ENTERPRISE
PRODUCTS & SOLUTIONS

ooo

MARKET DATA
INITIATIVE

BLPAPI: Developer’s Guide

Bloomberg

Bloomberg
Table of Contents

Preface: About this DOCUMENtoooo i e 9
U 0T 1= ETSRTRR 9
AUAIENCE ... 9
DOCUMENT HISTOY ...t e e e e e e eeas 10

1 Introduction to the Bloomberg APl ... 11
1.1 Overview of the BIoomberg AP ... e 11

R R B ==Y (U= PSPPSR 12
1.1.2 The Bloomberg Platformeuiiiiiii e 14
1.1.3 Managed B-PIPE e 15
1.1.4 The Desktop APl and Server APl..........oo i 16
1.2 The Programming EXamPIEScoooiiiiiiiiiiiie e 19
1.3 Typical Application StrUCIUre ..o 20
1.4 Overview Of thiS GUIAE ..o 20

2 Sample Programs in Two Paradigms..........ccccciimmmmmiiiisesn s s 21
2 T O 1= 1= 21
2.2 The TWO ParadigmMsccooiiiiiiiiiiiie et e e e e e e e e e e annes 22

2.2.1 REQUESHRESPONSE. ...cceiiiiiiiiiiiiiieeeeeee ettt ettt ettt ettt e e e e e e e e e e e e e aaaes 22
B 11 | o 1= 11) [o TSR 23
2.3 Using the Request/Response Paradigmcoooiiiiiiiiiiiiiiiiiee e 23
2.4 Using the Subscription Paradigm...........c..ooiiiiiiiiiiiiee e 27

3 SeSSIONS ANA SEIVICEScoviiiiiiiiiiieeirrr i s s sssnr e e s s s ssnnn e e e s e s s s s s s snnnn e e s e ssnsnnnnns 30
Kt S 1Y o) o SRR 30
S 1Y Y[SRR 30
B TR T Y 7Y o o = i o |11 T PSPPSR 30

3.3.1 Synchronous Event Handling..........cooouiiiiiiiiii e 32
3.3.2 Asynchronous Event Handlingcooouiiiiiiii e 33
3.4 MUIIPIE SESSIONSuuuuuiiiiiiiiiiiii et e b a e e aa e e aesbsssbassssssssssssssssssssssssssssnsnnnnnns 37

4 Requests and RESPONSESccoiiiiiiiicmiiiiiieiirrrrcssssssss s s s s s s nmsss s s s s s s e s s nmnnsssssssseerssnnnnnnsssssns 38
4.1 The Programming EXamPIEouuueiiiiiiiiiieii et 38
4.2 EleMENTS ... e 39
4.3 ReqUESE DELailS.....cccoviiiii i 39
4.4 ReSPONSE DEtailS....couiuuiiiii e 41

LI | o T-T o) 4] o] £ Lo 4 E- 3SR 46
5.1 The Programming EXampPlecoouuueiiiiiii e 46

Table of Contents 3

Bloomberg

5.2 Starting @ SUbSCHPLON.........oooii i, 46
5.3 Receiving Data from a Subscription ..., 49
5.4 Modifying an Existing SubscCription ..., 50
5.5 Stopping a Subscriplion.............. 50
5.6 Overlapping SUDSCHPLONSccoooiiiii 51
5.7 Conflation and the Interval Option ..., 51
5.8 Delayed Data........cooooiiiiiiii 51
5.9 Subscription Life CYCIEcooieeeeeeeee e 52
B COrE SEIVICES.....uuuueennnnnnnsnssssnssssssssssssssssssssssnsssnsssnsssssssssssssssnssnnsnsnnsnnsnmnsnmnnnnnnnnnnnnnnnnnnsnnnnnnns 53
6.1 COMMON CONCEPLSeeiiiieeiiiiiite ettt e e e e e e s e e e e e e e e sbb e e e e e e e e e e aannnes 53
6.1.1 SeCUNLY/SECUNTIESeeeeeiiiee e 53
6.1.2 PriCING SOUICE. ...ttt ettt e e e e e e e e s eeeeas 54
B.1.3 FUBIAS .. e e e e e e e e e e e annas 55

T O 1Y =Y 4y To [PP PPPPPP 55
6.1.5 REIAtiVE DALES.....coooiiiiiiiiiiieeeeeeeeeeeeee e 56
6.2 Reference Data Service //blp/refdata............cccoooeiiiii 58
6.2.1 Reference Data Request and Response Overviewccccccevvveeiiiiieiieicceee e, 58
6.2.2 Historical Data REQUESEcooviiiiiiiiiiiieieeeeeee e 59
6.2.3 Intraday TiCK REQUESLcooiiiiee s 60
6.2.4 Intraday Bar SErVICES........ccoiiiiiiiiiiiie s 61
6.2.5 Portfolio Data REQUEST..........ooviiiiiiiiiiiieeeeeee e 62
6.2.6 BEQS REQUEST.......ooiiiiiiiiiiieeieeeeeeeeeee ettt ettt ettt ettt e e e e e e e e e e e e e e e aaeea s 62
6.3 Market Data Service //blp/mktdata.............coooer i 63
6.4 Custom VWAP Service //IbIp/mKIVWaP ..o 64
6.5 Market Bar Subscription Service //blp/mktbar.............c.cccooiii 64
6.6 API Field Information Service //blp//apiflds ..., 65
6.6.1 Field Information ReqUEeSst..........cooovviiiiiiiiiiii 65
6.6.2 Field Search ReQUESTcooiiiiiiiiiiieieeeeeee e 66
6.6.3 Categorized Field Search Request.............c.oueiiiiiiiiii e 66
6.7 Page Dat@ SEIVICE.......coiiiiiiiiiie e 68
6.8 Technical ANAlYSIS SEIVICEuuiiiiiiiiiiiii e e 71
6.8.1 Historical End of Day study request..............oeiviiiiiiiiiie e 71
6.8.2 Intraday bar study reqUESTooiiiiiiii e 73
6.8.3 Realtime Study reqQUEST ..o 75
6.9 AP AULhONZAtioN ... 76
6.10 INSIrUMENES SEIVICE .. .o 76

Table of Contents 4

Bloomberg

6.10.1 Security LOOKUP REQUEST........oovviiiiiiiiiiiieeee 76
6.10.2 Curve LooKUp REQUESEcoiiiiiiiiiiieeeeeeeeeeeee e 77
6.10.3 Government LOOKUP REQUEST.........oovviiiiiiiiiiiiiiie e, 77
6.10.4 Response Behaviors............coooviiiiiiiiiiiiiiiiii 78
6.10.5 COdE EXAMPIE ...ccoeiiiiieeieeeeeeeeeeeeeeeeeeeee ettt 80

7 Authorization and Permissioning Systems...........cccceeeemeeeeeeeeeeeeeeceeeceeeeeeee e 81
71 OVEIVIBW ...ttt ettt e ettt e e e et e e e et e e e et et e e e annne e e e annne e e 81
472 ¥ L o 1= 4)V o T @7 0] g o =T o] £ PSPPI 81
4725 T = | SRR 81
7.2.2 Requirement for the Terminal ... 81
7.2.3 The //blp/apiauth SEIVICE ... 82
7.2.4 The V3 Identity ODJECEcooiieiiie e 82
7.2.5 V3 Permissioning MOUGEISuuiiiiiiiiiiiiiie e 82
7.2.6 Authorization Lifetimecoooviiiiiiiiiiiiiee 82
7.3 Server APL AUhONZatioNn ... 83
7.3.1 Authorization DY [P AdAreSs.uueiiiiiiiiiiie e 83
7.4 Managed B-PIPE AUthOMZAtioNooiiiiiieiii e 89
741 AULNENTICAtION c..cooiiiiiiiiieeeeeeeeeeeeee et 90

A 3 o) (=T I 1= 0 1= = o o PP 92
7.5 AULNOMZALION ... ——— 94
7.6 PermMiSSIONING ..cooiieiieiie ettt e et e e e e e e st e e e e e e e et a e e e e e e e eaae 96
AL 20 B = 01111 = 0 0 =T o PSP PRPPPP 96
T.6.2 USEIMOGE ...ttt ettt ettt ettt et e e e e e e e e e e e e e e e e e aaaaees 99
7.6.3 CoNENE BASEAooiiiiiiiiiiieeeeeeeeeeeee e 99
7.7 Specific Application Types (Managed B-PIPE ONly) ... 101
771 SINGIE-USEI ...t e e e e 101
A A LU (= 101
7.7.3 Derived Data / NON-DiSplaycoeeiiiiiiiiiiiiiiiee e 101
7.8 V2 Authorization and Permissioning Modelsc..oooiiiiiiiiiiiieeeeeee e 101
A< T B F= 1= Y/ o T L= 101
A T N | B o AN [T 102
7.8.3 Content-Based / Per-Product / Per-Securityccccviiiiiiiiiiiiiiieeee e 102
7.8.4 Validating Logon Statusc.uuiiiiiiiiiiiie e 103

8 PUDIIShiNG ..o ———————————————— 104
8.1 OVEIVIEW ... 104
8.2 The Programming EXAmMPIEScoooiiiiiiiiiiie e 104

Table of Contents 5

Bloomberg

8.3 Simple Broadcast............ooooiiiiii i 104
8.3.1 Creating @ SESSION.....cccviiiiiiiiiiiieeeeee ettt 104

S TG T2 T | o] 7= (o o P 105
R TG T O 4T 11T g T =T o] o (o3 107

IR T W] o)1 1oV P 108
8.4 Interactive PUDIICAtION..........oeeeeee e 109
S g B =Y | 1] (= 1 o 110
S VY o = T |1 o PSR 111
ST G T T | o) [o= 11 T0] o NP 113

9 Managed B-Pipe.........cooiiiriiierrr s 115
0.1 OVEBIVIEW ... 115
9.2 Managed B-PipE SEIVICESuuiiiiiiiiiiiiiii ettt e e e e 115
9.2.1 Market Depth SErviCecooi i 115

8 I IV =Ty N S RS 1= oV o 135
9.2.3 S0Uurce REfErenNCe SEIVICEcovviiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee ettt 151

T o 3 =1 ¢ 1T T 159
AT OVEIVIEW ..ttt et e et e e et e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaeaeeeeaaaaeaaaeaeens 159
A.2 Reference Data Service //blp/refdatacoovieiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 159
N2t O T o =T 1 1 o o - 159
A.2.2 ReferenceDataRequest: SEQUENCE....... ... 159
A.2.3 ReferenceDataResponse: ChOICE 161
A.2.4 HistoricalDataRequest: SEQUENCE........ ... 162
A.2.5 HistoricalDataResponse: ChOICE...... ... e 167
A.2.6 IntradayTickRequest: SEQUENCE ... 168
A.2.7 IntradayTickResponse: ChOiCe..........c.uuviiiiiiiiiiie e 170
A.2.8 IntradayBarRequest: SEQUENCE ... 172
A.2.9 IntradayBarResponse: ChOiCE..........c..uuiiiiiiiiiiiie e 174
A.2.10 PortfolioDataRequest: SEQUENCEuuuuee e 175
A.2.11 PortfolioDataResponse: ChOICE ... 176
A.2.12 BEQSREQUESE: SEQUENCEcei e 177
A.2.13 BEQSRESPONSE: CNOICE ... e 178
A.2.14 Reference Data Service RESPONSEuuuui e 179
A.3 Schema for API Field Service //blp//apifldsoooiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 182
A.3.1 ReqUESES: CNOICE ... 182
A.3.2 ReSPONSES: CROICE ... neneennes 182
A.3.3 Field Information ReQUESTL e 182

Table of Contents 6

Bloomberg

A.3.4 Field Search REQUESTo 184
A.3.5 Categorized Field Search ReqQUEST...........ccoii s 188
A.3.6 Field LisSt REQUEST........uiii e e e e e e e e e eeeeees 191
A.3.7 Field Service Response Elements..........cccooooiiiiiiiis 193
A.3.8 Field Service Response Values...........cccocciii e 194
A.4 Market Bar SUDSCIHPLONviiiiiiiiiiieeeeee e e e e e e e e e e e e eeeeeees 195
A.4.1 Market Bar Subscription Settingscccoooiiiiiiiii s 195
A.4.2 Market Bar Subscription: Data Events ReSPONSecoocciiiiiiieeiiiiiiiiieeeee. 195
A.5 Schema for Market Data and Custom VWARPooo i 197
A.5.1 MarketDataEvents: ChOiCE.......ccoiiii e 197
A.5.2 Market Data Service Subscription Options.............eeviiiiiiiiiiiie e 197
A.5.3 MarketDataEvents: SEQUENCE...........c.uuiiiiiiiiiiiee e 197
A.5.4 Market VWAP Service Subscription OptionsS............ccceeiiiiiiiiiiieiieeeeiiiieeeeeenn 208
A.6 Schema for APl AUthOFZAtioNvviiiiiiiiiiiie e e e 209
A.6.1 Authorization REQUEST ... 209
A.6.2 Authorization Request RESPONSEuuiii s 210
A.6.3 Logon Status REQUESTeeiiiiiiiiie e 211
A.6.4 Logon Status Request RESPONSE.... ... 211
A.6.5 User Entitlements ReqUEST ... 212
A.6.6 User Entitlements Request RESPONSE...... ... 212
A.6.7 Security Entitlements Requestouiiiiiiiiiii 213
A.6.8 Security Entitlements Request RESPONSE ... 213
A.6.9 Authorization TOKEN REQUEST e 214
A.6.10 Authorization Token Request RESPONSE 214
A.6.11 Field Service Response Elements....... ..o 215
A.6.12 Field Service ReqUESE ValIUES ... 215

B Java EXaAmPIEScooomrimieiiiiiieiieeeimeeeemieeeceeseeenneesrensrsnnrennne s s neen e e e reenneeneennneeneeneennnnennnenrennnenees 216
B.1 Request Response Paradigm ... e 217
B.1.1 Request Response Paradigm Output.............ccooiiii e, 219
B.2 Subscription Paradigmooiiiiiiiiiii e 220
B.3 Asynchronous Event Handlingoocuuiiiiiiioiiii e 224
B.3.1 Asynchronous Event Handling: OQutput ... 227
B.4 Request ResSponse MUILIPIE ... e 228
B.4.1 Request Response Multiple: Output...........ooooi 231
B.5 SubSCription MURIPIE ... e 232
B.5.1 Multiple Subscription: Output 235

Table of Contents 7

Bloomberg

B.6 Authorization by IP AdAress oo 242

O (1= 8 - 141 o =PRI 248
C.1 RequestResponseParadigm ..., 249
C.1.1 Request Response Paradigm OQUIPUL...........cooeiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 251

C.2 Subscription Paradigm ..., 252
C.3 Asynchronous Event Handlingcccoo o, 258
C.3.1 Asynchronous Event Handling: Outputcooooiviiiiiiiiiiiiiiiiieeeeeeeeeeeee, 262

C.4 Request Response MUIIPIE ... 263
C.4.1 Request Response Multiple: OQULPUL............ueiiiiiiiiii e 266

C.5 Subscription MUIIPIE e e e e e 267
C.5.1 Multiple Subscription: OQutput oo 270

[I 00 b €= 1 1]] =P 275
D.1 RequestResponsSeParadigmcceuuiiiiiiiiiiiiiieecee et 276
D.2 Subscription Paradigmcooii i 279
D.3 Asynchronous Event Handlingoeoiiiiiiii e 284
D.4 Request Response MURIPIEeevviiiiiiiiiieeieeeeeeee e e e e 288
D.5 SubSCription MUIIPIEuevieiiiiiiiiiieeieeiee e e e e e e e e e e e e e e eeeeeeeeeeeeeees 292

o O o =g 1 o =PRI 301
E.1 RequestResponNSeParadigmeeeeeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e e e ee e e e e e e eeeeeeeeeeeeeeeeeees 302
E.2 Subscription Paradigmcoooiiiiiiiiiii e 307
E.3 Asynchronous Event Handlingoeieiiioiiiiiie e 316
E.4 Request RESPONSE MUILIPIEeviiiiiiiiiiiiiiiieiiee ettt e e e e e e e e e e eeeeeeees 321
E.5 Subscription MUIIPIEeeieeiiiiiiieeeee ettt e e e e e e e eeeeeeees 329

Table of Contents 8

Bloomberg

Preface: About this Document

Purpose

This document provides a guide to developing applications using the Bloomberg API.

Audience

This document is intended for developers who use the Bloomberg API.

Document History

Version Date Description of Changes

1.0 11/05/09 | This is the first release of the Bloomberg API Developer’s Guide.

1.28 05/25/11 | Add bsid to the Topic Prefix list in “Security/Securities” on page 53.
Updated “Authorization Lifetime” on page 82.

1.29 06/27/11 | Updated “IntradayTickRequest: Sequence” on page 168 and
added ‘BEQSRequest: Sequence” on page 177.

1.30 08/04/11 | Updated “Field Information Request Response” on page 183.
Updated “Entitlements” on page 96.

1.31 09/20/11 | Fixed code formatting on page 212.

1.32 11/08/11 | Added details to “Page Data Service” on page 68.

1.33 01/10/12 | Updated “Overrides” on page 55 to specify that 100 overrides can
be specified in a single request.
Added note to page 48 about creating subscriptions with C#.

1.34 01/27/12 | Updated license notice on front page.

1.35 07/31/12 | Added “Managed B-Pipe” on page 115 and updated “Schemas” on
page 159.

1.36 10/03/12 | Corrected items in Table 9-4, “Chain Subservice Examples.” on
page 139 and Table 9-5, “Additional "chain" Subscription Exam-
ples,” on page 140.

1.37 02/11/13 | Added “Instruments Service” on page 76. Updated “Managed B-
Pipe” on page 115.

1.38 03/25/13 | Updated MD_BOOK_TYPE codes on page 122 and Notes on
page 130.

Preface: About this Document

Bloomberg

1 Introduction to the Bloomberg API

1.1 Overview of the Bloomberg API

The Bloomberg API provides developers with 24x7 programmatic access to data from the
Bloomberg Data Center for use in customer applications.

The Bloomberg API lets you integrate streaming real-time and delayed data, reference data,
historical data, intraday data, and Bloomberg derived data into your own custom and third-
party applications. You can choose which data you require down to the individual field level.

The Bloomberg API uses an event-driven model. The interface is thread-safe and thread-
aware, giving applications the ability to utilize multiple processors efficiently. The Bloomberg
APl automatically breaks large results into smaller chunks and can provide conflated
streaming data to improve the bandwidth usage and the latency of applications.

The Bloomberg API supports run-time downloadable schemas for the services it provides
and provides methods to query these schemas at runtime. This means the Bloomberg API
can support additional services without additions to the interface. It also makes writing
applications that can adapt to changes in services or entirely new services simple.

1 Introduction to the Bloomberg API 11

Bloomberg

1.1.1 Features

Feature Details

Four Languages, One | API 3.0 provides all new programming interfaces in:
Interface

Java
C

C++
.Net

The Java, .Net and C++ object models are identical, while the C
interface provides a C-style version of the object model. You are
able to effortlessly port applications among these languages as
the needs of your applications change.

Lightweight Interfaces | The API 3.0 programming interface implementations are
extremely lightweight. The lightweight design makes the process
of receiving data from Bloomberg and delivering it to
applications as efficient as possible.

It is now possible to get the maximum performance out of the
Java, .Net, C, and C++ versions of the interface.

Extensible Service- The new API generically understands the notions of subscription
Oriented Data Model and request-response services.

The subscribe method and request method allow you to send
requests to different data services with potentially different or
overlapping data dictionaries and different response schemas.

This, in combination with the new canonical data form, means
that Bloomberg can deliver new data services via the API
without having to extend the interface to support the new

services.
Field Level You are now able to request updates for only the fields of
Subscriptions interest to your application, rather than receiving all trade and

quote fields when you establish a subscription.

This reduces the overhead of processing unwanted data within
both the API and your application, and also reduces network
bandwidth consumption between Bloomberg and its customers.

For example, if quotes are of no interest to an application,
processing and bandwidth consumption can be cut by as much
as 90%.

1 Introduction to the Bloomberg API 12

Bloomberg

Feature Details

Summary events

When you subscribe to market data for a security, the API
performs two actions:

1. It retrieves a summary of the current state of the security
and delivers it to you.

A summary is made up of data elements known as fields.
The set of summary fields varies depending on the asset
class of the requested security.

2. The API streams all market data updates to you as they
occur and continues to do so until you cancel the
subscription.

About 300 market data fields are available via the API
subscription interface, most of them derived from trade and
quote events.

Interval-based
Subscriptions

Many users of API data are interested in subscribing to large
sets of streaming data but only need summaries of each
requested security to be delivered at periodic intervals.

The API subscription model allows you to specify the minimum
interval at which to receive streaming updates. This reduces
processing and bandwidth consumption by delivering only an
updated summary at the interval you define.

It is also possible to establish multiple subscriptions such that a
summary arrives periodically but other fields, such as
traderelated fields are delivered in real-time.

No Request Size
Restrictions

API 3.0 allows you to request a potentially unlimited number of
securities and fields without having to manage request rates
yourself.

The API infrastructure manages the distribution of these
requests across Bloomberg's back end data servers, which in
turn ensure that all arriving data requests are given equal access
to the available machine resources.

Canonical Data Format

Each data field returned to an application via the API is now
accompanied by an in-memory dictionary element that indicates
the data type (for example, integer, double) and provides a
description of the field - the data is self-describing.

Data elements may be simple, such as a price field, or complex,
such as historical prices or bulk fields. All data is represented in
the same canonical form and developers do not have to deal
with multiple data formats or be exposed to the details of the
underlying transport protocol.

1 Introduction to the Bloomberg API 13

Bloomberg

Feature Details

Thread-Safe All language bindings for the new API are now fully thread-safe.
Applications can safely process responses and make requests
simultaneously from multiple threads of execution.

32- and 64-bit The Java and .Net API work on both 32- and 64-bit platforms.
Programming Support | The C and C++ API libraries come in a 32-bit version with a
64- bit version coming in the future.

Pure Java The Java APl is implemented entirely in Java. Bloomberg did not

Implementation use JNI to wrap either our existing C library or the new C++
library.

Fully Introspective data | An application can discover a service and its attributes at

model runtime.

Simplified Release 3.0 of the Server API provides a simplified

Permissioning Model permissioning model that allows you to simply provide a user’s

UUID and IP address. The API returns the permissions to you.

The Bloomberg API is the interface to the following Bloomberg products:
The Bloomberg Platform
Managed B-PIPE
Server API
Desktop API

1.1.2 The Bloomberg Platform

The Bloomberg Platform is a revolutionary step in market data distribution — a new managed
service that extends well beyond traditional industry solutions. Providing real-time delayed,
and historical market data, as well as global publishing, trusted entitlements, and much more,

1 Introduction to the Bloomberg API 14

Bloomberg

the Bloomberg Platform is a complete high-volume, low-latency service to end users,
applications, and displays throughout your entire financial firm (see Figure 1-1).

s >
Bloomberg Data Center

+ Entitlement/Authe on
* Histo
A v
" \ ™
Client Site
W
] =]
) . —
= [— —
”'.I .'::II ' I"I:':-,mf_"l'i' % Market Data Market Data
- - Only User Only User
Server
. Y,

Figure 1-1: The Bloomberg Platform

1.1.3 Managed B-PIPE

Managed B-PIPE leverages the Bloomberg distribution platform and managed entitlements
system. Managed B-PIPE allows clients to connect applications providing solutions that work
with client proprietary and 3rd party applications. Managed B-PIPE provides the tools to
permission data to entitled users only. Client applications will use the Bloomberg entitlements
system to ensure distribution of data to only appropriately entitled users (see Figure 1-2).

1 Introduction to the Bloomberg API 15

Bloomberg

- Y
Bloomberg Data Center

ntitlement/Authenti

. vy
A
s ™
Client Site
Bloomberg Appliance
Mon
Bloomberg Bloomberg Bloomberg Blackbox
User User User
v —
-\.[] r - E
e ar —
—)
37 Parh Intermnal %
Application Frop App Internal
Prop App Algaorithmic
Trading
\ Application)

Figure 1-2: Managed B-PIPE

1.1.4 The Desktop API and Server API

The Desktop APl and Server API have the same programming interface and behave almost
identically. The chief difference is that customer applications using the Server APl have some
additional responsibilities. Those additional requirements will be detailed later in this
document (see Bloomberg API Developer’s Guide: Authorization and Permissioning);
otherwise, assume the two deployments are identical.

Note that in both deployments, the end-user application and the customer’s active
BLOOMBERG PROFESSIONAL service share the same display/monitor(s).

1 Introduction to the Bloomberg API 16

Bloomberg

The Desktop API

The Desktop APl is used when the end-user application resides on the same machine as the
installed BLOOMBERG PROFESSIONAL service and connects to the local Bloomberg
Communications Server (BBComm) to obtain data from the Bloomberg Data Center (see
Figure 1-3).

g Bloomberg Data Center A

Ticker Plant

« Fead Handlars

« Entitlement/Authentication
« Histary

» Analytics

RN
/ A\

-
Client Site
s N 7 ,\
bbcomm
.
Bloomberg Bloomberg
Termina Terminal
User 1 User 2
- S y
\ A

Figure 1-3: The Desktop API
The Server API

The Server API allows customer end-user applications to obtain data from the Bloomberg
Data Center via a dedicated process, known as the Server API process. Introduction of the
Server API process allows, in some circumstances, better use of network resources.

When the end-user applications interact directly with the Server API process they are using
the Server APl in User Mode (see Figure 1-4).

1 Introduction to the Bloomberg API 17

Bloomberg

(Bloomberg Data Center A

« Tickar Plant
+ Fead Handlers
« Entitlement/Authentication
History
Analylics
p A
' ™
Client Site Server APl Process
' ™ '
))
Bloomberg Eloomberg
Terminal Terminal
User 1 User 2
\ A \ A
(. S

Figure 1-4: The Server API: User Mode

When the customer implements a Customer Server Application to interact with the Server
API process (see Figure 1-5), the Server API is then being used in Server Mode (by the
Customer Server Application). Interactions between the Customer Server Application and the

Customer End-User Application(s) are handled by an application protocol of the customer’s
design.

1 Introduction to the Bloomberg API 18

Bloomberg

4 p
Bloomberg Data Center

= Ticker Flant
= Fead Handlars
= Enfilemeant/Authentication

& Hislory
» Analytics
\ S
M
' ™
Client Site
Server APl Process
Customer Server
Application
Froprietary Customer Proprietary Customer
Application Protocol Application Protocol
- ™ 'd ™
Bloomberg Bloomberg
Tarminal Terminal
User 1 User 2
N S N A
_ J

Figure 1-5: The Server API: Server Mode

1.2 The Programming Examples

The Bloomberg API is provided as Java, .Net, C++, and C libraries. The libraries share the
same object model, class and method names, and programming paradigm to make it easy for
developers to switch languages. In this document, Java is used for the sample code and for
the programming interface specification.

1 Introduction to the Bloomberg API 19

Bloomberg

Complete, contiguous listings of the Java code examples are provided in “Java Examples” on
page 216 and the programming interface specification is found in
‘Schemas” on page 116.

For the sample programs in the other supported languages see:

“.Net Examples” on page 248

“C++ Examples” on page 275

“C Examples” on page 301

1.3 Typical Application Structure

The Bloomberg API object model contains a small number of key objects which applications
use to request, receive and interpret data.

An application creates a Session object to manage its connection with the Bloomberg
infrastructure. (Some applications may choose to create multiple Session objects for
redundancy).

Using the Session object, an application creates a Service object and then “opens’ each
Bloomberg service that it will use. For example, Bloomberg provides streaming market data
and reference data as services.

There are two programming paradigms that can be used with the Service object. The client
can make individual requests (via a Request object) for data or the client can start a
subscription (managed via a Subscription object) with the service for ongoing data
updates. Depending on the services being used, a customer application may be written to
handle both paradigms. Whichever paradigm or paradigms are used, the Bloomberg
infrastructure replies with events (received at the client as Event objects) which the client
must handle asynchronously.

Programmatically, the customer application obtains Event objects for the Session and then
extracts from those Event objects one or more Message objects containing the Bloomberg
data.

1.4 Overview of this Guide

The rest of this guide is arranged as follows

First a small but complete example program is presented to illustrate the most
common features of the Bloomberg API. See “Sample Programs in Two Paradigms”

on page 21.

This is followed by detailed descriptions of the key scenarios in using the Bloomberg
API: creating a session; opening services; sending requests and processing their
responses; subscribing to streaming data and processing the results. See “Sessions
and Services” on page 30, “Requests and Responses” on page 38, and
“Subscriptions” on page 46.

1 Introduction to the Bloomberg API 20

Bloomberg
2 Sample Programs in Two Paradigms

2.1 Overview

This chapter demonstrates the most common usage patterns of the Bloomberg API. The
major programming issues are addressed at a high level and working example code is
provided as a way to quickly get started with your own applications. Later chapters will
provide additional details that are covered lightly here. The Bloomberg API has two different
models for providing data (the choice usually depends on the nature of the data): request/
response and subscription. Both models are shown in this chapter.

The major steps required of an application are:

The creation and startup of a Session object which the application uses to specify
the data it wants and then receive that data.

Data from the Bloomberg infrastructure is organized into various “services”. The
application "opens" the service that can provide the needed data (e.g., reference
data, current market data).

The application asks the service for specific information of interest. For example,
the last price for a specific security.

The application waits for the data to be delivered.

Data from the service will arrive in one or more asynchronously delivered Event objects. If
an application has several outstanding requests for different data, the data arriving from
these multiple requests may be interleaved with each other; however, data related to a
specific request always arrives in order.

Note: To assist applications in matching incoming data to requests, the Bloomberg
API allows applications to provide a CorrelationID object with each request.
Subsequently, the Bloomberg infrastructure uses that identifier to tag the events
sent in response. On receipt of the Event object, the client can use the identifier it
supplied to match events to requests.

Even if an application (such as the examples in this chapter) makes only a single request for
data, the application must also be prepared to handle status events from the service in
addition to the requested data.

2 Sample Programs in Two Paradigms 21

Bloomberg

The following display provides an outline of the organization used in these examples.

import classes
public class Examplel {
private static void handleDataEvent (Event event) throws Exception

private static handleOtherEvent (Event event) throws Exception

public static void main (String[] args) throws Exception
{
create and start Session

use Session to open service

ask service for data
(provide id for service to label replies)

loop waiting for data; pass replies to event handlers

The additional details needed to create a working example are provided below.

2.2 The Two Paradigms

Before exploring the details for requesting and receiving data, we describe the two different
paradigms used by the Bloomberg API - Request/Response and Subscription

The Service defines which paradigm is used to access it. For example, the streaming real-
time market data service uses the subscription paradigm whereas the reference data service
uses the request/response paradigm. See for more information
on the Core Services provided by the Bloomberg API.

Note: Applications that make heavy use of real-time market data should use the streaming
real-time market data service. However, real-time information is available through the
reference data service requests where you will get a snapshot of the current value in the
response.

2.2.1 Request/Response

In this case, data is requested by issuing a Request and is returned in a sequence
consisting of zero or more Events of type PARTIAL RESPONSE followed by exactly one
Event of type RESPONSE. The final RESPONSE indicates that the Request has been
completed.

2 Sample Programs in Two Paradigms 22

Bloomberg

In general, applications written to this paradigm will perform extra processing after receiving
the final RESPONSE from a Request.

2.2.2 Subscription

In this case a Subscription is created which results in a stream of updates being delivered

in Events of type SUBSCRIPTI
the application.

ON_DATA until the Subscription is explicitly cancelled by

2.3 Using the Request/Response Paradigm

A main function for a small but complete example using the Request/Response paradigm is

shown below:

public static wvoid
SessionOptions
sessionOptions.
sessionOptions.

if
System.out.

}

if
System.out.

Session session
(!session.start())

(!session.openService ("//blp/refdata™))

main (String[] args) throws Exception {
sessionOptions new SessionOptions();
setServerHost ("localhost"); // default value
setServerPort (8194) ; // default value
= new Session (sessionOptions) ;

{

println ("Could not start session.");

System.exit (1) ;

{

println ("Could not open service " +
"//blp/refdata") ;

System.exit (1) ;

2 Sample Programs in Two Paradigms

23

Bloomberg

CorrelationID requestID = new CorrelationID(1) ;
Service refDataSvc = session.getService ("//blp/refdata");
Request request =
refDataSvc.createRequest ("ReferenceDataRequest") ;
request.append ("securities", "IBM US Equity");
request.append("fields", "PX LAST");
session.sendRequest (request, requestID) ;
boolean continueToLoop = true;
while (continueToLoop) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.RESPONSE: // final event
continueToLoop = false; // fall through
case Event.EventType.Constants.PARTIAL RESPONSE:
handleResponseEvent (event) ;
break;
default:
handleOtherEvent (event) ;
break;

The major steps are:

A Session is created and started; then that Session is used to open a service
named "/ /blp/refdata", a service that provides data according to the Request/
Response paradigm.

In this example, the values explicitly set for host and port correspond to the default
values for Session; supply the values for your installation. If the default values
suffice then Session construction can be simplified to:

Session session = new Session();

The Session is used to obtain refDataSvc, a handle for the service, which is
used to obtain an empty Request object for the "ReferenceDataRequest"
operation.

The empty request object is customized to the data needed for this application: the
security of interestis "IBM US Equity", the Bloomberg field of interest is
"PX_ LAST" (last price).

The request is sent to the service along with reque st ID, an application specified
CorrelationID. (The value chosen is not important for this example.)

The application enters a loop that makes a blocking request for nextEvent from
the Session. Each Event is handled according to its type.

Both PARTIAL RESPONSE and (final) RESPONSE events are handled by the
user defined handleResponseEvent method. The only difference is that

2 Sample Programs in Two Paradigms 24

Bloomberg

the (final) RESPONSE changes the state of continueToLoop so that the
looping stops and the application terminates.

Event objects of any other type are handled by a different user defined
handler, handleOtherEvent.

In this application, the event handlers simply output some information about the received
events.

private static void handleResponseEvent (Event event) throws Exception

System.out.println ("EventType =" + event.eventType())
Messagelterator iter = event.messagelterator();
while (iter.hasNext ()) {

Message message = iter.next ()

System.out.println ("correlationID=" +
message.correlationID()) ;
System.out.println ("messageType =" +
message.messageType ()) ;
message.print (System.out) ;

This handler outputs the key features of the received Event.

Each Event has a type and possibly some associated Messages which can be
obtained via the MessageIterator obtained from the Event.

Each Message from these response events shows the same CorrelationID
that was specified when the Request was sent. Additionally, each Message has
a type.

Finally, there is a print method to output the details of the Message in a default
format.

Sample output is shown below:

EventType =RESPONSE
correlationID=User: 1

messageType =ReferenceDataResponse
ReferenceDataResponse (choice) = {
securityDatal[] = {
securityData = {
security = IBM US Equity
sequenceNumber = 0
fieldData = {

PX LAST = 82.14

2 Sample Programs in Two Paradigms 25

Bloomberg

However, this response to our query is not the only output from this program. This
application also receives Events of type neither PARTIAL RESPONSE nor RESPONSE.

EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted
SessionStarted = {

}

EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened
ServiceOpened = {

}

This output comes from the event handling function called from the default case of the
switch statement. The events reported here are returned in response to the applications
starting of a session and opening of a service.

private static void handleOtherEvent (Event event) throws Exception
{
System.out.println ("EventType=" + event.eventType())
Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {
Message message = iter.next();
System.out.println ("correlationID=" +
message.correlationID());
System.out.println ("messageType=" + message.messageType ())
message.print (System.out) ;
if (Event.EventType.Constants.SESSION STATUS ==

event.eventType () .intValue ()
&& "SessionTerminated" ==
message.messageType () .toString()) {
System.out.println ("Terminating: " +

message.messageType()) ;
System.exit (1) ;

The overall organization of handleOtherEvent is quite similar to that of
handleResponseEvent but there are some notable differences:

Some messages (e.g., system messages) may not have a CorrelationID. The
handler must be able to handle such cases.

Note: The SERVICE STATUS correlation ID has type Internal because it was
automatically generated. The RESPONSE correlation ID that was explicitly specified
by the application is typed User.

There may be events that do not arise from application request; for example, an
unexpected session shutdown.

2 Sample Programs in Two Paradigms 26

Bloomberg
2.4 Using the Subscription Paradigm

Our example application requesting subscription data is quite similar to that shown to
illustrate the request/response paradigm. The key differences are shown in bold font.

public static void main (String[] args) throws Exception {
Create and start session.
if (!session.openService ("//blp/mktdata")) {
System.err.println ("Could not start session.");
System.exit (1) ;
}

CorrelationID subscriptionID = new CorrelationID(2) ;

SubscriptionlList subscriptions = new SubscriptionList() ;
subscriptions.add (new Subscription ("AAPL US Equity",
"LAST PRICE",

subscriptionlID)) ;
session.subscribe (subscriptions) ;
int updateCount = 0;
while (true) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.SUBSCRIPTION DATA:
handleDataEvent (event, updateCount++) ;
break;
default:
handleOtherEvent (event) ;
break;

The service opened by this application has been changed from"//blp/refdata"
(reference data) a service that follows the request/response paradigm to
"//blp/mktdata" (market data), a service that follows the subscription paradigm.

Instead of creating and initializing a Request; here we create and initialize a
SubscriptionList and then subscribe to the contents of that list. In this first
example, we subscribe to only one security, "AAPL US Equity", and specify only
one Bloomberg field of interest, LAST PRICE (the subscription analog for

PX LAST, the field used in the request/response example).

The request/response example had application logic to detect the final event of the
request and then break out of the event-wait-loop. Here, there is no final event. A
subscription will continue to send update events until cancelled (not done in this
example) or until the session shut down (handled, as we did before, in the
handleOtherEvent method).

The event type of particular interest is now SUBSCRIPTION DATA. In this
example, these events are passed to the handleEventData method.

2 Sample Programs in Two Paradigms 27

Bloomberg

The handleDataEvent method is quite similar to handleResponseMethod. The
additional parameter, updateCount, is used in this simple example just to enhance the
output.

private static void handleDataEvent (Event event, int updateCount)
throws Exception

System.out.println ("EventType=" + event.eventType())
System.out.println ("updateCount = " + updateCount) ;
Messagelterator iter = event.messagelterator();
while (iter.hasNext()) {
Message message = iter.next();
System.out.println ("correlationID = " +
message.correlationID()) ;
System.out.println ("messageType =" +
message.messageType()) ;
message.print (System.out) ;

Despite these many similarities, the output from the subscription is considerably different

from that of the request/response. Examine the output for a random event in the sequence:

EventType=SUBSCRIPTION DATA
updateCount = 54
correlationID = User: 2
messageType MarketDataEvents
MarketDataEvents = {
LAST PRICE = 85.71
VOLUME = 18969874
LAST TRADE = 85.71
LAST ALL SESSIONS = 85.71
EQY TURNOVER REALTIME = 1.6440605281984758E9
ALL PRICE SIZE = 100
ALL PRICE = 85.71
SIZE LAST TRADE TDY = 100
RT PX CHG NET 1D = -4.29
RT PX CHG PCT 1D = -4.767
VOLUME TDY = 18969874
LAST PRICE TDY = 85.71
LAST2 PRICE = 85.719
LAST DIR = -1
LAST2 DIR = 1
SIZE LAST TRADE = 100
TIME = 19:06:30.000+00:00
TRADE SIZE ALL SESSIONS RT = 100
EVENT TIME = 19:06:30.000+00:00
EID = 14005
IS DELAYED STREAM = false

2 Sample Programs in Two Paradigms

28

Bloomberg

Clearly, this subscription event provides much data in addition to LAST PRICE, the
specifically requested field (shown in bold above). A later example will demonstrate how a
customer application can extract and use the value of interest.

Note: The Bloomberg infrastructure is at liberty to package additional fields in the

data returned to a client; however, the client cannot validly expect any data except
the requested fields. This sample output shows that the requested field is the first
data out of message; that is happenstance and cannot be assumed.

The output of the otherEventHandler method also shows differences from the first
example.

EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted
SessionStarted = {

}

EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened
ServiceOpened = {

}

EventType=SUBSCRIPTION_ STATUS
correlationID=User: 2
messageType=SubscriptionStarted

SubscriptionStarted = {

}

In addition to the events for the start of session and opening of a service, which were seen in
the request/response example, we also see here an event signaling that a subscription has
been initiated. The empty SubscriptionStarted message indicates successful
starting of the subscription; otherwise, there would have been error information. The value of
the CorrelationID informs the customer application which subscription (of possibly
many subscription requests) has been successfully started.

2 Sample Programs in Two Paradigms 29

Bloomberg
3 Sessions and Services

3.1 Sessions

The Session object provides the context of a customer application's connection to the
Bloomberg infrastructure via the Bloomberg API. Having a Session object, customer
applications can use them to create Service objects for using specific Bloomberg services.
Depending on the service, a client can send Request objects or start a subscription. In
both cases, the Bloomberg infrastructure responds by sending Event objects to the
customer application.

3.2 Services

All Bloomberg data provided by the Bloomberg API is accessed through a "service" which
provides a schema to define the format of requests to the service and the events returned
from that service. The customer application's interface to a Bloomberg service is a
Service object.

Accessing a Service is a two step process.

Open the Service using either the openService orthe openServiceAsync
methods of the Session object.

Obtain the Service object using the get Service method of the Session
object.

In both stages above, the service is identified by its "name", an ASCII string formatted as
"//namespace/service"; for example, "/ /blp/refdata”.

Once a service has been successfully opened, it remains available for the lifetime of that
Session object.

