

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

Table	of	Contents
Introduction

Setting	Up	Rubygems.org

Principles	and	Tools

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

Little's	Law

The	Business	Case	for	Performance

Performance	Testing

Profiling

Memory

Rack	Mini	Profiler

New	Relic

Skylight

Optimizing	the	Front-end

Chrome	Timeline

The	Optimal	Head	Tag

Resource	Hints

Turbolinks	and	View-Over-The-Wire

Webfonts

HTTP/2

JavaScript

HTTP	Caching

Optimizing	Ruby

Memory	Bloat

Memory	Leaks

ActiveRecord

Background	Jobs

Caching

2

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.7

1.8

Slimming	Down	Your	Framework

Exceptions	as	Flow	Control

Webserver	Choice

Idioms

Streaming

ActionCable

The	Environment

CDNs

Databases

JRuby

Memory	Allocators

SSL

Easy	Mode	Stack

The	Complete	Checklist

3

The	Complete	Guide	to	Rails
Performance
This	course	will	teach	you	how	to	make	your	Ruby	and	Rails	web	applications	as	fast	as
possible.	Whether	or	not	you're	an	experienced	programmer,	this	book	is	intended	for
anyone	running	Ruby	web	applications	in	production	that	wants	to	make	them	faster.

If	you've	ever	put	a	Ruby	web	application	in	production,	you've	probably	dealt	with
performance	issues.	It's	the	nature	of	the	language	-	it	isn't	the	fastest	on	the	block.
Each	line	of	Ruby	code	we	write	tends	to	make	our	application	just	that	little	bit	slower.
Some	would	take	this	to	mean	it's	time	to	jump	ship	and	head	for	a	faster	language,	like
Go	or	Crystal.

Veterans	probably	already	know	the	futility	of	chasing	the	latest	programming	craze.	We
all	remember	the	furor	over	Scala	in	2008,	when	Twitter	reportedly	dumped	their	Rails
app	for	a	Scala-powered	backend.	Where	are	all	the	Scala	applications	now?	If	you	had
rewritten	your	app	in	Scala	in	2008,	where	would	you	be	today?

Plus,	I	think	a	lot	of	us	just	love	writing	Ruby.	I	know	I	do.	Rather	than	seeing	Ruby's
native	performance	as	an	immovable	barrier,	I	see	it	as	a	signal	that,	as	Rubyists,	we
need	to	be	even	more	knowledgable	about	performance	than	our	counterparts	in
languages	like	Go	or	even	JavaScript.

This	course	was	written	to	help	companies	and	programmers	continue	to	use	Ruby	for
their	web	applications	for	many	years	to	come.	I	love	the	Ruby	programming	language	-
ever	since	I	read	_why's	Poignant	Guide,	I	have	been	deeply	in	love	with	this	quirky,
beautiful	little	language.	I	hope	that,	by	teaching	all	I	know	about	speed	and	performance
in	Ruby	and	Rails	web	applications,	no	one	will	ever	have	to	feel	compelled	to	choose
another	language	because	Ruby	could	not	meet	their	performance	specifications.

Why	Rails?
I	originally	wanted	to	call	this	the	"Complete	Guide	to	Ruby	and	Rails	Performance".
Although	the	"microservices"	approach	is	becoming	more	popular,	and	frameworks	like
Lotus	and	Sinatra	have	received	more	attention,	Rails	remains	the	king	in	the	Ruby	web
framework	space.	Barring	catastrophe,	it	probably	always	will	be.

Introduction

4

In	addition,	the	stated	purpose	of	Rails	is	quite	similar	to	the	goals	I	had	in	preparing	this
course.	At	RailsConf	in	2015,	DHH	said	that	he	imagined	Rails	as	a	kind	of	"doomsday
prepper	backpack"	-	he	wanted	everything	in	there	that	he	would	need	to	reconstruct	a
top-1,000	website	with	a	small	team	of	people.	This	is,	of	course,	exactly	what	he	has
done	with	Rails	at	Basecamp	-	three	times,	in	fact,	since	Basecamp	has	been	rewritten
twice.

However,	Rails	doesn't	come	with	an	instruction	manual.	There	are	a	lot	of	performance
pitfalls	in	Rails,	and	none	of	them	are	covered	in	Rails'	documentation	(they	probably
shouldn't	be,	anyway).	This	course	is	that	instruction	manual.	An	alternate	title	might
have	been	"The	Doomsday	Prepper	Backpack	for	Rails	Performance".

That	said,	much	of	this	book	isn't	Rails-specific.	An	entire	module	isn't	even	Ruby-
specific.

