true will populate

fieldData with an extra element
containing a name and value for the
relative date. For example
RELATIVE_DATE = 2002 Q2

Example Syntax: request.Set("returnRelativeDate", true);

Adjustment Normal: Adjust for "change on day"

Element

Element Value

Type

Description

adjustmentNormal

TRUE or FALSE

Boolean

Adjust historical pricing to reflect:
Regular Cash, Interim, 1st Interim,
2nd Interim, 3rd Interim, 4th Interim,
5th Interim, Income, Estimated,
Partnership Distribution, Final,
Interest on Capital, Distribution,
Prorated.

Example Syntax: request.Set("adjustmentNormal", true);

A Schemas

115

Bloomberg

Adjustment Abnormal: Adjusts for Anormal Cash Dividends

Element

Element Value

Type

Description

adjustmentAbnormal

TRUE or FALSE

Boolean

Adjust historical pricing to reflect:
Special Cash, Liquidation, Capital
Gains, Long-Term Capital Gains,
Short-Term Capital Gains,
Memorial, Return of Capital, Rights
Redemption, Miscellaneous, Return
Premium, Preferred Rights
Redemption, Proceeds/Rights,
Proceeds/Shares, Proceeds/
Warrants.

Example Syntax: request.Set("adjustmentAbnormal", true);

Adjustment Split: Capital Changes Defaults

Element Element Value Type Description

adjustmentSplit TRUE or FALSE Boolean | Adjust historical pricing and/or
volume to reflect: Spin-Offs, Stock
Splits/Consolidations, Stock
Dividend/Bonus, Rights Offerings/
Entitlement.

Example Syntax: request.Set("adjustmentSplit", true);

Adjustment Follow DPDF:

Follow the BLOOMBERG PROFESSIONAL service function DPDF<GO>

Element

Element Value

Type

Description

adjustmentFollowDPDF

TRUE or FALSE

Boolean

Setting to true will follow the
DPDF<GO> BLOOMBERG
PROFESSIONAL service function.
True is the default setting for this
option.

Example Syntax: request.Set ("adjustmentFollowDPDF", true) ;

Calendar Code Override: Returns the data based on the calendar of the specified country, exchange, or

religion.
Element Element Value Type Description
calendarCodeQverride CDR <GO> calendar type String Returns the data based on the

calendar of the specified country,
exchange, or religion from
CDR<GO>. Taking a two character
calendar code null terminated
string. This will cause the data to be
aligned according to the calendar
and including calendar holidays.
Only applies only to DAILY
requests.

Example Syntax: request.Set("calendarCodeOverride", "US");

A Schemas

116

Bloomberg

Overrides: Append overrides to modify the calculation.

Element Element Value Type Description

overrides.

fieldID string Specify a field mnemonic or alpha-
numeric, such as PR092 or
PRICING_SOURCE. Review
FLDS<GO> for list of possible

value string The desired override value

Example Syntax: Element overrides = request["overrides"];
Element overridel = overrides.AppendElement () ;

overridel.SetElement ("value", "BLI");

overridel.SetElement ("fieldId", "BEST_DATA_ SOURCE_OVERRIDE") ;

A Schemas

117

Bloomberg

A.2.5 HistoricalDataResponse: Choice

Figure A-2 provides the structure of a Historical Data Response. See “Reference Data
Service Response” on page 129 for more information.

securityData element
has zero to one
fieldData(|

securityData has
Zero to one
fieldexceptions| |

securityData has
zero to many
securityError elemen

@stun‘cal Data He&punﬁa

responseError

securityData

C__/’

HistoricalDataResponse
message has zero to one
responseError elements

1 |
(source)(_ code)(category)

| |
(_message) (subcategory)

| |
Cronty) (Coiee

—{ fieldData[] |

)

fieldData[| array
has one to many
fieldData elements

fieldData

relativeDate

value

—{ fieldExceptions]] :I

fieldExceptions
fieldExceptions]] /

has one to many

C fieldid _:_} [f mes|sage :)

fieldExceptions
elements

| securityError)
ts

errorinfa

source le (message)

code _) —(:éu bcategorﬁ

S0OuUCe
code

category

1]

message

subcategory

A Schemas

Figure A-2: Historical Data Response

118

Bloomberg
A.2.6 IntradayTickRequest: Sequence

Securities: A stock or bond.

Element Element Value | Type Description

securities string See “Security/Securities” on page 52 for
additional details.

Example Syntax: Element securities = request.GetElement ("securities");
request.Set("security", "VOD LN Equity");

Start Date: the first date of the period to retrieve data

Element Element Value | Type Description
startDateTime yyyy-mm-dd string The start date and time.
Thh:mm:ss

Example Syntax: request.Set("startDateTime", "2010-04-27T15:55:00") ;

End Date: the end date of the period to retrieve data

Element Element Value | Type Description
endDateTime yyyy-mm-dd string The end date and time.
Thh:mm:ss

Example Syntax: request.Set("endDateTime", "2010-04-27T16:00:00") ;

Event Type: The requested data event type

Element Element Value | Type Description
eventType TRADE string Corresponds to LAST_PRICE
BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
BID_BEST string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK_BEST string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
MID_PRICE string Corresponds to MID as per FLDS<GO>.
AT_TRADE string Automatic trade for London Sets stocks.
BEST_BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
BEST_ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
Example Syntax: request.Set("eventType", "TRADE") ;

A Schemas 119

Bloomberg

Include Condition Codes: return any condition codes that may be associated to a tick, which identifies
extraordinary trading and quoting circumstances.

Element Element Value | Type Description
includeConditionCodes TRUE or Boolean | A comma delimited list of exchange condition
FALSE codes associated with the event. Review

QR<GO> for more information on each code
returned.

Example Syntax: request.Set("includeConditionCodes", true);

Include Non Plottable Events: return ticks in the response that have condition codes

Element Element Value | Type Description
includeNonPlottable TRUE or Boolean Returns all ticks, including those with
Events FALSE condition codes.

Example Syntax: request.Set ("includeNonPlott

ableEvents",

true) ;

Include Exchange Codes:

return the exchange code of the trade

Element Element Value | Type Description
includeExchangeCodes TRUE or Boolean | The exchange code where this tick originated.
FALSE Review QR<GO> for more information.

Example Syntax: request.Set ("includeExchangeCodes", true) ;

Return Entitlements: returns the entitlement identifiers associated with security.

Element Element Value | Type Description
returnEids TRUE or Boolean Option on whether to return EIDs for the
FALSE security.

Example Syntax: request.Set("returnEids", true);

Include Broker Codes: return the broker code of the trade

Element Element Value | Type Description
includeBrokerCodes TRUE or Boolean The broker code for Canadian, Finnish,
FALSE Mexican, Philippine, and Swedish equities

only. The Market Maker Lookup screen,
MMTK<GO>, displays further information on
market makers and their corresponding
codes.

Example Syntax: request.Set("includeBrokerCodes", true);

Include Reporting Party Side Codes: return transaction

codes

Element Element Value | Type Description
includeRpsCodes TRUE or Boolean | The Reporting Party Side. The following
FALSE values appear:

-B: A customer transaction where the dealer
purchases securities from the customer.

-S: A customer transaction where the dealer
sells securities to the customer.

-D: An inter-dealer transaction (always from
the sell side).

Example Syntax: request.Set ("includeRpsCodes", true) ;

A Schemas

120

Bloomberg
A.2.7 IntradayTickResponse: Choice

Figure A-3 provides the structure of an Intraday Tick Response. See “Reference Data
Service Response” on page 129 for more information.

IntradayTickResponse
Qntr:adayTickRe&panse) message has zero to one

responseError elements

responseEror

1 I
(_ source)(_ code)(category)

]]
—@Data) (message) (subcalegory)

tickData has zero

to one tickData[] }
elements —{ tickData[])
tickData[] has one to many

tickData elements

| tickData }—
time

type

value

condiionCode

exchangeCode

tickData has zero
to one eidDatal |
elements

eidData[

eidData

Figure A-3: IntradayTickResponse

A Schemas 121

Bloomberg
A.2.8 IntradayBarRequest: Sequence

Securities: A stock or bond.

Element Element Value | Type Description

securities string See “Security/Securities” on page 52 for
additional details.

Example Syntax: Element securities = request.GetElement ("securities");
request.Set("security", "VOD LN Equity");

Start Date: the first date of the period to retrieve data

Element Element Value | Type Description
startDateTime yyyy-mm-dd string The start date and time.
Thh:mm:ss

Example Syntax: request.Set("startDateTime", "2010-04-27T15:55:00") ;

End Date: the end date of the period to retrieve data

Element Element Value | Type Description
endDateTime yyyy-mm-dd string The end date and time.
Thh:mm:ss

Example Syntax: request.Set("endDateTime", "2010-04-27T16:00:00") ;

Event Type: The requested data event type

Element Element Value | Type Description
eventType TRADE string Corresponds to LAST_PRICE
BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
BID_BEST string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK_BEST string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
BEST_BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
BEST_ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
Example Syntax: request.Set("eventType", "TRADE") ;

Interval: the length of each bar returned

Element Element Value | Type Description

interval 1...1440 integer Sets the length of each time bar in the
response. Entered as a whole number,
between 1 and 1440 in minutes. If omitted,
the request will default to one minute. One
minute is the lowest possible granularity.

Example Syntax: request.Set("interval", 60);

A Schemas 122

Bloomberg

Gap Fill Initial Bar: populate an empty bar with previous value

Element Element Value | Type Description
gapFilllnitialBar TRUE or Boolean | When set to true, a bar contains the
FALSE previous bar values if there was no tick during
this time interval.
Example Syntax: request.Set("gapFillInitialBar", true);

Return Entitlements: returns the entitlement identifiers associated with security.

Element Element Value | Type Description
returnEids TRUE or Boolean Option on whether to return EIDs for the
FALSE security.

Example Syntax: request.Set("returnEids", true);

Return Relative Date: returns data with a relative date.

Element Element Value | Type Description

returnRelativeDate TRUE or Boolean Setting this to true will populate fieldData with
FALSE an extra element containing a name and

value for the relative date. For example
RELATIVE_DATE = 2002 Q2

Example Syntax: request.Set("returnRelativeDate", true);

Adjustment Normal: Adjust "change on day"

Element Element Value | Type Description
adjustmentNormal TRUE or Boolean | Adjust historical pricing to reflect: Regular
FALSE Cash, Interim, 1st Interim, 2nd Interim, 3rd

Interim, 4th Interim, 5th Interim, Income,
Estimated, Partnership Distribution, Final,
Interest on Capital, Distribution, Prorated.

Example Syntax: request.Set ("adjustmentNormal", true);

Adjustment Abnormal: Adjust for Abnormal Cash Dividends

Element Element Value | Type Description
adjustmentAbnormal TRUE or Boolean | Adjust historical pricing to reflect: Special
FALSE Cash, Liquidation, Capital Gains, Long-Term

Capital Gains, Short-Term Capital Gains,
Memorial, Return of Capital, Rights
Redemption, Miscellaneous, Return
Premium, Preferred Rights Redemption,
Proceeds/Rights, Proceeds/Shares,
Proceeds/Warrants.

Example Syntax: request.Set("adjustmentAbnormal", true);

Adjustment Split: Capital Changes Defaults

Element Element Value | Type Description
adjustmentSplit TRUE or Boolean | Adjust historical pricing and/or volume to
FALSE reflect: Spin-Offs, Stock Splits/Consolidations,

Stock Dividend/Bonus, Rights Offerings/
Entitlement.

Example Syntax: request.Set("adjustmentSplit", true);

A Schemas

123

Bloomberg

Adjustment Follow DPDF: Follow the BLOOMBERG PROFESSIONAL service function DPDF<GO>

Element Element Value | Type Description
adjustmentFollowDPDF TRUE or Boolean | Setting to true will follow the DPDF<GO>
FALSE BLOOMBERG PROFESSIONAL service

function. True is the default setting for this
option..

Example Syntax: request.Set("adjustmentFollowDPDF", true) ;

A.2.9 IntradayBarResponse: Choice

Figure A-4 provides the structure of an Intraday Bar Response. See “Reference Data Service
Response” on page 129 for more information.

