
ContentsContents

 C# Programming Guide
 Inside a C# Program
 Main() and Command-Line Arguments
 Programming Concepts
 Statements, Expressions, and Operators
 Types
 Classes and Structs
 Interfaces
 Enumeration Types
 Delegates
 Arrays
 Strings
 Indexers
 Events
 Generics
 Namespaces
 Nullable Types
 Unsafe Code and Pointers
 XML Documentation Comments
 Exceptions and Exception Handling
 File System and the Registry
 Interoperability

C# programming guide
10/27/2018 • 2 minutes to read • Edit Online

Program sections

Language Sections

This section provides detailed information on key C# language features and features accessible to C# through the
.NET Framework.

Most of this section assumes that you already know something about C# and general programming concepts. If
you are a complete beginner with programming or with C#, you might want to visit the Introduction to C#
Tutorials or Getting Started with C# interactive tutorial, where no prior programming knowledge is required.

For information about specific keywords, operators and preprocessor directives, see C# Reference. For information
about the C# Language Specification, see C# Language Specification.

Inside a C# Program

Main() and Command-Line Arguments

Statements, Expressions, and Operators

Types

Classes and Structs

Interfaces

Enumeration Types

Delegates

Arrays

Strings

Properties

Indexers

Events

Generics

Iterators

LINQ Query Expressions

Lambda Expressions

Namespaces

Nullable Types

Unsafe Code and Pointers

XML Documentation Comments

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/index
https://www.microsoft.com/net/tutorials/csharp/getting-started
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/enumeration-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/linq-query-expressions/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments

Platform Sections

See Also

Application Domains

Assemblies and the Global Assembly Cache

Attributes

Collections

Exceptions and Exception Handling

File System and the Registry (C# Programming Guide)

Interoperability

Reflection

C# Reference
C#

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/assemblies-gac/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/collections
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/csharp/index

Inside a C# Program
9/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

C# Language Specification

See Also

The section discusses the general structure of a C# program, and includes the standard "Hello, World!" example.

Hello World -- Your First Program

General Structure of a C# Program

Getting Started with C#

C# Programming Guide

C# Reference

<paveover>C# Sample Applications

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

C# Programming Guide

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/inside-a-program/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/general-structure-of-a-csharp-program
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://msdn.microsoft.com/library/9a9d7aaa-51d3-4224-b564-95409b0f3e15
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index

Main() and command-line arguments (C#
Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

class TestClass
{
 static void Main(string[] args)
 {
 // Display the number of command line arguments:
 System.Console.WriteLine(args.Length);
 }
}

Overview

C# language specification

See Also

The Main method is the entry point of a C# application. (Libraries and services do not require a Main method as
an entry point.) When the application is started, the Main method is the first method that is invoked.

There can only be one entry point in a C# program. If you have more than one class that has a Main method, you
must compile your program with the /main compiler option to specify which Main method to use as the entry
point. For more information, see /main (C# Compiler Options).

The Main method is the entry point of an executable program; it is where the program control starts and ends.
Main is declared inside a class or struct. Main must be static and it need not be public. (In the earlier example, it

receives the default access of private.) The enclosing class or struct is not required to be static.
Main can either have a void , int , or, starting with C# 7.1, Task , or Task<int> return type.

If and only if Main returns a Task or Task<int> , the declaration of Main may include the async modifier.
Note that this specifically excludes an async void Main method.
The Main method can be declared with or without a string[] parameter that contains command-line
arguments. When using Visual Studio to create Windows applications, you can add the parameter manually or
else use the Environment class to obtain the command-line arguments. Parameters are read as zero-indexed
command-line arguments. Unlike C and C++, the name of the program is not treated as the first command-line
argument.

The addition of async and Task , Task<int> return types simplifies program code when console applications need
to start and await asynchronous operations in Main .

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

Command-line Building With csc.exe
C# Programming Guide
Methods
Inside a C# Program

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/main-and-command-args/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/main-compiler-option
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/static
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/public
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/private
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/dotnet/api/system.environment
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-with-csc-exe
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/index

Programming Concepts (C#)
11/9/2018 • 2 minutes to read • Edit Online

In This Section
TITLE DESCRIPTION

Assemblies and the Global Assembly Cache (C#) Describes how to create and use assemblies.

Asynchronous Programming with async and await (C#) Describes how to write asynchronous solutions by using the
async and await keywords in C#. Includes a walkthrough.

Attributes (C#) Discusses how to provide additional information about
programming elements such as types, fields, methods, and
properties by using attributes.

Caller Information (C#) Describes how to obtain information about the caller of a
method. This information includes the file path and the line
number of the source code and the member name of the
caller.

Collections (C#) Describes some of the types of collections provided by the
.NET Framework. Demonstrates how to use simple collections
and collections of key/value pairs.

Covariance and Contravariance (C#) Shows how to enable implicit conversion of generic type
parameters in interfaces and delegates.

Expression Trees (C#) Explains how you can use expression trees to enable dynamic
modification of executable code.

Iterators (C#) Describes iterators, which are used to step through collections
and return elements one at a time.

Language-Integrated Query (LINQ) (C#) Discusses the powerful query capabilities in the language
syntax of C#, and the model for querying relational databases,
XML documents, datasets, and in-memory collections.

Object-Oriented Programming (C#) Describes common object-oriented concepts, including
encapsulation, inheritance, and polymorphism.

Reflection (C#) Explains how to use reflection to dynamically create an
instance of a type, bind the type to an existing object, or get
the type from an existing object and invoke its methods or
access its fields and properties.

Serialization (C#) Describes key concepts in binary, XML, and SOAP serialization.

Related Sections

This section explains programming concepts in the C# language.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/concepts/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/assemblies-gac/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/caller-information
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/collections
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/expression-trees/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/object-oriented-programming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/index

Performance Tips Discusses several basic rules that may help you increase the
performance of your application.

https://docs.microsoft.com/en-us/dotnet/framework/performance/performance-tips

Statements, Expressions, and Operators (C#
Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

C# Language Specification

See Also

The C# code that comprises an application consists of statements made up of keywords, expressions and operators.
This section contains information regarding these fundamental elements of a C# program.

For more information, see:

Statements

Expressions

Expression-bodied members
Operators

Anonymous Functions

Overloadable Operators

Conversion Operators

Using Conversion Operators

How to: Implement User-Defined Conversions Between Structs

Equality Comparisons

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

C# Programming Guide
Casting and Type Conversions

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/statements-expressions-operators/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-functions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/conversion-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/using-conversion-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-implement-user-defined-conversions-between-structs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/equality-comparisons
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions

Types (C# Programming Guide)
12/11/2018 • 11 minutes to read • Edit Online

Types, Variables, and Values

int a = 5;
int b = a + 2; //OK

bool test = true;

// Error. Operator '+' cannot be applied to operands of type 'int' and 'bool'.
int c = a + test;

NOTENOTE

Specifying Types in Variable DeclarationsSpecifying Types in Variable Declarations

C# is a strongly-typed language. Every variable and constant has a type, as does every expression that evaluates to
a value. Every method signature specifies a type for each input parameter and for the return value. The .NET class
library defines a set of built-in numeric types as well as more complex types that represent a wide variety of logical
constructs, such as the file system, network connections, collections and arrays of objects, and dates. A typical C#
program uses types from the class library as well as user-defined types that model the concepts that are specific to
the program's problem domain.

The information stored in a type can include the following:

The storage space that a variable of the type requires.

The maximum and minimum values that it can represent.

The members (methods, fields, events, and so on) that it contains.

The base type it inherits from.

The location where the memory for variables will be allocated at run time.

The kinds of operations that are permitted.

The compiler uses type information to make sure that all operations that are performed in your code are type safe.
For example, if you declare a variable of type int, the compiler allows you to use the variable in addition and
subtraction operations. If you try to perform those same operations on a variable of type bool, the compiler
generates an error, as shown in the following example:

C and C++ developers, notice that in C#, bool is not convertible to int.

The compiler embeds the type information into the executable file as metadata. The common language runtime
(CLR) uses that metadata at run time to further guarantee type safety when it allocates and reclaims memory.

When you declare a variable or constant in a program, you must either specify its type or use the var keyword to
let the compiler infer the type. The following example shows some variable declarations that use both built-in
numeric types and complex user-defined types:

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/types/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var

// Declaration only:
float temperature;
string name;
MyClass myClass;

// Declaration with initializers (four examples):
char firstLetter = 'C';
var limit = 3;
int[] source = { 0, 1, 2, 3, 4, 5 };
var query = from item in source
 where item <= limit
 select item;

public string GetName(int ID)
{
 if (ID < names.Length)
 return names[ID];
 else
 return String.Empty;
}
private string[] names = { "Spencer", "Sally", "Doug" };

Built-in Types

Custom Types

The Common Type System

The types of method parameters and return values are specified in the method signature. The following signature
shows a method that requires an int as an input argument and returns a string:

After a variable is declared, it cannot be re-declared with a new type, and it cannot be assigned a value that is not
compatible with its declared type. For example, you cannot declare an int and then assign it a Boolean value of true.
However, values can be converted to other types, for example when they are assigned to new variables or passed
as method arguments. A type conversion that does not cause data loss is performed automatically by the compiler.
A conversion that might cause data loss requires a cast in the source code.

For more information, see Casting and Type Conversions.

C# provides a standard set of built-in numeric types to represent integers, floating point values, Boolean
expressions, text characters, decimal values, and other types of data. There are also built-in string and object

types. These are available for you to use in any C# program. For more information about the built-in types, see
Reference Tables for Types.

You use the struct, class, interface, and enum constructs to create your own custom types. The .NET class library
itself is a collection of custom types provided by Microsoft that you can use in your own applications. By default,
the most frequently used types in the class library are available in any C# program. Others become available only
when you explicitly add a project reference to the assembly in which they are defined. After the compiler has a
reference to the assembly, you can declare variables (and constants) of the types declared in that assembly in
source code. For more information, see .NET Class Library.