This	course	is	about	the	entire	stack	-	from	the	metal	to	the	browser.	Anything	that	can
impact	end-user	experience	is	covered,	from	HTML	down	to	SQL.	Much	of	that	isn't
framework-specific,	though	some	of	it	will	be.

This	course	is	the	tool	I	wish	I	would	have	had	in	my	career	-	a	step-by-step	instruction
and	checklist	for	building	a	lightning-fast	Rails	site,	geared	towards	small	to	medium
sized	teams	and	websites.	This	is	where	I've	spent	my	entire	career,	both	in	full-time	and
consulting	work.

Why	You?
This	course	assumes	about	3	months	of	Rails	experience,	no	more.	I	hate	technical
writing	that	assumes	the	reader	is	some	kind	of	genius	and	doesn't	explain	(or	even	just
link	to	an	explanation)	everything	that's	going	on.	In	addition,	even	if	you're	not
completely	sure	you've	understood	a	topic,	you	can	ask	me	and	your	fellow	participants
on	our	private	Slack	channel.	Finally,	if	you	buy	the	course	and	decide	its	over	your
head,	I'll	refund	your	money.	No	questions	asked.

If	you	(or	your	customers)	are	not	satisfied	with	the	speed	of	your	Rails	application,	this
course	will	work	for	you.	Not	100%	will	apply,	of	course,	but	90%	of	it	will.

This	course	is	applicable	to	both	"greenfield"	and	"legacy"	applications,	but	I	might	say	it
focuses	on	legacy	applications.	I've	worked	on	a	lot	of	what	I	consider	"legacy"
applications	(2+	year	codebases).	Those	are	the	ones	that	tend	to	be	slow,	not	the

Introduction

5

greenfield	ones.	My	only	caveat	is	I'm	not	going	to	talk	about	optimizing	previous	major
versions	of	anything	-	Rails	3,	Ruby	1.9,	etc.

I'm	going	to	focus	the	course	on	the	typical	Rails	stack.	In	my	opinion,	that	includes	a
SQL	relational	database.	NoSQL	is	too	far	outside	of	my	comfort	area	to	speak
meaningfully	about	it.	I	include	a	specific	section	on	Postgres,	because	it	has	several
unique	features	and	it's	so	widely	used.	JS	frameworks	are	also	not	covered	specifically
(I	won't	tell	you	how	to	optimize	React,	for	example),	but	I	will	cover	the	specific	needs	of
an	API-only	application.

How	To	Use	This	Course
This	course	is	delivered	to	you	in	the	form	of	a	git	repository.	I	considered	using	more
traditional	"MOOC"	software,	but	I	didn't	like	anything	that	I	could	find.	We're	all
programmers,	so	I	hope	that	interacting	with	this	course	in	a	git	repository	isn't	too	novel
for	any	of	us.

Here	is	how	I	suggest	you	work	through	this	course:

If	you	haven't	already,	join	the	Complete	Guide's	official	Slack	channel.	You
received	an	email	with	an	invitation	after	your	purchase.	Once	you	do,	you'll	be	able
to	get	access	to	the	private	GitHub	organization	and	git	remote	for	this	course.
Using	that	git	remote,	you'll	be	able	to	simply	"git	pull"	to	receive	the	latest	course
updates	and	revisions.
Read	the	lessons	more	or	less	in	order.	I've	provided	many	ways	to	do	this	-	HTML,
PDF,	e-Reader	formats,	an	audio	recording,	and	even	JSON.	You	can	even	just
read	this	course	in	your	text	editor	if	you	like	-	the	folders	have	been	alphabetized	to
match	the	order	of	the	Table	of	Contents,	and	all	lessons	are	in	Markdown	format.
This	course	was	produced	using	Gitbook,	but	installation	is	not	required	to	view	the
material.
If	you	purchased	the	Web-Scale	package,	after	you've	completed	a	lesson,	watch
the	included	screencast	for	that	lesson.	The	screencasts	are	included	in	a	separate
archive,	though	they	can	be	merged	with	your	course	folders	(because	the	video
folder	structure	is	the	same).	The	screencast	is	additional	material,	not	just	a
restatement	of	the	lesson.	Usually,	the	screencast	is	a	"watch-over-my-shoulder"-
style	presentation	where	you'll	watch	me	implement	the	lesson's	concepts.
Finally,	try	your	hand	at	the	lab	for	the	lesson.	Labs	are	hands-on	exercises	that	test
your	skills	using	what	you	learned	in	the	lesson.

Introduction

6

Introduction

7

Setting	Up	Rubygems.org
Rubygems.org	is	a	Rails	application	that	hosts	Rubygems	for	the	entire	Ruby
community.	It	has	a	web	interface	that	provides	search	and	several	other	features.	This
course	uses	Rubygems.org	as	an	example	application	for	many	of	the	labs	and	hands-
on	exercises	in	the	course.

