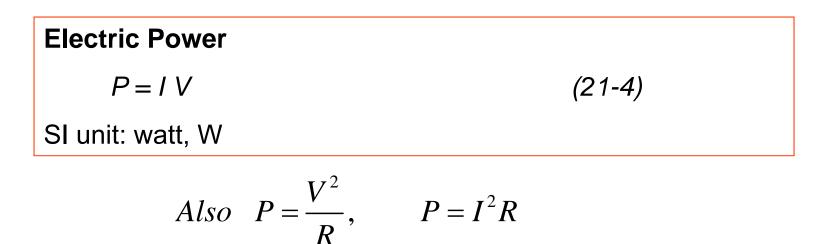
Chapter 21

Electric Current and Direct-Current Circuit

Outline

- 21-1 Electric Current
- 21-2 Resistance and Ohm's Law
- 21-3 Energy and Power in Electric Circuit
- 21-4 Resistance in Series and Parallel
- 21-5 Kirchhoff's Rules
- 21-6 Circuits containing Capacitors
- 21-7 RC Circuits

21-3 Energy and Power in Electric Circuit


Deriving electric power in a circuit

If a charge ΔQ moves across a potential difference V, its electrical potential energy, U, changes by the amount

$$\Delta U = (\Delta Q) V$$

Since the power is the rate of the energy changes with time, we have

$$P = \frac{\Delta U}{\Delta t} = \frac{(\Delta Q)V}{\Delta t}$$

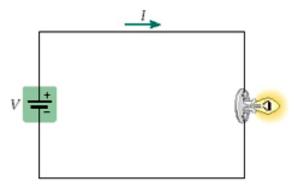
Problem 21-20

A portable CD player operates with a current of 22 mA at a potential difference of 4.1 V.

- (a) What is the power usage of the CD players?
- (b) What is the electric energy the player used in 2 hours of time?

Solution:

(a) From Eq. (21-4):


$$P = IV = (0.022 \text{ A})(4.1 \text{ V}) = 0.090 \text{ W}$$

(b) The total energy in 2 hours is:

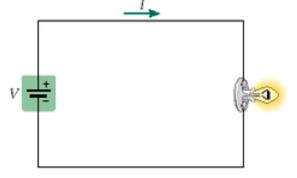
$$\Delta U = P \times \Delta t$$

= 0.09 × (2 × 3600) = 648 Joules

CONCEPTUAL CHECKPOINT 21–2

A battery that produces a potential difference V is connected to a 5-W light bulb. Later, the 5-W light bulb is replaced with a 10-W light bulb. (a) In which case does the battery supply the greatest current? (b) Which light bulb has the greater resistance?

CONCEPTUAL CHECKPOINT 21–2


A battery that produces a potential difference V is connected to a 5-W light bulb. Later, the 5-W light bulb is replaced with a 10-W light bulb. (a) In which case does the battery supply the greatest current? (b) Which light bulb has the greater resistance?

Reasoning and Discussion

(a) To compare the currents we need consider only the relation P = IV. Solving for the current yields I = P/V. When the voltage V is the same, it follows that the greater the power, the greater the current. In this case, then, the current in the 10-W bulb is twice the current in the 5-W bulb. (b) We now consider the relation $P = V^2/R$, which gives resistance in terms of voltage and power. In fact, $R = V^2/P$. Again, with V the same, it follows that the smaller the power the greater the resistance. Thus, the resistance of the 5-W bulb is twice that of the 10-W bulb.

Answer:

(a) When the battery is connected to the 10-W bulb it delivers twice as much current as when it is connected to the 5-W bulb. (b) The 5-W bulb has twice as much resistance as the 10-W bulb.

Energy Usage

1 kilowatt · hour (kWh) = (1000 W) (3600 s) = $3.6 \times 10^6 \text{ J}$

 $1 J = 1/(3.6 \times 10^6) \text{ kWh}$

Problem 21-22

The current in a 120-V reading lamp is 2.3 A. If the cost of electrical energy \$0.075 per kilowatt-hour, how much does it cost to operate the light for an hour?

