密级状态:绝密() 秘密() 内部() 公开(√)

Camera_Ha13_User_Manual

(ISP部)

文件状态:	当前版本:	V1.0
[√] 正在修改	作 者:	付祥
[]正式发布	完成日期:	2018-11-12
	审 核:	
	完成日期:	

福州瑞芯微电子有限公司

Fuzhou Rockchips Semiconductor Co., Ltd

(版本所有,翻版必究)

版本历史

版本号	作者	修改日期	修改说明	审核	备注
V1.0	付祥	2018-11-12	发布初版		
V1.0.1	付祥	2018-11-13			
V2.0	付祥	2018-11-16	增加初版 hal3 框架		
			说明		

目录

目	录		3
R	оско	CHIP CAMERAHAL3 框架与新增 CAMERA 配置及调试说明	5
1.	CA	MERA HAL3 框架	5
	1.1	CAMERA HAL3 基本框架:	5
	1.2	代码目录简要说明	6
	1.3	CAMERA HAL3 基本组件:	6
	1.4	CAMERA HAL3 与 FRAME WORK 交互时序:	7
	1.5	CAMERA HAL3 实现详细时序:	8
	1.6	GRAPH 与 MEDIACTL PIPELINE:	8
	1.7	CAMERA BUFFER 与 METADATA 管理:	8
2.	SE	NSOR 适配简要步骤说明:	9
	2.1	生成 GRAPH_SETTINGS_ <sensor name="">.XML</sensor>	9
	2.1.	1 脚本使用:	9
	2.1.	2 脚本参数说明如下:	9
	2.2	获取 TUNNING XML	10
	2.3	配置 CAMERA3_PROFILES.XML	10
	2.3.	.1 camera3_profiles.xml 说明:	10
	2.3.	2 客户所需修改:	11
	2.3.	3 xml 运行生效:	13
3.	编词	圣运行调试 :	13
	3.1	编译:	13
	3.2	生成库:	14
	3.3	运行:	14
4.	DU	MP 说明	15
	4.1	属性说明:	15
	4.2	未生成 DUMP 文件问题:	16
5.	版本	本说明:	16

1	6
	1

Rockchip CameraHal3 框架与新增 camera 配置及调试说明

Hal3 基于新框架的 rkisp1 及 cif 驱动,新框架驱动介绍可参考文档《Rockchip Linux Camera 开发指南.pdf》。 (Hal3 代码目录位于 <工程根目录>/hardware/rockchip/camera,以下使用<hal3_camera>来代替)

文档适用平台

芯片平台	驱动	操作系统	支持情况
RV3326	Linux(Kernel-4.4):rkisp1 driver	Android9.0	Y

1. Camera Hal3 框架

1.1 Camera Hal3 基本框架:

Camera hal3 在 android 框架中所处的位置如上图,对上,主要实现 Framework 一整套 API 接口,响应其 控制命令,返回数据与控制参数结果。对下,主要是通 V4l2框架实现与 kernel 的交互。3a 控制则是通 control loop 接口与 camera_engine_isp 交互。 另外,其中一些组件或功能的实现也会调用到其他一些第三方库,如 cameraBuffer 相关,会调用到 Galloc 相关库, jpeg 编码则会调用到 Hwjpeg 相关库。

驱动框架文档参考: 《RKISP_Driver_User_Manual_v1.0》 Camera_engine_isp参考: 《Camera_Engine_Rkisp_User_Manual》

1.2 代码目录简要说明

hal3_camera :

H AAL	Android Abstraction Layer, 负责与 framework 交互
common	公用文件,如线程,消息处理,Log 打印等实现
gcss	xml解析相关
imageProcess	图像处理相关,如 scale
jpeg	jpeg 编码相关
mediacontroller	media pipeline 相关
platformdata	hal3 能力支持的属性,主要是管理从 xml 获取到的属性
utils	目前只有一个 Error.h,定义了一些返回值
└─── v412dev	封装了一些与 v4l2 驱动交互的具体 io
etc	配置文件目录
include	Control loop 的头文件, buffer_manager 相关头文件
├─── lib	3a engine 相关库
├─── psl	Physical Layer,物理实现层,所有的实现逻辑基本都在这里
∣ └─── rkisp1	目前只有 Rkisp1 一套实现方案
tasks	基本只用到了里面的几个 Notify 的接口类和 JpegEncodeTask
workers	数据的获取处理都在这里
└─── tools	包含了一个自动生成 graph setting xml 的 Python 脚本