Here's	what	you'll	need	to	do	to	get	Rubygems.org	running	locally:

1.	 Install	Ruby	2.2.3	via	your	preferred	method.	I	use		ruby-install	.
2.	 	git	clone	https://github.com/rubygems/rubygems.org.git	
3.	 This	lab	requires	that	you	check	out	a	specific	commit.		git	checkout	e0009000	
4.	 Rubygems.org	requires	a	working	installation	of	Postgres	and	Redis.	Install	these

tools	if	you	haven't	already.
5.	 	cp	config/database.yml.example	config/database.yml		and	modify	as	required.

Create	the	production	and	development	databases:		bundle	exec	rake	db:reset		and
	RAILS_ENV=production	bundle	exec	rake	db:reset	.

6.	 Run		bundle	install		and	make	sure	you	have	Postgres	and	Redis	running.

At	this	point,	you	should	have	a	working	copy	-	at	least	in	development	mode.	Trying
start	a	server	in	development	mode	and	make	sure	it	works.

To	get	Rubygems.org	running	in	production	mode,	follow	these	steps:

1.	 Download	a	copy	of	Rubygems.org's	production	database	and	load	it	into	your
production	database	(gemcutter_production).	This	copy	of	the	Rubygems.org
production	database	is	from	the	same	date	as	the	commit	we've	checked	out,	and
sanitized	of	any	sensitive	information.	This	dump	can	be	loaded	into	Postgres	with
	$	psql	gemcutter_production	<	PostgreSQL.sql	.	More	recent	dumps	are	available
here.

2.	 Download	a	copy	of	Rubygems.org's	production	Redis	dump	(also	from	the	same
date	as	the	commit	we've	checked	out).	Extract	this	dump,	rename	it	to		dump.rdb	
and	place	it	in	the	root	of	the	application	-	now,	using		redis-server		from	the	root	of
your	application	will	automatically	load	this	database	dump.	Additional,	more	recent
Redis	dumps	are	available	here.

3.	 In		config/environments/production.rb	,	change		config.force_ssl		to		false		and
	config.serve_static_files		to		true	.

4.	 In		config/application.rb	,	delete	or	comment	out	the	line	that	says

Setting	Up	Rubygems.org

8

https://github.com/postmodern/ruby-install
https://s3.amazonaws.com/railsperformanceguide/public_postgresql.tar
https://rubygems.org/pages/data
https://s3.amazonaws.com/railsperformanceguide/public_redis.tar
https://rubygems.org/pages/data

	config.middleware.use	"Redirector"	unless	Rails.env.development?	.
5.	 Generate	the	assets:		RAILS_ENV=production	rake	assets:precompile	
6.	 Start	a	production	server	with		RAILS_ENV=production	SECRET_KEY_BASE=foo	rails	s	

For	more	about	using	Rubygems.org,	see	their	CONTRIBUTING.MD.

Setting	Up	Rubygems.org

9

https://github.com/rubygems/rubygems.org/blob/master/CONTRIBUTING.md

Module	1:	Principles
This	module	is	about	the	principles	of	Rails	performance.	We'll	be	covering	the	"bigger
picture"	in	these	chapters,	and	we'll	also	talk	about	some	of	the	more	general	tools,	like
profilers	and	benchmarking,	that	we	can	use	to	solve	performance	problems.

The	most	important	lesson	in	this	module	is	on	The	80/20	Principle.	This	principle	is	like
an	"Occam's	Razor"	against	the	evil	of	premature	optimization.	Without	an
acknowledgement	that	performance	problems	are	often	limited	to	just	a	few	small	areas
of	our	application,	we	may	be	tempted	to	blindly	optimize	and	tweak	areas	of	our
application	that	aren't	even	the	bottleneck	for	our	end-users.

Principles	and	Tools

10

An	Economist,	A	Physicist,	and	a
Linguist	Walk	Into	a	Bar...
You	bought	this	course	because	you	wanted	to	learn	more	about	web	application
performance.	Before	we	get	to	that,	I	want	to	lay	out	some	basic	principles	-	some
guiding	lights	for	our	future	work	together.	Actually,	I	want	to	tell	you	about	a	physicist
from	Schenectady,	a	Harvard	linguist,	and	an	Italian	economist.

