Programming
Basics

In This Chapter. . ..

— Introduction

— Using Boolean Instructions
— Using Timers

— Using Counters

— Using the Accumulator

m Programming Basics

"
©
®
©
m
o)
£
£
S
©
L.
()
2
o

Introduction

This chapter describes some basic programming concepts used with the DL305
CPUs. It doesn’t provide detailed information on each instruction, but instead shows
how you can use the most basic elements of the instruction set. If you have quite a bit
of PLC programming experience, you may already know some of the information.
However, we suggest you at least read the portion that discusses the accumulator
operation. The accumulator is used in many different operations.

This chapter provides an overview of the following programming concepts.
1. Boolean Instructions

Timer Instructions

Counter Instructions

Shift Register Instruction

Accumulator Instructions

A I\

Detailed examples of all categories of instructions are included in Chapters 11 & 12.

The DL305 CPUs can be programmed with the DirectSOFT PC-based
programming package, or by using the DL305 handheld programmer. There is a
separate manual available for each of these products. If your are not familiar with the
chosen programming device we recommend you use the appropriate programming
device manual along with this manual to program your DL305 system.

The following examples will help you understand how DL305 instructions are put
together to create a program solution.

DL305 User Manual, Rev. D

Programming Basics

Using Boolean Instructions

END Statement

Simple Rungs

Normally Closed
Contact

Do you ever wonder why so many PLC manufacturers always quote the scan time
for a 1K boolean program? Simple. Most all programs utilize many boolean
instructions. These are typically very simple instructions designed to join input and
output contacts in various series and parallel combinations. Since the DirectSOFT
package allows you to use graphic symbols to build the program, you don’t
absolutely have to know the boolean equivalents of the instructions. However, it may
be helpful at some point, especially if you ever have to troubleshoot the program with
a Handheld Programmer.

The following paragraphs show how these boolean instructions are used to build
simple ladder programs.

All DL305 programs require an END statement as the last instruction. This tells the
CPU this is the end of the program. Any instructions placed after the END statement
will not be executed. (This can be useful in some cases. See Chapter 13 for an
example.)

000 020

| o
5

You use a contact to start rungs that contain both contacts and coils. The boolean
instruction that does this is called a Store or, STR instruction. The output point is
represented by the Output or, OUT instruction. The following example shows how to
enter a single contact and a single output coil.

o)

All programs must have
and END statement

(m\

DirectSOFT Example Handheld Mnemonics
STR 000
2
00(? /0 9 OUT 020
— | @UTD END
(Eno)
\END

Normally closed contacts are also very common. This is accomplished with the
Store Not or, STRN instruction. The following example shows a simple rung with a
normally closed contact.

DirectSOFT Example Handheld Mnemonics
STRN 000
000 /020 OUT 020
—/ (our) END
&)

LY
o
Q
o
3
3.
5
Q@
vy}
I
28
o
o

DL305 User Manual, Rev. D

Programming Basics

Contacts in Series Use the AND instruction to join two or more contacts in series. The following
example shows two contacts in series and a single output coil.

DirectSOFT Example Handheld Mnemonics
000 001 020 STR 000
| /- AND 001
— H \OUTD OUT 020
END
(Enp)
\END

Midline Outputs Sometimes it is necessary to use midline outputs to get additional outputs that are
conditional on other contacts. The following example shows how you can use the
AND instruction to continue a rung with more conditional outputs.

DirectSOFT Example Handheld Mnemonics
000 001 020 STR 000
| /- AND 001
— H | \OUT) ouTto10
AND 002
002 021 OUT 021
| /~) AND 003
| \OUT) ouT o022
END
003 022
o
(Eno)
(END

Parallel Elements You may also join contacts in parallel. The OR instruction allows you to do this. The
following example shows two contacts in parallel and a single output coil.

[}

% DirectSOFT Example Handheld Mnemonics
E 00(? /020 STR 000

: A S

g 001 END

g i

DL305 User Manual, Rev. D

Programming Basics

Joining Series
Branches in
Parallel

Joining Parallel
Branches in Series

Comparative
Boolean

Quite often it is necessary to join several groups of series elements in parallel. The
Or Store (ORSTR) instruction allows this operation. The following example shows a
simple network consisting of series elements joined in parallel.