1.3 Camera Hal3 基本组件:

Camera hal3 中的模块主要包括 AAL 与 PSL。

AAL: 主要负责与 framework 交互, camera_module 与 API 接口实例 camera3_device_ops 在此模块定义。 该模块对此 API 加以封装,并将请求发往 PSL,并等待接收 PSL 返回相应数据流与控制参数。

PSL:则是物理层的具体实现,基中 gcss、GraphConifg、MediaController 主要负责配置文件 xml 的解析, 底层 pipeline 的配置, ControlUnit 主要负责与 camera_engine_isp 的交互,以实现 3a 的控制,并中转一些请 求以及 Metadata 的处理收集上报。, ImgUnit、OutputFrameWork、postProcessPipeline 则主要负责获取数据帧 并做相应处理以及上报。 V4l2device、V4l2Subdevice 则是负责与 v4l2 驱动交互,实现具体的 io 操作。

1.4 Camera hal3 与 Frame work 交互时序:

关于 framework 与 hal 交互的 API 详细说明文档可以参考: <a href="mailto:<a href="mailto:<a href="mailto:hramework 与 hal 交互的 API 详细说明文档可以参考:

1.5 Camera Hal3 实现详细时序:

此图主要描绘了 configure_streams 流程, process_capture_request 流程在 Hal3 中的具体实现逻辑, 时序图 以该两个 API 接口为起始点, 直到 hal3 下发 v4l2 相关 ioctl 并返回相关数据结果为止。该流程图基本涵盖了 Hal3 中的主要模块

上图中 ^〇 符号代表循环执行,也即表示此处有线程正在等待事件的到来。 Hal 层的运行也正是由这些 事件驱动(即上面的红色键头)。

1.6 Graph 与 mediactl pipeline:

TODO

1.7 Camera buffer 与 MetaData 管理:

TODO

2. Sensor 适配简要步骤说明:

在 sensor 驱动已经调通的基础上, HAL 中添加新 sensor 支持需要配置如下文件: (Hal3 代码目录位于 <工程 根目录>/hardware/rockchip/camera, 以下使用<hal3_camera>来代替)

- 1) 生成与 sensor 相匹配的 graph setting 文件: graph_settings_<sensor name>.xml
- 2) 获取 tuning 文件, SOC sensor 可略过此步骤
- 3) 配置 camera3_profiles.xml
- 4) 将配置文件 push 到板子,并重新启动 camera 进程
- 以下章节是各个步骤详细说明。

2.1 生成 graph_settings_<sensor name>.xml

graph_settings_<sensor name>.xml 主要 hal3 用来是配置 pipeline 各级输出格式的。可以使用 <hal3_camera>/tools/gen_sensor_graph_setting.py 脚本自动生成。

2.1.1 脚本使用:

RAW sensor 以 ov5695 为例: (SOC sensor 配置方法一样, sensor fmt 不同而已)

\$./gen_sensor_graph_setting.py --name=ov5695 --sensor_fmt=BG10 --width=2592 --height=1944 --

binner_width=1296 --binner_height=972

执行该脚本后,会生成 graph_setting_ov5695. xml 文件,需要将之拷贝至<hal3_camera>/etc/camera 目录 *\$ cp graph setting ov5695.xml <hal3 camera>/etc/camera/*

SOC sensor 以 gc0132 为例:

\$./gen_sensor_graph_setting.py --name=gc0132 --sensor_fmt=YUYV --width=640 --height=480
如果客户暂不清楚各项参数如何配置, 可先只配置 name 、 width 、 height, 即如下:

\$./gen_sensor_graph_setting.py --name=ov5695 width=2592 --height=1944

2.1.2 脚本参数说明如下:

--name: sensor 名称, 一般与 sensor 驱动文件名相同, 具体可用

\$ adb shell cat /sys/class/video4linux/v4l-subdev/name*列出所有的 subdev name, 然后找到对应的 sensor subdev 的 name。