It is important to understand two fundamental points about the type system in .NET:

It supports the principle of inheritance. Types can derive from other types, called base types. The derived
type inherits (with some restrictions) the methods, properties, and other members of the base type. The
base type can in turn derive from some other type, in which case the derived type inherits the members of

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/true-literal
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-tables-for-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/en-us/dotnet/standard/class-library-overview

NOTENOTE

Value TypesValue Types

// Static method on type Byte.
byte b = Byte.MaxValue;

both base types in its inheritance hierarchy. All types, including built-in numeric types such as System.Int32
(C# keyword: int), derive ultimately from a single base type, which is System.Object (C# keyword: object).
This unified type hierarchy is called the Common Type System (CTS). For more information about
inheritance in C#, see Inheritance.

Each type in the CTS is defined as either a value type or a reference type. This includes all custom types in
the .NET class library and also your own user-defined types. Types that you define by using the struct
keyword are value types; all the built-in numeric types are structs . Types that you define by using the class
keyword are reference types. Reference types and value types have different compile-time rules, and
different run-time behavior.

The following illustration shows the relationship between value types and reference types in the CTS.

Value types and reference types in the CTS

You can see that the most commonly used types are all organized in the System namespace. However, the namespace in
which a type is contained has no relation to whether it is a value type or reference type.

Value types derive from System.ValueType, which derives from System.Object. Types that derive from
System.ValueType have special behavior in the CLR. Value type variables directly contain their values, which means
that the memory is allocated inline in whatever context the variable is declared. There is no separate heap
allocation or garbage collection overhead for value-type variables.

There are two categories of value types: struct and enum.

The built-in numeric types are structs, and they have properties and methods that you can access:

But you declare and assign values to them as if they were simple non-aggregate types:

https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum

byte num = 0xA;
int i = 5;
char c = 'Z';

public struct CoOrds
{
 public int x, y;

 public CoOrds(int p1, int p2)
 {
 x = p1;
 y = p2;
 }
}

public enum FileMode
{
 CreateNew = 1,
 Create = 2,
 Open = 3,
 OpenOrCreate = 4,
 Truncate = 5,
 Append = 6,
}

Reference TypesReference Types

MyClass mc = new MyClass();
MyClass mc2 = mc;

Value types are sealed, which means, for example, that you cannot derive a type from System.Int32, and you cannot
define a struct to inherit from any user-defined class or struct because a struct can only inherit from
System.ValueType. However, a struct can implement one or more interfaces. You can cast a struct type to any
interface type that it implements; this causes a boxing operation to wrap the struct inside a reference type object on
the managed heap. Boxing operations occur when you pass a value type to a method that takes a System.Object or
any interface type as an input parameter. For more information, see Boxing and Unboxing.

You use the struct keyword to create your own custom value types. Typically, a struct is used as a container for a
small set of related variables, as shown in the following example:

For more information about structs, see Structs. For more information about value types in .NET, see Value Types.

The other category of value types is enum. An enum defines a set of named integral constants. For example, the
System.IO.FileMode enumeration in the .NET class library contains a set of named constant integers that specify
how a file should be opened. It is defined as shown in the following example:

The System.IO.FileMode.Create constant has a value of 2. However, the name is much more meaningful for
humans reading the source code, and for that reason it is better to use enumerations instead of constant literal
numbers. For more information, see System.IO.FileMode.

All enums inherit from System.Enum, which inherits from System.ValueType. All the rules that apply to structs also
apply to enums. For more information about enums, see Enumeration Types.

A type that is defined as a class, delegate, array, or interface is a reference type. At run time, when you declare a
variable of a reference type, the variable contains the value null until you explicitly create an object by using the
new operator, or assign it an object that has been created elsewhere by using new , as shown in the following
example:

https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/structs
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/dotnet/api/system.io.filemode
https://docs.microsoft.com/dotnet/api/system.io.filemode
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/enumeration-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/delegate
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/new

IMyInterface iface = new MyClass();

// Declare and initialize an array of integers.
int[] nums = { 1, 2, 3, 4, 5 };

// Access an instance property of System.Array.
int len = nums.Length;

Types of Literal Values

string s = "The answer is " + 5.ToString();
// Outputs: "The answer is 5"
Console.WriteLine(s);

Type type = 12345.GetType();
// Outputs: "System.Int32"
Console.WriteLine(type);

Generic Types

An interface must be initialized together with a class object that implements it. If MyClass implements
IMyInterface , you create an instance of IMyInterface as shown in the following example:

When the object is created, the memory is allocated on the managed heap, and the variable holds only a reference
to the location of the object. Types on the managed heap require overhead both when they are allocated and when
they are reclaimed by the automatic memory management functionality of the CLR, which is known as garbage
collection. However, garbage collection is also highly optimized, and in most scenarios it does not create a
performance issue. For more information about garbage collection, see Automatic Memory Management.

All arrays are reference types, even if their elements are value types. Arrays implicitly derive from the System.Array
class, but you declare and use them with the simplified syntax that is provided by C#, as shown in the following
example:

Reference types fully support inheritance. When you create a class, you can inherit from any other interface or
class that is not defined as sealed, and other classes can inherit from your class and override your virtual methods.
For more information about how to create your own classes, see Classes and Structs. For more information about
inheritance and virtual methods, see Inheritance.

In C#, literal values receive a type from the compiler. You can specify how a numeric literal should be typed by
appending a letter to the end of the number. For example, to specify that the value 4.56 should be treated as a float,
append an "f" or "F" after the number: 4.56f . If no letter is appended, the compiler will infer a type for the literal.
For more information about which types can be specified with letter suffixes, see the reference pages for individual
types in Value Types.

Because literals are typed, and all types derive ultimately from System.Object, you can write and compile code such
as the following:

A type can be declared with one or more type parameters that serve as a placeholder for the actual type (the
concrete type) that client code will provide when it creates an instance of the type. Such types are called generic
types. For example, the .NET type System.Collections.Generic.List<T> has one type parameter that by convention
is given the name T. When you create an instance of the type, you specify the type of the objects that the list will
contain, for example, string:

https://docs.microsoft.com/en-us/dotnet/standard/automatic-memory-management
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1

List<string> stringList = new List<string>();
stringList.Add("String example");
// compile time error adding a type other than a string:
stringList.Add(4);

Implicit Types, Anonymous Types, and Nullable Types

Related Sections

C# Language Specification

See Also

The use of the type parameter makes it possible to reuse the same class to hold any type of element, without
having to convert each element to object. Generic collection classes are called strongly-typed collections because
the compiler knows the specific type of the collection's elements and can raise an error at compile-time if, for
example, you try to add an integer to the stringList object in the previous example. For more information, see
Generics.

As stated previously, you can implicitly type a local variable (but not class members) by using the var keyword. The
variable still receives a type at compile time, but the type is provided by the compiler. For more information, see
Implicitly Typed Local Variables.

In some cases, it is inconvenient to create a named type for simple sets of related values that you do not intend to
store or pass outside method boundaries. You can create anonymous types for this purpose. For more information,
see Anonymous Types.

Ordinary value types cannot have a value of null. However, you can create nullable value types by affixing a ?

after the type. For example, int? is an int type that can also have the value null. In the CTS, nullable types are
instances of the generic struct type System.Nullable<T>. Nullable types are especially useful when you are passing
data to and from databases in which numeric values might be null. For more information, see Nullable Types.

For more information, see the following topics:

Casting and Type Conversions

Boxing and Unboxing

Using Type dynamic

Value Types

Reference Types

Classes and Structs

Anonymous Types

Generics

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

C# Reference
C# Programming Guide
Conversion of XML Data Types

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/implicitly-typed-local-variables
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/conversion-of-xml-data-types

Integral Types Table

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/integral-types-table

Classes and Structs (C# Programming Guide)
12/11/2018 • 6 minutes to read • Edit Online

Example

Classes and structs are two of the basic constructs of the common type system in the .NET Framework. Each is
essentially a data structure that encapsulates a set of data and behaviors that belong together as a logical unit. The
data and behaviors are the members of the class or struct, and they include its methods, properties, and events, and
so on, as listed later in this topic.

A class or struct declaration is like a blueprint that is used to create instances or objects at run time. If you define a
class or struct called Person , Person is the name of the type. If you declare and initialize a variable p of type
Person , p is said to be an object or instance of Person . Multiple instances of the same Person type can be

created, and each instance can have different values in its properties and fields.

A class is a reference type. When an object of the class is created, the variable to which the object is assigned holds
only a reference to that memory. When the object reference is assigned to a new variable, the new variable refers
to the original object. Changes made through one variable are reflected in the other variable because they both
refer to the same data.

A struct is a value type. When a struct is created, the variable to which the struct is assigned holds the struct's actual
data. When the struct is assigned to a new variable, it is copied. The new variable and the original variable therefore
contain two separate copies of the same data. Changes made to one copy do not affect the other copy.

In general, classes are used to model more complex behavior, or data that is intended to be modified after a class
object is created. Structs are best suited for small data structures that contain primarily data that is not intended to
be modified after the struct is created.

For more information, see Classes, Objects, and Structs.

In the following example, CustomClass in the ProgrammingGuide namespace has three members: an instance
constructor, a property named Number , and a method named Multiply . The Main method in the Program class
creates an instance (object) of CustomClass , and the object’s method and property are accessed by using dot
notation.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/classes-and-structs/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/objects
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/structs

using System;

namespace ProgrammingGuide
{
 // Class definition.
 public class CustomClass
 {
 // Class members.
 //
 // Property.
 public int Number { get; set; }

 // Method.
 public int Multiply(int num)
 {
 return num * Number;
 }

 // Instance Constructor.
 public CustomClass()
 {
 Number = 0;
 }
 }

 // Another class definition that contains Main, the program entry point.
 class Program
 {
 static void Main(string[] args)
 {
 // Create an object of type CustomClass.
 CustomClass custClass = new CustomClass();

 // Set the value of the public property.
 custClass.Number = 27;

 // Call the public method.
 int result = custClass.Multiply(4);
 Console.WriteLine($"The result is {result}.");
 }
 }
}
// The example displays the following output:
// The result is 108.