@rad ayB arRespnn%)

elements

barData has zero
to one barTickData[|

barData has zero
to ane eidDatal |

| responseError

IntradayBarResponse
message has zera to ane
responseErmar elements

(— sculrce)(_- Dcrlde)(catelgur},r)

|
_@ (message) (subcategary)
barTickDatal |

— time

barTickDatal]
has one to many
barTickData elements

barTickData

close

volume

numEvents

alements
i eidData)
Figure A-4: IntradayBarResponse
A Schemas

124

Bloomberg
A.2.10 PortfolioDataRequest: Sequence

Securities: A Portfolio ID

Element Element Value | Type Description

securities string array string The users portfolio is identified by it's Portfolio
ID, which can be found on the upper right
hand corner of the settings tab on the
portfolio's PRTU<GO> page on the
BLOOMBERG PROFESSIONAL service.

Example Syntax: Element securities = request.GetElement ("securities");
securities.AppendValue ("UXXXXXXX-X Client") ;

Fields: The desired reference fields.

Element Element Value | Type Description

fields string The fields that can be used are
PORTFOLIO_MEMBER
PORTFOLIO_MPOSITION,
PORTFOLIO_MWEIGHT &
PORTFOLIO_DATA.

Example Syntax: Element fields = request.GetElement ("fields") ;
fields.AppendValue ("PORTFOLIO MEMBER ") ;

Overrides: The Portfolio information can also be accessed historically by using the REFERENCE_DATE
override field by supplying the date in 'yyyymmdd' format.

Element Element Value | Type Description
fieldld string Field mnemonic "REFERENCE_DATE"
value string The date in 'yyyymmdd' format.

Example Syntax: Element overrides = request["overrides"];
Element overridel = overrides.AppendElement () ;
overridel.SetElement ("fieldId", "REFERENCE DATE") ;
overridel.SetElement ("value", "20100111");

A Schemas 125

Bloomberg

A.2.11 PortfolioDataResponse: Choice

Figure A-5 provides the structure of a PortfolioDataResponse. See “Reference Data Service
Response” on page 129 for more information.

ReferenceDataResponse

(Raferancs Data RaspunssD

message has zero to one
respanseEmor elemeants

responseError

——{ securityData[] |

securityData element
has zero to one
fieldData[|

securityData has
zero to one
fieldexceptions[|

securityData has
zero to many
securityError elements

) Ga) (i)

Data

—-/l saqulance)

security

[|
(message) (subcategory)

C security) C flin

fieldDiata[| array
has one to many
fieldData elements

fieldData

([walue)

fieldDatal |

el ficldExceptions[] |

fieldExceptions /J.

fieldExceptions|]
has one to many (fieldld) (message)

fieldExceptions
elements

sOuUrce

securityError

source) 4 message)

category

code)

subcategory)

message

g
g
g

Figure A-5: Portfolio Data Request Response

A Schemas

126

Bloomberg

A.2.12 BEQSRequest: Sequence

screenName: An EQS screen name

Element Element Value

Type

Description

screenName string

string

(Required) The name of the screen to
execute. It can be a user defined EQS screen
or one of the Bloomberg Example screens on
EQS <GO> on the BLOOMBERG
PROFESSIONAL service.

Example Syntax: request.Set ("screenName",

"Global Volume Surges");

screenType: Screen Type.

Element Element Value | Type Description
screenType PRIVATE or string Use PRIVATE for user-defined EQS screen.
GLOBAL Use GLOBAL for Bloomberg EQS screen.

Example Syntax: request.Set ("screenType",

"GLOBAL") ;

languageld: Specify the language for field names to be returned for screen data

Element Element Value

Type

Description

languageld (optional)

string

The following languages are supported:
ENGLISH, KANJI, FRENCH, GERMAN,
SPANISH, PORTUGUESE, ITALIAN,
CHINESE_TRA, KOREAN, CHINESE_SIM,
THAI, SWED, FINNISH, DUTCH, MALAY,
RUSSIAN, GREEK, POLISH, DANISH,
FLEMISH, ESTONIAN, TURKISH,
NORWEGIAN, LATVIAN, LITHUANIAN,
INDONESIAN

Example Syntax: request.Set ("languageId", "FRENCH");

Group: Specify group name.

Element Element Value | Type Description

Group (optional) string Screen folder name here as defined in

EQS<GO>.

Example Syntax: request.Set ("Group",

"Global Emerging Markets");

A Schemas

127

Bloomberg

A.2.13 BEQSResponse: Choice

Figure A-1 provides the structure of a BEQSResponse. See “Reference Data Service
Response” on page 129 for more information.

C BegsResponse >

A

{ responseEmor

securityDala elemant
has zess 1o ane
fraldDuatal |

securtyData has
z@ro o ane
finldaxceplions[|

securityData has
Zar M mainy
securityError alements

BegeRasponss

mesasage has zero 1o one

responseErmor elements

(sm.:n::e)[C code j(: category __:](: message -;l(:suhcategur_.r:]

securityData[]

fieddExceptions| |

fleldException
fieldE xcaplions] | _,/'l

has one to many
fieldException
elements

fieldDats

—1 securityData |
':: security }':: _Number)
—|: fialdData] | :|

finldData[] array
has ane ba many
fieldDiata elamants

(fieldid) (message)

message)

(mde

)- (5ubc:ategur',f)

category

category

ANk
e |8

message

subcategory

A Schemas

Figure A-6: BEQS Response

128

Bloomberg

A.2.14 Reference Data Service Response

Table A-1 and Table A-2 provides descriptions of the individual elements received in a
reference data response. Please view pages 112, 118, 121, 124, and 128 for information on
the structure of each response.

Table A-1: Reference Data Service Response Elements

Element Description

responseError

Returned when a request cannot be completed for any reason. It is an
errorinfo element.

securityData[]

Contains an array of securityData elements

securityData Contains the response data for a specific security from a
ReferenceDataRequest or a HistoricalDataRequest. It provides the
security string specified in the request, the sequence number and can
include fieldData[], fieldsExceptions|[] and securityError elements.

barData Contains the response data for an IntradayBarRequest. It can provide
a barTickData[] element and/or an eidData array element.

barTickData[] Contains an array of barTickData elements

barTickData Contains values associated to the bar, including time, open, high, low,
close, volume, numEvents.

tickData Contains the response data for an IntradayTickRequest. It can provide
a tickData[] element and/or an eidData array element.

tickData[] Contains an array of tickData elements

tickData[] :: tickData

Contains values associated to the eventType, including time, type,
value, size, condition code, and exchange code.

eidData[] Contains a list of eidData values associated to the securities
requested. If the requestor does not have the entitlement as per
EXCH<GO> then the identifiers will not be returned.

securityError Returned when a request cannot be completed for any reason. It is an
errorinfo element.

fieldExceptions]] Contains an array of fieldExceptions.

fieldExceptions

Contains a field identifier, message and errorinfo element.

fieldData[] Contains an array of fieldData values

fieldData Reference Data Request: element with the fieldld and value
Historical Data Request: element with the relativeDate, Date, fieldld
and value

errorinfo Contains values about the error which has occurred, including the

source, code, category, message, and subcategory.

A Schemas

129

Bloomberg

Table A-2: Reference Data Service Response Values

security String The security requested. See “Security/Securities” on
page 52 for additional details..

eidData Integer Entitlement identifier (EID) associated to the requested
security.

sequenceNumber Integer Security sequence number, specifying the position of
the security in the request.

fieldld String Requested field represented as an alphanumeric or a
Mnemonic, i.e. PR005 or PX_LAST.

relativeDate String Relative date string associated with this historical data-

point. This field will only be returned if
"returnRelativeDate" historical data request option is
specified as "true".

Date Date Date associated with this historical data-point
Time DateTime Tick time for an intraday tick request
Type String The event type for an intraday tick
Value Integer Value of an eventType or field.
Double
String
Date
Time
Datetime
Size Integer Size of an event for intraday tick data (for example,
number of shares).
conditionCode String A comma delimited list of exchange condition
codes associated with the event.
exchangeCode String Single character indicating exchange tick event origin.
Source String Bloomberg internal error source information.
Code Integer Bloomberg internal error code.
Category String Bloomberg error classification. Used to determine the
general classification of the failure.
message String Human readable description of the failure.
subcategory String Bloomberg sub-error classification. Used to determine

the specific classification of the failure.

A Schemas 130

Bloomberg

Table A-2: Reference Data Service Response Values

rpsCode

String

Transaction code.The following values appear:

-B: A customer transaction where the dealerpurchases
securities from the customer.

-S: A customer transaction where the dealersells
securities to the customer.

-D: An inter-dealer transaction (always from the sell
side).

brokerBuyCode

String

brokerSellCode

String

The broker code for Canadian, Finnish, Mexican,
Philippine, and Swedish equities only. The Market
Maker Lookup screen, MMTK on the BLOOMBERG
PROFESSIONAL service, displays further information
on market makers and their corresponding codes. To
display the broker's name, enter:

MMID {market maker code} <GO>.

micCode

String

The BIC, or Bank Identifier Code, as a 4-character
unique identifier for each bank that executed and
reported the OTC trade, as required by MiFID. BICs
are assigned and maintained by SWIFT (Society for
Worldwide Interbank Financial Telecommunication).
The MIC is the Market Identifier Code, and this
indicates the venue on which the trade was executed.

A Schemas

131

Bloomberg

A.3 Schema for API Field Service //blp//apiflds

A.3.1 Requests: Choice

Top level request to the service.

Element
fieldiInfoRequest

Type
FieldInfoRequest

Description
Request for field information.

fieldSearchRequest

FieldSearchRequest

Field search information.

categorizedFieldSearchRequest

CategorizedFieldSearch Request | See “Categorized Field

Search Request” on

page 138.
A.3.2 Responses: Choice
Top level request to the service.
Element Type Description

fieldResponse

FieldResponse

Field response information.

categorizedFieldResponse

CategorizedFieldResponse

See “Cateqorized Field Search Request
Response” on page 139.

A.3.3 Field Information Request

Identifier: the reference or streaming fields desired.

Element

Element Value | Type

Description

id

string

See “Fields” on page 53 for additional
details. Fields can be specified as a alpha
numeric or mnemonic.

Example Syntax: Element idList = request.GetElement("id") ;
request.Append("id", "LAST_ PRICE") ;

request.Append ("id", "pq005") ;

Return field documenation:

Element

Element Value | Type

Description

returnFieldDocumentatio
n

TRUE or Boolean
FALSE

Returns a description about the field as seen
on FLDS<GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true) ;

A Schemas

132

Bloomberg
A.3.3.1 Field Information Request Response

See “Field Service Response Elements” on page 143 and “Field Service Response Values”
on page 144 for more information.

C fieldResponse)

The fieldResponse
message has zero to one fieldSearchError

- [[[[|
ﬂeldseathrrorelemems_@ (source)(code > < category) < message) Csubcategory)

fieldData[]

fieldData[]
has zero to many fieldData

fieldData elements

fieldData has zero fieldInfo
to one fieldInfo J
mnemonic) datatype)

description) documentation)

= e

overrides]]

categoryName)

fieldInfo has
zero to one
overrides| |

fieldData has zero fieldError
to one fieldError elements

override

source

code)

message

subcategory)

A Schemas 133

Bloomberg

A.3.4 Field Search Request

Identifier: the reference or streaming fields desired.

Element

Element Value

Type

Description

searchSpec

String

The string argument to search through

mnemonics, descriptions and definitions. It is
also able to 'intelligently' expand works, i.e.

mkt ==> market.

Example Syntax:

request.Set ("searchSpec",

"mutual fund") ;

Include options:

Element Element Value | Type Description
category New Fields String Categories for fields
Analysis
Corporate
Actions
Custom Fields
Descriptive
Earnings
Estimates
Fundamentals
Market Activity
Metadata
Ratings
Trading
Systems
productType All String The results will be filtered by fields that are
Govt String avaliable for this yellow key (security type).
Corp String
Mtge String
M-Mkt String
Muni String
Pfd String
Equity String
Cmdty String
Index String
Curncy String

A Schemas

134

Bloomberg

fieldType

All String Results include fields that are both streaming
(real-time and delayed) and reference (static)

Realtime String Results include fields that provide streaming
data (real-time and delayed)

Static String Results include fields that provide reference
data (static).

