
D
RA
FTCloud Application Development Project Manual

Embry-Riddle MSSA Faculty

January 3, 2019

D
RA
FT

Contents

Preface v

0 Introduction 1
0.1 Overview . 1
0.2 Inception . 1

0.2.1 Preliminary research . 1
0.2.2 Project exploration . 1

0.3 Data . 2
0.3.1 Requirements . 2
0.3.2 Conceptual design . 2
0.3.3 Logical design . 2
0.3.4 Physical design . 2
0.3.5 Implementation . 2
0.3.6 Presentation . 3

0.4 Logic . 3
0.4.1 Requirements . 3
0.4.2 Analysis . 3
0.4.3 Design . 3
0.4.4 Implementation Iteration 1 . 3
0.4.5 Testing . 3
0.4.6 Implementation Iteration 2 . 3
0.4.7 Implementation Iteration 3 . 3

0.5 Final project presentation . 4
0.6 Wrap Up . 4

I Inception 5

1 Project Inception 6
1.1 Preliminary research . 6
1.2 Deliverable . 7
1.3 Version Control . 7
1.4 Markdown . 8

2 Project Selection 9
2.1 Project selection . 9
2.2 Deliverable . 9
2.3 Distributed Version Control . 10
2.4 Markdown . 10

ii

D
RA
FT

CONTENTS CONTENTS

II Data 11

3 Requirements 12
3.1 Introduction to database requirements . 12
3.2 Deliverable . 12
3.3 Software Life Cycle . 12
3.4 Software Development Cycle . 13
3.5 Software Process Models . 13

4 Conceptual Design - Analysis 14
4.1 Conceptual Design . 14
4.2 Deliverable . 14
4.3 Entities . 14

5 Logical Design 16
5.1 Database Logical Design . 16
5.2 Deliverable . 16
5.3 Normalization and integrity constraints . 16
5.4 Thought Exercise . 17

6 Physical Design 18
6.1 Database Physical Design . 18
6.2 Deliverable . 18
6.3 Database objects and constraints . 18

7 Implementation 20

8 Database Presentation 21
8.1 Database Presentation . 21
8.2 Deliverable . 21
8.3 Software Development Cycle . 21
8.4 Object Oriented Development Principles . 22

III Logic 23

9 Requirements 24
9.1 Requirements Phase . 25
9.2 Requirements Gathering . 25
9.3 What is Requirements Elicitation? . 26

9.3.1 What Techniques Can Be Used? . 26
9.3.2 How Should the Information Be Captured? . 27
9.3.3 What Pitfalls Exists? . 27

9.4 Deliverable . 27

10 Analysis 28
10.1 Requirements Analysis . 28
10.2 Deliverable . 29

11 Design 30
11.1 Program Design . 30
11.2 Project design . 31
11.3 Discussion Topics . 31
11.4 Deliverables . 32

Page iii, Revised on January 3, 2019 by Charles Carter

D
RA
FT

CONTENTS CONTENTS

12 Implementation 33
12.1 Program Implementation . 33
12.2 Deliverables . 33

13 Testing 34
13.1 Testing . 34
13.2 Principles of testing . 34
13.3 Test driven development . 34
13.4 Deliverables . 34

14 Interface Design 35
14.1 User Interface Design Process . 35
14.2 User Interface Design Activities . 36
14.3 Deliverable – Prototype . 37

15 placeholder 38
15.1 User Interface Design Process . 38
15.2 Deliverable – Wireframe . 39

IV Final Presentation 40

16 Final Presentation 41
16.1 Project Presentation . 41
16.2 Deliverable . 41

A Installing git 42

B Poor Man’s Console MVC 51
B.1 She Ain’t a Computer Lady . 51
B.2 Gathering Requirements . 51
B.3 Modeling the Domain . 52
B.4 Whats in the Lady’s Head? . 52
B.5 Implementing a Visit Calendar . 52
B.6 Controller . 52
B.7 Model . 53
B.8 View . 53
B.9 Conclusion and Next Steps . 54

Last note 55

Page iv, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Preface

The MSSA curriculum consists of four different technologies. They are:

� C# programming

� T-SQL Query Fundamentals

� ASP.NET MVC web app development

� Azure clould app development

These four technologies give students a real proficiency in cutting edge technology and prepare students
to enter the workforce. However, they make no attempt to teach students how to develop applications. For
example, a real ability to develop applications requires an awareness of the following, among other things:

� the software life cycle

� the software process

� program logic and design

� patterns and object oriented analysis

� version control

� unit testing

The purpose of this project is two fold. First, it gives the students experience in putting their skills to
work creating an application from scratch. Second, it introduces the skills necessary to develop applications
but which are not specifically covered by the curriculum. As a side effect, it allows students to build a
portfolio demonstrating their skills to prospective employers. It in no way attempts comprehensive coverage
of any aspect of application development or software engineering. Instead, it is very much a work in progress
which is designed to introduce students to application development from an integrated perspective.

The project in outline consists of four parts. Part One consists of researching and choosing a project
and making a presentation summarizing their chosen project. Part Two develops a database supporting
their project. Part Three includes the design and implementation of their project. Part Four, the final part,
consists of the project presentation.

v

D
RA
FT

Chapter 0

Introduction

0.1 Overview

The MSSS Cloud Application Development project consists of a project summarized in table 1 and detailed
in this manual. This consists of four phases: inception, data component, logic component, and interface
component. The two purposes of the projects are to (1) give students the opportunity to reflect on what
they are learning and apply the material to a “real world” project, and (2) allow them to construct a portfolio
that they can use for the purpose of gaining employment as an application developer.

0.2 Inception

The first two weeks of the MSSA program will consist of the selection of the project. Students are not
expected to have the technical skills necessary to begin the project, but are expected to have a layman’s
grasp of software applications and an interest in some knowledge domain that they can leverage throughout
their course.

0.2.1 Preliminary research

Students will begin thinking about the kind of project they would want to showcase for their project. They
should list the specific functionalities of their chosen kind of project, and so some preliminary investigation
toward implementing the project. All projects should include a data component, a logical component, and
an interface component. The deliverable should be a five paragraph document listing several specific projects
they would be interested in doing, and a short description of the characteristics of each project. See chapter
1 for more information.

0.2.2 Project exploration

Students will select one project from their list to focus on for their project They should make a formal
investigation of the requirements of the project. If possible, they should identify similar applications that
have been written. There are two deliverables, a written paper‘and an oral presentation (with an optional
slide deck). The project proposal should contain a sufficient description of the project that would allow
construction of the project to begin, including a discussion of the supporting database, the program code,
and the user interface. See chapter 2 for more information.

1

D
RA
FT

0.3. DATA CHAPTER 0. INTRODUCTION

Chapter Phase Topic Deliverables

Ch. 1 Inception Project exploration 5 paragraph writeup
Ch. 2 Inception Project selection an oral and written presentation

Ch. 3 Data Requirements an Information Flow Diagram and requirements list
Ch. 4 Data Database conceptual design Entity Relationship Diagram
Ch. 5 Data Logical design of database logical database diagram
Ch. 6 Data Physical design of database physical database diagram
Ch. 7 Data Implementation SQL source listing
Ch. 8 Data Presentation an oral and written presentation

Ch. 9 Logic Requirements informal requirements list
Ch. 10 Logic Analysis Software Requirements Specification
Ch. 11 Logic Design UML diagrams
Ch. 12 Logic Implementation Iteration 1 C# source listing
Ch. 13 Logic Testing C# source listing
Ch. 14 Logic Implementation Iteration 2 C# source listing
Ch. ?? Logic Implementation Iteration 3 C# source listing

Ch. 16 Final Project Presentation oral and written presentation

Table 1: Project schedule

0.3 Data

This phase concentrates on using persistent data using a relational database (SQL Server). The outcome of
this phase will be a fully functional database.

0.3.1 Requirements

Every database stores data according to some requirements. In this step, students will collect as many of
their data requirements as possible. The deliverable is a simple list of data requirements in a plain text or
Markdown file. The requirements should be as complete and as detailed as possible. See chapter 3 for more
information.

0.3.2 Conceptual design

Students will discover the nature of conceptual database design. The deliverable will be an entity-relationship
diagram (ERD) showing the conceptual design of their project database. See chapter 4 for more information.

0.3.3 Logical design

Students will discover the nature of logical database design. The deliverable will be an database diagram
showing the logical design of their project database. See chapter 5 for more information.

0.3.4 Physical design

Students will discover the nature of physical database design. The deliverable will be an database diagram
showing the physical design of their project database. See chapter 6 for more information.