The	Italian	economist	you	may	already	have	heard	of	-	Vilifred	Pareto.	He	became
famous	for	something	called	The	Pareto	Principle,	something	you	might	be	familiar
with.	So	why	am	I	spending	an	entire	lesson	on	it?	Because	while	you've	probably	heard
of	the	Pareto	Principle,	I	want	you	to	understand	why	it	actually	works.	And	to	do	that,
we're	going	to	have	to	look	back	in	history.

Benford	-	the	physicist
Frank	Benford	was	an	American	electrical	engineer	and	physicist	who	worked	for
General	Electric.	It	was	the	early	20th	century,	when	you	had	a	job	for	life	rather	than	a
startup	gig	for	18	months,	so	he	worked	there	from	the	day	he	graduated	from	the
University	of	Michigan	until	his	death	38	years	later	in	1948.	Back	in	that	day,	before
calculators,	if	you	wanted	to	know	the	logarithm	of	a	number	-	say,	12	-	you	looked	it	up
in	a	book.	The	books	were	usually	organized	by	the	leading	digit,	so	if	you	wanted	to
know	the	logarithm	of	330,	you	first	went	to	the	section	for	3,	then	looked	for	330.
Bedford	noticed	that	the	first	pages	of	the	book	were	far	more	worn	out	than	the	last
pages.	Benford	realized	this	meant	that	the	numbers	looked	up	in	the	table	began	more
often	with	1	than	with	9.

Most	people	would	have	noticed	that	and	thought	nothing	of	it.	But	Benford	pooled
20,000	numbers	from	widely	divergent	sources	(he	used	the	numbers	in	newspaper
stories)	and	found	that	the	leading	digit	of	all	those	numbers	followed	a	logarithmic
distribution	too!

This	became	known	as	Benford's	Law.	Here	are	some	other	sets	of	numbers	that
conform	to	this	logarithmic	distribution:

Physical	constants	of	the	universe	(pi,	the	molar	constant,	etc.)
Surface	areas	of	rivers

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

11

Fibonacci	numbers
Powers	of	2
Death	rates
Population	censuses

Bedford's	Law	is	so	airtight	that	it's	been	admitted	in	US	courts	as	evidence	of
accounting	fraud	(someone	used	RAND	in	their	Excel	sheet!).	It's	been	used	to	identify
other	types	of	fraud	too	-	elections	and	even	macroeconomic	data.

What	would	cause	numbers	that	have	(seemingly)	little	relationship	with	each	other	to
conform	so	perfectly	to	this	non-random	distribution?

Zipf	-	the	linguist
At	almost	exactly	the	same	time,	George	Kingsley	Zipf	was	studying	languages	at
Harvard.	Uniquely,	George	was	applying	the	techniques	of	a	new	and	interesting	field	-
statistics	-	to	the	study	of	language.	This	landed	him	an	astonishing	insight:	in	nearly
every	language,	some	words	are	used	a	lot,	but	most	(nearly	all)	words	are	used	hardly
at	all.	That	is	to	say,	if	you	took	every	English	word	ever	written	and	plotted	the
frequency	of	words	used	as	a	histogram,	you'd	end	up	with	a	graph	that	looked
something	like	what	you	see	below	-	a	plot	of	the	rank	versus	frequency	for	the	first	10
million	words	in	30	different	languages	of	Wikipedia.	Note	the	logarithmic	scales.

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

12

The	Brown	Corpus	is	500	samples	of	English-language	text	comprising	1	million	words.
Just	135	unique	words	are	needed	to	account	for	50%	of	those	million.	That's	insane.

If	you	take	Zipf's	probability	distribution	and	make	it	continuous	instead	of	discrete,	you
get	the	Pareto	distribution.

Pareto	-	the	economist
Pareto	initially	noticed	this	distribution	when	he	was	thinking	about	wealth	in	society	-	he
noticed	that	80%	of	the	wealth	and	income	came	from	20%	of	the	people	in	it.

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

13

The	Pareto	distribution,	pictured,	has	been	found	to	hold	for	a	scary	number	of
completely	different	and	unrelated	fields	in	the	sciences.	For	example,	here	are	some
natural	phenomena	that	exhibit	a	Pareto	(power	law)	distribution:

Wealth	inequality
Sizes	of	rocks	on	a	beach
Hard	disk	drive	error	rates	(!)
File	size	distribution	of	Internet	traffic	(!!!)

We	tend	to	think	of	the	natural	world	as	random	or	chaotic.	In	schools,	we're	taught	the
bell	curve/normal	distribution.	But	reality	isn't	normally	distributed.	It's	log-normal.	Many
probability	distributions,	in	the	wild,	support	the	Pareto	Principle:

80%	of	the	output	will	come	from	20%	of	the	input

While	you	may	have	heard	this	before,	what	I'm	trying	to	get	across	to	you	is	that	it	isn't
made	up.	The	Pareto	distribution	is	used	in	hundreds	of	otherwise	completely	unrelated
scientific	fields	-	and	we	can	use	its	ubiquity	to	our	advantage.