Handheld Mnemonics

020 STR 000
/-) AND 001
\OUT) sTR o002
AND 003
ORSTR
OUT 020

@N@ END

DirectSOFT Example
000 001

HH

002 003

H H

Quite often it is also necessary to join one or more parallel branches in series. The
And Store (ANDSTR) instruction allows this operation. The following example
shows a simple network with contact branches in series with parallel contacts.

DirectSOFT Example Handheld Mnemonics

000 001 020 STRO0O
— | | WOUTD STR 001
\ OR 002
002 ANDSTR
OUT 020
— END
@
(EnD

Many applications require comparisons of data values. This is especially true in
applications that use counters. Some PLC manufacturers make it really difficult to do
a simple comparison of a counter value and a constant or register. The DL330 and
DL340 CPUs provide Comparative Boolean instructions that allow you to quickly
and easily solve this problem. Comparative Boolean evaluates two 4-digit values
using boolean contacts. The valid evaluations are equal and not equal.

In the following example when the value | C600 K1234 020
in counter C600 is equal to the constant = (out)
value 1234, output 020 will energize.

The DL330P also provides Comparative Boolean instructions, but they are greater
than and less than instructions instead of equal and not equal.

LY
o
Q
o
3
3.
5
Q@
vy}
I
28
o
o

DL305 User Manual, Rev. D

Programming Basics

"
©
®
©
m
o)
£
£
S
©
L.
()
2
o

Combination
Networks

Boolean Stack

You can combine the various types of series and parallel branches to solve most any
application problem. The following example shows a simple combination network.

000 002 005 020
— e
001 003 004
H = H
006
=/

@0

There are limits to how many elements you can include in arung. This is because the
DL305 CPUs use an 8-level boolean stack to evaluate the various logic elements.
The boolean stack is a temporary storage area that solves the logic for the rung.
Each time you enter a STR instruction, the instruction is placed on the top of the
boolean stack. Any other instructions on the boolean stack are pushed down a level.
The AND, OR, ANDSTR, and ORSTR instructions combine levels of the boolean
stack when they are encountered. Since the boolean stack is only eight levels, an
error will occur if the CPU encounters a rung that uses more than the eight levels of
the boolean stack.

All of you software programmers may be saying, “l use DirectSOFT, so | don’t need
to know how the stack works.” Not quite true. Even though you can build the network
with the graphic symbols, the limits of the CPU are still the same. If the stack limit is
exceeded when the program is compiled, an error will occur.

DL305 User Manual, Rev. D

Programming Basics

9-7

The following example shows how the boolean stack is used to solve boolean logic.

000 STR 001 ORSTR AND oo4 020
STR —| I I I — I i @U'D Output
002 AND 003
| |] ANDSTR
STR _| [[
005 OR
|
| —/
STR 000 STR 001 STR 002 AND 003
1 STR 000 1 STR 001 1 STR 002 1 002 AND 003
2 2 | STR 000 2 | STR 001 2 | STR 001
3 3 3 | STR 000 3 | STR 000
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8
ORSTR AND 004 OR 005
1 | 001 OR (002 AND 003) 1 | 004 AND [001 OR (002 AND 003)] 1 NOT 005 OR 004 AND [001 OR (002 AND 003)]
2 | STR 000 2 | STR 000 2 | STR 000
3 3 3
18] e e
ANDSTR
1 | 000 AND (NOT 005 OR 004) AND [001 OR (002 AND 003)]
2

3

2]

LY
o
Q
o
3
3.
5
Q@
vy}
I
28
o
o

DL305 User Manual, Rev. D

Programming Basics

Using Timers

Timers are used to time an event for a desired length of time. The single input timer
will time as long as the input is on. When the input changes from on to off the timer
currentvalueisresetto 0. Timers normally time in tenth of a second intervals, but you
can turn on Special Relay 770 to change the timers to hundredth of a second
intervals. There is discrete bit associated with each timer to indicate the current
value is equal to or greater than the preset value. The timing diagram below shows
the relationship between the timer input, associated discrete bit, current value, and
timer preset.

