SAS Workshop - Multivariate Procedures Handout # 4

PROC CLUSTER

The objective in cluster analysis is to group "like" observations together when the underlying structure is unknown. This is carried out through a variety of methods, all of which use some measure of distance between data points as a basis for creating groups. Typically this distance is the standard Euclidian distance, i.e. a straight line in two dimensions, but the exact definition of distance is determined by the user. Essentially, data points with the smallest distances between them are grouped together. Then the data with the next smallest distances are added to each group, etc. until all observations end up together in one large group. The cluster is interpreted by observing the grouping history or pattern produced as the procedure was carried out. If the analysis works, distinct groups or clusters will stand out. These may have some practical meaning in terms of the research problem.

The general SAS code for performing a cluster analysis is:

PROC CLUSTER <options>;
VAR var1 var2 var3 ... var n;

Here the options control the printing, computational, and output of the procedures. Some examples are:

NOPRINT	- suppresses any printed output,
NOEIGEN	- suppresses printing of eigenvalues,
SIMPLE	- produces simple summary statistics for each variable,
METHOD =	- controls the clustering method used (required option),
STANDARD	- Uses the correlation matrix for computation, and
OUTTREE =	- create an output dataset for cluster diagrams.

The VAR statement, as before, lists the variables to be considered as responses.

For the flour example, the SAS program would be:

PROC CLUSTER METHOD = AVERAGE OUTTREE = TREE; VAR PEAK_VISC TROUGH_VISC FINAL_VISC BREAKDOWN TOTAL_SETBACK TIMEPEAK_VISC;

The method selected in this example is the AVERAGE which bases clustering decisions on the average distance (linkage) between points or clusters. Some other possibilities include CENTROID which uses the distance between the geometric centers of the clusters, MEDIAN which is similar to average, but based on median values, and SIMPLE which uses a nearest neighbor approach. The computed clusters will be saved in a dataset calledTREE for plotting purposes.

The printed output for PROC CLUSTER is quite large (one line for every observation), but a sample is shown below:

	T Averag	he CLUSTER Pro e Linkage Clus	cedure ter Analysis	
	Eigenvalue	Difference	Proportion	Cumulative
1	101826.399	68286.241	0.7476	0.7476
2	33540.157	32702.073	0.2462	0.9938
3	838.084	837.287	0.0062	1.0000
4	0.797	0.744	0.000	1.0000
5	0.053	0.053	0.0000	1.0000
6	0.000		0.0000	1.0000

This first section displays the eigenvalues in a manner similar to PROC PRINCOMP. Note that the values are different here because I chose not to use the STANDARD option, i.e. the output is based on the covariance matrix, not the correlations. As before, two axes define the data well.

		Cluster Histo	ry		
				Norm	Т
				RMS	i
NCL	Cluste	ers Joined	FREQ	Dist	е
74	0B17	0B18	6	0.0149	
73	0B6	0B7	6	0.0237	
72	0B3	0B4	6	0.0238	
71	0B12	0B13	6	0.0256	
70	0B9	0B10	6	0.0262	
69	0B28	0B29	6	0.0264	
68	CL72	0B8	9	0.0349	
67	CL69	0B30	9	0.0374	
66	0B32	0B33	6	0.0396	
65	0B22	0B23	6	0.0404	
64	0B61	0B62	6	0.0408	
63	CL71	0B14	9	0.0411	
62	0B19	0B20	6	0.0427	
61	0B42	0B43	6	0.0441	
60	0B2	CL68	12	0.0449	
59	0B36	0B37	6	0.0469	
58	0B1	CL73	9	0.0512	
57	0B5	CL70	9	0.0514	
56	0B16	CL74	9	0.0516	
55	0B46	0B47	6	0.0543	

The second section gives the clustering "history" starting with the smallest distance (Normalized RMS distance). The first line shows a cluster, #74, was created using observations 17 and 18. Similar clusters were created from single observations to make cluster numbers 73, 72, 71, 70, and 69. At cluster 68, observation number 8 was added to cluster number 72 (obs 3 & 4). This

process continues until all observations are included in one cluster.

While this process may be interesting, it is hard to follow on the printout. For this reason, cluster analyses are usually reported based on plots of the clustering history, referred to as tree diagrams or dendograms. In SAS, there is a procedure to create such plots called PROC TREE. This procedure uses the output dataset from PROC CLUSTER. The code is simply:

proc tree data=tree;

PROC TREE has options and statements available to "dress up" the plot by altering its shape and labeling. The details relating to these options will be left to the reader. The default plot is given below:

Name of Observation or Cluster

I have added shading to indicate three large clusters which correspond to the three flour concentration levels. Within each of these, are five subclusters corresponding to the peak temperature levels, and these can be further broken down into the five heating rates. Thus, PROC CLUSTER has correctly identified the treatment structure of our example.

As with PCA and factor analysis, these results are subjective and depend on the users interpretation. The procedures are simply descriptive and should be considered from an exploratory point of view rather than an inferential one.