0.3.5 Implementation

Students will write a SQL source listing implementing their database. The deliverable will be the SQL source
listing. See chapter 7 for more information.

Page 2, Revised on January 3, 2019 by Charles Carter

D
RA
FT

0.4. LOGIC CHAPTER 0. INTRODUCTION

0.3.6 Presentation

Presentation: students will prepare a slide presentation and make an oral presentation of the database to
the class. Deliverables include the slide presentation and (optionally) a video of their oral presentation. See
chapter 8 for more information.

0.4 Logic

The logic component includes the business rules for the application. This should be accessible from a console
interface. It should be a fully functional version of their implemented project.

0.4.1 Requirements

Students will create a list of application requirements. These generally consist of the functional requirements
of their project. This list should be as exhaustiive and complete as possible. The requirements list provides
the foundation of the application, in the sense that you cannot build an appication if you do know know
what kid of appication you are buildin.

0.4.2 Analysis

Students will create a software requirements specification (SRS) of the functional requirements of their
project. (The project does not include non-functional requirements.) The deliverable will be the project
SRS.

0.4.3 Design

Students will create appropriate design artifacts. These will include a class diagram, a component diagram,
a system sequence diagram, and other documents as necessary (e.g., data flow diagrams, state models, etc.)
The deliverable will be a collection of design diagrams.

0.4.4 Implementation Iteration 1

Students will implement the logic component of their project. The deliverable will be the source code listings
of their implementation. These will not include auxilliary files, such as container folders, configuration files,
etc.

0.4.5 Testing

Students will write automated tests for their application using both white box and black box techniques.
All test code should be automated. The deliverable will be the source listiong for the test suite.

0.4.6 Implementation Iteration 2

Students will implement the logic component of their project. The deliverable will be the source code listings
of their implementation. These will not include auxilliary files, such as container folders, configuration files,
etc.

0.4.7 Implementation Iteration 3

Students will implement the logic component of their project. The deliverable will be the source code listings
of their implementation. These will not include auxilliary files, such as container folders, configuration files,
etc.

Page 3, Revised on January 3, 2019 by Charles Carter

D
RA
FT

0.5. FINAL PROJECT PRESENTATION CHAPTER 0. INTRODUCTION

0.5 Final project presentation

Presentation: students will prepare a slide presentation and make an oral presentation of the user interface
to the class. Deliverables include the slide presentation and a video of their oral presentation.

0.6 Wrap Up

The instructor’s obligation throughout the project is to provide guidance for each phase. For example,
during the Data phase, he should discuss the database design process including normal forms and integrity
constraints. During the Logic phase, he should discuss iterative, incremental processes and UML. During
the Interface, he should discuss principles of user interface design.

Instructors should use the project as an opportunity to add value to the curriculum by exposing the
students to topics not expressly included in the curriculum, such as version control, software engineering,
software quality control (testing), security, design patterns, and so on. This should be at the instructor’s
discretion.

The project is a supplement to the official curriculum. As such, it should enhance the student’s experience,
and not detract from it by overloading the student with an amount of work that is impossible to do.
The emphasis is on understanding the topics presented and building a portfolio, not building a completely
functional application.

Page 4, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Part I

Inception

5

D
RA
FT

Chapter 1

Project Inception

1.1 Preliminary research

Students will begin thinking about the kind of project they would want to showcase for their portfolio.
They should think about the specific functionalities of their chosen kind of project, and some preliminary
investigation toward implementing the project. All projects should include a data component and an interface
component. The deliverable should be a document listing several specific projects they would be interested
in doing, and a short description of the characteristics of each project.

You may choose your own project. Here is a list of sample projects for you to consider.

Testing system This is an application for automatic testing, similar to the Microsoft certification tests.
It generates tests, allows students to take the tests, grades the tests, and reports the scores.

School system This may consist of a student module, an instructor module, a curriculum module, and
provides for the assignment of instructors to classes, students to classes, course management, student
management, an d instructor management. As example would be the CSU student information system.

Electronic learning system This may consist of a collection of courses. Each course may allow for tests,
quizzes, exercises, research papers, discussions, etc. As example would be Cougarview.

An auction system. This my consist of a sellers module, a bidders module, a purchase module, and
provide for different kinds of sales (i.e., open bidding, bidding with reserve, buy now, etc.). It would
include user registrations and appropriate databases of auctions, transactions, etc. An example would
be eBay.

Messaging system This would include user registrations, posting messages, sending messages, composing
groups, and similar functionality. An example would be Twitter.

Encyclopedia This would include editor registrations, posting entries, editing entries, search functions,
analytical functions, and similar functionality. An example would be Wikipedia.

Electronic voting system This would include voter registrations, candidate qualification, casting ballots
with appropriate authentication, and calculation of results. An example would be the current voting
system in Georgia.

Networking system This would include user registrations, posting employment data, school data, certi-
fication data, allow the posting of jobs, etc. An example would be LinkedIn.

Online store This would implement the display of merchandise, a shopping cart, a payment module, and
inventory control mechanism, etc. An example would be Amazon.

Database GUI This would implement a graphical front end to a database. Modules would (1) create or
drop databases, (2) create, drop, and alter tables, (3) insert, update, or delete data, and (4) run simple
queries. An example would be TOAD.

6

D
RA
FT

1.2. DELIVERABLE CHAPTER 1. PROJECT INCEPTION

Organization system This might include member registration, a member directory, an event calender,
a newsletter, a photo album, a FAQ, or other functions suitable for organizations. Examples would
include a social organization, a service organization, a band or orchestra, a church, an athletic team,
etc.

Automated teller machine This might include customer authentication, checking account status, accep-
tance of deposits, and dispensing cash.

A strategy game At a minimum, this would consist of a user interface, a data source, and a logic engine
implementing the game rules.

1.2 Deliverable

Your deliverable will be a five paragraph (or more) paper of three or four proposed projects. Your description
of each proposed project should contain enough information so that readers can understand the nature of
the project. You may also give examples of similar, existing implementations.

The format of the paper will eventually use Markdown. For now, please write your paper either in
Markdown or in plain ASCII text with no formatting, perhaps using Notepad++, Microsoft Notepad or a
similar application. In general, your papers should consist of a short introduction, a short conclusion, and a
body containing the substance of your discussion. For this paper, structure it like this:

1. A first paragraph or two as the introduction introducing yourself and stating your personal objectives
for your project.

2. The body of your paper as follows:

(a) A paragraph or two describing your first reviewed project, and how that project will help you
accomplish your personal objectives.

(b) A paragraph or two describing your second reviewed project, and how that project will help you
accomplish your personal objectives.

(c) A paragraph or two describing your third reviewed project, and how that project will help you
accomplish your personal objectives.

(d) (optional) A paragraph or two describing your fourth reviewed project, and how that project will
help you accomplish your personal objectives.

3. A final paragraph or two as the conclusion reflecting on how you will achieve your personal objectives
by building the project.

Your paper should have a title, author, and date. The subdivisions of your paper should have appropriate
section and subsection headings.

1.3 Version Control

The topic for this week will be version using the Git Version Control System. The following will be covered.

� The rationale for version control in software development

� Installation of the Git SCM software

� The command git config for the user name, user email, and core editor

� The command git init

� The command git add with the appropriate arguments

� The command git status

� The command git commit with the appropriate arguments

� The command git log

Page 7, Revised on January 3, 2019 by Charles Carter

D
RA
FT

1.4. MARKDOWN CHAPTER 1. PROJECT INCEPTION

1.4 Markdown

Markdown is a very simple, human readable, formatting system. A Markdown document is a simple text
document, with no binary codes or special formatting instructions. It contains only printable characters,
such as alphabetical characters, punctuation, and digits. The file extension is .md. This is half of all the
Markdown you will need to know. You can pick up the other half just as easily.

� Headings

� Paragraphs

� Itemized lists

� Enumerated lists

� Rules

Page 8, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 2

Project Selection

2.1 Project selection

Students will select one project from their list to focus on for their project They should make a formal
investigation of the requirements of the project. If possible, they should identify similar applications that
have been written. The deliverable is a six to eight paragraph project proposal. The project proposal should
contain a sufficient description of the project that would allow construction of the project to begin.

2.2 Deliverable

You have two deliverabes for this step, an oral presentation and a written paper. Your oral persentation
should be no longer than five minutes, and should cover the same topics as the written paper. It should be
short and succienct, but it should cover all topics adequately. You may use a slide presentation if desired.