-- *sensor_fmt*: sensor_fmt 可查询 sensor 驱动,或者使用**\$ adb shell media-ctl -p (***需先执行* adb root, 后续该 命令不做说明列出 media 设备的 pipeline 信息,然后找到对应 sensor 的 entity 部分, entity 信息里有包含 sensor_fmt 信息。(该项设置错误将会导致预览颜色显示不对)

--bayer_order: 与 senor_fmt 中的的信息相对应。目前暂时未用到,可不配。

--width: sensor 输出 full width, 参见下图

--height: sensor 输出 full height,参见下图

-- binner_width: sensor 输出 binner width,此项需要驱动支持输出 binner 尺寸,如不支持,可不配

-- binner_height: sensor 输出 binner height,此项需要驱动支持输出 binner 尺寸,如不支持,可不配

- entity 7: ov5695 2-0036 (1 pad, 1 link)	
type V4L2 subdev subtype Sensor flags 0	2. sensor fmt
device node name /dev/v41-subdev2	
pad0: Source 2 3 4	
[fmt:SBGGR10/2592x1944@10000/300000 field:none]	
-> "rockchip-sy-mipi-dphy":0 [ENABLED]	
type V4L2 subdev subtype Sensor flags 0 device node name /dev/v41-subdev2 pad0: Source 2 3 4 (fmt:SBGGR10/2592x1944@10000/300000 field:none) -> "rockchip-sy-mipi-dphy":0 [ENABLED]	

上图是从 \$ adb shell media-ctl -p 列出的信息中截取的 sensor entity 信息

其中 fmt 为 fmt:SBGGR10 , 则设置项对应为 --sensor_fmt=BG10, 对应关系可以参见 videodev2.h (下图 截取该文件中一小段)

```
3 /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */
4 #define V4L2 PIX FMT SGRBG8 v412 fource('G', 'R', 'B', 'G')
5 #define V4L2 PIX FMT SRGGB8 v412 fource('R', 'G', 'G', 'B')
4 #define V4L2 PIX FMT SGBGR10 v412 fource('B', 'G', '1', '0')
7 #define V4L2 PIX FMT SGBGR10 v412 fource('G', 'B', '1', '0')
8 /* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */
9 #define V4L2 PIX FMT SGBG10 v412 fource('B', 'A', '1', '0')
9 #define V4L2 PIX FMT SGGBG10 v412 fource('B', 'G', '1', '0')
9 #define V4L2 PIX FMT SGGBG10 v412 fource('B', 'G', '1', '0')
1 #define V4L2 PIX FMT SGGGB10 v412 fource('P', 'B', 'A', 'A')
2 #define V4L2 PIX FMT SGGRG10P v412 fource('P', 'G', 'A', 'A')
```

2.2 获取 tunning xml

tunning 文件是效果参数文件,只有 Raw sensor 才需该此文件。该文件如何获取可以联系 FAE。 一般以如下方式命名 senso name+module name+lens name,然后将该文件放入

另外,调试 Raw sensor 数据通路时,也可先 bypass isp。只需要将 sensor 类型设置为 SOC

即可(参见 3.2节中 sensor 类型的设置。), 此时, tuning 文件可暂不配置。

2.3 配置 camera3_profiles.xml

2.3.1 camera3_profiles.xml 说明:

在<hal3_camera>/etc/camera 目录下有多个 camera3_profiles_<platform>.xml, 最终会有一个文件 push 到 /vendor/etc/camera/camera3_profiles.xml. 选择一个适用的 camera3_profiles_<platform>.xml 文件, 参照前面 sensor 的配置添加新 sensor。

camera3_profiles.xml 中包含了多个 Profiles 节点, Profiles 节点包含一个 camera 完整属性列表。 开发

板上接了几个 sensor,即需要配置几个 Profiles 节点。 Profiles 节点下又包含了如下五个子节点。 <Profiles cameraId="0" name="ov5695"> <Supported_hardware>