;
0ot TMR T600

Input [K30
001 L

Timer preset

Ti T600 020
Imer L | | < ouT)
T600 L

Contact

Current 0 10 20 30 40 50 60 O
Value

"
©
®
©
m
o)
£
£
S
©
L.
()
2
o

DL305 User Manual, Rev. D

Programming Basics

Using Counters

001

002

CT600

Current
Value

001

CT600

Current
Value

RST
CT

Counters are used to count events. There are two types of counters.
¢ Regular Up counters
» Stage counters (used with the RLLPLUS instructions)

The up counter has two inputs, a count input and a reset input. The maximum count
value is 9999. The timing diagram below shows the relationship between the counter
input, counter reset, associated discrete bit, current value, and counter preset.

2 3 4 5 6 7 8 001 CNT C600

I
1 Up K3

]

02
I
I

Reset

Counter preset

The stage counter has a count input and is reset by the RST instruction. This
instruction is used with the RLLPLUSinstructions. The maximum count value is 9999.
The timing diagram below shows the relationship between the counter input,
associated discrete bit, current value, counter preset and reset instruction.

2 3 4 5 6 7 8 0o’ SGCNT €600

[Up K3

Counter preset

LY
o
Q
o
3
3.
5
Q@
vy}
I
28
o
o

DL305 User Manual, Rev. D

Programming Basics

"
©
®
©
m
o)
£
£
S
©
L.
()
2
o

Using the Accumulator

Copying Data to
and from the
Accumulator

The accumulator in the DL305 series CPUs is a 16 bit register which is used as a
temporary storage location for data being copied or manipulated in some manor. For
example, you have to use the accumulator to perform math operations such as add,
subtract, multiply, etc. Since there are 16 bits, you can use up to a 4-digit BCD
number. The accumulator is reset to 0 at the end of every CPU scan.

The Data Store (DSTR) and Data Out (DOUT) instructions and their variations are
used to copy data from a register location to the accumulator, or to copy data from
the accumulator to a register location.

In the following example, when input 000 is on the value (7502) in R402 and R403 is
loaded into the accumulator using the Data Store (F50) instruction. The value in the
accumulator is output to data registers R404 and R405 using the Data Out (F60)
instruction.

DirectSOFT Display R 403 R 402
] [o2]
| DSTR (F50) < ~
| R 402
Accumulator
DOUT (F60)
R 404 < N
R405 R404

You probably noticed it took two registers to hold a 4-digit BCD number. This is
because each BCD digit requires four binary bit positions.

Since the accumulator is 16 bits and register locations are 8 bits, there are variations
of the DSTR and DOUT instructions that allow you to copy a single register, or even
half of a register (4 bits) either to or from the accumulator. The following example
shows how you could use the DSTR3 and DOUT2 instructions to copy the lower 4
bits from register 5 to the upper 4 bits of register 16. (These registers correspond to
I/O points and Control Relays respectively.)

DirectSOFT Display
000

RO05
| DSTR3 (F53) The upper 4 bits (*) of R5
| R 005 are not loaded into the
Load the lower 4 bits in aceumulator l
register 5 into the lower 4 bits 0 0 0 8 | Accumulator
of the accumulator 7
DOUT2 (F62) The upper 4 bits (*) of R400
RO016 are not altered

RO16
Output the lower 4 bits of the

accumulator to the upper 4

bits of R16

DL305 User Manual, Rev. D

Programming Basics

Changing the
Accumulator Data

Instructions that change or manipulate data in some way also use the accumulator.
The result of the change resides in the accumulator. The original data that was being
changed is cleared from the accumulator. In the following example, when input 000
is onthe value in RO00 and R0O10 is loaded into the accumulator using the Data Store
5 (F55) instruction. The bit pattern in the accumulator is shifted to the left 4 bit
positions using the Shift Left (F80) instruction. Notice how the result resides in the
accumulator. The value in the accumulator is copied to data registers R404 and
R405 using the Data Out (F60) instruction.

DirectSOFT Display
000

| DSTRS5 (F55)
| R 000

Load the value in registers RO
and R10 into the accumulator

SHFL (F80)
K4

Shift the value in the
accumulator 4 bits to the left

DOUT (F60)
R 404

Copy the value in the
accumulator to registers R404
and R405

Acc.