Solution:

1. Calculate the power delivered to the lamp:

2. Multiply *P* by Δt to find :

3. Multiply by the cost per kilowatt-hour:

$$P = IV = (2.3 \text{ A})(120 \text{ V}) = \underline{280 \text{ W}}$$

 $\Delta U = P \Delta t = (0.28 \text{ kW})(1.0 \text{ h}) = 0.28 \text{ kWh}$

$$\cos t = (0.28 \text{ kWh})(\$0.075/\text{kWh}) = \$0.021$$

21-4 Resistors in Series and Parallel

Electric circuit often consist of a number of resistors in various ways. To make the circuit simple, a group of resistors can be expressed as an *equivalent resistor* that has the same resistance for the circuit.

Resistors in Series

Resistors are connected one after the other, and that they have the same current I through each resistor.

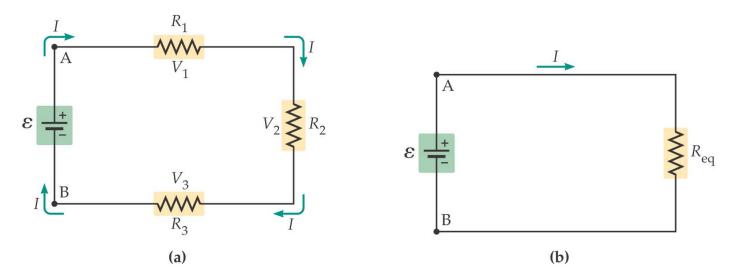


Figure 21-6 Resistors in Series

Deriving Equivalent Resistance

In Fig 21-6 (a), since the total potential difference from point A to point B must be equal to the emf of the battery

$$\varepsilon = V_1 + V_2 + V_3$$
$$= IR_1 + IR_2 + IR_3$$
$$= I(R_1 + R_2 + R_3)$$

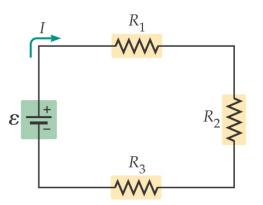
Similarly, in Fig 21-6 (b), we have

$$\mathcal{E} = IR_{eq}$$

Compare the above two equations, we have

$$R_{eq} = R_1 + R_2 + R_3$$

Equivalent Resistance for Resistors in Series


$$R_{eq} = R_1 + R_2 + R_3 + \ldots = \Sigma R$$

SI unit: ohm, Ω

Example 21-5 Three Resistors in Series

A circuit consists of three resistors connected in series to a 24.0 V battery. The current in the circuit is 0.0320 A. Given that R_1 =250.0 Ω and R_2 =150.0 Ω .

Find (a) the value of R_3 , and (b) the potential different across each resistor.

Solution

Part (a)

According to Ohm's law, the equivalent resistor is $R_{eq} = \frac{\mathcal{E}}{I} = \frac{24.0V}{0.0320A} = 7.50 \times 10^2 \quad \Omega$

Since

$$R_{eq} = R_1 + R_2 + R_3$$

we have $R_3 = R_{eq} - R_1 - R_2 = 7.50 \times 10^2 - 250.0 - 150.0 = 3.50 \times 10^2 \Omega$

Part (b)

Find the potential difference at each resistor, that is current times resistor, respectively

$$V_{1} = IR_{1} = (0.0320A)(250.0\Omega) = 8.00 V$$
$$V_{2} = IR_{2} = (0.0320A)(150.0\Omega) = 4.80 V$$
$$V_{3} = IR_{3} = (0.0320A)(3.50 \times 10^{2} \Omega) = 11.2 V$$

Resistors in Parallel

Resistors are connected in parallel, and they have the same potential difference.

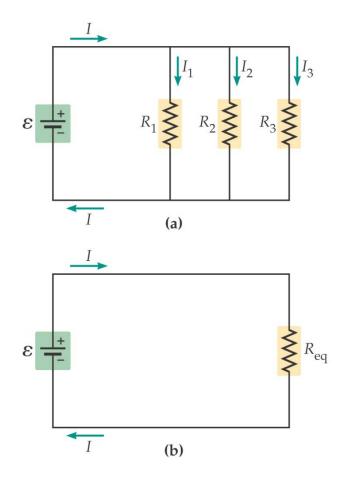


Figure 21-8 Resistors in Parallel

Deriving Equivalent Resistance

In Fig 21-8 (a), since the total current I is equal to the sum of the current through each resistor,