3.3 Event Handling

The Bloomberg API is fundamentally asynchronous - applications initiate operations and
subsequently receive Event objects to notify them of the results; however, for developer
convenience, the Session class also provides synchronous versions of some operations.
The start, stop, and openService methods seen in earlier examples encapsulate the
waiting for the events and make the operations appear synchronous.

The Session class also provides two ways of handling events. The simpler of the two is to
call the nextEvent method to obtain the next available Event object. This method will
block until an Event becomes available and is well-suited for single threaded customer
applications.

3 Sessions and Services 30

Bloomberg

Alternatively, one can supply an EventHandler object when creating a Session. In this
case, the user-defined processEvent method in the supplied EventHandler will be
called by the Bloomberg APl when an Event is available. The signature for
processEvent method is:

public void processEvent (Event event, Session session)
// Note: no exceptions are thrown

The calls to the processEvent method will be executed by a thread owned by the
Bloomberg API, thereby making the customer application multi-threaded; consequently
customer applications must, in this case, ensure that data structures and code accessed from
both its main thread and from the thread running the EventHandler object are thread-
safe.

The two choices for event handling are mutually exclusive:

If a Session is provided with an EventHandler when it is created calling the
nextEvent method will throw an exception.

If no EventHandler is provided then the only way to retrieve Event object is by
calling the nextEvent method.

3 Sessions and Services 31

Bloomberg

3.3.1 Synchronous Event Handling

The following code fragments use synchronous methods on the Session and single
threaded event handling using the nextEvent method.

public static void main (String[] args) throws Exception {

SessionOptions sessionOptions = new SessionOptions();

sessionOptions.setServerHost ("localhost") ;

sessionOptions.setServerPort (8194) ;

Session session = new Session (sessionOptions) ;

if (!session.start()) {
System.out.println ("Could not start session.");
System.exit (1) ;

}

if (!session.openService ("//blp/refdata")) {
System.out.println ("Could not open service " +

"//blp/refdata") ;

System.exit (1) ;

}

Construct a request

Send the request via session.

boolean continueToLoop = true;

while (continueToLoop) {
Event event = session.nextEvent () ;
switch (event.eventType ().intValue()) {

case Event.EventType.Constants.PARTIAL RESPONSE:
Handle Partial Response
break;

case Event.EventType.Constants.RESPONSE: // final event
Handle Final Event

continueToLoop = false;
break;

default:
Handle Other Events
break;

}
session.stop () ;
System.exit (0) ;

3 Sessions and Services

32

Bloomberg
3.3.2 Asynchronous Event Handling

Use of asynchronous event handling shifts many programmatic details from the main
function to the event handler.

public static void main (String[] args) throws Exception ({
SessionOptions sessionOptions = new SessionOptions () ;
sessionOptions.setServerHost ("localhost") ;
sessionOptions.setServerPort (8194) ;
Session session = new Session(sessionOptions,
new MyEventHandler());
session.startAsync () ;
// Wait for events
Object object = new Object();
synchronized (object) {
object.wait () ;

}

The status for starting the asynchronous session will be received as an event and checked in
the handler. Also, there is no exit from main; logic in the event handler will determine when
the process should be terminated.

The MyEventHandler class is in this example a non-public class (it is used only by
main)implementing the EventHandler interface. The class also defines dumpEvent, a
"helper" function.

class MyEventHandler implements EventHandler ({

void dumpEvent (Event event) {
Output event type.
For each message, output the type and correlation ID.

public void processEvent (Event event, Session session) {
Details below.

3 Sessions and Services 33

Bloomberg

The processEvent method is organized to each of the expected events as well as
unexpected events:

public void processEvent (Event event, Session session) {

switch (event.eventType () .intValue()) {
case Event.EventType.Constants.SESSION STATUS: ({
If session started, open service.
break;

}

case Event.EventType.Constants.SERVICE STATUS: ({
If service opened successfully, send request.
break;

case Event.EventType.Constants.PARTIAL RESPONSE: {
Handle partial response.
break;

}

case Event.EventType.Constants.RESPONSE:
Handle final response.

break;
}
default: {
Handle unexpected response.
break;

}

Each case in processEvent will now be examined in greater detail.

We first show the processing of the event returned for starting the session. If successful, the
code will attempt to open the needed service. Since the openServiceAsync method
throws an exception on failure, but processEvent is not allowed to emit an exception, that
call must be surrounded by a try-catch block. In event of failure, this simple example
chooses to terminate the process.

3 Sessions and Services 34

Bloomberg

case Event.EventType.Constants.SESSION STATUS: ({
Messagelterator iter = event.messagelterator();

while (iter.hasNext ()) {
Message message = iter.next();
if (message.messageType () .equals ("SessionStarted")) {
try {

session.openServiceAsync ("//blp/refdata",
new CorrelationID(99));
} catch (Exception e) {
System.err.println (

System.exit (1) ;
}

} else {
Handle error.

break;

"Could not open //blp/refdata for async");

On receipt of a SERVICE STATUS type event, the messages are searched for one

indicating that the openServiceAsync call was successful: the message type must be
"ServiceOpened" and the correlation ID must match the value assigned when the request

was sent.

3 Sessions and Services

35

Bloomberg

If the service was successfully opened, we can create, initialize and send a request as has
been shown in earlier examples. The only difference is that the call to sendRequest must

be guarded against the transmission of exceptions, not a concern until now.

case Event.EventType.Constants.SERVICE STATUS: ({
Messagelterator iter = event.messagelterator();

while (iter.hasNext()) {
Message message = iter.next();
if (message.correlationID() .value() == 99
&& message.messageType () .equals ("ServiceOpened”)) {

//Construct and issue a Request

Request request =

request.append ("securities", "IBM US Equity");
request.append("fields", "LAST PRICE");
try {

} catch (Exception e) {

System.exit (1) ;
}

} else {
Handle other message types, 1f expected.

break;

Service service = session.getService ("//blp/refdata");

service.createRequest ("ReferenceDataRequest") ;

session.sendRequest (request, new CorrelationID(86)) ;

System.err.println ("Could not send request");

The handling of events containing the requested data is quite similar to the examples already

seen. One difference is that, in this example, on the final event, we terminate the process

from the event handler, not from main.

3 Sessions and Services

36

Bloomberg

case Event.EventType.Constants.PARTIAL RESPONSE: {
dumpEvent (event); // Handle Partial Response
break;

case Event.EventType.Constants.RESPONSE: {
dumpEvent (event); // Handle final response

// Example complete; shut-down.

try {
session.stop (Session.StopOption.ASYNC) ;

} catch (InterruptedException e) {
e.printStackTrace () ;

}

System.out.println ("terminate process from handler") ;

System.exit (0) ;

break;

Finally, for completeness, there is a default case to handle events of unexpected types.

default: {
System.err.println ("unexpected Event");
dumpEvent (event) ;
System.exit (1) ;
break;

3.4 Multiple Sessions

Most applications will only use a single Session; however, the Bloomberg API allows the
creation of multiple Session objects. Multiple instances of the Session class contend for
nothing and thus allow for efficient multi-threading.

For example, a customer application can increase its robustness by using multiple Session
objects to connect to different instances of the Server API process.

For another example, a customer application may need from a service both large,
heavyweight messages that require much processing as well as small messages that can be
quickly processed. If both were obtained through the same session, then the processing of
the heavy messages would increase latency on the lightweight messages. That situation can
be mitigated by handling the two categories of data with different Session objects and
different threads.

3 Sessions and Services 37

Bloomberg

4 Requests and Responses

The examples in earlier chapters have shown how to send requests for data and how to
handle the corresponding responses. This chapter examines in greater depth the techniques
for composing those requests and for extracting data from the response.

The example to be used here, a variation on those already covered, has the same overall
organization.

import classes
public class RequestResponseExample {
private static void handleResponseEvent (Event event) throws
Exception {

private static void handleOtherEvent (Event event) throws Exception {

}

public static void main (String[] args) throws Exception {
create session; start session; open service
create and initialize request
send request

loop until final response is received

Our focus will be on the creation and initialization of the request in main and, later, on the
extraction of data from the response in the user-defined handleResponseEvent method.

4.1 The Programming Example

The example explored in this chapter is RequestResponseMultiple.java. A complete
listing of this example and its output can be found in “Request Response Multiple” on

page 228.

Translations of RequestResponseMultiple. java to the other supported programming
languages are also provided:

RequestResponseMultiple.cs (‘Request Response Multiple” on page 263)

RequestResponseMultiple.cpp (‘Request Response Multiple” on
page 288)

RequestResponseMultiple.c (‘Request Response Multiple” on page 321)

4 Requests and Responses 38

Bloomberg

4.2 Elements

The services provided by the Bloomberg API collectively accept a great variety of different
types of requests which, in turn, often take many different parameters and options. The data
returned in response is correspondingly diverse in type and organization. Consequently,
requests and responses are composed of Element objects: instances of a class with great
flexibility in representing data.

Firstly, an Element object can contain a single instance of a primitive type such as
an integer or a string. Secondly, Element objects can also be combined into
hierarchical types by the mechanism of SEQUENCE or CHOICE.

A SEQUENCE is an Element object that contains one or more Element
objects, each of which may be of any type, similarto a struct inthe C
language.

A CHOICE is an Element object that contains exactly one E1ement object
of a type from a list of possible E1ement types. That list can be composed of
any Element types, similar to a union in the C language.

Element objects of the SEQUENCE and CHOICE categories can be nested to
arbitrary levels.

Finally, every Element is capable of representing an array of instances of its type.

The Element class also provides introspective methods (in addition to the introspective
methods provided by the Java language) which allow the programmatic discovery of the
structure of an Element object and any constituent E1ement objects. However, that level
of generality is required in few applications. Most applications can be written to a known
structure for request and response, as defined in the schema for a service. Should an
application’s structural assumptions prove incorrect (e.g., service schemas can be
redefined), then an Exception is generated at run-time.

Note: Incompatible changes to the schema of a Bloomberg core service are very
rare. In fact, so far there have been none. Should such changes ever be necessary,
they will be phased in and announced with ample warning.

4.3 Request Details

An earlier example showed how to request a single data item (a Bloomberg "field") for a
single security from the Reference Data Service. However, the Reference Data Service
accepts more general requests. The service specifies that each
"ReferenceDataRequest" can contain three Element objects:

a list of fields of interest, each a string type,

a list of securities of interest, each a string type, and

a list of overrides, each of type FieldOverride, a non-primitive type. This last
Element is optional and will not be used in this example.

Our present example begins much as before:

4 Requests and Responses 39

Bloomberg

the Session is created and started

the Service is opened and a handle to that Service is obtained.

These steps are performed by the following code fragment:

Session session = new Session();

session.start () ;

session.openService ("//blp/refdata™) ;

Service refDataSvc = session.getService ("//blp/refdata");

Given the handle to the service, here named refDataSvc, a Request can be created for
the request type named "ReferenceDataRequest".

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;

As described in the schema, this request consists of three E1ement objects named
"securities", "fields", and "overrides", each initially empty. These elements
represent arrays of strings so their values can be set by appending strings to them specifying
the securities and fields required, respectively.

request.getElement ("securities") .appendValue ("AAPL US Equity");
request.getElement ("securities") .appendValue ("IBM US Equity");
request.getElement ("securities") .appendValue ("BLAHBLAH US Equity");
request.getElement ("fields") .appendValue ("PX LAST"); // Last Price
request.getElement ("fields") .appendValue ("DS002") ; // Description
request.getElement ("fields") .appendValue ("VWAP VOLUME") ;

// Volume used to calculate the Volume Weighted Average Price (VWAP)

The request is now ready to be sent. Note that one of the securities was deliberately set to
an invalid value; later, we will examine the error returned for that item.

Note: This usage pattern of appending values of arrays of Elements occurs so
frequently that the Request class provides convenience methods that are more
concise (but also obscure the Element sub-structure):

request.append
request.append
request.append
request.append
request.append
request.append

"securities", "AAPL US Equity"):;
"securities", "IBM US Equity"):;
"securities", "BLAHBLAH US Equity");
"fields", "PX LAST");

"fields", "DS002");

"fields", "VWAP_VOLUME") p

e e e e

4 Requests and Responses 40

Bloomberg

The rest of main, specifically the event-loop for the response, is essentially the same as that
used in earlier examples. The main function is shown in its entirety below;

public static void main(String[] args) throws Exception {
Session session = new Session();
session.start () ;
session.openService ("//blp/refdata™);
Service refDataSvc = session.getService ("//blp/refdata");

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;

request.getElement ("securities") .appendValue ("AAPL US Equity"):;
request.getElement ("securities") .appendValue ("IBM US Equity");
request.getElement ("securities") .appendValue ("BLAHBLAH US Equity");
request.getElement ("fields") .appendvValue ("PX LAST"); // Last Price
request.getElement ("fields") .appendvValue ("DS002") ; // Description
request.getElement ("fields") .appendValue ("VWAP VOLUME") ;

// Volume used to calculate Volume Weighted Average Price (VWAP)

session.sendRequest (request, new CorrelationID(1l));
boolean continueToLoop = true;
while (continueToLoop) {
Event event = session.nextEvent () ;
switch (event.eventType () .intValue()) {
case Event.EventType.Constants.RESPONSE: // final response
continueToLoop = false; // fall through
case Event.EventType.Constants.PARTIAL RESPONSE:
handleResponseEvent (event) ;
break;
default:
handleOtherEvent (event) ;
break;

4.4 Response Details

The response to a "ReferenceDataRequest" request is an element named
"ReferenceDataResponse", an Element object which is a CHOICE of an Element
named "responseError" (sent, for example, if the request was completely invalid or if the
service is down) or an array of E1lement object named "securityData", each containing
some requested data. The structure of these responses can be obtained from the service

4 Requests and Responses 41

Bloomberg

schema, but is also conveniently viewed, as we have done earlier, by printing the response in
the response event handler code.

ReferenceDataResponse (choice) = {

securityDatal] = {
securityData = {
security = AAPL US Equity
sequenceNumber = 0
fieldData = {

PX_LAST = 173.025
DS002 = APPLE INC
VWAP_VOLUME = 3.0033325E7

The fact that the element named "ReferenceDataResponse" is an array allows each
response event to receive data for several of the requested securities. The Bloomberg API
may return a series of Message objects (each containing a separate
"ReferenceDataResponse") within a series of Event objects in response to a request.

However, each security requested will appear in only one array entry in only one Message
object.

Each element of the "securityData" array is a SEQUENCE that is also named
"securityData". Each"securityData" SEQUENCE contains an assortment of data
including values for the fields specified in the request. The reply corresponding to the
invalidly named security, "BLAHBLAH US Equity", shows that the number and types of
fields in a response can vary between entries.

ReferenceDataResponse (choice) = {

securityData[] = {
securityData = {
security = BLAHBLAH US Equity
securityError = ({
source = 100: :bbdbsl
code = 15

category = BAD SEC
message Unknown/Invalid security [nid:100]
subcategory = INVALID SECURITY

}

sequenceNumber = 2
fieldData = {
}

This response message has an Element not previously seen, named "securityError".
This E1lement provides details to explain why data could not be provided for this security.
Note that sending one unknown security did not invalidate the entire request.

4 Requests and Responses 42

Bloomberg

Just printing the response in the default format is educational but to perform any real work
with the response the values must be extracted from the received message and assigned
elsewhere for use. The following event handler shows how to navigate the Element
structure of the "ReferenceDataResponse".

The asElement method of Message provides a handle for navigating the contents of the
Message objects using Element methods. If an Element object is an array (e.g.,
securityDataArray)then the numvalues method provides the number of items in the
array.

Note: The Element class also provides similarly named method, numElements
(not used in this example), which returns the number of E1ement objects in a
SEQUENCE.

4 Requests and Responses 43

Bloomberg

private static void handleResponseEvent (Event event) throws Exception {

Messagelterator iter = event.messagelterator();
while (iter.hasNext ()) {

Message message = iter.next();

Element ReferenceDataResponse = message.asElement () ;

if (ReferenceDataResponse.hasElement ("responseError")) {

handle error
}
Element securityDataArray =
ReferenceDataResponse.getElement ("securityData") ;

int numItems = securityDataArray.numValues () ;

for (int 1 = 0; 1 < numItems; ++1i) {
Element securityData = securityDataArray.getValueAsElement (1) ;
String security = securityData.getElementAsString ("security") ;
int sequenceNumber =

securityData.getElementAsInt32 ("sequenceNumber") ;
if (securityData.hasElement ("securityError")) {
Element securityError =
securityData.getElement ("securityError") ;
handle error

return;

} else {
Element fieldData = securityData.getElement ("fieldData") ;
double px last = fieldData.getElementAsFloat64 ("PX LAST");
String ds002 = fieldData.getElementAsString ("DS002") ;

double vwap volume = fieldData.getElementAsFloat64 (
"VWAP VOLUME") ;

// Individually output each value

System.out.println ("* security =" + security);
System.out.println ("* sequenceNumber=" + sequenceNumber) ;
System.out.println("* px last =" + px last);
System.out.println ("* ds002 =" 4+ ds002);
System.out.println("* vwap volume =" + vwap volume) ;

(

System.out.println ("") ;

When stepping through the securityData array, the requested Bloomberg fields are
accessed by the name and type (e.g., getElementAsFloat64,
getElementAsInt32) as specified in the schema. Once values have been assigned to

4 Requests and Responses 44

Bloomberg

local variables they can be used as needed. In this simple example, they are merely output

individually in a distinctive format. The program output is shown below.

* security =AAPL US Equity
* sequenceNumber=0
* px last =173.025
* ds002 =APPLE INC
* vwap volume =3.0033325E7
* security =IBM US Equity
* sequenceNumber=1
* px last =126.46
* ds002 =INTL BUSINESS MACHINES CORP
* vwap volume =2885962.0
* security =BLAHBLAH US Equity
securityError = ({
source = 100::bbdbsl
code = 15
category = BAD SEC
message = Unknown/Invalid security [nid:100]
subcategory = INVALID SECURITY
}

The sequenceNumber is provided to allow the ordering of PARTIAL RESPONSE events
from the reference data service.

4 Requests and Responses

45

Bloomberg
5 Subscriptions

Subscriptions are ideal for data that changes frequently and/or at unpredictable intervals.
Instead of repeatedly polling for the current value your application gets the latest value as
soon as it is available without wasting time and bandwidth when there has been no change.

This chapter contains more details on how you can start, modify, and stop subscriptions as
well as what to expect as the result of a subscription and how to handle those results. This
chapter uses examples from the "/ /blp/mktdata" service.

Currently, the Bloomberg API services that provide a subscription service are market data
and Custom VWAP. In the future, the Bloomberg APl may support delivering information
other than market data through a subscription service.

5.1 The Programming Example

The example explored in this chapteris SubscriptionMultiple. java. A complete listing
of this example and its output can be found in

Translations of SubscriptionMultiple.java to the other supported programming
languages are also provided:
SubscriptionMultiple.cs ()
SubscriptionMultiple.cpp ()
SubscriptionMultiple.c ()

5.2 Starting a Subscription

There are four parts to creating a subscription; however several have default values:

The service name (for example, "/ /blp/mktdata"). If you do not specify the
service name the defaultSubscriptionService ofthe SessionOptions
object is used.

The topic. In the case of "/ /blp/mktdata" the topic value consists of an optional
symbology identifier followed by an instrument identifier. For example, "/cusip/
097023105"and"/sedol11/2108601" include the symbology identifier
whereas "IBM US Equity" omits the symbology identifier. If you do not specify
the symbology identifier then the defaul tTopicPrefix of the
SessionOptions objectis used.

Note: The topic's form may be different for different subscription services.

The options. These are qualifiers that can affect the content delivered. Examples in
"//blp/mktdata" include specifying which fields an application requires or
specifying an interval for conflated data.

5 Subscriptions 46

Bloomberg

The correlation ID. Data for each subscription is tagged with a correlation ID
(represented as a CorrelationID object) which must be unique to the session.
The customer application can specify that value when the subscription is created. If
the customer application does not specify a correlation ID, the Bloomberg
infrastructure will supply a suitable value; however, in practice, the internally
generated correlation ID is rarely used. Most customer applications assign
meaningful correlation ids that allow the mapping of incoming data to the originating
request or subscription.

You can represent any subscription as a single string that includes the service name, topic
and options. For example:

“//blp/mktdata/cusip/

097023105?fields=LAST PRICE,LAST TRADE ACTUAL"represents a
subscription using the market data service to an instrument (BA) specified by CUSIP
where any changes to the fields LAST PRICE or LAST TRADE ACTUAL from
the Bloomberg data model should generate an update.

"IBM US Equity?fields=BID,ASK&interval=2"representsa
subscription using the market data service to an instrument (IBM) specified by
Bloomberg Ticker where any changes to the fields BID or ASK from the Bloomberg
data model should generate an update subject to conflation restriction of at least two
seconds between updates. In this case, we are assuming that the Session has a

defaultSubscriptionService of"//blp/mktdata”anda
defaultTopicPrefix of "ticker/"

The Bloomberg API provides methods which accept the subscription specification as a single
string as well as methods in which the different elements of the subscription are specified as
separate parameters. Subscriptions are typically manipulated in groups so the Bloomberg

API provides methods that operate on a list of subscriptions. This example shows

subscription creation by several of these methods.

SubscriptionList subscriptions new SubscriptionList () ;
CorrelationID subscriptionID IBM = new CorrelationId(10);
subscriptions.add(new Subscription ("IBM US Equity",
"LAST TRADE",
subscriptionID IBM))) ;
subscriptions.add(new Subscription ("/ticker/GOOG US Equity",
"BID,ASK,LAST PRICE",
new CorrelationID (20)))
subscriptions.add(new Subscription ("MSFT US Equity",
"LAST PRICE",
"interval=.5",
new CorrelationID(30)));
subscriptions.add (new Subscription (
"/cusip/0970231052fields=LAST PRICE&interval=5.0", //BA US
new CorrelationID (40)));
session.subscribe (subscriptions) ;

Equity

5 Subscriptions

47

Bloomberg

NOTE: SubscriptionList in C# is simply an alias to
System.Collections.Generic.List<Bloomberglp.Blpapi.Subscription>, created with:

using SubscriptionList =
System.Collections.Generic.List<Bloomberglp.Blpapi.Subscription>;

SubscriptionList sl = new SubscriptionList () ;

sl.Add (new Subscription("4444 US Equity"));

Subscribing to this list of subscriptions returns an Event of type SUBSCRIPTION STATUS
consisting of a Message object of type SubscriptionStarted for each
CorrelationID. For example, the user-defined "dump" method used previous examples
shows:

eventType=SUBSCRIPTION STATUS
messageType=SubscriptionStarted
CorrelationID=User: 10
SubscriptionStarted = {

}
messageType=SubscriptionStarted
CorrelationID=User: 20
SubscriptionStarted = {

}
messageType=SubscriptionStarted
CorrelationID=User: 30
SubscriptionStarted = {

}
messageType=SubscriptionStarted
CorrelationID=User: 40
SubscriptionStarted = {

}

In case of an error, there is an Event to report the subscriptions that failed. For example, if
the specification for MSFT (correlation ID 30) above was mistyped (MSFTT) we would get the
event:

eventType=SUBSCRIPTION STATUS
messageType=SubscriptionFailure
CorrelationID=User: 30
SubscriptionFailure = {
reason = {

source = BBDB@plll

errorCode = 2

category = BAD SEC

description = Invalid security

5 Subscriptions 48

Bloomberg
5.3 Receiving Data from a Subscription

Once a subscription has started, the application will receive updates for the requested data in
Message objects arriving Event objects of type SUBSCRIPTION DATA. With each
message there is a CorrelationID to identify the subscription that requested the data.

The"//blp/mktdata" service typically responds with Message's which have more data
than was requested for the subscription. In our example, only updates to the LAST TRADE
field of IBM were requested in the subscription corresponding to CorrelationID 10.
Applications must be prepared to extract the data they need and to discard the rest.

See for more details onthe "/ /blp/mktdata" service.

eventType=SUBSCRIPTION DATA
messageType=MarketDataEvents
CorrelationID=User: 10
MarketDataEvents = {

IND BID FLAG = false

IND ASK FLAG = false

IS DELAYED STREAM = true

TIME = 14:34:44.000+00:00

VOLUME = 7589155

RT OPEN INTEREST = 8339549

RT PX CHG PCT 1D = -0.32

VOLUME TDY = 7589155

LAST PRICE = 118.15

HIGH = 118.7

LowWw = 116.6

LAST TRADE = 118.15

OPEN = 117.5

PREV_SES LAST PRICE = 118.53

EQY TURNOVER REALTIME = 8.93027456E8

RT PX CHG NET 1D = -0.379999

OPEN _TDY = 117.5

LAST PRICE TDY = 118.15

HIGH TDY = 118.7

LOW_TDY = 116.6

RT API MACHINE = p240

API MACHINE = p240

RT PRICING SOURCE = US

EXCH CODE_LAST = D

EXCH _CODE _BID = O

SES_START = 09:30:00.000+00:00

SES _END = 16:30:00.000+00:00

5 Subscriptions 49

Bloomberg
5.4 Modifying an Existing Subscription

Once you have created a subscription you may modify the options (for example, to change
the fields you wish to receive) using the resubscribe method of Session.

Note: Use of the resubscribe method is generally preferred to cancelling the subscription
(using the unsubscribe method) and creating a new subscription because updates might
be missed between the unsubscribe and subscribe calls.

As we saw with the subscribe method, the resubscribe method takes a
SubscriptionList. For example, to change the fields reported in the subscription
created earlier with the correlation ID of subscriptionID IBM we can use the following
code fragment:

SubscriptionList subscriptions = new SubscriptionList();
subscriptions.add (new Subscription ("IBM US Equity",
"BID,ASK",

subscriptionID IBM)) ;
session.resubscribe (subscriptions) ;

The client receives an Event object indicating successful re-subscription (or not) before
receipt of any data from that subscription.

Note: The behavior is undefined if the topic of the subscription (e.g., the security
itself) is changed.

5.5 Stopping a Subscription

The Bloomberg API provides an unsubscribe method that will cancel a single
subscription (specified by its CorrelationID)and another method that will cancel a list of
subscriptions. The following code fragment cancels all of the subscriptions created earlier.

SubscriptionList subscriptions = new SubscriptionList () ;
for (int id = 10; id <= 40; id += 10) {
subscriptions.add (new Subscription ("IBM US Equity",
new CorrelationID(id)));
// Note: The topic string is ignored for unsubscribe.
}

session.unsubscribe (subscriptions) ;

Note: No Event is generated for unsubscribe.

5 Subscriptions 50

Bloomberg
5.6 Overlapping Subscriptions

Your application may make subscriptions that "overlap".

One form of overlap occurs when a single incoming update may be relevant to more than one
subscription. For example, two or more subscriptions may specify the updates for the same
data item. This can easily happen inadvertently by "topic aliasing": one subscription specifies
a security by ticker, the other by CUSIP.

Another form of overlap occurs when separate data items intended for different subscriptions
on the customer application process arrive in the same Message object.

For example, the Bloomberg infrastructure is at liberty to improve performance by packaging
two data items within the same Message object. This can occur when a customer's
application process has made two separate subscriptions, where one includes a request for
"IBM US Equity"and "LAST TRADE", while the second one includes

"IBM US Equity"and"LAST TRADE".

The customer application developer can specify how the Bloomberg API should handle
overlapping subscriptions. The behavior is controlled by for the
allowMultipleCorrelatorsPerMsg option to the SessionOptions object
accepted by the Session constructor.

Ifthe allowMultipleCorrelatorsPerMsg optionis false (the default) then a
Message object that matches more than one subscription will be returned multiple times
from the MessageIterator, each time with a single, different CorrelationID.

Ifthe allowMultipleCorrelatorsPerMsg objectis true then a Message object
that matches more than one subscription will be returned just once from the
Messagelterator. The customer application developer must supply logic to examine the
multiple correlation ID values (see the numCorrelationIds and correlationIDAt
methods of the Message class) and dispatch the appropriate data to the correct application
software.

5.7 Conflation and the Interval Option

The API will conflate data only when requested with the Interval option on a subscription. If
multiple subscriptions exist for the same security across a range of intervals then the API will
have a single subscription from the Bloomberg cloud which is then "intervalized" as
appropriate and distributed to individual subscribers.

5.8 Delayed Data

Delayed Data (data for users / applications that are not explicitly entitled to real-time data) is
generally pre-conflated before leaving the Bloomberg cloud for client-side applications.

5 Subscriptions 51

Bloomberg

Please note that Desktop API and Server API will have automatic access to delayed data
(where available), whereas Managed B-Pipe requires explicit permission for access.

5.9 Subscription Life Cycle

There are several key points in the life cycle of a subscription:

Start-up: Subscriptions are started by the subscribe method of Session. An
Event object is generated to report the successful creation of any subscriptions
and separate events for each failure, if any.

Data Delivery: Data is delivered in Event objects of type SUBSCRIPTION DATA;
each such event has one or more messages; each such Message object has one
or more correlation IDs to identify the associated subscriptions. Since each
Message object may contain more data than requested in any individual
subscription, the code managing each subscription must be prepared to extract its
data of interest from the Message object.

Note: customer applications must not rely on the delivery of data that was not
explicitly requested in the subscription.

Modification: A list of subscriptions (each subscription identified by its correlation
ID) can be modified by the resubscribe method of Session.

Cancellation: Subscriptions (each subscription identified by its correlation ID) can
be cancelled by the unsubscribe method of Session.

Failure: A subscription failure (e.g., a server-side failure) is indicated by an Event
of type SUBSCRIPTION STATUS containing a Message to describe the problem.

5 Subscriptions 52

Bloomberg
6 Core Services

There are two core and five additional services for accessing Bloomberg data. Each API
service operates with either the subscription or request/response paradigm through following
well-defined schema. The schema defines the request and request options, with detailed

information in . This chapter provides an overview of each of these
services.

Reference Data Service "//blp/refdata”

Market Data Service "//blp/mktdata"

Custom VWAP Service "//blp/mktvwap"

Market Bar Subscription Service "//blp/mktbar"

API Field Information Service "//blp/apiflds"

Page Data Service "//blp/pagedata”

Technical Analysis Service "//blp/tasvc"

API Authorization "//blp/apiauth"

Important Notes:

1. Each Bloomberg data product using the Bloomberg APl may vary in the services
available and also the entirety of the service available. Please see the specific
product overview to determine which services are available.

2. Forinformation on the Managed B-Pipe-only services, please see

6.1 Common Concepts

6.1.1 Security/Securities

Where a request allows only a single security to be supplied, the field in the schema is named
"security" and is a simple string. Where a single request can handle multiple securities the
field in the schema is named "securities" and is defined as an array. For example, each
IntradayTickRequest can only return information on a single security, whereas
ReferenceDataRequest can return information on many securities.

6 Core Services 53

Bloomberg

A security must conform to the following syntax:
/[Topic Prefix]/SYMBOLOGY [@Pricing Source] [Exchange]

Where [Topic Prefix] is one of the following:

ticker cusip wpk isin buid
sedoll sedol?2 sicovam common bsid
svm cins cats bbgid

The default format for a security is the Bloomberg ticker format, for example,
"IBM US Equity". This format consists of:
SYMBOLOGY [Exchange] <Yellow Key>

SYMBOLOGY is required and is the ticker name

[Exchange] is optional and is a two character mnemonic for the exchange where
the security is traded. If you do not specify [Exchange] then the default value for the
user or for the Server API process will be used.

<Yellow Key> is the text equivalent of one of the Bloomberg yellow function keys.

Govt Corp Mtge
M-Mkt Muni Pfd
Equity Comdy Index
Curncy Client

The API will adjust the yellow key (Equity, Cmdty, Index...) to be in the correct format
despite the case that is used. An example is that it will adjust "equity" to "Equity".

The ticker and source are case sensitive and will need to be specified in the correct
casing for it to resolve. The only exception is if all characters are specified in lower
case in which the API will always change to upper case for both the ticker and
source. Hence "vod In" and "VOD LN" are the same and will both be successful,
however "vOD IN" will not resolve."

6.1.2 Pricing Source

Bloomberg allows you to specify a provider's pricing for a specific security or for a universe of
securities. However, you must have the providing firm's approval to use their pricing
information. If you do not specify a pricing source then the default value for the user of the
Server API process is used.

6 Core Services 54

Bloomberg

If you wish to specify which pricing source should be used append ¢ followed by the pricing
source to the security, for example, "/cusip/912828GM6@BGN" Or "MSFTRETPX US Equity".
Note for securities in the curncy Yellow Key use a space instead of @ to separate the security
from the pricing source, for example, "GBPUSD BAAM Curncy".

In Managed B-Pipe, if you request a security with a specific pricing source (e.g., CT10@BGN

Govt), and if there is not pricing available on the specified source, you will receive a 'Pricing
Not Available' error. Reference data requests that are not pricing specific will return data. In
the event that you are not entitled for the requested source, you will receive a 'Not Entitled'

error and no data will be returned.

In Desktop API and Server API, if you request a security with a specific pricing source and if
there is not pricing available on the specified source, Bloomberg systems will hunt through a
list of preferred sources to find pricing and return that pricing to you.

Note that the logic described above only applies to Corporate, Government, and Preferred
securities.

To find what pricing sources are available for a security, load the security then type
PCS<GO> on your Bloomberg. This will also tell you what your preferences for pricing source
are for that class of securities. If a pricing is not listed on this screen, then it is not available
through the Bloomberg API.

6.1.3 Fields

Some requests (for example, ReferenceDataRequest Of HistoricalDataRequest) as well
as subscriptions require you to specify which fields from the Bloomberg data model you wish
to receive. When using the Reference Data Service you can specify fields using either the
field mnemonic or the CALCRT ID. Returned values have the same name (field mnemonic or
CALCRT ID) specified in the request. However, when creating subscriptions you will only
receive the mnemonic, even if you are passing the CALCRT ID. Therefore, you will want to
use the mnemonic for subscriptions.

You can retrieve information about available fields programmatically using the Bloomberg API
Field Information Service ("//blp/apiflds") or you can use FLDS<GO> on your
BLOOMBERG PROFESSIONAL service.

6.1.4 Overrides

You can use overrides to change the basis on which Bloomberg calculates a derived field.
You can use this facility to perform "what if?" analysis. For example, override the bid price of
a bond (px_BID) and request the bid yield to maturity (vLp yTM BID) based on the value you
supplied for the bid price.

You can retrieve information about which fields react when a particular field is overridden
programmatically by using the Bloomberg API Field Information Service, "/ /blp/apiflds",
or you can use FLDS<GO> on your BLOOMBERG PROFESSIONAL service.

6 Core Services 55

Bloomberg

You can specify up to 100 overrides in a single request. The overrides are specified in the
request as an array of name/value pairs.
The value you supply is always represented as a string. If the override field requires:

A date, then the format is <yyyy><MM><DD>, where <yyyy> is a 4-digit year, <MM> is
a 2-digit month and <pp> is a 2-digit day. Therefore, August 4, 2010 would be
specified as 20100804.

A decimal value, then you must always use a "." (period) character as the decimal
separator regardless of any preferences you may have set in your operating system.

6.1.5 Relative Dates

The start and end date of a HistoricalDataRequest are specified using relative dates.
These are represented in a string format and allow a great deal of flexibility.

The syntax of the Relative Date is:
[A] [+/-nCU]

where [a] is the Anchor Date (details below) and [+/-ncu] is the Offset from the Anchor
Date (details below). Both parts are optional and the date is the result of applying the
specified Offset to the specified Anchor.

If the Anchor Date is omitted then the current date is used.
If the Offset is omitted then no offset is applied to the Anchor.
An empty string is equal to the current date

In the Offset, +/- defines the direction of the offset, n is a non-negative integer multiplier, c is
a Calendar Type, and v is a Period Unit. The integer multiplier in the Offset is optional

You may specify the Anchor portion in any of the following formats
<YYYy><MM><DD> format. The valid range is from 19000101 to 99991231.

The symbol £D is only valid in a start date and represents the supplied end date
anchor.

The symbol sD is only valid in an end date and represents the supplied start date
anchor.

<C><U><n><YYYY>, where:
<c> represents the calendar type, which can be either c (calendar) or r (fiscal).

<u> represents the period unit, which can be either ¢ (quarterly), s (semi-
annually) or v (yearly).

6 Core Services 56

Bloomberg

<n> represents a valid integer value for the specified period unit. So, for
Quarterly, <n> must be either 1, 2, 3, or 4. For Semi-annually, <n> must be
either 1 or 2. For Yearly, <n> must be 1 or it may be omitted.

<YYYY> represents the year. The valid range is from 1900 to 9999.

If you supply an offset it must always be in the form <+|->[n]<C><U>, where:

The first character is always a plus (+) or minus (-) sign to indicate the direction of
the offset from the Anchor date.

The second character (<n>) is an optional multiplier. It must be between 0 and
32767 and the default if it is not specified is 0.

The third character, <c> is either a (actual), ¢ (calendar) or F (fiscal).

For Actual or Calendar types the fourth character, <u> is either b (daily), w
(weekly), M (monthly), o (quarterly), s (semi-annually), or v (yearly).

For Fiscal calendar types the fourth character, <u>, is either ¢ (quarterly), s
(semi-annually) or v (yearly).

If you use the Actual calendar type, the offset is applied precisely with no "rounding”. For
example, +2aw from a Tuesday will result in the Tuesday two weeks hence. +1aM from the
16th will result in the 16th of the following month.

If you use the Calendar or Fiscal calendar types, the resulting date is rounded down to the
last active date of the previous period. For example, +1cw from a Tuesday will result in the
Friday of the same week, +1cM from the 16th will result in the last active day of that month,
+cuM from the 16th will result in the last active day of the previous month.

If the multiplier is not specified and defaults to 0 the resulting date will be the same as the
Anchor if the Actual calendar type is used. If the Anchor is Calendar or Fiscal calendar type
then the resulting date will be the end of the prior period.

20080409 represents 9 April 2008.
CQ42007 represents 31 December 2007
20080409-1aM represents 9 March 2008 - exactly one month previous to the anchor.

20080409-1cM represents 29 February 2008 - the end of the month prior to 9 March
2008.

A start date of 20080409-3cM and an end date of 20080409-cM will provide a range
that covers the three calendar months prior to the anchor date of 9 April 2008 (that
is, January, February and March).

-3cQ evaluated on 23 June 2008 represents 29 June 2007 (because 30 June 2007
was a Saturday).

A start date of 20080409-2a0 and an end date of sp+1aD represents a range from 9
October 2007 to 10 April 2008 (Note that the s refers only to the Anchor part of the
start date not the result after adding the offset to the Anchor).

6 Core Services 57

Bloomberg

6.2 Reference Data Service //blp/refdata

The reference data service provides the ability to access the following Bloomberg data with
the request/response paradigm:

Reference Data Request

A Reference Data Request provides a snapshot of the current value of a security/
field pair.

Historical End-of-Day Data

A Historical Data Request provides end-of-day data over a defined period of time for
a security/field pair.

Historical Intraday Ticks

An Intraday Tick Request provides each tick over a defined period of time for a
security and event type pair.

Historical Intraday Bars

An Intraday Bar Request provides a series of intraday summaries over a defined
period of time for a security and event type pair.

Portfolio Data Request

The Portfolio Data Request enables retrieval of change information and portfolio
positions with respect to a specific date in order to see how current market
movements have affected user's portfolio's constituent weights.

BEQS (Bloomberg Equity Screening) Request

BEQS (Bloomberg Equity Screening) request returns security data for a selected
screen created using the Bloomberg EQS <GO> function.

6.2.1 Reference Data Request and Response Overview

The ReferenceDataRequest enables a snapshot of the current data available for a security/
field pair. A list of fields is available via the BLOOMBERG PROFESSIONAL service function
FLDS<GO> or using the API fields service. A ReferenceDataRequest must specify at least
one or more securities and one or more fields. The API will return data for each security/field
pair, or alternatively a message indicating otherwise. This example shows how to construct a
ReferenceDataRequest:

Service
Request

d cid =

request.
request.
request.
request.

Assume we have already opened the //blp/refdata service

refDataService = session.getService ("//blp/refdata");

request = refDataService.createRequest ("ReferenceDataRequest") ;
append ("securities", "IBM US Equity");

append ("securities", "/cusip/912828GM6Q@BGN") ;

append ("fields", "PX LAST");

append ("fields", "DS002");

session.sendRequest (request, null);

6 Core Services

58

Bloomberg

A PARTIAL_RESPONSE or RESPONSE message will be returned. For large requests, a
PARTIAL_RESPONSE will be provided returning part of the information. A RESPONSE
message indicates the request has been fully served. Further information is available in

. This example shows how to process a ReferenceDataResponse..

private void processReferenceDataResponse (Message msg) throws Exception

{

Element securityDataArray = msg.getElement ("securityData") ;

for (int 1 = 0; 1 < securityDataArray.numValues (); ++i) {
Element securityData = securityDataArray.getValueAsElement (1) ;
System.out.println (securityData.getElementAsString ("security"));
Element fieldData = securityData.getElement ("fieldData") ;

for (int j = 0; j < fieldData.numElements(); ++3) {
Element field = fieldData.getElementAt (j);
System.out.println(field.name() + " = " +

field.getValueAsString()) ;

}
System.out.println ("\n") ;

6.2.2 Historical Data Request

The HistoricalDataRequest enables the retrieval of end-of-day data for a set of securities
and fields over a specified period, which can be set to daily, monthly, quarterly, bi-annually or
annually. At least one security and one field are required, along with start and end dates.
There are a range of options that can be specified in the request, which are outlined in

. This example shows how to construct @ HistoricalDataRequest
for monthly last price data for 2010.

