
CAPS Framework

Cristian Capozucco - Davide Mariotti - Luca Grillo

Contents

1 Installing the framework 2

2 SAML 6
2.1 Example . 6
2.2 Explanation . 19

2.2.1 Temperature Sensor 19
2.2.2 Server . 20
2.2.3 Controller . 20
2.2.4 Actuator . 21

3 HWML 22

4 SPML 25

A Appendix 29

1

Chapter 1

Installing the framework

• Download e install JRE - windows x86 Offline1

• Download this zip2

• Unzip the .zip you have downloaded

• Open the Eclipse provided by Mohammad Sharaf (the one inside
the folder eclipse-epsilon-1.3-win32);

• Go to File, Import, General and Existing projects into Workspace.
Select Root Directory, click on Browse and select the folder Pack-
ages that you have unzipped. Check all the checkboxes and click on
Finish

• Then, you will see something like the figure 1.1;

• Right click on org.ecplise.epsilon.eugenia.examples.friends.diagram
(figure 1.2);

1http://www.oracle.com/technetwork/java/javase/downloads/

jre8-downloads-2133155.html
2https://www.dropbox.com/s/bud9ae62khtobid/CAPS.7z?dl=0

2

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.dropbox.com/s/bud9ae62khtobid/CAPS.7z?dl=0
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://www.dropbox.com/s/bud9ae62khtobid/CAPS.7z?dl=0

Figure 1.1: Eclipse provided by Mohammad Sharaf

• In the appearing menu, go on Run as and then Eclipse Application
(figure 1.3);

• After a while, you should see something like the screen of the figure
1.4;

3

Figure 1.2: The package you have to right click on

Figure 1.3: The option you have to select

4

Figure 1.4: Initial screen of the framework

5

Chapter 2

SAML

2.1 Example

Now, we will see how to create a project to represent a simple scenario:
image that there is a room with a temperature sensor with an actuator
connected either to the sensor and to a window. When the temperature
sensed is too high, the actuator will open the window. If the temperature is
too low, then the window will be closed. Besides, the data sensed are saved
in a remote server.

• Let’s create the SAML sample project: go on File, New, Project
(figure 2.1). Find EMF and select Empty EMF Project (figure
2.2). Then, choose a name and a location for your project (figure
2.3). By checking the default location checkbox, the project will be
created inside the location of your workspace;

6

Figure 2.1: Where you can select the Project option

Figure 2.2: The type of project you have to select

7

Figure 2.3: Name and location

• Click on finish. Now, as you can see on the left, there is the package of
your project. Expand it, right click on the Model folder, select new
and then other (figure 2.4);

Figure 2.4: Right click on the folder and find other

8

• Then, find CAPSModel and then CAPSSaml. Give a name to your
file paying attention to the last part of the name: it must end with
.capssaml (concerning the folder, select model as well) (figure 2.5);

Figure 2.5: Naming the file

• Click on next and select Software Architecture from the Model
Object items list and click finish (figure 2.6);

Figure 2.6: List of the items

9

• From the project explorer on the left, right click on the new file that
have been created and select Initialize friends diagram diagram
file. This will let you to create the SAML diagrams (figure 2.7);

Figure 2.7: Initialize the diagram

• In the appearing window, you can select an other location and name
for the file that will be created. I suggest to leave the default settings
and to click on finish (figure 2.8);

Figure 2.8: Name and location of the new file

10

• Now, new objects will appear on the window: as you can see, on the
right, there is a palette section, where you can take all the items
that you need for your architecture. (figure 2.9);

Figure 2.9: The new view

• Let’s create something. Imagine that we want to model the following
scenario: a temperature sensor that senses the temperature and sends
it to a server. First of all, find the component item in the palette.
Select it and create it in the center of the view (just create a rectangle
like in paint: left click and enlarge it as you wish) (figure 2.10);

Figure 2.10: Creating the component

• Congratulations! You have just created your first SAML component.
Now, give it a name: as you can see, at the bottom of the view, there