Element element

request.getElement ("include") ;

element.setElement ("productType", "Equity")
element.setElement ("fieldType", "Static");
Element elementl = element.GetElement ("category") ;
elementl.AppendValue ("Ratings") ;
elementl.AppendValue ("Analysis") ;

Exclude options:

Element Element Value | Type Description
category New Fields String Categories for fields
Analysis
Corporate
Actions
Custom Fields
Descriptive
Earnings
Estimates
Fundamentals
Market Activity
Metadata
Ratings
Trading
Systems
productType All String The results will be filtered by fields that are
Govt String avaliable for this yellow key (security type).
Corp String
Mtge String
M-Mkt String
Muni String
Pfd String
Equity String
Cmdty String
Index String
Curncy String

A Schemas

135

Bloomberg

fieldType

All String Results include fields that are both streaming
(real-time and delayed) and reference (static)

Realtime String Results include fields that provide streaming
data (real-time and delayed)

Static String Results include fields that provide reference
data (static).

Example Syntax:

Element element = request.getElement ("exclude");
element.setElement ("productType", "Equity")
element.setElement ("fieldType", "Static");
Element elementl = element.GetElement ("category") ;
elementl.AppendValue ("Ratings") ;
elementl.AppendValue ("Analysis") ;

Return field documenation:

Element Element Value | Type Description
returnFieldDocumentatio | TRUE or Boolean Returns a description about the field as seen
n FALSE on FLDS<GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true) ;

See “Field Service Response Elements” on page 143 and “Field Service Response Values”

on page 144 for more information.

A Schemas

136

Bloomberg

< fieldResponse >

The fieldResponse
message has zero to one
fieldSearchError elements

A Schemas

—(fieldSearchError [[[[‘
(source)(code) (category) (message) (subcategory)

fieldData[]
has zero to many fieldData

fieldData elements “

fieldData has zero)
to one fieldInfo fieldlnfo) |
mnemonic) datatype) (categoryName)

description > documentation)

= amas

overrides[]

fieldInfo has
zero to one
overrides]]

fieldError

override

fieldData has zero
to one fieldError elements

source) message)

code > subcategory)

category

Figure A-7: Field Search Request Response

137

Bloomberg

A.3.5 Categorized Field Search Request

Identifier: the reference or streaming fields desired.

Element

Element Value

Type

Description

searchSpec

String

The string argument to search through

mnemonics, descriptions and definitions. It is
also able to 'intelligently' expand works, i.e.

mkt ==> market.

Example Syntax:

request.Set ("searchSpec",

"mutual fund") ;

Exclude options:

Element Element Value | Type Description
category New Fields String Categories for fields
Analysis
Corporate
Actions
Custom Fields
Descriptive
Earnings
Estimates
Fundamentals
Market Activity
Metadata
Ratings
Trading
Systems
productType All String The results will be filtered by fields that are
avaliable for this yellow key (security type).
Govt String
Corp String
Mtge String
M-Mkt String
Muni String
Pfd String
Equity String
Cmdty String
Index String
Curncy String

A Schemas

138

Bloomberg

fieldType

All String Results include fields that are both streaming
(real-time and delayed) and reference (static)

Realtime String Results include fields that provide streaming
data (real-time and delayed)

Static String Results include fields that provide reference
data (static).

Example Syntax:

Element element = request.getElement ("exclude");
element.setElement ("productType", "Equity")
element.setElement ("fieldType", "Static");
Element elementl = element.GetElement ("category") ;
elementl.AppendValue ("Ratings") ;
elementl.AppendValue ("Analysis") ;

Return field documenation:

Element Element Value | Type Description
returnFieldDocumentatio | TRUE or Boolean Returns a description about the field as seen
n FALSE on FLDS<GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true) ;

See “Field Service Response Elements” on page 143 and “Field Service Response Values”

on page 144 for more information.

A Schemas

139

Bloomberg

CategorizedFieldResponse

The fieldResponse
message has zero to one
fieldSearchError elements

categorizedFieldSe
archError

[|
(category >< message)(subcategory)

(oo (s)

category[]

category[]
has zero to many
category elements

category

|
categoryName E categoryld) (numFields >

descriptions isLeafNode)

fieldData[]

fieldDatal[]
has zero to many

fieldData
fieldData elements

fieldData has zero
to one fieldInfo

fieldInfo ‘

mnemonic) datatype) (categoryName)

description) documentation)

property

fieldinfo has
zero to one
overrides|[]

fieldError

overrides|]

fieldData has zero
to one fieldError elements

message)

subcategory)

Figure A-8: Categorized Field Search Request Response

A Schemas

140

Bloomberg

A.3.6 Field List Request

Identifier: the reference or streaming fields desired.

Element Element Value | Type Description
fieldType All String Results include fields that are both streaming
(real-time and delayed) and reference (static)
Realtime String Results include fields that provide streaming
data (real-time and delayed)
Static String Results include fields that provide reference

data (static).

Example Syntax: ele

ment.setElement ("fieldType", "Static");

Return field documenation:

Element Element Value | Type Description
returnFieldDocumentatio | TRUE or Boolean Returns a description about the field as seen
n FALSE on FLDS<GO>. Default value is false.

request.Set ("returnFieldDocumentation",

true) ;

See “Field Service Response Elements” on page 143 and “Field Service Response Values”

on page 144 for more

information.

Bloomberg

(fieldResponse >

The fieldResponse
message has zero to one
fieldSearchError elements

A Schemas

fieldSearchError [[[[‘
w (source)C code) (category) C message) (subcategory)

—(fieldData[]

fieldData[]
has zero to many fieldData
fieldData elements

fieldData has zero
to one fieldinfo fieldinfo J ‘
mnemonic) datatype) (categoryName)

description) documentation>

B (vt

overrides[]

fieldinfo has
zero to one
overrides]]

fieldData has zero fieldError
to one fieldError elements

source) message >

code) subcategory)

Figure A-9: Field List Request Response

142

Bloomberg
A.3.7 Field Service Response Elements

The following table provides descriptions of the individual elements received in the field
service responses. Please view graphs A.3.3, A.3.5, A.3.7 and A.3.9 for information on the
structure of the response.

Element Description

fieldSearchError Returned when a request cannot be completed for any reason. It is an
errorinfo element.

fieldData[] Contains an array of fieldData values

fieldData Contains a id corresponding to the requested field identifier, along with
either a fieldInfo or fieldError element

fieldInfo Contains values on the mnemonic, datatype, categoryName,
description, and documentation.

fieldError Returned when a request cannot be completed for any reason or in the
case of a fieldiInfoRequest when an invalid field mnemonic or alpha-
numeric is entered.

categorizedFieldSearchE | Returned when a request cannot be completed for any reason. It is an

rror errorinfo element.
category[] Contains an array of category elements.
category Contains categoryName, categoryld, numFields, descriptions,

isLeafNode and a fieldData[] element.

errorinfo Contains values about the error which has occurred, including the
source, code, category, message, and subcategory.

A Schemas 143

Bloomberg

A.3.8 Field Service Response Values

Element Type Description

id String Resulting field represented as an
alphanumeric or a Mnemonic, i.e., PR0O05 or
PX_LAST.

mnemonic Integer Resulting field represented as a mnemonic,
i.e., PX_LAST.

datatype Enumeration Enumeration values representing
Bloomberg data types. Please see specific
SDK documentation for the enum values.

ftype Enumeration Enumeration value representing data types
shown in XDM<GO>.

categoryName String Response value for the name of the
category. Could be one of the following:
New Fields, Analysis, Corporate Actions,
Custom Fields, Descriptive, Earnings
Estimates, Fundamentals, Market Activity,
Metadata, Ratings, and Trading Systems.

description String Is the short description describing the field,
for example for the mnemonic LAST_PRICE
the description is "Last Trade/Last Price".

documentation String Corresponds to the definition in FLDS<GO>

Time DateTime Tick time for an intraday tick request

Type String The event type for an intraday tick

Source String Bloomberg internal error source information.

Code Integer Bloomberg internal error code.

Category String Bloomberg error classification. Used to
determine the general classification of the
failure.

message String Human readable description of the failure.

subcategory String Bloomberg sub-error classification. Used to

determine the specific classification of the
failure.

A Schemas

144

Bloomberg
A.4 Market Bar Subscription

A.4.1 Market Bar Subscription Settings

Argument Value Type Description

security string | As with any Subscription, a Market Bar Subscription must contain at
least one security, field and Correlation ID. The topic is defined as:

"//blp/mktbar/symbology/identifier"

field string | The following fields are returned for Market Bars: TIME, OPEN, HIGH,
LOW, CLOSE, NUMBER_OF_TICKS, VOLUME. These values are
only updated on a trade. For this reason, LAST_PRICE should be
submitted in the subscription string.

See “Fields” on page 53 for additional details. Fields can be
specified as a alpha numeric or mnemonic.

Example Syntax:
Subscription mySubscription = new Subscription("//blp/mktbar/ticker/VOD LN
Equity", "LAST PRICE", new CorrelationID(id));

interval string | Optional. Interval time defined thelength in minutes of a bar. If
undefined it is set to 1 minute. This is the minimum duration. The
maximum duration is 1440 minutes, (=24 hours).

start_time string | Optional. This should be in the format hh:mm. If these values are not
specified then they default is time of subscription.

end_time string | Optional. This should be in the format hh:mm. If these values are not
specified then they default is session end time.

Example Syntax:
Subscription mySubscription = new Subscription(security, field,
"interval=5" "start time=15:00", "end time=15:30",CorrelationID(id))

A.4.2 Market Bar Subscription: Data Events Response

Argument Value Type Description

TIME datetime | Returns the time of the last TRADE on every update.

Example Syntax: Datetime time = msg.getElementAsDatetime (TIME) ;

OPEN Float64 Returns open price for each bar. Will be returned in the first tick for the
bar.

Example Syntax: int open = msg.getElementAsFloat64 (OPEN) ;

HIGH Float64 Returns high price at the beginning of the bar and subsequently every
higher price that occurs until the end of the bar.

Example Syntax: int high = msg.getElementAsFloat64 (HIGH) ;

LOW Float64 Returns low price at the beginning of the bar and subsequently every
higher price that occurs until the end of the bar.

Example Syntax: int low = msg.getElementAsFloat64 (LOW) ;

A Schemas 145

Bloomberg

Argument Value Type Description
CLOSE Float64 Returns updated close price on every update.

Example Syntax: int close = msg.getElementAsFloaté64 (CLOSE) ;

NUMBER_OF_TICKS | Int32 ‘ Counts tick number on every update until a new bar starts.

Example Syntax:
int number of ticks = msg.getElementAsInt32 (NUMBER OF_ TICKS) ;

VOLUME Int64 Volume increments for number of trades in each market bar and is
reset at the start of each market bar.

Example Syntax:
float volume = msg.getElementAsInt64 (VOLUME) ;

A Schemas 146

Bloomberg
A.5 Schema for Market Data and Custom VWAP

A.5.1 MarketDataEvents: Choice

Events related to Market Data:

Event Name Type Description
MarketDataUpdatee MarketDataUpdate Market Data Update

A.5.2 Market Data Service Subscription Options

Argument Value Type Description

interval string | Sets a defined period in seconds for which updates will be received for
the subscription.

The range for this argument is 0.10 to 86400.00, which is equal to
100ms to 24hours. For example setting this argument to 30 will result
in the requesting application to receive updates every 30 seconds for
the requested securities.

Example Syntax:
Subscription mySubscription =new Subscription(security, fields,
"interval=30.0", new CorrelationID (security))

delayed string | Forces the subscription to be delayed even if the requestor has real-
time exchange entitlements.