Service refDataService = session.getService ("//blp/refdata");
Request request =

refDataService.createRequest ("HistoricalDataRequest") ;
request.append ("securities", "IBM US Equity");

request.append ("securities", "MSFT US Equity");
request.append ("fields", "PX LAST");

request.append ("fields", "OPEN") ;

request.set ("startDate", "20100101");

request.set ("endDate", "20101231");

request.set ("periodicitySelection", "MONTHLY") ;

6 Core Services 59

Bloomberg

A successful HistoricalDataResponse holds information on a single security. It contains a
HistoricalDataTable with one HistoricalDataRow for each interval returned.

private void processHistoricalDataResponse (Message msg) throws
Exception {
Element securityData = msg.getElement ("securityData") ;
Element fieldDataArray = securityData.getElement ("fieldData"):;

for (int j = 0; j < fieldDataArray.numValues(); ++7j) {
Element fieldData = fieldDataArray.getValueAsElement (j);

for (int k = 0; k < fieldData.numElements(); ++k) {
Element field = fieldData.getElementAt (k) ;
System.out.println ("\t" + field.name() + " = "
+ field.getValueAsString()) :;

6.2.3 Intraday Tick Request

Bloomberg maintains a tick-by-tick history going back 140 days for all securities where
streaming data is available. This intraday data can be used to draw detailed charts, for
technical analysis, or to retrieve the initial data for a monitoring graph function such as the
GIP<GO> function on the BLOOMBERG PROFESSIONAL service.

The IntradayTickRequest enables retrieval of tick-by-tick history for a single security. In
addition, the event type(s), interval and date/time start and end-points in UTC must be
specified.

This example shows how to construct an IntradayTickRequest:

Service refDataService = session.getService ("//blp/refdata");

Request request =

refDataService.createRequest ("IntradayTickRequest") ;

request.set ("security", "VOD LN Equity");

request.append ("eventTypes", "TRADE") ;

request.append ("eventTypes", "AT TRADE");

request.set ("startDateTime", new Datetime (2010, 07, 26, 10, 30, 0, 0));
request.set ("endDateTime", new Datetime (2010, 07, 26, 14, 30, 0, 0));

A successful IntradayTickResponse Will contain an array of IntradayTickbata providing
information on each tick in the specified time range. The time taken to respond to this request

6 Core Services 60

Bloomberg

is influenced by the date and time range of your request and the level of market activity
during that period.

private void processIntradayTickResponse (Message msg) throws Exception

{

Element data = msg.getElement ("tickData") .getElement ("tickData") ;
int numItems = data.numValues/() ;
for (int 1 = 0; 1 < numItems; ++1) {

Element item = data.getValueAsElement (i) ;

Datetime time = item.getElementAsDate ("time") ;

String type item.getElementAsString ("type") ;
double value item.getElementAsFloat64 ("value") ;
int size = item.getElementAsInt32("size");
String eegs
if (item.hasElement ("conditionCodes")) {

cc = item.getElementAsString ("conditionCodes") ;
}

Process values

6.2.4 Intraday Bar Services

Bloomberg maintains a tick-by-tick history going back 140 days for all securities where
streaming data is available. This intraday data can be used to draw detailed charts, for
technical analysis, or to retrieve the initial data for a monitoring graph function such as the
GIP<GO> function on the BLOOMBERG PROFESSIONAL service.

The Intraday Bar Request enables retrivial of summary intervals for intraday data covering
five event types, TRADE, BID, ASK, BEST_BID, and BEST_ASK, over a period of time. Note
that only one event type can be specified per request.

Each bar contains OPEN, HIGH, LOW, CLOSE, VOLUME, and NUMBER_OF_TICKS. The
interval size of the bars can be set to as low as 1 minute and to as high as 1440 minutes (24
hours).

Each intradayBarRequest can only submit one single instrument. In addition, the event
type, interval, and date/time start and end-points in UTC must be specified. This example
shows how to construct an IntradayBarRequest.

Service refDataService = session.getService ("//blp/refdata");

Request request = refDataService.createRequest ("IntradayBarRequest") ;
request.set ("security", "IBM US Equity");

request.set ("eventType", "TRADE") ;

request.set ("interval", 60); // bar interval in minutes

request.set ("startDateTime", new Datetime (2010, 03, 26, 13, 30, 0, 0));
request.set ("endDateTime", new Datetime (2010, 03, 26, 21, 30, 0, 0));

e e e

6 Core Services 61

Bloomberg

A successful IntradayBarResponse Wwill contain an array of BarTickbata each of which
contains open, high, low, close, number of events and volume values. Further information is
available in . This example shows how to interpret an
IntradayBarResponse.

private void processIntradayBarResponse (Message msg) throws Exception {
Element data = msg.getElement ("barData") .getElement ("barTickData") ;
int numBars = data.numValues() ;
for (int i = 0; 1 < numBars; ++1i) {
Element bar = data.getValueAsElement (1) ;
Datetime time = bar.getElementAsDate ("time") ;
double open = bar.getElementAsFloat64 ("open") ;
double high = bar.getElementAsFloat64 ("high") ;
double low = bar.getElementAsFloat64 ("low") ;
double close = bar.getElementAsFloat64 ("close") ;
int numEvents = bar.getElementAsInt32 ("numEvents") ;
long volume = bar.getElementAsInt64 ("volume") ;
Process values
}
}

6.2.5 Portfolio Data Request

The PortfolioDataRequest enables retrieval of change information and portfolio positions with
respect to a specific date in order to see how current market movements have affected their
portfolio's constituent weights.

Note: The user's portfolio is identified by its Portfolio ID, which can be found on the upper
right hand corner of the toolbar on the portfolio's PRTU<GO> page. This information
can also be accessed historically by using the REFERENCE_DATE override field
and supplying the date in 'YYYYMMDD' format. .

A PARTIAL_RESPONSE or RESPONSE message will be returned. For large requests a
PARTIAL_RESPONSE will be provided returning part of the information. A RESPONSE
message indicates the request has been fully served. Further information is available in

6.2.6 BEQS Request

BEQS (Bloomberg Equity Screening) request returns security data for a selected screen
created using the Bloomberg EQS Terminal function.

6 Core Services 62

Bloomberg

A PARTIAL_RESPONSE or RESPONSE message will be returned. For large requests a
PARTIAL_RESPONSE will be provided returning part of the information. A RESPONSE
message indicates the request has been fully served. Further information is available in

6.3 Market Data Service //blp/mktdata

The Market Data service enables retrieval of streaming data for securities which are priced
intraday, by using the API subscription paradigm. Update messages are pushed to the
subscriber once the field value changes at the source. These updates can be real time or
delayed, based upon the requestors exchange entitlements or through setting a delayed
subscription option. All fields desired must explicitly be listed in the subscription to receive
their updates.

Once a subscription is established, the stream will supply messages in
SUBSCRIPTION_DATA events. The initial message returned, known as a "SUMMARY"
message, will contain a value for all the fields specified in the subscription. Subsequent
messages may contain values for some or all of the requested Bloomberg fields. It is possible
that a message contains none of the requested Bloomberg fields as the messages are only
filtered based on the fields they could contain rather than the fields they actually contain and
many fields in the streaming events are optional. The Bloomberg API will ensure all
messages that contain any of the fields you have explicitly subscribed for are pushed to your
application. Finally the stream may return additional fields in these messages, for which were
not included in the subscription. These additional fields are not filtered for the purpose of
speed, and their inclusion is subject to change at any time.

Some of the fields that are returned also have a null state. For example the fields BID and
ASK have values of type float and usually give positive values that you can use to populate
your own caches. However there are times when these fields will be set to a null value. In the
case of BID and ASK fields this is usually interpreted as an instruction to clear the values in
your caches. Therefore it is important to test to see if the field is null before you try and
retrieve a value from it.

This example shows how to subscribe for streaming data.

Assume that session already exists and the "//blp/mktdata'" service has
been successfully opened.
SubscriptionList subscriptions = new SubscriptionList ()
subscriptions.add ("IBM US Equity",

"LAST PRICE,BID,ASK",

"y
subscriptions.add ("/cusip/912828GM6@BGN",

LAST PRICE,BID,ASK,BID YIELD,ASK YIELD",

"y

session.susbcribe (subscriptions) ;

6 Core Services 63

Bloomberg
6.4 Custom VWAP Service //blp/mktvwap

The Custom Volume Weighted Average Price (VWARP) Service provides streaming VWAP
values for equities. This service allows for a customized data stream with a series of
overrides which are documented in

Assume that session already exists and the "//blp/mktvwap" service has
been successfully opened.

SubscriptionList subscriptions = new SubscriptionList () ;
subscriptions.add("//blp/mktvwap/ticker/IBM US Equity" +
"?VWAP START TIME=10:00&VWAP END TIME=16:00",
"LAST PRICE,BID,ASK",
")

session.susbcribe (subscriptions) ;

The response will return a message containing a selection of VWAP fields.

6.5 Market Bar Subscription Service //blp/mktbar

The Market Bar Service provides streaming (real time and delayed) intraday bars. This
service provides the functionality to obtain intraday bars for trade volume, number of ticks,
open, close, high, low and time of last trade. The major advantage of the service is for clients
wishing to retrieve HIGH/LOW prices for a specified time interval in streaming format. A
subscription to a market bar requires the service to be explicitly specified in the topic.

For example: "/ /blp/mktbar/ticker/VOD LN Equity"
"//blp/mktbar/isin/GB00B16GWD56 LN"

The only field that can be submitted for this service is LAST PRICE. The following code
snippet shows a subscription to market bars: .

Assume that the blp/mktbar service has already been opened successfully.

SubscriptionList d subscriptions = new SubscriptionList();

d subscriptions.add("//blp/mktbar/ticker/VOD LN Equity","LAST PRICE",
"interval=5",CorrelationId (1)) ;

d session.subscribe (d_subscriptions) ;

There are three types of messages that can occurin a SUBSCRIPTION DATA event. The
first event received is MarketBarStart, this occurs at every new bar; therefore the
frequency of this will depend upon the interval setting. A MarketBarStart will return all

fields (). Subsequently, on every last price update
a MarketBarUpdate will be sent. This will only include fields that have updated since the bar

6 Core Services 64

Bloomberg

start or last update. Fields that are always updated are VOLUME, NUMBER OF TICKS,
TIME and CLOSE. MarketBarEnd only occurs when the last market bar has been
received - i.e., the end_time has been reached. This message only contains TIME.

Please note there is no initial summary returned for streaming intraday bars, a reference data
request or a subscription will be required to get an initial snapshot if required.

When a market bar subscription is set to return delayed data, the market bar start message
will not be returned until the delayed period has passed.

6.6 API Field Information Service //blp//apiflds

The Field Information service provides details and a search capability on fields in the
Bloomberg data model using the API request/response paradigm. Information can be
retrieved in three ways:

Field Information Request

A Field Information Request provides a description on the specified fields in the
request.

Field Search Request

A Field Information Request provides the ability to search the Bloomberg data model
with a search string for field mnemonics.

Categorized Field Search Request

A Categorized Field Search Request provides the ability to search the Bloomberg
data model based on categories with a search string for field mnemonics.

6.6.1 Field Information Request

A FieldInfoRequest returns a description for the specified fields included in the request.
The request requires one or more fields specified as either a mnemonic or an alpha-numeric
identifier. It is also possible to specify in the request to return the documentation as per
FLDS<GO>. This example shows how to construct a FieldInfoRequest.

Service fieldInfoService = session.getService ("//blp/apiflds");
Request request =

fieldInfoService.createRequest ("FieldInfoRequest") ;
request.append("id", "LAST PRICE");

request.append ("id", "pgO005");

request.append ("id", "ds002");

request.set ("returnFieldDocumentation", true);

request.append ("properties", "fieldoverridable");

6 Core Services 65

Bloomberg

A successful FieldResponse will contain an array of Fieldbata. The FieldData contains
the field's unique id and information about the field. This example shows how to process a
single FieldResponse.

private void processFieldResponse (Message msg) throws Exception {
Element fieldDataArray = msg.getElement ("fieldData");

for (int 1 = 0; 1 < fieldDataArray.numValues(); ++1i) {
Element fieldData = fieldDataArray.getValueAsElement (1) ;
Element fieldInfo fieldData.getElement ("fieldInfo") ;
System.out.println (
fieldData.getElementAsString ("id") + "™ " +
fieldInfo.getElementAsString ("mnemonic™) + " (" +
(
(

fieldInfo.getElementAsString ("description") + ") " +
fieldInfo.getElementAsString ("datatype")) ;

6.6.2 Field Search Request

A FieldSearchRequest returns a list of fields matching a specified search criterion. The
request specifies a search string and it may also contain criteria used to filter the results. This
criterion allows for the filtering by category, product type and field type. Detailed information
on these settings is located in . This example shows how to construct
a FieldSearchRequest.

Service fieldInfoService = session.getService ("//blp/apiflds");
Request request =

fieldInfoService.createRequest ("FieldSearchRequest") ;
request.set ("searchSpec", "last price");

Element exclude = request.getElement ("exclude") ;
exclude.setElement ("fieldType", "Static")

A FieldSearchRequest returns a FieldResponse just as a FieldInfoRequest does.

6.6.3 Categorized Field Search Request

A CategorizedFieldSearchRequest returns a list of fields matching a specified search
criterion. The request specifies a search string and it may also contain criteria used to filter
the results. This criterion allows for the filtering by category, product type and field type.

6 Core Services 66

Bloomberg

Detailed information on these settings is located in . This example
shows how to construct a CategorizedFieldSearchRequest.

Service fieldInfoService = session.getService ("//blp/apiflds");
Request request = fieldInfoService.createRequest (

"CategorizedFieldSearchRequest") ;
request.set ("searchSpec", "last price");

A successful categorizedFieldResponse Will contain an array of categorybata that
contains a flattened representation of the matching fields arranged by the category tree. This
example shows how to process a single CategorizedFieldResponse.

private void processCategorizedFieldResponse (Message msg) throws
Exception {
Element categoryArray = msg.getElement ("category");

for (int 1 = 0; 1 < categoryArray.numValues(); ++i) {
Element categoryData = categoryArray.getValueAsElement (i) ;
System.out.println (
"Category:" + categoryData.getElementAsString("categoryName")) ;
Element fieldDataArray = categoryData.getElement ("fieldData") ;

for (int j = 0; j < fieldDataArray.numValues(); ++3j) {
Element fieldData = fieldDataArray.getValueAsElement (i) ;
Element fieldInfo = fieldData.getElement ("fieldInfo"):;
System.out.println (

fieldData.getElementAsString("id") + " " +
fieldInfo.getElementAsString ("mnemonic") + " (" +
fieldInfo.getElementAsString ("description") + ") " +
fieldInfo.getElementAsString ("datatype")) ;

6 Core Services 67

Bloomberg
6.7 Page Data Service

The Page Data service of the API provides access to GPGX pages and the data they contain.
This is a subscription service, where the GPGX number, the monitor number, the page
number and the required rows (fields) must be provided.

The topic is constructed as follows:-

0708/012/0001

where:
0708 is the GPGX number
012 is the monitor number
0001 is the page number
An array of strings is used to specify the rows on the page that are of interest. These can be

specified as individual rows, multiple rows separated by commas, or ranges of rows, as
follows:

String Rows Specified

"1” The first row on the page
"1,2,3” Rows 1,2 and 3 on the page
"1,6-10,15,16" Row 1, rows 6 to 10 and rows 15 and 16

The following example shows how to create a subscription, and demonstrates how the
subscription fields are used to pass the rows the user wants to subscribe to.

String topic = "0708/012/0001"

List<string> fields = new List<string>();
fields.Add ("15-18") ; // subscribing to rows 15 to 18

subscriptions.Add (new Subscription("//blp/pagedata/" + topic,
fields,
null,
new CorrelationID (topic)));

Once a subscription has been created, and the subscription status messages have been
processed, two event types might be received:

PageUpdate

A PageUpdate event contains a current view of the entire page. It provides the dimensions of
the page, followed by a rowUpdate element for each row on the page. A full page update will

6 Core Services 68

Bloomberg

be received first (all the rows on the page), regardless of the requested rows, and acts as an

initial paint of the page, prior to receiving ongoing updates.

PageUpdate = {
numRows = 23
numCols = 80
rowUpdate[] = {

rowUpdate = ({
rowNum = 1
spanUpdate[] = {
spanUpdate =
startCol
length = 80
text =
attr[] = {
}
fgColor DARKBLUE
bgColor = WHITE

{
=1

rowUpdate = {
rowNum = 23
spanUpdate[] = {
spanUpdate =
startCol
length = 80
text =
attr[]
}
fgColor WHITE
bgColor = DARKBLUE

{
=1

{

RowUpdate

A RowUpdate event consists of a row number, and one or more spanUpdate elements. Each
spanUpdate element describes the location and size of the data (startCol, length), the data

itself (text), any attributes associated with that piece of data, and the foreground and
background colors. The RowUpdate event is structured in exactly the same way as the

rowUpdate element of the PageUpdate event.

6 Core Services

69

Bloomberg

RowUpdate =

{

rowNum = 15
spanUpdate[] = {
spanUpdate =

startCol 61
length
text =
attr[]
}
fgColor

bgColor

{
1

o Il

{

WHITE
DARKBLUE

Possible Attribute Values:

BLINK

DOUBLEWIDTH

INTENSIFY

POINTANDCLICK

REVERSE
UNDERLINE

Possible Color Values for foreground and background:

6 Core Services

AMBER
BLACK
DARKBLUE
DARKGREEN
DEEPBLUE
FLASHINGBLUE
FLASHINGRED
GRAY

LIGHTBLUE
LIGHTGREEN
ORANGE
PINK

RED

VIOLET
WHITE
YELLOW

70

Bloomberg
6.8 Technical Analysis Service

Technical Analysis is a method of evaluating securities by analyzing statistics generated by
market activity, such as past prices and volume. Technical analysts do not attempt to
measure a security's intrinsic value, but instead use charts and other tools to identify patterns
that can suggest future activity. The Technical Analysis Service enables you to download this
data and bring it into your application using Bloomberg API.

Table 6-1 details the different Technical Analysis data types:

Table 6-1: Data Type Description Table

Historical End of Day End-of-day data for a specified period of time in increments of
days, weeks, months, quarters, or years.

Intraday Intraday data for a specified period of time in increments of
minutes. Based on Bid, Ask, or Trade events, data such as
open, high, low, close, and volume can be retrieved for the
interval of time specified.

Real-time Real-time data and events.

6.8.1 Historical End of Day study request

The Historical study request enables the retrieval of end-of-day technical analysis data for a
specified security and study attributes over the specified time periods of daily, weekly,

6 Core Services 71

Bloomberg

monthly, bi-annually and annually. Each Historical study request can submit only a single

instrument.
Service tasvcService = session.GetService ("//blp/tasve");
Request request = tasvcService.CreateRequest ("studyRequest") ;

// set security name
request.GetElement ("priceSource") .
GetElement ("securityName") .SetValue ("IBM US Equity") ;
// set historical price data
request.GetElement ("priceSource") .
GetElement ("dataRange") .SetChoice ("historical") ;

Element historicalEle = request.GetElement ("priceSource").

GetElement ("dataRange") .GetElement ("historical") ;
historicalEle.GetElement ("startDate") .SetValue ("20100501"); // set
study start date
historicalEle.GetElement ("endDate") .SetValue ("20100528"); // set study
end date

// DMI study example - set study attributes

request.GetElement ("studyAttributes") .SetChoice ("dmiStudyAttributes") ;

Element dmiStudyEle = request.GetElement ("studyAttributes") .
GetElement ("dmiStudyAttributes") ;

dmiStudyEle.GetElement ("period") .SetValue (15); // DMI study interval

// set historical data price sources for study

dmiStudyEle.GetElement ("priceSourceLow") .SetValue ("PX LOW") ;

dmiStudyEle.GetElement ("priceSourceClose") .SetValue ("PX LAST");

A successful studyResponse holds information on the requested security. It contains a
studyDataTable with one studyDataRow for each interval returned.

6 Core Services 72

Bloomberg

{

private void processResponseEvent (Message msg)

Element security = msg.GetElement (SECURITY NAME) ;
string ticker = security.GetValueAsString() ;
System.Console.WriteLine ("\nTicker: " + ticker);
if (security.HasElement ("securityError"))
{
printErrorInfo ("\tSECURITY FAILED: ",
security.GetElement (SECURITY ERROR)) ;
continue;
}
Element fields = msg.GetElement (STUDY DATA) ;
if (fields.NumValues > 0)
{
int numValues = fields.NumValues;
for (int j = 0; j < numValues; ++7J)
{
Element field = fields.GetValueAsElement (j);
for (int k = 0; k < field.NumElements; k++)
{
Element element = field.GetElement (k) ;
System.Console.WriteLine ("\t" + element.Name + " = " +
element.GetValueAsString()) ;
}

System.Console.WriteLine ("") ;

6.8.2 Intraday bar study request

The Intraday Bar type study request enables the retrieval of summary intervals of intraday
technical analysis data for a specified study attributes for five event types, TRADE, BID, ASK,
BEST_BID, and BEST_ASK, over a period of time. Each Intraday study request can only
submit only a single instrument. In addition, the event type, interval and date/time start and
end-points in UTC must be specified.

6 Core Services

73

Bloomberg

Service tasvcService = session.GetService ("//blp/tasve");
Request request = tasvcService.CreateRequest ("studyRequest") ;
// set security name

request.GetElement ("priceSource") .

Element intradayEle = request.GetElement ("priceSource") .
GetElement ("dataRange") .GetElement ("intraday") ;
// set intraday price data

event type

intradayEle.GetElement ("startDate") .SetValue ("2010-05-26T13:30:00")
set study start date
intradayEle.GetElement ("endDate") .SetValue ("2010-05-27T13:30:00") ;
set study end date

// smavg study example - set study attributes

Element smavgStudyEle = request.GetElement ("studyAttributes") .
GetElement ("smavgStudyAttributes") ;

smavgStudyEle.GetElement ("period") .SetValue (15); // SMAVG study

interval

smavgStudyEle.GetElement ("priceSourceClose") .SetValue ("close") ;

intradayEle.GetElement ("eventType") .SetValue ("TRADE"); // intraday

GetElement ("securityName") .SetValue ("IBM US Equity") ;

intradayEle.GetElement ("interval") .SetValue (60); // intraday interval

;//

//

request.GetElement ("studyAttributes") .SetChoice ("smavgStudyAttributes")

A successful studyResponse holds information on the requested security. It contains a
studyDataTable with one studyDataRow for each bar interval returned.

6 Core Services

74

Bloomberg

private void processResponseEvent (Message msg)
{
Element security = msg.GetElement (SECURITY NAME) ;
string ticker = security.GetValueAsString/() ;
System.Console.WriteLine ("\nTicker: " + ticker);
if (security.HasElement ("securityError"))
{
printErrorInfo ("\tSECURITY FAILED: ",
security.GetElement (SECURITY ERROR)) ;
continue;
}
Element fields = msg.GetElement (STUDY DATA) ;
if (fields.NumValues > 0)
{
int numValues = fields.NumValues;
for (int j = 0; j < numValues; ++7j)
{
Element field = fields.GetValueAsElement (j) ;
for (int k = 0; k < field.NumElements; k++)
{
Element element = field.GetElement (k) ;
System.Console.WriteLine ("\t" + element.Name + " = " +
element.GetValueAsString()) ;

6.8.3 Realtime study request

The Real time study request provides the ability to subscribe to real time technical analysis
data points for a specified study field attributes and period. Each Real time study subscription
can only subscribe to a single study field.

Assume that session already exists and the "//blp/tasvc" service hasbeen successfully
opened.

SubscriptionList subscriptions = new SubscriptionList () ;
subscriptions.Add (new Subscription("//blp/tasvc/ticker/IBM US
Equity?fields=WLPR&" +
"priceSourceClose=LAST PRICE&" +
"priceSourceHigh=HIGH&" +
"priceSourceLow=LOW&" +
"periodicitySelection=DAILY&" +
"period=14", new CorrelationID("IBM US
Equity WLPR")));
session.susbcribe (subscriptions) ;

6 Core Services 75

Bloomberg

Once a subscription is established, the stream will supply messages in
SUBSCRIPTION_DATA events. Apart from study field subscribed, you may receive
additional study fields in these messages which were not subscribed. These additional fields
are not filtered for the purpose of speed and their inclusion is subject to change at any time.

6.9 API Authorization

The Authorization service enables an application to handle the Bloomberg concept of
Permissioning, by checking authorization and entitlement through the creation of Identities
which represent users and/or applications. These Identities contain the entitlement identifiers
for data enabled under the user/application. The entitlements are then used in combination
with those retrieved from market or reference data to decide whether the entity is allowed to
view the data. Detailed explanation is documented in

The response message indicates a pass or fail.

The Instruments Service (//blp/instruments) is used to perform three types of operations. The
first is a Security Lookup Request, the second is a Curve Lookup Request and the third is a
Government Lookup Request. These three operations are covered in the following sections.

Request Operation

InstrumentListRequest Operation

CurvelListRequest Operation

GovtListRequest Operation

6.10.1 Security Lookup Request

The Security Lookup (a.k.a. Instrument Lookup) request constructs a search based upon the
"query" element's string value, as well as the additional filters that you set, such as the yellow
key and language override elements. This functionality can also be found on the Bloomberg
Professional service using the SECF <GO> function. By setting the language override

element, you will obtain your results translated into that specified language.

6 Core Services 76

Bloomberg

The following code snippet demonstrates how to make a security lookup request and
assumes that a session already exists and that the "//blp/instruments" service has been
successfully opened.

Service secfService = session.getService ("//blp/instruments") ;
Request request = secfService.createRequest ("instrumentListRequest") ;

request.asElement () .setElement ("query", "IBM");
request.asElement () .setElement ("yellowKeyFilter", "YK FILTER CORP");
request.asElement () .setElement ("languageOverride", "LANG OVERRIDE NONE") ;
request.asElement () .setElement ("maxResults", 10);

sendRequest (request, session);

Figure 6-1: C++ code snippet - constructing a security lookup request

6.10.2 Curve Lookup Request

The Curve Lookup request can retrieve a curve based on its country code, currency code,
type, subtype, curve specific ID, and the Bloomberg ID for that curve.

The following code snippet demonstrates how to make a curve lookup request and assumes
that a session already exists and that the "//blp/instruments" service has been successfully
opened.

Service curveService = session.getService ("//blp/instruments") ;
Request request = curveService.createRequest ("curvelListRequest") ;

request.asElement () .setElement ("query", "GOLD");

(
request.asElement () .setElement ("bbgid", "YCCD101l6");
request.asElement () .setElement ("countryCode", "US");
request.asElement () .setElement ("currencyCode", "USD");
request.asElement () .setElement ("curveid", "CD101l6");
request.asElement () .setElement ("type", "CORP");
request.asElement () .setElement ("subtype", "CDS"):;
request.asElement () .setElement ("maxResults", "10");

sendRequest (request, session);

Figure 6-2: C++ code snippet - constructing a curve lookup request

6.10.3 Government Lookup Request

The Government lookup does a search through government securities. As with every type of
request, you can specify the 'query' string and the maximum number of results. And, since
every government security has a ticker that is not unique, you can also filter these securities
by this ticker. For example, you can specify filter tickers that are equal to "T" or set Partial
Match (i.e., "partialMatch") to true and filter out all government securities beginning with the
letter "T". You would do this by setting the "query" element value to "T*".

6 Core Services 77

Bloomberg

The following code snippet demonstrates how to make a government lookup request and
assumes that a session already exists and that the "//blp/instruments" service has been
successfully opened.

Service govtService = session.getService ("//blp/instruments") ;
Request request = govtService.createRequest ("govtListRequest") ;

request.asElement () .setElement ("partialMatch", true);
request.asElement () .setElement ("query", "T*");
request.asElement () .setElement ("ticker", "LANG OVERRIDE NONE") ;
request.asElement () .setElement ("maxResults", 10);

sendRequest (request, session);

Figure 6-3: C++ code snippet - constructing a government lookup request

6.10.4 Response Behaviors

Each lookup response will comprise of zero, or more, PARTIAL_RESPONSE event types
and one RESPONSE event type event, which you will be familiar with if you have developed
Bloomberg API applications using any of the other request/response services, such as //blp/
refdata, //blp/apiflds or //blp/tasvc.

The following C++ code demonstrates how to handle the response for each of the three types
of requests:

void dumpInstrumentResults (const std::string& msgPrefix, const Message& msqg)
{
const Element& response = msg.asElement () ;
const Elementé& results = response.getElement ("results");
std::cout << ">>> Received " << results.numValues () << " elements" << std::endl;

size t numElements = results.numValues();
std::cout << msgPrefix << ' ' << numElements << " results:" << std::endl;
for (size t i = 0; i < numElements; ++1i) {
Element result = results.getValueAsElement (i) ;
std::cout << std::setw(2) << (i + 1) << ": " << std::setw(30)
<< result.getElementAsString ("security")
<< m -

<< result.getElementAsString ("description")
<< std::endl;

Figure 6-4: Handling a Security Lookup Request

6 Core Services 78

Bloomberg

void dumpCurveResults (const std::string& msgPrefix, const Message& msqg)
{
const Elementé& response = msg.asElement () ;
const Element& results = response.getElement ("results");
std::cout << ">>> Received " << results.numValues () << " elements" << std::endl;

size t numElements = results.numValues();
std::cout << msgPrefix << ' ' << numElements << " results:" << std::endl;
for (size t i = 0; i1 < numElements; ++i) {
Element result = results.getValueAsElement (1) ;
std::cout << std::setw(2) << (1 + 1) << ": " << std::setw(30)
<< " — Trn

<< result.getElementAsString("description") << "' "
<< "country="

<< result.getElementAsString ("country") << " "

<< "currency="

<< result.getElementAsString ("currency") << " "
<< "curveid="

<< result.getElementAsString("curveid") << " "
<< "type="

<< result.getElementAsString ("type") << " "

<< "subtype="

<< result.getElementAsString ("subtype") << " "
<< "publisher="

<< result.getElementAsString ("publisher") << " "
<< "bbgid="

<< result.getElementAsString ("bbgid")

<< std::endl;

Figure 6-5: Handling a Curve Lookup Request

6 Core Services 79

Bloomberg

void dumpGovtResults (const std::string& msgPrefix, const Message& msqg)
{
const Elementé& response = msg.asElement () ;
const Element& results = response.getElement ("results");
std::cout << ">>> Received " << results.numValues () << " elements" << std::endl;

size t numElements = results.numValues();
std::cout << msgPrefix << ' ' << numElements << " results:" << std::endl;
for (size t i = 0; i1 < numElements; ++i) {
Element result = results.getValueAsElement (1) ;
std::cout << std::setw(2) << (1 + 1) << ": " << std::setw(30)
<< result.getElementAsString ("parseky")
<L U, @
<< result.getElementAsString ("name")
€L W = @

<< result.getElementAsString("ticker")
<< std::endl;

Figure 6-6: Handling a Government Lookup Request

6.10.5 Code Example

We have created one example, listed below, to demonstrate all three of the lookup
operations, which can be found in the C++, Java, and .NET SDK example folders.

SecurityLookupExample - This example demonstrates how to make a security, curve and
government lookup request using the //blp/instruments service.

6 Core Services 80

Bloomberg

7 Authorization and Permissioning
Systems

7.1 Overview

It is necessary to restrict access to data to users who are entitled to view it. With the
Bloomberg API data products this is essentially a three step process.

Authentication

Who is the consumer?

Authorization

What data is the consumer entitled to see?
Permissioning

The process of enforcing data distribution to only entitled consumer.

7.2 Underlying Concepts

7.2.1 EIDs

EIDs are integers that represent the entitlement for a security's source (e.g. a level 1
entitlement for MSFT UQ Equity would have an EID of 14005, level 2 data would be
additional EIDs).

Instruments from a common source (e.g., NASDAQ) will share an EID; for example, MSFT
UQ Equity and INTC UQ Equity both come from NASDAQ and so have EID 14005 (if
requested by someone with level 1 access).

Users and applications can have EIDs associated with them to represent their entitlements.
For a BLOOMBERG PROFESSIONAL service user, this is the same as the entitlements on
the BLOOMBERG PROFESSIONAL service.

7.2.2 Requirement for the Terminal

The licence for distribution of data to existing BLOOMBERG PROFESSIONAL service users
requires that they are logged into the Bloomberg Terminal in order to view the data. In this
respect the data products can be seen, for Bloomberg users, as an extension of the Terminal
product and thus sharing entitlements and exchange fees with their Terminal account.

7 Authorization and Permissioning Systems 81

Bloomberg

Authentication in Bloomberg's data products for Bloomberg users is performed by identifying
a user as being logged into the Terminal. The Terminal's use of a biometric device will have
already proven the identity of the logged in user.

Please note that the Terminal is not a requirement for Managed B-PIPE's non-BPS (Market
Data) users or applications.

7.2.3 The //blp/apiauth service

The authentication and permissioning systems of Server APl and Managed B-PIPE require
use of the //blp/apiauth service. This defines the requests and responses that will
come from the API.

7.2.4 The V3 Identity Object

V3 permissioning, on both Server APl and Managed B-PIPE, revolves around the use of a
class called the Tdentity. These objects represent a user (or an application in Managed
B-PIPE) and can be used to check that a user is entitled for data, is logged onto a terminal,
switches terminals, and can be passed with a request to receive data permissioned just for
that user or application.

7.2.5 V3 Permissioning Models

The V3 API provides a couple of permissioning models for developers to follow.
User mode

When user mode permissioning is used, an Tdentity is passed as a parameter when
sending a request. This means that all data returned will be already permissioned for that
Identity, butis only for distribution to that particular user or application represented by the
Identity.

Content based

When content based permissioning is used, the entitlement identifiers (EIDs) of incoming
pieces of data is taken and the data is only distributed to users whose Tdentity contains
the same EIDs as the data.

7.2.6 Authorization Lifetime

Before designing and developing your Server API or Managed B-PIPE application, it is
important that you understand the following guidelines concerning the authorization lifetime
of a Bloomberg user:

1. An application requires only one Identity object per session per Bloomberg user.
This means that your application is not required to authorize the user each time the
user makes a request for data.

7 Authorization and Permissioning Systems 82

Bloomberg

2.

A Bloomberg user's authorization remains valid until that user logs out from
Bloomberg Professional service and logs in from another host. At that time, your
application will receive an event of type AUTHORIZATION_STATUS, containing a
message of type AuthorizationRevoked.

This is the only time that an Identity must be re-established.

Simply logging out or logging back in from the same host will not invalidate a user's
authorization.

User Authorization is needed when the session is destroyed or when the
authorization is revoked.

If any entitlements change for the user, the existing Identity object is
automaticaly updated by Bloomberg’s infrastructure and SDK.

Failiure to observe these practices will result in exceeding the maximum
authorizations limit for a user, thereby resulting in further authorizations failing with
error code MAX_AUTHORIZATIONS_EXCEEDED.

7.3 Server API Authorization

7.3.1 Authorization by IP Address

Authorization by IP address consists of sending to the Bloomberg infrastructure an
authorization request containing a user identify (UUID) and the IP address of the host where
that user is believed to be using the BLOOMBERG PROFESSIONAL service. If that user
indeed has a Bloomberg session at that IP address, the authorization is successful.

When the customer application has a User Mode deployment, the authorization request is
submitted by the end-user application.

7 Authorization and Permissioning Systems 83

Bloomberg

Bloomberg Data Center

Authorize Request

SarverAP| Process

Authorization Authorization
raquest Using request Using
LD and IP Address LILID and IP Address

G

Customear End-Usar
Application

Customer End-User
Application

USER 1

Figure 7-1: Server API: User Mode: Authorization by IP Address

When the customer application has a Server Mode deployment, the authorization request is
submitted by the customer server application using values obtained by the end-user
applications by some customer defined protocol.

7 Authorization and Permissioning Systems 84

Bloomberg

Bloomberg Data Center

Authorization Requests
for Usars

ServerAP| Pracess

Authorize Lisers using
their UUID & IPAddress

Customer Sarver Application

UUID and IP Address // / \ \ \\ UUID and IP Address

Proprietary Cusiomer Proprietary Customer
Application Protocol Application Protocol

| |\

Customer
End-Liser
Anslication

Customer
End-Lser
Application

USER 1

USER 2

Figure 7-2: Server API: Server Mode: Authorization by IP Address

The above diagram does not show the subordinate customer application that will be receiving
the Bloomberg data. That application must report its user's UUID and IP address to the
customer application using the Server API. The customer application developer must define
the protocol for transferring that information.

To authorize a UUID/IP address pair, open "//blp/apiauth", the authorization service,

and send an authorization request. The following code fragment shows how to create such a
request and one method for blocking until receipt of the corresponding response.

7 Authorization and Permissioning Systems 85

Bloomberg

<Java>
int uuid = ... ; // Obtain UUID for user of interest.
String ipAddress = ... ; // Obtain IP address for user of interest.

......... Create and start 'session'. ..

if (!session.openService ("//blp/apiauth"))
System.out.println ("Could not open service " + "//blp/apiauth");
System.exit (1) ;

éervice apiAuthSvc = session.getService ("//blp/apiauth") ;

Request authorizationRequest = apiAuthSvc.createAuthorizationRequest () ;

authorizationRequest.set ("uuid", uuid) ;
authorizationRequest.set ("ipAddress", ipAddress) ;

Identity identity = session.createldentity();
CorrelationID authorizationRequestID = new CorrelationID(10) ;

session.sendAuthorizationRequest (authorizationRequest, identity,
authorizationRequestID) ;

System.out.println ("sent Authorization Request using ipAddress");

// Wait for 'AuthorizationSuccess' message which indicates
// that 'identity' can be used.

7 Authorization and Permissioning Systems

Bloomberg

The “helper" method, handleAuthenticationResponseEvent, examines the received
messages for one of type "AuthorizationSuccess", "AuthorizationFailure", etc.

7 Authorization and Permissioning Systems

Bloomberg

For a valid UUID/IP address pair, the program output is:

sent Authorization Request using ipAddress
EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted

SessionStarted = {

}

EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened

ServiceOpened = ({

}
Authorization OK

Successful authorization loads identity with information (i.e., entittement data) later used

in the Permissioning phase.

However, if incorrect data is given, say an incorrect IP address, the output is:

sent Authorization Request using ipAddress
EventType=SESSION STATUS
correlationID=null
messageType=SessionStarted
SessionStarted = {
}
EventType=SERVICE STATUS
correlationID=Internal: 1
messageType=ServiceOpened
ServiceOpened = {
}
Authorization Problem
eventType=RESPONSE
messageType=AuthorizationFailure
CorrelationID=User: 10
AuthorizationFailure = {
reason = {

code = 102

category = NO_AUTH
subcategory = NOT LOGGED IN
source = [nydsmeterl]

}

}

Authorization Failed

message = User not logged on to the Bloomberg Professional Service

7 Authorization and Permissioning Systems

88

Bloomberg
7.4 Managed B-PIPE Authorization

Note: Managed B-PIPE requires an Tdentity to be passed with every subscription and
data request; this can either be a User or an Application.

Managed B-PIPE Authorization requires prior administrative action to enable each user and/
or application.

Please contact your firm's Bloomberg EMRS administrator.

There are two programmatic stages to Managed B-PIPE Authorization:
"Authentication" of identity. This can be by user and/or by application
"Authorization" which is the process of obtaining the entitiements of the
authenticated user and/or application

Managed B-PIPE authentication and authorization is displayed in Figure 7-3.

Setup desktop application to
get Token for either
OS_LOGON or an Active

Jg o Directory property
5_|- -
@ Client's Desktop
g. Machine
o
=}
—
o -
=
=

Send Token to Server App

E) Token

§- i § Client's Server
5 3 g

o ty a

=

Figure 7-3: Obtaining a User’s Identity in Managed B-PIPE

7 Authorization and Permissioning Systems 89

Bloomberg

Figure 7-3 shows the procedure for the user authorization system. It is important to note that
the "authentication" section of the diagram MUST be performed on the user's desktop
machine. The "authorization" section can be performed on the server-side application or on
the user's desktop, depending on the application.

For an application authorization system, the OS_LOGIN or DIRECTORY_SERVICE request
is replaced with one for the Application Name as defined on EMRS and this can be run on
any machine.

For a combined application and user authorization system both the user authentication and
the application authentication occurs in a single call and this must be run on the user desktop
machine.

7.4.1 Authentication

The first stage of authentication is creating an Authentication Options string. This is attached
to the SessionOptions object and thus passed into the session when it is created.

For a User

A user's identity can be authenticated by the user's Window's logon identity or a value from
the Active Directory (e.g., email address) associated with the login. The correct
authentication value for each user is made known to the Bloomberg Data Center using the
EMRS<GO> function.

The client application specifies this choice using the setAuthenticationOptions method of the
SessionOptions class. Note that neither option requires the user to input or even be aware of
the value that is used for authentication.

The two options are OS_LOGON and DIRECTORY_SERVICE.

An example of their use is as follows:

const char *authenticationOptions = "AuthenticationType=0S_LOGON"
const char *authenticationOptions = "AuthenticationType=DIRECTORY_ SERVICE;

DirSvcProperty=mail";

"mail" is the property name to lookup under Active Directory rather than the value itself. The
libraries will obtain the value from Active Directory using this property name for the currently
logged in user.

A code example demonstrating the use of these can be found below in
For an Application

An application "authenticates" in much the same way as a user. However, instead of using
Active Directory or a Logon, an application name is used as defined in EMRS <GO>.

7 Authorization and Permissioning Systems 90

Bloomberg

Rather than using OS_LOGON and DIRECTORY_SERVICE with the
AuthenticationType parameter of the authentication options string, we introduce two
new parameters; AuthenticationMode and ApplicationAuthentication.

AuthenticationMode will take the value APPLICATION_ONLY and
ApplicationAuthentication will take the value APPNAME_AND_KEY.