Encapsulation

MembersMembers

Encapsulation is sometimes referred to as the first pillar or principle of object-oriented programming. According to
the principle of encapsulation, a class or struct can specify how accessible each of its members is to code outside of
the class or struct. Methods and variables that are not intended to be used from outside of the class or assembly
can be hidden to limit the potential for coding errors or malicious exploits.

For more information about classes, see Classes and Objects.

All methods, fields, constants, properties, and events must be declared within a type; these are called the members
of the type. In C#, there are no global variables or methods as there are in some other languages. Even a program's
entry point, the Main method, must be declared within a class or struct. The following list includes all the various
kinds of members that may be declared in a class or struct.

Fields

Constants

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/objects
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constants

AccessibilityAccessibility

InheritanceInheritance

InterfacesInterfaces

Generic TypesGeneric Types

Static TypesStatic Types

Nested TypesNested Types

Partial TypesPartial Types

Properties

Methods

Constructors

Events

Finalizers

Indexers

Operators

Nested Types

Some methods and properties are meant to be called or accessed from code outside your class or struct, known as
client code. Other methods and properties might be only for use in the class or struct itself. It is important to limit
the accessibility of your code so that only the intended client code can reach it. You specify how accessible your
types and their members are to client code by using the access modifiers public, protected, internal, protected
internal, private and private protected. The default accessibility is private . For more information, see Access
Modifiers.

Classes (but not structs) support the concept of inheritance. A class that derives from another class (the base class)
automatically contains all the public, protected, and internal members of the base class except its constructors and
finalizers. For more information, see Inheritance and Polymorphism.

Classes may be declared as abstract, which means that one or more of their methods have no implementation.
Although abstract classes cannot be instantiated directly, they can serve as base classes for other classes that
provide the missing implementation. Classes can also be declared as sealed to prevent other classes from
inheriting from them. For more information, see Abstract and Sealed Classes and Class Members.

Classes and structs can inherit multiple interfaces. To inherit from an interface means that the type implements all
the methods defined in the interface. For more information, see Interfaces.

Classes and structs can be defined with one or more type parameters. Client code supplies the type when it creates
an instance of the type. For example The List<T> class in the System.Collections.Generic namespace is defined
with one type parameter. Client code creates an instance of a List<string> or List<int> to specify the type that
the list will hold. For more information, see Generics.

Classes (but not structs) can be declared as static. A static class can contain only static members and cannot be
instantiated with the new keyword. One copy of the class is loaded into memory when the program loads, and its
members are accessed through the class name. Both classes and structs can contain static members. For more
information, see Static Classes and Static Class Members.

A class or struct can be nested within another class or struct. For more information, see Nested Types.

You can define part of a class, struct or method in one code file and another part in a separate code file. For more
information, see Partial Classes and Methods.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/nested-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/public
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/protected
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/internal
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/protected-internal
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/private
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/private-protected
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/static
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/nested-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods

Object InitializersObject Initializers

Anonymous TypesAnonymous Types

Extension MethodsExtension Methods

Implicitly Typed Local VariablesImplicitly Typed Local Variables

C# Language Specification

See Also

You can instantiate and initialize class or struct objects, and collections of objects, without explicitly calling their
constructor. For more information, see Object and Collection Initializers.

In situations where it is not convenient or necessary to create a named class, for example when you are populating
a list with data structures that you do not have to persist or pass to another method, you use anonymous types. For
more information, see Anonymous Types.

You can "extend" a class without creating a derived class by creating a separate type whose methods can be called
as if they belonged to the original type. For more information, see Extension Methods.

Within a class or struct method, you can use implicit typing to instruct the compiler to determine the correct type at
compile time. For more information, see Implicitly Typed Local Variables.

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

C# Programming Guide

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/implicitly-typed-local-variables
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index

Interfaces (C# Programming Guide)
12/11/2018 • 4 minutes to read • Edit Online

interface IEquatable<T>
{
 bool Equals(T obj);
}

An interface contains definitions for a group of related functionalities that a class or a struct can implement.

By using interfaces, you can, for example, include behavior from multiple sources in a class. That capability is
important in C# because the language doesn't support multiple inheritance of classes. In addition, you must use an
interface if you want to simulate inheritance for structs, because they can't actually inherit from another struct or
class.

You define an interface by using the interface keyword. as the following example shows.

The name of the struct must be a valid C# identifier name. By convention, interface names begin with a capital I .

Any class or struct that implements the IEquatable<T> interface must contain a definition for an Equals method
that matches the signature that the interface specifies. As a result, you can count on a class that implements
IEquatable<T> to contain an Equals method with which an instance of the class can determine whether it's equal

to another instance of the same class.

The definition of IEquatable<T> doesn’t provide an implementation for Equals . The interface defines only the
signature. In that way, an interface in C# is similar to an abstract class in which all the methods are abstract.
However, a class or struct can implement multiple interfaces, but a class can inherit only a single class, abstract or
not. Therefore, by using interfaces, you can include behavior from multiple sources in a class.

For more information about abstract classes, see Abstract and Sealed Classes and Class Members.

Interfaces can contain methods, properties, events, indexers, or any combination of those four member types. For
links to examples, see Related Sections. An interface can't contain constants, fields, operators, instance constructors,
finalizers, or types. Interface members are automatically public, and they can't include any access modifiers.
Members also can't be static.

To implement an interface member, the corresponding member of the implementing class must be public, non-
static, and have the same name and signature as the interface member.

When a class or struct implements an interface, the class or struct must provide an implementation for all of the
members that the interface defines. The interface itself provides no functionality that a class or struct can inherit in
the way that it can inherit base class functionality. However, if a base class implements an interface, any class that's
derived from the base class inherits that implementation.

The following example shows an implementation of the IEquatable<T> interface. The implementing class, Car ,
must provide an implementation of the Equals method.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/interfaces/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/identifier-names
https://docs.microsoft.com/dotnet/api/system.iequatable-1
https://docs.microsoft.com/dotnet/api/system.iequatable-1.equals
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/static
https://docs.microsoft.com/dotnet/api/system.iequatable-1
https://docs.microsoft.com/dotnet/api/system.iequatable-1.equals

public class Car : IEquatable<Car>
{
 public string Make {get; set;}
 public string Model { get; set; }
 public string Year { get; set; }

 // Implementation of IEquatable<T> interface
 public bool Equals(Car car)
 {
 return this.Make == car.Make &&
 this.Model == car.Model &&
 this.Year == car.Year;
 }
}

Interfaces summary

In this section

Related Sections

Properties and indexers of a class can define extra accessors for a property or indexer that's defined in an interface.
For example, an interface might declare a property that has a get accessor. The class that implements the interface
can declare the same property with both a get and set accessor. However, if the property or indexer uses explicit
implementation, the accessors must match. For more information about explicit implementation, see Explicit
Interface Implementation and Interface Properties.

Interfaces can inherit from other interfaces. A class might include an interface multiple times through base classes
that it inherits or through interfaces that other interfaces inherit. However, the class can provide an implementation
of an interface only one time and only if the class declares the interface as part of the definition of the class (
class ClassName : InterfaceName). If the interface is inherited because you inherited a base class that implements

the interface, the base class provides the implementation of the members of the interface. However, the derived
class can reimplement any virtual interface members instead of using the inherited implementation.

A base class can also implement interface members by using virtual members. In that case, a derived class can
change the interface behavior by overriding the virtual members. For more information about virtual members,
see Polymorphism.

An interface has the following properties:

An interface is like an abstract base class. Any class or struct that implements the interface must implement all
its members.
An interface can't be instantiated directly. Its members are implemented by any class or struct that implements
the interface.
Interfaces can contain events, indexers, methods, and properties.
Interfaces contain no implementation of methods.
A class or struct can implement multiple interfaces. A class can inherit a base class and also implement one or
more interfaces.

Explicit Interface Implementation
Explains how to create a class member that’s specific to an interface.

How to: Explicitly Implement Interface Members
Provides an example of how to explicitly implement members of interfaces.

How to: Explicitly Implement Members of Two Interfaces
Provides an example of how to explicitly implement members of interfaces with inheritance.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/get
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/interface-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/how-to-explicitly-implement-interface-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/how-to-explicitly-implement-members-of-two-interfaces

 Related Sections

featured book chapter

See Also

Interface Properties
Indexers in Interfaces
How to: Implement Interface Events
Classes and Structs
Inheritance
Methods
Polymorphism
Abstract and Sealed Classes and Class Members
Properties
Events
Indexers

Interfaces in Learning C# 3.0: Master the Fundamentals of C# 3.0

C# Programming Guide
Inheritance
Identifier names

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/interface-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/indexers-in-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/index
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff652489%28v%3Dorm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff652493%28v%253dorm.10%29
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/identifier-names

Enumeration types (C# Programming Guide)
12/11/2018 • 4 minutes to read • Edit Online

enum Day { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };
enum Month : byte { Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec };

Day today = Day.Monday;
int dayNumber =(int)today;
Console.WriteLine("{0} is day number #{1}.", today, dayNumber);

Month thisMonth = Month.Dec;
byte monthNumber = (byte)thisMonth;
Console.WriteLine("{0} is month number #{1}.", thisMonth, monthNumber);

// Output:
// Monday is day number #1.
// Dec is month number #11.