R 010

|

R 000

|

1/0 Points 100-107
7 6 543 210

1/0 Points 000-007
7 6 543 210

0|1|1|0|1|0|0|1

0|0|1|1|0|1|0|1

Shifted out of e
accumulator

15141312 11 10 9 8

7 65 43210

1|0|0|1 0|0|1|1

ol 1]o[1]o]0]0]o0

AN

776 will be ON after the shift
777 will be OFF after the shift

R 405

R 404

LY
o
Q
o
3
3.
5
Q@
vy}
I
28
o
o

DL305 User Manual, Rev. D

Programming Basics

Accumulator The following table lists several instructions that utilize the accumulator. Not all
Operations instructions allow you to use all the different memory types. Chapters 11 & 12
provide details on these instructions.

Memory Areas
Categor Mnemonic Description 4-digit Shift
2 s o CRs |Data | Current | 'gcp | Register
al u Const. Coils
DSTR Load a 4-digit constant or a 2-bytes
(F50) of register data into the O O O O O O
accumulator
DSTR 1 Load 1-byte of register data into the
(F51) accumulator o O o X X O
DSTR 2 Load the upper 4 bits of a register
(F52) into the lower 4 bits of the O O @] X X O
Data Load accumulator
DSTR 3 Load the lower 4 bits of a register
(F53) into the upper 4 bits of the O O O X X O
accumulator
DSTR 5 Load the digital values of 16 1/0
(F55) points (2 bytes) into the O X X X X X
accumulator
DOUT Write the accumulator to 2
(F60) sequential registers o O o O o O
DOUT 1 Write the lower byte of the
(F61) accumulator to a register o o o X X o
DOUT 2 Write the lower 4 bits of the
(F62) accumulator to the upper 4 bits of a O O @] X X O
Data Out register
DOUT 3 Write the lower 4 bits of the
(F63) accumulator to the lower 4 bits of a @) @) @) X X @)
register
DOUT 5 Write the contents of the
(F65) accumulator to a 16-point output O O O X X O
module (2 bytes)
8 CMP Compare a 2-byte BCD reference
) (F70) or a 4-digit BCD constant to the O @) @) @) O @)
© accumulator
m
o ADD Add a 2-byte BCD reference or a
£ (F71) 4-digit BCD constant to the O) O O O O
e accumulator
(% SUBTRACT | Subtract a 2-byte BCD reference or
S Math (F72) a 4-digit BCD constant from the o) o) o) o) o) o)
o accumulator
s MULTIPLY Multiply a 2-byte BCD reference or
(F73) a 4-digit BCD constant by the value O O O O @] O
in the accumulator
DIVIDE Divide the accumulator by a 2-byte
(F74) BCD reference or a 4-digit BCD O O O O O O
constant

O — Memory Type available for use with the instruction
X — Not available

DL305 User Manual, Rev. D

Programming Basics

Memory Areas
Category Mnemonic Description T CRs Data | Current 4;2%“ Rggilsftter
Register | Values Const Coils
DAND Performs a bit “AND” on a 2-byte
(F75) reference or a 4-digit BCD constant @] O @] O @] O
and the bits in the accumulator
DOR Performs a bit “OR” on a 2-byte
(F76) reference or a 4-digit BCD constant @] O @] O @] O
and the bits in the accumulator
I?Ilit - ulati SHIFT Shifts the contents of the
anipulation | RIGHT accumulator to the right a specified
(F80) number of times. 1 - 15 bits can be | o X X X X
shifted.
SHIFT LEFT | Shifts the contents of the
(F81) accumulator to the left a specified
number of times. X X X X X X
1 - 15 bits can be shifted.
DECODE Decodes the first 4 bits of the
(F82) accumulator into a decimal number. X X X X X X
ENCODE Encodes an accumulator bit into a
(F83) 4-bit code that represents the X X X X X X
decimal number (0-15).
Data - -
. INV Logically inverts the contents of the
Conversion (F84) accumulator (110 0, 0to 1). X X X X X X
BCD-BIN Converts the accumulator value
(F85) from BCD to Binary X X X X X X
BIN-BCD Converts the accumulator value
(F86) from Binary to BCD X X X X X X
Fault FAULT Sends a 4-digit BCD number, from
Daltl ti (F20) a 2-byte reference or a constant, to X X X X X X
etection the programmer display

O — Memory Type available for use with the instruction
X — Not available

LY
o
Q
o
3
3.
5
Q@
vy}
I
28
o
o

DL305 User Manual, Rev. D

	Programming Basics
	Introduction
	Using Boolean Instructions
	Using Timers
	Using Counters
	Using the Accumulator