</Supported_hardware>

<Android_metadata>

</Android_metadata>

<!-- ***** PSL specific section start *****-->

<Hal_tuning_RKISP1>

</Hal_tuning_RKISP1>

<Sensor_info_RKISP1>

</Sensor_info_RKISP1>

<MediaCtl_elements_RKISP1>

</MediaCtl_elements_RKISP1>

<!-- ***** PSL specific section end *****-->

</Profiles>

Android_metadata> 节点包含的信息主要是 camera 的能力支持,该字段的信息上层将通过 camera_module 的 API: get_camera_info() 获取到。Camera 运行时也可以通过如下命令获取到相关的信息。

\$ adb shell dumpsys media.camera

该节点中详细字段的定义可以参见 android 开发者网站: (CTS 中的一些问题需要详细查看该网站中字段的 定义)

https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics 其他的几个子节点 主要是平台实现所需要的一些信息, 这些对上层是透明的。

2.3.2 客户所需修改:

如下属性需要客户修改以适应不同 sensor:

<Android_metadata>

• cameraId="0" // cameraId 后置为0,前置为1, 只有一个 camera 时, 为0

- name="ov5695" // sensor 的名字,参见第一步所述方法获取
 - control.aeAvailableTargetFpsRanges // 该设置项有多个限制需要注意
 - 1) 录像必需要有一组恒定帧率, 假如帧率为 x, 那就要包含(x, x)
 - 2) 录像帧率必需至少要一组大于 24 帧
 - 3) 第一组的 Min <= 15. 所以第一组一般为 (15, x)

如不确定,先设置为 control.aeAvailableTargetFpsRanges value="15,30,30,30"

<control.aeAvailableTargetFpsRanges value="15,3<mark>0</mark>,30,30"/>

 scaler.availableStreamConfigurations // hal 层支持的分辨率列表, 需要按照 sensor 的最大输出 尺寸依次降序排列。 Sensor 尺寸下面列出的都是一些通用尺寸, 如 1080P, 720P, VGA 等。 如不确定,可从前面前面例子中 copy 一组, 然后修改最大分辨率

• scaler.availableMinFrameDurations // 各分辨率下最小时延,需要按照 sensor 的最大输出尺寸依次降序排列。

如不确定,可先将各个分辨率的的最小延时设置为 33333333

• scaler.availableStallDurations // 各分辨率下拍照最小时延,需要按照 sensor 的最大输出尺寸依次降序排列。

如不确定, 请参照 scaler.availableMinFrameDurations

• sensor.info // sensor 相关属性的配置

Sensor Info
<pre><sensor.info.activearraysize value="0,0,1600,1200"></sensor.info.activearraysize> 如果小幅定,情况修改红色框中为sensor版入入引</pre>
<pre><sensor.info.sensitivityrange value="32,2400"></sensor.info.sensitivityrange></pre>
<pre><sensor.info.colorfilterarrangement value="GRBG"></sensor.info.colorfilterarrangement> <!-- HAL_May override this value from CMC for RAW sensors--></pre>
<pre><sensor.info.exposuretimerange value="100000,53000000"></sensor.info.exposuretimerange>/</pre>
<pre><sensor.info.maxframeduration value="666666666"></sensor.info.maxframeduration></pre>
<pre><sensor.info.physicalsize value="5.5,4.5"></sensor.info.physicalsize> <!--#224x1.12um 3136x1.12um--></pre>
<pre><sensor.info.pixelarraysize value="1600x1200"></sensor.info.pixelarraysize></pre>
<pre><sensor.info.whitelevel value="0"></sensor.info.whitelevel> <!-- HAL may override this value from CMC for RAW sensors--></pre>
<pre><sensor.info.timestampsource value="UNKNOWN"></sensor.info.timestampsource></pre>

<Hal_tuning_RKISP1>

- graphSettingsFile // 配置文件的名称,本目录下 graph_settings_xx.xml
- iqTuningFile //tuning file 的文件路径, tuning file 存放在 rkisp 目录下, SOC sensor 无需 配置

<Sensor_info_RKISP1>

• sensorType 修改成对应 sensor 的类型, (RAW or SOC)