Your written deliverable will be a six to eight paragraph discussion of your proposed project. Your
proposal should begin with a short introduction and conclude with a short conclusion. It should include
discussions of the purpose of the software, an overall description of the high-level functional requirements of
the software (that is, what the software will actually do), a survey of the relevant literature available that
will assist you in completing your project, a short discussion of similar software, and a brief discussion of
your project plan. Your writeup is not limited to two pages, and can include other sections that you feel
will help the reader in understanding your proposal.

The format of the paper will eventually use Markdown. For now, please write your paper either in Mark-
down or in plain ASCII text with no formatting, perhaps using Microsoft Notepad or a similar application.
In general, your papers should consist of a short introduction, a short conclusion, and a body containing the
substance of your discussion. For this paper, structure it like this:

1. A first paragraph or two briefly introducing yourself and stating how your chosen project will accomplish
your personal objectives.

2. A paragraph or two describing the data phase of your project. This should include a general description
of the kinds of information your database will contain.

3. A paragraph or two describing the programming phase of your project. This should include a general
description of the processing necessary to accomplish your objectives.

4. A paragraph or two describing the interface your project will present to the users. Focus on the
functionality, not things such as layout, color, font, and so on.

5. A final paragraph or two reflecting on how you will actually go about building your project. This does
not need to be in detail, but a general plan of actiob.

9

D
RA
FT

2.3. DISTRIBUTED VERSION CONTROL CHAPTER 2. PROJECT SELECTION

2.3 Distributed Version Control

The topic for this week will be version control using the Github Distributed remote repository. The following
will be covered.

� The rationale for distributed version control in software development

� Signing up for a Github account

� Creating your first remote repository

� The command git remote add with the appropriate arguments

� The command git remote -v

� The command git push with the appropriate arguments

� a .gitignore file

� a README.md file

2.4 Markdown

Markdown is a very simple, human readable, formatting system. A Markdown document is a simple text
document, with no binary codes or special formatting instructions. It contains only printable characters,
such as alphabetical characters, punctuation, and digits. The file extension is .md. This is half of all the
Markdown you will need to know. You can pick up the other half just as easily.

� Emphasis

� Hyperlinks

� Images

� HTML elements

� Source listings

Page 10, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Part II

Data

11

D
RA
FT

Chapter 3

Requirements

3.1 Introduction to database requirements

The purpose of a database generally is to store data. Databases can be of various kinds, such as a filing
cabinet, a list written on a sheet of paper, a wall of sticky notes, and so on. In this project, we will use
a relational database, also know as a SQL database. A relational database is a mathmatical model of the
world, and as such it is extremely limited. However it has great power, stemming from rigorous mathmatics,
and is enormously popular in the business world.

A database requirements document usually is an extensive document covering a multitude of topics. You
can search the internet for examples, and see a number of different templates. We will not be doing this.
The purpose of the requirements stage in this project is merely to collect a more or less complete list of the
data your project will need to function.

How do you accomplish this task? For an existing project, the developer will review all the paper the
organization collects and see what information those documents contain. For people, information might in-
clude the name, address, ID number, telephone number, username, password, etc. For products, information
might include the product name, the model number, the serial number of individual items, the supplier, the
expiration date, etc. For military units, imformation might include the unit designation, the parent unit,
subordinate units, tables of organization and equipment, etc.

One good way to do this is to go through your project in your mind, exercising all the functionality you
can think of, and write down every single piece of information you will need to exercise than functionality.
If your application is a messaging app, you will need the name and IP address of the sender, the name and
IP address of the reciever, the data and text of the message, etc. For an auction app, you will need the
name and contact information of the seller, the name and contact information of all bidders, the description
of the item, and a way to keep track of the bids. Use your imagination!!! This document will be absolutely
essential in order to complete the next step, the conceptual design.

3.2 Deliverable

Your deliverable can be as simple as a list, composed of sublists divided appropriately, written in Markdown,
and posted to your Github account. If you have the time and energy, you can make it as complete as you
would like, following the template of your choice. The ultimate grading criterion will be the completeness of
your list, not the formality.

3.3 Software Life Cycle

A brief introduction to the software life cycle:

� Inception

� Elaboration

12

D
RA
FT

3.4. SOFTWARE DEVELOPMENT CYCLE CHAPTER 3. REQUIREMENTS

� Construction

� Transition

� Maintenance

� End of life

3.4 Software Development Cycle

A brief introduction to software development workflows:

� Requirements

� Analysis

� Design

� Implementation

� Testing

3.5 Software Process Models

A brief introduction to software process models:

� Incremental development

� Iterative development

� Spiral models

� Waterfall

� Rational Unified Process

� Agile processes

Page 13, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 4

Conceptual Design - Analysis

4.1 Database Conceptual Design

Typically, a database project consists of five or six phases: requirements engineering, conceptual design
(analysis), logical design, physical design, implementation, and testing. For the CAD project, we will only
cover requirements, conceptual design, logical design, physical design, and implementation. We will not
cover requirements engineering generally nor testing. We do not cover the requirements engineerinng phase
because, presumably, since you are your own client/customer, you will already know your requirements. We
do cover testing, but not in the database phase of the project. During the later phases of the project, you
will be able to test your database design and revise it as necessary.

Generally, the conceptual design phase of a database project requires developers to break down the prob-
lem domain into relevant objects, called entities, and identify the relationship between objects. For example,
a school might have courses, teachers, and students: teachers teach courses, students enroll in courses, and
teachers grade students. The entities are TEACHER, STUDENT, and COURSE. The relationships are
TEACH, ENROLL IN, and GRADE.

For this week’s assignment, you will prepare a conceptual design of your project database and create an
entity-relationship diagram. This process requires you to identify the entities that your project deals with
and the relationship between the entities. This process also requires you to identify important attributes
of your entities, and (if necessary) of your relationships. Examples of important attributes for STUDENT
would be ID and NAME, and for COURSE would be CRN and TITLE.

We will also discuss the Dia Diagram Editor, https://sourceforge.net/projects/dia-installer/.

4.2 Deliverable

Your deliverable is an Entity Relationship Diagram (ERD). Your ERD is an image, and you should prepare
it in some graphical format. The preferred format is PDF, but other image formats are acceptable, such as
SVG, JPEG, GIF, PNG, EPS, etc.

4.3 Entities, Relationships, and Attributes

The following topics will be discussed:

� What is conceptual database design

� What is an entity

� What is a weak entity

� What is an entity attribute

� What is a relationship

14

https://sourceforge.net/projects/dia-installer/

D
RA
FT

4.3. ENTITIES CHAPTER 4. CONCEPTUAL DESIGN - ANALYSIS

� What is a relationship type

� What is a relationship degree

� What is a relationship attribute

� What is a candidate key

� What is a super key

Page 15, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 5

Logical Design

5.1 Database Logical Design

Typically, a database project consists of five or six phases: requirements engineering, conceptual design
(analysis), logical design, physical design, implementation, and testing. For the CAD project, we will only
cover requirements, conceptual design, logical design, physical design, and implementation. We will not
cover requirements engineering nor testing. We do not cover the requirements phase because, presumably,
since you are your own client/customer, you will already know your requirements. We do cover testing, but
not in the database phase of the project. During the later phases of the project, you will be able to test your
database design and revise it as necessary.

Generally, the logical design phase of a database project requires developers to decompose the entities
identified by the conceptual design and create a logical schema. This means that the entities become tables
(relations), and the attributes are expanded and identified as fields. During this process, the database is
normalized and integirity constraints are realized. Logical design is much more of an art than a science, and
is notoriously difficult.

For this week’s assignment, you will prepare a logical design of your project database and create a database
diagram. This process requires you to identify the relations (tables), that you normalize your database, and
that you specify all fields (attributes) of your tables.

5.2 Deliverable

Your deliverable is an Database Diagram. Your database diagram is an image, and you should prepare it in
some graphical format. The preferred format is PDF, but other image formats are acceptable, such as SVG,
JPEG, GIF, PNG, EPS, etc.

5.3 Normalization and integrity constraints

The following topics will be discussed:

� What is first normal form

� What is second normal form

� What is third normal form

� What is entity integrity

� What is domain integrity

� What is referential integrity

� What is logical (business) integrity

16

D
RA
FT

5.4. THOUGHT EXERCISE CHAPTER 5. LOGICAL DESIGN

5.4 Thought Exercise

You are given an assignment to build a database that models student enrollments in courses. In your
conceptual design phase, you identify two entities, students and courses, and one relationship, [Students]
Enroll in [Courses]. In your first attempt, you see immediately that your database is not in first
normal form in that multiple students enroll in the same course and multiple students enroll in the same
course. It’s not in second normal form because student attributes do not depend on the course primary key,
and course attributes depend do not on the student primary key. You see that it also (probably) is not in
third normal form because some non-key attributes uniquely identify other non-key attributes.