Example Syntax:
Subscription mySubscription =new Subscription(security, fields,
"delayed", new CorrelationID (security)) ;

A.5.3 MarketDataUpdate: Sequence

Fields in subscription

Element Type Description

TORONTO_MOC_ELIGIBLE_REALTIME Optional Toronto MOC Eligible
Boolean

NASDAQ_CLOSING_CROSS_ELIGIBLE_RT Optional Nasdaq Closing Cross Eligible
Boolean

MGF_SETTING_RT Optional MGF Setting (Real-time)
Boolean

RT_EXCH_TRADE_STATUS Optional Exchange Trading Status
Boolean

RT_QUOTE_STATUS Optional Quotation Status
Boolean

A Schemas 147

Bloomberg

Element Type Description

IND_BID_FLAG Optional Indicative Bid Flag
Boolean

IND_ASK_FLAG Optional Indicative Ask Flag
Boolean

TRADING_DT_REALTIME

Optional Date

Trading Date

RT_TIME_OF_TRADE Optional Time Trade Occurred
Datetime

CR_OBSERVATION_DATE Optional Current Observation Date
Datetime

PRIOR_OBSERVATION_DATE Optional Prior Observation Date
Datetime

TIME Optional Time of Last Update
Datetime

VOLUME Optional Int32 Volume

BID_YIELD Optional Float32 | Bid Yield

ASK_YIELD Optional Float32 | Ask Yield

RT_OPEN_INTEREST

Optional Float32

Open Interest (Real-time)

OFF_ON_EXCH_VOLUME_RT

Optional Int32

Off And On Exchange Volume (Real-time)

OFF_EXCH_VOLUME_RT

Optional Int32

Off Exchange Volume (Real-time)

PX_VOLUME_BAL_RT

Optional Int32

Volume Balance (Real-time)

OPT_DELTA_BID_RT

Optional Float32

Delta Bid (Real-time)

OPT_DELTA_ASK_RT

Optional Float32

Delta Ask (Real-time)

OPT_DELTA_MID_RT

Optional Float32

Delta Mid (Real-time)

OPT_DELTA_LAST RT

Optional Float32

Delta Last Trade (Real-time)

OPT_GAMMA_BID_RT

Optional Float32

Gamma Bid (Real-time)

OPT_GAMMA_ASK_RT

Optional Float32

Gamma Ask (Real-time)

OPT_GAMMA_MID_RT

Optional Float32

Gamma Mid (Real-time)

OPT_GAMMA_LAST RT

Optional Float32

Gamma Last Trade (Real-time)

OPT_VEGA BID_RT

Optional Float32

Vega Bid (Real-time)

OPT_VEGA_ASK_RT

Optional Float32

Vega Ask (Real-time)

OPT_VEGA_MID_RT

Optional Float32

Vega Mid (Real-time)

OPT_VEGA_LAST_RT

Optional Float32

Vega Last Trade (Real-time)

OPT_IMPLIED_VOLATILITY_BID_RT

Optional Float32

Implied Volatility Bid (Real-time)

OPT_IMPLIED_VOLATILITY_ASK_RT

Optional Float32

Implied Volatility ASK (Real-time)

OPT_IMPLIED_VOLATILITY_MID_RT

Optional Float32

Implied Volatility Mid (Real-time)

OPT_IMPLIED_VOLATILITY_LAST_RT

Optional Float32

Implied Volatility Last Trade (Real-time)

EQY_SH_FOREIGN_RT

Optional Float32

Shares Available To Foreign Investors
(Real-time)

LISTED_SH_RT

Optional Float32

Number Of Listed Shares (Real-time)

A Schemas

148

Bloomberg

Element
BLP_SPRD_TO_BENCH_BID_RT

Type
Optional Float32

Description

Bloomberg Bid Spread To Benchmark
(Real-time)

BLP_SPRD_TO_BENCH_ASK_RT

Optional Float32

Bloomberg Ask Spread To Benchmark
(Real-time)

BLP_SPRD_TO_BENCH_MID_RT

Optional Float32

Bloomberg Mid Spread To Benchmark
(Real-time)

BLP_Z SPRD_MID_RT

Optional Float32

Bloomberg Mid Z Spread (Real-time)

BLP_ASW_SPREAD_MID_RT

Optional Float32

Bloomberg Mid ASW Spread (Real-time)

BLP_|_SPRD_MID_RT

Optional Float32

Bloomberg Mid | Spread (Real-time)

BLP_CDS_BASIS_MID_RT

Optional Float32

Bloomberg Mid CDS Basis (Real-time)

BLP_SPRD_TO_BENCH_CHG_RT

Optional Float32

Bloomberg Sprd To Bench Chg On Day
(Real-time)

BLP_Z SPRD_CHG_RT

Optional Float32

Bloomberg Z Spread Change On Day
(Real-time)

BLP_ASW_SPRD_CHG_RT

Optional Float32

Bloomberg ASW Spread Change On Day
(Real-time)

BLP_| SPRD_CHG_RT

Optional Float32

Bloomberg | Spread Change On Day
(Real-time)

BLP_CDS_BASIS_CHG_RT

Optional Float32

Bloomberg CDS Basis Change On Day
(Real-time)

BLP_SPRD_TO_BENCH_PCT_CHG_RT

Optional Float32

Bloomberg Spd To Bench % Chg On Day
(Real-time)

BLP_Z SPRD_PCT_CHG_RT

Optional Float32

Bloomberg Z Spread % Change On Day
(Real-time)

BLP_ASW_SPRD_PCT_CHG_RT

Optional Float32

Bloomberg ASW Spread % Chg On Day
(Real-time)

BLP_I_SPRD_PCT_CHG_RT

Optional Float32

Bloomberg | Spread % Change On Day
(Real-time)

BLP_CDS_BASIS_PCT_CHG_RT

Optional Float32

Bloomberg CDS Basis % Change On Day
(Real-time)

PX_SETTLE_ACTUAL_RT

Optional Float32

Settlement Price Actual (Real-time)

ARBITRAGE_ASK_ORD_NOT_MATCHED_RT

Optional Float32

Arbitrage Ask Orders Not Matched (Real-
time)

ARBITRAGE_BID_ORD_NOT_MATCHED_RT

Optional Float32

Arbitrage Bid Orders Not Matched (Real-
time)

NON_ARBITRAGE_ASK_NOT_MATCHED_RT

Optional Float32

Non Arbitrage Ask Orders Not Matched
(Real-time)

NON_ARBITRAGE_BID_NOT_MATCHED_RT

Optional Float32

Non Arbitrage Bid Orders Not Matched
(Real-time)

ARBITRAGE_ASK_ORD_VOLUME_RT

Optional Int32

Arbitrage Ask Orders Volume (Real-time)

ARBITRAGE_BID_ORD_VOLUME_RT

Optional Int32

Arbitrage Bid Orders Volume (Real-time)

A Schemas

149

Bloomberg

Element
NON_ARBIT_ASK_ORD_VOLUME_RT

Type
Optional Int32

Description

Non Arbitrage Ask Orders Volume (Real-
time)

NON_ARBIT_BID_ORD_VOLUME_RT

Optional Int32

Non Arbitrage Bid Orders Volume (Real-
time)

PRE_ANNOUNCE_NUM_PROG_ASK_RT

Optional Float32

Pre Announce Num of Program Ask
Orders (Real-time)

PRE_ANNOUNCE_NUM_PROG_BID_RT

Optional Float32

Pre Announce Num of Program Bid
Orders (Real-time)

TRUST_ASK_ORD_VOLUME_RT

Optional Int32

Trust Ask Orders Volume (Real-time)

PROPRIETARY_ASK_ORD_VOLUME_RT

Optional Int32

Proprietary Ask Orders Volume (Real-
time)

TRUST_BID_ORD_VOLUME_RT

Optional Int32

Trust Bid Orders Volume (Real-time)

PROPRIETARY_BID_ORD_VOLUME_RT

Optional Int32

Proprietary Bid Orders Volume (Real-
time)

TOTAL_VOLUME_PROGRAM_TRADE_RT

Optional Int32

Total Volume of Program Trading (Real-
time)

PX_INDICATIVE_BID_SIZE_RT

Optional Int32

Indicative Bid Price Size (Real-time)

PX_INDICATIVE_ASK_SIZE_RT

Optional Int32

Indicative Ask Price Size (Real-time)

NUM_TRADES_RT

Optional Int32

Number Of Trades

MGF_VOLUME_RT

Optional Int32

MGF Volume (Real-time)

NUM_TRADES_OPENING_AUCTION_RT

Optional Int32

Number Of Trades In Opening Auction
(Real-time)

NUM_TRADES_CLOSING_AUCTION_RT

Optional Int32

Number Of Trades In Closing Auction
(Real-time)

ALL_PRICE_SIZE

Optional Int32

All Price Size

RT_NYSE_LIQUIDITY_BID_SIZE

Optional Int32

NYSE Liquidity Quote Bid Size

RT_NYSE_LIQUIDITY_ASK_SIZE

Optional Int32

NYSE Liquidity Quote Ask Size

VOLUME_THEO

Optional Int32

Theoretical Volume

SIZE_LAST_AT_TRADE

Optional Int32

Size of Last AT Trade

SIZE_LAST_AT_TRADE_TDY

Optional Int32

Size of Today's Last AT Trade

OPEN_YLD Optional Float32 | Open Yield
OPEN_YLD _TDY Optional Float32 | Today's Open Yield
HIGH_YLD Optional Float32 | High Yield
HIGH_YLD_TDY Optional Float32 | Today's High Yield
LOW_YLD Optional Float32 | Low Yield
LOW_YLD_TDY Optional Float32 | Today's Low Yield
LAST_YLD Optional Float32 | Last Yield

LAST_YLD_TDY

Optional Float32

Today's Last Yield

SIZE_LAST_TRADE_TDY

Optional Int32

Size of Today's Last Trade

A Schemas

150

Bloomberg

Element Type Description
LAST2 YLD Optional Float32 | Last 2 Yield
LAST _DIR_YLD Optional Int32 Last Yield Direction

LAST2_DIR_YLD

Optional Int32

Second Last Yield Direction

PREV_SES_LAST_YLD

Optional Float32

Previous Session Last Yield

BID2_YLD Optional Float32 | Bid 2 Yield
ASK2_YLD Optional Float32 | Ask 2 Yield
BID_DIR_YLD Optional Int32 Bid Yield Direction
ASK _DIR YLD Optional Int32 Ask Yield Direction
MID_DIR Optional Int32 Mid Direction
MID2_DIR Optional Int32 Second Mid Direction

RT_PX_CHG_PCT_1D

Optional Float32

Real-Time Price Change 1 Day Percent

RT_YLD_CHG_NET_1D

Optional Float32

Real-Time Yield Change 1 Day Net

RT_YLD_CHG_PCT_1D

Optional Float32

Real-Time Yield Change 1 Day Percent

ASK_SIZE_TDY Optional Int32 Today's Ask Size
BID_SIZE_TDY Optional Int32 Today's Bid Size
VOLUME_TDY Optional Int32 Today's Volume
BID_YLD_TDY Optional Float32 | Today's Bid Yield
ASK_YLD_TDY Optional Float32 | Today's Ask Yield
UP_LIMIT Optional Float32 | Up Limit
DOWN_LIMIT Optional Float32 | Down Limit
LAST DIR Optional Int32 Last Direction
LAST2_DIR Optional Int32 Second Last Direction
BID_DIR Optional Int32 Bid Direction
ASK_DIR Optional Int32 Ask Direction
SIZE_LAST_TRADE Optional Int32 Size of Last Trade
ASK_SIZE Optional Int32 Ask Size
BID_SIZE Optional Int32 Bid Size
LAST_PRICE Optional Float64 | Last Price

BID Optional Floaté4 | Bid Price

ASK Optional Float64 | Ask Price

HIGH Optional Float64 | High Price

LOW Optional Floaté4 | Low Price
BEST_BID Optional Floaté4 | Best Bid
BEST_ASK Optional Float64 | Best Ask

MID Optional Float64 | Mid Price
LAST_TRADE Optional Float64 | Last Trade
OPEN Optional Float64 | Open Price

A Schemas

151

Bloomberg

Element Type Description
PREV_SES LAST PRICE Optional Floaté4 | Previous Session Last Price
EXCH_VWAP Optional Float64 | Exchange VWAP

NASDAQ_OPEN

Optional Float64

NASDAQ Official Open Price

NASDAQ_FIRST_TRADE

Optional Float64

NASDAAQ First Actual Trade

NASDAQ_PREV_BID

Optional Float64

NASDAQ Prevailing Bid Price

NASDAQ_PREV_ASK

Optional Float64

NASDAQ Prevailing Ask Price

INDICATIVE_FAR

Optional Float64

Far Indicative Price

INDICATIVE_NEAR

Optional Float64

Near Indicative Price

IMBALANCE_BID

Optional Float64

Net Order Imbalance Bid Price

IMBALANCE_ASK

Optional Float64

Net Order Imbalance Ask Price

ORDER_IMB_BUY_VOLUME

Optional Int32

Net Order Imbalance Bid Volume

ORDER_IMB_SELL_VOLUME

Optional Int32

Net Order Imbalance Ask Volume

VWAP

Optional Float64

Eqty intraday VWAP

FIXING_RATE_REALTIME

Optional Float64

Fixing Rate

HIGH_TEMP_REALTIME

Optional Float64

High Temperature

LOW_TEMP_REALTIME

Optional Float64

Low Temperature

MEAN_TEMP_REALTIME

Optional Float64

Mean Temperature

HEATING_DAYS_REALTIME

Optional Float64

Heating Degree Days

COOLING_DAYS_REALTIME

Optional Float64

Cooling Degree Days

REL_HUMIDITY_REALTIME

Optional Float64

Relative Humidity

WIND_SPEED_REALTIME

Optional Float64

Wind Speed

WEATHER_CODE_REALTIME

Optional Float64

Weather Condition Code

PRECIPITATION_REALTIME

Optional Float64

Precipitation

MARKET_DEFINED_VWAP_REALTIME

Optional Float64

Market Defined VWAP (Real-time)