Finally we use the parameter ApplicationName. The value for this parameter will be the
value stored on EMRS for that application.

const char *authenticationOptions = "AuthenticationMode=APPLICATION_ ONLY;
ApplicationAuthenticationType=APPNAME AND KEY;
ApplicationName=TestApplication"

The above code snippet can be inserted in the following code example to generate a token
for an application registered on EMRS as "TestApplication".

After the token is generated, it should then be used to generate an Identity in the same
way that a user has an identity created using a token.

7 Authorization and Permissioning Systems 91

Bloomberg

Application obtains a token
based on application name
>
[
—
-
(1]
=
=
)
[uk]
=
o
=
Application uses foken fo
:l'::" create identity
=
=
s Token
H i
=
o
=

There is one last possible value for AuthenticationMode: USER_AND_APPLICATION.

This allows use of the AuthenticationType parameter with OS_LOGON and
DIRECTORY_SERVICE alongside the AuthenticationMode,
ApplicationAuthenticationType, and ApplicationName parameters.

const char *authenticationOptions =
"AuthenticationMode=USER AND APPLICATION;
ApplicationAuthenticationType=APPNAME AND KEY;
ApplicationName=TestApplication;
AuthenticationType=0S_LOGON"

Typically this will be used for authorizing specific users for specific applications and will return
the intersection of the entitlements of the application and the user.

7.4.2 Token Generation

The authentication occurs when the client application requests the generation of a "token". A
failure to authenticate is indicated by a message of type "TokenGenerationFailure". If a
"TokenGenerationSuccess" message is received, the application can extract a token for use
in the subsequent Authorization stage. By passing the Authentication Options string in as

7 Authorization and Permissioning Systems 92

Bloomberg

part of the session options, the call to session.generateToken will submit a token
generation request.

7 Authorization and Permissioning Systems 93

Bloomberg

for (Messagelterator messagelterator (tokenEvent) ;
messagelterator.next ();)

{

Message message = messagelterator.message () ;

if (TOKEN FAILURE == message.messageType ())

{
std::cerr << "Failed to obtain token" << std::endl;
return 1;

}

assert (TOKEN SUCCESS == message.messageType ());
token.assign (message.getElementAsString ("token")) ;
break;

The token is a long alphanumeric string that has a limited lifespan for validity and needs to be
used in an Authorization request before it expires.

7.5 Authorization

For Managed B-PIPE Authorization, the client application must set as an attribute of the
Authorization request the token obtained during Authentication. Then, as in the other cases,
an "AuthorizationFailure" message indicates failure (with details) and an
"AuthorizationSuccess" message indicates that the identity has been set with the user's or
application's entitlements.

The Identity is then used in the same way as it would be in Permissioning in Server API.

Please note that for an application that has been named in EMRS, all requests for data must
have the Tdent ity passed with it, so that only the securities that the application is entitled
for are accessible rather than everything associated with the Managed B-PIPE.

7 Authorization and Permissioning Systems 94

Bloomberg

7 Authorization and Permissioning Systems

Bloomberg
7.6 Permissioning

7.6.1 Entitlements

Entitlement Identifiers (EIDs) are numeric values associated with data provided by
Bloomberg. The following table contains some EID examples:

Table 1:

EID Description Source Examples
14005 NASDAQ Level 1 NASDAQ MSFT UQ Equity,
INTC UQ Equity?
b BGN Bloomberg Generic | CT2@BGN Govt
23599 U.S. Treasures Merrill Lynch CT2@ML Govt
14014, 14076° London Stock LSE VOD LN Equity

Exchange Level 1 & 2

a. In the example above, MSFT UQ Equity and INTC UQ Equity are both NASDAQ Level 1, and have
the same EID.

b. There can be cases where there are no entitlements associated with the associated instrument. In
such cases the data is to be considered free for all BBA users. Bloomberg Generic Pricing has no
EID and is therefore, free for all Bloomberg users.

c. In the example above, we show that separate EIDs are used to represent London Stock Exchange
Level 1 and Level 2.

The user's EIDs (in the first row, above) are returned in the AuthorizationResponse and are
held in an "Identity". Each Message contained in a SUBSCRIPTION_DATA,
PARTIAL_RESPONSE or RESPONSE Event may contain an EID field.

Note that for reference data, EIDs are currently assigned at the instrument level, not at the
field level. However, for subscription data, EIDs are currently assigned at the instrument and
field level.

The following code fragments show how the entitlements loaded into the Tdent ity during
the authorization stage and can be used to check a user's eligibility to receive given data.

7 Authorization and Permissioning Systems 96

Bloomberg

First, the data request must be modified to request that entitiement identifiers be included

with the returned data. For example:

request.append ("securities",

session.sendRequest (request,

<Java>
Service refDataSvc = session.getService ("//blp/refdata");
Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;

"VOD LN Equity");

request.append ("fields", "PX LAST");
request.append ("fields", "DS002");
request.append ("fields", "VWAP VOLUME");
request.set ("returnkEids", true); // new
CorrelationID requestID = new CorrelationID(20) ;

requestID) ;

7 Authorization and Permissioning Systems

97

Bloomberg

Then, the handler for the resulting events can be modified to use the identity acquired during
authorization:

7 Authorization and Permissioning Systems

Bloomberg

do not forward data to the user

}

In this example, data is forwarded to a user who has the entitlements for the security, or if the
security has no entitlements.

7.6.2 User Mode

In User-Mode permissioning, each request or subscription is accompanied by the
Tdentity object, which was obtained when authorizing the user or application. This is the
model that must be followed when requesting data as a named Application.

Data received as a result of requests and subscriptions must be carefully segregated by the
application both in memory and in any permanent storage to ensure it is only available to the
user whose Identity object was used in the request or subscription. Thus, the
requirements here are much more complicated than in the earlier models.

Since, in this scenario, a request can be made on behalf of only one user, the User-Mode
model may require creation of multiple requests (or subscriptions) that might have been
coalesced into a single request (or subscription) under the other models.

Fortunately, the Bloomberg infrastructure improves efficiency by bundling its replies for
subscriptions. (Note that this is not done for requests.) Furthermore, although the replies may
be bundled, the customer application is (by default) presented with that data presented
multiple times, each with a single CorrelationId. If the customer application wishes to
handle fewer albeit more complicated responses, the
allowMultipleCorrelationsPerMsqg option of SessionOptions should be set to
true.

One implication of User-Mode permissioning is that there is no way for an application to
retrieve data when none of its users are using the BLOOMBERG PROFESSIONAL service.

Whereas, when using Application-Mode / Server-Mode permissioning, it is possible to
retrieve data when none of an application's users are logged in.

7.6.3 Content Based

In this approach, the customer application retrieves and stores the entitlements of each of its
users. The customer application makes requests and subscriptions using the Tdentity of
the Application. All data returned from the Bloomberg infrastructure is requested to be
tagged with the Entitlement Identifiers (EIDs) for that data.

7 Authorization and Permissioning Systems 99

Bloomberg

For example,

<Java>

......... create and open 'session'.....

Service refDataSvc = session.getService ("//blp/refdata");

Request request = refDataSvc.createRequest ("ReferenceDataRequest") ;
request.append ("securities", "VOD LN Equity");

request.append ("fields", "PX LAST");

request.append ("fields", "DS002");

request.append ("fields", "VWAP VOLUME");

request.set ("returnkEids", true);

When the response arrives, the customer application must check that EID against the
entitlements of a user before actually delivering the data to that user. A user's entitlements
can be checked by using the hasEntitlements method of the Tdent ity object.

<Java>
......... Extract 'securityData' from response message.....

ArraylList missingEntitlements = new ArrayList();

Element neededEntitlements =
securityData.hasElement ("eidData")
? securityData.getElement ("eidData")

null;

if (null == neededEntitlements)

{

forward data to the user

}

else if (identity.hasEntitlements (neededEntitlements,
message.service (),
missingEntitlements))

{

forward data to the user

}

else

{

do not forward data to the user

Of course, using this strategy, some requests may be satisfied and other rejected.

7 Authorization and Permissioning Systems 100

Bloomberg
7.7 Specific Application Types (Managed B-PIPE only)

Managed B-PIPE introduced the concepts of Named Applications. These are setup on
EMRS <GO> and allow an application to be given entitlements and services to consume.
Using the Application authentication system described earlier will result in an Tdentity
that represents the Application and can be used in a user mode style to get data based on the
EMRS records.

7.7.1 Single-User

Single-User applications are Desktop applications that take a user identity which has been
authorized using the USER_AND_APPLICATION authorization mode. This is used in a User
Mode style and results are passed directly back to the specific user.

7.7.2 Multi-User

Multi-User applications are typically Client-Server (N-tier, etc.) architectures and can either

follow the user mode or content-based permissioning models. User Identities would be again
created using the USER_AND_APPLICATION authorization mode (which also checks to see
if the user is entitled to use that application according to records on EMRS).

The application could then either send the user identities with separate requests and
correlation IDs to get data for individual users, or it can use its own Identity (created just
for the application) to request data (the application Tdentity is the parameter to the
request or subscription function). EIDs could be extracted from the returned data and thus
can be used in a Server-mode style by distributing to entitled users.

7.7.3 Derived Data / Non-Display
Use of Derived Data and Non-display applications carries a fee. These are essentially
applications where users will never see the raw data going into them. The application would

simply make requests using its own Identity and the raw incoming data would never be
sent to users.

Derived Data applications may pass "resultant data" to users, and the definition of this
"resultant data" is clearly defined in the contract.

7.8 V2 Authorization and Permissioning Models

If you have previously worked with prior versions of the API (the pre-V3 C and .NET API)
then it is important to note the changes between pre-V3 and V3 style permissioning.

7.8.1 User Mode

Pre-V3 user mode was tied to an application.

7 Authorization and Permissioning Systems 101

Bloomberg

In the C API this involved using the bb_connect_server_user call which set the entire
application as tied to that user. All requests would be processed using that user's
entitlements and settings.

.NET used configuration files (or XmINode objects) with the ServerApiLicense node to
determine the credentials of the user on whose behalf the application was to connect. After
MarketDataAdapter.Startup() was called, all requests would have been serviced as that user.

V3 avoids the issue of having to dedicate the entire program to a single user and instead
allows multiple users in the same application by using ldentities as parameters to requests
and subscriptions. The same distribution restrictions as pre-V3 still apply, data downloaded
on behalf of a single user cannot be distributed to another user.

7.8.2 All-or-None

All-or-none permissioning simply compared the set of entitlements of a user against the set of
entitlements of the server. If the user had all of the entitiements of the server then that user
was permitted to receive any data from the server without further checks.

Pre-V3 provided calls to check this.

The C APl used the bb_get_authorization function to check this. If any EIDs were returned
then that user did not match the Server on those EIDs and thus would have to be denied
access to all data from the server application.

The .NET API used the LicenseManager.GetRestrictions call. If it returned EIDs then the
user had to be denied access to all data.

V3 removes support for all-or-none systems as these are not considered to be flexible
enough. In addition problems were caused by entitlements sometimes being applied to users
non-homogenously.

7.8.3 Content-Based / Per-Product / Per-Security

The pre-V3 implementation of the content-based, originally known as per-product or per-
security, permisisoning system involved downloading lists of EIDs for each user and for each
security. When data was to be passed to users the application developer was responsible for
checking that the security's EIDs were a subset of the user's.

In the C API, the EIDs for securities and users were retrieved via the
bb_get_security_entitlements and bb_get_user_entitlements function calls.

In .NET this was performed using the LicenseManager.GetSecurityEntitlements and
LicenseManager.GetUserEntitlements methods.

This is implemented in the V3 system with some minor changes; the logon check and the
user entitlements retrieval are now combined into the request to populate an Identity.
This request currently differs between Server APl and Managed B-PIPE and these processes
are detailed later in this document.

7 Authorization and Permissioning Systems 102

Bloomberg

7.8.4 Validating Logon Status

In the pre-V3 API it was necessary to perform a separate check to see if a user was logged
into the terminal on at a specified IP address.

The C API used the bb_validate_blbg_logon function and took the user's UUID, SID, SID
Instance, Terminal SID, Terminal SID Instance, and the IP address of the user's terminal as
parameters.

The .NET API worked the same way using the TerminalMonitor.GetLogonStatus method.

In V3 this is implemented as part of the authorization process that eventually populates an
Identity. In Server API the user's UUID and IP address of the terminal is passed as part
of the authorization request. In Managed B-PIPE, the operating system logon, or Active
Directory property, is used to match a user against values stored in the EMRS administrative
function on the terminal in order to obtain a Token to pass in instead of the UUID and IP
address.

7 Authorization and Permissioning Systems 103

Bloomberg

8 Publishing

8.1 Overview

The Bloomberg API allows customer applications to publish data as well as consume it.
Customer data can be published for distribution within the customer’s enterprise, contributed
to the Bloomberg infrastructure, distributed to others, or used for warehousing.

Publishing applications might simply broadcast data or they can be “interactive”, responding
to feedback from the infrastructure about the currently active subscriptions from data
consumers. This chapter will illustrate both paradigms.

8.2 The Programming Examples

The two examples explored in this chapter are BroadcastOneTopic.cpp and
InteractivePublisher. cpp.

8.3 Simple Broadcast

In a simple broadcast, the publishing application sends data but has no indication if anyone is
consuming that data. In this simple example, data will be produced for a single topic. The
major stages are:

Creating a session.

Obtaining authorization.

Creating the topic.

Publishing events for the topic to the designated service.

Each of these stages will now be examined in detail.

8.3.1 Creating a Session
Sessions for publication are created in the same manner as those for consuming data. The

key difference is that they are managed by an instance of ProviderSession instead of
Session.

8 Publishing 104

Bloomberg

// BroadcastOneTopic.cpp

int main ()

{
SessionOptions sessionOptions;
sessionOptions.setServerHost ("platform") ;
sessionOptions.setServerPort (8195) ;

sessionOptions.setAuthenticationOptions ("AuthenticationType=0S LOGON") ;
MyEventHandler myEventHandler;

ProviderSession session(sessionOptions, &myEventHandler, O0);

if (!session.start()) {
std::cerr <<"Failed to start session." << std::endl;
return 1;

The event handler plays no significant role in this example and will not be examined.

8.3.2 Authorization

The authorization stage, if successful, provides a valid Tdent ity object which is required

for later operations. Authorization is done by the "/ /blp/apiauth" service on receipt of
an authorization request.

See for details.

8 Publishing 105

Bloomberg

8 Publishing 106

Bloomberg

else if (event.eventType () == EventType.RESPONSE
|| event.eventType () == EventType.PARTIAL RESPONSE
|| event.eventType () == EventType.REQUEST STATUS) ({

for (Message msg: event) {
if (msg.correlationID().equals(d authorizationResponseCorrelationId))
Object authorizationResponseMonitor =
msg.correlationID() .object () ;
synchronized (authorizationResponseMonitor) {
if (msg.messageType () == AUTHORIZATION SUCCESS) {
d authorizationResponse = Boolean.TRUE;
authorizationResponseMonitor.notifyAll () ;

}

else if (msg.messageType () == AUTHORIZATION FAILURE) {
d authorizationResponse = Boolean.FALSE;
System.err.println ("Not authorized: " +

msg.getElement ("reason")) ;
}
else {
assert d authorizationResponse == Boolean.TRUE;
System.out.println ("Permissions updated") ;

{

Before publishing data, the application must create a Topic object on the appropriate service.
This example uses synchronous method createTopics () of the ProviderSession to
create a Topicon //blp/test service from a topic string "testtopic".

8 Publishing 107

Bloomberg

const std::string myService = "//blp/test";

const std::string myTopic "testtopic";

TopicList topicList;

topicList.add((myService + "/ticker/" + myTopic).c str(),
CorrelationId((long long)l));

session.createTopics (
&topiclList,
ProviderSession: :AUTO REGISTER SERVICES,
providerIdentity) ;

Topic topic;

for (size t i = 0; i < topicList.size(); ++i) {
if (topicList.statusAt (i) == TopicList::CREATED) {
topic = session.getTopic (topicList.messageAt (1))

8.3.4 Publishing

In this example, data is published by sending events to the designated service,
"//blp/test". Event objects are obtained from the service and populated with the topic
and the application specific data. In this simple example, each event contains a single data
message; however, in general, each event can contain multiple messages.

In this simple example, the data is just an integer value that is incremented and published
every ten seconds.

8 Publishing 108

Bloomberg

Name messageType ("MyMessageType")
Name fieldType ("MyFieldType") ;

Service service = session.getService (myService.c str());
for (int value = 1; true; ++value, sleep(10)) {
Event event = service.createPublishEvent () ;

EventFormatter eventFormatter (event) ;
eventFormatter.appendMessage (messageType, topic):;
eventFormatter.setElement (fieldName, value);

session.publish (event) ;
}

session.stop () ;

return 0;

Note: The standard C library 'sleep’ function is used above. The argument specifies the
number of seconds to sleep.

8.4 Interactive Publication

The Bloomberg infrastructure can send events to provider applications when data is needed
for a given topic. These events allow the customer applications to "interact" with the
Bloomberg infrastructure. Data for a topic need be published only when it is known to have
subscribers.

In this simple example, data is published, only as needed, for a set of topics on a single
service. The major steps are:

Creating a session.

Obtaining authorization.

Registering for subscription start and stop messages.

Handling subscription start and stop events, which add and remove topics to the
active publication set.

Creating a topic.
Publishing events for the active topics of the designated service.

The details for creating a session, obtaining a provider identity, and authorization are the
same as in the earlier example; they will not be detailed again.

This design requires the management of a collection of "active" topics for publication. That
collection will be populated (and depopulated) by event handling threads and accessed for

8 Publishing 109

Bloomberg

periodic publication by the main thread. A map will be used to store pairs of topic/CUSIP
pairs (keyed on topic). The topics are provided in the start and stop messages, and CUSIPs
are obtained by requesting resolution of the received topics.

The multiple threads of this application must not concurrently access the collection; STL
containers are not thread-safe in that respect. Since there is only one "reading" thread in this
application, a simple mutex suffices. A pthread mutex was chosen because it is familiar to
many readers.

// InteractivePublisher.cpp
int main(int argc, char **argv)
{
Publications activePublications;
pthread mutex t activePublicationsMutex;
pthread mutex init (&activePublicationsMutex, NULL);
MyEventHandler myEventHandler (&activePublications,
&activePublicationsMutex) ;

SessionOptions sessionOptions;

sessionOptions.setServerHost ("192.168.9.155") ;
sessionOptions.setServerPort (8195) ;
//sessionOptions.setAuthenticationOptions ("AuthenticationType=0S LOGON") ;

sessionOptions.setAuthenticationOptions ("AuthenticationMode=APPLICATION ONLY;
ApplicationAuthenticationType=APPNAME AND KEY;ApplicationName=blp:APP BBOX");
ProviderSession session (sessionOptions, &myEventHandler, O0);
if (!session.start()) {

std::cerr << "Failed to start session." << std::endl;
return -1;

As we will see later, the event handler is designed to hold pointers to the collection of active
topics and to the mutex that manages access to that collection.

8.4.1 Registration

On completion of service registration, the application can expect subscription start and
subscription stop messages in the context of subscription status events.

8 Publishing 110

Bloomberg

...... create ’activePublication’ collection, the managing mutex,
and the event handler
...... create ’session’ and obtain ’Identity’.. ..

const char *myService = "//blp/mktdata8";

if (!session.registerService (myService, providerIdentity)) {
std::cerr <<"Failed to register " << myService << std::endl;
return -1;

8.4.2 Event Handling

The event handler in this example is detailed below. The relevant event type is
TOPIC STATUS. The TOPIC STATUS event has three message types of interest:
TOPIC CREATED, TOPIC SUBSCRIBED, and TOPIC UNSUBSCRIBED

On receipt of "started" type messages, the event handler adds the topic to a set of topics that
require asynchronous topic creation. Once all of the messages in the event have been
examined, that list (if non-empty) is sent for resolution. Use of the session’s
createTopicsAsync method means that the operation does not block. Rather, the
result is returned in a separate event of type TOPIC CREATED.

When messages indicating successful topic creation are received, the event handler extracts
the topic and the corresponding string, creates an item, and adds that item to the collection of
active publications. Since a topic may have received a "stop" message while it was being
created, there is first a check to see if the topic is still in the "needed" set before it is added to
the "active" collection.

On receipt of a "stopped" type, the event handler extracts the topic from the message and
deletes the corresponding item in the collection of active publications or the collection of
topics needing creation.

Note that all operations use the provided mutex to provide exclusive access for each other.

8 Publishing 111

Bloomberg

bool MyEventHandler: :processEvent (const Event& event, ProviderSession*
session)

{
switch (event.eventType()) {
case Event::TOPIC STATUS: ({
TopicList topicList;
Messagelterator iter (event) ;
while (iter.next()) {
Message msg = iter.message() ;
std::cout << msg << std::endl;

if (msg.messageType () == TOPIC SUBSCRIBED) ({
Topic topic;
try {
topic = session->getTopic (msqg) ;

}

catch (blpapi::Exception &) {

}

if (!topic.isValid()) {
topicList.add (msqg) ;

}

else if (d _actPub p->find(topic) == d actPub p->end()) {
std::string topicStr =

msg.getElementAsString ("topic") ;

pthread mutex lock(d actMutex p);
PublicationItem publicationItem(topic, topicStr);
d actPub p->insert (publicationItem) ;
pthread mutex unlock (d actMutex p);

}

else if (msg.messageType () == TOPIC UNSUBSCRIBED) {
Topic topic;
try {
topic = session->getTopic (msqg) ;

pthread mutex lock(d actMutex p);
Publications::iterator it = d actPub p->find(topic);
if (it != d actPub p->end()) {
d actPub p->erase(it);
}
pthread mutex unlock (d actMutex p);
}
catch (blpapi::Exception &) {
}

8 Publishing 112

Bloomberg

else if (msg.messageType () == TOPIC CREATED)
try {
Topic topic = session->getTopic (msqg) ;

pthread mutex lock(d actMutex p);

d actPub p->insert (publicationItem);

pthread mutex unlock (d actMutex p);
} catch (blpapi::Exception &e) {

Sitels sCeER

<< e.description ()
<< std::endl;
continue;

}
if (topicList.size()) {
session->createTopicsAsync (topicList) ;
}
} break;
default:
printMessages (event) ;

return true;

<< "Exception in Session::getTopic () :

{

std::string topicStr = msg.getElementAsString ("topic");

PublicationItem publicationItem(topic, topicStr);

1]

8.4.3 Publication

The publication loop in this example is, in many ways, similar to that used in the first example.

There is a value that is incremented every ten seconds and is used to create an event for

publication.

8 Publishing

113

Bloomberg

Service service = session.getService (myService) ;

Name messageType ("MyMessageType") ;

Name fieldName ("MyFieldName") ;

for (int value = 1; true; ++ value, sleep(l0)) {
pthread mutex lock(&activePublicationsMutex) ;

if (0 == activePublications.size()) {
continue;
}
Event event = service.createPublishEvent () ;
EventFormatter eventFormatter (event) ;
for (Publications::iterator iter = activePublications.begin() ;
iter != activePublications.end() ;
++iter) {
const std::string& cusip = iter->second;

eventFormatter.appendMessage (messageType, iter->first);
eventFormatter.setElement (fieldName, myValueFor (cusip,
value)) ;
}

pthread mutex unlock (&activePublicationsMutex) ;

session.publish (event) ;

session.stop () ;

return 0;

Note: The standard C library 'sleep' function is used above. The argument specifies the
number of seconds to sleep.
However, there are some differences (highlighted above):

Rather than a single fixed topic, publication is made for all of the topics in the
collection of active publications.

Note that the mutex is acquired before iterating over that collection.

There is at most one published event per cycle. Each event may have multiple
messages, each with data for a specific topic.

Although sending an empty event would not be harmful, if the collection of active
publications is empty, no event is published for that cycle.

The published data might vary by topic. Details of the myValueFor function are
not important and, therefore, not shown.

8 Publishing 114

Bloomberg
9 Managed B-Pipe

9.1 Overview

In addition to the core set of services available to licensed users of the Desktop API and
Server API products, there is an additional set of services that are offered only to Managed
B-Pipe users. The primary purpose of this section is to provide the depth of knowledge required
to understanding and utilizing these services in your Bloomberg API application.
They are as follows:

Market Depth Service (//blp/mktdepth)

Market List Service (//blp/mkitlist)

Source Reference Service (//blp/srcref)

For information on the core set of services available to Managed B-Pipe users, please see
“Core Services” on page 53.

Important Notice

Field filtering is available as a configuration option, which means that Managed B-Pipe clients
have the option to change their configurations so that only the fields specified in a
subscription are returned. As a result, clients should be able to recognize significant
bandwidth savings on their Client LAN.

Contact Bloomberg support to have this feature enabled on your Bloomberg Appliance.

9.2 Managed B-Pipe Services

9.2.1 Market Depth Service

Overview

Market depth, order books and level 2 data are all names for the same set of data. They
provide information about the bid and ask prices that currently exist for an instrument.

Generally, the "top of the book", i.e., the price in the top row (row 1) of the order book is also
the "best" bid or ask.

Typically the best bid in an order book will be lower than the best ask. This seems natural
since people want to buy (bid for) something at a lower price than someone else wants to sell
(ask for) the same item. However, it is possible for this situation to become reversed and the
best bid price becomes higher than the best ask price. This is known as an inverted or
crossed market and can and does occur regularly under specific conditions. The details of the
specific conditions vary by market.

9 Managed B-Pipe 115

Bloomberg

Many times exchanges consider order book (level 2) information a separate product from its
level 1 data and charge additional fees for access to it. In these cases the level 2 data will
have a different EID than the level 1 data. Order books have three characteristics that define
them: The number of rows in the book (window size), the type of the order book and the
method used to update the book.

There are two types of order books, Market-By-Order (MBO) and Market-By-Level (MBL). An
exchange may provide only MBL data, only MBO data or both MBO and MBL data. There are
three order book update methods, Replace-By-Level (RBL), Add-Mod-Delete (AMD) and
Replace-By-Broker (RBB).

The Market Depth Service

The Market Depth service is subscription-based and allows the subscription to all levels of
market depth data. It is available to both BPS (Bloomberg Professional Service) and Non-
BPS users.

Before delving into the market depth service and its data, let's first take a look at another way
to obtain limited market depth data via the already existing //blp/mktdata service. With this
service, you can obtain up to the first 10 levels of market depth by level (aka MBL) data. This
is accomplished by making a //blp/mktdata subscription and including one or more of the
following fields.

Mnemonic Description

BEST_BID1 thru BEST_BID10 First thru tenth best bid price in ten levels of
market depth

BEST BID1_SZ thru BEST_BID10_SZ Size of first thru tenth best bid in ten levels of
market depth

BEST_ASK1 thru BEST_ASK10 First thru tenth best ask price in ten levels of
market depth

BEST_ASK1_SZ thru BEST_ASK10_SZ Size of first thru tenth best ask in ten levels of
market depth

For further information regarding making a subscription, please read the

Keep in mind that this method of obtaining market depth through the //blp/mktdata service is
limited to receiving only aggregated Market By Level data for up to 10 levels. This service
doesn't allow you to obtain "Market By Order" (MBO) data. Also, the //blp/mktdata service
doesn't provide you with information such as the book type or the action performed on that
position.

Therefore, if you wish to receive more than 10 levels of market depth by level (MBL) or any
market depth by order (MBO) levels, then you will be required to use the //blp/mktdepth

9 Managed B-Pipe 116

Bloomberg

service. Subscribing to this comprehensive service will not only supply you with the order
book in its entirety, but also provide you with the book type, action performed, etc.

You will find two separate examples in the Managed B-Pipe SDK for C++, Java and .NET.
They are as follows:

MarketDepthSubscriptionExample

This example demonstrates how to make a simple Market Depth subscription for
one, or more, securities and display all of the messages to std::cout.

MarketDepthSubscriptionSnapshotExample
This example demonstrates how to build and update an order and level book. It is

comprised of a LevelBook and OrderBook class, which handle the Market Depth By

Level and By Order messages, respectively, based upon the returned
MD_TABLE_CMD_RT value, and then the main classes which perform the
subscription, general message handling and output tasks.

Number of Rows in an Order Book

The number of rows in a book may be limited or not. Many exchanges limit their books to as

few as 5 rows (positions), others may have as many as 200 rows while still others may not

have a predefined limit to the number of rows a book may have. The number of rows that are
sent to a client can also be limited by the vendor providing the data. In general, 200 rows are

considered a large book. When an order book has a limited size, and most do, prices or

orders can be dropped and added back regularly as the top of the book changes. There is no

connection between the number of rows in a book and the type and method of the book.
Each is independently determined by the source of the book.

Types of Order Books

MBO order books show every order that is in the book. If multiple brokers have orders at the

same price level the book will show each order, resulting in multiple rows at the same price

level. The amount of data that is available at each level varies by the source of the data but it

typically consists of the price, size and a broker ID.

MBL order books show only one row for each price. If multiple brokers have bids or asks in at
the same price the size of all the brokers orders will be summed and be displayed. Optionally,

the number of brokers at that level may also be provided.

The type of an order book is independent of the method used to maintain the order book.

9 Managed B-Pipe 117

Bloomberg
Order Book Methods

The first method is called Replace-By-Level (RBL). It is used for both MBO and MBL types of
order books. In the RBL method, each row (position) in the order book is directly addressed
so that updates to row 1 are specifically addressed to row 1, updates to row 2 are specifically
addressed to row 2, etc.

For instance, when a new price is inserted in row 1, the old price that was in row 1 must now
be moved to row 2, the price that was in row 2 moved to row 3, etc. This results in multiple
messages updating the affected rows in the book. When multiple updates are needed, the
MD_MULTI_TICK_UPD_RT field will be present. A non-zero value in this field indicates that
additional messages are coming. All related updates must be applied before the book is
back in a valid state.

This method works well for small order books, but can become very inefficient for large
books, particularly so because a majority of the activity in an order book occurs at the top of
the book, requiring frequent retransmission of the entire book. It can also be difficult to know
when a single update is complete.

The second order book method is Add-Mod-Delete (AMD). It is used for both MBO and MBL
types of order books. The AMD method is much more efficient in sending updates to order
books. Instead of addressing each row in the book individually only the changes to the book
are sent. This means that client applications must manage any related updates resulting from
an Add or Delete event.

For instance, when a new price is inserted at a specific row, the only message sent is the
insert. It is the application's responsibility to adjust the position of all the rows that have been
shifted down. Likewise, when a row is deleted, it is the application's responsibility to shift all
the prices that were below it up. Of course any new price at the bottom of the book requires a
separate "Insert", but this is much more efficient than resending the whole book.

The downside of the AMD method is that it depends on receiving and correctly processing
every update to keep the book accurate. With the RBL method a missed message will result
in the specific row being wrong. But this condition is corrected the next time that row is
updated.

Because a single AMD message can affect a single row, one missed message can result in
the order book being wrong for the rest of the day or until a recap is sent. Because of this,
AMD messages are sent using sequence numbers. If the application detects a gap in the
sequence numbers it can recover from the error by re-requesting the entire order book. In
other words, resubscribe to the book. If the gap is detected as a result of an issue within the
Bloomberg Data Center, Bloomberg will send down an order recap. This form of gap
dectection is covered in a later section.

9 Managed B-Pipe 118

Bloomberg

The third order book method is Replace-By-Broker (RBB). Because it addresses specific
broker entries, it is used only for MBO order books. It is a mix of the RBL and AMD methods.
It is similar to the RBL method in that each broker's entry is individually addressed. It is
similar to the AMD method in that a single update affects the entire book. However, unlike the
AMD method, a missed message results in an order book that is wrong only until the next
update for that broker.

Both the RBL and AMD methods specify specific row numbers to identify each entry. The
RBB method does not use row numbers. Instead the broker code is used to identify the entry.

How RBB order books are sorted is left up to the feed handler. The general rule is to use the
price as the primary sort key. The secondary sort key can either be the sequence the orders
at the same price were received or an alphabetic listing of all the brokers at the same price.

Subscribing to Market Depth

The first step in subscribing to the //blp/mktdepth service is to learn how the subscription
strings are formulated. For the string to be valid, you must specify a "type" parameter, which
can be either MBO (Market by Order) or MBL (Market by Level). You cannot specify more
than one of these in a subscription string. This is appended to the end of the string,
immediately following the "?" delimiter.

Here is a list of valid market depth subscription string formats, along with an example of each.

Key Field Format Example

Bloomberg Symbol /Iblp/mktdepth/bsym/ /symbol /Iblp/mktdepth/bsym/LN/VOD?type=MBL
//blp/mktdepth/bsym/US/AAPL?type=MBO

Ticker /Iblp/mktdepth/ticker/symbol //blp/mktdepth/ticker/ESM2 Index?type=MBL

BSID /Iblp/mktdepth/bsid/bsid IIblp/mktdepth/bsid/3994324733467?type=MBO

Bloomberg Unique ID | //blp/mktdepth/buid/ fidentifier | //blp/mktdepth/buid/US/EQ0010080100001000?type=MBL

SEDOL /Iblp/mktdepth/sedol/ /identifier | //blp/mktdepth/sedol/US/2005973?type=MBL

CusIP /Iblp/mktdepth/cusip/ fidentifier | //blp/mktdepth/cusip/US/459200101?type=MBL

ISIN //blp/mktdepth/isin/ fidentifier /Iblp/mktdepth/isin/US/US4592001014?type=MBL

Parsekeyable /Iblp/mktdepth/bpkbl/identifier /Iblp/mktdepth/bpkbl/QCZ1 Index?type=MBL

Bloomberg Global ID | //blp/mktdepth/bbgid / /bbgid //blp/mktdepth/bbgid/UP/BBG000BH2658?type=MBO

The following code snippet demonstrates how to subscribe for streaming (MBL) market depth
data and assumes that a session already exists and that the "//blp/mktdepth" service has
been successfully opened.

const char *security = "//blp/mktdepth/isin/US/US4592001014?type=MBL";
SubscriptionList subscriptions;

subscriptions.add(security, CorrelationId((char *)security)):;
session.susbcribe (subscriptions) ;

Figure 9-1: C++ code snippet: Subscribing for streaming (MBL) market depth data

9 Managed B-Pipe 119

Bloomberg
Response Overview

The Market Depth response will be a series of SUBSCRIPTION_DATA events, which you will
already be familiar with if you have developed Bloomberg API applications using any of the
other streaming services, such as //blp/mktdata or //blp/mktvwap.

A SUBSCRIPTION_DATA event message will be of type MarketDepthUpdates, and within
each message there will be a MKTDEPTH_EVENT_TYPE and
MKTDEPTH_EVENT_SUBTYPE field, along with, possibly, an array of MBO_TABLE_ASK/
MBO_TABLE_BID items (for MBO subscription) or MBL_TABLE_ASK/MBL_TABLE_BID (for
MBL subscriptions).

The MKTDEPTH_EVENT_TYPE will indicate whether the message is Market by Level
(value= MARKET_BY_LEVEL) or Market by Order (value = MARKET_BY_ORDER). Here
are the possible values for each MKTDEPTH_EVENT_SUBTYPE:

MKTDEPTH_EVENT_SUBTYPE Notes

TABLE_INITPAINT This is the Initial Paint message for your subscription

When this message is received, it is an indicator to you to clear the
book cache and add the rows contained in the message.

This message will contain the FEED_SOURCE,
ID_BB_SEC_NUM_SRC (a.k.a. BSID) and MD_BOOK_TYPE. No
other messages will contain this information, so it is required that you
assign a unique correlation identifier to each one of your subscriptions
in order to map the message updates to the initial request.

For AMD and RBL book types, there will be a WINDOW _SIZE field/
value pairing, which indicates the number of levels in the book, as
position is the key to the book. However, this field will not be contained
in the MBO-RBB initial paint, as the key for this book is the broker.

BID This indicates a bid quote message
ASK This indicates an ask quote message
BID_RETRANS In the event of a loss of connectivity upstream, the Bloomberg

infrastructure will automatically recover (RECAP) and send
BID_RETRANS and ASK_RETRANS events. Upon receipt of these
messages, you will receive a CLEARALL message with a
MKTDEPTH_EVENT_SUBTYPE of RETRANS and you should
consider your book in a bad state and accept the recovery. Please note
that the sequence numbers will be set to zero during the recap.

ASK_RETRANS See BID_RETRANS description above

Within each TABLE_INITPAINT message you will find one MD_TABLE_CMD_RT field/value
pairing for the entire initial paint and then individual MD_TABLE_CMD_RT field/value pairings
for each MBL_TABLE_ASK/MBO_TABLE_ASK/ MBL_TABLE_BID/MBO_TABLE_ BID that
may be present. Thereafter, you will see on MD_TABLE_CMD field/value pairing for each BID
or ASK MKTDEPTH_EVENT_SUBTYPE tick update.

9 Managed B-Pipe 120

Bloomberg

The possible string values, which indicate what action should be taken in response to the
market depth event, are listed in the table below.

Name
UNASSIGNED

Value
0

Description

The default constant 'UNASSIGNED' is used to initialize all
enumeration type fields

ADD

Add an entry to the order book. When you add this order in the
market depth table, you should shift all orders at the market depth
position in the event and market depth orders or levels inferior to
event passed to one position inferior. For example, if a new order
is added to position one of the market depth table, then the
previous order at position one is shifted to position two. The order
at position two is shifted to position three and so on until you get to
the market depth window size. If the ADD results in Bid or ASK
sides to have more levels than the value configured in
MBI[LO]_WINDOW_SIZE, the last level in the corresponding side
should be dropped. It will be up to you to cache
MB[LO]_WINDOW_SIZE from the Initial paint event to handle this
scenario.

DEL

Delete this event from the market depth cache. The delete should
occur at the position passed in the market depth event. When
cached market event at the position passed in the delete is
removed, all position inferior should have their positions shifted by
one. For example, if position one is deleted from a market by
order or market by price event, the position two becomes one,
position three becomes two, etc.

DELALL

Delete all events from the cache. This is a market depth flush
usually passed at the start or end of trading or when a trading halt
occurs.

DELBETTER

Delete this order and any superior orders. The order ID at the next
inferior position is now the best order. This differs from the EXEC
command in that it deletes the current order, where the EXEC
command modifies the current order.

DELSIDE

Delete all events on the corresponding side (bid/ask) of the order
book.

EXEC

Trade Execution. Find the corresponding order in the cache,
replace event details with this event and then delete any prior
superior orders.

MOD

Modify an existing event in the market depth cache. Find the
cached market depth event by the position in the new market
depth event and replace the cached event by the fields and data in
the new event.

REPLACE

10

Replace previous price level or order at this position. Add price
level or order if you do not have it currently in the cache. A zero (0)
price and size will be sent when there is no active price or order at
this level.

9 Managed B-Pipe

121

Bloomberg

Name
REPLACE_BY_BROKER

Value
11

Description

This table command is used for top of file feeds where the action
is to replace by the broker mnemonic. The recipient needs to find
the broker in their cache and replace the quote with the one in the
market depth event. If that broker is not present, it should be
added to the cache. If the price and size for a broker is set to 0,
the broker should be deleted from the cache.

CLEARALL

12

Clears the entire orderbook for the specified side. This market
depth table command is issued by Bloomberg when market depth
recovery is occurring. This table command has the same effect
on the cache as DELETEALL which means all order or levels
should be cleared from the cache. During LVC recovery you will
generally see 2 CLEARALLs - 1 for Bid side and 1 for Ask side.
Should the client of market depth need to process a recovery of
market depth differently, this table command allows the user to
differentiate from the source/exchange produced DELETEALL.

REPLACE_CLEAR

13

The REPLACE_CLEAR table command is intended to remove an
order or more often a level in the market depth cache. The
REPLACE_CLEAR should be indexed by the
MarketDepth.ByLevel/ByOrder.Bid/Ask.Position field. The cache
should NOT be shifted up after the level is cleared. A clear means
all orders at that position have been deleted from the order book.
It is possible that an order or level at a superior or most superior
position to be cleared prior to more inferior levels. After the level
is cleared in this case, it is expected that subsequent market
depth event(s) will be passed to clear the orders or levels at
positions inferior to the one just cleared.

The other important enumeration value is found in the Book Type (MD_BOOK_TYPE) field
and is only included in the initial paint message. Here is a complete table covers all three
book types and their possible table command enumeration values.

Book Type

Initial Paint Table Command Table Commands in Real-Time

(MD_BOOK_TYPE) (MD_TABLE_CMD_RT) Messages (MD_TABLE_CMD_RT)

MBO[L]-AMD ADD CLEARALL, ADD, MOD, DELETE,
DELSIDE, DELBETTER, EXEC

MBOI[L]-RBL REPLACE CLEARALL, REPLACE,
REPLACE_CLEAR

MBO-RBB REPLACE_BY_ BROKER CLEARALL, REPLACE_BY_ BROKER,
REPLACE_CLEAR

The following code snippet demonstrates how to handle and print out a MarketDepth
subscription to std::cout. This C++ snippet is based on the aforementioned
"MarketDepthSubscriptionExample" C++ SDK example. For a more complete example that
demonstrates how to handle and build an order/level book, please reference the

9 Managed B-Pipe

122

Bloomberg

aforementioned "MarketDepthSubscriptionSnaphotExample" example in either the Java,
C++ or .NET SDK.

bool processEvent (const Event &event, Session *session)
{
try {
switch (event.eventType())
{
case Event::SUBSCRIPTION DATA:
{
char timeBuffer([64];
getTimeStamp (timeBuffer, sizeof (timeBuffer)) ;

std::cout << "Processing SUBSCRIPTION DATA" << std::endl;
Messagelterator msglter (event) ;
while (msglter.next()) {

Message msg = msglter.message () ;

std::string *topic = reinterpret cast<std::string*>(
msg.correlationId () .asPointer()) ;
std::cout << timeBuffer << ": " << topic->c str() << " - " ;

msg.print (std::cout) ;
}
break;
}
case Event::SUBSCRIPTION STATUS:
return processSubscriptionStatus (event) ;
break;
default:
return processMiscEvents (event) ;
break;
}
} catch (Exception &e) {
std::cout << "Library Exception !!! " << e.description().c str() << std::endl;
}

return false;

Figure 9-2: Handling a market depth data update (C++)

You will notice that the above code checks the EventType being returned and looks for
SUBSCRIPTION_DATA. Please note that the processSubscriptionStatus() and
processMiscEvents() functions were not shown for brevity. You will also notice that the event
handler for the tick updates is identical to that of a //blp/mktdata subscription, for instance.