$$I = I_1 + I_2 + I_3$$

Since all resistors have the same potential difference,

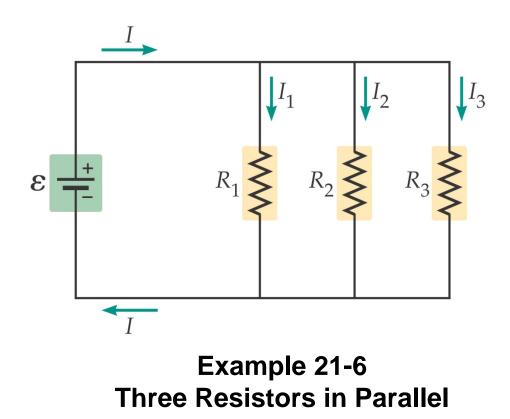
$$\varepsilon = I_1 R_1$$
 $\varepsilon = I_2 R_2$ $\varepsilon = I_3 R_3$

Substitute into the first Eq, we have

$$I = \frac{\varepsilon}{R_1} + \frac{\varepsilon}{R_2} + \frac{\varepsilon}{R_3} = \varepsilon \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)$$

Now, from Fig 21-8(b), according to Ohm's law, one has

$$I = \varepsilon(\frac{1}{R_{eq}})$$


Equivalent Resistance for Resistors in Parallel

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots = \Sigma \frac{1}{R}$$

SI unit: ohm, Ω

EXAMPLE 21-6 Three Resistors in Parallel

A circuit consists of three resistors, $R_1=250.0 \Omega$, $R_2=150.0 \Omega$, $R_3=350.0 \Omega$ and are connected in parallel with a 24.0 V battery. Find **(a)** the total current supplied by the battery and **(b)** the current through each resistor.

Solution

Part (a)

Find the equivalent resistor

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
$$= \frac{1}{250.0\Omega} + \frac{1}{150.0\Omega} + \frac{1}{350.0\Omega} = 0.01352 \quad \Omega^{-1}$$

$$R_{eq} = (0.01352)^{-1} = 73.96 \ \Omega$$

So, the total current is

$$I = \frac{V}{R_{eq}} = \frac{24.0V}{73.96\Omega} = 0.325 \quad A$$

Part (b)

Find the currents at each resistor

$$I_1 = \frac{V}{R_1} = \frac{24.0V}{250.0\Omega} = 0.0960 \quad A$$

$$I_2 = \frac{V}{R_2} = \frac{24.0V}{150.0\Omega} = 0.160 \quad A$$

$$I_3 = \frac{V}{R_3} = \frac{24.0V}{350.0\Omega} = 0.0686 \quad A$$

$$I_1 + I_2 + I_3 = I?$$

CONCEPTUAL CHECKPOINT 21–3

Two identical light bulbs are connected to a battery, either in series or in parallel. Are the bulbs in series (a) brighter, (b) dimmer, or (c) the same brightness as the bulbs in parallel?

CONCEPTUAL CHECKPOINT 21–3

Two identical light bulbs are connected to a battery, either in series or in parallel. Are the bulbs in series (a) brighter, (b) dimmer, or (c) the same brightness as the bulbs in parallel?

Reasoning and Discussion

Both sets of light bulbs are connected to the same potential difference, V; hence, the power delivered to the bulbs is V^2/R_{eq} , where R_{eq} is twice the resistance of a bulb in the series circuit and half the resistance of a bulb in the parallel circuit. As a result, more power is converted to light in the parallel circuit.

Answer:

(b) The bulbs connected in series are dimmer than the bulbs connected in parallel.

Combination Circuits

A electric circuit may be more complex, which include resistors both in parallel and series. In this case, we can still applied the equivalent resistors in each part, individually

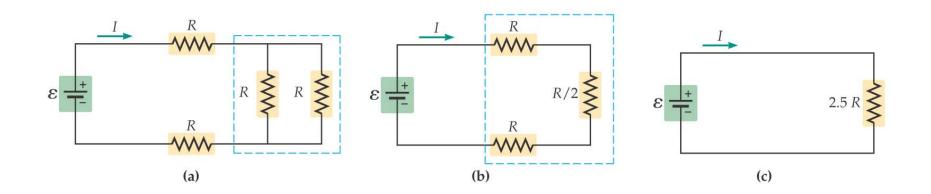
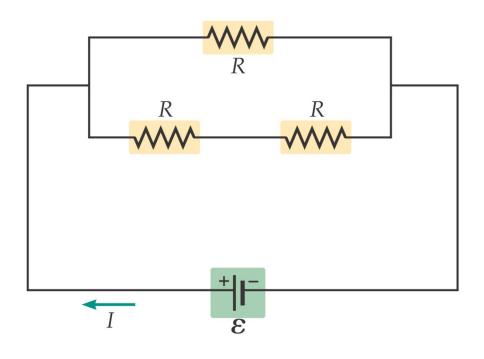



Figure 21-10 Analyzing a Complex Circuit of Resistors

Example 21-7 Combination Special

In a circuit shown in the diagram, the emf of the battery is 12.0 V, and all the resistors have a resistance of 200.0 Ω . Find the current applied by the battery to this circuit.