11

is the Properties section. Enlarge it and search the Name row:
select the blank part and type Temperature Sensor (or something
else) (figure 2.11);

Figure 2.11: Naming the component

12

• Now you have a simple blank named component. Let’s create some
logic inside it. The very first thing you have to do, is to put inside
the component the Initial mode. Search it in the Palette view e
put it inside the component (if you try to create the mode outside the
component, well, you will not able to do that) (figure 2.12). What
is an initial mode: it’s the group of logic that is active when the
component starts working. It will be more clear in a few steps;

Figure 2.12: Creating the initial mode

13

• Now, think: what kind of actions the temperature sensors has to do
when it starts? Well, it has to start sensing the temperature in the
room every X seconds (we assume that X=10 sec.). So, we will need
for three items from the palette view:

– StartTimer;

– SenseTemperature;

– TimerFired;

– UnicastSendMessage.

In the figure 2.13 you can see the items placed.

Figure 2.13: Creating the initial mode

• Give some properties to the timer: select the timer by clicking on it
and, in the properties view (the section at the bottom of the screen),
and set the following parameters:

– Cyclic → True: the sensor has to give periodic values;

– Name → TemperatureTimer;

– Period → 10000 every 10 seconds (the number expresses mil-
liseconds);

From the palette object section, take PrimitiveDataDeclaration
and click on the component TemperatureSensor. In the Primitive-
DataDeclaration view (the same of the properties at the bottom of
the screen) set the following parameters:

– Data Name → Temperature the name of the data;

– Type → real the type of the data;

14

– Value → 0.0 the default value.

A PrimitiveDataDeclaration, let’s you to specify the variables of the
component (figure 2.14). Select the TimerFired item and in the prop-
erties section, find Timer, double click to the menu after it and select
the name of the timer you have created. Select the SenseTempera-
ture item and, in the properties view, set the following parameters.

– Data Recipient → Double click and select the Temper-
ature data the variable where will be stored the temperature
sensed;

– Name → SenseTemperature

Select the message item and set the following parameters:

– Data → Temperature;

– Data Recipient → Select the Primitive Data Declaration
temperature variable;

– Name → TemperatureValue

• Now, in the connection subview of the palette select behaviour link and
connect the TimeFired with the SenseTemperature (from the first
to the second one). Do the same thing from the SenseTemperature to
the message (figure 2.14);

Figure 2.14: The final result

• Let’s add the server. Create an other component (name it server), add
the initial mode, the server item, the StoreData item and the Re-
ceiveMessage from the palette view (like you have just done for the

15

temperature sensor component). Now, name the server item Server
and set the following parameters in the properties view for the Re-
ceiveMessage item:

– Data Recipient → Primitive Data Declaration Tempera-
ture;

– Data Recipient Name → Temperature;

– Name → ReceiveTemperature.

Use the Behaviour link arrow to link from the ReceiveMessage
item to the Server item and from the Server to the Store item.
From the palette items, click on OutMessagePort and click on the
Component Temperature Sensor. This action will create a port
from which the message can go to the other component. But the com-
ponent needs an input port so, always from the palette view, take the
InMessagePort item and click on the Component Server. Now
connect them through the Connection arrow (from the OutPort
to the InPort). Place an other OutMessagePort on the Temper-
atureSensor Component. You will need it later. Next step is to
connect the messages to the port. So, take the Send Message Port
link from the connections sub section of the palette and connect from
the SendMessage item to the OutMessagePort. In the other
component, connect from the ReceiveMessage to the InputPort
with the Receive Message Port link. You can see the result and an
highlighting of some of the items that you need in the figure 2.15.

Figure 2.15: Result and items

The project is not finished. You have just modelled a scenario in which
the temperature sensor saves his data into a server. The actuator of

16

the window is missing. So, you are going to need other 2 components:
the one for the actuator and the one for the controller, something
that manages the logic part of the system.