MIN_LIMIT Optional Float64 | Minimum Limit Price
MAX_LIMIT Optional Float64 | Maximum Limit Price
THEO_PRICE Optional Floaté4 | Theoretical Price

MIN_LIMIT_OUT_OF_SESSION

Optional Float64

Minimum Limit Price Out Of Session

MAX_LIMIT_OUT_OF_SESSION

Optional Float64

Maximum Limit Price Out Of Session

BID_WEIGHTED_AVG_SPREAD

Optional Float64

Bid Weighted Average Spread

ASK_WEIGHTED_AVG_SPREAD

Optional Float64

Ask Weighted Average Spread

RT_NYSE_LIQUIDITY_PX_BID

Optional Float64

NYSE Liquidity Quote Bid Price

RT_NYSE_LIQUIDITY_PX_ASK

Optional Float64

NYSE Liquidity Quote Ask Price

INDICATIVE_BID

Optional Float64

Indicative Bid Price

INDICATIVE_ASK

Optional Float64

Indicative Ask Price

PX_EVAL_JAPANESE_REALTIME

Optional Float64

Japanese Evaluation Price

LAST_ALL_SESSIONS

Optional Float64

Last Price All Sessions

A Schemas

152

Bloomberg

Element
PX_NASDAQ_VWOP_REALTIME

Type
Optional Float64

Description
NASDAQ VWOP Price

BLP_|_SPRD_LAST RT

Optional Float64

Bloomberg Last | Spread (Real-time)

PREV_CLOSE_VALUE_REALTIME

Optional Float64

Previous Closing Value

BID_ALL_SESSION

Optional Float64

Bid Price All Session

ASK_ALL_SESSION

Optional Float64

Ask Price All Session

EBS_TOUCH_HIGH_REALTIME

Optional Float64

EBS Touch High

EBS_TOUCH_LOW_REALTIME

Optional Float64

EBS Touch Low

PX_PREV_TO_LAST_REALTIME

Optional Float64

Previous-To-Last Price

PX_TARGIN_SERVICE_REALTIME

Optional Float64

TARGIN Service Price (Real-time)

PX_TARGIN_OFFCIAL_REALTIME

Optional Float64

TARGIN Official Price (Real-time)

FOREIGN_HOLDING_PCT_RT

Optional Float64

Percentage Of Foreign Holding (Real-
time)

OWNERSHIP_LIMIT_RATIO_RT

Optional Float64

Ownership Limit Ratio (Real-time)

RT_EVAL_JAPANESE_CHG_ON_DAY

Optional Float64

Japanese Evaluation Price Change On
Day (Real-time)

RT_EVAL_JAPANESE_PCT_CHG_ON_DAY

Optional Float64

Japanese Eval Price Pct Change On Day
(Real-time)

BLP_Z SPRD_LAST_RT

Optional Float64

Bloomberg Last Z Spread (Real-time)

BLP_ASW_SPREAD_LAST RT

Optional Float64

Bloomberg Last ASW Spread (Real-time)

BLP_RT_SPRD_TO_BENCH_LAST RT

Optional Float64

Bloomberg Last Spread to Benchmark
(Real-time)

TRUST_ASK_ORD_VALUE_RT

Optional Float64

Trust Ask Orders Value (Real-time)

PROPRIETARY_ASK_ORD_VALUE_RT

Optional Float64

Proprietary Ask Orders Value (Real-time)

TRUST_BID_ORD_VALUE_RT

Optional Float64

Trust Bid Orders Value (Real-time)

PROPRIETARY_BID_ORD_VALUE_RT

Optional Float64

Proprietary Bid Orders Value (Real-time)

TOTAL_VALUE_PROGRAM_TRADE_RT

Optional Float64

Total Value of Program Trading (Real-
time)

PX_OFFICIAL_AUCTION_RT

Optional Float64

Official Auction Price (Real-time)

NYSE_LRP_HIGH_PRICE_RT

Optional Float64

NYSE LRP High Price (Real-time)

NYSE_LRP_LOW_PRICE_RT

Optional Float64

NYSE LRP Low Price (Real-time)

ALL_PRICE Optional Floaté4 | All Price

BEST_BID1 Optional Floaté4 | Best Bid 1
BEST BID2 Optional Float64 | Best Bid 2
BEST BID3 Optional Float64 | Best Bid 3
BEST BID4 Optional Float64 | Best Bid 4
BEST_BID5 Optional Float64 | Best Bid 5
BEST_ASK1 Optional Float64 | Best Ask 1
BEST_ASK2 Optional Float64 | Best Ask 2

A Schemas 153

Bloomberg

Element Type Description
BEST_ASK3 Optional Float64 | Best Ask 3
BEST_ASK4 Optional Float64 | Best Ask 4
BEST_ASK5 Optional Float64 | Best Ask 5
BEST BID1_Sz Optional Int32 Best Bid 1 Size
BEST _BID2_Sz Optional Int32 Best Bid 2 Size
BEST _BID3_Sz Optional Int32 Best Bid 3 Size
BEST BID4_SZ Optional Int32 Best Bid 4 Size
BEST BID5 SZ Optional Int32 Best Bid 5 Size

BEST_ASK1_SZ

Optional Int32

Best Ask 1 Size

BEST_ASK2_SZ

Optional Int32

Best Ask 2 Size

BEST_ASK3_SzZ

Optional Int32

Best Ask 3 Size

BEST_ASK4_SZ

Optional Int32

Best Ask 4 Size

BEST_ASK5_SZ

Optional Int32

Best Ask 5 Size

LAST_AT_TRADE

Optional Float64

Last AT Trade

LAST2_AT_TRADE

Optional Float64

Last 2 AT Trade

LAST_AT_TRADE_TDY

Optional Float64

Today's Last AT Trade

MID_TDY Optional Float64 | Today's Mid Price
MID2 Optional Float64 | Mid 2 Price
RT_PX_CHG_NET_1D Optional Float64 | Real-Time Price Change 1 Day Net
OPEN_TDY Optional Floaté4 | Today's Open Price
LAST_PRICE_TDY Optional Float64 | Today's Last Price
BID_TDY Optional Floaté4 | Today's Bid Price
ASK_TDY Optional Float6é4 | Today's Ask Price
HIGH_TDY Optional Float64 | Today's High Price
LOW_TDY Optional Float64 | Today's Low Price
LAST2_PRICE Optional Float64 | Last 2 Price

BID2 Optional Floaté4 | Bid 2 Price

ASK2 Optional Float64 | Ask 2 Price

RT_EXCH_MARKET_STATUS

Optional String

Exchange Market Status

RT_TRADING_PERIOD

Optional String

Trading Period

BID_BROKER_CODE

Optional String

Bid Broker Code

ASK_BROKER_CODE

Optional String

Ask Broker Code

IMBALANCE_INDIC_RT

Optional String

Imbalance Indicator

BLP_SPREAD_BENCHMARK_NAME_RT

Optional String

Bloomberg Spread Benchmark Name
(Real-time)

BLP_SWAP_CURVE_NAME_RT

Optional String

Bloomberg Swap Curve Name (Real-
time)

A Schemas

154

Bloomberg

Element
FINANCIAL_ STATUS_INDICATOR_RT

Type
Optional String

Description

Financial Status Indicator (Real-time)

BID_YLD_COND_CODE

Optional String

Bid Yield Condition Code

YLD_COND_CODE

Optional String

Yield Condition Code

ASK_YLD_COND_CODE

Optional String

Ask Yield Condition Code

ALL_PRICE_COND_CODE

Optional String

BID_COND_CODE

Optional String

Bid Condition Codes

ASK_COND_CODE

Optional String

Ask Condition Codes

RT_SIMP_SEC_STATUS

Optional String

Simplified Security Status

RT_PRICING_SOURCE

Optional String

Real-Time Pricing Source

NYSE_LRP_SEND_TIME_RT Optional Time NYSE LRP Send Time (Real-time)
BID_ASK_TIME Optional Time Time of Last Bid/Ask Update
SES_START Optional Time Session Start
SES_END Optional Time Session End
TRADE_SPREAD_TIME Optional Time Time of TRADE_SPREAD tick
NEWS_STORY_TIME Optional Time Time of NEWS_STORY tick
BID_TIME Optional Time Time of BID tick
BID_BEST_TIME Optional Time Time of BID_BEST tick
VOLUME_UPDATE_TIME Optional Time Time of VOLUME_UPDATE tick
MARKET_DEPTH_TIME Optional Time Time of MARKET_DEPTH tick
CANCEL_CORRECT_TIME Optional Time Time of CANCEL_CORRECT tick
MIN_LIMIT_OUT_OF_SESSION_TIME Optional Time Time of MIN_LIMIT_OUT_OF_SESSION
tick
BID_SPREAD_TIME Optional Time Time of BID_SPREAD tick
BT_MKT_TURN_TIME Optional Time Time of BT_MKT_TURN tick
HIGH_TIME Optional Time Time of HIGH tick
BT _LSE_LAST_TIME Optional Time Time of BT_LSE_LAST tick
AT_TRADE_TIME Optional Time Time of AT_TRADE tick
ASK_YEILD_TIME Optional Time Time of ASK_YEILD tick
PRICE_UPDATE_TIME Optional Time Time of PRICE_UPDATE tick
OPEN_INTEREST_TIME Optional Time Time of OPEN_INTEREST tick
VOLUME_TIME Optional Time Time of VOLUME tick
EVAL_JAPANESE_TIME Optional Time Time of EVAL_JAPANESE tick
ASK_WEIGHTED_AVG_SPREAD_TIME Optional Time Time of
ASK_WEIGHTED_AVG_SPREAD tick
THEO_PRICE_TIME Optional Time Time of THEO_PRICE tick
BUY_SELL_INFO_TIME Optional Time Time of BUY_SELL_INFO tick
SETS_MID_PRICE_TIME Optional Time Time of SETS_MID_PRICE tick

A Schemas

155

Bloomberg

Element Type Description

TAKE_TIME Optional Time Time of TAKE tick
TICK_NUM_TIME Optional Time Time of TICK_NUM tick
SMART_TIME Optional Time Time of SMART tick
INDICATIVE_ASK_TIME Optional Time Time of INDICATIVE_ASK tick
BT_SEC_ASK _TIME Optional Time Time of BT_SEC_ASK tick
LOW_TIME Optional Time Time of LOW tick
BT_SEC_BID_TIME Optional Time Time of BT_SEC_BID tick
LOW_YIELD_TIME Optional Time Time of LOW_YIELD tick

MAX_LIMIT_TIME

Optional Time

Time of MAX_LIMIT tick

TRADING_PERIOD_TIME

Optional Time

Time of TRADING_PERIOD tick

INDICATIVE_BID_TIME

Optional Time

Time of INDICATIVE_BID tick

API_INTERNAL_TIME

Optional Time

Time of API_INTERNAL tick

ASK_LIFT_TIME Optional Time Time of ASK_LIFT tick
NYSE_LIQUIDITY_ASK_TIME Optional Time Time of NYSE_LIQUIDITY_ASK tick
BID_YEILD_TIME Optional Time Time of BID_YEILD tick
ASK_BEST_TIME Optional Time Time of ASK_BEST tick
MKT_INDICATOR_TIME Optional Time Time of MKT_INDICATOR tick

NYSE_LIQUIDITY_BID_TIME

Optional Time

Time of NYSE_LIQUIDITY_BID tick

SMART_QUOTE_TIME Optional Time | Time of SMART_QUOTE tick
NEW_MKT_DAY_TIME Optional Time | Time of NEW_MKT_DAY tick
MAN_TRADE_WITH_SIZE_TIME Optional Time | Time of MAN_TRADE_WITH_SIZE tick
BT _ASK_RECAP_TIME Optional Time | Time of BT _ASK_RECAP tick
BT_MID_PRICE_TIME Optional Time | Time of BT_MID_PRICE tick