It	doesn't	matter	what	area	you're	working	in	-	if	you're	applying	equal	effort	to	all	areas,
you	are	wasting	your	time.	What	the	Pareto	distribution	shows	us	is	that	most	of	the
time,	our	efforts	would	be	better	spent	finding	and	identifying	the	crucial	20%	that

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

14

accounts	for	80%	of	the	output.

Allow	me	to	reformulate	and	apply	this	to	web	application	performance:

80%	of	an	application's	work	occurs	in	20%	of	its	code.

There	are	other	applications	in	our	performance	realm	too:

80%	of	an	application's	traffic	will	come	from	20%	of	its	features.

80%	of	an	application's	memory	usage	will	come	from	20%	of	its	allocated
objects.

The	ratio	isn't	always	80/20.	Usually	it's	way	more	severe	-	90/10,	95/5,	99/1.	Sometimes
it's	less	severe.	So	long	as	it	isn't	50/50	we're	talking	about	a	non-normal	distribution.

This	is	why	premature	optimization	is	so	bad	and	why	performance	monitoring,	profiling
and	benchmarking	are	so	important.	What	the	Pareto	Principle	reveals	to	us	is	that
optimizing	any	random	line	of	code	in	our	application	is	in	fact	unlikely	to	speed	up	our
application	at	all!	80%	of	the	"slowness"	in	any	given	app	will	be	hidden	away	in	a
minority	of	the	code.	So	instead	of	optimizing	blindly,	applying	principles	at	random	that
we	read	from	blog	posts,	or	engaging	in	Hacker-News-Driven-Development	by	using	the
latest	and	"most	performant"	web	technologies,	we	need	to	measure	where	the
bottlenecks	and	problem	areas	are	in	our	application.

Repeat	after	me:	I	will	not	optimize	anything	in	my	application	until	my	metrics	tell	me	so.

There's	only	one	skill	in	this	entire	course	that	you	need	to	understand	completely	and
deeply	-	how	to	measure	your	application's	performance.	Once	you	have	that	skill
mastered,	reading	every	single	lesson	in	this	course	might	be	a	waste	of	time.	Your
problems	are	not	other's	problems.	There	are	going	to	be	lessons	in	this	course	that
solve	problems	you	don't	have	(or	don't	comprise	that	crucial	20%	of	the	causes	of
slowness	in	your	application).	For	that	reason,	with	the	exception	of	this	first
measurement	module,	I	do	not	encourage	you	to	read	this	entire	course	from	cover	to
cover.	Complete	the	first	module,	then	use	the	skills	you	learn	there	to	measure	the
bottlenecks	in	your	application.	From	there,	find	the	lessons	that	apply	to	your	current
performance	issues.

On	the	flip	side,	you	should	realize	that	the	Pareto	Principle	is	extremely	liberating.	You
don't	need	to	fix	every	performance	issue	in	your	application.	You	don't	need	to	go	line-
by-line	to	look	for	problems	under	every	rock.	You	need	to	measure	the	actual
performance	of	your	application,	and	focus	on	the	20%	of	your	code	that	is	the	worst
performance	offender.

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

15

To	beat	this	into	your	skull	even	further,	and	to	give	you	a	preview	of	some	future
material,	I'm	going	to	tell	you	a	story.

My	talk	for	Rubyconf	2015	was	a	guided	read	through	of	Minitest,	the	Ruby	testing
framework.	It's	a	great	read	if	you've	got	a	spare	hour	or	two	-	it's	fairly	short	and	quite
readable.	As	I	was	reading	Minitest's	code	myself,	I	came	across	this	funny	line:

def	self.runnable_methods

		methods	=	methods_matching(/^test_/)

		case	self.test_order

		when	:random,	:parallel	then

				max	=	methods.size

				methods.sort.sort_by	{	rand	max	}

		when	:alpha,	:sorted	then

				methods.sort

		else

				raise	"Unknown	test_order:	#{self.test_order.inspect}"

		end

end

This	code	is	extremely	readable	as	to	what's	going	on;	we	determine	which	methods	on
a	class	are	runnable	with	a	regex	("starts	with	test_"),	and	then	sort	them	depending
upon	this	class's		test_order	.	Minitest	uses	the	return	value	to	execute	all	of	the
	runnable_methods		on	all	the	test	classes	you	give	it.	Usually	this	is	a	randomized	array
of	method	names.