• Create an other component, name it Controller and add the Initial
Mode. Put a ReceiveMessage item inside the mode and set the
following parameters:

– Name → ReceiveTemperature;

– Data Recipient → Primitive Data Declaration Tempera-
ture;

– Data Recipient Name → Temperature.

Place 2 Primitive Data Declaration inside the Controller Com-
ponent and set the following properties:

– Data Name → Close;

– Type → boolean;

– Value → false.

and:

– Data Name → Open;

– Type → boolean;

– Value → true.

Find the Choice item in the Palette and place it inside the Initial
Mode of the Controller component. With a Behaviour Link, con-
nect the ReceiveTemperature message to the Choice item. More
over, place 2 UnicastSendMessage items inside the mode. For one
of them, set the following parameters:

– Data → Open;

– Data Recipient → Primitive Data Declaration Open;

– Name → sendOpen.

For the other one, set the following parameters:

– Data → Close;

– Data Recipient → Primitive Data Declaration Close;

– Name → sendClose.

• With 2 Behaviour link, connect from the Choice item to the Send
Messages items. Set the following parameters to behaviour link con-
nected to the sendOpen message:

17

– Condition → Temperature > 25.

For the other one, set the following parameters:

– Condition → Temperature < 18.

Then, place 2 OutMessagePort and 1 InMessagePort. Connect
the Receive Message (receiveTemperature) with the InMes-
sagePort through a Receive Message Port connection and the
two SendMessages with the OutPessagePort through the Send
Message Port connection. Connect the InMessagePort with the
OutMessagePort of the TemperatureSensor Component.

• Now, the last component: the Actuator. Place a new component,
name it WindowActuator and put the InitialMode inside it. Put
two ReceiveMessage and an Actuate item inside the InitialMode.
Set the following parameters for one of the ReceiveMessage item:

– Name → receiveOpen;

– Data Recipient → Primitive Data Declaration Open;

– Data Recipient Name → Open.

For the other one set:

– Name → receiveClose;

– Data Recipient → Primitive Data Declaration Close;

– Data Recipient Name → Close.

For the Actuate item set:

– Data → Actuate;

– Name → WindowActuator.

Through Two BehaviourLink connect the ReceiveMessages items
to the Actuate item. For the link coming from the receiveOpen,
set the following parameters:

– Condition → Open.

For the other one set:

– Condition → Close.

18

Take two InMessagePort item and place them on the WindowAc-
tuator Component. Then, connect through che Connection, the
OutMessagePorts of the Controller component to the InMes-
sagePorts of the WindowActuator component.

With the ReceiveMessagePort connection, link the receiveOpen
with the InMessagePort that receives the message from the sendOpen.
Do the same thing with the ReceiveClose but with the port that re-
ceives the message from the sendClose. The final result is shown in
the figure below:

Figure 2.16: Final Result

2.2 Explanation

Let’s do a brief explanation of what you have done so far.
You created 4 Components:

1. Temperature Sensor;

2. Server;

3. Controller;

4. WindowActuator.

2.2.1 Temperature Sensor

This component has 4 items inside it:

1. StartTimer;

19

2. TimerFired;

3. SenseTemperature;

4. UnicastSendMessage.

The timer is connected to the TimerFired (thanks to the properties
set before). Every 10 seconds (10000 milliseconds), the compo-
nent senses the temperature and saves it in a variable called Temper-
ature (real type). So, the component sends a message containing
this variable (thanks again to the properties set before) to 2 output
ports. The components exachange messages only through
ports.

These items are deployed inside the Initial Mode that is the Starting
Mode of the sensor. It means that, as soon as the component starts
working, it will do all the actions that have been just described.

2.2.2 Server

This component has 3 items inside it:

1. ReceiveMessage;

2. Server;

3. StoreData.

The Server component receives messages from the Temperature
Sensor component through a port. The received messages contain
the Temperature value sensed and they are stored in a DB. Also
in this case, the items are deployed inside the Initial Mode.

2.2.3 Controller

The Controller component represents a software that uses logic on
order to process data that come from the Temperature Sensor com-
ponent. It contains:

1. ReceiveMessage;

2. Choice;

3. 2 UnicastSendMessage.