BID_MKT_MAKER_TIME

Optional Time

Time of BID_MKT_MAKER tick

SETTLE_TIME Optional Time Time of SETTLE tick
HIT_TIME Optional Time Time of HIT tick
BT_LAST_RECAP_TIME Optional Time Time of BT_LAST_RECAP tick

LAST_TRADE_TIME

Optional Time

Time of LAST_TRADE

PRE_POST_MARKET_TIME Optional Time Time of PRE_POST_MARKET tick
ALL_PRICE_TIME Optional Time Time of ALL_PRICE tick
OPEN_TIME Optional Time Time of OPEN tick
HIGH_YIELD_TIME Optional Time Time of HIGH_YIELD tick
ASK_MKT_MAKER_TIME Optional Time Time of ASK_MKT_MAKER tick
MAX_LIMIT_OUT_OF_SESSION_TIME Optional Time Time of
MAX_LIMIT_OUT_OF_SESSION tick

SMARTMAX_TIME Optional Time Time of SMARTMAX tick
YIELD_TIME Optional Time Time of YIELD tick

A Schemas 156

Bloomberg

Element Type Description

VWAP_TIME Optional Time Time of VWAP tick

BID_WEIGHTED_AVG_SPREAD_TIME Optional Time Time of BID_WEIGHTED_AVG_SPREAD
tick

ASK_TIME Optional Time Time of ASK tick

MIN_LIMIT_TIME Optional Time Time of MIN_LIMIT tick

ASK_SPREAD_TIME Optional Time Time of ASK_SPREAD tick

SETTLE_YIELD_TIME Optional Time Time of SETTLE_YIELD tick

BID_LIFT_TIME Optional Time Time of BID_LIFT tick

BT_BID_RECAP_TIME Optional Time Time of BT_BID_RECAP tick

A Schemas

157

Bloomberg
A.5.4 Market VWAP Service Subscription Options

Argument Value Type Description

VWAP_START_TIME | string | Start trade time in the format, HH:MM. HH is in 24-hr format. Only
trades at this or past this time are considered for VWAP computation.
Specified in TZDF<GO> timing for Desktop APl and UTC for Server
API.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_START TIME=11:00",
new CorrelationID (security));

VWAP_END_TIME string | End trade time in the format, HH:MM. HH is in 24-hr format. Only
trades at this or before this time are considered for VWAP
computation. Specified in TZDF<GO> timing for Desktop APl and UTC
for Server API.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_END TIME=12:00",
new CorrelationID (security));

VWAP_MIN_SIZE string | Minimum trade volume for a trade to be included in VWAP
computation. Values are taken as signed integers.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_MIN_ SIZE=1000",
new CorrelationID (security));

VWAP_MAX_SIZE string | Maximum trade volume for a trade to be included in VWAP
computation. Values are taken as signed integers.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_MAX SIZE=2000",
new CorrelationID (security));

VWAP_MIN_PX string | Minimum trade price for a trade to be included in VWAP computation.
Values are taken as floats.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_MIN PX=23.5",
new CorrelationID (security));

VWAP_MAX_PX string | Maximum trade price for a trade to be included in VWAP computation.
Values are taken as floats.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_MAX PX=25.5",
new CorrelationID (security));

A Schemas 158

Bloomberg
A.6 Schema for APl Authorization

Element Description

AuthorizationRequest Requests Bloomberg to check if a given Bloomberg Anywhere
user is logged into the BLOOMBERG PROFESSIONAL service
at a specified location.

UserAsidEquivalenceRequest Deprecated. Compares the exchanges entitlements of a given
user to the exchange entitlements of the ServerAPI.
LogonStatusRequest Requests a user's logon status for their Bloomberg Anywhere.
UserEntitlementsRequest Requests a list of the user's exchange entitlements
SecurityEntitlementsRequest Requests a list of a specific security's exchange entitlements

SecurityEntitlementsByUserRequest | Deprecated. Requests a list of exchange entitlements for a
security by user.

TokenRequest Deprecated. Requests a token.

A.6.1 Authorization Request

Bloomberg UUID: the Bloomberg unique user identifier

Element Element Value | Type Description

uuid integer | The Bloomberg unique user identifier

Example Syntax: Request request = authSvc.CreateAuthorizationRequest() ;
request.Set ("uuid", 11223344);

IP Address: Location of where the user is viewing the ServerAPI data

Element Element Value | Type Description

ipAddress string

Example Syntax:
Request authRequest = d_apiAuthSvc.CreateAuthorizationRequest() ;
authRequest.Set ("ipAddress", "111.22.33.44");

Require ASID equivalence: Deprecated. Sets a flag to check the user has a superset of
entitiements compared to the ServerAPI. Used for the All-or-None model of permissioning.

Element Element Value | Type Description
requireAsidEquivalence TRUE or Boolean | When set to 'true’, the AuthorizationRequest
FALSE will succeed only if the users permission are
equal to or greater than that of the Server
API.

Example Syntax: request.Set("requireAsidEquivalence”, true);

Token: Deprecated. Authorizes the user with the token based approach.

Element Element Value | Type Description

token Token returned by TokenRequest for a user.
(Optional. Either ipAddress or token must be
supplied.)

A Schemas 159

Bloomberg

A.6.2 Authorization Request Response

See “Field Service Response Elements” on page 165 and “Field Service Response

Elements” on page 165.

< AuthorizationResponse >
The AuthorizationResponse
message has zero or one AuthorizationSuccess
AuthorizationSuccess element

The AuthorizationResponse
message has zero or one
AuthorizationFailure element

AuthorizationFailure

The AuthorizationFailure
reason

element has one
reason element

A Schemas

160

Bloomberg
A.6.3 Logon Status Request

Bloomberg UUID: the Bloomberg unique user identifier

Element Element Value | Type Description

uuid integer | The Bloomberg Unique User Identifier (UUID)
sid Deprecated. do not use

sidlnstance Deprecated. do not use

terminalSid Deprecated. do not use

terminalSidlnstance Deprecated. do not use.

Example Syntax:
Request request = authSvc.CreateRequest ("LogonStatusRequest") ;
Element userinfo = request.GetElement ("userInfo") ;
userinfo.SetElement ("uuid", 11223344);

IP Address: The location where the user is viewing API data

Element Element Value | Type Description
ipAddress string The location where the user is viewing API
data

Example Syntax:
Request logonStatusRequest = authSvc.CreateRequest ("LogonStatusRequest") ;
logonStatusRequest.Set ("ipAddress", "111.22.33.44");

A.6.4 Logon Status Request Response

See “Field Service Response Elements” on page 165 and “Field Service Response
Elements” on page 165.

< LogonStatusResponse

isLoggedOn

A Schemas

161

Bloomberg
A.6.5 User Entitlements Request

Bloomberg UUID: the Bloomberg unique user identifier

Element Element Value | Type Description

uuid integer | The Bloomberg Unique User Identifier (UUID)
sid Deprecated. do not use

sidlnstance Deprecated. do not use

terminalSid Deprecated. do not use

terminalSidlnstance Deprecated. do not use.

Example Syntax:
Request request = authSvc.CreateRequest ("UserEntitlementsRequest") ;
Element userinfo = request.GetElement ("userInfo") ;
userinfo.SetElement ("uuid", 11223344);

A.6.6 User Entitlements Request Response

See “Field Service Response Elements” on page 165 and “Field Service Response

Elements” on page 165.
< UserEntitIementsResponse)

The UserEntitlementsResponse
message has one eids array

entitlementld

A Schemas 162

Bloomberg
A.6.7 Security Entitlements Request

Securities: the reference or streaming fields desired.

Element Element Value | Type Description

securities string Element holding the list of securities to
retrieve exchange entitlements.

Example Syntax:

Element securities = request.GetElement ("securities");
securities.AppendValue ("IBM US Equity");

Request request = authSvc.CreateRequest("SecurityEntitlementsRequest") ;

A.6.8 Security Entitlements Request Response

See “Field Service Response Elements” on page 165 and “Field Service Response
Elements” on page 165.

GecurityEntitIementsRespons9

The SecurityEntitlementResponse
message has one eidData[]
eidData array element

eidData

eidData [] has one to many
eidData elements

(status) GequenceNumbeD

eidData has one
eids[] element

entitlementld

A Schemas

163

Bloomberg
A.6.9 Authorization Token Request

Identifier: The Bloomberg Unique User Identifier.

Element Element Value | Type Description

uuid integer | The Bloomberg Unique User Identifier (UUID)

Example Syntax:
Request request = authSvc.CreateRequest ("AuthorizationTokenRequest") ;
request.Set ("uuid", 11223344);

Label: A label that identifies which Server API application is requesting the token.

Element Element Value | Type Description
label string String identifier for the requesting ServerAPI
application

Example Syntax:
Request request = authSvc.CreateRequest ("AuthorizationTokenRequest") ;
request.Set("label", "myApp")

A.6.10 Authorization Token Request Response

See “Field Service Response Elements” on page 165 and “Field Service Response
Elements” on page 165.

<:3mnhohzaﬁonTokenRespons€:>

AuthorizationTokenResponse

message has zero or responseError
one responseError
source

subcategory

A Schemas 164

Bloomberg

A.6.11 Field Service Response Elements

Element Description

AuthorizationSuccess Returned for an authorization request when the UUID provided is
logged into the Bloomberg Anywhere at the specified IP address.

AuthorizationFailure Returned for an authorization request on failure. It is an errorinfo
element.

reason An AuthorizationFailure message will contain one "reason" element

responseError Returned when a request cannot be completed for any reason. It is an
errorinfo element.

errorinfo Contains values about the error which has occurred, including the
source, code, category, message, and subcategory.

eidData[] Contains a list of eidData elements, each associated to a security
requested.

eidData[]::eidData Contains status, sequence number and list of entitlement identifiers.

eids[] Contains a list of entitlementld values associated to the user.

A.6.12 Field Service Request Values

Element Type Description

Source String Bloomberg internal error source information.

Code Integer Bloomberg internal error code.

Category String Bloomberg error classification. Used to determine the
general classification of the failure.

message String Human readable description of the failure.

subcategory String Bloomberg sub-error classification. Used to determine
the specific classification of the failure.

entitlementld Integer Entitlement identifier (EID)

status Integer Status where success = 0. Any other code indicates
failure.

sequenceNumber Integer Security sequence number, specifying the position of

the security in the request.

isLoggedOn Boolean Returns true when the UUID specified in logged into
the BLOOMBERG PROFESSIONAL service at the
specified IP address.

A Schemas 165

Bloomberg

B Java Examples

This section contains the following code examples and sample output from each example:

‘Request Response Paradigm” on page 167

‘Subscription Paradigm” on page 170

‘Asynchronous Event Handling” on page 174
“Request Response Multiple” on page 178

“Subscription Multiple” on page 182

“Authorization by IP Address’” on page 192

B Java Examples 166

Bloomberg

B.1 Request Response Paradigm

Bloomberg

B Java Examples

Bloomberg

B.1.1 Request Response Paradigm Output

B Java Examples 169

Bloomberg
B.2 Subscription Paradigm

B Java Examples 170

Bloomberg

B Java Examples

Bloomberg
Subscription Paradigm Output

B Java Examples

Bloomberg

B Java Examples 173

Bloomberg

B.3 Asynchronous Event Handling

B Java Examples 174

Bloomberg

B Java Examples 175

Bloomberg

B Java Examples 176

Bloomberg

B.3.1 Asynchronous Event Handling: Output

B Java Examples

Bloomberg

B.4 Request Response Multiple

packag

import
import
import
import
import
import
import
import
import

public

pub

(VIWAP)

// RequestResponseMultiple.java

e BloombergLP;

com.bloomberglp.blpapi.CorrelationID;
com.bloomberglp.blpapi.Element;
com.bloomberglp.blpapi.Event;
com.bloomberglp.blpapi.Message;
com.bloomberglp.blpapi.Messagelterator;
com.bloomberglp.blpapi.Request;
com.bloomberglp.blpapi.Service;
com.bloomberglp.blpapi.Session;
com.bloomberglp.blpapi.SessionOptions;

class RequestResponseMultiple {

lic static void main(String[] args) throws Exception {
SessionOptions sessionOptions = new SessionOptions () ;
sessionOptions.setServerHost ("localhost") ;
sessionOptions.setServerPort (8194) ;
Session session = new Session (sessionOptions) ;
if (!session.start()) {
System.out.println ("Could not start session.");
System.exit (1) ;
}
if (!session.openService("//blp/refdata")) {
System.out.println ("Could not open service " +
"//blp/refdata") ;
System.exit (1) ;
}
Service refDataSvc = session.getService ("//blp/refdata");
Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;
request.getElement ("securities") .appendValue ("AAPL US Equity");
request.getElement ("securities") .appendValue ("IBM US Equity");
request.getElement ("securities") .appendValue (