Day meetingDay = Day.Monday;
//...
meetingDay = Day.Friday;

An enumeration type (also named an enumeration or an enum) provides an efficient way to define a set of named
integral constants that may be assigned to a variable. For example, assume that you have to define a variable
whose value will represent a day of the week. There are only seven meaningful values which that variable will ever
store. To define those values, you can use an enumeration type, which is declared by using the enum keyword.

By default the underlying type of each element in the enum is int. You can specify another integral numeric type by
using a colon, as shown in the previous example. For a full list of possible types, see enum (C# Reference).

You can verify the underlying numeric values by casting to the underlying type, as the following example shows.

The following are advantages of using an enum instead of a numeric type:

You clearly specify for client code which values are valid for the variable.

In Visual Studio, IntelliSense lists the defined values.

When you do not specify values for the elements in the enumerator list, the values are automatically incremented
by 1. In the previous example, Day.Sunday has a value of 0, Day.Monday has a value of 1, and so on. When you
create a new Day object, it will have a default value of Day.Sunday (0) if you do not explicitly assign it a value.
When you create an enum, select the most logical default value and give it a value of zero. That will cause all enums
to have that default value if they are not explicitly assigned a value when they are created.

If the variable meetingDay is of type Day , then (without an explicit cast) you can only assign it one of the values
defined by Day . And if the meeting day changes, you can assign a new value from Day to meetingDay :

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/enumeration-types.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum

NOTENOTE

enum MachineState
{
 PowerOff = 0,
 Running = 5,
 Sleeping = 10,
 Hibernating = Sleeping + 5
}

Enumeration types as bit flags

[Flags]
enum Days
{
 None = 0x0,
 Sunday = 0x1,
 Monday = 0x2,
 Tuesday = 0x4,
 Wednesday = 0x8,
 Thursday = 0x10,
 Friday = 0x20,
 Saturday = 0x40
}
class MyClass
{
 Days meetingDays = Days.Tuesday | Days.Thursday;
}

It's possible to assign any arbitrary integer value to meetingDay . For example, this line of code does not produce an error:
meetingDay = (Day) 42 . However, you should not do this because the implicit expectation is that an enum variable will

only hold one of the values defined by the enum. To assign an arbitrary value to a variable of an enumeration type is to
introduce a high risk for errors.

You can assign any values to the elements in the enumerator list of an enumeration type, and you can also use
computed values:

You can use an enumeration type to define bit flags, which enables an instance of the enumeration type to store
any combination of the values that are defined in the enumerator list. (Of course, some combinations may not be
meaningful or allowed in your program code.)

You create a bit flags enum by applying the System.FlagsAttribute attribute and defining the values appropriately
so that AND , OR , NOT and XOR bitwise operations can be performed on them. In a bit flags enum, include a
named constant with a value of zero that means "no flags are set." Do not give a flag a value of zero if it does not
mean "no flags are set".

In the following example, another version of the Day enum, which is named Days , is defined. Days has the Flags

attribute, and each value is assigned the next greater power of 2. This enables you to create a Days variable whose
value is Days.Tuesday | Days.Thursday .

To set a flag on an enum, use the bitwise OR operator as shown in the following example:

https://docs.microsoft.com/dotnet/api/system.flagsattribute

// Initialize with two flags using bitwise OR.
meetingDays = Days.Tuesday | Days.Thursday;

// Set an additional flag using bitwise OR.
meetingDays = meetingDays | Days.Friday;

Console.WriteLine("Meeting days are {0}", meetingDays);
// Output: Meeting days are Tuesday, Thursday, Friday

// Remove a flag using bitwise XOR.
meetingDays = meetingDays ^ Days.Tuesday;
Console.WriteLine("Meeting days are {0}", meetingDays);
// Output: Meeting days are Thursday, Friday

// Test value of flags using bitwise AND.
bool test = (meetingDays & Days.Thursday) == Days.Thursday;
Console.WriteLine("Thursday {0} a meeting day.", test == true ? "is" : "is not");
// Output: Thursday is a meeting day.

Using the System.Enum methods to discover and manipulate enum
values

string s = Enum.GetName(typeof(Day), 4);
Console.WriteLine(s);

Console.WriteLine("The values of the Day Enum are:");
foreach (int i in Enum.GetValues(typeof(Day)))
 Console.WriteLine(i);

Console.WriteLine("The names of the Day Enum are:");
foreach (string str in Enum.GetNames(typeof(Day)))
 Console.WriteLine(str);

See Also

To determine whether a specific flag is set, use a bitwise AND operation, as shown in the following example:

For more information about what to consider when you define enumeration types with the System.FlagsAttribute
attribute, see System.Enum.

All enums are instances of the System.Enum type. You cannot derive new classes from System.Enum, but you can
use its methods to discover information about and manipulate values in an enum instance.

For more information, see System.Enum.

You can also create a new method for an enum by using an extension method. For more information, see How to:
Create a New Method for an Enumeration.

System.Enum
C# Programming Guide
enum

https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-create-a-new-method-for-an-enumeration
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum

Delegates (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

public delegate int PerformCalculation(int x, int y);

NOTENOTE

Delegates Overview

In This Section

A delegate is a type that represents references to methods with a particular parameter list and return type. When
you instantiate a delegate, you can associate its instance with any method with a compatible signature and return
type. You can invoke (or call) the method through the delegate instance.

Delegates are used to pass methods as arguments to other methods. Event handlers are nothing more than
methods that are invoked through delegates. You create a custom method, and a class such as a windows control
can call your method when a certain event occurs. The following example shows a delegate declaration:

Any method from any accessible class or struct that matches the delegate type can be assigned to the delegate. The
method can be either static or an instance method. This makes it possible to programmatically change method
calls, and also plug new code into existing classes.

In the context of method overloading, the signature of a method does not include the return value. But in the context of
delegates, the signature does include the return value. In other words, a method must have the same return type as the
delegate.

This ability to refer to a method as a parameter makes delegates ideal for defining callback methods. For example,
a reference to a method that compares two objects could be passed as an argument to a sort algorithm. Because
the comparison code is in a separate procedure, the sort algorithm can be written in a more general way.

Delegates have the following properties:

Delegates are similar to C++ function pointers, but delegates are fully object-oriented, and unlike C++
pointers to member functions, delegates encapsulate both an object instance and a method.

Delegates allow methods to be passed as parameters.

Delegates can be used to define callback methods.

Delegates can be chained together; for example, multiple methods can be called on a single event.

Methods do not have to match the delegate type exactly. For more information, see Using Variance in
Delegates.

C# version 2.0 introduced the concept of Anonymous Methods, which allow code blocks to be passed as
parameters in place of a separately defined method. C# 3.0 introduced lambda expressions as a more
concise way of writing inline code blocks. Both anonymous methods and lambda expressions (in certain
contexts) are compiled to delegate types. Together, these features are now known as anonymous functions.
For more information about lambda expressions, see Anonymous Functions.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/delegates/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/covariance-contravariance/using-variance-in-delegates
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-functions

C# Language Specification

Featured Book Chapters

See Also

Using Delegates

When to Use Delegates Instead of Interfaces (C# Programming Guide)

Delegates with Named vs. Anonymous Methods

Anonymous Methods

Using Variance in Delegates

How to: Combine Delegates (Multicast Delegates)

How to: Declare, Instantiate, and Use a Delegate

For more information, see Delegates in the C# Language Specification. The language specification is the definitive
source for C# syntax and usage.

Delegates, Events, and Lambda Expressions in C# 3.0 Cookbook, Third Edition: More than 250 solutions for C# 3.0
programmers

Delegates and Events in Learning C# 3.0: Master the fundamentals of C# 3.0

Delegate
C# Programming Guide
Events

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/using-delegates
https://msdn.microsoft.com/library/2e759bdf-7ca4-4005-8597-af92edf6d8f0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/delegates-with-named-vs-anonymous-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/covariance-contravariance/using-variance-in-delegates
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-combine-delegates-multicast-delegates
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/delegates
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff518994%28v=orm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff518995%28v=orm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff652490%28v=orm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff652493%28v=orm.10%29
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index

Arrays (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

class LINQQueryExpressions
{
 static void Main()
 {

 // Specify the data source.
 int[] scores = new int[] { 97, 92, 81, 60 };

 // Define the query expression.
 IEnumerable<int> scoreQuery =
 from score in scores
 where score > 80
 select score;

 // Execute the query.
 foreach (int i in scoreQuery)
 {
 Console.Write(i + " ");
 }
 }
}
// Output: 97 92 81

Array Overview

Related Sections

You can store multiple variables of the same type in an array data structure. You declare an array by specifying the
type of its elements.

type[] arrayName;

The following examples create single-dimensional, multidimensional, and jagged arrays:

An array has the following properties:

An array can be Single-Dimensional, Multidimensional or Jagged.

The number of dimensions and the length of each dimension are established when the array instance is
created. These values can't be changed during the lifetime of the instance.

The default values of numeric array elements are set to zero, and reference elements are set to null.

A jagged array is an array of arrays, and therefore its elements are reference types and are initialized to
null .

Arrays are zero indexed: an array with n elements is indexed from 0 to n-1 .

Array elements can be of any type, including an array type.

Array types are reference types derived from the abstract base type Array. Since this type implements
IEnumerable and IEnumerable<T>, you can use foreach iteration on all arrays in C#.