Complete a logical design of this problem. We will discuss this in class. In my solution to this exercise,
I designed five different tables. You may or may not have the same number of tables in your solution.

Page 17, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 6

Physical Design

6.1 Database Physical Design

Typically, a database project consists of five or six phases: requirements engineering, conceptual design
(analysis), logical design, physical design, implementation, and testing. For the CAD project, we will only
cover conceptual design, logical design, physical design, and implementation. We will not cover requirements
engineering nor testing. We do not cover the requirements phase because, presumably, since you are your
own client/customer, you will already know your requirements. We do cover testing, but not in the database
phase of the project. During the later phases of the project, you will be able to test your database design
and revise it as necessary.

Physical design targets a particular relational database management system, such as SQL Server or
SQLite. Logical designs target an abstract database, but physical designs must be specific to the particular
database system. All elements must be specified, such as the constraints we will discuss. You should be able
to hand your physical design to a SQL programmer, and he should be able to write the implementation code
without reference to anything other than your physical design.

For this week’s assignment, you will prepare a physical design of your project database and create a
database diagram. This process requires you to create tables, create columns, specify

6.2 Deliverable

Your deliverable is a Database Diagram. Your database diagram is an image, and you should prepare it in
some graphical format. The preferred format is PDF, but other image formats are acceptable, such as SVG,
JPEG, GIF, PNG, EPS, etc.

6.3 Database objects and constraints

The following topics will be discussed:

� What is are column level constraints and table level constraints

� What is a primary key

� What is a foreigh key

� What are insert, delete, and update anomolies

� What is a nullability constraint

� What is a uniqueness constraint

� What is a datatype

18

D
RA
FT

6.3. DATABASE OBJECTS AND CONSTRAINTS CHAPTER 6. PHYSICAL DESIGN

� What is an index

� What is an enumeration

� What is a check constraint

Page 19, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 7

Implementation

Database Implementation

Your assignment is to implement the database you designed in your last deliverable. You should create a
new database, define your tables, and fully implement the tables. You should also insert a sufficient amount
of data into your tables to allow for testing, and develop a sufficient number of queries to test your database.

Your deliverable is a SQL file containing your implementation code. You should also deliver a TXT file
containing the results of the execution of your SQL file.

20

D
RA
FT

Chapter 8

Database Presentation

8.1 Database Presentation

For this week’s assignment, you will prepare and deliver a short oral presentation and a written paper. In
your presentation, you should (1) introduce yourself, (2) give a short summary of your project, (3) discuss
the information architecture of your project, and (4) discuss the design and implementation of your database.
You can use the deliverables from the last four weeks as building blocks for your presentation.

8.2 Deliverable

You have two deliverables, one written and one oral. You should first prepare your written presentation. The
format of the paper will use Markdown. Your paper should have a title, author, and date. The subdivisions
of your paper should have appropriate section and subsection headings.

The second deliverable is an oral presentation, This should be short, not more than five minutes. Op-
tionally, you may make a video of your presentation using your compputer. If your laptop did not come with
video software, VSDC is free and works well.

Upload your written presentation to Github. You may upload your video presentation to your project
account in Linkedin or another appropriate platform.

8.3 Software Development Cycle

A brief review to software development workflows:

� Requirements

– requirements engineering

– collaboration with stakeholders

– use cases (user stories)

� Analysis

– functional requirements

– non-functional requirements

– Software Requirements Specification (SRS)

� Design

– Unified Modeling Language (UML)

– static design diagrams

21

D
RA
FT

8.4. OBJECT ORIENTED DEVELOPMENT PRINCIPLESCHAPTER 8. DATABASE PRESENTATION

– dynamic design diagrams

� Implementation

� Testing

8.4 Object Oriented Development Principles

A brief review to software development principles for OOAD:

� Single responsibility principle (SRP): This principle states that software component (function, class or
module) should focus on one unique tasks (have only one responsibility).

� Open/closed principle (OCP): This principle states that software entities should be designed with the
application growth (new code) in mind (be open to extension), but the application growth should
require the smaller amount of changes to the existing code as possible (be closed for modification).

� Liskov substitution principle (LSP): This principle states that we should be able to replace a class in a
program with another class as long as both classes implement the same interface. After replacing the
class no other changes should be required and the program should continue to work as it did originally.

� Interface segregation principle (ISP): This principle states that we should split interfaces which are very
large (general-purpose interfaces) into smaller and more specific ones (many client-specific interfaces)
so that clients will only have to know about the methods that are of interest to them.

� Dependency inversion principle (DIP): This principle states that entities should depend on abstractions
(interfaces) as opposed to depend on concretion (classes).

Page 22, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Part III

Logic

23

D
RA
FT

Chapter 9

Requirements

Figure 9.1: Different views of requirements

With over 70% of project failures being attributed to requirements gathering, why are we still using the
same techniques and expecting different results? Requirements need to be discovered before they can be
gathered and this requires a robust approach to analyzing the business needs.1

1Stieglitz, C. (2012). Beginning at the endrequirements gathering lessons from a flowchart junkie. Paper presented at
PMI Global Congress 2012North America, Vancouver, British Columbia, Canada. Newtown Square, PA: Project Management
Institute.

24

D
RA
FT

9.1. REQUIREMENTS PHASE CHAPTER 9. REQUIREMENTS

9.1 Requirements Phase

The Cloud Application Development Project consists of four parts, an inception part, the database part,
the prgram development (logic) part, and the interface part. All these parts can be considered integral to
software development, but they are approached differently. Last week, we concluded the database portion
of the project. This week, we begin five week looking specifically at programming development. We can call
this software emngineering in a narrow sense.

The discipline of software engineering includes various workflows in building software applications. These
workflows are the same as engineering workflows in other engineering disclipines, such as civil and automotive
engineering. These workflows consists of the following:

� Requirements Gathering

� Requirements Analysis

� Program Design

� Program Implementation

� Application Testing

Software engineers use many different processes, among them waterfall, the Rational Unified Process, and
various agile processes, including Scrum and Kanban. Different processes order and emphasize the workflows
differently, but despite their differences, all processes use the same workflows. The process we will use in
this project is a modified version of Extreme Programming (XP). If you are interested in XP, you can read
about it offline.

9.2 Requirements Gathering

Requirements gathering is probably the most important activity to be performed in delivering an information
solution. There is no one perfect means for identifying and gathering requirements. The most appropriate
methods will vary from project to project. Some commonly used methods include:2

� Interviews

� Storyboarding

� Use cases

� Questionaires

� Brainstorming

� Prototyping

Use cases can be especially valuable since they provide specific scenarios of how the solution is intended
to be used and by whom. These use cases can then provide a direct basis for testing the delivered solution.
Following are some things to keep in mind when gathering requirements:

� Identify and involve a representative set of stakeholders (don’t lose sight of all of the players)

� Seek breadth before depth (get the big picture before deep diving)

� Iterate and clarify (as more requirements surface they will evolve)

� Prioritize (separate the must-haves from the nice-to-haves)

� Use the stakeholder’s terminology (you’re doing an information solution not a technical solution)

2https://its.unl.edu/bestpractices/requirements-gathering

Page 25, Revised on January 3, 2019 by Charles Carter

https://its.unl.edu/bestpractices/requirements-gathering

D
RA
FT

9.3. WHAT IS REQUIREMENTS ELICITATION? CHAPTER 9. REQUIREMENTS

� Employ KISS (keep it simple but be thorough)

� Realize that you will never get a complete set of requirements up-front; some won’t surface until the
stakeholders have pieces of the solution that they can see and touch (be careful of scope creep)

� Remember goals and objectives are not requirements (they are just as important though)

� Requirements and constraints should drive the solution not the other way around

9.3 What is Requirements Elicitation?

Requirements elicitation (also known as Requirements Gathering or Capture) is the process of generating
a list of requirements (functional, system, technical, etc.) from the various stakeholders (customers, users,
vendors, IT staff, etc.) that will be used as the basis for the formal Requirements Definition.

The process is not as straightforward as just asking the stakeholders what they want they system to
do, as in many cases, they are not aware of all the possibilities that exist, and may be limited by their
immersion in the current state. For example asking people in the 19th Century for their requirements for a
self-propelled vehicle, would have just resulted in the specification for a faster horse-drawn carriage rather
than an automobile. Beware the old adage, “it’s everything I asked for, but not what I need”!3

9.3.1 What Techniques Can Be Used?

Interviews - These are an invaluable tool at the beginning of the process for getting background information
on the business problems and understanding a current-world perspective of what the system being
proposed needs to do. You need to make sure that your interviews cover a diverse cross-section of
different stakeholders, so that the requirements are not skewed towards one particular function or area.