The Controller component receives the temperature value stored in
the variable Temperature. The Choice let’s the component to per-
form an action based on the temperature value (note that the con-
ditions are annotated con the Behaviour Links). So, a message

20

containing the boolean variable Open is sent if temperature > 25.
Otherwise, the message containing the boolean variable Close is
sent.

2.2.4 Actuator

The Actuator component is used in order to open/close the window.
It contains, inside his Initial Mode, the following items:

1. 2 ReceiveMessage;

2. Actuate.

The behaviour of this component is very simple: when it receives the
Close, it closes the window. When it receives the Open, it opens the
window.

21

Chapter 3

HWML

• Now we want to model some hardware. Assume the same scenario we
have done so far and let’s model the hardware for the Temperature
sensor (the procedure for the other ones is the same, just change
properties and so on). First of all, go to the project explorer view
on the left (the view where you can see all your folders and files) and
right click on the model folder (just like you have done for SAML).
Click on New then Other and select CAPShwml Model (figure 3.1);

Figure 3.1: Starting HWML

• Click on next, select a name (that finishes with .capshwml figure 3.2),
next again and choose node specification;

• In the explorer view, right click on the file that has been just created
and select initialize filesystem diagram diagram file. Choose a

22

Figure 3.2: Naming an HWML file

name and click on finish;

• Now, from the objects view on the right, select node and create it
on the screen (figure 3.3);

Figure 3.3: Creating a deployment node

• In the properties view, set the following parameters:

– Mac protocol → ZIGBEE: a standard communication proto-
col;

– Name → Temperature Sensor;

23

– OS → TinyOS: embedded, component-based operating system
and platform for low-power wireless devices;

– Routing protocol→ GEAR: Geographical Energy Aware
Routing protocol for wireless sensor network;

• Let’s add some other objects to this node: a MicroController to
place inside the node, a Processor to place inside the MicroCon-
troller and a Volatile Memory to place inside the MicroCon-
troller. Set the following parameters (in the properties view) Pro-
cessor object:

– Cpi → 1.0: clocks per instruction;

– Frequency → 120: frequency of the CPU expressed in MHz;

– Name → Atmel Atmega328.

Now, for the volatile memory:

– Name → RAM;

– Size → 2: the size of the memory expressed in KB;

• From the object view, select ContinousEnergySource, place it on
the node and call it electricity: it means that the node is powered
by a continous energy source that is electricity. In the end, add also
the TemperatureSensor object. The final result is showed in the figure
3.4;

Figure 3.4: Final result

24

Chapter 4

SPML

• CAPS regards also the environment surrounding the sensors and so
on. This part is called SPML. You need Sweet Home 3D in order
to model some building and to place some sensors in it. Once you have
done it, you will need a jar file, called CAPSAdapter. Open it and
you will get something like the figure 4.1;

Figure 4.1: CAPS adapter

• Click on Open and select a file which extension is .sh3d (so, you have
to select some file made with SweetHome 3D figure 4.2);

• Open it, tick the checkbox wall and the checkbox rooms and
click on load (figure 4.3 and figure 4.4);

25

Figure 4.2: Selecting a file

• Tick all the new checkboxes (4.5) and click on Convert 2 SPML.
When you choose the new file name, remember to set its exten-
sion: .xmi

• Take the file .xmi you have just created and place it in the package
univaq.spml/model. That’s it, you finished

26

Figure 4.3: Ticking the checkboxes and clicking load

Figure 4.4: Result of the previous operations

27

Figure 4.5: All the checkboxes ticked

28

Appendix A

Appendix

1. StartTimer: an action that starts an internal timer in the applica-
tion. The expiration of a started timer is represented by a special
event called TimerFired. When starting a timer, architects can set
three parameters:

(a) the delay (in milliseconds) that must occur before the first
activation of the timer;

(b) the cyclic nature of the timer (that is, whether it must be
periodic or not);

(c) the period of the timer (in milliseconds), if it is a cyclic one.