Arrays as Objects

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/arrays/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/single-dimensional-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/multidimensional-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/jagged-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/arrays-as-objects

C# Language Specification

See Also

Using foreach with Arrays

Passing Arrays as Arguments

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

C# Programming Guide
Collections

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/using-foreach-with-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/passing-arrays-as-arguments
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/collections

Strings (C# Programming Guide)
12/11/2018 • 12 minutes to read • Edit Online

string vs. System.String

Declaring and Initializing Strings

// Declare without initializing.
string message1;

// Initialize to null.
string message2 = null;

// Initialize as an empty string.
// Use the Empty constant instead of the literal "".
string message3 = System.String.Empty;

//Initialize with a regular string literal.
string oldPath = "c:\\Program Files\\Microsoft Visual Studio 8.0";

// Initialize with a verbatim string literal.
string newPath = @"c:\Program Files\Microsoft Visual Studio 9.0";

// Use System.String if you prefer.
System.String greeting = "Hello World!";

// In local variables (i.e. within a method body)
// you can use implicit typing.
var temp = "I'm still a strongly-typed System.String!";

// Use a const string to prevent 'message4' from
// being used to store another string value.
const string message4 = "You can't get rid of me!";

// Use the String constructor only when creating
// a string from a char*, char[], or sbyte*. See
// System.String documentation for details.
char[] letters = { 'A', 'B', 'C' };
string alphabet = new string(letters);

A string is an object of type String whose value is text. Internally, the text is stored as a sequential read-only
collection of Char objects. There is no null-terminating character at the end of a C# string; therefore a C# string can
contain any number of embedded null characters ('\0'). The Length property of a string represents the number of
Char objects it contains, not the number of Unicode characters. To access the individual Unicode code points in a

string, use the StringInfo object.

In C#, the string keyword is an alias for String. Therefore, String and string are equivalent, and you can use
whichever naming convention you prefer. The String class provides many methods for safely creating,
manipulating, and comparing strings. In addition, the C# language overloads some operators to simplify common
string operations. For more information about the keyword, see string. For more information about the type and its
methods, see String.

You can declare and initialize strings in various ways, as shown in the following example:

Note that you do not use the new operator to create a string object except when initializing the string with an array
of chars.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/strings/index.md
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.string.length
https://docs.microsoft.com/dotnet/api/system.globalization.stringinfo
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/new-operator

Immutability of String Objects

string s1 = "A string is more ";
string s2 = "than the sum of its chars.";

// Concatenate s1 and s2. This actually creates a new
// string object and stores it in s1, releasing the
// reference to the original object.
s1 += s2;

System.Console.WriteLine(s1);
// Output: A string is more than the sum of its chars.

string s1 = "Hello ";
string s2 = s1;
s1 += "World";

System.Console.WriteLine(s2);
//Output: Hello

Regular and Verbatim String Literals

Initialize a string with the Empty constant value to create a new String object whose string is of zero length. The
string literal representation of a zero-length string is "". By initializing strings with the Empty value instead of null,
you can reduce the chances of a NullReferenceException occurring. Use the static IsNullOrEmpty(String) method
to verify the value of a string before you try to access it.

String objects are immutable: they cannot be changed after they have been created. All of the String methods and
C# operators that appear to modify a string actually return the results in a new string object. In the following
example, when the contents of s1 and s2 are concatenated to form a single string, the two original strings are
unmodified. The += operator creates a new string that contains the combined contents. That new object is
assigned to the variable s1 , and the original object that was assigned to s1 is released for garbage collection
because no other variable holds a reference to it.

Because a string "modification" is actually a new string creation, you must use caution when you create references
to strings. If you create a reference to a string, and then "modify" the original string, the reference will continue to
point to the original object instead of the new object that was created when the string was modified. The following
code illustrates this behavior :

For more information about how to create new strings that are based on modifications such as search and replace
operations on the original string, see How to: Modify String Contents.

Use regular string literals when you must embed escape characters provided by C#, as shown in the following
example:

https://docs.microsoft.com/dotnet/api/system.string.empty
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string.empty
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/dotnet/api/system.string.isnullorempty#System_String_IsNullOrEmpty_System_String_
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/modify-string-contents

string columns = "Column 1\tColumn 2\tColumn 3";
//Output: Column 1 Column 2 Column 3

string rows = "Row 1\r\nRow 2\r\nRow 3";
/* Output:
 Row 1
 Row 2
 Row 3
*/

string title = "\"The \u00C6olean Harp\", by Samuel Taylor Coleridge";
//Output: "The Æolean Harp", by Samuel Taylor Coleridge

string filePath = @"C:\Users\scoleridge\Documents\";
//Output: C:\Users\scoleridge\Documents\

string text = @"My pensive SARA ! thy soft cheek reclined
 Thus on mine arm, most soothing sweet it is
 To sit beside our Cot,...";
/* Output:
My pensive SARA ! thy soft cheek reclined
 Thus on mine arm, most soothing sweet it is
 To sit beside our Cot,...
*/

string quote = @"Her name was ""Sara.""";
//Output: Her name was "Sara."

String Escape Sequences
ESCAPE SEQUENCE CHARACTER NAME UNICODE ENCODING

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

Use verbatim strings for convenience and better readability when the string text contains backslash characters, for
example in file paths. Because verbatim strings preserve new line characters as part of the string text, they can be
used to initialize multiline strings. Use double quotation marks to embed a quotation mark inside a verbatim string.
The following example shows some common uses for verbatim strings:

\U Unicode escape sequence for surrogate
pairs.

\Unnnnnnnn

\u Unicode escape sequence \u0041 = "A"

\v Vertical tab 0x000B

\x Unicode escape sequence similar to "\u"
except with variable length.

\x0041 or \x41 = "A"

ESCAPE SEQUENCE CHARACTER NAME UNICODE ENCODING

NOTENOTE

Format Strings

String InterpolationString Interpolation

var jh = (firstName: "Jupiter", lastName: "Hammon", born: 1711, published: 1761);
Console.WriteLine($"{jh.firstName} {jh.lastName} was an African American poet born in {jh.born}.");
Console.WriteLine($"He was first published in {jh.published} at the age of {jh.published - jh.born}.");
Console.WriteLine($"He'd be over {Math.Round((2018d - jh.born) / 100d) * 100d} years old today.");

// Output:
// Jupiter Hammon was an African American poet born in 1711.
// He was first published in 1761 at the age of 50.
// He'd be over 300 years old today.

Composite FormattingComposite Formatting

At compile time, verbatim strings are converted to ordinary strings with all the same escape sequences. Therefore, if you view
a verbatim string in the debugger watch window, you will see the escape characters that were added by the compiler, not the
verbatim version from your source code. For example, the verbatim string @"C:\files.txt" will appear in the watch window as
"C:\\files.txt".

A format string is a string whose contents are determined dynamically at runtime. Format strings are created by
embedding interpolated expressions or placeholders inside of braces within a string. Everything inside the braces (
{...}) will be resolved to a value and output as a formatted string at runtime. There are two methods to create

format strings: string interpolation and composite formatting.

Available in C# 6.0 and later, interpolated strings are identified by the $ special character and include interpolated
expressions in braces. If you are new to string interpolation, see the String interpolation - C# interactive tutorial for
a quick overview.

Use string interpolation to improve the readability and maintainability of your code. String interpolation achieves
the same results as the String.Format method, but improves ease of use and inline clarity.

The String.Format utilizes placeholders in braces to create a format string. This example results in similar output to
the string interpolation method used above.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
file:///T:/w5mi/csharp/tutorials/intro-to-csharp/interpolated-strings.yml
https://docs.microsoft.com/dotnet/api/system.string.format

var pw = (firstName: "Phillis", lastName: "Wheatley", born: 1753, published: 1773);
Console.WriteLine("{0} {1} was an African American poet born in {2}.", pw.firstName, pw.lastName, pw.born);
Console.WriteLine("She was first published in {0} at the age of {1}.", pw.published, pw.published - pw.born);
Console.WriteLine("She'd be over {0} years old today.", Math.Round((2018d - pw.born) / 100d) * 100d);

// Output:
// Phillis Wheatley was an African American poet born in 1753.
// She was first published in 1773 at the age of 20.
// She'd be over 300 years old today.

Substrings

string s3 = "Visual C# Express";
System.Console.WriteLine(s3.Substring(7, 2));
// Output: "C#"

System.Console.WriteLine(s3.Replace("C#", "Basic"));
// Output: "Visual Basic Express"

// Index values are zero-based
int index = s3.IndexOf("C");
// index = 7

Accessing Individual Characters

string s5 = "Printing backwards";

for (int i = 0; i < s5.Length; i++)
{
 System.Console.Write(s5[s5.Length - i - 1]);
}
// Output: "sdrawkcab gnitnirP"

For more information on formatting .NET types see Formatting Types in .NET.

A substring is any sequence of characters that is contained in a string. Use the Substring method to create a new
string from a part of the original string. You can search for one or more occurrences of a substring by using the
IndexOf method. Use the Replace method to replace all occurrences of a specified substring with a new string. Like
the Substring method, Replace actually returns a new string and does not modify the original string. For more
information, see How to: search strings and How to: Modify String Contents.

You can use array notation with an index value to acquire read-only access to individual characters, as in the
following example:

If the String methods do not provide the functionality that you must have to modify individual characters in a
string, you can use a StringBuilder object to modify the individual chars "in-place", and then create a new string to
store the results by using the StringBuilder methods. In the following example, assume that you must modify the
original string in a particular way and then store the results for future use:

https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/dotnet/api/system.string.substring
https://docs.microsoft.com/dotnet/api/system.string.indexof
https://docs.microsoft.com/dotnet/api/system.string.replace
https://docs.microsoft.com/dotnet/api/system.string.substring
https://docs.microsoft.com/dotnet/api/system.string.replace
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/search-strings
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/modify-string-contents
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder

string question = "hOW DOES mICROSOFT wORD DEAL WITH THE cAPS lOCK KEY?";
System.Text.StringBuilder sb = new System.Text.StringBuilder(question);

for (int j = 0; j < sb.Length; j++)
{
 if (System.Char.IsLower(sb[j]) == true)
 sb[j] = System.Char.ToUpper(sb[j]);
 else if (System.Char.IsUpper(sb[j]) == true)
 sb[j] = System.Char.ToLower(sb[j]);
}
// Store the new string.
string corrected = sb.ToString();
System.Console.WriteLine(corrected);
// Output: How does Microsoft Word deal with the Caps Lock key?