Questionnaires - One of the challenges with interviews is that you will only get the information that
the person is consciously aware of. Sometimes there are latent requirements and features that are
better obtained through questionnaires. By using carefully chosen, probing questions (based on the
information captured in prior interviews), you can drill-down on specific areas that the stakeholders
don’t know are important, but can be critical to the eventual design of the system.

User Observation - One of the best ways to determine the features of a system, that does not result in
“paving the cowpath” (i.e. building a slightly improved version of the current state) is to observe
users actually performing their daily tasks, and ideally recording the actions and activities that take
place. By understanding the holistic context of how they perform the tasks, you can write requirements
that will reinvent the processes rather than just automating them, and will ensure that usability is
paramount.

Workshops - Once you have the broad set of potential requirements defined, you will need to reconcile
divergent opinions and contrasting views to ensure that the system will meet the needs of all users and
not just the most vocal group. Workshops are a crucial tool that can be used to validate the initial
requirements, generate additional detail, gain consensus and capture the constraining assumptions.

Brainstorming - This is a powerful activity, which can be performed either in the context of a workshow
or on its own. By considering different parts of the system and considering “what-if” scenarios, or
“blue-sky” ideas, you can break out of the context of the current-state and consider visionary ideas for
the future. Tools such as whiteboards or mind-mapping software can be very helpful in this phase.

Role Playing - In situations where the requirements depend heavily on different types of user, formal role-
playing (where different people take on the roles of different users in the system/process) can be a good
way of understanding how the different parts of the system need to work to support the integrated
processes (e.g in an ERP system).

3https://www.inflectra.com/ideas/topic/requirements-gathering.aspx

Page 26, Revised on January 3, 2019 by Charles Carter

https://www.inflectra.com/ideas/topic/requirements-gathering.aspx

D
RA
FT

9.4. DELIVERABLE CHAPTER 9. REQUIREMENTS

Use Cases and Scenarios - Once you have the high-level functional requirements defined, it is useful to
develop different use-cases and scenarios that can be used to validate the functionality in different
situations, and to discover any special exception or boundary cases that need to be considered.

Prototyping - There is truth to the saying ”I don’t know what I want, but I know that I don’t want that!”.
Often stakeholders won’t have a clear idea about what the requirements are, but if you put together
several different prototypes of what the future could be, they will know which parts they like. You can
then synthesize the different favored parts of the prototypes to reverse-engineer the requirements.

9.3.2 How Should the Information Be Captured?

There are many different ways to capture the information, from a simple Word document, spreadsheet or
presentation to sophisticated modelling diagrams. We recommend that the initial high-level brainstorming
and requirements discovery be done on a whiteboard to foster collaboration. Once the initial ideas have
crystallized, we recommend using a formal Requirements Management System to record the information
from the whiteboard and drill-down the functional requirements in smaller focus-groups to arrive at the
use-cases and system requirements.

9.3.3 What Pitfalls Exists?

The biggest risk is that by asking existing users or stakeholders to help define the requirements, you will
get a requirements specification that is unduly influenced by the current ways of doing business. Therefore
we recommend that you ensure that sufficient third-party research into industry-wide trends and usability
research (e.g. observation) is done to ensure that the requirements take into account future opportunities as
well as current problems.

9.4 Deliverable

Your deliverable will be a document detailing several use case stories for your project. Your document will
be written using markdown and posted to your Github account. You may also submit use case diagrams
but these are optional.

For further information on use cases, see the following:

� https://www.usability.gov/how-to-and-tools/methods/use-cases.html

� http://www.gatherspace.com/static/use_case_example.html

� https://www.uml-diagrams.org/use-case-diagrams-examples.html

� http://tynerblain.com/blog/2007/04/09/sample-use-case-example/

Page 27, Revised on January 3, 2019 by Charles Carter

https://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.gatherspace.com/static/use_case_example.html
https://www.uml-diagrams.org/use-case-diagrams-examples.html
http://tynerblain.com/blog/2007/04/09/sample-use-case-example/

D
RA
FT

Chapter 10

Analysis

10.1 Requirements Analysis

The discipline of software engineering includes various workflows in building software applications. These
workflows are the same as engineering workflows in other engineering disclipines, such as civil and automotive
engineering. These workflows consists of the following:

� Requirements Gathering

� Requirements Analysis

� Program Design

� Program Implementation

� Application Testing

Software engineers use many different processes, among them waterfall, the Rational Unified Process, and
various agile processes, including Scrum and Kanban. Different processes order and emphasize the workflows
differently, but despite their differences, all processes use the same workflows. Ideally, in this course we would
use an iterative, incremental process, but unfortunately, 18 weeks is too short to do that. The process we will
use in this project is a waterfall process. That is, we start ot the “top” of the waterfall with requirements ,
and “fall” down through analysis, design, implementation, and testing.

In the last step, we looked at the requirements workflow. In gathering requirements, developers try
to understand the tasks that the application is to model. Developers engage in many different kinds of
activities, such as reviewing paper files and other business documents, interviews with employees and other
stakeholders, observation, and so on. The object of the requirements phase is to discover what it is that
the software should actually do. The requirements workflow is incredibly important. After all, how can you
build an application if you do not know what it will do? In fact, the largest number of software defects are
failures in requirements. We build error-prone software because we fail to understand what it’s supposed to
do.

In ths step, we will do the analysis workflow. The object of analysis is to develop a software requirements
specification (SRS) from the requirements. A SRS is a formal written document that derives directly from
the requirements and addressed to software designers. Generally, requirements can be seen as functional and
non-functional requirements. Functional requirements consist of discrete objectives stating exactly what
the software will do. Non-functional requirements consist of other requirements, such as machine capability,
availability and uptime, GUI requirements, and other requirements that are necessary for the software to
perform but do not describe the functions that the software should perform. In this project, we will only
consider fumctional requirements.

We will base our discussion on IEEE Std 830-1998, IEEE Recommended Practice for Software Require-
ments Specifications, June 25, 1998. This document has been superseded, but purchase is required for the
current version. You can find copies of Std 830-1998 freely available. From the introduction of Std 830-1998:

28

D
RA
FT

10.2. DELIVERABLE CHAPTER 10. ANALYSIS

This recommended practice describes recommended approaches for the specification of software
requirements. It is based on a model in which the result of the software requirements specication
process is an unambiguous and complete specification document. It should help

1. Software customers to accurately describe what they wish to obtain;

2. Software suppliers to understand exactly what the customer wants;

3. Individuals to accomplish the following goals:

(a) Develop a standard software requirements specification (SRS) outline for their own or-
ganizations;

(b) Define the format and content of their specific software requirements specifications;

(c) Develop additional local supporting items such as an SRS quality checklist, or an SRS
writer’s handbook.

We will focus our study on sections 4.3, Characteristics of a good SRS, and 5.3, Specific requirements (Section
3 of the SRS). Section 4.3 sets forth the charictics of a good SRS. An SRS should be

a) Correct;

b) Unambiguous;

c) Complete;

d) Consistent;

e) Ranked for importance and/or stability;

f) Veriable;

g) Modiable;

h) Traceable.

Section 5.3 sets forth the specific requirements of an SRS, covering:

a) Specific requirements should be stated in conformance with all the characteristics described in 4.3.

b) Specific requirements should be cross-referenced to earlier documents that relate.

c) All requirements should be uniquely identiable.

d) Careful attention should be given to organizing the requirements to maximize readability

Specific requirements include external interfaces, functions, performance requirements, logical database
requirements, design constraints, standards compliance, software system attributes, reliability, availability,
security, maintainability, portability, organization, modes, user classes, objects, features, stimuli, response,
and hierarchy. For this class, we will focus primarily on functions, user classes, and objects.

10.2 Deliverable

You deliverable is a formal SRS, written using Markdown formatting. You should upload your SRS to your
project account in Github.

Page 29, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 11

Design

11.1 Program Design

The discipline of software engineering includes various workflows in building software applications. These
workflows are the same as engineering workflows in other engineering disclipines, such as civil and automotive
engineering. These workflows consists of the following:

� Requirements Gathering

� Requirements Analysis

� Program Design

� Program Implementation

� Application Testing

For this deliverable, we will focus on software design. The design of software is by far the most difficult
phase of software development. It’s equal parts both science and art. This can be seen in the development
of various programming paradigms since the advent of stored program computers. Programming paradigms
include procedural (imperative) programming, functional programming, object oriented programming, event
driven programming, declarative programming, and many others. In this class, we will focus only on object
oriented programming.