"BLAHBLAHBLAH US Equity");
request.getElement ("fields") .appendvValue ("PX LAST"); // Last Price
request.getElement ("fields") .appendValue ("DS002") ; // Description
request.getElement ("fields") .appendValue ("VWAP VOLUME") ;

// Volume used to calculate the Volume Weighted Average Price

session.sendRequest (request, new CorrelationID(1l))

B Java Examples 178

Bloomberg

boolean continueTolLoop = true;
while (continueToLoop) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.RESPONSE: // final response
continueToLoop = false; // fall through
case Event.EventType.Constants.PARTIAL RESPONSE:
handleResponseEvent (event) ;
break;
default:
handleOtherEvent (event) ;
break;

}

private static void handleResponseEvent (Event event) throws Exception {
Messagelterator iter = event.messagelterator();

while (iter.hasNext()) {
Message message = iter.next();
Element ReferenceDataResponse = message.asElement () ;

if (ReferenceDataResponse.hasElement ("responseError")) {
System.exit (1) ;
}

Element securityDataArray =

ReferenceDataResponse.getElement ("securityData") ;
int numItems = securityDataArray.numValues () ;
for (int 1 = 0; 1 < numItems; ++1) {
Element securityData = securityDataArray.getValueAsElement (1) ;
String security = securityData.getElementAsString (
"security");
int sequenceNumber =

securityData.getElementAsInt32 ("sequenceNumber") ;
if (securityData.hasElement ("securityError")) ({
Element securityError =
securityData.getElement ("securityError") ;

System.out.println ("* security =" + security);
//Element securityError = securityData.getElement (
"securityError") ;
securityError.print (System.out) ;
return;
} else {

Element fieldData
securityData.getElement ("fieldData") ;

double px last = fieldData.getElementAsFloat64 (
"PX_LAST");
String ds002 = fieldData.getElementAsString (
"DS002") ;

double vwap volume

fieldData.getElementAsFloat64 ("VWAP VOLUME") ;

B Java Examples 179

Bloomberg

B Java Examples 180

Bloomberg

B.4.1 Request Response Multiple: Output

B Java Examples 181

Bloomberg
B.5 Subscription Multiple

B Java Examples

Bloomberg

private void dumpEvent (Event event) {
d printStream.println ("handler label=" + d label);

d printStream.println ("eventType=" + event.eventType());
Messagelterator messagelterator = event.messagelterator();
while (messagelterator.hasNext ()) {
Message message = messagelterator.next();
d printStream.println("messageType=" + message.messageType ()) ;
d printStream.println ("CorrelationID=" + message.correlationID());
try {

message.print (d printStream) ;
} catch (IOException e) {
e.printStackTrace () ;

private void handleDataEvent (Event event, Session session) {
d printStream.println("handleDataEvent: enter");
dumpEvent (event) ;
d printStream.println("handleDataEvent: leave");

private void handleStatusEvent (Event event, Session session) {
d printStream.println("handleStatusEvent: enter");
dumpEvent (event) ;
d printStream.println("handleStatusEvent: leave");

}

private void handleOtherEvent (Event event, Session session) {
d printStream.println("handleOtherEvent: enter");
dumpEvent (event) ;
d printStream.println("handleOtherEvent: leave");

public class SubscriptionMultiple {

public static void main (String[] args) throws Exception{
SessionOptions sessionOptions = new SessionOptions();
sessionOptions.setServerHost ("localhost") ;
sessionOptions.setServerPort (8194) ;

Session session = new Session(sessionOptions,
new SubscriptionEventHandler (
"myLabel",
System.out)) ;
if (!session.start()) {
System.out.println ("Could not start session.");

System.exit (1) ;
}
if (!session.openService ("//blp/mktdata")) {
System.out.println ("Could not open service " +
"//blp/mktdata") ;
System.exit (1) ;

B Java Examples 183

Bloomberg

B Java Examples 184

Bloomberg
B.5.1 Multiple Subscription: Output

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

Bloomberg
B.6 Authorization by IP Address

B Java Examples 192

Bloomberg

B Java Examples

Bloomberg

ArrayList missingEntitlements = new ArrayList();
Element neededEntitlements =
securityData.hasElement ("eidData")
? securityData.getElement ("eidData")
null;
if (null == neededEntitlements) {
System.out.println ("no entitlements needed") ;
System.out.println() ;
printSecurityData (security, sequenceNumber, securityData);
} else if (identity.hasEntitlements (neededEntitlements,
message.service (),
missingEntitlements)) {
System.out.println ("user has the needed Entitlements for: "
+ security);
System.out.println ("provide data to the requesting user");
System.out.println () ;
printSecurityData (security, sequenceNumber, securityData);
} else {
System.out.println ("user lacks entitlements for: "
+ security);
System.out.println ("neededEntitlements = "
+ neededEntitlements) ;
System.out.println ("missingEntitlements = " +
missingEntitlements) ;
System.out.println() ;
System.out.println (
"do not provide data to the requesting user");

private static void handleOtherEvent (Event event) throws Exception
{
System.out.println ("EventType=" + event.eventType())
Messagelterator iter = event.messagelterator();

while (iter.hasNext()) {
Message message = iter.next();
System.out.println ("correlationID="
+ message.correlationID()) ;
System.out.println ("messageType=" + message.messageType ()) ;

message.print (System.out) ;
if (Event.EventType.Constants.SESSION STATUS ==
event.eventType () .intValue ()
&& "SessionTerminated" ==
message.messageType () .toString ()) {
System.out.println ("Terminating: " +
message.messageType ()) ;
System.exit (1) ;

B Java Examples 194

Bloomberg

B Java Examples 195

Bloomberg

Service apiAuthSvc = session.getService ("//blp/apiauth");

Request authorizationRequest =
apiAuthSvc.createAuthorizationRequest () ;

authorizationRequest.set ("uuid", uuid) ;

authorizationRequest.set ("ipAddress", ipAddress) ;

Identity identity = session.createldentity() ;
CorrelationID authorizationRequestID = new CorrelationID(10) ;

session.sendAuthorizationRequest (authorizationRequest,
identity,
authorizationRequestID) ;
System.out.println ("sent Authorization Request using ipAddress");

// Wait for 'AuthorizationSuccess' message which indicates
// that 'identity' can be used.
for (boolean continueTolLoop = true; continueToLoop;) {
Event event = session.nextEvent () ;
//dumpEvent (event) ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.RESPONSE:
if ('handleAuthenticationResponseEvent (event)) ({
System.out.println ("Authorization Failed") ;
System.exit (1) ;
}

continueToLoop = false;
break;
default:
handleOtherEvent (event) ;
break;
}
}
if (!session.openService("//blp/refdata")) {

System.out.println ("Could not open service " + "//blp/refdata");
System.exit (1) ;
}

Service refDataSvc = session.getService ("//blp/refdata");

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;
request.append ("securities", "VOD LN Equity");
request.append("fields", "PX LAST");

request.append ("fields", "DS002");

request.append ("fields", "VWAP VOLUME") ;

request.set ("returnkEids", true); // new

CorrelationID requestID = new CorrelationID(20) ;
session.sendRequest (request, requestID) ;

B Java Examples 196

Bloomberg

B Java Examples 197

Bloomberg

C .Net Examples

This section contains the following code examples:

‘RequestResponseParadigm” on page 199

‘Subscription Paradigm” on page 202

‘Asynchronous Event Handling” on page 208
“Request Response Multiple” on page 213

“Subscription Multiple” on page 217

C .Net Examples 198

Bloomberg
C.1 RequestResponseParadigm

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C.1.1 Request Response Paradigm Output

C .Net Examples 201

Bloomberg
C.2 Subscription Paradigm

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg
Subscription Paradigm Output

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples 207

Bloomberg
C.3 Asynchronous Event Handling

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C.3.1 Asynchronous Event Handling: Output

C .Net Examples 212

Bloomberg

C.4 Request Response Multiple

using Syste
using Syste
using Syste

using Corre
using Eleme
using Event
using Messa
using Reque
using Servi
using Sessi
using Sessi

{
{

sta

{

// RequestResponseMultiple.cs

m;
m.Collections.Generic;
m.Text;

lationID = Bloomberglp.Blpapi.CorrelationID;

nt = Bloomberglp.Blpapi.Element;
= Bloomberglp.Blpapi.Event;
ge = Bloomberglp.Blpapi.Message;
st = Bloomberglp.Blpapi.Request;
ce = Bloomberglp.Blpapi.Service;
on = Bloomberglp.Blpapi.Session;

onOptions Bloomberglp.Blpapi.SessionOptions;

namespace RequestResponseMultiple

class RequestResponseMultiple

tic void Main(string[] args)
SessionOptions sessionOptions = new SessionOptions();
sessionOptions.ServerHost = "localhost";
sessionOptions.ServerPort = 8194;
Session session = new Session(sessionOptions) ;
if (!session.Start())
{
System.Console.WriteLine ("Could not start session.");

System.Environment.Exit (1) ;
}
if (!session.OpenService ("//blp/refdata"))
{
System.Console.WriteLine ("Could not open service " +
"//blp/refdata") ;
System.Environment.Exit (1) ;
}
Service refDataSvc = session.GetService ("//blp/refdata");
Request request refDataSvc.CreateRequest (
"ReferenceDataRequest") ;
request.GetElement ("securities") .AppendValue ("AAPL US Equity") ;
request.GetElement ("securities") .AppendValue ("IBM US Equity") ;
request.GetElement ("securities") .AppendValue (
"BLAHBLAHBLAH US Equity");
request.GetElement ("fields") .AppendValue ("PX LAST");
// Last Price
request.GetElement ("fields") .AppendValue ("DS002") ;
// Description
request.GetElement ("fields") .AppendValue ("VWAP VOLUME") ;
// Volume used to calculate the Volume Weighted Average Price
session.SendRequest (request, new CorrelationID(1l));

C .Net Examples

213

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C.4.1 Request Response Multiple: Output

C .Net Examples 216

Bloomberg
C.5 Subscription Multiple

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples 219

Bloomberg
C.5.1 Multiple Subscription: Output

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples 224

Bloomberg
D C++ Examples

This section contains the following code examples:

‘RequestResponseParadigm’ on page 226

‘Subscription Paradiam” on page 229

‘Asynchronous Event Handling” on page 234
“Request Response Multiple” on page 238

“Subscription Multiple” on page 242

Note: These examples use assert statements to make manifest the program state at
various key points. Follow your organization’s guidelines for best practices on the use of
assert statements in production code.

D C++ Examples 225

Bloomberg
D.1 RequestResponseParadigm

D C++ Examples

Bloomberg

D C++ Examples 227

Bloomberg

Request Response Paradigm Output

D C++ Examples

Bloomberg
D.2 Subscription Paradigm

D C++ Examples 229

Bloomberg

D C++ Examples 230

Bloomberg

D C++ Examples 231

Bloomberg
Subscription Paradigm Output

D C++ Examples

Bloomberg

D C++ Examples 233

Bloomberg

D.3 Asynchronous Event Handling

D C++ Examples 234

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

Asynchronous Event Handling: Output

D C++ Examples 237

Bloomberg
D.4 Request Response Multiple

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

Request Response Multiple: Output

D C++ Examples 241

Bloomberg
D.5 Subscription Multiple

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples 244

Bloomberg

D C++ Examples

Bloomberg
Subscription Multiple: Output

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples 250

Bloomberg
E C Examples

This section contains the following code examples:

Note: These examples use assert statements to make manifest the program state at
various key points. Follow your organization’s guidelines for best practices on the use of
assert statements in production code.

Note: When using the C language interface the programmer must explicitly recover allocated
resources such as sessions, session options, requests, and message iterators. In general, a
pointer to a resource obtained from a function containing the word “create” must be
recovered by invoking a similarly named function containing the word “destroy”. For
example, the blpapi Service createRequest function delivers a pointer to a

blpapi Request t type and that pointer, when no longer needed, must be passed to the
blpapi Request destroy function.