Example 21-7 Combination Special

Solution

1) Find the equivalent resistor of the two resistors

$$R_{eq,lower} = R + R = 2R$$

2) Find the equivalent resistor of the whole circuit

$$\frac{1}{R_{eq}} = \frac{1}{R} + \frac{1}{2R} = \frac{3}{2R}$$

$$R_{eq} = \frac{2}{3}R = \frac{2}{3}(200.0\Omega) = 133.3 \ \Omega$$

3) Find the current of the whole circuit

$$I = \frac{\varepsilon}{R_{eq}} = \frac{12.0V}{133.3\Omega} = 0.0900 \quad A$$

Summary

Energy and Power in Electric Circuit

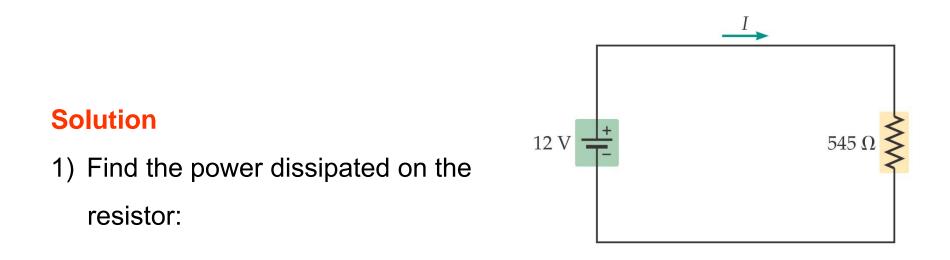
$$P = \frac{\Delta U}{\Delta t} = \frac{(\Delta Q)V}{\Delta t}$$
$$P = I V$$
(21-4)

Resistance in Series and Parallel

$$R_{eq} = R_1 + R_2 + R_3 + \dots = \Sigma R$$
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots = \Sigma \frac{1}{R}$$

Exercise 21-2

A handheld electric fan operates on a 3.00-V battery. If the power generated by the fan is 2.24 W, what is the current supplied by the battery?


Solution

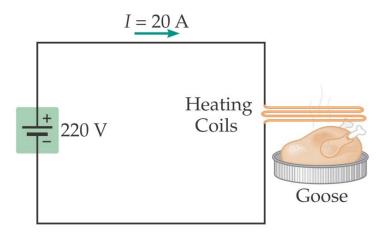
Since P=IV, we have

$$IV = P$$

 $I(3.00V) = 2.24W$
 $I = \frac{2.24W}{3.00V} = 0.747$ A

Exercise 21-3 Heated Resistance

A battery with an emf of 12 V is connected to a 545 Ω resistor. How much energy is dissipated in the resistor in 65 s?


 $P = VI = V^2 / R = (12V)^2 / (546 Ω) = 0.26 W$

2) The energy dissipated is

 $\Delta U = P \Delta t = (0.26 \text{ W}) (65 \text{ s}) = 17 \text{ J}$

Example 21-4

A holiday goose is cooked in the kitchen oven for 4.00 h. The oven current is 20.0 A and it operates at 220.0 V voltage. The cost of electrical energy is \$0.048 per KWH. How much does it cost to cook your goose?

Solution

1) Find the power of the oven

P = IV = (20.0 A)(220.0 V)

= 4.40 x10³ W

2) The total energy in 4.00 h is

 $\Delta U = P \Delta t = (4.40 \text{ x} 10^3 \text{ W})(4.00 \text{ x} 60 \text{ x} 60 \text{ s}) = 6.34 \text{ x} 10^7 \text{ J}$

 $=6.34 \times 10^7$ / (3.6x10⁶) kWh =17.6 kWh

3) The total cost is

Cost = (17.6 kWh) (\$0.048/kWh) = \$0.84