What	I	was	honing	in	on	was	this	line,	which	is	run	when		:test_order		is		:random		or
	:parallel		(Minitest's	default):

		max	=	methods.size

		methods.sort.sort_by	{	rand	max	}

This	seemed	like	a	really	roundabout	way	to	do		methods.shuffle		to	me.	Maybe	Ryan
(Minitest's	author)	was	doing	some	weird	thing	to	ensure	deterministic	execution	given	a
seed	(Minitest	runs	your	tests	in	the	same	order	given	the	same	seed	to	the	random
number	generator.	It	turns	out	methods.shuffle	is	deterministic,	though,	just	like	the	code
as	written).	I	decided	to	benchmark	it,	mostly	out	of	curiosity.

Whenever	I	need	to	write	a	micro	benchmark	of	Ruby	code,	I	reach	for		benchmark/ips	 .
	ips		stands	for	iterations-per-second.	The	gem	is	an	extension	of	the		Benchmark	
module,	something	we	get	in	the	Ruby	stdlib.

1

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

16

https://github.com/evanphx/benchmark-ips

Sidenote:

Here's	that	benchmark:

require	"benchmark/ips"

class	TestBench

		def	methods

				@methods	||=	("a".."z").to_a

		end

		def	fast

				methods.shuffle

		end

		def	slow

				max	=	methods.size

				methods.sort.sort_by	{	rand	max	}

		end

end

test	=	TestBench.new

Benchmark.ips	do	|x|

		x.report("faster	alternative")	{	test.fast	}

		x.report("current	minitest	code")	{	test.slow	}

		x.compare!

end

It	suggested	(as	I	suspected),	that		shuffle		was	12x	faster	than		sort.sort_by	{	rand
methods.size	}	.	This	makes	sense	-		shuffle		randomizes	the	array	with	C,	which	will
always	be	faster	than	randomizing	it	with	pure	Ruby.	In	addition,	Ryan	was	actually
sorting	the	array	twice	-	once	in	alphabetical	order,	followed	by	a	random	shuffle	based
on	the	output	of		rand	.

I	asked	Ryan	Davis,		minitest		author,	what	was	up	with	this.	He	gave	me	a	great	reply:
"you	benchmarked	it,	but	did	you	profile	it?"

What	did	he	mean	by	this?	Well,	first,	you	have	to	know	the	difference	between
benchmarking	and	profiling.

There	are	a	lot	of	different	ways	to	define	this	difference.	Here's	my	attempt:

Benchmarking.	When	we	benchmark,	we	take	two	competing	pieces	of	code	-
could	be	as	simple	as	a	one	liner,	like	here,	or	as	complex	as	an	entire	web
framework.	Then,	we	put	them	up	against	each	other	(usually	in	terms	of

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

17

iterations/second)	on	a	simple,	contrived	task.	At	the	end	of	the	task,	we	come	up
with	a	single	metric	-	a	score.	We	use	the	score	to	compare	the	two	competing
options.	In	my	example	above,	it	was	just	how	fast	each	line	could	shuffle	an	array.
If	you	were	benchmarking	web	frameworks,	you	might	test	how	fast	a	framework
can	return	a	simple	"Hello	World"	response.	The	gist:	benchmarks	put	the
competing	alternatives	on	exactly	equal	footing	by	coming	up	with	a	contrived,
simple,	non-real-world	example.	It's	usually	too	difficult	to	benchmark	real-world
code	because	the	alternatives	aren't	doing	exactly	the	same	thing.
Profiling.	When	we	profile,	we're	usually	examining	the	performance	characteristics
of	an	entire,	real-world	application.	For	example,	this	might	be	a	web	application	or
a	test	suite.	Because	profiling	works	with	real-world	code,	we	can't	really	use	it	to
compare	competing	alternatives,	because	the	alternative	usually	doesn't	exactly
match	what	we're	profiling.	Profiling	doesn't	usually	produce	a	comparable	"score"
at	the	end	with	which	to	measure	these	alternatives,	either.	But	that's	not	to	say
profiling	is	useless	-	it	can	tell	us	a	lot	of	valuable	things,	like	what	percentage	of
CPU	time	was	used	where,	where	memory	was	allocated,	and	things	like	that.

What	Ryan	was	asking	me	was	-	"Yeah,	that	way	is	faster	on	this	one	line,	but	does	it
really	matter	in	the	grand	scheme	of	Minitest"?

Is	this	one	line	really	part	of	Pareto's	"20%"?	We	can	assume,	based	on	the	Principle,
that	80%	of	Minitest's	wall	time	will	come	from	just	20%	of	its	code.	Was	this	line	part	of
that	20%?