The object of software design is to develop a series of design documents, software design descriptions
(Software Design Descriptions) from the software requirements specification (SRS). Design documents can
take various forms — for our purposes we will use graphics as design documents. We will will focus on the
Unified Modeling Language (UML) documents, with one exception. We will base our discussion on IEEE Std
1016-2009, IEEE Standard for Information Technology — Systems Design — Software Design Descriptions,
July 20, 2009. This document has been superseded, but purchase is required for the current version. You
can find copies of Std 1016-2009 freely available. From the introduction:

SDDs play a pivotal role in the development and maintenance of software systems. During
its lifetime, an SDD is used by acquirers, project managers, quality assurance staff, configuration
managers, software designers, programmers, testers, and maintainers. Each of these stakehold-
ers has unique needs, both in terms of required design information and optimal organization of
that information. Hence, a design description contains the design information needed by those
stakeholders. . . . The standard specifies that an SDD be organized into a number of design
views. Each view addresses a specific set of design concerns of the stakeholders. Each design view
is prescribed by a design viewpoint. A viewpoint identifies the design concerns to be focused upon
within its view and selects the design languages used to record that design view. The standard
establishes a common set of viewpoints for design views, as a starting point for the preparation
of an SDD, and a generic capability for defining new design viewpoints thereby expanding the
expressiveness of an SDD for its stakeholders.

30

D
RA
FT

11.2. PROJECT DESIGN CHAPTER 11. DESIGN

We will focus our study on section 5, Design Viewpoints.

1. Introduction

2. Context viewpoint

3. Composition viewpoint

4. Logical viewpoint

5. Dependency viewpoint

6. Information viewpoint

7. Patterns use viewpoint

8. Interface viewpoint

9. Structure viewpoint

10. Interaction viewpoint

11. State dynamics viewpoint

12. Algorithm viewpoint

13. Resource viewpoint

11.2 Project design

In this project, we have several predetermined design constraints. The most important is that of object
oriented anaysis and design. We are using a object-oriented language, C#, and this fact alone dictates
that we use object-oriented techniques and principles in building the application. Almost as important is
that of the model-view-controller design pattern. The use of design patterns is essential for object oriented
technology.1

In your design, you will have three kinds of classes: Model classes, which represent the data used by
ytour application, View classes, which represent user iteraction, and Controller classes, which represent the
program logic and business rules. To simplify building the project, we will start by building a very simple
console application. As we progress, you will use ASP.NET to build an application with a graphical usr
interface. For an example of a simple console application implementing MVC, please see appendix B.

11.3 Discussion Topics

Theoretically, one team composes the SRS and hands it off to the design team. The design team (in
theory) works only from the SRS and creates a series of design documents. The design team hands the
design documents off to the implementation, which implements the software working only from the design
documents. The design team thus has a double responsibility: it must decompose the software requirements
into a set of drawings (and other documents) that completely express all the functional requirements, and it
must prepare the SDD so that it may be implemented completely and unambiguously. Needless to say, this
is a very difficult task.

We will discuss three of the most used programming paradigms in use today, procedural (imperative)
programming, functional programming, and object oriented programming. We will look at the different ways
they express delivering instructions to the computer, their advantages, and their differences.

We will discuss four kinds of UML diagrams: (1) class diagrams, (2) state diagrams, (3) system sequence
diagrams, and (4) component diagrams. We will also discuss data flow diagrams (DFD), which are not part
of UML.

1The “bible” of design patterns is Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, John Vlissides, Ralph Johnson. At some point in your career as a developer, you will read this book.

Page 31, Revised on January 3, 2019 by Charles Carter

D
RA
FT

11.4. DELIVERABLES CHAPTER 11. DESIGN

11.4 Deliverables

You deliverable is a set of images in PDF format, including a class diagram, a state diagram, and a component
diagram.

Page 32, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 12

Implementation

12.1 Program Implementation

Working from your design, you will implement a significant subset of your project. Your implementation
should focus primarily on the data component and the processing component. We will focus on user interfaces
during the last phase of the project.

In order to simplify the project, we will not address a graphical user inter-
face in this phase. You application must be built as a console application.
In the next phase, we will adapt your project to a graphical user interface
using the MVC design pattern.

It is commonly said that a graphical user interface contributes 80 percent of the complexity to an appli-
cation, but only 20 percent of the functionality. You will experience this as you begin to develop graphical
applications. However, this course is not a user interface design course, but an application development
course. As such, it’s essential to focus obn functionality. Graphical user interfaces are important, but
functionality is much more important.

12.2 Deliverables

Your assignment is to implement a subset of the requirements you have previously identified. You are not
expected to implement the entire project. You deliverable is a set of C# class files.

33

D
RA
FT

Chapter 13

Testing

13.1 Testing

For this deliverable, we will focus on application testing. We will survey the following topics

1. unit tests

2. integration tests

3. regression tests

4. acceptance tests

Perhaps the key concept is this: Testing is not complete until it is automated. We will consider primarily
usit tests, how you should conduct unit tests, and how you should automate unit tests.

13.2 Principles of testing

Discussion text to be added.

13.3 Test driven development

Discussion text to be added.

13.4 Deliverables

You deliverable is a set of C# class files implementing a serieso of automated tests.

34

D
RA
FT

Chapter 14

Interface Design

14.1 User Interface Design Process

The design process for user interfaces is somewhat similar to the design process for applications. In both cases,
developers must identify requirements, define a requirements specification, design the interface, implement
the interface, and test the interface. However, the work of a design engineer depends a great deal on graphical
design skills, and most developers of user interfaces have much more in common with graphical artists than
software developers. This week, we will consider the process of user interface design. Next week we will con
sider the principles of interface design.

The user interface design process may be broken down into the following phases. As with software
development processes, developers have different development models. However, all models include these
phases:

� requirements engineering

� requirements analysis

� information architecture design

� construction of wireframes

� construction of prototypes

� implmentation

� testing

For this project, we will combine the wireframe, a prototype, and mockup steps. Next week, we will
implement the user interface. Presumably, since this is your project, you have a pretty concrete idea about
the requirements of the interface and the information architecture.

A graphical user interface denotes a human-computer interface (HCI), whereby humans give commands
to computers by means of a point-and-click mechanism rather than by typing commands into a command
prompt. The interface works by translating the actions of the human into commands that the application
recognizes. This is an important point that cannot be missed: a graphical interface is only another means
of issueing commands to a computer. As such, it cannot do more that the API of the software provides, and
typically provides far less.

What is a wireframe? A wireframe is a model containing the essential elements of a system, with all
external characteristics as to style and color removed. The wireframe represents the functionality of a system.
For example, a wireframe of a new model of an automobile is just, literally, a “wire frame.” We can see
the engine compartment, the passenger compartment, the cargo compartment, the engine, transmission, and
steering components, and the shape and size of the car. We can’t see the exterior features, design elements,

35

D
RA
FT

14.2. USER INTERFACE DESIGN ACTIVITIES CHAPTER 14. INTERFACE DESIGN

color, etc. In the same way, a wireframe of a user interface contains just the basics, with nothing to distract
the developers. The function of the wireframe is simply to nail down the kinds of controls the interface
contains. Many times, wireframes of user interfaces are realized by images: drawings, photographs, or other
pictorial representations.

What is a prototype? A prototype can be though of as a wireframe with actions. The controls “work”
in some sense. Users can type text into textboxes, select items from a drop down list, select files from a file
explorer, push radio buttons, click submit buttons, etc. The purpose of a prototype is the exploration of the
kinds of actions a user makes with the interface. Prototypes are usually realized by code that compiles and
runs, but does not interact with any system. As example might be an HTML file that can be opened in a
browser, that the user can explore, but that does not actually do anything.

What is a mockup? A mockup can be thought of as a prototype with style and design. What are the
colors used? What fonts wil be used? What font sizes will the textual elements be? How will the interface
be laid out? What are the accessibility issues? Mockups are generally realized by image files.