E C Examples 251

Bloomberg
E.1 RequestResponseParadigm

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

Request Response Paradigm Output

E C Examples 256

Bloomberg
E.2 Subscription Paradigm

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples 260

Bloomberg
Subscription Paradigm Output

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg
E.3 Asynchronous Event Handling

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

Asynchronous Event Handling Output

E C Examples

Bloomberg
E.4 Request Response Multiple

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples 277

Bloomberg

Request Response Multiple Output

E C Examples 278

Bloomberg
E.5 Subscription Multiple

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

/* MSFT */
const char *topic MSFT = "MSFTT US Equity"; /* Note: Typo! */
const char *fields MSFT[] = { "LAST PRICE" };
const char *options MSFT[] = { "interval=.5" };
int numFields MSFT = sizeof (fields MSFT) /
sizeof (*fields MSFT) ;
int numOptions MSFT = sizeof (options MSFT) /

sizeof (*options MSFT) ;

/* CUSIP 097023105 */
const char *topic 097023105 =
"/cusip/
097023105?fields=LAST PRICE&interval=5.0";

const char **fields 097023105 = 0;
const char **options 097023105 = 0;
int numFields 097023105 = 0;
int numOptions 097023105 = 0;

setbuf (stdout, 0); /* DO NOT SHOW */

blpapi CorrelationId t subscriptionId IBM;
blpapi CorrelationId t subscriptionId GOOG;
blpapi CorrelationId t subscriptionId MSFT;
blpapi CorrelationId t subscriptionId 097023105;

memset (&subscriptionId IBM, '\0', sizeof (subscriptionId IBM)) ;
subscriptionId IBM.size = sizeof (subscriptionId IBM) ;
subscriptionId IBM.valueType BLPAPI CORRELATION TYPE INT;
subscriptionId IBM.value.intValue = (blpapi UInt64 t)10;

memset (&subscriptionId GOOG, '\0', sizeof (subscriptionId GOOG)) ;
subscriptionId GOOG.size = sizeof (subscriptionId GOOG) ;
subscriptionId GOOG.valueType BLPAPI CORRELATION TYPE INT;
subscriptionId GOOG.value.intValue (blpapi UInt64 t)20;

memset (&subscriptionId MSFT, '\0', sizeof (subscriptionId MSFT)) ;
subscriptionId MSFT.size = sizeof (subscriptionId MSFT) ;
subscriptionId MSFT.valueType = BLPAPI CORRELATION TYPE INT;
subscriptionId MSFT.value.intValue (blpapi UInt64 t)30;

memset (&subscriptionId 097023105,
'\O'l
sizeof (subscriptionId 097023105));
subscriptionId 097023105.size =
sizeof (subscriptionId 097023105) ;
subscriptionId 097023105.valueType = BLPAPI CORRELATION TYPE INT;
subscriptionId 097023105.value.intValue = (blpapi UInt64 t)40;

sessionOptions = blpapi SessionOptions create();
assert (sessionOptions) ;

blpapi SessionOptions setServerHost (sessionOptions, "localhost");
blpapi SessionOptions setServerPort (sessionOptions, "8194");

E C Examples 282

Bloomberg

E C Examples

Bloomberg

E C Examples 284

Bloomberg
Subscription Multiple Output

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

FRANKFURT HONG KONG LONDON NEW YORK SAN FRANCISCO SAO PAULO SINGAPORE SYDNEY TOKYO Press the <HELP>

+49 699204 1210 +852 2977 6000 +44 20 7330 7500 +1 212318 2000 +14159122960 +55 11 3048 4500 +65 6212 1000 +612 9777 8600 +81 3 3201 8900 ﬁ:;:::gxswm

The BLOOMBERG PROFESSIONAL service, BLOOMBERG Data and BLOOMBERG Order Management Systems (the "Services") are owned and distributed locally by Bloomberg Finance L.P. ("BFLP") and its subsidiaries in all jurisdictions other than Argentina,
Bermuda, China, India, Japan and Korea (the "BLP Countries"). BFLP is a wholly-owned subsidiary of Bloomberg L.P. ("BLP"). BLP provides BFLP with all global marketing and operational support and service for the Services and distributes the Services either
directly or through a non-BFLP subsidiary in the BLP Countries. The Services include electronic trading and order-routing services, which are available only to sophisticated institutional investors and only where the necessary legal clearances have been obtained.
BFLP, BLP and their affiliates do not provide v guarantee the y of prices or in the Services. Nothing on the Services shall constitute an offering of financial instruments by BFLP, BLP or their affiliates. BLOOMBERG,
BLOOMBERG PROFESSIONAL, BLOOMBERG MARKETS, BLOOMBERG NEWS, BLOOMBERG ANYWHERE, BLOOMBERG TRADEBOOK, BLOOMBERG BONDTRADER, BLOOMBERG TELEVISION, BLOOMBERG RADIO, BLOOMBERG PRESS and
BLOOMBERG.COM are trademarks and service marks of BFLP, a Delaware limited partnership, or its subsidiaries.

	Developer’s Guide
	Preface: About this Document
	Purpose
	Audience
	Document History

	1 Introduction to the Bloomberg API
	1.1 Overview of the Bloomberg API
	1.1.1 Features
	1.1.2 The Bloomberg Platform
	1.1.3 Managed B-PIPE
	1.1.4 The Desktop API and Server API

	1.2 The Programming Examples
	1.3 Typical Application Structure
	1.4 Overview of this Guide

	2 Sample Programs in Two Paradigms
	2.1 Overview
	2.2 The Two Paradigms
	2.2.1 Request/Response
	2.2.2 Subscription

	2.3 Using the Request/Response Paradigm
	2.4 Using the Subscription Paradigm

	3 Sessions and Services
	3.1 Sessions
	3.2 Services
	3.3 Event Handling
	3.3.1 Synchronous Event Handling
	3.3.2 Asynchronous Event Handling

	3.4 Multiple Sessions

	4 Requests and Responses
	4.1 The Programming Example
	4.2 Elements
	4.3 Request Details
	4.4 Response Details

	5 Subscriptions
	5.1 The Programming Example
	5.2 Starting a Subscription
	5.3 Receiving Data from a Subscription
	5.4 Modifying an Existing Subscription
	5.5 Stopping a Subscription
	5.6 Overlapping Subscriptions
	5.7 Conflation and the Interval Option
	5.8 Delayed Data
	5.9 Subscription Life Cycle

	6 Core Services
	6.1 Common Concepts
	6.1.1 Security/Securities
	6.1.2 Pricing Source
	6.1.3 Fields
	6.1.4 Overrides
	6.1.5 Relative Dates

	6.2 Reference Data Service //blp/refdata
	6.2.1 Reference Data Request and Response Overview
	6.2.2 Historical Data Request
	6.2.3 Intraday Tick Request
	6.2.4 Intraday Bar Services
	6.2.5 Portfolio Data Request
	6.2.6 BEQS Request

	6.3 Market Data Service //blp/mktdata
	6.4 Custom VWAP Service //blp/mktvwap
	6.5 Market Bar Subscription Service //blp/mktbar
	6.6 API Field Information Service //blp//apiflds
	6.6.1 Field Information Request
	6.6.2 Field Search Request
	6.6.3 Categorized Field Search Request

	6.7 Page Data Service
	6.8 Technical Analysis Service
	6.8.1 Historical End of Day study request
	6.8.2 Intraday bar study request
	6.8.3 Realtime study request

	6.9 API Authorization

	7 Authorization and Permissioning Systems
	7.1 Overview
	7.2 Underlying Concepts
	7.2.1 EIDs
	7.2.2 Requirement for the Terminal
	7.2.3 The //blp/apiauth service
	7.2.4 The V3 Identity Object
	7.2.5 V3 Permissioning Models
	7.2.6 Authorization Lifetime

	7.3 Server API Authorization
	7.3.1 Authorization by IP Address

	7.4 Managed B-PIPE Authorization
	7.4.1 Authentication
	7.4.2 Token Generation

	7.5 Authorization
	7.6 Permissioning
	7.6.1 Entitlements
	7.6.2 User Mode
	7.6.3 Content Based

	7.7 Specific Application Types (Managed B-PIPE only)
	7.7.1 Single-User
	7.7.2 Multi-User
	7.7.3 Derived Data / Non-Display

	7.8 V2 Authorization and Permissioning Models
	7.8.1 User Mode
	7.8.2 All-or-None
	7.8.3 Content-Based / Per-Product / Per-Security
	7.8.4 Validating Logon Status

	8 Publishing
	8.1 Overview
	8.2 The Programming Examples
	8.3 Simple Broadcast
	8.3.1 Creating a Session
	8.3.2 Authorization
	8.3.3 Creating a Topic
	8.3.4 Publishing

	8.4 Interactive Publication
	8.4.1 Registration
	8.4.2 Event Handling
	8.4.3 Publication

	A Schemas
	A.1 Overview
	A.2 Reference Data Service //blp/refdata
	A.2.1 Operations
	A.2.2 ReferenceDataRequest: Sequence
	A.2.3 ReferenceDataResponse: Choice
	A.2.4 HistoricalDataRequest: Sequence
	A.2.5 HistoricalDataResponse: Choice
	A.2.6 IntradayTickRequest: Sequence
	A.2.7 IntradayTickResponse: Choice
	A.2.8 IntradayBarRequest: Sequence
	A.2.9 IntradayBarResponse: Choice
	A.2.10 PortfolioDataRequest: Sequence
	A.2.11 PortfolioDataResponse: Choice
	A.2.12 BEQSRequest: Sequence
	A.2.13 BEQSResponse: Choice
	A.2.14 Reference Data Service Response

	A.3 Schema for API Field Service //blp//apiflds
	A.3.1 Requests: Choice
	A.3.2 Responses: Choice
	A.3.3 Field Information Request
	A.3.4 Field Search Request
	A.3.5 Categorized Field Search Request
	A.3.6 Field List Request
	A.3.7 Field Service Response Elements
	A.3.8 Field Service Response Values

	A.4 Market Bar Subscription
	A.4.1 Market Bar Subscription Settings
	A.4.2 Market Bar Subscription: Data Events Response

	A.5 Schema for Market Data and Custom VWAP
	A.5.1 MarketDataEvents: Choice
	A.5.2 Market Data Service Subscription Options
	A.5.3 MarketDataUpdate: Sequence
	A.5.4 Market VWAP Service Subscription Options

	A.6 Schema for API Authorization
	A.6.1 Authorization Request
	A.6.2 Authorization Request Response
	A.6.3 Logon Status Request
	A.6.4 Logon Status Request Response
	A.6.5 User Entitlements Request
	A.6.6 User Entitlements Request Response
	A.6.7 Security Entitlements Request
	A.6.8 Security Entitlements Request Response
	A.6.9 Authorization Token Request
	A.6.10 Authorization Token Request Response
	A.6.11 Field Service Response Elements
	A.6.12 Field Service Request Values

	B Java Examples
	B.1 Request Response Paradigm
	B.1.1 Request Response Paradigm Output

	B.2 Subscription Paradigm
	B.3 Asynchronous Event Handling
	B.3.1 Asynchronous Event Handling: Output

	B.4 Request Response Multiple
	B.4.1 Request Response Multiple: Output

	B.5 Subscription Multiple
	B.5.1 Multiple Subscription: Output

	B.6 Authorization by IP Address

	C .Net Examples
	C.1 RequestResponseParadigm
	C.1.1 Request Response Paradigm Output

	C.2 Subscription Paradigm
	C.3 Asynchronous Event Handling
	C.3.1 Asynchronous Event Handling: Output

	C.4 Request Response Multiple
	C.4.1 Request Response Multiple: Output

	C.5 Subscription Multiple
	C.5.1 Multiple Subscription: Output

	D C++ Examples
	D.1 RequestResponseParadigm
	Request Response Paradigm Output

	D.2 Subscription Paradigm
	Subscription Paradigm Output

	D.3 Asynchronous Event Handling
	Asynchronous Event Handling: Output

	D.4 Request Response Multiple
	Request Response Multiple: Output

	D.5 Subscription Multiple
	Subscription Multiple: Output

	E C Examples
	E.1 RequestResponseParadigm
	Request Response Paradigm Output

	E.2 Subscription Paradigm
	Subscription Paradigm Output

	E.3 Asynchronous Event Handling
	Asynchronous Event Handling Output

	E.4 Request Response Multiple
	Request Response Multiple Output

	E.5 Subscription Multiple
	Subscription Multiple Output