So	I've	already	shown	you	how	to	benchmark	on	the	micro	scale.	But	before	we	get	to
profiling,	I'm	going	to	do	a	quick	macro-benchmark	to	test	my	assumption	that	using
	shuffle		instead	of		sort.sort_by		will	speed	up	minitest.

Minitest	is	used	to	run	tests,	so	we're	going	to	benchmark	a	whole	test	suite.
Rubygems.org	will	make	a	good	example	test	suite.

When	micro-benchmarking,	I	reach	for		benchmark-ips	.	When	macro-benchmarking	(and
especially	in	this	case,	with	a	test	suite),	I	usually	reach	first	for	the	simplest	tool
available:		time	!	We're	going	to	run	the	tests	10	times,	and	then	divide	the	total	time	by
10.

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

18

time	for	i	in	{1..10};	do	bundle	exec	rake;	done

...

real				15m59.384s

user				11m39.100s

sys				1m15.767s

When	using		time	,	we're	usually	only	going	to	pay	attention	the		user		figure.		real	
gives	the	actual	total	time	(as	if	you	had	used	a	stopwatch),		sys		gives	the	time	spent	in
the	kernel	(in	a	test	run,	this	would	be	things	like	shelling	out	to	I/O),	and		user		will	be
the	closest	approximation	to	time	actually	spent	running	Ruby.	You'll	notice	that		user	
and		sys		don't	add	up	to		real		-	the	difference	is	time	spent	waiting	on	the	CPU	while
other	operations	(like	running	my	web	browser,	etc)	block.

With	stock		minitest	,	the	whole	thing	takes	11	minutes	and	39	seconds,	for	an	average
of	69.9	seconds	per	run.	Now,	let's	alter	the	Gemfile	to	point	to	a	modified	version	(with
	shuffle		on	the	line	in	question)	of		minitest		on	my	local	machine:

gem	'minitest',	require:	false,	path:	'../minitest'

To	make	sure	the	test	is	100%	fair,	I	only	make	the	change	to	my	local	version	after	I
check	out		minitest		to	the	same	version	that	Rubygems.org	is	running	(5.8.1).

The	result?	11	minutes	56	seconds. 	Longer	than	the	original	test!	We	know	my	code	is
faster	in	micro,	but	the	macro	benchmark	told	me	that	it	actually	takes	longer.	A	lot	of
things	can	cause	this	(the	most	likely	being	other	stuff	running	on	my	machine),	but
what's	clear	is	this	-	my	little	patch	doesn't	seem	to	be	making	a	big	difference	to	the	big
picture	of	someone's	test	suite.	While	making	this	change	would,	in	theory,	speed	up
someone's	suite,	in	reality,	the	impact	is	so	minuscule	that	it	didn't	really	matter.

Repeat	after	me:	I	will	not	optimize	anything	in	my	application	until	my	metrics	tell	me	so.

.	The	reason	I	use	benchmark/ips	rather	than	the	stdlib	benchmark	is	because
the	stdlib	version	requires	you	to	run	a	certain	line	of	code	X	number	of	times	and
tells	you	how	long	that	took.	The	problem	with	that	is	that	I	don't	usually	know	how
fast	the	code	is	to	begin	with,	so	I	have	no	idea	how	to	set	X.	Usually	I	run	the
code	a	few	times,	guess	at	a	number	of	X	that	will	make	the	benchmark	take	10
seconds	to	run,	and	then	move	on.	benchmark/ips	does	that	work	for	me	by
running	my	benchmark	for	10	seconds	and	calculating	iterations-per-second.	↩

2

3

1

2

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

19

.	Since	minitest	does	not	ship	with	a	gemspec,	I	have	to	add	a	bogus	one	myself.
↩

.	There	are	far	better	ways	to	macro-benchmark	this	code,	which	we'll	get	into
later	in	the	course.	Also,	it	might	benefit	us	to	profile	an	entire	Minitest	test	run	to
see	the	real	80/20	breakdown.	All	stuff	you're	going	to	learn	in	this	module,	just
not	in	this	lesson.	↩

2

3

An	Economist,	A	Physicist,	and	a	Linguist	Walk	Into	a	Bar...

20

Little's	Law
How	many	servers	do	you	need?

I	usually	see	applications	over-scaled	when	a	developer	doesn't	understand	how	many
requests	their	server	can	process	per	second.	They	don't	have	a	sense	of	"how	many
requests/minute	equals	how	many	servers?"

I	already	explained	a	practical	way	to	determine	this	-	measuring	and	responding	to
changes	in	request	queueing	time.	But	there's	also	a	theoretical	tool	we	can	use	-	Little’s
Law.