14.2 User Interface Design Activities

Users, UX and context

� identification of ways of the products application

� identification of the general target audiences (TA) attributes

� identification of usability goals of the TA

� identification of users roles vs. goals, ranking of goals importance for users

� identification of functionality options necessary for meeting TA goals and objectives; ranking of func-
tionality attributes dependant on how well they help to reach goals

� comparative analysis of functionality and content vs. competitors products

� consideration of business and functionality-related limitations

� choice of the optimal products interfaces enabling to reach the key business goals of the project

The final document: usability analysis outlining potential user capabilities of the product vs. The initial
business and functional requirements and limitations

Navigation and structure

� designing scenarios outlining the user-product interaction in order to reach the goals (applicable to the
chosen interface options and user roles)

� ranking of scenarios by importance, relying on usage frequency and users roles

� development of the information architecture and structure and navigation interface design providing
optimal functionality, content and user interaction scenarios

The final document: the UI-structure outlining the pattern of products interface and the path the user
follows while browsing the website (in accordance with the user scenarios and roles)

Layout design

� layout design of the structures pages, which are to feature on a screen. Such design meets requirements
towards navigation, functional, graphic and text elements of the screen forms of the pages. The
requirements in question, in their turn, meet the standards of usability checklists

The final document: the UI-design featuring a catalogue of the key screen interface forms and requirements
to location, priority, form and content of information, graphical and functional elements

Page 36, Revised on January 3, 2019 by Charles Carter

D
RA
FT

14.3. DELIVERABLE – PROTOTYPE CHAPTER 14. INTERFACE DESIGN

Visual interface design

� designing of creative visual elements of the interface to meet the brand-book standards and the corpo-
rate identity. This includes: style, color, fonts, graphic solutions (read more...)

� design of association icons and graphic symbols

� general design of the key screen forms of the key screen forms of the compositional design

The final document: the GUI-design outlining visual standards of information, graphic and functional inter-
face elements

Preparing of prototype

� creation of interactive model of the product enabling to make a full-scale investigation and evaluate
the products usability, since the prototype fully imitates the future product (read more...)

The final document: the products prototype, which fully reflects features and usability of the future product
(in terms of the user interface)

User testing

� recruitment of respondents

� the research set-up (defining of the research hypothesis, design of user scenarios etc.)

� conduction of testing and recording of the results

� the results analysis

� provision of report with recommendations on the way to eliminate weak points and problem zones

The final document: report on user testing

UI Specification

� preparation of the document User Interface Specification outlining standards of the structural, compo-
sitional and visual design of the product taking into account recommendations based on the usability
testing results

� revision of the prototype relying on recommendations based on usability testing

The final document: Specification of the products UI

14.3 Deliverable – Prototype

You deliverable is a set of source files representing views of each functionality your application will provide
to the user. These files may be C# files, .cshtml files, or plain HTML files.

Page 37, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Chapter 15

placeholder

15.1 User Interface Design Process

The design process for user interfaces is somewhat similar to the design process for applications. In both cases,
developers must identify requirements, define a requirements specification, design the interface, implement
the interface, and test the interface. However, the work of a design engineer depends a great deal on graphical
design skills, and most developers of user interfaces have much more in common with graphical artists than
software developers. This week, we will consider the process of user interface design. Next week we will con
sider the principles of interface design.

The user interface design process may be broken down into the following phases. As with software
development processes, developers have different development models. However, all models include these
phases:

� requirements engineering

� requirements analysis

� information architecture design

� construction of wireframes

� construction of prototypes‘

� implmentation

� testing

For this project, we will only work through a wireframe, a prototype, a mockup, and the implementation
phase. Presumably, since this is your project, you have a pretty concrete idea about the requirements of the
interface and the information architecture.

A graphical user interface denotes a human-computer interface (HCI), whereby humans give commands
to computers by means of a point-and-click mechanism rather than by typing commands into a command
prompt. The interface works by translating the actions of the human into commands that the application
recognizes. This is an important point that cannot be missed: a graphical interface is only another means
of issueing commands to a computer. As such, it cannot do more that the API of the software provides, and
typically provides far less.

What is a wireframe? A wireframe is a model containing the essential elements of a system, with all
external characteristics as to style and color removed. The wireframe represents the functionality of a system.
For example, a wireframe of a new model of an automobile is just, literally, a “wire frame.” We can see
the engine compartment, the passenger compartment, the cargo compartment, the engine, transmission, and
steering components, and the shape and size of the car. We can’t see the exterior features, design elements,

38

D
RA
FT

15.2. DELIVERABLE – WIREFRAME CHAPTER 15. PLACEHOLDER

color, etc. In the same way, a wireframe of a user interface contains just the basics, with nothing to distract
the developers. The function of the wireframe is simply to nail down the kinds of controls the interface
contains. Many times, wireframes of user interfaces are realized by images: drawings, photographs, or other
pictorial representations.

What is a prototype? A prototype can be though of as a wireframe with actions. The controls “workj”
in some sense. Users can type text into textboxes, select items from a drop down list, select files from a file
explorer, push radio buttons, click submit buttons, etc. The purpose of a prototype is the exploration of the
kinds of actions a user makes with the interface. Prototypes are usually realized by code that compiles and
runs, but does not interact with any system. As example might be an HTML file that can be opened in a
browser, that the user can explore, but that does not actually do anything.

What is a mockup? A mockup can be thought of as a prototype with style and design. What are the
colors used? What fonts wil be used? What font sizes will the textual elements be? How will the interface
be laid out? What are the accessibility issues? Mockups are generally realized by image files.

15.2 Deliverable – Wireframe

You deliverable is a set of image files representing a wireframe of each functionality your application will
provide to the user. For example, if your application provides secure access, you might have (1) a splash
page), (2) a new user registration page, (3) a user login page, and (4) a home page for logged in users. You
may also include pages for recovery of usernames, the resetting of passwords, etc. If your application is
an e-commerce application, your wireframe might depict a product listing (without product information, of
course).

Page 39, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Part IV

Final Presentation

40

D
RA
FT

Chapter 16

Final Presentation

16.1 Project Presentation

For this week’s assignment, you will prepare and deliveer an oral presentation and a written presentation. In
your presentation, you should (1) introduce yourself, (2) give a short summary of your project, (3) discuss the
implementation of your project from a layered point of view, i.e., data, business rules, and user interface, (4)
discuss the process you used in building your application, and (5) conclude your presentation in any manner
you deem suitable. Remember, this presentation is the capstone of your project, and will be the presentation
prospective employers will pay the most attention to. You should do your best to present yourself and your
project in the most favorable light possible.

16.2 Deliverable

You have two deliverables, one written and one oral. You should first prepare your written presentation. The
format of the paper will use Markdown. Your paper should have a title, author, and date. The subdivisions
of your paper should have appropriate section and subsection headings. You should upload both your written
presentation to your project account in Github.

The second deliverable is an oral presentation. This will be assessed as a major part of your fial project
grade.

41

D
RA
FT

Appendix A

Installing git

This will contain instructions to install the git version control system.

Figure A.1:

42

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.2:

Figure A.3:

Page 43, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.4:

Figure A.5:

Page 44, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.6:

Figure A.7:

Page 45, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.8:

Figure A.9:

Page 46, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.10:

Figure A.11:

Page 47, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.12:

Figure A.13:

Page 48, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.14:

Figure A.15:

Page 49, Revised on January 3, 2019 by Charles Carter

D
RA
FT

APPENDIX A. INSTALLING GIT

Figure A.16:

Figure A.17:

Page 50, Revised on January 3, 2019 by Charles Carter

D
RA
FT

Appendix B

Poor Man’s Console MVC

by Grzegorz Ziemonski,
Apr. 21, 2017,
Source: https://dzone.com/articles/poor-mans-console-mvc
Note: This implementation uses the Java programming language, not C#.

As MVC has gotten more muddled, it’s important to remember that there should be a clear connection
between controllers and concepts.

After two posts of pure theory about the MVC Pattern Language, I was looking to provide some practical
examples. The technical part is easy everybody already knows how to implement that in various ways, but
I couldnt figure out how to show the whole mental models part of it. In the end, I came up with what follows
an MVC Pet Clinic in the console!

As we learned in the previous posts, on the idea level, MVC is most concerned with understanding the
users way of thinking. Therefore, we wont jump straight into code here. Instead, well visit a real pet clinic
on the outskirts of your town and watch our user at work.

B.1 She Ain’t a Computer Lady

The clinic that hired you is actually a small office that consists of a few rooms, the most important being
the visiting room. The old lady that runs the place has no computer at the moment and you keep wondering
why does she want to pay so much money for dedicated software. After a while, you conclude that this is
exactly the kind of person who needs a dedicated piece of software. If you tried to give her the Springs Pet
Clinic and call it a day, she’d be totally lost in it. You need to create a habitable environment for her, as
she’ll be learning both using the computer and your program at the same time.

B.2 Gathering Requirements

Instead of acting like an idiot and asking the old lady for the requirements directly, you sit quietly and watch
her work for a few hours. This gives you a pretty good idea of her workflow.

She keeps track of all her visits inside a calendar. When somebody calls to schedule a visit, she asks
about the persons name, pet names and preferred visit time. Then, when both sides agree on the time of
the visit, she notes it down in her calendar.