Null Strings and Empty Strings

string s = String.Empty;

An empty string is an instance of a System.String object that contains zero characters. Empty strings are used often
in various programming scenarios to represent a blank text field. You can call methods on empty strings because
they are valid System.String objects. Empty strings are initialized as follows:

By contrast, a null string does not refer to an instance of a System.String object and any attempt to call a method
on a null string causes a NullReferenceException. However, you can use null strings in concatenation and
comparison operations with other strings. The following examples illustrate some cases in which a reference to a
null string does and does not cause an exception to be thrown:

https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception

static void Main()
{
 string str = "hello";
 string nullStr = null;
 string emptyStr = String.Empty;

 string tempStr = str + nullStr;
 // Output of the following line: hello
 Console.WriteLine(tempStr);

 bool b = (emptyStr == nullStr);
 // Output of the following line: False
 Console.WriteLine(b);

 // The following line creates a new empty string.
 string newStr = emptyStr + nullStr;

 // Null strings and empty strings behave differently. The following
 // two lines display 0.
 Console.WriteLine(emptyStr.Length);
 Console.WriteLine(newStr.Length);
 // The following line raises a NullReferenceException.
 //Console.WriteLine(nullStr.Length);

 // The null character can be displayed and counted, like other chars.
 string s1 = "\x0" + "abc";
 string s2 = "abc" + "\x0";
 // Output of the following line: * abc*
 Console.WriteLine("*" + s1 + "*");
 // Output of the following line: *abc *
 Console.WriteLine("*" + s2 + "*");
 // Output of the following line: 4
 Console.WriteLine(s2.Length);
}

Using StringBuilder for Fast String Creation

System.Text.StringBuilder sb = new System.Text.StringBuilder("Rat: the ideal pet");
sb[0] = 'C';
System.Console.WriteLine(sb.ToString());
System.Console.ReadLine();

//Outputs Cat: the ideal pet

String operations in .NET are highly optimized and in most cases do not significantly impact performance.
However, in some scenarios such as tight loops that are executing many hundreds or thousands of times, string
operations can affect performance. The StringBuilder class creates a string buffer that offers better performance if
your program performs many string manipulations. The StringBuilder string also enables you to reassign
individual characters, something the built-in string data type does not support. This code, for example, changes the
content of a string without creating a new string:

In this example, a StringBuilder object is used to create a string from a set of numeric types:

https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder

class TestStringBuilder
{
 static void Main()
 {
 System.Text.StringBuilder sb = new System.Text.StringBuilder();

 // Create a string composed of numbers 0 - 9
 for (int i = 0; i < 10; i++)
 {
 sb.Append(i.ToString());
 }
 System.Console.WriteLine(sb); // displays 0123456789

 // Copy one character of the string (not possible with a System.String)
 sb[0] = sb[9];

 System.Console.WriteLine(sb); // displays 9123456789
 }
}

Strings, Extension Methods and LINQ

Related Topics
TOPIC DESCRIPTION

How to: Modify String Contents Illustrates techniques to transform strings and modify the
contents of strings.

How to: Compare Strings Shows how to perform ordinal and culture specific
comparisons of strings.

How to: Concatenate Multiple Strings Demonstrates various ways to join multiple strings into one.

How to: Parse Strings Using String.Split Contains code examples that illustrate how to use the
String.Split method to parse strings.

How to: Search Strings Explains how to use search for specific text or patterns in
strings.

How to: Determine Whether a String Represents a Numeric
Value

Shows how to safely parse a string to see whether it has a
valid numeric value.

String interpolation Describes the string interpolation feature that provides a
convenient syntax to format strings.

Basic String Operations Provides links to topics that use System.String and
System.Text.StringBuilder methods to perform basic string
operations.

Parsing Strings Describes how to convert string representations of .NET base
types to instances of the corresponding types.

Because the String type implements IEnumerable<T>, you can use the extension methods defined in the
Enumerable class on strings. To avoid visual clutter, these methods are excluded from IntelliSense for the String
type, but they are available nevertheless. You can also use L INQ query expressions on strings. For more
information, see L INQ and Strings.

https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.linq.enumerable
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-and-strings
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/modify-string-contents
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/compare-strings
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/concatenate-multiple-strings
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/parse-strings-using-split
https://docs.microsoft.com/en-us/dotnet/csharp/how-to/search-strings
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-determine-whether-a-string-represents-a-numeric-value
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://docs.microsoft.com/en-us/dotnet/standard/base-types/basic-string-operations
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/en-us/dotnet/standard/base-types/parsing-strings

Parsing Date and Time Strings in .NET Shows how to convert a string such as "01/24/2008" to a
System.DateTime object.

Comparing Strings Includes information about how to compare strings and
provides examples in C# and Visual Basic.

Using the StringBuilder Class Describes how to create and modify dynamic string objects by
using the StringBuilder class.

LINQ and Strings Provides information about how to perform various string
operations by using LINQ queries.

C# Programming Guide Provides links to topics that explain programming constructs
in C#.

TOPIC DESCRIPTION

https://docs.microsoft.com/en-us/dotnet/standard/base-types/parsing-datetime
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/standard/base-types/comparing
https://docs.microsoft.com/en-us/dotnet/standard/base-types/stringbuilder
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-and-strings
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index

Indexers (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

using System;

class SampleCollection<T>
{
 // Declare an array to store the data elements.
 private T[] arr = new T[100];

 // Define the indexer to allow client code to use [] notation.
 public T this[int i]
 {
 get { return arr[i]; }
 set { arr[i] = value; }
 }
}

class Program
{
 static void Main()
 {
 var stringCollection = new SampleCollection<string>();
 stringCollection[0] = "Hello, World";
 Console.WriteLine(stringCollection[0]);
 }
}
// The example displays the following output:
// Hello, World.

NOTENOTE

Expression Body Definitions

Indexers allow instances of a class or struct to be indexed just like arrays. The indexed value can be set or retrieved
without explicitly specifying a type or instance member. Indexers resemble properties except that their accessors
take parameters.

The following example defines a generic class with simple get and set accessor methods to assign and retrieve
values. The Program class creates an instance of this class for storing strings.

For more examples, see Related Sections.

It is common for an indexer's get or set accessor to consist of a single statement that either returns or sets a value.
Expression-bodied members provide a simplified syntax to support this scenario. Starting with C# 6, a read-only
indexer can be implemented as an expression-bodied member, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/indexers/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/get
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set

using System;

class SampleCollection<T>
{
 // Declare an array to store the data elements.
 private T[] arr = new T[100];
 int nextIndex = 0;

 // Define the indexer to allow client code to use [] notation.
 public T this[int i] => arr[i];

 public void Add(T value)
 {
 if (nextIndex >= arr.Length)
 throw new IndexOutOfRangeException($"The collection can hold only {arr.Length} elements.");
 arr[nextIndex++] = value;
 }
}

class Program
{
 static void Main()
 {
 var stringCollection = new SampleCollection<string>();
 stringCollection.Add("Hello, World");
 System.Console.WriteLine(stringCollection[0]);
 }
}
// The example displays the following output:
// Hello, World.

using System;

class SampleCollection<T>
{
 // Declare an array to store the data elements.
 private T[] arr = new T[100];

 // Define the indexer to allow client code to use [] notation.
 public T this[int i]
 {
 get => arr[i];
 set => arr[i] = value;
 }
}

class Program
{
 static void Main()
 {
 var stringCollection = new SampleCollection<string>();
 stringCollection[0] = "Hello, World.";
 Console.WriteLine(stringCollection[0]);
 }
}
// The example displays the following output:
// Hello, World.

Note that => introduces the expression body, and that the get keyword is not used.

Starting with C# 7.0, both the get and set accessor can be an implemented as expression-bodied members. In this
case, both get and set keywords must be used. For example:

Indexers Overview

Related Sections

C# Language Specification

See Also

Indexers enable objects to be indexed in a similar manner to arrays.

A get accessor returns a value. A set accessor assigns a value.

The this keyword is used to define the indexer.

The value keyword is used to define the value being assigned by the set indexer.

Indexers do not have to be indexed by an integer value; it is up to you how to define the specific look-up
mechanism.

Indexers can be overloaded.

Indexers can have more than one formal parameter, for example, when accessing a two-dimensional array.

Using Indexers

Indexers in Interfaces

Comparison Between Properties and Indexers

Restricting Accessor Accessibility

For more information, see Indexers in the C# Language Specification. The language specification is the definitive
source for C# syntax and usage.

C# Programming Guide
Properties

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/this
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/using-indexers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/indexers-in-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/comparison-between-properties-and-indexers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/restricting-accessor-accessibility
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/classes
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties

Events (C# Programming Guide)
12/17/2018 • 2 minutes to read • Edit Online

Events Overview

Related Sections

C# Language Specification

Events enable a class or object to notify other classes or objects when something of interest occurs. The class that
sends (or raises) the event is called the publisher and the classes that receive (or handle) the event are called
subscribers.

In a typical C# Windows Forms or Web application, you subscribe to events raised by controls such as buttons and
list boxes. You can use the Visual C# integrated development environment (IDE) to browse the events that a control
publishes and select the ones that you want to handle. The IDE provides an easy way to automatically add an
empty event handler method and the code to subscribe to the event. For more information, see How to: Subscribe
to and Unsubscribe from Events.

Events have the following properties:

The publisher determines when an event is raised; the subscribers determine what action is taken in
response to the event.

An event can have multiple subscribers. A subscriber can handle multiple events from multiple publishers.

Events that have no subscribers are never raised.

Events are typically used to signal user actions such as button clicks or menu selections in graphical user
interfaces.

When an event has multiple subscribers, the event handlers are invoked synchronously when an event is
raised. To invoke events asynchronously, see Calling Synchronous Methods Asynchronously.