2. StopTimer: this action stops a previously started timer;

3. Fork: a specialization of ControlAction representing the classical
fork operation on a (control) flow graph. Basically, this action
is used to explicitly split the incoming behavioural flow into a set of
parallel flows;

4. Join: a specialization of ControlAction representing the classical join
operation on a (control) flow graph. Intuitively, it performs the inverse
operation of a fork operation, i.e., it merges incoming behavioural flows
and syncs them into a common outgoing one;

5. Choice: a specialization of ControlAction representing the classical
choice operation on a (control) flow graph. This action is used to split
the control flow into one or more branches. Depending on the value
of the conditions in the outgoing behavioural links, one and only one
control flow is executed after the choice control action;

6. ReceiveMessage: an event triggered when the component receives
a message to one of its input message ports. The dataRecipient
reference points to the application data declaration which will hold

29

the contents of the received message. TimerFired. An event triggered
every time a previously started timer expires. The previously started
timer is defined by the timer reference in the FiredTimer metaclass;

7. Mode: a mode is a specific status of the component. Examples of
modes can be: sleeping mode, energy saving mode, etc. It is important
to note that modes are defined at the application layer in SAML, thus
they can, but are not forced to, be related to the energy-related modes
of the WSN node they are running on. At any given time, one and
only one mode can be active in a component. The component reacts
only to those events which are defined within its currently active mode.
Mode is the only metaclass that is not included in the specialization
sub-tree of BehaviouralElement; we made this choice for preventing
architects to define nested modes in SAML models, thus keeping the
SAML language simple to some extent. A component can switch from
a mode to another by means of the previously defined Link construct.
Mode transitions occur by passing from a special kind of action called
ExitMode to a special kind of event called EnterMode (the concepts
of exit and enter mode will be described later in this section). In this
way, actions and events can be linked to modes entry and exit points,
creating a continuous behavioural flow among modes;

8. EnterMode: a specialization of the Event metaclass; it represents
a special kind of event which is triggered when the behavioural flow
enters a specific mode. Actions can be linked to this type of events,
they will be executed immediately after the entered mode becomes
active;

9. ExitMode: a specialization of the Action metaclass; it represents
the action of exiting a specific mode, and thus entering another mode
within the component containing them (see the targetMode reference
of ExitMode in Figure 2. InitialMode. A special kind of mode. In-
tuitively, an initial mode is the first mode which is active when the
component starts up. Clearly, each component can contain one and
only one initial mode;

10. Actuate: an action that activates an actuator; optionally, an expres-
sion can be used to pass a parameter to the actuator. Also, an actuate
action can optionally refer to an application data declaration to which
the result of the actuate action can be stored. This action can be used,
for example, to model the action of turning off a light or activating
the heating system of a house;

11. SendMessage: An abstract metaclass representing the action of send-
ing a message via a specific output message port (for the sake of clarity
we did not show the outMessagePort reference from SendMessage to

30

OutMessagePort in Figure 2). Optionally, the contents of the message
can be specified by passing an expression as parameter. Available
types of message include: broadcast message, multicast message, and
unicast message; they differ in the number of target physical nodes
of the WSN actually receiving the message. By target physical node
we mean all the nodes containing the components declaring an InMes-
sagePort that is connected to the OutMessagePort referenced by the
send message action;

12. BroadcastSendMessage: a special kind of SendMessage action in
which the message is sent to every node containing the target compo-
nent;

13. MulticastSendMessage: a special kind of SendMessage action in
which the message is sent to a specific set of nodes containing the
target component. Those nodes are represented by a list of receivers,
identified by the name they will have in the final deployment of the
WSN;

14. UnicastSendMessage: a special kind of SendMessage action in which
the message is sent to a single node containing the target component.
The receiver node is identified by its name in the final deployment of
the WSN.

31

	Installing the framework
	SAML
	Example
	Explanation
	Temperature Sensor
	Server
	Controller
	Actuator

	HWML
	SPML
	Appendix