The summary (initial paint) messages can be split into one or more smaller messages in the
case where the returned data is too large to fit into a single message. It will be up to you to
handle this in your application.

You will achieve this by checking the Fragment type of any SUBSCRIPTION_DATA event
message containing a MKTDEPTH_EVENT_SUBTYPE of value "TABLE_INITPAINT". The
Fragment enum is used to indicate whether a message is a fragmented message or not and
what position it occurs within the chain of split fragmented messages. If the
TABLE_INITPAINT is split into two parts, then the first message will have a Fragment type

9 Managed B-Pipe 123

Bloomberg

value of FRAGMENT_START and a last message of FRAGMENT_END. If the
TABLE_INITPAINT is split into more than 2 parts, all middle Fragments will be of type
FRAGMENT_INTERMEDIATE.

This enum will exist in both MARKET_BY_ORDER and MARKET_BY_LEVEL messages.

Message::Fragment Type Enumerators

FRAGMENT_NONE Message is not fragmented
FRAGMENT_START The first fragmented message
FRAGMENT_INTERMEDIATE Intermediate fragmented messages
FRAGMENT_END The last fragmented message

The following code snippet demonstrates how the C++
"MarketDepthSubscriptionSnapshotExample" example checks the fragment type. Please
take a look at the full code example in the SDK for a working version of this code.

if (subType == TABLE INITPAINT) ({
if (msg.fragmentType () == BloombergLP::blpapi::Message::Fragment: :FRAGMENT START |
msg.fragmentType () == BloombergLP::blpapi::Message::Fragment: :FRAGMENT NONE)

if (msg.hasElement (MBO WINDOW SIZE, true)) {
d orderBooks[Side::ASKSIDE] .window size = (unsigned int)
msg.getElementAsInt64 (MBO WINDOW SIZE) ;
d orderBooks[Side::BIDSIDE] .window size =
d orderBooks[Side::ASKSIDE] .window size;
}
d orderBooks[Side::ASKSIDE] .book type = msg.getElementAsString (MD BOOK TYPE) ;
d orderBooks[Side::BIDSIDE] .book type = d orderBooks[Side::ASKSIDE].book type
// clear cache
d orderBooks[Side: :ASKSIDE] .doClearAll () ;
d orderBooks[Side::BIDSIDE] .doClearAll () ;

|
{

’

Figure 9-3: Checking for the Fragment Type (C++)

The above code checks the Market Depth Event Sub-Type being returned, and if it equals
TABLE_INITPAINT, then it checks the Fragment Type. If a FRAGMENT_START or
FRAGMENT_NONE type is returned by msg.fragmentType(), then the order book is cleared.

Every event in an Add-Mode-Delete (AMD) order book is critical in maintaining an accurate
book. One missed message can result in a book that is wrong for the remainder of the trading
day. Because of this, all AMD market depth messages have a MBO_SEQNUM_RT field with
a non-zero value. This field is generated by the Bloomberg ticker plant when it creates its
order book and increments monotonically for every update. Separate counters are
maintained for the bid and ask sides since they update independently.

It is up to your application to clear the book as soon as you receive an initial paint message

9 Managed B-Pipe 124

Bloomberg

MBO-AMD sample subscription output (for "//blp/mktdepth/bsym/CT/RIM?type=MBQO") .

9 Managed B-Pipe 125

Bloomberg

9 Managed B-Pipe

Bloomberg

Processing SUBSCRIPTION DATA
/bsym/CT/RIM - MarketDepthUpdates = {
MKTDEPTH EVENT TYPE = MARKET BY ORDER
MKTDEPTH EVENT SUBTYPE = TABLE INITPAINT
ID BB SEC NUM SRC = 502511690826
FEED SOURCE = "CT"
EID = 14184
MD TABLE CMD RT = ADD
MD BOOK TYPE = MBO-AMD
MBO_WINDOW SIZE = 200
MBL TABLE ASK[] = {
}
MBL TABLE BID[] = {
}
MBO TABLE ASK[] = {
MBO_TABLE ASK = {
MBO_ASK POSITION RT = 200
MBO_ASK RT = 12

MBO_ASK BROKER RT = " 80"
MBO_ASK_COND_CODE_RT = ""
MBO ORDER ID RT = "3235313500000c390050"

MBO ASK_SIZE RT = 100
MBO TIME RT = 2012-05-25T15:20:49.000+00:00
MD TABLE CMD RT = ADD
}
}
MBO TABLE BID[] = {
}

Notes:

The first message above is the initial paint (as indicated by the TABLE_INITPAINT event sub-
type (i.e., MKTDEPTH_EVENT_SUBTYPE)) and indicates that it is a Market-By-Order
message, as indicated by the MARKET_BY_ORDER event type (i.e.,
MKTDEPTH_EVENT_TYPE). Within the initial paint message, you will find a table of asks
and bids. In this case, it is an MBO request, so the table will be of MBO bids and asks
(indicated by MBO_TABLE_BID[] and MBO_TABLE_ASK(]] array items). When you receive
an initial paint message, you should clear your book prior to populating with the table of Asks
and Bids.

Because this is an AMD (Add-Mod-Del) MBO Book Type, the MD_TABLE_CMD_RT field in
the initial paint is ADD. The valid table commands for subsequent AMD type message
updates are ADD, MOD, DELETE and CLEARALL.

9 Managed B-Pipe 127

Bloomberg

Because the Replace-By-Broker (RBB) method addresses individual broker orders, it applies
only to MBO order books. Unlike AMD and RBL, there is no concept of row numbers in a
RBB order book. Instead each broker ID represents a row. This leaves it up to the feed
handler to decide how to order the book. Typically they are ordered by best (highest) bid and
best (lowest) ask to worst (lowest) bid and worst (highest) ask. If multiple orders exist at the
same price on the same side then they can be sorted by size or by broker code. Itis up to
your application to clear the book as soon as you receive an initial paint message.

MBO-RBB Subscription Output (for "//blp/mktdepth/bsym/US/AAPL?type=MBQO")

Processing SUBSCRIPTION DATA
MarketDepthUpdates = {
MKTDEPTH EVENT TYPE = MARKET BY ORDER
MKTDEPTH EVENT SUBTYPE = TABLE INITPAINT
ID BB SEC NUM SRC = 399432471918
FEED SOURCE = "US"
EID = 14023
MD TABLE CMD RT = REPLACE BY BROKER
MD BOOK TYPE = MBO-RBB
MBL TABLE ASK[] = {
}
MBL TABLE BID[] = {
}
MBO TABLE ASKI[]
MBO TABLE ASK = {
MBO ASK RT = 604.630126953125
MBO ASK BROKER RT = "ADAM"
MBO ASK BROKER MODE RT = OPEN
MBO ASK COND CODE RT = ""
MBO ASK COND CODE SRC RT = ""
MBO ASK LSRC RT = "UQ"
MBO ASK SIZE RT = 100
MBO TIME RT = 2012-05-25T13:44:01.000+00:00
MD TABLE CMD RT = REPLACE BY BROKER

I
—

MBO TABLE ASK = {
MBO ASK_RT = 560.75
MBO ASK_BROKER RT = "ARCX"
MBO ASK_BROKER MODE RT = OPEN
MBO ASK_COND CODE_RT = ""
MBO ASK_COND CODE_SRC_RT = ""
MBO ASK_LSRC_RT = "UP"
MBO ASK_SIZE RT = 200
MBO TIME RT = 2012-05-25T19:24:12.000+00:00

MD TABLE CMD RT = REPLACE BY BROKER

(more)

9 Managed B-Pipe 128

Bloomberg

9 Managed B-Pipe

Bloomberg

Processing SUBSCRIPTION DATA
MarketDepthUpdates = ({
MKTDEPTH EVENT TYPE = MARKET BY ORDER
MKTDEPTH EVENT SUBTYPE = BID
EID = 14023
MD TABLE CMD RT = REPLACE BY BROKER
MBO TIME RT = 2012-05-25T19:24:14.000+00:00
MBO BID RT = 560.60009765625
MBO BID BROKER RT = "ARCX"
MBO BID BROKER MODE RT = OPEN
MBO BID COND CODE RT = ""
MBO BID COND CODE SRC RT = ""
MBO BID LSRC RT = "UP"
MBO BID SIZE RT = 100
MBL TABLE ASK[] = {
}
MBL TABLE BID[] = {
}
MBO TABLE ASKI[]
}
MBO TABLE BID[]
}

{

Il
==

}

Notes:

The first message above is the initial paint (as indicated by the TABLE_INITPAINT event sub-
type (i.e. MKTDEPTH_EVENT_SUBTYPE)) and indicates that it is a Market-By-Order
message, as indicated by the MARKET_BY_ORDER event type (i.e.
MKTDEPTH_EVENT_TYPE). Within the initial paint message, you will find a table of asks
and bids. In this case, it is an MBO request, so the table will be of MBO bids and asks
(indicated by MBO_TABLE_BID[] and MBO_TABLE_ASK]] array items). When you receive
an initial paint message, you should clear your book prior to populating with the array of Asks
and Bids.

Because this is a Request-By-Broker (RBB) MBO Book Type, the MD_TABLE_CMD_RT field
in the initial paint and subsequent update is REPLACE_BY_ BROKER. The only other valid
table commands for a RBB type are CLEARALL and REPLACE_CLEAR, which are sent by
the exchange.

With the Replace-By-Level (RBL) method each level is explicitly sent so that to maintain the
order book the feed handler simply has to apply the data for each level directly. There is no
shifting of rows in the order book. Because each level is maintained individually (unlike the
AMD method) missed messages, while never a good thing, have no impact other than that
they were missed. All other levels retain their correct values.

The RBL method is generally easier to implement than AMD, but this comes with a cost.
Because each level is maintained individually a new value at level one requires that the entire

9 Managed B-Pipe 130

Bloomberg

order book be resent. The bandwidth impact for small order books is minimal but can be
extreme for large order books. For this reason AMD is often used for large order books.

MBL-RBL Subscription Output (for “//blp/mktdepth/ticker/ESM2 Index?type=MBL”"),

Processing SUBSCRIPTION DATA
MarketDepthUpdates = {
MKTDEPTH EVENT TYPE = MARKET BY LEVEL
MKTDEPTH EVENT SUBTYPE = TABLE INITPAINT
ID BB SEC NUM SRC = 2078784978839
FEED SOURCE = "eCME"
EID = 14002
MD TABLE CMD RT = REPLACE
MD BOOK TYPE = MBL-RBL
MBL WINDOW SIZE = 10
MBL TABLE ASK[] = {
MBL TABLE ASK = {
MBL ASK POSITION RT = 1
MBL ASK RT = 1314.75
MBL ASK COND CODE RT = ""
MBL ASK NUM ORDERS RT = 35
MBL ASK SIZE RT = 384
MBL TIME RT = 2012-05-25T20:05:13.302+00:00
MD TABLE CMD RT = REPLACE
}
MBL TABLE ASK = {
MBL ASK POSITION RT = 2
MBL ASK RT = 1315
MBL ASK COND CODE RT = ""
MBL ASK NUM ORDERS RT = 65
MBL ASK SIZE RT = 397
MBL TIME RT = 2012-05-25T20:05:13.648+00:00
MD TABLE CMD RT = REPLACE

(more)

9 Managed B-Pipe 131

Bloomberg

9 Managed B-Pipe

Bloomberg

Processing SUBSCRIPTION DATA

MarketDepthUpdates = ({
MKTDEPTH EVENT TYPE = MARKET BY LEVEL
MKTDEPTH EVENT SUBTYPE = ASK
EID = 14002
MD TABLE CMD RT = REPLACE
MD MULTI TICK UPD RT = 0
MBL ASK POSITION RT = 2
MBL ASK RT = 1315
MBL ASK COND CODE RT = ""
MBL ASK NUM ORDERS RT = 65
MBL ASK SIZE RT = 397
MBL TIME RT = 2012-05-25T20:05:14.148+00:00
MBL TABLE ASK[] = {
}
MBL TABLE BID[]
}
MBO TABLE ASKI[]
}
MBO TABLE BID[] = {
}

{

{

}

Notes:

The first message above is the initial paint (as indicated by the TABLE_INITPAINT event sub-
type (i.e. MKTDEPTH_EVENT_SUBTYPE)) and indicates that it is a Market-By-Level (MBL)
message, as indicated by the MARKET_BY_LEVEL event type (i.e.
MKTDEPTH_EVENT_TYPE). Within the initial paint message, you will find the
MBL_WINDOW_SIZE. This indicates the number of levels in the book, along with the table
command (i.e. MD_TABLE_CMD_RT) with a value of "REPLACE" and book type (i.e.
MD_BOOK_TYPE) with a value of "MBL-RBL".

Because this is a Request-By-Level (RBL) MBL Book Type, the MD_TABLE_CMD_RT field
in the initial paint is REPLACE and all subsequent updates will possess a table command of
either REPLACE_CLEAR, REPLACE or CLEARALL. This is true for both MBO and MBL
event types. The output above includes a sample BID/REPLACE and ASK/
REPLACE_CLEAR message.

Order book recaps provide all the information required to completely rebuild an order book.
They can be initiated by the exchange, Managed B-Pipe or the client application.

Recaps apply to every style of order book: Add-Mod-Delete (AMD), Replace-by-Level (RBL)
and Replace-by-Broker (RBB), but they play a special role for AMD order books. It is critical
that AMD order books receive every message. A single missed message (a data gap) can
result in the AMD book being wrong for the remainder of the market day. RBL and RBB books
tend to be self-correcting in the event of a data gap making gap detection less critical.

9 Managed B-Pipe 133

MKTDEPTH_EVENT_SUBTYPE | Present in every market depth message for all styles of orderbook.

Bloomberg

The MBL_SEQNUM_RT and MBL_SEQNUM_RT fields are sequentially increasing numbers
included only in AMD order book market depth messages. They allow the client application to
detect gaps in the AMD market depth messages. A sequence number 5 followed by 7
indicates that a gap of one message occurred.

Data gaps occur as a result of missed network messages. While rare, as in every complex
networked system, missed messages can occur at any level and for many reasons. If a data
gap occurs between the Managed B-Pipe order book systems and the application, it is the
client application's responsibility to take action to restore the order book to an accurate state.
If the gap is detected by the Bloomberg upstream order book systems, Managed B-Pipe will
automatically initiate the recap without any action by the client application.

When Managed B-Pipe detects a gap in the MBL or MBO "AMD" order book, the
MD_GAP_DETECTED field is present and set to "true" in every market depth update
message for each effected order book. This informs the client application that Managed B-
Pipe has detected the gap and to expect an automatic recap.

MD_GAP_DETECTED will not be present once the recap is sent. Therefore, even though a
client application detects a gap, if this field is present in market depth update messages, no
further action is required by the client application except to begin reading the recap
messages, which will follow immediately and be indicated with a
MKTDEPTH_EVENT_SUBTYPE of BID_RETRANS and ASK_RETRANS in each message
update. In cases where a sequence number gap is detected but the MD_GAP_DETECTED
field is not present in the message, it is the responsibility of the client application to request a
recap (i.e., resubscribe) to the order book.

Table 9-1: Fields Affected by Recaps

Fields Descriptions

When an unsolicited recap is in progress, this field will have a value
of "BID_RETRANS" or "ASK_RETRANS".

MBL_SEQNUM_RT and Present in every market depth message for AMD, and only AMD,
MBO_SEQNUM_RT order books. They will have a value of 0 if the message is part of an

order book recap, regardless of how initiated. Gap detection does
not apply to recaps. The value of these fields in the first non-recap
market depth update message following the recap will have a non-
zero value which should be used to detect any gaps following the
recap.

MD_TABLE_CMD_RT Present in every market depth message, it indicates the action to

take for this market depth message. The behavior of this field is
unchanged. A value of "DELSIDE" indicates that the appropriate
side of the order book (bid or ask) should be cleared of all values.
All recaps start with a DELSIDE. All other values should be applied
as already documented.

9 Managed B-Pipe 134

Bloomberg

Table 9-1: Fields Affected by Recaps

Fields Descriptions

MD_MULTI_TICK_UPD_RT When present, indicates that a market depth message is one of
multiple messages that make up a single update to an order book.
A value of 1 indicates that additional market depth messages that
are part of the same order book update will follow this message. A
value of 0 indicates that this is the last message in the update and
that the update is complete. All recaps for every style of order book
are sent as multi-tick updates. Multi-tick updates may also be used
to send non-recap RBL style order book updates.

Frequently Asked Question:
1. For a book with a book size of 5 and 5 active levels, what happens when the
exchange needs to delete level 3?
The answer varies based on the book type. For instance,

For BookType=MB[LO]-RBL:
REPLACE POSITION=3
REPLACE POSITION=4
REPLACE_CLEAR POSITION=5

For Booktype=MB[LO]-AMD:
DELETE POSITON=3

9.2.2 Market List Service

Overview

The Market List Service (//blp/mktlist) is used to perform two types of list data operations. The
first is to subscribe to lists of instruments, known as chains, using the 'chain' <subservice
name> (i.e. //blp/mktlist/chain). The second is to request a snapshot list of all the instruments
that match a given topic key using the 'secids' <subservice name> (i.e. //blp/mktlist/secids).
The //blp/mktlist service is available to both BPS (Bloomberg Professional Service) and Non-
BPS users.

The syntax of the Market List subscription string is as follows:
/I<service owner>/<service name>/<subservice name>/<topic>

where <topic> is comprised of '<topic type>/<topic key>' and <subservice name> is either
'chain’ or 'secids'. Table 9-2 below provides further details.

9 Managed B-Pipe 135

Bloomberg

Table 9-2: Market List String Definitions

<service owner>

For Managed B-Pipe is "blp"

<service name>

For subscription and snapshot data is "mkilist"

<subservice name>

<topic type>

<topic key>?@

/chain Subscription-based request for a list of instruments. It can be
one of a variety of types such as "Option Chains", "Index
Members", "EID List", "GDCO List" or "Yield Curve". See
Table 9-4 below for additional information and examples of
each.

/secids Snapshot request for one-time list of instruments that match
a given <topic>. It will always be "Secids List". See Table 9-4
below for additional information and an example.

/cusip Requests by CUSIP

/sedol Requests by SEDOL

fisin Requests by ISIN

/bsid Requests by Bloomberg Security Identifier

/bsym For requests by Bloomberg Security Symbol

/buid For requests by Bloomberg Unique Identifier

/eid For requests by Entitlement ID

/source For requests by Source syntax

/gdco For Requests by GDCO syntax

/bpkbl Requests by Bloomberg parsekeyable Identifier

/esym Requests by Exchange Symbol

fticker Requests by Bloomberg ticker

/bbgid Requests by Bloomberg Global Identifier

The following topic types consist of source and the /cusip

value of a given identifier separated by the forward Jsedol

slash. —

<source>/<identifier> fisin

/bpkbl
/buid

/bsym
/bbgid

The following topic types do not require a source and | /bsid

consist of value alone :
. /eid
<Identity>
fticker
The following topic type consists of only a <source> /source
The following topic type consists of Broker ID and Mon | /gdco

ID separated by the forward slash.
<broker_id>/<mon_id>

a. See examples in Table 9-4 on page 139.

9 Managed B-Pipe

136

Bloomberg

You will find two separate examples in the Managed B-Pipe SDK for C++, Java, and .NET.
They are as follows:

MarketListSubscriptionExample

This example demonstrates how to make a simple Market List "chain" subscription
for one, or more, securities and displays all of the messages to the console window.

MarketListSnapshotExample

This example demonstrates how to make a Market List "secids" snapshot request
and displays the message to the console window.

Now that you have a better understanding as to how a //blp/mktlist subscription or snapshot
string is formed, it is now time to use it in your application. The following sections provide
further details as to how to subscribe to a chain of instruments and request a Snapshot of a
list of members.

Subscribing To Instrument Chains

Managed B-Pipe supports the ability to subscribe to lists of instruments known as chains.
When a subscription is made for a chain, the request must first resolve to a single Managed
B-Pipe instrument. This instrument is called the "underlying instrument".

The instruments returned in the list are referred to as "list members". The characteristics of
list members depends upon the security class of the underlying instrument or parameters
included in the initial chain request. Examples are list members that are options or members
that are futures.

In most cases, the list members will all be the same security class. When the underlying
security class is an Index or Curve, the security class of the each member may or may not be
same.

In most cases, underlying instruments are regular Managed B-Pipe instruments, such as an
equity or futures contract. Other times, the underlying instrument will be a pseudo instrument
whose sole purpose is to serve as the underlying instrument for the chain. Like all other
instruments on Managed B-Pipe, the underlying pseudo-instrument has its own, unique
ID_BB_SEC_NUM_SRC. It can be subscribed to as a regular instrument but since it has no
price data of its own the subscription will only return reference data.

For most chains, the relationship between the underlying instrument and the list members is
established by the Managed B-Pipe service when the subscription is made using the BSID of
the underlying instrument. Every member of the list has a LIST_UNDERLYING_ID_BSID
field, which contains the BSID value of the underlying instrument, and all matching
instruments of the appropriate security class are returned in the list of members.

9 Managed B-Pipe 137

Bloomberg

Index and Curve lists are handled differently. The list's members are maintained by the
Bloomberg Data Center. Once it is determined that this list subscription is for index or curve
members, the Bloomberg Data Center is queried for the list of members. This list contains the
terminal ticker (ParseKeyable symbol) for each member, which is resolved to an instrument
on Managed B-Pipe. It is possible that an index or curve list member is not available on
Managed B-Pipe. In this case, the list member will be included in the list, but return only the
ParseKeyable symbol. This allows the requestor to contact Bloomberg about getting the
missing instrument added to Managed B-Pipe.

The default security class of the list members depends on the security class of the underlying
instrument specified in the request. The default can be overridden using the optional
parameter "secclass". Table 9-3 defines the default security class of the list members for
each underlying instrument security class

Table 9-3: Default Security Class of List Members

Underlying Security Class Default Chain Member Security Class

Currency Option
Equity Option
Fixed Income N/A
Fund Option
Future Root Future
Future Contract Option
Index Members
Option N/A
Warrant N/A
Curve Members

An alternate security class for the returned members is available and can be specified in the
subscription string using a parameter. For example, the following chain requests are
equivalent because the default member security class is Option:

/Iblp/mktlist/chain/bsym/US/IBM

/Iblp/mktlist/chain/bsym/US/IBM;secclass=0Option
However, by using a parameter, we can obtain a list of Futures with IBM as the underlying
instrument:

/Iblp/mktlist/chain/bsym/US/IBM;secclass=Future
In order to further qualify the subscription string, a parameter "source" can be applied. The
value of this parameter is assigned by the user or application to limit the amount of returned

members to those belonging to the specified source(s) only. More than one value is allowed
for this parameter.

9 Managed B-Pipe 138

Bloomberg

The "source" can be substituted by a "~". This value can be used when the client assumes
that there is only one source for the security and there is no actual need to specify it. If this is
the case, the subscription request will be processed successfully, but if the security has more
than one source and the request is ambiguous, then the client will receive a
SubscriptionFailure response with a NOTUNIQUE description. An example of such a
subscription string would be "//blp/mktlist/chain/cusip/~/459200101".

Table 9-4: Chain Subservice Examples

Typg of . Example Subscription String Topic Key? Refreshes?
Chain List
Option /Iblp/mktlist/chain/bsym/LN/BP/ /bsym /<DX282>/<DY003> No
Chains /blp/mktlist/chain/bsid/678605350316 /bsid /<ID122> No
IIblp/mktlist/chain/buid/LN/EQ0010160500001000 /buid /<DX282>/<ID059> No
/blp/mktlist/chain/bbid/LN/EQ0010160500001000 /bbid /<DX194> No
Iblp/mktlist/chain/bpkbl/BP/LN Equity /bpkbl /<DX282>/<EX005> No
//blp/mktlist/chain/esym/LN/BP /esym /<DX282>/<ID032> No
Iblp/mktlist/chain/cusip/UN/594918104 Icusip /<DX282>/<ID032> No
/Iblp/mktlist/chain/isin/LN/GB00B16GWD56 fisin /<DX282>/<ID005> No
IIblp/mktlist/chain/sedol/UN/2588173 /sedol /<DX282>/<ID002> No
/Iblp/mktlist/chain/bbgid/UP/BBG000BH2658 /bbgid | /<ID135> No
//blp/mktlist/chain/ticker/VOD LN Equity [ticker /<DX194>/<DS587> No
Index List /Iblp/mktlist/chain/bsym/FTUK/UKX Index;secclass=Option | /bsym /<DX282>/<DY003> Daily
Yield Curve | //blp/mktlist/chain/bpkbl/YCMMO0010 Index /bpkbl /<identifier> Daily
GDCO /Iblp/mktlist/chain/gdco/broker/id /gdco /<broker_id>/<mon_id> | N/A
EID List /Iblp/mktlist/chain/eid/14014 /eid /<source> No
Source List | //blp/mktlist/chain/source/UN;secclass=Equity /source | /<source> No

a. The FLDS <GO> identifier associated with the expected key values for that particular topic is listed, where
applicable, which can be found on FLDS <GO> on the Bloomberg Professional service

b. Denotes whether that particular subscription (based on the <topic type> of the subscription string) will refresh
and at what periodicity. For Daily refreshes, this will occur at the start of a new market day.

Here is a quick reference for the above FLDS <GO> identifiers:

FLDS <GO> Mnemonic FLDS <GO> Mnemonic

Identifier Identifier

DX194 PARSEKYABLE_DES_SOURCE ID005 ID_ISIN

DX282 FEED_SOURCE ID032 ID_CUSIP

DY003 ID_BB_SEC_NUM_DES ID059 ID_BB_UNIQUE

EX005 ID_EXCH_SYMBOL ID122 ID_ BB_SEC_NUM_SRC
ID002 ID_SEDOLA1 ID035 ID_BB_GLOBAL

9 Managed B-Pipe 139

Bloomberg

Table 9-5: Additional "chain" Subscription Examples

Subscription String Returns

/Iblp/mktlist/chain/bsym/FTUK/UKX Index;secclass=Option Returns options on the UKX Index

/Iblp/mktlist/chain/bsym/FTUK/UKX Index;secclass=Option&source=LN | Returns options on the UKX Index traded on source LN

//blp/mktlist/chain/cusip/~/459200101 SubscriptionFailure: ErrorCode=2;
Description=NOTUNIQUE; Category=BAD_SEC

Note: NOTUNIQUE is returned because the security
has more than one source and the request is

ambiguous.
//blp/mktlist/chain/bsid/1086627109973 Options for IBM Equity
/Iblp/mktlist/chain/bsym/US/IBM;secclass=Future Returns futures for Equity
/Iblp/mktlist/chain/bpkbl/YCMMO0010 Index GBP LIBOR Curve members (Yield Curve)
/Iblp/mktlist/chain/eid/38736 List of all currencies available on EID 38736
/Iblp/mktlist/chain/bsym/US/HP Returns a chain of options for the composite equity HP
/Iblp/mktlist/chain/bsym/DJI/INDU Index Returns a chain of the members of the index.
//blp/mktlist/chain/bsid/1086627109973 This resolves to currency (/IT/UBY) so will return an
option chain.
/Iblp/mktlist/chain/isin/LN/GB00B16GWD56,secclass=Warrant Returns a chain of warrants for the underlying
instrument.
//blp/mktlist/chain/bsym/FTUK/UKX Index;secclass=Index Returns a chain of members for the specified index

identifier (equivalent to
IIblp/mktlist/chain/bsym/FTUK/UKX Index)

/Iblp/mktlist/chain/source/UN;secclass=Equity Returns a list of Equities under source UN

//blp/mktlist/chain/bsym/BGN/YCCF0009 Index Returns the list of members for the curve "YCCF0009
Index"

/Iblp/mktlist/chain/bsid/1086627109973 This resolves to currency (/IT/UBY) so will return an
option chain.

//blp/mktlist/chain/bpkbl/IBM US Equity Returns a chain of options (equivalent to

Iblp/mktlist/chain/bsid/399432473346;
secclass=Option).

/Iblp/mktlist/chain/isin/LN/GB00B16GWD56;secclass=Warrant Returns a chain of warrants for the underlying
instrument.
/Iblp/mktlist/chain/bsym/eNYL/XG1;secclass=Future Returns a chain of futures for the underlying instrument

The following code snippet demonstrates how to subscribe for streaming market list chain
data and assumes that a session already exists and that the "//blp/mktlist" service has been
successfully opened.

const char *security = "//blp/mktlist/chain/esym/LN/BP";
SubscriptionList subscriptions;

subscriptions.add(security, CorrelationId((char *)security));
session.susbcribe (subscriptions);

9 Managed B-Pipe 140

Bloomberg

The Market List response will be a series of SUBSCRIPTION_DATA events, which you will
be familiar with if you have developed Bloomberg API applications using any of the other
streaming services, such as //blp/mktdata, //blp/mktvwap or //blp/mktdepth.

A SUBSCRIPTION_DATA event message will either be of type ListRecap or ListData. The
initial such event message(s) will be of type ListRecap. These represent the initial paint of
your chain of instruments. Within a single ListRecap message, you will find a
LIST_LISTTYPE, comprising zero, or more, LIST_INSERT_ENTRIES.

If a subscription is made for a chain that does not contain any members, an empty list will be
returned. An example of this is requesting the options for an equity that does not have any
options. Although, there are no options for the equity, the subscription succeeds and a single
ListRecap message will be received with LIST_INSERT_ENTRIES[] showing no elements. If
the LIST_MUTABLE field value, from the ListRecap message is equal to 'MUTABLE', then
that means there could be ListData items received later on, so you may wish to keep the
subscription alive. The newly created members are then added to the previously empty list.
However, if the LIST_MUTABLE field is ITMMUTABLE!', then that means it will not return any
further updates and you may wish to terminate the subscription by unsubscribing. This is
explained further in the following paragraph.

Various types of lists are available for a subscription. Though the subscription formats are the
same, the lists could be:

ORDERED When a list is subscribed and the LIST_ORDERED field within
the ListRecap message equals 'ORDERED", the items on the list
are returned in ordered format.

UNORDERED When a list is subscribed and the LIST_ORDERED field within
the ListRecap message equals 'NOTORDERED', the returned
list of instruments could be in any order.

Similarly, a list subscription can be:

MUTABLE If the LIST_MUTABLE field within the ListRecap message
equals 'MUTABLE!', the constituent instruments of a list can
change. All subsequent updates will be received as ListData
messages.

IMMUTABLE If the LIST_MUTABLE field within the ListRecap message
equals TMMUTABLE!, the list of instruments will never change.

9 Managed B-Pipe 141

Bloomberg

Table 9-6: List Actions

ListAction Enumerator Description

CLEAR Delete all of the existing list members. This implies
there is more data to come

ADD Add all of the list members in this set

CLEAR_AND_ADD Delete all of the existing list members and then Add all
of the list members in this sequence

DELETE Delete all of the list members in this set. Member
Identifiers much match the current Member Identifers
exactly

END This is the last set in the sequence.

CLEAR_AND_END Delete all of the existing list members, as there are no
more entries to follow (i.e. the list is empty)

ADD_AND_END Add all of the list members in this set and end. There
are no more entries in this sequence

CLEAR_AND_ADD_AND_END Delete all of the existing list members, add this entry
and end. There are no more entries in this sequence.

DELETE_AND_END Delete all of the list members in this set. Identifiers
much match the current Member Identifiers exactly.
Then end, as there are no more entries in this
sequence.

Data Response For a "chain" Subscription
Here is sample Market List Chain output (A few entries from the beginning and end of a

ListRecap message, along with one ListData message) for a Market List subscription to "//
blp/mktlist/chain/source/TQ":

9 Managed B-Pipe 142

Bloomberg

ListRecap = {

LIST ID = //blp/mktlist/chain/source/TQ

EID = 35009

LIST LISTTYPE = Source List

LISTilNSERTiENTRIES[] =

LIST INSERT ENTRIES =

ID BB SEC NUM SRC
FEED SOURCE = TQ
ID BB SEC NUM DES = RHI
ID BB UNIQUE = EQ0000000006685436
SECURITY TYP2 = Equity

—_—

7992941317759

}

LIST INSERT ENTRIES =
ID BB SEC_NUM SRC
FEED SOURCE = TQ
ID BB _SEC NUM DES = GIL
ID BB UNIQUE = EQ0000000006687052
SECURITY TYP2 = Equity

—_~

7992941317760

...MORE. ..

—_—

LIST INSERT ENTRIES =
ID BB _SEC_NUM SRC
FEED SOURCE = TQ
ID BB SEC_NUM DES = ECONB
ID BB UNIQUE = EQ0000000023559102
SECURITY TYP2 = Equity

7992961685384

}

LIST INSERT ENTRIES =
ID BB SEC_NUM SRC
FEED SOURCE = TQ
ID BB _SEC NUM DES = FIS1V
ID BB UNIQUE = EQ0000000023561882
SECURITY TYP2 = Equity

—_~

7992961685385

}

LIST INSERT ENTRIES =
ID BB SEC_NUM SRC
FEED SOURCE = TQ
ID BB SEC_NUM DES = ENQI
ID BB UNIQUE = EQ0000000023716301
SECURITY TYP2 = Equity

—_~

7992961842174

}
LIST ORDERED NOTORDERED
LIST MUTABLE = MUTABLE

}
ListData = {
LIST ID = //blp/mktlist/chain/source/TQ
EID = 35009
LIST ACTION = ADD AND END
FEEDisOURCE = TQ
ID BB _SEC NUM DES = SNOP

In the above sample output, a ListRecap message was returned first with a large number of
list entries (only the partial recap is shown, however) and a single ListData message, which is

9 Managed B-Pipe 143

Bloomberg

an actual update to the subscription. Although, the ListRecap does not possess a
LIST_ACTION value, you are to treat such a message as a CLEAR_AND_ADD action. In
other words, you will clear your cache and add the entries included in the message.

In the ListRecap message, you will notice a few other pieces of information in addition to the
entries, such as the LIST_LISTTYPE field (in our case, its value is "Source List", which you
will find included in the "TABLE OF SUBSERVICE NAME EXAMPLES" shown earlier in this
section), the EID and the LIST_MUTABLE value, which is MUTABLE in this case. This
indicates that the constituent instruments of a list can change.

After the ListRecap message, you will see one such change to the list, which is returned in
the form of a ListData message. This message includes the LIST_ACTION, among other
fields. In this case, it is indicating that you will ADD this message to your list at the END (as
indicated by ADD_AND_END).

The summary (initial paint) messages can be split into one or more smaller messages in the
case where the returned data is too large to fit into a single message. It will be up to you to
handle this in your application.

You will achieve this by checking the Fragment type of any SUBSCRIPTION_DATA event
ListRecap message. The Fragment enum is used to indicate whether a message is a
fragmented message or not and what position it occurs within the chain of split fragmented
messages. If the ListRecap is split into two parts, then the first message will have a Fragment
type value of FRAGMENT_START and a last message of FRAGMENT_END. If the
ListRecap is split into more than 2 parts, all middle Fragments will be of type
FRAGMENT_INTERMEDIATE.

Table 9-7: Message::Fragment Type Enumerators

Enumerator Description

FRAGMENT_NONE Message is not fragmented
FRAGMENT_START The first fragmented message
FRAGMENT _INTERMEDIATE | Intermediate fragmented messages
FRAGMENT_END The last fragmented message

To check for the Fragment Type, you will call the fragmentType property of the Message
object (e.g. msg.fragmentType()).

Within your application, you will check to see if the fragment type of the ListRecap message
is FRAGMENT_NONE or FRAGMENT_START. If one of these are determined, then you will
want to clear your list and begin adding the entries included in that part of the ListRecap
message. In the case where FRAGMENT_START is determined, then you will know to
continue reading the ListRecap messages and adding the entries to your list from those
messages until you receive a ListRecap with a fragment type for FRAGMENT _END. At this
point, you know you are finished building your list and it is now time to wait for any
subsequent ListData updates.

9 Managed B-Pipe 144

Bloomberg
Snapshot Request For List Of Security Identifiers

If you would like to retrieve a list of all available sources that are pricing a given instrument,

then you will use the 'secids' subservice. This request is particularly useful when the original
subscription string provided by the client triggers a 'NOTUNIQUE' response from the service.
Using this subservice, you also have the ability to filter your results to only a particular source.

The following table lists all of the Topic Types, their applicable topic key formats and
associated Managed B-Pipe mnemonic and FLDS <GO> field identifiers.

Table 9-8: Supported <Topic Type> Values

Topic Type Topic Key Managed B-Pipe Field FLDS<GO> Field
/bbgid /<identifier> ID BB_GLOBAL ID135

/bpkbl /<identifier> PARSEKYABLE DES SOURCE | DX194 and DS587
/bsid /<identifier> ID_BB_SEC_NUM_SRC ID122

/bsym /<identifier> ID_BB_SEC_NUM_DES DY003

/buid /<identifier> ID_BB_UNIQUE ID059

/cusip /<identifier> ID_CUSIP ID032

/esym /<identifier> ID_ EXCH_SYMBOL EX005->EX011
fisin /<identifier> ID_ISIN ID00S5

/sedol /<identifier> ID_SEDOLA1 ID002

[ticker [<identifier> PARSEKYABLE _DES SOURCE | DX194 and DS587

Market list requests with the secids subservice name are always IMMUTABLE, which means
that the returned list of instruments does not receive update messages and must be re-
requested to discover any new pricing sources that emerge after the initial request.

Table 9-9: Market List Requests with the Secids Subservice Name

Key Field Format Result

Bloomberg Unique | //blp/mktlist/secids/buid/uniqueid All instrument IDs for the

ID Iblp/mktiist/secids/buid/EQ0010080100001000 given buid

Bloomberg /Iblp/mkitlist/secids/bsym/symbol All instrument IDs for the

Symbol //blp/mktlist/secids/bsym/VOD given bsym

SEDOL //blp/mkilist/secids/sedol/sedol All instrument IDs for the
/Iblp/mktlist/secids/sedol/2005973 given SEDOL

CuUsIP /Iblp/mkilist/secids/cusip/cusip All instrument IDs for the

/lblp/mktlist/secids/cusip/459200101 given CUSIP

ISIN /Iblp/mkitlist/secids/isin/isin
//blp/mkilist/secids/isin/US4592001014
/Iblp/mkilist/secids/bpkbl/parsekeyable
/Iblp/mkilist/secids/bpkbl/UKX Index

All instrument IDs for the
given ISIN

All instrument IDs for the
given parsekeyable

Parsekeyable

9 Managed B-Pipe 145

Bloomberg

Table 9-9: Market List Requests with the Secids Subservice Name

Key Field Format Result

Message Scraping | //blp/mktlist/secids/bsym/MSGSCRP The list of MSG1
(MSG1) IIblp/mktlist/secids/bsym/\SGSCRP instruments.
Bloomberg //blp/mktlist/secids/bbgid/globalid All instrument IDs for the
Global ID /Iblp/mktiist/secids/bbgid/BBGOOOBLNNHE given bbgid

Bloomberg //blp/mktlist/secids/ticker/symbol All instrument IDs for the
Ticker /Iblp/mktiist/secids/ticker/IBM US Equity given ticker

A security-based secids request can also be modified to limit the source using the 'source’
parameter. This table demonstrates such an instrument with and without the "source"
parameter.

Table 9-10: SecidsRequests with and without Source Parameter

Subscription String Returns

//blp/mktlist/secids/cusip/459200101 This example returns all IDs for the given
CUSIP.

/Iblp/mktlist/secids/cusip/459200101;source=US | This example returns all IDs for the given
CUSIP, but limited to source US.

The following code snippet demonstrates how to request static market list snapshot data and
assumes that a session already exists and that the "//blp/mktlist" service has been
successfully opened.

const char *security = "//blp/mktlist/secids/cusip/459200101;source=US";

Service mktListService = session.getService ("//blp/mktlist");
Request request = mktListService.createRequest ("SnapshotRequest") ;
request.set ("security", security);

9 Managed B-Pipe 146

Bloomberg
Data Response For "secids" Snapshot Request

The following data response is associated with the snapshot request code snippet.

SnapshotRequest = { security = //blp/mktlist/secids/cusip/
459200101; source=US }

LIST ID = //blp/mktlist/secids/cusip/459200101;source=US
EID = 350009
LIST LISTTYPE = Security IDs

LIST INSERT ENTRIES
ID BB SEC_NUM SRC = 399432473346
FEED_SOURCE = US
ID BB SEC_NUM DES = IBM
ID BB UNIQUE = EQ0010080100001000
SECURITY TYP2 = Equity

LIST ORDERED = NOTORDERED
LIST MUTABLE = IMMUTABLE

In your application, you will handle the data response the same way, initially, as you would
any static request. This is accomplished by checking the event type of the incoming
message. If its event type is PARTIAL_RESPONSE, then that indicates that there is at least
one more message to be received to fulfill that request. You will continue reading the
incoming messages until you receive a RESPONSE event type, which indicates that the
request has been fully served. Further information is available in "Appendix A Schemas".