<sensor_info_rkispi> < Information that parametrizes the behavior or qualities of the physical sensor></sensor_info_rkispi>
<pre><sensortype value="SENSOR_TYPE_RAW"></sensortype> <!-- SENSOR_TYPE_SOC or SENSOR_TYPE_RAW--></pre>
<pre><exposure.sync value="true"></exposure.sync> <!-- compensate exposure sync--> 加不法禁 口修功此顶 SOC sensor将</pre>
<pre><sensor.digitalgain value="true"></sensor.digitalgain> <!-- digital gain support on sensor_Specify Type Reveals and the sensor<br-->Specify Type Reveals and the sensor Specify Type Reve Type Type Type Type Type Type Type Type</pre>
<pre><gain.lag value="2"></gain.lag> <!-- camera3 HAL CPF parameters moved here start--></pre>
<exposure.lag value="2"></exposure.lag>
<fov value="54.8" value_v="42.5"></fov>
<statistics.initialskip value="1"></statistics.initialskip> camera3 HAL CPF parameters moved here end
<pre><frame.initialskip value="3"></frame.initialskip> <!-- camera3 HAL CPF parameters moved here end--></pre>
<isoanaloggain1 value="75"></isoanaloggain1> Pseudo ISO corresponding analog gain value 1.0
<citmaxmargin value="10"></citmaxmargin> coarse integration time max margin

<MediaCtl_elements_RKISP1>

 修改 type="pixel_array" 中的 element name, // 该 name 为 sensor 在 driver 中的设备名称,可 以通过如下命令获取 adb shell cat /sys/class/video4linux/v4l-subdev*/name 查看

<mediactl_elements_rkisp1></mediactl_elements_rkisp1>	— 只需修改此项, adb she11 cat /sys/c1ass/video41inux/v41-			
<pre><element name="ov5695 2-0036" type="pixel_array"></element></pre>	subdev*/name 列出所有的subdev name,然后找到对应的sensor			
<element name="rockchip-sy-mipi-dphy" type="csi_receiver"></element> subdev的name				
<pre><element name="rkispl-isp-subdev" type="isys_backend"></element></pre>				
(ModiaCtl elements PKISP1)				

2.3.3 xml 运行生效:

参照下一章节

3.编译运行调试:

- 3.1 编译:
 - 确认 <android_root>/device/rockchip/common/BoardConfig.mk 文件中, 是否有定义宏 BOARD_DEFAULT_CAMERA_HAL_VERSION, 如无定义,请在文件末添加如下: BOARD_DEFAULT_CAMERA_HAL_VERSION := 3.3 (Sdk 发部应该带有 hal1 和 hal3 两套源码,该两套源码编译目标是相同的,所以同时编译会产生冲突,

因此在编译时加一个宏来判断编译哪一套 hal 源码,如下: ifeq (1,\$(strip \$(shell expr

\$(BOARD DEFAULT CAMERA HAL VERSION) \>= 3.0))),只有当该宏 >=3.0时才会编译 hal3.)

- 2) 在<android_root> 目录 \$ source build/envsetup.sh && lunch
- 3) 进入 hal3 源码目录 \$ mma –j8

生成库: 3.2

- 1) Hal3 库: /vendor/lib<64>/hw/camera.rk30board.so
- 2) librkisp : /vendor/lib<64>/librkisp.so
- 3) 3a lib : /vendor/lib<64>/rkisp/<ae/awb/af>/
- 4) 配置文件: /vendor/etc/camera/

上述 librkisp、3a lib、配置文件都是通过预编译将<hal3>/lib、 <hal3>/etc/camera 中的文件 copy 到 android out 目录。每一项都可以单独更新。当修改源码编译后,只需 push camera.rk30board.so 即可,如修改配置文 件, 也只需要 push 相应配置文件。

运行: 3.3

1. 将需要更新的库或者 xm 配置文件 push 到板子相应的目录。

\$ adb root && adb remount

\$ adb push <hal3_camera>/etc/camera /vendor/etc/ (android version >= 8.0)

- \$ adb push <hal3_camera>/etc/camera /system/etc/ (android version < 8.0)
- 2. 重新启动 camera 服务进程 \$ adb shell pkill camera && adb shell pkill provider
- 3. 通过如下命令查看 camera 是否加载成功。