When the visit time comes, the old lady takes out pets files, which contain all important information
about their health history. Then she takes care of the pet itself. Not much interesting stuff here. She makes
the same youre so lovely face every time and solves all kinds of problems from a pet being actually sick
to being moody and not wanting to play with its owner (sigh). After she finishes the care-taking stuff,
she sits down and writes a short summary of the visit. The summary consists of two parts course and
recommendations. She always writes down two copies one for the owner and one to put in the pets file.

51

https://dzone.com/articles/poor-mans-console-mvc

D
RA
FT

B.3. MODELING THE DOMAIN APPENDIX B. POOR MAN’S CONSOLE MVC

B.3 Modeling the Domain

You tried talking to the woman about the veterinary domain but it seems that talking to her about abstract
terms and relationships is as productive as talking with you about Malaysian poetry of the 19th century.
Luckily, the concepts behind scheduling a visit seem easy enough to create the first prototype without
creating an advanced domain model. You start off with something like this:

B.4 Whats in the Lady’s Head?

As we said before, simply creating a CRUD for visits, pets, and owners is not enough. We want better than
this. Therefore, we have to look for things that will make the user instantly familiar with our software;
something that improves his workflow instead of completely turning it around. In the case of our vet lady,
these things would be the visit calendar and the pet files.

The physical calendar that the lady uses looks like a big notebook in which every two pages represent a
single week. When a visit is scheduled, she notes things down using a specific format: hour goes first, then
the owners name and the pets in the end.

The pet files are cardboard folders containing all of the summaries from the previous visits and occasion-
ally some other medical documentation. The old lady keeps them in a desks locker, sorted alphabetically so
that she can find the right one faster when the visit starts.

B.5 Implementing a Visit Calendar

The visit calendar will become a business object in our system. Since there will be quite a lot console
printing and input parsing, well separate it into the famous MVC triplet: model, view, and controller. This
triplet should work together to give the lady a feeling that shes working with her old calendar, just that the
calendar is now computerized. Therefore, well keep the weekly grouping of visits and allow her to switch
the weeks like shed be flipping pages in her old calendar. Well also print the visit information in a format
similar to the one she used in her old calendar. I did some basic implementation, lets take a look at it.

B.6 Controller

So far our controller recognizes three commands: next and previous, which change the calendars week, and
add, which allows for adding a visit to the calendar:

Listing B.1: The Controller

1 public class VisitCalendarController implements Controller {
2 // field, c-tor
3 public boolean execute(String command) {
4 if ("next".equals(command)) {
5 visitCalendar.nextWeek();
6 return true;
7 }
8 if ("previous".equals(command)) {
9 visitCalendar.previousWeek();

10 return true;
11 }
12 if (command.startsWith("add")) {
13 parseAdd(command);
14 return true;
15 }
16 return false;
17 }
18 // parseAdd method
19 }

Page 52, Revised on January 3, 2019 by Charles Carter

D
RA
FT

B.7. MODEL APPENDIX B. POOR MAN’S CONSOLE MVC

B.7 Model

The model is responsible for holding the information about the currently selected week and allows manipu-
lating the underlying visits. By the means of changed() method, it lets the view know whenever something
changes in the calendar:

Listing B.2: The Model

1 public class VisitCalendar extends Model {
2 static final DayOfWeek[] OPEN_DAYS = {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

};
3 private Week currentWeek;
4 private Visits visits;
5 // c-tor
6 Week getCurrentWeek() {
7 return currentWeek;
8 }
9 void nextWeek() {

10 this.currentWeek = currentWeek.next();
11 changed();
12 }
13 void previousWeek() {
14 this.currentWeek = currentWeek.previous();
15 changed();
16 }
17 List<Visit> visitsOn(DayOfWeek day) {
18 return visits.on(currentWeek.get(day));
19 }
20 void addVisit(DayOfWeek dayOfWeek, LocalTime time, String ownerName, String[] petNames) {
21 // stuff
22 changed();
23 }
24 }

B.8 View

The view displays weekly visits in a format similar to the one already used by the vet lady and accepts users
commands:

Listing B.3: The View

1 public class VisitCalendarView implements View {
2 // fields, c-tor
3 public void modelChanged() {
4 show();
5 }
6 public void show() {
7 show(visitCalendar.getCurrentWeek());
8 for (DayOfWeek day : VisitCalendar.OPEN_DAYS)
9 show(day);

10 askForCommand();
11 }
12 private void show(Week week) {
13 System.out.println(week.getStart() + " - " + week.getEnd());
14 }
15 private void show(DayOfWeek day) {
16 System.out.println(day + ":");
17 show(visitCalendar.visitsOn(day));
18 }
19 private void show(List<Visit> visitsOnDay) {
20 if (visitsOnDay.isEmpty()) {
21 System.out.println("No visits!");
22 } else {
23 visitsOnDay.forEach(this::show);
24 }

Page 53, Revised on January 3, 2019 by Charles Carter

D
RA
FT

B.9. CONCLUSION AND NEXT STEPS APPENDIX B. POOR MAN’S CONSOLE MVC

25 }
26 private void show(Visit visit) {
27 System.out.println(visit.getTime() + ": " + visit.getOwnerName());
28 System.out.println("Pets: " + visit.getPetNames());
29 }
30 private void askForCommand() {
31 try (Scanner scanner = new Scanner(System.in)) {
32 String command;
33 do {
34 command = scanner.nextLine();
35 } while (!controller.execute(command));
36 }
37 }
38 }

B.9 Conclusion and Next Steps

Thats everything I did in this prototype so far. The whole source code is available here.1 As you probably
noticed, theres no technical rocket science in there and not even any new concept at the first glance. I think
the most important thing about this example is that the user is communicating directly with the business
objects. Shes not talking to some generic VisitController, which talks to some generic VisitService. Instead,
were exposing her to communication with an object she already knows the VisitCalendar.

In the next post, I’ll try to move our visit calendar to the web and we’ll see how the concept of business
objects plays with so-called Web MVC frameworks like Spring MVC. If I have enough time (which is unlikely,
but possible), I’ll try to add the second business object to the system the pet files. Obviously, if someone
from the readership wants to try their strengths in doing that, pull requests are welcome!

1https://github.com/tidyjava/console-mvc-pet-clinic

Page 54, Revised on January 3, 2019 by Charles Carter

https://github.com/tidyjava/console-mvc-pet-clinic

D
RA
FT

Last note

The last word.

55

	Preface
	Introduction
	Overview
	Inception
	Preliminary research
	Project exploration

	Data
	Requirements
	Conceptual design
	Logical design
	Physical design
	Implementation
	Presentation

	Logic
	Requirements
	Analysis
	Design
	Implementation Iteration 1
	Testing
	Implementation Iteration 2
	Implementation Iteration 3

	Final project presentation
	Wrap Up

	I Inception
	Project Inception
	Preliminary research
	Deliverable
	Version Control
	Markdown

	Project Selection
	Project selection
	Deliverable
	Distributed Version Control
	Markdown

	II Data
	Requirements
	Introduction to database requirements
	Deliverable
	Software Life Cycle
	Software Development Cycle
	Software Process Models

	Conceptual Design - Analysis
	Conceptual Design
	Deliverable
	Entities

	Logical Design
	Database Logical Design
	Deliverable
	Normalization and integrity constraints
	Thought Exercise

	Physical Design
	Database Physical Design
	Deliverable
	Database objects and constraints

	Implementation
	Database Presentation
	Database Presentation
	Deliverable
	Software Development Cycle
	Object Oriented Development Principles

	III Logic
	Requirements
	Requirements Phase
	Requirements Gathering
	What is Requirements Elicitation?
	What Techniques Can Be Used?
	How Should the Information Be Captured?
	What Pitfalls Exists?

	Deliverable

	Analysis
	Requirements Analysis
	Deliverable

	Design
	Program Design
	Project design
	Discussion Topics
	Deliverables

	Implementation
	Program Implementation
	Deliverables

	Testing
	Testing
	Principles of testing
	Test driven development
	Deliverables

	Interface Design
	User Interface Design Process
	User Interface Design Activities
	Deliverable – Prototype

	placeholder
	User Interface Design Process
	Deliverable – Wireframe

	IV Final Presentation
	Final Presentation
	Project Presentation
	Deliverable

	Installing git
	Poor Man's Console MVC
	She Ain't a Computer Lady
	Gathering Requirements
	Modeling the Domain
	What™s in the Lady's Head?
	Implementing a Visit Calendar
	Controller
	Model
	View
	Conclusion and Next Steps

	Last note