9 Managed B-Pipe 147

Bloomberg

Here is a sample event handler written in C++. It was extracted from the
"MarketListSnapshotExample" example found in the Managed B-Pipe C++ API SDK, and is
the event handler that is responsible for displaying the above output to a console window.

void eventLoop (Session &session)

{

bool done = false;
while (!done) {
Event event = session.nextEvent () ;
if (event.eventType () == Event::PARTIAL RESPONSE) {

std::cout << "Processing Partial Response" << std::endl;
processResponseEvent (event) ;

}

else if (event.eventType () == Event::RESPONSE) {
std::cout << "Processing Response" << std::endl;
processResponseEvent (event) ;

done = true;
} else {
Messagelterator msglter (event) ;
while (msglter.next()) {
Message msg = msglter.message() ;
if (event.eventType () == Event::SESSION STATUS) {
if (msg.messageType () == SESSION TERMINATED | |
msg.messageType () == SESSION STARTUP FAILURE) {
done = true;

9 Managed B-Pipe 148

Bloomberg

// return true if processing is completed, false otherwise
void processResponseEvent (Event event)
{
Messagelterator msglter (event) ;
while (msglter.next()) {
Message msg = msglter.message() ;
Element responseCode;
if ((msg.asElement () .getElement (&responseCode, "responseCode") == 0) &&
!responseCode.isNull ())

int resultCode = responseCode.getElementAsInt32 ("resultCode") ;

if (resultCode > 0)

{
std::string message = responseCode.getElementAsString ("resultCode") ;
std::string sourceld = responseCode.getElementAsString ("sourceId") ;
std::cout << "Request Failed: "<< message << std::endl;
std::cout << "Source ID: " << sourceld << std::endl;
std::cout << "Result Code: " << resultCode << std::endl;
continue;

Element snapshot = msg.getElement ("snapshot") ;
size t numElements = snapshot.numElements () ;
for (size t i = 0; i < numElements; ++1i)
{
const Element dataltem = snapshot.getElement (i) ;
// Checking if the data item is Bulk data item
if (dataltem.isArray()) {
processBulkData (dataltem) ;
telse(
std::cout << "\t" << dataltem.name () << " = " <<
dataltem.getValueAsString () << std::endl;

If you examine the response from the example market list request, which is "//blp/mktlist/
secids/cusip/459200101;source=US", you will find that the data is all returned in a single
message, which means that the message will have an event type of "RESPONSE". Within
that block of code, there is a call to processResponseEvent(). It is here that we first check for
the responseCode element. To understand why we are checking for this element, you will first
need to understand the structure of the schema for the //blp/mktlist service. Here is a
screenshot capturing the sub-elements of the SnapshotRequest/Responses node.

9 Managed B-Pipe 149

Bloomberg

=- Events
- ListData
#- ListRecap
= Opesations
= SnapshotRequest
= Responses
= responselode [SEQUEMCE]
resultCode [IMT 32)
resultText [STRING)
sourceld [STRING)
=1 snapshot [SEQUEMCE)
EID (INT32)
LIST_DES [STRING)
LIST_ID [STRING)

LIST_INSERT_EMTRIES (SEQUENCE)
LIST_LISTTYPE (ENUMERATION)
LIST_MUTABLE (ENUMERATION)
LIST_ORDERED [ENUMERATION)
LIST_UNDERLYING_FEED_SOURCE [STRIMNG)
LIST_UNDERLYING_ID_BSID [(INTE4)
LIST_UNDERLYING_SECURITY_CLASS [STRING]
LIST_UNDERLYING_SECURITY_TY¥F2 [STRING]

= SnapshotRequest [SEQUEMCE]
secuity [STRING])

If the responseCode is found in the message, then you will check to see if the resultCode is
greater than zero. If it is, then this is an indication that there was a problem with the request
and that this message contains an error. The details of the error will be provided by the
message's resultCode, resultText and sourceld values.

If the resultCode equals zero, then data can be expected to be contained within the message.
In this case, we will retrieve the snapshot element of the message. You will see in the above
processResponseEvent() handler that the number of elements contained in the snapshot are
determined by a call to numElements() and then each of those elements are then read into a
dataltem variable, of type Element, one at a time. You can check to see if the dataltem is an
array by calling its isArray() function. If it returns true, then it is an array containing one, or
more, items and must be processed differently than if containing a single item.

You will see in the schema screenshot that there are a total of ten possible single field
elements and one array element in a snapshot. The array element is indicated by the
SEQUENCE type. In our case, the resultCode is zero (i.e. no errors) and there are 6
elements contained in the snapshot element. The first 3 of them are single field elements
(e.g. LIST_ID, EID, LIST_LISTTYPE), which means that isArray() returns false for each of
them. However, the 4th element, LIST_INSERT_ENTRIES, is an array (a.k.a. SEQUENCE
type). This element is then processed in the processBulkData() function. The remaining two
elements (LIST_ORDERED and LIST_MUTABLE) are also single field elements.

9 Managed B-Pipe 150

Bloomberg

9.2.3 Source Reference Service

Overview

The Source Reference and Tick Size subscription service (aka //blp/srcref) is used to
subscribe to the source reference and tick size data available for the specified entitlement ID.
Currently, this is available per EID (FEED_EID). This allows an application to retrieve the
source referenceltick size information for all the EIDs it is entitled for. This service is available
to both BPS (BLOOMBERG PROFESSIONAL Service) and Non-BPS users. The available
source reference information includes:

All possible values of FEED SOURCE for the EID and a short description of the
source

Whether or not the source is a composite and all the local sources for composites
All of the Broker codes and names
All condition codes with a short description

The syntax of the Source Reference subscription string is as follows:
//<service owner>/<service name>/<subservice name>/<topic>
where <topic> is comprised of '<topic type>/<topic key>. Table 9-11 provides further details.

Table 9-11: Source Reference String Definitions

<service owner> For Managed B-Pipe is "blp"

<service name> Source Reference and Tick Size subscription service name is
"/srcref"

<subservice name> /brokercodes, /conditioncodes, /tradingstatuses or /ticksizes
(see Table 9-11.)

<topic type> /eid

<topic key> EID-Number (FEED_EID1 => FEED EID4)

There are currently four subservices that can be used in your subscription string.

Table 9-12: Subservice Definitions

Subservice Subscription String Format Description
/brokercodes /Iblp/srcref/brokercodes/eid/<eid> List of all possible broker codes for a
specified EID

/conditioncodes /Iblp/srcref/conditioncodes/eid/<eid> List of Market Depth, Quote, and
Trade condition codes for a specified
EID

/tradingstatuses /Iblp/srcref/tradingstatuses/eid/<eid> List of trading statuses and trading
periods for a specified EID.

fticksizes /Iblp/srcrefiticksizes/eid/<eid> List of Tick Sizes for a specified EID.

9 Managed B-Pipe 151

Bloomberg

Filters can be used for /conditioncodes and /tradingstatuses subscription only. Here are the
possible filters available for each:

Table 9-13: Filters for Events

Filter Name (type) Subscription String Format

Subservice Name: /conditioncodes

TRADE /Iblp/srcref/conditioncodes/eid/<eid>?type=TRADE

QUOTE /Iblp/srcref/conditioncodes/eid/<eid>?type=QUOTE

MKTDEPTH /Iblp/srcref/conditioncodes/eid/<eid>?type= MKTDEPTH
TRADE,QUOTE /Iblp/srcref/conditioncodes/eid/<eid>?type=TRADE,QUOTE
TRADE,MKTDEPTH /Iblp/srcref/conditioncodes/eid/<eid>?type= TRADE,MKTDEPTH
QUOTE,MKTDEPTH /Iblp/srcref/conditioncodes/eid/<eid>?type= QUOTE,MKTDEPTH

TRADE,QUOTE,MKTDEPTH | //blp/srcref/conditioncodes/eid/<eid>?type= TRADE,QUOTE,MKTDEPTH

Subservice Name: /tradingstatuses

PERIOD /Iblp/srcref/tradingstatuses/eid/<eid>?type=PERIOD
STATUS [Iblp/srcref/tradingstatuses/eid/<eid>?type=STATUS
PERIOD,STATUS /Iblp/srcref/tradingstatuses/eid/<eid>?type=PERIOD,STATUS

For subscriptions without a filter, users will receive all event types of that subservice name in
the initial snapshot, as well as within subsequent daily updates. However, for subscriptions
with filters, users will receive all events in the initial snapshot, but only specified events within
subsequent daily updates.

Important BPOD Upgrade Notes:

1. Managed B-Pipe breaks down the subscriptions into a more granular format. With
BPOD, you would have subscribed to "//blp/mktref/srcref/eid/<eid>" to obtain all
source references for that EID, which included the broker codes, trade condition
codes, quote condition codes, market depth condition codes, period suspense
codes, security suspense codes and ticksizes. Now, by using Managed B-Pipe, you
can break down these source references into four main subscriptions: "//blp/srcref/
brokercodes/eid/<eid>", "//blp/srcref/conditioncodes/eid/<eid>", "//blp/srcref/
tradingstatuses/eid/<eid>" and "//blp/srcref/ticksizes/eid/<eid>".

2. Managed B-Pipe has introduced filters for some of its subservices to allow you to
subscribe to the data you are most interested.

3. With Managed B-Pipe, we return a description message for each subservice's
sources.

4. With Managed B-Pipe, Bloomberg now offers intraday updating for tick size
changes.

5. If you are looking for the sources on contributor EIDs (or any EID), you should
subscribe to //blp/srcref for any of the subservices (i.e. /ticksizes, /brokercode, etc)
and the list of descriptions for that source will be included even if the subservice
doesn't apply. For example, "//blp/srcrefiticksizes/eid/14240" will return the sources
for 14240, but there will not be any ticksizes information.

9 Managed B-Pipe 152

Bloomberg

Code Example

You will find a SourceRefSubscriptionExample in the Managed B-Pipe SDK for C++, Java
and .NET. This C++ example demonstrates how to make a simple Source Reference
subscription for the condition codes associated with EID 14003.

const char *list = "//blp/srcref/conditioncodes/eid/14003";
SubscriptionList subscriptions;

subscriptions.add(list, CorrelationId((char *)security)):;
session.susbcribe (subscriptions);

Figure 9-4: C++ code snippet - subscribing for a list of condition codes for EID 14003

Response Overview

The Source Reference response will be a series of SUBSCRIPTION_DATA events, which
you will be familiar with if you have developed Bloomberg API applications using any of the
other streaming services, such as //blp/mktdata, //blp/mktlist or //blp/mktdepth.

All SUBSCRIPTION_DATA event messages will be of message type
SourceReferenceUpdates and will contain a SOURCE_REF_EVENT_TYPE_RT (event
type), SOURCE_REF_EVENT_SUBTYPE_RT (event sub-type) and EID field (int32), along
with an array of event type field items applicable to the subservice you are subscribing.
Table 9-14 lists the possible enumeration values for the event type and event sub-type fields:

Table 9-14: Enumeration Values

Name Description Values
SOURCE_REF_EVENT_TYPE_RT This specifies the event type. Possible enumeration values:
DESCRIPTION

BROKER_CODE
TRADE_CONDITION_CODE
QUOTE_CONDITION_CODE
MKTDEPTH_CONDITION_CODE
TRADING_PERIOD
TRADING_STATUS
TICK_SIZE_TABLE

SOURCE_REF_EVENT_SUBTYPE_RT | This specifies the event sub-type | Possible enumeration values:
INITPAINT - Initial Paint
REFRESH - Daily Refresh*
UPDATE - Intraday Update

The subservice name included in your subscription will dictate which event type
(SOURCE_REF_EVENT_TYPE_RT) field items will be returned as initial snapshot
(INITPAINT) and refresh sub-type messages. Table 9-15 will assist you in determining which

9 Managed B-Pipe 153

Bloomberg

SOURCE_REF_EVENT_TYPE_RT field types to expect based on the subservice in your

subscription.

Response Event Types by Subservice

Table 9-15 lists all of the initial snapshot and refresh (i.e., INITPAINT and REFRESH,
respectively) event type fields you should expect to receive for the subservice you are

subscribing.

/brokercodes

Table 9-15: Event Types by Subservice

Subservice Name Response Event Types

DESCRIPTION + BROKER_CODE

/conditioncodes

DESCRIPTION + TRADE_COND_CODE + QUOTE_COND_CODE + MKTDEPTH_COND_CODE

/tradingstatuses

DESCRIPTION + TRADING_PERIOD + TRADING_STATUS

[ticksizes?

DESCRIPTION + TICK_SIZE_TABLE

a. All subservices will return INITPAINT and REFRESH event messages. However, /ticksizes will also return
UPDATE event messages."

For a breakdown of each message returned for your subservice, please see Table 9-16.

Breakdown of Event Type Fields

Table 9-16 describes the breakdown of each event type's field array. Each name given to the
field array is the pluralized form of the aforementioned event type value (e.g., The

DESCRIPTION event type value (as found in Table 9-15) will have an associated field array
name of DESCRIPTIONS).

Field Name
DESCRIPTIONS

Table 9-16: Event Type Fields

Type

SourceReferenceDescriptions

Contents

Contains the feed EID and feed source,
along with a list of DESCRIPTION entries
containing each item's expanded name of
the data contributor or exchange and local
source of the composite source for lookup
to condition code and broker.

BROKER_CODES

SourceReferenceBrokerCodes

Contains the feed EID and feed source,
along with a list of BROKER_CODE entries
containing each item's Bloomberg
mnemonic and associated name.

TRADE_COND_CODES

SourceReferenceTradeConditionCodes

Contains the feed EID and feed source,
along with a list of TRADE_COND_CODE
entries containing each item's Bloomberg
mnemonic(s) for special conditions on the
trade, condition code, trade category, short
name for the sale condition, ESMA
transaction code and more.

9 Managed B-Pipe

154

Bloomberg

Field Name
QUOTE_COND_CODES

Table 9-16: Event Type Fields

Type
SourceReferenceQuoteConditionCodes

Contents

Contains the feed EID and feed source,
along with a list of QUOTE_COND_CODE
entries containing each item's quote
condition mnemonic, Bloomberg condition
code, quote condition short name and
Provider assigned condition code
mnemonic(s).

MKTDEPTH_COND_CODES

SourceReferenceMarketDepthConditionCodes

Contains the feed EID and feed source,
along with a list of
MKTDEPTH_COND_CODE entries
containing each item's Bloomberg
mnemonic, for the condition, short name
for the condition and Provider assigned
condition code mnemonic(s).

TRADING_PERIODS

SourceReferenceTradingPeriods

Contains the feed EID and feed source,
along with a list of TRADING_PERIOD
entries containing each item's Bloomberg
assigned mnemonic for the current trading
period of a security, Bloomberg's short
name for the current trading period of the
security, and Bloomberg's assigned
simplified status mnemonic for the current
market status of a security.

TRADING_STATUSES

SourceReferenceTradingStatuses

Contains the feed EID and feed source,
along with a list of TRADING_PERIOD
entries containing each item's Bloomberg
assigned mnemonic for the current trading
status of a security, Bloomberg's short
name for the market status on a source,
and Bloomberg's assigned simplified status
mnemonic for the current market status of a
security.

TICK_SIZE_TABLES

TickSizeTable

Contains the feed EID, feed source, table
field name, table identifier, percent field
name, table type and frequency at which
the tick size can change, along with a list of
TICK_SIZE_TABLE_ROW entries
containing each item's type of tick size
value, lower/upper bounds value, and tick
size value used for the range.

Handling Multiple Messages (a.k.a. Fragments)

As you will see, initial paint messages can be split into one or more smaller
messages in the case where the returned data is too large to fit into a single
message. It will be up to you to handle this in your application.

You will achieve this by checking the Fragment type of any SUBSCRIPTION_DATA
event SourceReferenceUpdates message. The Fragment enum is used to indicate
whether a message is a fragmented message or not and what position it occurs
within the chain of split fragmented messages. If the SourceReferenceUpdates is

9 Managed B-Pipe

155

Bloomberg

split into two parts, then the first message will have a Fragment type value of
FRAGMENT_START and a last message of FRAGMENT_END. If the
SourceReferenceUpdates is split into more than 2 parts, all middle Fragments will
be of type FRAGMENT_INTERMEDIATE.

Table 9-17: Fragment Type Enumerators

Message::Fragment Type Enumerators

FRAGMENT_NONE Message is not fragmented
FRAGMENT_START The first fragmented message
FRAGMENT_INTERMEDIATE Intermediate fragmented messages
FRAGMENT_END The last fragmented message

Data Response For Subscription

Here is sample output for a Source Reference subscription to "//blp/srcref/ticksizes/eid/
14014":

kA hkhkhkhk kA hkhkhhhkrhkhkhhhkhhkrhkhkrkhhkrhkhkhhhkhkhkrhkrhkhkrkkkkhxx*

* INITIAL SNAPSHOT
R R I b S b I b I S S I I S b b b b e I S b S I SR b S 2 S b R S b S b S b S b i
SourceReferenceUpdates = {
SOURCE REF EVENT TYPE RT = DESCRIPTION
SOURCE REF EVENT SUBTYPE RT = INITPAINT
EID = 35009
DESCRIPTIONS[] =
DESCRIPTIONS = {
FEED SOURCE = LN
FEED EID = 14014
DESCRIPTION[] =
DESCRIPTION = ({
FEED SOURCE DES RT = London Stock Exchange Domestic
}

}
-- MORE --

SourceReferenceUpdates = {

SOURCE REF EVENT TYPE RT = TICK SIZE TABLE

SOURCE REF EVENT SUBTYPE RT = INITPAINT

EID = 35009

TICK SIZE TABLES[] =

TICK SIZE TABLES = {

FEED SOURCE = LN
FEED EID = 14014
TICK SIZE TABLE IDENTIFIER RT = 2871
TICK SIZE TABLE TYPE RT = PRICE
TICK SIZE TABLE UPDATE FREQ RT = DAILY
TICK SIZE TABLE FIELD NAME RT = LAST TRADE

9 Managed B-Pipe 156

Bloomberg

TICK SIZE TABLE ROW[] =
TICK SIZE TABLE ROW = {
TICK SIZE TABLE PRICE TYPE RT = ABSOLUTE
TICK SIZE TBL BAND TICK SIZE RT = 0.050000
TICK SIZE TBL BAND LOWER VAL RT = 0.000000
TICK SIZE TBL BAND UPPER VAL RT = 10000000000.000000

}
-- MORE --

}

Ak kA hk kA hhk Ak hhk Ak kA hkhkhkhk kA hkhkhkhhkhkhk Ak hkhkhkhk Ak hkhkhhkhk kA hkhkhkhhkrhkhkhkhhkhkhkrhkhkhkhkkhkrxkhkkkkhkxkx*

* DAILY REFRESH
khkhkkhkkhkhkhkkhkhkhhkhhkkhhkhAhkhkhhhkhhkhkkhkhAhkhkhhhkhhhkhkhAhhkhkhhkhrhkhhkhhkhkhkdhhkrhkkhkhkhhkhkhkkhhkrhkhkkhkhrhhkhk*x
SourceReferenceUpdates = {
SOURCE_REF EVENT TYPE RT = DESCRIPTION
SOURCE_REF EVENT SUBTYPE RT = REFRESH
EID = 35009
DESCRIPTIONS[] =
DESCRIPTIONS = {
FEED SOURCE = LN
FEED EID = 14014
DESCRIPTION[] =
DESCRIPTION = ({
FEED SOURCE DES RT = London Stock Exchange Domestic

}
-- MORE —-
}
SourceReferenceUpdates = {
SOURCE REF EVENT TYPE RT = TICK SIZE TABLE
SOURCE _REF EVENT SUBTYPE RT = REFRESH
EID = 35009
TICK SIZE TABLES[] =
TICK SIZE TABLES = {
FEED SOURCE = LN
FEED EID = 14014
TICK SIZE TABLE IDENTIFIER RT = 5977
TICK SIZE TABLE TYPE RT = PRICE
TICK SIZE TABLE UPDATE FREQ RT = DAILY
TICK SIZE TABLE FIELD NAME RT = LAST TRADE
TICK SIZE TABLE ROW[] =
TICK SIZE TABLE ROW = {
TICK SIZE TABLE PRICE TYPE RT = ABSOLUTE
TICK SIZE TBL BAND TICK SIZE RT = 0.000100
TICK SIZE TBL BAND LOWER VAL RT = 0.000100
TICK SIZE TBL BAND UPPER VAL RT = 10.000000

}

TICK SIZE TABLE ROW = {
TICK SIZE TABLE PRICE TYPE RT = ABSOLUTE
TICK SIZE TBL BAND TICK SIZE RT = 0.010000
TICK SIZE TBL BAND LOWER VAL RT = 10.000000
TICK SIZE TBL BAND UPPER VAL RT = 100.000000

}
-- MORE --

}

9 Managed B-Pipe

157

Bloomberg

KA AR A AR AR A AR AR A AR A A A AR A AR AR A AR A AR AR A AR AR A AR A A A AR A AR AR A AR A AR Ak Ak h kK

* TICKSIZE INTRADAY UPDATE
ok hkhkkhkhkhkhhkdhhkhkhkhhkhhkhhhkhkrhkhhkhkhkdhhhkhhk kb h bbbk rkhkhhkhhkhkhkrhkhkhkhkhkhkhkhkhkrhkhkhhhkhx*k
SourceReferenceUpdates = {
SOURCE_REF EVENT TYPE RT = TICK SIZE TABLE
SOURCE REF EVENT SUBTYPE RT = UPDATE
EID = 35009
TICK SIZE TABLES[] =
TICK SIZE TABLES = ({
FEED SOURCE = LN
FEED EID = 14014
TICK SIZE TABLE IDENTIFIER RT = 5995
TICK SIZE TABLE TYPE RT = PRICE
TICK SIZE TABLE UPDATE FREQ RT = DAILY
TICK SIZE TABLE FIELD NAME RT = LAST TRADE
TICK SIZE TABLE ROW[] =
TICK SIZE TABLE ROW = {
TICK SIZE TABLE PRICE TYPE RT = ABSOLUTE
TICK SIZE TBL BAND TICK SIZE RT = 0.300000
TICK SIZE TBL BAND LOWER VAL RT = 0.250000
TICK SIZE TBL BAND UPPER VAL RT = 100000000.000000

}
-- MORE --

}

In the above sample output, a subscription containing the subservice "/ticksizes" was made,
which means that you can expect to receive "INITPAINT" and "REFRESH" event types (i.e.
SOURCE_REF_EVENT_TYPE_RT) messages containing "DESCRIPTION" and
"TICK_SIZE_TABLE" event sub-types (i.e. SOURCE_REF_EVENT_SUBTYPE_RT). In
addition to the aforementioned messages, which are standard for all of the subservice
requests, you will also receive "UPDATE" event type messages, which are unique to the /
ticksizes subservice. However, there will not be an UPDATE "DESCRIPTION" message sent.

Taking a look at the sample output above, you will notice that every
SourceReferenceUpdates message contains the standard event type, sub-type and EID
single-value fields, along with an array of fields applicable for that event type. For instance, in
the message containing the event type of "TICK_SIZE_TABLE" you will find an array of
"TICK_SIZE_TABLES" fields.

9 Managed B-Pipe 158

Bloomberg

A Schemas

A.1 Overview

Each of the following sections provides an overview of the request options and response
structure for each request type within each of the Bloomberg API services. A service is
defined by a request and a response schema. In the following sections the request schema is
broken into tables detailing all options and arguments and example syntax. The response
schema is represented graphically.

A.2 Reference Data Service //blp/refdata

Note: Managed B-PIPE supports only the ReferenceDataRequest type on the Reference
Data Service. All other request types on the ReferencefDataService are not supported by
Managed B-PIPE.

A.2.1 Operations

Operation Name Request Type Response Type Description
HistoricalDataRequest HistoricalDataRequest | HistoricalDataResponse | Request Historical
Data
IntraDayTickRequest IntraDayTickRequest IntraDayTickResponse Request Intraday Tick
Data
IntraDayBarRequest IntraDayBarRequest IntraDayBarResponse Request Intraday Bar
Data
ReferenceDataRequest ReferenceDataRequest | ReferenceDataResponse | Request Reference
Data
PortfolioDataRequest PortfolioDataRequest PortfolioDataResponse Request Portfolio
Data
BegsRequest BegsRequest BeqsResponse Request EQS Screen
Data

A.2.2 ReferenceDataRequest: Sequence

Securities: A stock or bond.

Element Element Value | Type Description

securities string array string See for
additional details.

Example Syntax: Element securities = request.GetElement ("securities");
securities.AppendValue ("VOD LN Equity") ;

A Schemas 159

Bloomberg

Fields: the reference fields desired which correspond to data points. See FLDS<GO> for a list of more
information.

Element Element Value | Type Description
fields string See for additional
details.

Example Syntax: Element fields = request.GetElement ("fields") ;
fields.AppendValue ("PX LAST") ;

Overrides: Append overrides to modify the calculation

Element Element Value | Type Description

fieldID string field mnemonic, PRICING_SOURCE, or field
alpha-numeric, PR092. Review FLDS<GO>
for list of possible overrides.

value string the desired override value

Example Syntax: Element overrides = request["overrides"];
Element overridel = overrides.AppendElement () ;
overridel.SetElement ("fieldId", "PRICING_SOURCE") ;
overridel.SetElement ("value", "CG");

Return Entitlements: returns the entitlement identifiers associated with security.

Element Element Value | Type Description
returnEids TRUE or Boolean | Setting this to true will populate fieldData with
FALSE an extra element containing a name and

value for the EID date.

Example Syntax: request.Set("returnEids", true);

Return Formatted Value: returns all data as a data type string

Element Element Value | Type Description
returnFormattedValue TRUE or Boolean | Setting to true will force all data to be returned
FALSE as a string.

Example Syntax: request.Set("returnFormattedValue", true);

Use UTC Time: return date and time values as Coordinated Universal Time (UTC) values

Element Element Value | Type Description
useUTCTime TRUE or Boolean | Setting to true returns values in UTC. Setting
FALSE this to false will default to the TZDF<GO>
settings of the requestor.

Example Syntax: request.Set("useUTCTime", true) ;

Forced Delay: returns the latest reference data up to the delay period.

Element Element Value | Type Description
forcedDelay TRUE or Boolean | Setting to true will return the latest data up to
FALSE the delay period specified by the exchange for

this security. For example requesting VOD LN
Equity and PX_LAST will return a snapshot of
the last price from 15mins ago.

Example Syntax: request.Set ("forcedDelay", true) ;

A Schemas 160

Bloomberg
A.2.3 ReferenceDataResponse: Choice

Figure A-1 provides the structure of a ReferenceDataResponse. See
for more information.

R RefarencellataResponsa
@‘I’er&nu&tﬂatﬂ pon% message has zen o ane
rasponssError elameants

_@) (=) () (e ()
| securityData[] |

—‘ secuntyData Lr
[securty) { 'I:Eﬁ;ﬁi]
REﬂIJI’IIy'DMF.I alemeant
has zess lo ane figldData] |
fieldDatal |

finldDatal | array
has ona ta many
fieldData elamants

fieldDats

securityData has

et o one fieddExcepiions| |

fialdaxcapiions| |
flaldExcaption
fieldExcaplions] | _',/'I

hEZ;E"eingT (fieldid) ((message)

elemeants

sacurityata has
Fard ko many
secumlyError elements

category

message

subcategory

8| |&
= |8

Figure A-1: Reference Data Request Response

A Schemas 16

N

Bloomberg

A.2.4 HistoricalDataRequest: Sequence

Securities: A stock or bond.

Element

Element Value

Type

Description

securities

string

See
for additional details.

Example Syntax: Element

securities = request.GetElement ("securities");

securities.AppendValue ("VOD LN Equity") ;

Fields: the reference fields desired which correspond to data points. See FLDS<GO> for a list of more

information.

Element Element Value Type Description

fields string See for
array additional details.

Example Syntax: Element fields = request.GetElement ("fields") ;
fields.AppendValue ("PX LAST") ;

Start Date: the first date of the period to retrieve data

Element Element Value Type Description

startDate yyyymmdd string The start date in a year/month/day
format.

Example Syntax: request.Set("startDate", "20090601") ;

End Date: the end date of the period to retrieve data

Element Element Value Type Description

endDate yyyymmdd string The end date in a year/month/day

format. This will default to the
current day if not specified.

Example Syntax: request.Set ("endDate", "20100601") ;

with Period Selection.

Period Adjustment: Determine the frequency and calendar type of the output. To be used in conjunction

Element

Element Value

Type

Description

periodicityAdjustment

ACTUAL

string

These revert to the actual date from
today (if the end date is left blank)
or from the End Date

CALENDAR

string

For pricing fields, these revert to the
last business day of the specified
calendar period. Calendar Quarterly
(CQ), Calendar Semi-Annually (CS)
or Calendar Yearly (CY).

FISCAL

string

These periods revert to the fiscal
period end for the company - Fiscal
Quarterly (FQ), Fiscal Semi-
Annually (FS) and Fiscal Yearly
(FY) only

Example Syntax: request.Set ("periodicityAdjustment",

"ACTUAL") ;

A Schemas

162

Bloomberg

Period Selection: Determine the frequency of the output. To be used in conjunction with Period

Adjustment.

Element Element Value Type Description

periodicitySelection DAILY string Returns one data point per day
WEEKLY string Returns one data point per week
MONTHLY string Returns one data point per month
QUARTERLY string Returns one data point per quarter
SEMI_ANNUALLY string Returns one data point per half year
YEARLY string Returns one data point per year

Example Syntax: request.Set ("periodicitySelection", "DAILY");

Currency: Amends the valu

e from local to desired currency

Element

Element Value

Type

Description

currency

Currency of the ISO code,
e.g., USD, GBP

string

The 3 letter ISO code. View
WCV<GO> on the BLOOMBERG
PROFESSIONAL service for a list
of currencies.

Example Syntax: request.Set("currency", "USD

H).
14

Override Options: Indicates whether to use the average or the closing price in quote calculation.

Element Element Value Type Description

overrideOption OVERRIDE_OPTION_CLOS | string Use the closing price in quote
E calculation
OVERRIDE_OPTION_GPA string Use the average price in quote

calculation

Example Syntax: request.Set ("overrideOption", "OVERRIDE OPTION GPA") ;

Pricing Options: Sets quote to Price or Yield for a debt instrument whose default value is quoted in yield
(depending on pricing source).

Element Element Value Type Description
pricingOption PRICING_OPTION_PRICE | string Set quote to price
PRICING_OPTION_YIELD | string Set quote to yield

Example Syntax: request.Set ("pricingOption",

"PRICING OPTION PRICE") ;

Non Trading Day Fill Option: Sets to include/exclude non trading days where no data was generated.

Element Element Value Type Description
nonTradingDayFillOption | NON_TRADING_WEEKDAYS | string Include all weekdays (Monday to
Friday) in the data set
ALL_CALENDAR_DAYS string Include all days of the calendar in
the data set returned
ACTIVE_DAYS_ONLY string Include only active days (days

where the instrument and field pair
updated) in the data set returned

Example Syntax: request.Set("nonTradingDayFillOption", "NON TRADING WEEKDAYS") ;

A Schemas

163

Bloomberg

Non Trading Day Fill Method: If data is to be displayed for non trading days what is the data to be

returned.
Element Element Value Type Description
nonTradingDayFillMethod | PREVIOUS VALUE string Search back and retrieve the
previous value available for this
security field pair. The search back
period is up to one month.
NIL_VALUE string Returns blank for the "value" value

within the data element for this field.

Example Syntax: request.Set ("nonTradingDayFillMethod", "PREVIOUS VALUE") ;

Max Data Points: the maximum number of data points to return.

Element Element Value Type Description

maxDataPoints integer The response will contain up to X
data points, where X is the integer
specified. If the original data set is
larger than X, the response will be a
subset, containing the last X data
points. Hence the first range of data
points will be removed.

Example Syntax: request.Set ("maxDataPoints", 100) ;

Return Entitlements: returns the entitlement identifiers a

ssociated with security.

Element Element Value

Type

Description

returnEids TRUE or FALSE

Boolean

Setting this to TRUE will populate
fieldData with an extra element
containing a name and value for the
EID date.

Example Syntax: request.Set ("returnEIDs", true);

Return Relative Date: returns data with a relative date.

Element Element Value

Type

Description

returnRelativeDate TRUE or FALSE

Boolean

Setting this to true will populate
fieldData with an extra element
containing a name and value for the
relative date. For example
RELATIVE_DATE = 2002 Q2

Example Syntax: request.Set ("returnRelativeDate", true);

Adjustment Normal: Adjust for "change on day"

Element Element Value

Type

Description

adjustmentNormal TRUE or FALSE

Boolean

Adjust historical pricing to reflect:
Regular Cash, Interim, 1st Interim,
2nd Interim, 3rd Interim, 4th Interim,
5th Interim, Income, Estimated,
Partnership Distribution, Final,
Interest on Capital, Distribution,
Prorated.

Example Syntax: request.Set("adjustmentNormal", true);

A Schemas

164

Bloomberg

Adjustment Abnormal: Adjusts for Anormal Cash Dividends

Element

Element Value

Type

Description

adjustmentAbnormal

TRUE or FALSE

Boolean

Adjust historical pricing to reflect:
Special Cash, Liquidation, Capital
Gains, Long-Term Capital Gains,
Short-Term Capital Gains,
Memorial, Return of Capital, Rights
Redemption, Miscellaneous, Return
Premium, Preferred Rights
Redemption, Proceeds/Rights,
Proceeds/Shares, Proceeds/
Warrants.

Example Syntax: request.Set ("adjustmentAbnormal", true);

Adjustment Split: Capital Changes Defaults

Element Element Value Type Description

adjustmentSplit TRUE or FALSE Boolean | Adjust historical pricing and/or
volume to reflect: Spin-Offs, Stock
Splits/Consolidations, Stock
Dividend/Bonus, Rights Offerings/
Entitlement.

Example Syntax: request.Set ("adjustmentSplit", true);

Adjustment Follow DPDF:

Follow the BLOOMBERG PROFESSIONAL service function DPDF<GO>

Element

Element Value

Type

Description

adjustmentFollowDPDF

TRUE or FALSE

Boolean

Setting to true will follow the
DPDF<GO> BLOOMBERG
PROFESSIONAL service function.
True is the default setting for this

option.

Example Syntax: request.Set ("adjustmentFollowDPDF", true) ;

CalendarCodeOverride: Returns the data based on the calendar of the specified country, exchange, or

religion.
Element Element Value Type Description
calendarCodeOverride CDR <GO> calendar type String Returns the data based on the

calendar of the specified country,
exchange, or religion from
CDR<GO>. Taking a two character
calendar code null terminated
string. This will cause the data to be
aligned according to the calendar
and including calendar holidays.
Only applies only to DAILY
requests.

Example Syntax: request.Set ("calendarCodeOverride", "US");

A Schemas

165

Bloomberg

CalendarOverridesinfo: Returns data based on the calendar code of multiple countries, exchanges, or
religious calendars from CDR<GO>.

Element Element Value Type Description
calendarOverrides CDR <GO> calendar type String Accepts a two-character calendar
array code null-terminated string of

multiple country, exchange, or
religious calendars from
CDR<GO>. This will cause the data
to be aligned according to the set
calendar(s) including their calendar
holidays. Only applies to DAILY

requests.
calendareOverrides CDR_AND String Default value. Returns the
Operation intersection of trading days. That is,

a data point is returned if a date is a
valid trading day in all calendar
codes specified in the request.

CDR_OR String Returns the union of trading days.
That is, a data point is returned if a
date is a valid trading day for any of
the calendar codes specified in the
request.

Example Syntax: Element cdrOverridesinfo = request.GetElement("calendarOverridesinfo");
Element cdrOverrides = cdrOverridesinfo.GetElement("calendarOverrides");
cdrOverrides.AppendValue("US");
cdrOverrides.AppendValue("JN");
cdrOverridesinfo.SetElement ("calendarOverridesOperation”, "CDR_AND");

NOTE: “calendarOverridesOperation" can be omitted only if one "calendarOverrides" is specified.

Overrides: Append overrides to modify the calculation.

Element Element Value Type Description

fieldID string Specify a field mnemonic or alpha-
numeric, such as PR092 or
PRICING_SOURCE. Review
FLDS<GO> for list of possible
overrides.

value string The desired override value

Example Syntax: Element overrides = request["overrides"];
Element overridel = overrides.AppendElement () ;
overridel.SetElement ("fieldId", "BEST DATA SOURCE OVERRIDE") ;
overridel.SetElement ("value", "BLI");

A Schemas 166

Bloomberg

A.2.5 HistoricalDataResponse: Choice

Figure A-2 provides the structure of a Historical Data Response. See
for more information.

@sturical Data Respunaa

securityData element
has zero to one
fieldDatal |

securityData has
Zero to one
fieldexceptions| |

securityData has

responseError

—| securityData } |
—{ fieldData[] |

zero to many

——{ securityError
securityError elements

HistoricalDataResponse
message has zero to one
responseError elements

|

(source)(_ code)(catalguw)

[|
(message) (subcategory)

(Cseouity) (Rimber)

—{ fieldExceptions] | :I
fisldExceptions
fieldExceptions]] _./!

fieldData

fieldData[| array
has one to many
fieldData elements

relativeDate

date

has one to many
fieldExceptions
elements

C ﬁel]dld D)

C message)

errorinfa

source }l (message)

souca
code

category

code _) —@u bcategur*_a

message

subcategory

i

A Schemas

Figure A-2: Historical Data Response

167

Bloomberg

A.2.6 IntradayTickRequest: Sequence

Securities: A stock or bond.

Element Element Value | Type Description

securities string See for
additional details.

Example Syntax: Element securities = request.GetElement ("securities");
request.Set ("security", "VOD LN Equity"),

Start Date: the first date of the period to retrieve data

Element Element Value | Type Description
startDateTime yyyy-mm-dd string The start date and time.
Thh:mm:ss

Example Syntax: request.Set("startDateTime", "2010-04-27T15:55:00") ;

End Date: the end date of the period to retrieve data

Element Element Value | Type Description
endDateTime yyyy-mm-dd string The end date and time.
Thh:mm:ss

Example Syntax: request.Set ("endDateTime", "2010-04-27T16:00:00") ;

Event Type: The requested data event type

Element Element Value | Type Description
eventType TRADE string Corresponds to LAST_PRICE
BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
BID_BEST string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK_BEST string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
MID_PRICE string MID_PRICE only applies to the LSE.

The mid price is equal to the sum of the best
bid price and the best offer price divided by
two, and rounded up to be consistent with the
relevant price format.

AT_TRADE string Automatic trade for London Sets stocks.
BEST_BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
BEST_ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
Example Syntax: request.Set("eventType", "TRADE") ;

A Schemas 168

Bloomberg

Include Condition Codes: return any condition codes that may be associated to a tick, which identifies
extraordinary trading and quoting circumstances.

Element Element Value | Type Description
includeConditionCodes TRUE or Boolean | A comma delimited list of exchange condition
FALSE codes associated with the event. Review
QR<GO> for more information on each code
returned.
Example Syntax: request.Set ("includeConditionCodes", true) ;

Include Non Plottable Events: return ticks in the respon

se that have condition codes

Element Element Value | Type Description

includeNonPlottable TRUE or Boolean | Returns all ticks, including those with
Events FALSE condition codes.

Example Syntax: request.Set ("includeNonPlottableEvents", true);

Include Exchange Codes:

return the exchange code of the trade

Element Element Value | Type Description
includeExchangeCodes TRUE or Boolean | The exchange code where this tick originated.
FALSE Review QR<GO> for more information.

Example Syntax: request.Set ("includeExchangeCodes", true) ;

Return Entitlements: returns the entitlement identifiers associated with security.

Element Element Value | Type Description

returnEids TRUE or Boolean | Option on whether to return EIDs for the
FALSE security.

Example Syntax: request.Set ("returnEids", true);

Include Broker Codes: return the broker code of the trade

Element Element Value | Type Description
includeBrokerCodes TRUE or Boolean The broker code for Canadian, Finnish,
FALSE Mexican, Philippine, and Swedish equities
only. The Market Maker Lookup screen,
MMTK<GO>, displays further information on
market makers and their corresponding
codes.
Example Syntax: request.Set ("includeBrokerCodes", true);
Include Reporting Party Side Codes: return transaction codes
Element Element Value | Type Description
includeRpsCodes TRUE or Boolean | The Reporting Party Side. The following
FALSE values appear:

-B: A customer transaction where the dealer
purchases securities from the customer.

-S: A customer transaction where the dealer
sells securities to the customer.

-D: An inter-dealer transaction (always from
the sell side).

Example Syntax: request.Set ("includeRpsCodes", true) ;

A Schemas

169

Bloomberg

Include Bank/Market Identifier Codes: return bank or market identifier code

Element Element Value | Type Description
includeBicMicCodes TRUE or Boolean | The BIC, or Bank Identifier Code, as a 4-
FALSE character unique identifier for each bank that

executed and reported the OTC trade, as
required by MiFID. BICs are assigned and
maintained by SWIFT (Society for Worldwide
Interbank Financial Telecommunication). The
MIC is the Market Identifier Code, and this
indicates the venue on which the trade was
executed.

Example Syntax: request.Set ("includeBicMicCodes", true);

A.2.7 IntradayTickResponse: Choice

Figure A-3 provides the structure of an Intraday Tick Response. See
for more information.

A Schemas

170

Bloomberg

CntradayTichespunse) Intraday TickResponss
message has zero to one

responseEmor alemants

—1 responseEmor ',' I | |
[: SOUFCE }f: code j} L’: category t}
C j ' I |
tickData C message J |: Ed[cil:u?lcllrrgi'w
tickData has zero fo)
one tickData[| elements (etz)

tickData[| has ane to many
tickData elemenis

value

conditionCode
tickData has zero (o

one eidDatal | elements : :
eidData] | exchangeCod

micCoda

brokerBuyCode

[edData)

brokerSellCode

rpsCode

Figure A-3: IntradayTickResponse

A Schemas 171

Bloomberg

A.2.8 IntradayBarRequest: Sequence

Securities: A stock or bond.