In the .NET Framework class library, events are based on the EventHandler delegate and the EventArgs base
class.

For more information, see:

How to: Subscribe to and Unsubscribe from Events

How to: Publish Events that Conform to .NET Framework Guidelines

How to: Raise Base Class Events in Derived Classes

How to: Implement Interface Events

How to: Use a Dictionary to Store Event Instances

How to: Implement Custom Event Accessors

For more information, see Events in the C# Language Specification. The language specification is the definitive
source for C# syntax and usage.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/events/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-subscribe-to-and-unsubscribe-from-events
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-subscribe-to-and-unsubscribe-from-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-publish-events-that-conform-to-net-framework-guidelines
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-raise-base-class-events-in-derived-classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-use-a-dictionary-to-store-event-instances
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-custom-event-accessors
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/classes
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index

Featured Book Chapters

See Also

Delegates, Events, and Lambda Expressions in C# 3.0 Cookbook, Third Edition: More than 250 solutions for C# 3.0
programmers

Delegates and Events in Learning C# 3.0: Master the fundamentals of C# 3.0

EventHandler
C# Programming Guide
Delegates
Creating Event Handlers in Windows Forms

https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff518994%28v=orm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff518995%28v=orm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff652490%28v=orm.10%29
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2008/ff652493%28v=orm.10%29
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/index
https://docs.microsoft.com/en-us/dotnet/framework/winforms/creating-event-handlers-in-windows-forms

Generics (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

// Declare the generic class.
public class GenericList<T>
{
 public void Add(T input) { }
}
class TestGenericList
{
 private class ExampleClass { }
 static void Main()
 {
 // Declare a list of type int.
 GenericList<int> list1 = new GenericList<int>();
 list1.Add(1);

 // Declare a list of type string.
 GenericList<string> list2 = new GenericList<string>();
 list2.Add("");

 // Declare a list of type ExampleClass.
 GenericList<ExampleClass> list3 = new GenericList<ExampleClass>();
 list3.Add(new ExampleClass());
 }
}

Generics Overview

Related Sections

Generics were added to version 2.0 of the C# language and the common language runtime (CLR). Generics
introduce to the .NET Framework the concept of type parameters, which make it possible to design classes and
methods that defer the specification of one or more types until the class or method is declared and instantiated by
client code. For example, by using a generic type parameter T you can write a single class that other client code
can use without incurring the cost or risk of runtime casts or boxing operations, as shown here:

Use generic types to maximize code reuse, type safety, and performance.

The most common use of generics is to create collection classes.

The .NET Framework class library contains several new generic collection classes in the
System.Collections.Generic namespace. These should be used whenever possible instead of classes such as
ArrayList in the System.Collections namespace.

You can create your own generic interfaces, classes, methods, events and delegates.

Generic classes may be constrained to enable access to methods on particular data types.

Information on the types that are used in a generic data type may be obtained at run-time by using
reflection.

For more information:

Introduction to Generics

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/generics/index.md
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/dotnet/api/system.collections.arraylist
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/introduction-to-generics

C# Language Specification

See Also

Benefits of Generics

Generic Type Parameters

Constraints on Type Parameters

Generic Classes

Generic Interfaces

Generic Methods

Generic Delegates

Differences Between C++ Templates and C# Generics

Generics and Reflection

Generics in the Run Time

For more information, see the C# Language Specification.

System.Collections.Generic
C# Programming Guide
Types
<typeparam>
<typeparamref>
Generics in .NET

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/benefits-of-generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-delegates
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/differences-between-cpp-templates-and-csharp-generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-and-reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-in-the-run-time
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/typeparam
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/typeparamref
https://docs.microsoft.com/en-us/dotnet/standard/generics/index

Namespaces (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

System.Console.WriteLine("Hello World!");

using System;

Console.WriteLine("Hello");
Console.WriteLine("World!");

namespace SampleNamespace
{
 class SampleClass
 {
 public void SampleMethod()
 {
 System.Console.WriteLine(
 "SampleMethod inside SampleNamespace");
 }
 }
}

Namespaces Overview

C# Language Specification

Namespaces are heavily used in C# programming in two ways. First, the .NET Framework uses namespaces to
organize its many classes, as follows:

System is a namespace and Console is a class in that namespace. The using keyword can be used so that the
complete name is not required, as in the following example:

For more information, see the using Directive.

Second, declaring your own namespaces can help you control the scope of class and method names in larger
programming projects. Use the namespace keyword to declare a namespace, as in the following example:

The name of the namespace must be a valid C# identifier name.

Namespaces have the following properties:

They organize large code projects.
They are delimited by using the . operator.
The using directive obviates the requirement to specify the name of the namespace for every class.
The global namespace is the "root" namespace: global::System will always refer to the .NET System
namespace.

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/namespaces/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/identifier-names
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index

See Also
Using Namespaces
How to: Use the Global Namespace Alias
How to: Use the My Namespace
C# Programming Guide
Identifier names
Namespace Keywords
using Directive
:: Operator
. Operator

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/using-namespaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/how-to-use-the-global-namespace-alias
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/how-to-use-the-my-namespace
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/identifier-names
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/namespace-alias-qualifer
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operator

Nullable types (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

Nullable types are instances of the System.Nullable<T> struct. Nullable types can represent all the values of an
underlying type T , and an additional null value. The underlying type T can be any non-nullable value type. T

cannot be a reference type.

For example, you can assign null or any integer value from Int32.MinValue to Int32.MaxValue to a Nullable<int>

and true, false, or null to a Nullable<bool> .

You use a nullable type when you need to represent the undefined value of an underlying type. A Boolean variable
can have only two values: true and false. There is no "undefined" value. In many programming applications, most
notably database interactions, a variable value can be undefined or missing. For example, a field in a database may
contain the values true or false, or it may contain no value at all. You use a Nullable<bool> type in that case.

Nullable types have the following characteristics:

Nullable types represent value-type variables that can be assigned the null value. You cannot create a
nullable type based on a reference type. (Reference types already support the null value.)

The syntax T? is shorthand for Nullable<T> . The two forms are interchangeable.

Assign a value to a nullable type just as you would for an underlying value type: int? x = 10; or
double? d = 4.108; . You also can assign the null value: int? x = null; .

Use the Nullable<T>.HasValue and Nullable<T>.Value readonly properties to test for null and retrieve the
value, as shown in the following example: if (x.HasValue) y = x.Value;

The HasValue property returns true if the variable contains a value, or false if it's null .

The Value property returns a value if HasValue returns true . Otherwise, an
InvalidOperationException is thrown.

You can also use the == and != operators with a nullable type, as shown in the following example:
if (x != null) y = x.Value; . If a and b are both null, a == b evaluates to true .

Beginning with C# 7.0, you can use pattern matching to both examine and get a value of a nullable type:
if (x is int valueOfX) y = valueOfX; .

The default value of T? is an instance whose HasValue property returns false .

Use the GetValueOrDefault() method to return either the assigned value, or the default value of the
underlying value type if the value of the nullable type is null .

Use the GetValueOrDefault(T) method to return either the assigned value, or the provided default value if
the value of the nullable type is null .

Use the null-coalescing operator, ?? , to assign a value to an underlying type based on a value of the
nullable type: int? x = null; int y = x ?? -1; . In the example, since x is null, the result value of y is -1 .

If a user-defined conversion is defined between two data types, the same conversion can also be used with
the nullable versions of these data types.

Nested nullable types are not allowed. The following line doesn't compile: Nullable<Nullable<int>> n;

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/nullable-types/index.md
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/dotnet/api/system.int32.minvalue
https://docs.microsoft.com/dotnet/api/system.int32.maxvalue
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/true-literal
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/false-literal
https://docs.microsoft.com/dotnet/api/system.nullable-1.hasvalue
https://docs.microsoft.com/dotnet/api/system.nullable-1.value
https://docs.microsoft.com/dotnet/api/system.nullable-1.hasvalue
https://docs.microsoft.com/dotnet/api/system.nullable-1.value
https://docs.microsoft.com/dotnet/api/system.nullable-1.hasvalue
https://docs.microsoft.com/dotnet/api/system.invalidoperationexception
https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching
https://docs.microsoft.com/dotnet/api/system.nullable-1.hasvalue
https://docs.microsoft.com/dotnet/api/system.nullable-1.getvalueordefault#System_Nullable_1_GetValueOrDefault
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table
https://docs.microsoft.com/dotnet/api/system.nullable-1.getvalueordefault#System_Nullable_1_GetValueOrDefault__0_
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator

See Also

For more information, see the Using nullable types and How to: Identify a nullable type topics.

System.Nullable<T>
System.Nullable
?? Operator
C# Programming Guide
C# Guide
C# Reference
Nullable Value Types (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/using-nullable-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/how-to-identify-a-nullable-type
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/dotnet/api/system.nullable
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-coalescing-operator
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types

Unsafe Code and Pointers (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

NOTENOTE

Unsafe Code Overview

Related Sections

C# Language Specification

See Also

To maintain type safety and security, C# does not support pointer arithmetic, by default. However, by using the
unsafe keyword, you can define an unsafe context in which pointers can be used. For more information about
pointers, see the topic Pointer types.

In the common language runtime (CLR), unsafe code is referred to as unverifiable code. Unsafe code in C# is not necessarily
dangerous; it is just code whose safety cannot be verified by the CLR. The CLR will therefore only execute unsafe code if it is in
a fully trusted assembly. If you use unsafe code, it is your responsibility to ensure that your code does not introduce security
risks or pointer errors.

Unsafe code has the following properties:

Methods, types, and code blocks can be defined as unsafe.

In some cases, unsafe code may increase an application's performance by removing array bounds checks.

Unsafe code is required when you call native functions that require pointers.

Using unsafe code introduces security and stability risks.