\$ adb shell dumpsys media.camera

4. 如果没有打印出 camera 相关信息(camera 正常信息有好几百行),则加载失败。

此时:

5. 再次确认配置文件是否有 Push 到板子(普遍是这个问题,请再三确认):

\$ adb shell

\$ cat /vendor/camera/camera3 profiles.xml //查看该文件是否是修改过后的文件,

\$ adb logcat grep "E RkCamera" 查看是否是致命错误,定位分析。

6. 如果前三步都没有问题,底层驱动正常,可用 v4l2-ctl 抓到数据,此时 camera 应该可以打开了。

Camera 如果打不开,可以打开相关 camera log 的开关来定位问题。

\$ adb shell setprop persist.vendor.camera.hal.debug 5

4. Dump 说明

为了方便调试, ha13 增加了几个属性值,可以将预览,录像,拍照等数据流直接 dump 到文件。以下是详细说明:

4.1 属性说明:

persist.vendor.camera.dump: 表示相关数据的 dump 开关,属性值对应不同数据流例: adb shell setprop persist.vendor.camera.dump 1 #dump preview adb shell setprop persist.vendor.camera.dump 2 # dump video adb shell setprop persist.vendor.camera.dump 4 # dump zsl adb shell setprop persist.vendor.camera.dump 8 # dump jpeg adb shell setprop persist.vendor.camera.dump 16 # dump raw // 上述 raw 并非从 sensor 直接出来的数据 ,而是从 isp 拿到的数据,还未在 Hal 层处理过 adb shell setprop persist.vendor.camera.dump 11 # dump preview + video + jpeg

persist.vendor.camera.dump.skip 属性表示跳过前面n帧 例: \$ adb shell setprop persist.vendor.camera.dump.skip 10 表示前面 10 帧不 dump

persist.vendor.camera.dump.interval 属性是表示 dump 帧的间隔 例: \$ adb shell setprop persist.vendor.camera.dump.interval 0 表示隔 10 帧 dump 一帧

persist.vendor.camera.dump.count 属性表示 dump 帧的总帧数 例: \$ adb shell setprop persist.vendor.camera.dump.count 100 表示总共只 dump 100 帧

persist.vendor.camera.dump.path 属性表示 dump 帧的路径 例: \$ adb shell setprop persist.vendor.camera.dump.path /data/dump/ 表示 dump 的路径为 /data/dump/ (最后的"/" 不能省) 以下是一个完整例子,表示 dump 预览帧, 前面 10 帧不 dump, 每隔 10 帧 dump 一次,总共 dump 100 帧,路径为/data/dump/ adb shell setprop persist.vendor.camera.dump 1 adb shell setprop persist.vendor.camera.dump.skip 10 adb shell setprop persist.vendor.camera.dump.interval 10 adb shell setprop persist.vendor.camera.dump.count 100 adb shell setprop persist.vendor.camera.dump.path /data/dump/

4.2 未生成 dump 文件问题:

Dump 属性设置完成,打开相机,预览后, 板子 /data/dump/目录下应该会有如下 dump 文件生成。

dump_1280x960_00000164_PREVIEW_0 dump_1280x960_00000274_PREVIEW_0 dump_1280x960_00000392_PREVIEW_0 dump_1280x960_00000392 如果未生成 dump 文件,请参照前面调试说明章节,打开 log 开关。并查看 log 是否有以下错误 \$ adb logcat |grep "open file failed"

I RkCamera: <HAL> CameraBuffer: dumpImage filename is /data/dump_1280x960_00000015_PREVIEW_0 E RkCamera: <HAL> CameraBuffer: open file failed

该错误是由于 dump 路径无权限访问,或者不存在导致的。可以尝试以下步骤解决。

确认 dump 路径是否存在,不存在请更改目录,或创建目录

目录存在但依然无权限访问,可以使用如下命令暂时关闭 selinux

\$ adb root && adb shell setenforce 0

5. 版本说明:

5.1 Hal3 版本获取:

1. 通过读取属性值获取

\$ adb shell getprop |grep cam.hal3.ver

2 也可以通过查看 logcat 获取

\$ adb logcat |grep "Hal3 Release version"