Element Element Value

Type

Description

securities

string

See for
additional details.

Example Syntax: Element securities =
"VOD LN Equity");

request.Set ("security",

request.GetElement ("securities") ;

Start Date: the first date of the period to retrieve data

Element Element Value | Type Description
startDateTime yyyy-mm-dd string The start date and time.
Thh:mm:ss

Example Syntax:

request.Set("startDateTime",

"2010-04-27T15:55:00") ;

End Date: the end date of the period to retrieve data

Element Element Value | Type Description

endDateTime yyyy-mm-dd string The end date and time.
Thh:mm:ss

Example Syntax: request.Set ("endDateTime", "2010-04-27T16:00:00") ;

Event Type: The requested data event type

Element Element Value | Type Description
eventType TRADE string Corresponds to LAST_PRICE
BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
BID_BEST string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
ASK_BEST string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
BEST_BID string Depending on the exchange bid ticks will be
returned as BID, BID_BEST or BEST_BID.
BEST_ASK string Depending on the exchange ask ticks will be
returned as ASK, ASK_BEST or BEST_ASK.
Example Syntax: request.Set ("eventType", "TRADE") ;
Interval: the length of each bar returned
Element Element Value | Type Description
interval 1...1440 integer Sets the length of each time bar in the

response. Entered as a whole number,
between 1 and 1440 in minutes. If omitted,
the request will default to one minute. One
minute is the lowest possible granularity.

Example Syntax: request.Set("interval", 60) ;

A Schemas

172

Bloomberg

Gap Fill Initial Bar: populate an empty bar with previous value

Element Element Value | Type Description
gapFillinitialBar TRUE or Boolean | When set to true, a bar contains the
FALSE previous bar values if there was no tick during
this time interval.
Example Syntax: request.Set("gapFillInitialBar", true);

Return Entitlements: return

s the entitlement identifiers associated with security.

Element Element Value | Type Description

returnEids TRUE or Boolean | Option on whether to return EIDs for the
FALSE security.

Example Syntax: request.Set ("returnEids", true);

Return Relative Date: returns data with a relative date.

Element Element Value | Type Description

returnRelativeDate TRUE or Boolean | Setting this to true will populate fieldData with
FALSE an extra element containing a name and

value for the relative date. For example
RELATIVE_DATE = 2002 Q2

Example Syntax: request.Set ("returnRelativeDate", true);

Adjustment Normal: Adjust "change on day'

Element Element Value | Type Description
adjustmentNormal TRUE or Boolean | Adjust historical pricing to reflect: Regular
FALSE Cash, Interim, 1st Interim, 2nd Interim, 3rd

Interim, 4th Interim, 5th Interim, Income,
Estimated, Partnership Distribution, Final,
Interest on Capital, Distribution, Prorated.

Example Syntax: request.Set ("adjustmentNormal", true);

Adjustment Abnormal: Adjust for Abnormal Cash Dividends

Element Element Value | Type Description
adjustmentAbnormal TRUE or Boolean | Adjust historical pricing to reflect: Special
FALSE Cash, Liquidation, Capital Gains, Long-Term

Capital Gains, Short-Term Capital Gains,
Memorial, Return of Capital, Rights
Redemption, Miscellaneous, Return
Premium, Preferred Rights Redemption,
Proceeds/Rights, Proceeds/Shares,
Proceeds/Warrants.

Example Syntax: request.Set ("adjustmentAbnormal", true);

Adjustment Split: Capital Changes Defaults

Element Element Value | Type Description
adjustmentSplit TRUE or Boolean | Adjust historical pricing and/or volume to
FALSE reflect: Spin-Offs, Stock Splits/Consolidations,

Stock Dividend/Bonus, Rights Offerings/
Entitlement.

Example Syntax: request.Set("adjustmentSplit", true);

A Schemas

173

Bloomberg

Adjustment Follow DPDF: Follow the BLOOMBERG PROFESSIONAL service function DPDF<GO>

Element Element Value | Type Description
adjustmentFollowDPDF TRUE or Boolean | Setting to true will follow the DPDF<GO>
FALSE BLOOMBERG PROFESSIONAL service

function. True is the default setting for this
option..

Example Syntax: request.Set ("adjustmentFollowDPDF", true) ;

A.2.9 IntradayBarResponse: Choice

Figure A-4 provides the structure of an Intraday Bar Response. See
for more information.

(IntradayBarResponse)

barData has zero to one
barTickData[] elements

barData has zero to
one eidData[] elements

—(responsekrror

IntradayBarResponse
message has zero to one
responseError elements

(sotJroe >< co‘de)(cate‘gory >

)

Sub:
@ (Cmessage) (S

barTickData][]

barTickData[]
has one to many
barTickData elements

eidData]]

barTickData

time

open

il

high
low
close

volume

numEvents

giii

eidData

A Schemas

Figure A-4: IntradayBarResponse

174

Bloomberg
A.2.10 PortfolioDataRequest: Sequence

Securities: A Portfolio ID

Element Element Value | Type Description

securities string array string The users portfolio is identified by it's Portfolio
ID, which can be found on the upper right
hand corner of the settings tab on the
portfolio's PRTU<GO> page on the
BLOOMBERG PROFESSIONAL service.

Example Syntax: Element securities = request.GetElement ("securities");
securities.AppendValue ("UXXXXXXX-X Client") ;

Fields: The desired reference fields.

Element Element Value | Type Description

fields string The fields that can be used are
PORTFOLIO_MEMBER
PORTFOLIO_MPOSITION,
PORTFOLIO_MWEIGHT &
PORTFOLIO_DATA.

Example Syntax: Element fields = request.GetElement ("fields") ;
fields.AppendValue ("PORTFOLIO MEMBER ") ;

Overrides: The Portfolio information can also be accessed historically by using the REFERENCE_DATE
override field by supplying the date in 'yyyymmdd' format.

Element Element Value | Type Description
fieldld string Field mnemonic "REFERENCE_DATE"
value string The date in 'yyyymmdd' format.

Example Syntax: Element overrides = request["overrides"];
Element overridel = overrides.AppendElement () ;
overridel.SetElement ("fieldId", "REFERENCE DATE") ;
overridel.SetElement ("value”", "20100111");

A Schemas 175

Bloomberg
A.2.11 PortfolioDataResponse: Choice

Figure A-5 provides the structure of a PortfolioDataResponse. See
for more information.

RefarencellataResponse
@f&r&nu&bataﬁe&p@n@ measage has zero 1o one

responseErmor alaments

@ { sm.:rc:e j(: code)(: c:ate:;:ry __:}(: I'I'Eﬁ;ﬂg& __} (:suhca]reguw:}

securityDatal]

N

—‘ secuntyData Lr
[securdty) 'I:Eﬁ;j]
REﬂIJHIy'EIMF] alemant
has zers fo one fialdData] |
faldDatal |

finldDatal 1 array
has ana ba many
fieldData elements

fieldDats

securityData has
zern io one fieddExcepiions| |

fialdaxcaplions| |
flaldExcaption
fieldExcaplions] | _,,/'l

h;;ﬂnE:;prg:;v (fieldld) ((message)

elemeants

sacurityData has
Zard o many
securiyError elemeants

category

AN
e |8

message

subcategory

Figure A-5: Portfolio Data Request Response

A Schemas 176

Bloomberg
A.2.12 BEQSRequest: Sequence

screenName: An EQS screen name

Element Element Value | Type Description

screenName string string (Required) The name of the screen to
execute. It can be a user defined EQS screen
or one of the Bloomberg Example screens on
EQS <GO> on the BLOOMBERG
PROFESSIONAL service.

Example Syntax: request.Set ("screenName", "Global Volume Surges");

screenType: Screen Type.

Element Element Value | Type Description

screenType PRIVATE or string Use PRIVATE for user-defined EQS screen.
GLOBAL Use GLOBAL for Bloomberg EQS screen.

Example Syntax: request.Set ("screenType", "GLOBAL");

languageld: Specify the language for field names to be returned for screen data

Element Element Value | Type Description

languageld (optional) string The following languages are supported:
ENGLISH, KANJI, FRENCH, GERMAN,
SPANISH, PORTUGUESE, ITALIAN,
CHINESE_TRA, KOREAN, CHINESE_SIM,
THAI, SWED, FINNISH, DUTCH, MALAY,
RUSSIAN, GREEK, POLISH, DANISH,
FLEMISH, ESTONIAN, TURKISH,
NORWEGIAN, LATVIAN, LITHUANIAN,

INDONESIAN

Example Syntax: request.Set ("languageId", "FRENCH");

Group: Specify group name.

Element Element Value | Type Description

Group (optional) string Screen folder name here as defined in
EQS<GO>.

Example Syntax: request.Set ("Group", "Global Emerging Markets");

A Schemas 177

Bloomberg
A.2.13 BEQSResponse: Choice

Figure A-1 provides the structure of a BEQSResponse. See
for more information.

sResponse
C Ba‘q sRespnnsa r'I'ElBEE:g has .E:I‘D to ona
resporaeError elements

(_ SOAIMCE)(code _)(categony _)
|: securtyData[| [message) | M.ﬁ‘.}“,.i‘.’;”)

: securityData \"
—
securityData alamant fisldDatal | array
has Zers to one fieldDuatal | has ane o marny
fieldDratal | fieldData elements

fizidDiata

securityDiata has
zero bo one figldExceptions] |
fisldexcaptions| |
feldExcaption
frald Excaptions]] _/ | |

has one to many :
fiekdException {__ field|d _J (— messans _)
alements
: errarinfo b—|

securiyDala has
zero to many

code
gacufityEror alemamnts

category
Efpary
nal]

meassage

Subcsentey
oplicnal)

Figure A-6: BEQS Response

A Schemas 178

Bloomberg

A.2.14 Reference Data Service Response

Table A-1 and Table A-2 provides descriptions of the individual elements received in a

reference data response. Please view pages , , , , and

for information on

the structure of each response.

Table A-1: Reference Data Service Response Elements

Element Description

responseError

Returned when a request cannot be completed for any reason. It is an
errorinfo element.

securityData[]

Contains an array of securityData elements

securityData Contains the response data for a specific security from a
ReferenceDataRequest or a HistoricalDataRequest. It provides the
security string specified in the request, the sequence number and can
include fieldData[], fieldsExceptions[] and securityError elements.

barData Contains the response data for an IntradayBarRequest. It can provide
a barTickData[] element and/or an eidData array element.

barTickData[] Contains an array of barTickData elements

barTickData Contains values associated to the bar, including time, open, high, low,
close, volume, numEvents.

tickData Contains the response data for an IntradayTickRequest. It can provide
a tickData[] element and/or an eidData array element.

tickData[] Contains an array of tickData elements

tickData[] :: tickData

Contains values associated to the eventType, including time, type,
value, size, condition code, and exchange code.

eidData][] Contains a list of eidData values associated to the securities
requested. If the requestor does not have the entitlement as per
EXCH<GO> then the identifiers will not be returned.

securityError Returned when a request cannot be completed for any reason. It is an

errorinfo element.

fieldExceptions]]

Contains an array of fieldExceptions.

fieldExceptions

Contains a field identifier, message and errorinfo element.

fieldData[] Contains an array of fieldData values

fieldData Reference Data Request: element with the fieldld and value
Historical Data Request: element with the relativeDate, Date, fieldld
and value

errorinfo Contains values about the error which has occurred, including the

source, code, category, message, and subcategory.

A Schemas

179

Bloomberg

Table A-2: Reference Data Service Response Values

security String The security requested. See
for additional details..

eidData Integer Entitlement identifier (EID) associated to the requested
security.

sequenceNumber Integer Security sequence number, specifying the position of
the security in the request.

fieldld String Requested field represented as an alphanumeric or a
Mnemonic, i.e. PR005 or PX_LAST.

relativeDate String Relative date string associated with this historical data-

point. This field will only be returned if
"returnRelativeDate" historical data request option is
specified as "true".

Date Date Date associated with this historical data-point
Time DateTime Tick time for an intraday tick request
Type String The event type for an intraday tick
Value Integer Value of an eventType or field.
Double
String
Date
Time
Datetime
Size Integer Size of an event for intraday tick data (for example,
number of shares).
conditionCode String A comma delimited list of exchange condition
codes associated with the event.
exchangeCode String Single character indicating exchange tick event origin.
Source String Bloomberg internal error source information.
Code Integer Bloomberg internal error code.
Category String Bloomberg error classification. Used to determine the
general classification of the failure.
message String Human readable description of the failure.
subcategory String (Optional) Bloomberg sub-error classification. Used to

determine the specific classification of the failure.

A Schemas 180

Bloomberg

Table A-2: Reference Data Service Response Values

rpsCode

String

Transaction code.The following values appear:

-B: A customer transaction where the dealer
purchases securities from the customer.

-S: A customer transaction where the dealersells
securities to the customer.

-D: An inter-dealer transaction (always from the sell
side).

brokerBuyCode

String

brokerSellCode

String

The broker code for Canadian, Finnish, Mexican,
Philippine, and Swedish equities only. The Market
Maker Lookup screen, MMTK on the BLOOMBERG
PROFESSIONAL service, displays further information
on market makers and their corresponding codes. To
display the broker's name, enter:

MMID {market maker code} <GO>.

micCode

String

The BIC, or Bank Identifier Code, as a 4-character
unique identifier for each bank that executed and
reported the OTC trade, as required by MiFID. BICs
are assigned and maintained by SWIFT (Society for
Worldwide Interbank Financial Telecommunication).

The MIC is the Market Identifier Code, and this
indicates the venue on which the trade was executed.

A Schemas

181

Bloomberg

A.3 Schema for API Field Service //blp//apiflds

A.3.1 Requests: Choice

Top level request to the service.

Element
fieldInfoRequest

Type
FieldInfoRequest

Description

Request for field information.

fieldSearchRequest

FieldSearchRequest

Field search information.

categorizedFieldSearchRequest

CategorizedFieldSearch Request | See

A.3.2 Responses: Choice

Top level request to the service.

Element

fieldResponse

Type
FieldResponse

Description

Field response information.

categorizedFieldResponse | CategorizedFieldResponse | See
A.3.3 Field Information Request
Identifier: the reference or streaming fields desired.
Element Element Value | Type Description
id string See for additional

details. Fields can be specified as a alpha
numeric or mnemonic.

Example Syntax: Element idList = request.GetElement ("id") ;
request.Append("id", "LAST_PRICE");

request.Append("id", "pgq005") ;

Return field documenation:

Element

Element Value | Type

Description

returnFieldDocumentatio
n

TRUE or Boolean
FALSE

Returns a description about the field as seen
on FLDS<GO>. Default value is false.

Example Syntax: request.Set ("returnFieldDocumentation", true);

A Schemas

182

Bloomberg

See

for more information.

and

(flieldResponse)

The fieldRespanse

message has zero o one fieldSearchError

fieldSearchError glemants

i

fieldDatal |

fleldData[]
has zaro to many fieldDiata
fialdData elements

(__ sol.llrca }(— Dnlda){: category)

Crossne) C2y

figldData has zero
1o one fialdinfo Thesld Ity]
— E mnemonic -) |—(datatype) (natagnr-_.-wama:)

fisldinfo has
zero to ona
averrides|]

fieldData has zero
to one fieldError alements

description) —(ducumantaﬁun:)

_@C |:|,)C 'u'allua _)

: fialdError "'

source) (: message)

Cone D\ CoE

A Schemas

183

Bloomberg

A.3.4 Field Search Request

Identifier: the reference or streaming fields desired.

Element

Element Value

Type

Description

searchSpec

String

The string argument to search through

mnemonics, descriptions and definitions. It is
also able to 'intelligently' expand works, i.e.

mkt ==> market.

Example Syntax:

request.Set ("searchSpec",

"mutual fund") ;

Include options:

Element Element Value | Type Description
category New Fields String Categories for fields
Analysis
Corporate
Actions
Custom Fields
Descriptive
Earnings
Estimates
Fundamentals
Market Activity
Metadata
Ratings
Trading
Systems
productType All String The results will be filtered by fields that are
Govt String avaliable for this yellow key (security type).
Corp String
Mtge String
M-Mkt String
Muni String
Pfd String
Equity String
Cmdty String
Index String
Curncy String

A Schemas

184

Bloomberg

fieldType

All String Results include fields that are both streaming
(real-time and delayed) and reference (static)

Realtime String Results include fields that provide streaming
data (real-time and delayed)

Static String Results include fields that provide reference
data (static).

Element element =

request.getElement ("include") ;

element.setElement ("productType", "Equity") ;
element.setElement ("fieldType", "Static");

Element elementl = element.GetElement ("category") ;
elementl.AppendValue ("Ratings") ;
elementl.AppendValue ("Analysis") ;

Exclude options:

Element Element Value | Type Description
category New Fields String Categories for fields
Analysis
Corporate
Actions
Custom Fields
Descriptive
Earnings
Estimates
Fundamentals
Market Activity
Metadata
Ratings
Trading
Systems
productType All String The results will be filtered by fields that are
Govt String avaliable for this yellow key (security type).
Corp String
Mtge String
M-Mkt String
Muni String
Pfd String
Equity String
Cmdty String
Index String
Curncy String

A Schemas

185

Bloomberg

fieldType All String Results include fields that are both streaming
(real-time and delayed) and reference (static)

Realtime String Results include fields that provide streaming
data (real-time and delayed)

Static String Results include fields that provide reference
data (static).

Example Syntax: Element element = request.getElement ("exclude");
element.setElement ("productType", "Equity") ;
element.setElement ("fieldType", "Static");
Element elementl = element.GetElement ("category") ;
elementl.AppendValue ("Ratings") ;
elementl.AppendValue ("Analysis") ;

Return field documenation:

Element Element Value | Type Description
returnFieldDocumentatio | TRUE or Boolean Returns a description about the field as seen
n FALSE on FLDS<GO>. Default value is false.

Example Syntax: request.Set ("returnFieldDocumentation", true);

See and
for more information.

A Schemas 186

Bloomberg

(fieldResponse)

The fieldRespanse
message has zero to one fieldSearchError

fieldSearchError elements

(__ soulrca _:)C Dnlr:la)(_Eategury)

fieldDatal | (message) (_Eubmlanury

{optional}
fleldDatal |
has zaro to many fieldDiata
fialdData elements

i

figldata has zero
1o one fialdinfa fialdinfo]
— t mnemonic) |—(datalype) (:EtﬂgnryNama)

description] —Cducumantaﬁunj

—(D e

fisldinfo has
zero to ona
averrides]]

fieldData has zero fieldError
to one fieldError elements

owvarride

source) (message)
Coe D) o

Figure A-7: Field Search Request Response

A Schemas

187

Bloomberg

A.3.5 Categorized Field Search Request

Identifier: the reference or streaming fields desired.

Element

Element Value

Type

Description

searchSpec

String

The string argument to search through

mnemonics, descriptions and definitions. It is
also able to 'intelligently' expand works, i.e.

mkt ==> market.

Example Syntax:

request.Set ("searchSpec",

"mutual fund");

Exclude options:

Element Element Value | Type Description
category New Fields String Categories for fields
Analysis
Corporate
Actions
Custom Fields
Descriptive
Earnings
Estimates
Fundamentals
Market Activity
Metadata
Ratings
Trading
Systems
productType All String The results will be filtered by fields that are
avaliable for this yellow key (security type).
Govt String
Corp String
Mtge String
M-Mkt String
Muni String
Pfd String
Equity String
Cmdty String
Index String
Curncy String

A Schemas

188

Bloomberg

fieldType All String Results include fields that are both streaming
(real-time and delayed) and reference (static)

Realtime String Results include fields that provide streaming
data (real-time and delayed)

Static String Results include fields that provide reference
data (static).

Example Syntax: Element element = request.getElement ("exclude");
element.setElement ("productType", "Equity") ;
element.setElement ("fieldType", "Static");
Element elementl = element.GetElement ("category") ;
elementl.AppendValue ("Ratings") ;
elementl.AppendValue ("Analysis") ;

Return field documenation:

Element Element Value | Type Description
returnFieldDocumentatio | TRUE or Boolean Returns a description about the field as seen
n FALSE on FLDS<GO>. Default value is false.

Example Syntax: request.Set ("returnFieldDocumentation", true);

See and
for more information.

A Schemas 189

Bloomberg

. . The fleld Response
Gﬂk&g@ﬂ:ﬂdflﬁdﬁﬂﬁpﬂﬂ% message hag Zer o one

fiald SearchError alamants

Categonzedfield
SearchError

i

(: snulrca)(code j(cate:;anry)
I

|
] (Cmessage) (Flomionat’

)

N

ory

(=

|
(nateguryName) (:cﬂteguryld:) (: fLimF leld s :)

description _) isLeafMode }

—{ fisldData]] }
fialdDatal |
has zara to many
fieldData elements fisldData .

fieldData has zero flaldinfa

b corves gt vt |
ONEMCHEG) datatype :] (:-:Eltagur]'hlama)
description _) dmumanmthn_)

l

(; id)t:_ value)

fldinfo has
zans ko one
ovarrides] |

fiald Data has zano fieldErrar
to one fieldError elements

Bloomberg

Figure A-8: Categorized Field Search Request Response

A.3.6 Field List Request

Identifier: the reference or streaming fields desired.

Element Element Value | Type Description
fieldType All String Results include fields that are both streaming
(real-time and delayed) and reference (static)
Realtime String Results include fields that provide streaming
data (real-time and delayed)
Static String Results include fields that provide reference

data (static).

Example Syntax: ele

ment.setElement ("fieldType", "Static");

Return field documenation:

Element

Element Value

Type

Description

returnFieldDocumentatio
n

TRUE or
FALSE

Boolean Returns a description about the field as seen

on FLDS<GO>. Default value is false.

request.Set ("returnFieldDocumentation",

true) ;

See

for more information.

A Schemas

and

191

Bloomberg

(fieldResponse >

The fieldResponse

message has zero to one fieldSearchError I [

fieldSearchError elements

(sou‘rce >(co‘de C category >C message) C s

ubcategory
(optional)

fieldData[]

i

fieldData[|
has zero to many fieldData
fieldData elements

fieldData has zero fieldlnfo
to one fieldinfo J

mnemonic) datatype) CcategoryName)

description) documentation)

—(=0 e

fieldInfo has
zero to one
overrides[]

fieldData has zero fieldError
to one fieldError elements

overrides|]

override

source) message)

code) Subcategory

(optional)

Figure A-9: Field List Request Response

A Schemas

192

Bloomberg
A.3.7 Field Service Response Elements

The following table provides descriptions of the individual elements received in the field
service responses. Please view graphs A.3.3, A.3.5, A.3.7 and A.3.9 for information on the
structure of the response.

Element Description

fieldSearchError Returned when a request cannot be completed for any reason. It is an
errorinfo element.

fieldData[] Contains an array of fieldData values

fieldData Contains a id corresponding to the requested field identifier, along with
either a fieldInfo or fieldError element

fieldInfo Contains values on the mnemonic, datatype, categoryName,
description, and documentation.

fieldError Returned when a request cannot be completed for any reason or in the
case of a fieldInfoRequest when an invalid field mnemonic or alpha-
numeric is entered.

categorizedFieldSearchE | Returned when a request cannot be completed for any reason. It is an

rror errorinfo element.
category[] Contains an array of category elements.
category Contains categoryName, categoryld, numFields, descriptions,

isLeafNode and a fieldData[] element.

errorinfo Contains values about the error which has occurred, including the
source, code, category, message, and subcategory.

A Schemas 193

Bloomberg

A.3.8 Field Service Response Values

Element Type Description

id String Resulting field represented as an
alphanumeric or a Mnemonic, i.e., PR0O05 or
PX_LAST.

mnemonic Integer Resulting field represented as a mnemonic,
i.e., PX_LAST.

datatype Enumeration Enumeration values representing
Bloomberg data types. Please see specific
SDK documentation for the enum values.

ftype Enumeration Enumeration value representing data types
shown in XDM<GO>.

categoryName String Response value for the name of the
category. Could be one of the following:
New Fields, Analysis, Corporate Actions,
Custom Fields, Descriptive, Earnings
Estimates, Fundamentals, Market Activity,
Metadata, Ratings, and Trading Systems.

description String Is the short description describing the field,
for example for the mnemonic LAST_PRICE
the description is "Last Trade/Last Price".

documentation String Corresponds to the definition in FLDS<GO>

Time DateTime Tick time for an intraday tick request

Type String The event type for an intraday tick

Source String Bloomberg internal error source information.

Code Integer Bloomberg internal error code.

Category String Bloomberg error classification. Used to
determine the general classification of the
failure.

message String Human readable description of the failure.

subcategory String Bloomberg sub-error classification. Used to
determine the specific classification of the
failure.

A Schemas

194

Bloomberg

A.4 Market Bar Subscription

A.4.1 Market Bar Subscription Settings

Argument Value Type Description

security string | As with any Subscription, a Market Bar Subscription must contain at
least one security, field and Correlation ID. The topic is defined as:
"//blp/mktbar/symbology/identifier"

field string | The following fields are returned for Market Bars: TIME, OPEN, HIGH,

LOW, CLOSE, NUMBER_OF_TICKS, VOLUME. These values are
only updated on a trade. For this reason, LAST_PRICE should be
submitted in the subscription string.

See for additional details. Fields can be
specified as a alpha numeric or mnemonic.

Example Syntax:

Subscription mySubscription = new Subscription("//blp/mktbar/ticker/VOD LN
Equity", "LAST PRICE", new CorrelationID(id));

interval string | Optional. Interval time defined thelength in minutes of a bar. If
undefined it is set to 1 minute. This is the minimum duration. The
maximum duration is 1440 minutes, (=24 hours).

start_time string | Optional. This should be in the format hh:mm. If these values are not
specified then they default is time of subscription.

end_time string | Optional. This should be in the format hh:mm. If these values are not
specified then they default is session end time.

Example Syntax:

Subscription mySubscription = new Subscription(security, field,
"interval=5" "start_time=15:00", "end time=15:30",CorrelationID(id));

A.4.2 Market Bar Subscription: Data Events Response

Argument Value
TIME

Type

Description

datetime | Returns the time of the last TRADE on every update.

Example Syntax: Datetime time = msg.getElementAsDatetime (TIME) ;

OPEN Float64 Returns open price for each bar. Will be returned in the first tick for the
bar.

Example Syntax: int open = msg.getElementAsFloat64 (OPEN) ;

HIGH Float64 Returns high price at the beginning of the bar and subsequently every
higher price that occurs until the end of the bar.

Example Syntax: int high = msg.getElementAsFloat64 (HIGH) ;

LOW

Float64

Returns low price at the beginning of the bar and subsequently every
higher price that occurs until the end of the bar.

Example Syntax: int

low = msg.getElementAsFloat64 (LOW) ;

A Schemas

195

Bloomberg

Argument Value Type Description
CLOSE Float64 Returns updated close price on every update.

Example Syntax: int close = msg.getElementAsFloat64 (CLOSE) ;

NUMBER_OF_TICKS | Int32 | Counts tick number on every update until a new bar starts.

Example Syntax:
int number of ticks = msg.getElementAsInt32 (NUMBER OF TICKS) ;

VOLUME Int64 Volume increments for number of trades in each market bar and is
reset at the start of each market bar.

Example Syntax:
float volume = msg.getElementAsInt64 (VOLUME) ;

A Schemas 196

Bloomberg
A.5 Schema for Market Data and Custom VWAP

A.5.1 MarketDataEvents: Choice

Events related to Market Data:

Event Name Type Description

MarketDataEvents MarketDataEvents Market Data Eventss

A.5.2 Market Data Service Subscription Options

Argument Value Type Description

interval string | Sets a defined period in seconds for which updates will be received for
the subscription.

The range for this argument is 0.10 to 86400.00, which is equal to
100ms to 24hours. For example setting this argument to 30 will result
in the requesting application to receive updates every 30 seconds for
the requested securities.

Example Syntax:
Subscription mySubscription =new Subscription(security, fields,
"interval=30.0", new CorrelationID (security))

delayed string | Forces the subscription to be delayed even if the requestor has real-
time exchange entitlements.

Example Syntax:
Subscription mySubscription =new Subscription(security, fields,
"delayed", new CorrelationID (security))

A.5.3 MarketDataEvents: Sequence

Fields in subscription

Element Type Description

TORONTO_MOC_ELIGIBLE_REALTIME Optional Toronto MOC Eligible
Boolean

NASDAQ_CLOSING_CROSS_ELIGIBLE_RT Optional Nasdaq Closing Cross Eligible
Boolean

MGF_SETTING_RT Optional MGF Setting (Real-time)
Boolean

RT_EXCH_TRADE_STATUS Optional Exchange Trading Status
Boolean

RT_QUOTE_STATUS Optional Quotation Status
Boolean

A Schemas 197

Bloomberg

Element Type Description

IND_BID_FLAG Optional Indicative Bid Flag
Boolean

IND_ASK FLAG Optional Indicative Ask Flag
Boolean

TRADING_DT_REALTIME

Optional Date

Trading Date

RT_TIME_OF_TRADE Optional Time Trade Occurred
Datetime

CR_OBSERVATION_DATE Optional Current Observation Date
Datetime

PRIOR_OBSERVATION_DATE Optional Prior Observation Date
Datetime

TIME Optional Time of Last Update
Datetime

VOLUME Optional Int32 Volume

BID_YIELD Optional Float32 | Bid Yield

ASK_YIELD Optional Float32 | Ask Yield

RT_OPEN_INTEREST

Optional Float32

Open Interest (Real-time)

OFF_ON_EXCH_VOLUME_RT

Optional Int32

Off And On Exchange Volume (Real-time)

OFF_EXCH_VOLUME_RT

Optional Int32

Off Exchange Volume (Real-time)

PX_VOLUME_BAL_RT

Optional Int32

Volume Balance (Real-time)

OPT_DELTA BID_RT

Optional Float32

Delta Bid (Real-time)

OPT_DELTA_ASK_RT

Optional Float32

Delta Ask (Real-time)

OPT_DELTA_MID_RT

Optional Float32

Delta Mid (Real-time)

OPT_DELTA_LAST_RT

Optional Float32

Delta Last Trade (Real-time)

OPT_GAMMA_BID_RT

Optional Float32

Gamma Bid (Real-time)

OPT_GAMMA_ASK_RT

Optional Float32

Gamma Ask (Real-time)

OPT_GAMMA_MID_RT

Optional Float32

Gamma Mid (Real-time)

OPT_GAMMA_LAST RT

Optional Float32

Gamma Last Trade (Real-time)

OPT_VEGA BID_RT

Optional Float32

Vega Bid (Real-time)

OPT_VEGA_ASK_RT

Optional Float32

Vega Ask (Real-time)

OPT_VEGA_MID_RT

Optional Float32

Vega Mid (Real-time)

OPT_VEGA_LAST RT

Optional Float32

Vega Last Trade (Real-time)

OPT_IMPLIED_VOLATILITY_BID_RT

Optional Float32

Implied Volatility Bid (Real-time)

OPT_IMPLIED_VOLATILITY_ASK_RT

Optional Float32

Implied Volatility ASK (Real-time)

OPT_IMPLIED_VOLATILITY_MID_RT

Optional Float32

Implied Volatility Mid (Real-time)

OPT_IMPLIED_VOLATILITY_LAST_RT

Optional Float32

Implied Volatility Last Trade (Real-time)

EQY_SH_FOREIGN_RT

Optional Float32

Shares Available To Foreign Investors
(Real-time)

LISTED_SH_RT

Optional Float32

Number Of Listed Shares (Real-time)

A Schemas

198

Bloomberg

Element
BLP_SPRD_TO BENCH_BID_RT

Type
Optional Float32

Description

Bloomberg Bid Spread To Benchmark
(Real-time)

BLP_SPRD_TO_BENCH_ASK_RT

Optional Float32

Bloomberg Ask Spread To Benchmark
(Real-time)

BLP_SPRD_TO_BENCH_MID_RT

Optional Float32

Bloomberg Mid Spread To Benchmark
(Real-time)

BLP_Z SPRD_MID_RT

Optional Float32

Bloomberg Mid Z Spread (Real-time)

BLP_ASW_SPREAD_MID_RT

Optional Float32

Bloomberg Mid ASW Spread (Real-time)

BLP_|_SPRD_MID_RT

Optional Float32

Bloomberg Mid | Spread (Real-time)

BLP_CDS_BASIS_MID_RT

Optional Float32

Bloomberg Mid CDS Basis (Real-time)

BLP_SPRD_TO_BENCH_CHG_RT

Optional Float32

Bloomberg Sprd To Bench Chg On Day
(Real-time)

BLP_Z SPRD_CHG_RT

Optional Float32

Bloomberg Z Spread Change On Day
(Real-time)

BLP_ASW_SPRD_CHG_RT

Optional Float32

Bloomberg ASW Spread Change On Day
(Real-time)

BLP_| SPRD_CHG_RT

Optional Float32

Bloomberg | Spread Change On Day
(Real-time)

BLP_CDS_BASIS_CHG_RT

Optional Float32

Bloomberg CDS Basis Change On Day
(Real-time)

BLP_SPRD_TO_BENCH_PCT_CHG_RT

Optional Float32

Bloomberg Spd To Bench % Chg On Day
(Real-time)

BLP_Z SPRD_PCT_CHG_RT

Optional Float32

Bloomberg Z Spread % Change On Day
(Real-time)

BLP_ASW_SPRD_PCT_CHG_RT

Optional Float32

Bloomberg ASW Spread % Chg On Day
(Real-time)

BLP_|_SPRD_PCT_CHG_RT

Optional Float32

Bloomberg | Spread % Change On Day
(Real-time)

BLP_CDS_BASIS_PCT_CHG_RT

Optional Float32

Bloomberg CDS Basis % Change On Day
(Real-time)

PX_SETTLE_ACTUAL_RT

Optional Float32

Settlement Price Actual (Real-time)

ARBITRAGE_ASK_ORD_NOT_MATCHED_RT

Optional Float32

Arbitrage Ask Orders Not Matched (Real-
time)

ARBITRAGE_BID_ORD_NOT_MATCHED_RT

Optional Float32

Arbitrage Bid Orders Not Matched (Real-
time)

NON_ARBITRAGE_ASK_NOT_MATCHED_RT

Optional Float32

Non Arbitrage Ask Orders Not Matched
(Real-time)

NON_ARBITRAGE_BID_NOT_MATCHED_RT

Optional Float32

Non Arbitrage Bid Orders Not Matched
(Real-time)

ARBITRAGE_ASK_ORD_VOLUME_RT

Optional Int32

Arbitrage Ask Orders Volume (Real-time)

ARBITRAGE_BID_ORD_VOLUME_RT

Optional Int32

Arbitrage Bid Orders Volume (Real-time)

A Schemas

199

Bloomberg

Element
NON_ARBIT_ASK_ORD_VOLUME_RT

Type
Optional Int32

Description

Non Arbitrage Ask Orders Volume (Real-
time)

NON_ARBIT_BID_ORD_VOLUME_RT

Optional Int32

Non Arbitrage Bid Orders Volume (Real-
time)

PRE_ANNOUNCE_NUM_PROG_ASK_RT

Optional Float32

Pre Announce Num of Program Ask
Orders (Real-time)

PRE_ANNOUNCE_NUM_PROG_BID_RT

Optional Float32

Pre Announce Num of Program Bid
Orders (Real-time)

TRUST_ASK_ORD_VOLUME_RT

Optional Int32

Trust Ask Orders Volume (Real-time)

PROPRIETARY_ASK_ORD_VOLUME_RT

Optional Int32

Proprietary Ask Orders Volume (Real-
time)

TRUST_BID_ORD_VOLUME_RT

Optional Int32

Trust Bid Orders Volume (Real-time)

PROPRIETARY_BID_ORD_VOLUME_RT

Optional Int32

Proprietary Bid Orders Volume (Real-
time)

TOTAL_VOLUME_PROGRAM_TRADE_RT

Optional Int32

Total Volume of Program Trading (Real-
time)

PX_INDICATIVE_BID_SIZE_RT

Optional Int32

Indicative Bid Price Size (Real-time)

PX_INDICATIVE_ASK_SIZE_RT

Optional Int32

Indicative Ask Price Size (Real-time)

NUM_TRADES_RT

Optional Int32

Number Of Trades

MGF_VOLUME_RT

Optional Int32

MGF Volume (Real-time)

NUM_TRADES_OPENING_AUCTION_RT

Optional Int32

Number Of Trades In Opening Auction
(Real-time)

NUM_TRADES_CLOSING_AUCTION_RT

Optional Int32

Number Of Trades In Closing Auction
(Real-time)

ALL_PRICE_SIZE

Optional Int32

All Price Size

RT_NYSE_LIQUIDITY_BID_SIZE

Optional Int32

NYSE Liquidity Quote Bid Size

RT_NYSE_LIQUIDITY_ASK_SIZE

Optional Int32

NYSE Liquidity Quote Ask Size

VOLUME_THEO

Optional Int32

Theoretical Volume

SIZE_LAST_AT_TRADE

Optional Int32

Size of Last AT Trade

SIZE_LAST_AT_TRADE_TDY

Optional Int32

Size of Today's Last AT Trade

OPEN_YLD Optional Float32 | Open Yield
OPEN_YLD_TDY Optional Float32 | Today's Open Yield
HIGH_YLD Optional Float32 | High Yield
HIGH_YLD TDY Optional Float32 | Today's High Yield
LOW_YLD Optional Float32 | Low Yield
LOW_YLD_TDY Optional Float32 | Today's Low Yield
LAST_YLD Optional Float32 | Last Yield

LAST_YLD_TDY

Optional Float32

Today's Last Yield

SIZE_LAST_TRADE_TDY

Optional Int32

Size of Today's Last Trade

A Schemas

200

Bloomberg

Element Type Description
LAST2 YLD Optional Float32 | Last 2 Yield
LAST _DIR_YLD Optional Int32 Last Yield Direction

LAST2_DIR_YLD

Optional Int32

Second Last Yield Direction

PREV_SES_LAST YLD

Optional Float32

Previous Session Last Yield

BID2_YLD Optional Float32 | Bid 2 Yield
ASK2_YLD Optional Float32 | Ask 2 Yield
BID_DIR_YLD Optional Int32 Bid Yield Direction
ASK _DIR YLD Optional Int32 Ask Yield Direction
MID_DIR Optional Int32 Mid Direction
MID2_DIR Optional Int32 Second Mid Direction

RT_PX_CHG_PCT_1D

Optional Float32

Real-Time Price Change 1 Day Percent

RT_YLD_CHG_NET_1D

Optional Float32

Real-Time Yield Change 1 Day Net

RT_YLD_CHG_PCT_1D

Optional Float32

Real-Time Yield Change 1 Day Percent

ASK_SIZE_TDY Optional Int32 Today's Ask Size
BID_SIZE_TDY Optional Int32 Today's Bid Size
VOLUME_TDY Optional Int32 Today's Volume
BID_YLD _TDY Optional Float32 | Today's Bid Yield
ASK_YLD_TDY Optional Float32 | Today's Ask Yield
UP_LIMIT Optional Float32 | Up Limit
DOWN_LIMIT Optional Float32 | Down Limit

LAST DIR Optional Int32 Last Direction
LAST2_DIR Optional Int32 Second Last Direction
BID_DIR Optional Int32 Bid Direction
ASK_DIR Optional Int32 Ask Direction
SIZE_LAST_TRADE Optional Int32 Size of Last Trade
ASK_SIZE Optional Int32 Ask Size
BID_SIZE Optional Int32 Bid Size
LAST_PRICE Optional Float64 | Last Price

BID Optional Float64 | Bid Price

ASK Optional Float64 | Ask Price

HIGH Optional Float64 | High Price

LOW Optional Floaté4 | Low Price
BEST_BID Optional Float64 | Best Bid
BEST_ASK Optional Float64 | Best Ask

MID Optional Float64 | Mid Price
LAST_TRADE Optional Float64 | Last Trade
OPEN Optional Floaté4 | Open Price

A Schemas

201

Bloomberg

Element Type Description
PREV_SES LAST _PRICE Optional Floaté4 | Previous Session Last Price
EXCH_VWAP Optional Floaté4 | Exchange VWAP

NASDAQ_OPEN

Optional Float64

NASDAQ Official Open Price

NASDAQ_FIRST_TRADE

Optional Float64

NASDAAQ First Actual Trade

NASDAQ_PREV_BID

Optional Float64

NASDAQ Prevailing Bid Price

NASDAQ_PREV_ASK

Optional Float64

NASDAQ Prevailing Ask Price

INDICATIVE_FAR

Optional Float64

Far Indicative Price

INDICATIVE_NEAR

Optional Float64

Near Indicative Price

IMBALANCE_BID

Optional Float64

Net Order Imbalance Bid Price

IMBALANCE_ASK

Optional Float64

Net Order Imbalance Ask Price

ORDER_IMB_BUY_VOLUME

Optional Int32

Net Order Imbalance Bid Volume

ORDER_IMB_SELL_VOLUME

Optional Int32

Net Order Imbalance Ask Volume

VWAP

Optional Float64

Eqty intraday VWAP

FIXING_RATE_REALTIME

Optional Float64

Fixing Rate

HIGH_TEMP_REALTIME

Optional Float64

High Temperature

LOW_TEMP_REALTIME

Optional Float64

Low Temperature

MEAN_TEMP_REALTIME

Optional Float64

Mean Temperature

HEATING_DAYS_REALTIME

Optional Float64

Heating Degree Days

COOLING_DAYS_REALTIME

Optional Float64

Cooling Degree Days

REL_HUMIDITY_REALTIME

Optional Float64

Relative Humidity

WIND_SPEED_REALTIME

Optional Float64

Wind Speed

WEATHER_CODE_REALTIME

Optional Float64

Weather Condition Code

PRECIPITATION_REALTIME

Optional Float64

Precipitation

MARKET_DEFINED_VWAP_REALTIME

Optional Float64

Market Defined VWAP (Real-time)