In order for C# to compile unsafe code, the application must be compiled with /unsafe.

For more information, see:

Pointer types

Fixed Size Buffers

How to: Use Pointers to Copy an Array of Bytes

unsafe

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

C# Programming Guide

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/unsafe-code-pointers/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/pointer-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/unsafe-compiler-option
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/pointer-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/fixed-size-buffers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/how-to-use-pointers-to-copy-an-array-of-bytes
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index

XML Documentation Comments (C# Programming
Guide)
12/11/2018 • 2 minutes to read • Edit Online

/// <summary>
/// This class performs an important function.
/// </summary>
public class MyClass {}

NOTENOTE

In This Section

Related Sections

C# Language Specification

See Also

In Visual C# you can create documentation for your code by including XML elements in special comment fields
(indicated by triple slashes) in the source code directly before the code block to which the comments refer, for
example:

When you compile with the /doc option, the compiler will search for all XML tags in the source code and create an
XML documentation file. To create the final documentation based on the compiler-generated file, you can create a
custom tool or use a tool such as Sandcastle.

To refer to XML elements (for example, your function processes specific XML elements that you want to describe in
an XML documentation comment), you can use the standard quoting mechanism (< and >). To refer to generic
identifiers in code reference (cref) elements, you can use either the escape characters (for example,
cref="List<T>") or braces (cref="List{T}"). As a special case, the compiler parses the braces as angle

brackets to make the documentation comment less cumbersome to author when referring to generic identifiers.

The XML documentation comments are not metadata; they are not included in the compiled assembly and therefore they are
not accessible through reflection.

Recommended Tags for Documentation Comments

Processing the XML File

Delimiters for Documentation Tags

How to: Use the XML Documentation Features

For more information, see:

/doc (Process Documentation Comments)

For more information, see the C# Language Specification. The language specification is the definitive source for C#
syntax and usage.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/xmldoc/xml-documentation-comments.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/doc-compiler-option
https://github.com/EWSoftware/SHFB
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-tags-for-documentation-comments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/processing-the-xml-file
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/delimiters-for-documentation-tags
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/how-to-use-the-xml-documentation-features
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/doc-compiler-option
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index

C# Programming Guide

Exceptions and Exception Handling (C# Programming
Guide)
12/11/2018 • 3 minutes to read • Edit Online

class ExceptionTest
{
 static double SafeDivision(double x, double y)
 {
 if (y == 0)
 throw new System.DivideByZeroException();
 return x / y;
 }
 static void Main()
 {
 // Input for test purposes. Change the values to see
 // exception handling behavior.
 double a = 98, b = 0;
 double result = 0;

 try
 {
 result = SafeDivision(a, b);
 Console.WriteLine("{0} divided by {1} = {2}", a, b, result);
 }
 catch (DivideByZeroException e)
 {
 Console.WriteLine("Attempted divide by zero.");
 }
 }
}

Exceptions Overview

The C# language's exception handling features help you deal with any unexpected or exceptional situations that
occur when a program is running. Exception handling uses the try , catch , and finally keywords to try actions
that may not succeed, to handle failures when you decide that it is reasonable to do so, and to clean up resources
afterward. Exceptions can be generated by the common language runtime (CLR), by the .NET Framework or any
third-party libraries, or by application code. Exceptions are created by using the throw keyword.

In many cases, an exception may be thrown not by a method that your code has called directly, but by another
method further down in the call stack. When this happens, the CLR will unwind the stack, looking for a method
with a catch block for the specific exception type, and it will execute the first such catch block that if finds. If it
finds no appropriate catch block anywhere in the call stack, it will terminate the process and display a message to
the user.

In this example, a method tests for division by zero and catches the error. Without the exception handling, this
program would terminate with a DivideByZeroException was unhandled error.

Exceptions have the following properties:

Exceptions are types that all ultimately derive from System.Exception .

Use a try block around the statements that might throw exceptions.

Once an exception occurs in the try block, the flow of control jumps to the first associated exception

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/exceptions/index.md

Related Sections

C# Language Specification

See Also

handler that is present anywhere in the call stack. In C#, the catch keyword is used to define an exception
handler.

If no exception handler for a given exception is present, the program stops executing with an error message.

Do not catch an exception unless you can handle it and leave the application in a known state. If you catch
System.Exception , rethrow it using the throw keyword at the end of the catch block.

If a catch block defines an exception variable, you can use it to obtain more information about the type of
exception that occurred.

Exceptions can be explicitly generated by a program by using the throw keyword.

Exception objects contain detailed information about the error, such as the state of the call stack and a text
description of the error.

Code in a finally block is executed even if an exception is thrown. Use a finally block to release
resources, for example to close any streams or files that were opened in the try block.

Managed exceptions in the .NET Framework are implemented on top of the Win32 structured exception
handling mechanism. For more information, see Structured Exception Handling (C/C++) and A Crash
Course on the Depths of Win32 Structured Exception Handling.

See the following topics for more information about exceptions and exception handling:

Using Exceptions

Exception Handling

Creating and Throwing Exceptions

Compiler-Generated Exceptions

How to: Handle an Exception Using try/catch (C# Programming Guide)

How to: Execute Cleanup Code Using finally

For more information, see Exceptions in the C# Language Specification. The language specification is the definitive
source for C# syntax and usage.

SystemException
C# Programming Guide
C# Keywords
throw
try-catch
try-finally
try-catch-finally
Exceptions

https://docs.microsoft.com/cpp/cpp/structured-exception-handling-c-cpp
https://bytepointer.com/resources/pietrek_crash_course_depths_of_win32_seh.htm
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/using-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/exception-handling
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/creating-and-throwing-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/compiler-generated-exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/how-to-handle-an-exception-using-try-catch
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/how-to-execute-cleanup-code-using-finally
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/exceptions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/dotnet/api/system.systemexception
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/throw
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-finally
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/try-catch-finally
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/index

File System and the Registry (C# Programming
Guide)
12/11/2018 • 2 minutes to read • Edit Online

In This Section
TITLE DESCRIPTION

How to: Iterate Through a Directory Tree Shows how to manually iterate through a directory tree.

How to: Get Information About Files, Folders, and Drives Shows how to retrieve information such as creation times and
size, about files, folders and drives.

How to: Create a File or Folder Shows how to create a new file or folder.

How to: Copy, Delete, and Move Files and Folders (C#
Programming Guide)

Shows how to copy, delete and move files and folders.

How to: Provide a Progress Dialog Box for File Operations Shows how to display a standard Windows progress dialog for
certain file operations.

How to: Write to a Text File Shows how to write to a text file.

How to: Read From a Text File Shows how to read from a text file.

How to: Read a Text File One Line at a Time Shows how to retrieve text from a file one line at a time.

How to: Create a Key In the Registry Shows how to write a key to the system registry.

Related Sections

The following topics show how to use C# and the .NET Framework to perform various basic operations on files,
folders, and the Registry.

File and Stream I/O

How to: Copy, Delete, and Move Files and Folders (C# Programming Guide)

C# Programming Guide

Files, Folders and Drives

System.IO

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/file-system/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-iterate-through-a-directory-tree
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-get-information-about-files-folders-and-drives
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-create-a-file-or-folder
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-copy-delete-and-move-files-and-folders
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-provide-a-progress-dialog-box-for-file-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-write-to-a-text-file
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-read-from-a-text-file
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-read-a-text-file-one-line-at-a-time
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-create-a-key-in-the-registry
https://docs.microsoft.com/en-us/dotnet/standard/io/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/how-to-copy-delete-and-move-files-and-folders
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/dotnet/api/system.io

Interoperability (C# Programming Guide)
12/11/2018 • 2 minutes to read • Edit Online

In This Section

C# Language Specification

See Also

Interoperability enables you to preserve and take advantage of existing investments in unmanaged code. Code that
runs under the control of the common language runtime (CLR) is called managed code, and code that runs outside
the CLR is called unmanaged code. COM, COM+, C++ components, ActiveX components, and Microsoft Win32
API are examples of unmanaged code.

The .NET Framework enables interoperability with unmanaged code through platform invoke services, the
System.Runtime.InteropServices namespace, C++ interoperability, and COM interoperability (COM interop).

Interoperability Overview
Describes methods to interoperate between C# managed code and unmanaged code.

How to: Access Office Interop Objects by Using Visual C# Features
Describes features that are introduced in Visual C# to facilitate Office programming.

How to: Use Indexed Properties in COM Interop Programming
Describes how to use indexed properties to access COM properties that have parameters.

How to: Use Platform Invoke to Play a Wave File
Describes how to use platform invoke services to play a .wav sound file on the Windows operating system.

Walkthrough: Office Programming
Shows how to create an Excel workbook and a Word document that contains a link to the workbook.

Example COM Class
Demonstrates how to expose a C# class as a COM object.

For more information, see Basic concepts in the C# Language Specification. The language specification is the
definitive source for C# syntax and usage.

Marshal.ReleaseComObject
C# Programming Guide
Interoperating with Unmanaged Code
Walkthrough: Office Programming

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/interop/index.md
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/interoperability-overview
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/how-to-access-office-onterop-objects
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/how-to-use-indexed-properties-in-com-interop-rogramming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/how-to-use-platform-invoke-to-play-a-wave-file
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/walkthrough-office-programming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/example-com-class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshal.releasecomobject
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/framework/interop/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/walkthrough-office-programming

	Cover Page
	C# Programming Guide
	Inside a C# Program
	Main() and Command-Line Arguments
	Programming Concepts
	Statements, Expressions, and Operators
	Types
	Classes and Structs
	Interfaces
	Enumeration Types
	Delegates
	Arrays
	Strings
	Indexers
	Events
	Generics
	Namespaces
	Nullable Types
	Unsafe Code and Pointers
	XML Documentation Comments
	Exceptions and Exception Handling
	File System and the Registry
	Interoperability