MIN_LIMIT Optional Floaté4 | Minimum Limit Price
MAX_LIMIT Optional Float64 | Maximum Limit Price
THEO_PRICE Optional Float64 | Theoretical Price

MIN_LIMIT_OUT_OF_SESSION

Optional Float64

Minimum Limit Price Out Of Session

MAX_LIMIT_OUT_OF_SESSION

Optional Float64

Maximum Limit Price Out Of Session

BID_WEIGHTED_AVG_SPREAD

Optional Float64

Bid Weighted Average Spread

ASK_WEIGHTED_AVG_SPREAD

Optional Float64

Ask Weighted Average Spread

RT_NYSE_LIQUIDITY_PX_BID

Optional Float64

NYSE Liquidity Quote Bid Price

RT_NYSE_LIQUIDITY_PX_ASK

Optional Float64

NYSE Liquidity Quote Ask Price

INDICATIVE_BID

Optional Float64

Indicative Bid Price

INDICATIVE_ASK

Optional Float64

Indicative Ask Price

PX_EVAL_JAPANESE_REALTIME

Optional Float64

Japanese Evaluation Price

LAST_ALL_SESSIONS

Optional Float64

Last Price All Sessions

A Schemas

202

Bloomberg

Element
PX_NASDAQ_VWOP_REALTIME

Type
Optional Float64

Description
NASDAQ VWOP Price

BLP_|_SPRD_LAST RT

Optional Float64

Bloomberg Last | Spread (Real-time)

PREV_CLOSE_VALUE_REALTIME

Optional Float64

Previous Closing Value

BID_ALL_SESSION

Optional Float64

Bid Price All Session

ASK_ALL_SESSION

Optional Float64

Ask Price All Session

EBS_TOUCH_HIGH_REALTIME

Optional Float64

EBS Touch High

EBS_TOUCH_LOW_REALTIME

Optional Float64

EBS Touch Low

PX_PREV_TO_LAST REALTIME

Optional Float64

Previous-To-Last Price

PX_TARGIN_SERVICE_REALTIME

Optional Float64

TARGIN Service Price (Real-time)

PX_TARGIN_OFFCIAL_REALTIME

Optional Float64

TARGIN Official Price (Real-time)

FOREIGN_HOLDING_PCT_RT

Optional Float64

Percentage Of Foreign Holding (Real-
time)

OWNERSHIP_LIMIT_RATIO_RT

Optional Float64

Ownership Limit Ratio (Real-time)

RT_EVAL_JAPANESE_CHG_ON_DAY

Optional Float64

Japanese Evaluation Price Change On
Day (Real-time)

RT_EVAL_JAPANESE_PCT_CHG_ON_DAY

Optional Float64

Japanese Eval Price Pct Change On Day
(Real-time)

BLP_Z SPRD_LAST RT

Optional Float64

Bloomberg Last Z Spread (Real-time)

BLP_ASW_SPREAD_LAST_RT

Optional Float64

Bloomberg Last ASW Spread (Real-time)

BLP_RT_SPRD_TO BENCH_LAST RT

Optional Float64

Bloomberg Last Spread to Benchmark
(Real-time)

TRUST_ASK_ORD_VALUE_RT

Optional Float64

Trust Ask Orders Value (Real-time)

PROPRIETARY_ASK_ORD_VALUE_RT

Optional Float64

Proprietary Ask Orders Value (Real-time)

TRUST_BID_ORD_VALUE_RT

Optional Float64

Trust Bid Orders Value (Real-time)

PROPRIETARY_BID_ORD_VALUE_RT

Optional Float64

Proprietary Bid Orders Value (Real-time)

TOTAL_VALUE_PROGRAM_TRADE_RT

Optional Float64

Total Value of Program Trading (Real-
time)

PX_OFFICIAL_AUCTION_RT

Optional Float64

Official Auction Price (Real-time)

NYSE_LRP_HIGH_PRICE_RT

Optional Float64

NYSE LRP High Price (Real-time)

NYSE_LRP_LOW_PRICE_RT

Optional Float64

NYSE LRP Low Price (Real-time)

ALL_PRICE Optional Floaté4 | All Price

BEST_BID1 Optional Float64 | Best Bid 1
BEST _BID2 Optional Float64 | Best Bid 2
BEST_BID3 Optional Float64 | Best Bid 3
BEST_BID4 Optional Float64 | Best Bid 4
BEST BID5 Optional Float64 | Best Bid 5
BEST_ASK1 Optional Float64 | Best Ask 1
BEST_ASK2 Optional Float64 | Best Ask 2

A Schemas 203

Bloomberg

Element Type Description
BEST_ASK3 Optional Floaté4 | Best Ask 3
BEST_ASK4 Optional Float64 | Best Ask 4
BEST_ASK5 Optional Float64 | Best Ask 5
BEST BID1_SzZ Optional Int32 Best Bid 1 Size
BEST BID2_SzZ Optional Int32 Best Bid 2 Size
BEST _BID3_SzZ Optional Int32 Best Bid 3 Size
BEST BID4 _SZ Optional Int32 Best Bid 4 Size
BEST BID5 SZ Optional Int32 Best Bid 5 Size

BEST_ASK1_SZ

Optional Int32

Best Ask 1 Size

BEST_ASK2_SZ

Optional Int32

Best Ask 2 Size

BEST_ASK3_SzZ

Optional Int32

Best Ask 3 Size

BEST_ASK4_SZ

Optional Int32

Best Ask 4 Size

BEST_ASK5_SZ

Optional Int32

Best Ask 5 Size

LAST_AT_TRADE

Optional Float64

Last AT Trade

LAST2_AT_TRADE

Optional Float64

Last 2 AT Trade

LAST_AT_TRADE_TDY

Optional Float64

Today's Last AT Trade

MID_TDY Optional Float64 | Today's Mid Price
MID2 Optional Float64 | Mid 2 Price

RT_PX CHG_NET_ 1D Optional Float64 | Real-Time Price Change 1 Day Net
OPEN_TDY Optional Float64 | Today's Open Price
LAST_PRICE_TDY Optional Float6é4 | Today's Last Price
BID_TDY Optional Floaté4 | Today's Bid Price
ASK_TDY Optional Floaté4 | Today's Ask Price
HIGH_TDY Optional Float64 | Today's High Price
LOW_TDY Optional Float64 | Today's Low Price
LAST2_PRICE Optional Float64 | Last 2 Price

BID2 Optional Float64 | Bid 2 Price

ASK2 Optional Float64 | Ask 2 Price

RT_EXCH_MARKET_STATUS

Optional String

Exchange Market Status

RT_TRADING_PERIOD

Optional String

Trading Period

BID_BROKER_CODE

Optional String

Bid Broker Code

ASK_BROKER_CODE

Optional String

Ask Broker Code

IMBALANCE_INDIC_RT

Optional String

Imbalance Indicator

BLP_SPREAD_BENCHMARK_NAME_RT

Optional String

Bloomberg Spread Benchmark Name
(Real-time)

BLP_SWAP_CURVE_NAME_RT

Optional String

Bloomberg Swap Curve Name (Real-
time)

A Schemas

204

Bloomberg

Element
FINANCIAL _STATUS INDICATOR_RT

Type
Optional String

Description

Financial Status Indicator (Real-time)

BID_YLD_COND_CODE

Optional String

Bid Yield Condition Code

YLD_COND_CODE

Optional String

Yield Condition Code

ASK_YLD_COND_CODE

Optional String

Ask Yield Condition Code

ALL_PRICE_COND_CODE

Optional String

BID_COND_CODE

Optional String

Bid Condition Codes

ASK_COND_CODE

Optional String

Ask Condition Codes

RT_SIMP_SEC_STATUS

Optional String

Simplified Security Status

RT_PRICING_SOURCE

Optional String

Real-Time Pricing Source

NYSE_LRP_SEND TIME_RT Optional Time NYSE LRP Send Time (Real-time)
BID_ASK_TIME Optional Time Time of Last Bid/Ask Update
SES_START Optional Time Session Start
SES END Optional Time Session End
TRADE_SPREAD_TIME Optional Time Time of TRADE_SPREAD tick
NEWS_STORY_TIME Optional Time Time of NEWS_STORY tick
BID_TIME Optional Time Time of BID tick
BID_BEST_TIME Optional Time Time of BID_BEST tick
VOLUME_UPDATE_TIME Optional Time Time of VOLUME_UPDATE tick
MARKET_DEPTH_TIME Optional Time Time of MARKET_DEPTH tick
CANCEL_CORRECT_TIME Optional Time Time of CANCEL_CORRECT tick
MIN_LIMIT_OUT_OF_SESSION_TIME Optional Time Time of MIN_LIMIT_OUT_OF_SESSION
tick
BID_SPREAD_TIME Optional Time Time of BID_SPREAD tick
BT_MKT_TURN_TIME Optional Time Time of BT_MKT_TURN tick
HIGH_TIME Optional Time Time of HIGH tick
BT_LSE_LAST_TIME Optional Time Time of BT_LSE_LAST tick
AT_TRADE_TIME Optional Time Time of AT_TRADE tick
ASK_YEILD_TIME Optional Time Time of ASK_YEILD tick
PRICE_UPDATE_TIME Optional Time Time of PRICE_UPDATE tick
OPEN_INTEREST_TIME Optional Time Time of OPEN_INTEREST tick
VOLUME_TIME Optional Time Time of VOLUME tick
EVAL_JAPANESE_TIME Optional Time Time of EVAL_JAPANESE tick
ASK_WEIGHTED_AVG_SPREAD_TIME Optional Time Time of
ASK_WEIGHTED_AVG_SPREAD tick
THEO_PRICE_TIME Optional Time Time of THEO_PRICE tick
BUY_SELL_INFO_TIME Optional Time Time of BUY_SELL_INFO tick
SETS_MID_PRICE_TIME Optional Time Time of SETS_MID_PRICE tick

A Schemas

205

Bloomberg

Element Type Description
TAKE_TIME Optional Time Time of TAKE tick
TICK_NUM_TIME Optional Time Time of TICK_NUM tick
SMART_TIME Optional Time Time of SMART tick
INDICATIVE_ASK_TIME Optional Time Time of INDICATIVE_ASK tick
BT_SEC_ASK TIME Optional Time Time of BT_SEC_ASK tick
LOW_TIME Optional Time Time of LOW tick
BT_SEC BID _TIME Optional Time Time of BT_SEC_BID tick
LOW_YIELD_TIME Optional Time Time of LOW_YIELD tick
MAX_LIMIT_TIME Optional Time Time of MAX_LIMIT tick
TRADING_PERIOD_TIME Optional Time Time of TRADING_PERIOD tick
INDICATIVE_BID_TIME Optional Time Time of INDICATIVE_BID tick
API_INTERNAL_TIME Optional Time Time of API_INTERNAL tick
ASK_LIFT_TIME Optional Time Time of ASK_LIFT tick
NYSE_LIQUIDITY_ASK_TIME Optional Time Time of NYSE_LIQUIDITY_ASK tick
BID_YEILD_TIME Optional Time Time of BID_YEILD tick
ASK _BEST_TIME Optional Time Time of ASK_BEST tick
MKT _INDICATOR_TIME Optional Time Time of MKT_INDICATOR tick
NYSE_LIQUIDITY_BID_TIME Optional Time Time of NYSE_LIQUIDITY_BID tick
SMART_QUOTE_TIME Optional Time Time of SMART_QUOTE tick
NEW_MKT_DAY_TIME Optional Time Time of NEW_MKT_DAY tick
MAN_TRADE_WITH_SIZE_TIME Optional Time Time of MAN_TRADE_WITH_SIZE tick
BT_ASK_RECAP_TIME Optional Time Time of BT_ASK_RECAP tick
BT_MID_PRICE_TIME Optional Time Time of BT_MID_PRICE tick
BID_MKT_MAKER_TIME Optional Time Time of BID_MKT_MAKER tick
SETTLE_TIME Optional Time Time of SETTLE tick
HIT_TIME Optional Time Time of HIT tick
BT_LAST_RECAP_TIME Optional Time Time of BT_LAST_RECAP tick
LAST_TRADE_TIME Optional Time Time of LAST_TRADE
PRE_POST_MARKET_TIME Optional Time Time of PRE_POST_MARKET tick
ALL_PRICE_TIME Optional Time Time of ALL_PRICE tick
OPEN_TIME Optional Time Time of OPEN tick
HIGH_YIELD_TIME Optional Time Time of HIGH_YIELD tick
ASK_MKT_MAKER_TIME Optional Time Time of ASK_MKT_MAKER tick
MAX_LIMIT_OUT_OF_SESSION_TIME Optional Time Time of
MAX_LIMIT_OUT_OF_SESSION tick
SMARTMAX_TIME Optional Time Time of SMARTMAX tick
YIELD_TIME Optional Time Time of YIELD tick

A Schemas

206

Bloomberg

Element Type Description

VWAP_TIME Optional Time Time of VWAP tick

BID_WEIGHTED_AVG_SPREAD_TIME Optional Time Timeof BID_WEIGHTED_AVG_SPREAD
tick

ASK_TIME Optional Time Time of ASK tick

MIN_LIMIT_TIME Optional Time Time of MIN_LIMIT tick

ASK_SPREAD_TIME Optional Time Time of ASK_SPREAD tick

SETTLE_YIELD_TIME Optional Time Time of SETTLE_YIELD tick

BID_LIFT_TIME Optional Time Time of BID_LIFT tick

BT_BID_RECAP_TIME Optional Time Time of BT_BID_RECAP tick

A Schemas

207

Bloomberg
A.5.4 Market VWAP Service Subscription Options

Argument Value Type Description

VWAP_START_TIME | string | Start trade time in the format, HH:MM. HH is in 24-hr format. Only
trades at this or past this time are considered for VWAP computation.
Specified in TZDF<GO> timing for Desktop API and UTC for Server
API.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_START TIME=11:00",
new CorrelationID (security))

VWAP_END_TIME string | End trade time in the format, HH:MM. HH is in 24-hr format. Only
trades at this or before this time are considered for VWAP
computation. Specified in TZDF<GO> timing for Desktop APl and UTC
for Server API.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_END TIME=12:00",
new CorrelationID (security)),

VWAP_MIN_SIZE string | Minimum trade volume for a trade to be included in VWAP
computation. Values are taken as signed integers.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_MIN SIZE=1000",
new CorrelationID (security));

VWAP_MAX_SIZE string | Maximum trade volume for a trade to be included in VWAP
computation. Values are taken as signed integers.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP MAX SIZE=2000",
new CorrelationID (security))

VWAP_MIN_PX string | Minimum trade price for a trade to be included in VWAP computation.
Values are taken as floats.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP MIN PX=23.5",
new CorrelationID (security)),

VWAP_MAX_PX string | Maximum trade price for a trade to be included in VWAP computation.
Values are taken as floats.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security,
fields, "&VWAP_MAX PX=25.5",
new CorrelationID (security)),

A Schemas 208

Bloomberg
A.6 Schema for API Authorization

Element Description

AuthorizationRequest Requests Bloomberg to check if a given Bloomberg Anywhere
user is logged into the BLOOMBERG PROFESSIONAL service
at a specified location.

UserAsidEquivalenceRequest Deprecated. Compares the exchanges entitlements of a given
user to the exchange entitlements of the ServerAPI.
LogonStatusRequest Requests a user's logon status for their Bloomberg Anywhere.
UserEntitlementsRequest Requests a list of the user's exchange entitiements
SecurityEntitlementsRequest Requests a list of a specific security's exchange entitlements

SecurityEntitlementsByUserRequest | Deprecated. Requests a list of exchange entitlements for a
security by user.

TokenRequest Deprecated. Requests a token.

A.6.1 Authorization Request

Bloomberg UUID: the Bloomberg unique user identifier

Element Element Value | Type Description

uuid integer | The Bloomberg unique user identifier

Example Syntax: Request request = authSvc.CreateAuthorizationRequest() ;
request.Set ("uuid", 11223344);

IP Address: Location of where the user is viewing the ServerAPI| data

Element Element Value | Type Description

ipAddress string

Example Syntax:
Request authRequest = d_apiAuthSvc.CreateAuthorizationRequest() ;
authRequest.Set ("ipAddress", "111.22.33.44");

Require ASID equivalence: Deprecated. Sets a flag to check the user has a superset of
entitlements compared to the ServerAPI|. Used for the All-or-None model of permissioning.

Element Element Value | Type Description
requireAsidEquivalence TRUE or Boolean | When set to 'true', the AuthorizationRequest
FALSE will succeed only if the users permission are
equal to or greater than that of the Server
API.

Example Syntax: request.Set("requireAsidEquivalence", true);

Token: Deprecated. Authorizes the user with the token based approach.

Element Element Value | Type Description

token Token returned by TokenRequest for a user.
(Optional. Either ipAddress or token must be
supplied.)

A Schemas 209

Bloomberg

A.6.2 Authorization Request Response

See

and

AuthorizationResponse

AuthorizationSuccess

AuthorizationFailure

AuthorizationFailure
element has one
reason element

reason

AuthorizationResponse
message has zero or one
AuthorizationSuccess elements

AuthorizationResponse
message has zero or one
AuthorizationFailure elements

< source >

Subcategory
(optional)

code >

Message

category

A Schemas

210

Bloomberg
A.6.3 Logon Status Request

Bloomberg UUID: the Bloomberg unique user identifier

Element Element Value | Type Description

uuid integer | The Bloomberg Unique User Identifier (UUID)
sid Deprecated. do not use

sidlnstance Deprecated. do not use

terminalSid Deprecated. do not use

terminalSidInstance Deprecated. do not use.

Example Syntax:
Request request = authSvc.CreateRequest ("LogonStatusRequest") ;
Element userinfo = request.GetElement ("userInfo") ;
userinfo.SetElement ("uuid", 11223344);

IP Address: The location where the user is viewing API data

Element Element Value | Type Description
ipAddress string The location where the user is viewing API
data

Example Syntax:
Request logonStatusRequest = authSvc.CreateRequest ("LogonStatusRequest") ;
logonStatusRequest.Set ("ipAddress", "111.22.33.44");

A.6.4 Logon Status Request Response

See and

< LogonStatusResponse

isLoggedOn

A Schemas

211

Bloomberg

A.6.5 User Entitlements Request

Bloomberg UUID: the Bloomberg unique user identifier

Element Element Value | Type Description

uuid integer | The Bloomberg Unique User Identifier (UUID)
sid Deprecated. do not use

sidlnstance Deprecated. do not use

terminalSid Deprecated. do not use

terminalSidInstance Deprecated. do not use.

Example Syntax:
Request request = authSvc.CreateRequest ("UserEntitlementsRequest") ;
Element userinfo = request.GetElement ("userInfo") ;
userinfo.SetElement ("uuid", 11223344);

A.6.6 User Entitlements Request Response

See and

(UserEntitIementsResponse>

The UserEntitlementsResponse
message has one eids array

entitlementid

A Schemas 212

Bloomberg

A.6.7 Security Entitlements Request

Securities: the reference or streaming fields desired.

Element

Element Value | Type

Description

securities

string

Element holding the list of securities to
retrieve exchange entitlements.

Example Syntax:
Request request = authSvc.CreateRequest ("SecurityEntitlementsRequest") ;
Element securities = request.GetElement ("securities");
securities.AppendValue ("IBM US Equity") ;

A.6.8 Security Entitlements Request Response

See

and

GecurityEntitlementsResponsc;

The SecurityEntitlementResponse

message has one eidDatal]
eidData array element

eidData [] has one to many
eidData elements

eidData has one
eids[] element

eidData

< status) (sequenceNumber

entitlementid

A Schemas

213

Bloomberg

A.6.9 Authorization Token Request

Identifier: The Bloomberg Unique User Identifier.

Element Element Value | Type Description

uuid integer | The Bloomberg Unique User Identifier (UUID)

Example Syntax:
Request request = authSvc.CreateRequest ("AuthorizationTokenRequest") ;
request.Set ("uuid", 11223344);

Label: A label that identifies which Server API application is requesting the token.

Element Element Value | Type Description
label string String identifier for the requesting ServerAPI
application

Example Syntax:
Request request = authSvc.CreateRequest ("AuthorizationTokenRequest") ;
request.Set("label", "myApp");

A.6.10 Authorization Token Request Response

See and

AuthorizationTokenResponse o
AuthorizationTokenResponse
message has zero or one

responseError elements

C source (code)C category>

Subcategory
(message < (optional) >

A Schemas 214

Bloomberg

A.6.11 Field Service Response Elements

Element Description

AuthorizationSuccess

Returned for an authorization request when the UUID provided is
logged into the Bloomberg Anywhere at the specified IP address.

AuthorizationFailure

Returned for an authorization request on failure. It is an errorinfo
element.

reason An AuthorizationFailure message will contain one "reason" element

responseError Returned when a request cannot be completed for any reason. It is an
errorinfo element.

errorinfo Contains values about the error which has occurred, including the
source, code, category, message, and subcategory.

eidData[] Contains a list of eidData elements, each associated to a security

requested.

eidData[]::eidData

Contains status, sequence number and list of entitlement identifiers.

eids[]

Contains a list of entittementld values associated to the user.

A.6.12 Field Service Request Values

Element Type Description

Source String Bloomberg internal error source information.

Code Integer Bloomberg internal error code.

Category String Bloomberg error classification. Used to determine the
general classification of the failure.

message String Human readable description of the failure.

subcategory String (Optional) Bloomberg sub-error classification. Used to
determine the specific classification of the failure.

entitlementld Integer Entitlement identifier (EID)

status Integer Status where success = 0. Any other code indicates
failure.

sequenceNumber Integer Security sequence number, specifying the position of
the security in the request.

isLoggedOn Boolean Returns true when the UUID specified in logged into

the BLOOMBERG PROFESSIONAL service at the
specified IP address.

A Schemas

215

Bloomberg

B Java Examples

This section contains the following code examples and sample output from each example:

[3

‘Request Response Paradigm” on page 217
“Subscription Paradigm” on page 220
“Asynchronous Event Handling” on page 224
“Regquest Response Multiple” on page 228
“Subscription Multiple” on page 232

“Authorization by IP Address’” on page 242

B Java Examples 216

Bloomberg

B.1 Request Response Paradigm

Bloomberg

B Java Examples

Bloomberg

B.1.1 Request Response Paradigm Output

B Java Examples 219

Bloomberg

B.2 Subscription Paradigm

B Java Examples 220

Bloomberg

B Java Examples

Bloomberg

Subscription Paradigm Output

B Java Examples

Bloomberg

B Java Examples 223

Bloomberg

B.3 Asynchronous Event Handling

B Java Examples 224

Bloomberg

B Java Examples 225

Bloomberg

B Java Examples 226

Bloomberg

B.3.1 Asynchronous Event Handling: Output

B Java Examples

Bloomberg

B.4 Request Response Multiple

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples 230

Bloomberg

B.4.1 Request Response Multiple: Output

B Java Examples 231

Bloomberg

B.5 Subscription Multiple

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples 234

Bloomberg

B.5.1 Multiple Subscription: Output

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

Bloomberg
B.6 Authorization by IP Address

B Java Examples 242

Bloomberg

B Java Examples

Bloomberg

B Java Examples

Bloomberg

B Java Examples 245

Bloomberg

B Java Examples

Bloomberg

B Java Examples 247

Bloomberg

C .Net Examples

This section contains the following code examples:
“RequestResponseParadigm” on page 249

“Subscription Paradigm” on page 252
“Asynchronous Event Handling” on page 258
“Regquest Response Multiple” on page 263

“Subscription Multiple” on page 267

C .Net Examples 248

Bloomberg

C.1 RequestResponseParadigm

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C.1.1 Request Response Paradigm Output

C .Net Examples 251

Bloomberg

C.2 Subscription Paradigm

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

Subscription Paradigm Output

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples 257

Bloomberg

C.3 Asynchronous Event Handling

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C.3.1 Asynchronous Event Handling: Output

C .Net Examples 262

Bloomberg
C.4 Request Response Multiple

// RequestResponseMultiple.cs

using System;
using System.Collections.Generic;
using System.Text;

using CorrelationID = Bloomberglp.Blpapi.CorrelationID;
using Element = Bloomberglp.Blpapi.Element;

using Event = Bloomberglp.Blpapi.Event;

using Message = Bloomberglp.Blpapi.Message;

using Request = Bloomberglp.Blpapi.Request;

using Service = Bloomberglp.Blpapi.Service;

using Session = Bloomberglp.Blpapi.Session;

using SessionOptions Bloomberglp.Blpapi.SessionOptions;
namespace RequestResponseMultiple
{
class RequestResponseMultiple
{
static void Main(string[] args)
{
SessionOptions sessionOptions = new SessionOptions();
sessionOptions.ServerHost = "localhost";
sessionOptions.ServerPort = 8194;
Session session = new Session(sessionOptions) ;
if (!session.Start())
{
System.Console.WriteLine ("Could not start session.");
System.Environment.Exit (1) ;

}

if (!session.OpenService ("//blp/refdata"))
{
System.Console.WriteLine ("Could not open service " +
"//blp/refdata") ;

System.Environment.Exit (1) ;
}
Service refDataSvc = session.GetService ("//blp/refdata™);
Request request refDataSvc.CreateRequest (
"ReferenceDataRequest") ;
request.GetElement ("securities") .AppendValue ("AAPL US Equity");
request.GetElement ("securities") .AppendValue ("IBM US Equity");
request.GetElement ("securities") .AppendValue (
"BLAHBLAHBLAH US Equity");
request.GetElement ("fields") .AppendValue ("PX LAST");
// Last Price
request.GetElement ("fields") .AppendValue ("DS002") ;
// Description
request.GetElement ("fields") .AppendValue ("VWAP VOLUME") ;
// Volume used to calculate the Volume Weighted Average Price
session.SendRequest (request, new CorrelationID(1l));

C .Net Examples 263

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C.4.1 Request Response Multiple: Output

C .Net Examples 266

Bloomberg

C.5 Subscription Multiple

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples 269

Bloomberg
C.5.1 Multiple Subscription: Output

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples

Bloomberg

C .Net Examples 274

Bloomberg
D C++ Examples

This section contains the following code examples:

‘RequestResponseParadigm” on page 276
“Subscription Paradigm” on page 279
“Asynchronous Event Handling” on page 284
“Regquest Response Multiple” on page 288

“Subscription Multiple” on page 292

Note: These examples use assert statements to make manifest the program state at
various key points. Follow your organization’s guidelines for best practices on the use of
assert statements in production code.

D C++ Examples 275

Bloomberg

D.1 RequestResponseParadigm

D C++ Examples

Bloomberg

D C++ Examples 277

Bloomberg

Request Response Paradigm Output

D C++ Examples

Bloomberg

D.2 Subscription Paradigm

D C++ Examples 279

Bloomberg

D C++ Examples 280

Bloomberg

D C++ Examples 281

Bloomberg

Subscription Paradigm Output

D C++ Examples

Bloomberg

D C++ Examples 283

Bloomberg

D.3 Asynchronous Event Handling

D C++ Examples 284

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

Asynchronous Event Handling: Output

D C++ Examples 287

Bloomberg

D.4 Request Response Multiple

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

Request Response Multiple: Output

D C++ Examples 291

Bloomberg

D.5 Subscription Multiple

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples 294

Bloomberg

D C++ Examples

Bloomberg

Subscription Multiple: Output

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples

Bloomberg

D C++ Examples 300

Bloomberg
E C Examples

This section contains the following code examples:

Note: These examples use assert statements to make manifest the program state at
various key points. Follow your organization’s guidelines for best practices on the use of
assert statements in production code.

Note: When using the C language interface the programmer must explicitly recover allocated
resources such as sessions, session options, requests, and message iterators. In general, a
pointer to a resource obtained from a function containing the word “create” must be
recovered by invoking a similarly named function containing the word “destroy”. For
example, the blpapi Service createrRequest function delivers a pointer to a

blpapi Request t type and that pointer, when no longer needed, must be passed to the
blpapi Request destroy function.

E C Examples 301

Bloomberg

E.1 RequestResponseParadigm

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

Request Response Paradigm Output

E C Examples 306

Bloomberg

E.2 Subscription Paradigm

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples 310

Bloomberg

Subscription Paradigm Output

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E.3 Asynchronous Event Handling

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

Asynchronous Event Handling Output

E C Examples

Bloomberg

E.4 Request Response Multiple

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples 327

Bloomberg

Request Response Multiple Output

E C Examples 328

Bloomberg

E.5 Subscription Multiple

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

/* MSFT */
const char *topic MSFT = "MSFTT US Equity"; /* Note: Typo! */
const char *fields MSFT[] = { "LAST PRICE" };
const char *options MSFT[] = { "interval=.5" };
int numFields MSFT = sizeof (fields MSFT) /
sizeof (*fields MSFT) ;
int numOptions MSFT = sizeof (options MSFT) /

sizeof (*options MSFT) ;

/* CUSIP 097023105 */
const char *topic 097023105 =
"/cusip/
097023105?fields=LAST PRICE&interval=5.0";

const char **fields 097023105 = 0;
const char **options 097023105 = 0;
int numFields 097023105 = 0;
int numOptions 097023105 = 0O;

setbuf (stdout, 0); /* DO NOT SHOW */

blpapi CorrelationId t subscriptionId IBM;
blpapi CorrelationId t subscriptionId GOOG;
blpapi CorrelationId t subscriptionId MSFT;
blpapi CorrelationId t subscriptionId 097023105;

memset (&subscriptionId IBM, '\0', sizeof (subscriptionId IBM)) ;
subscriptionId IBM.size = sizeof (subscriptionId IBM);
SubscriptionId_IBM.ValueType BLPAPI CORRELATION TYPE INT;
subscriptionId IBM.value.intValue = (blpapi UInt64 t)10;

memset (&subscriptionId GOOG, '\0', sizeof (subscriptionId GOOG)) ;
subscriptionId GOOG.size = sizeof (subscriptionId GOOG) ;
subscriptionId GOOG.valueType BLPAPI CORRELATION TYPE INT;
subscriptionId GOOG.value.intValue (blpapi UInt64 t)20;

memset (&subscriptionId MSFT, '\0', sizeof (subscriptionId MSFT)) ;
subscriptionId MSFT.size = sizeof (subscriptionId MSFT);
SubscriptionId_MSFT.ValueType = BLPAPI CORRELATION TYPE INT;
subscriptionId MSFT.value.intValue (blpapi UInt64 t)30;

memset (&subscriptionId 097023105,
I\Ol,
sizeof (subscriptionId 097023105)) ;
subscriptionId 097023105.size

I~

sizeof (subscriptionId 097023105) ;
subscriptionId 097023105.valueType = BLPAPI CORRELATION TYPE INT;
subscriptionId 097023105.value.intValue = (blpapi UInt64 t)40;

sessionOptions = blpapi SessionOptions create();
assert (sessionOptions) ;

blpapi SessionOptions_ setServerHost (sessionOptions, "localhost");
blpapi SessionOptions setServerPort (sessionOptions, "8194");

E C Examples 332

Bloomberg

E C Examples

Bloomberg

E C Examples 334

Bloomberg

Subscription Multiple Output

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

E C Examples

Bloomberg

BID SIZE = 5

EXCH _CODE_LAST =

EXCH_CODE_BID =

EXCH _CODE_ASK =

TRADE SIZE ALL SESSIONS RT = 579500

IS _DELAYED STREAM = false

EID = 14003

RT_PX CHG NET 1D = -0.369900
RT_PX CHG PCT 1D = -0.398684

TIME = 21:00:27.000+00:00

LAST UPDATE BID RT = 21:00:22.000+00:00
LAST UPDATE ASK RT = 21:00:22.000+00:00
NYSE_LRP SEND TIME RT = 20:59:57.000+00:00
BID ASK _TIME = 21:00:22.000+00:00

To learn more about the Bloomberg Open Market Data Initiative, visit open.bloomberg.com. Questions and comments about BLPAPI can be

sent to open-tech@bloomberg.net. Questions and comments about BSYM can be sent to bsym@bloomberg.net.
000

000000

open.bloomberg.com New York London Frankfurt San Francisco

+1212 318 2000

Hong Kong Sao Paulo Singapore Toyko

The BLOOMBERG PROFESSIONAL service, BLOOMBERG Data and BLOOMBERG Order Management Systems (the "Services") are owned and distributed locally by Bloomberg
Finance L.P. ("BFLP") and its subsidiaries in all jurisdictions other than Argentina, Bermuda, China, India, Japan and Korea (the "BLP Countries"). BFLP is a wholly-owned subsidiary
of Bloomberg L.P. ("BLP"). BLP provides BFLP with all global marketing and operational support and service for the Services and distributes the Services either directly or through a
non-BFLP subsidiary in the BLP Countries. The Services include electronic trading and order-routing services, which are available only to sophisticated institutional investors and only
where the necessary legal clearances have been obtained. BFLP, BLP and their affiliates do not provide investment advice or guarantee the accuracy of prices or information in the
Services. Nothing on the Services shall constitute an offering of financial instruments by BFLP, BLP or their affiliates.

BLOOMBERG is a trademark of BFLP or its subsidiaries. ©2012 Bloomberg Finance L.P. 47354486 0212

	Version 3.x
	Developer’s Guide
	Preface: About this Document
	Purpose
	Audience
	Document History

	1 Introduction to the Bloomberg API
	1.1 Overview of the Bloomberg API
	1.1.1 Features
	1.1.2 The Bloomberg Platform
	1.1.3 Managed B-PIPE
	1.1.4 The Desktop API and Server API

	1.2 The Programming Examples
	1.3 Typical Application Structure
	1.4 Overview of this Guide

	2 Sample Programs in Two Paradigms
	2.1 Overview
	2.2 The Two Paradigms
	2.2.1 Request/Response
	2.2.2 Subscription

	2.3 Using the Request/Response Paradigm
	2.4 Using the Subscription Paradigm

	3 Sessions and Services
	3.1 Sessions
	3.2 Services
	3.3 Event Handling
	3.3.1 Synchronous Event Handling
	3.3.2 Asynchronous Event Handling

	3.4 Multiple Sessions

	4 Requests and Responses
	4.1 The Programming Example
	4.2 Elements
	4.3 Request Details
	4.4 Response Details

	5 Subscriptions
	5.1 The Programming Example
	5.2 Starting a Subscription
	5.3 Receiving Data from a Subscription
	5.4 Modifying an Existing Subscription
	5.5 Stopping a Subscription
	5.6 Overlapping Subscriptions
	5.7 Conflation and the Interval Option
	5.8 Delayed Data
	5.9 Subscription Life Cycle

	6 Core Services
	6.1 Common Concepts
	6.1.1 Security/Securities
	6.1.2 Pricing Source
	6.1.3 Fields
	6.1.4 Overrides
	6.1.5 Relative Dates

	6.2 Reference Data Service //blp/refdata
	6.2.1 Reference Data Request and Response Overview
	6.2.2 Historical Data Request
	6.2.3 Intraday Tick Request
	6.2.4 Intraday Bar Services
	6.2.5 Portfolio Data Request
	6.2.6 BEQS Request

	6.3 Market Data Service //blp/mktdata
	6.4 Custom VWAP Service //blp/mktvwap
	6.5 Market Bar Subscription Service //blp/mktbar
	6.6 API Field Information Service //blp//apiflds
	6.6.1 Field Information Request
	6.6.2 Field Search Request
	6.6.3 Categorized Field Search Request

	6.7 Page Data Service
	6.8 Technical Analysis Service
	6.8.1 Historical End of Day study request
	6.8.2 Intraday bar study request
	6.8.3 Realtime study request

	6.9 API Authorization
	6.10 Instruments Service
	6.10.1 Security Lookup Request
	6.10.2 Curve Lookup Request
	6.10.3 Government Lookup Request
	6.10.4 Response Behaviors
	6.10.5 Code Example

	7 Authorization and Permissioning Systems
	7.1 Overview
	7.2 Underlying Concepts
	7.2.1 EIDs
	7.2.2 Requirement for the Terminal
	7.2.3 The //blp/apiauth service
	7.2.4 The V3 Identity Object
	7.2.5 V3 Permissioning Models
	7.2.6 Authorization Lifetime

	7.3 Server API Authorization
	7.3.1 Authorization by IP Address

	7.4 Managed B-PIPE Authorization
	7.4.1 Authentication
	7.4.2 Token Generation

	7.5 Authorization
	7.6 Permissioning
	7.6.1 Entitlements
	7.6.2 User Mode
	7.6.3 Content Based

	7.7 Specific Application Types (Managed B-PIPE only)
	7.7.1 Single-User
	7.7.2 Multi-User
	7.7.3 Derived Data / Non-Display

	7.8 V2 Authorization and Permissioning Models
	7.8.1 User Mode
	7.8.2 All-or-None
	7.8.3 Content-Based / Per-Product / Per-Security
	7.8.4 Validating Logon Status

	8 Publishing
	8.1 Overview
	8.2 The Programming Examples
	8.3 Simple Broadcast
	8.3.1 Creating a Session
	8.3.2 Authorization
	8.3.3 Creating a Topic
	8.3.4 Publishing

	8.4 Interactive Publication
	8.4.1 Registration
	8.4.2 Event Handling
	8.4.3 Publication

	9 Managed B-Pipe
	9.1 Overview
	Important Notice

	9.2 Managed B-Pipe Services
	9.2.1 Market Depth Service
	Overview
	The Market Depth Service
	Number of Rows in an Order Book
	Types of Order Books
	Order Book Methods
	Subscribing to Market Depth
	Response Overview
	Frequently Asked Question:
	9.2.2 Market List Service
	Overview
	Subscribing To Instrument Chains
	Data Response For a "chain" Subscription
	Snapshot Request For List Of Security Identifiers
	Data Response For "secids" Snapshot Request
	9.2.3 Source Reference Service
	Overview
	Code Example
	Response Overview
	Response Event Types by Subservice
	Breakdown of Event Type Fields
	Handling Multiple Messages (a.k.a. Fragments)
	Data Response For Subscription

	A Schemas
	A.1 Overview
	A.2 Reference Data Service //blp/refdata
	A.2.1 Operations
	A.2.2 ReferenceDataRequest: Sequence
	A.2.3 ReferenceDataResponse: Choice
	A.2.4 HistoricalDataRequest: Sequence
	A.2.5 HistoricalDataResponse: Choice
	A.2.6 IntradayTickRequest: Sequence
	A.2.7 IntradayTickResponse: Choice
	A.2.8 IntradayBarRequest: Sequence
	A.2.9 IntradayBarResponse: Choice
	A.2.10 PortfolioDataRequest: Sequence
	A.2.11 PortfolioDataResponse: Choice
	A.2.12 BEQSRequest: Sequence
	A.2.13 BEQSResponse: Choice
	A.2.14 Reference Data Service Response

	A.3 Schema for API Field Service //blp//apiflds
	A.3.1 Requests: Choice
	A.3.2 Responses: Choice
	A.3.3 Field Information Request
	A.3.4 Field Search Request
	A.3.5 Categorized Field Search Request
	A.3.6 Field List Request
	A.3.7 Field Service Response Elements
	A.3.8 Field Service Response Values

	A.4 Market Bar Subscription
	A.4.1 Market Bar Subscription Settings
	A.4.2 Market Bar Subscription: Data Events Response

	A.5 Schema for Market Data and Custom VWAP
	A.5.1 MarketDataEvents: Choice
	A.5.2 Market Data Service Subscription Options
	A.5.3 MarketDataEvents: Sequence
	A.5.4 Market VWAP Service Subscription Options

	A.6 Schema for API Authorization
	A.6.1 Authorization Request
	A.6.2 Authorization Request Response
	A.6.3 Logon Status Request
	A.6.4 Logon Status Request Response
	A.6.5 User Entitlements Request
	A.6.6 User Entitlements Request Response
	A.6.7 Security Entitlements Request
	A.6.8 Security Entitlements Request Response
	A.6.9 Authorization Token Request
	A.6.10 Authorization Token Request Response
	A.6.11 Field Service Response Elements
	A.6.12 Field Service Request Values

	B Java Examples
	B.1 Request Response Paradigm
	B.1.1 Request Response Paradigm Output

	B.2 Subscription Paradigm
	B.3 Asynchronous Event Handling
	B.3.1 Asynchronous Event Handling: Output

	B.4 Request Response Multiple
	B.4.1 Request Response Multiple: Output

	B.5 Subscription Multiple
	B.5.1 Multiple Subscription: Output

	B.6 Authorization by IP Address

	C .Net Examples
	C.1 RequestResponseParadigm
	C.1.1 Request Response Paradigm Output

	C.2 Subscription Paradigm
	C.3 Asynchronous Event Handling
	C.3.1 Asynchronous Event Handling: Output

	C.4 Request Response Multiple
	C.4.1 Request Response Multiple: Output

	C.5 Subscription Multiple
	C.5.1 Multiple Subscription: Output

	D C++ Examples
	D.1 RequestResponseParadigm
	Request Response Paradigm Output

	D.2 Subscription Paradigm
	Subscription Paradigm Output

	D.3 Asynchronous Event Handling
	Asynchronous Event Handling: Output

	D.4 Request Response Multiple
	Request Response Multiple: Output

	D.5 Subscription Multiple
	Subscription Multiple: Output

	E C Examples
	E.1 RequestResponseParadigm
	Request Response Paradigm Output

	E.2 Subscription Paradigm
	Subscription Paradigm Output

	E.3 Asynchronous Event Handling
	Asynchronous Event Handling Output

	E.4 Request Response Multiple
	Request Response Multiple Output

	E.5 Subscription Multiple
	Subscription Multiple Output