In	our	case,	l	is	the	number	of	application	instances	we	need,	lambda	is	the	average
web	request	arrival	rate	(e.g.	1000	requests/second),	and	w	is	the	average	response
time	of	your	application	in	seconds.

First	off,	some	definitions	-	as	mentioned	above,	the	application	instance	is	the	atomic
unit	of	your	setup.	Its	job	is	to	process	a	single	request	independently	and	send	it	back
to	the	client.	When	using	Webrick,	your	application	instance	is	the	entire	Webrick
process.	When	using	Puma	in	threaded	mode,	I	will	define	the	entire	Puma	process	as
your	application	instance	when	using	MRI,	and	when	using	JRuby,	each	thread	counts
as	an	application	instance.	When	using	Unicorn,	Puma	(clustered)	or	Passenger,	your
application	instance	is	each	"worker"	process.

Let’s	do	the	math	for	a	typical	Rails	app,	with	the	prototypical	setup	-	Unicorn.	Let's	say
each	Unicorn	process	forks	3	Unicorn	workers.	So	our	single-server	app	actually	has	3
application	instances.	If	this	app	is	getting	1	request	per	second,	and	its	average	server
response	time	is	300ms,	it	only	needs	1	*	0.3	=	0.3	app	instances	to	service	its	load.	So
we're	only	using	10%	of	our	available	server	capacity	here!	What's	our	application's
theoretical	maximum	capacity?	Just	change	the	unknowns:

l,	the	number	of	instances	we	have,	is	3.	w,	the	average	response	time,	is	0.3	seconds.
So	for	our	example	app,	our	theoretical	maximum	throughput	is	3	/	0.3,	or	10	requests
per	second!

Little's	Law

21

https://en.wikipedia.org/wiki/Little%27s_law

But	theory	is	never	reality.	Unfortunately,	Little's	Law	is	only	true	in	the	long	run,
meaning	that	things	like	a	wide,	varying	distribution	of	server	response	times	(some
requests	take	0.1	seconds	to	process,	others	1	second)	or	a	wide	distribution	of	arrival
times	can	make	the	equation	inaccurate.	But	it's	a	good	"rule	of	thumb"	to	think	about
whether	or	not	you	might	be	over-scaled.

Recall	again	that	scaling	hosts	doesn’t	directly	increase	server	response	times,	it	can
only	increase	the	number	of	servers	available	to	work	on	our	request	queue.	If	the
average	number	of	requests	waiting	in	the	queue	is	less	than	1,	our	servers	are	not
working	at	100%	capacity	and	the	benefits	to	scaling	hosts	are	marginal	(i.e.,	not	100%).
The	maximum	benefit	is	obtained	when	there	is	always	at	least	1	request	in	the	queue.
There	are	probably	good	reasons	to	scale	before	that	point	is	reached,	especially	if	you
have	slow	server	response	times.	But	you	should	be	aware	of	the	rapidly	decreasing
marginal	returns.

So	when	setting	your	host	counts,	try	doing	the	math	with	Little’s	Law.	If	you’re	scaling
hosts	when,	according	to	Little’s	Law,	you're	only	at	25%	or	less	of	your	maximum
capacity,	then	you	might	be	scaling	prematurely.	Alternatively,	as	mentioned	above,
spending	a	large	amount	of	time	per-request	in	the	request	queue	as	measured	on
NewRelic	is	a	good	indication	that	it’s	time	to	scale	hosts.

Checking	the	math

In	April	2007,	a	presentation	was	given	at	SDForum	Silicon	Valley	by	a	Twitter	engineer
on	how	they	were	scaling	Twitter.	At	the	time,	Twitter	was	still	fully	a	Rails	app.	In	that
presentation,	the	engineer	gave	the	following	numbers:

600	requests/second
180	application	instances	(mongrel)
About	300ms	average	server	response	time

So	Twitter's	theoretical	instances	required,	in	2007,	was	600	*	0.3,	or	180!	And	it
appeared	that's	what	they	were	running.	Twitter	running	at	100%	maximum	utilization
seems	like	a	recipe	for	disaster	-	and	Twitter	did	have	a	lot	of	scaling	issues	at	the	time.
It	may	have	been	that	they	were	unable	to	scale	to	more	application	instances	because
they	were	still	stuck	with	a	single	database	server	(yup)	and	had	bottlenecks	elsewhere
in	the	system	that	wouldn't	be	solved	by	more	instances.

As	a	more	recent	example,	in	2013	at	Big	Ruby	Shopify	engineer	John	Duff	gave	a
presentation	on	How	Shopify	Scales	Rails	(YouTube).	In	that	presentation,	he	claimed:

1

Little's	Law

22

http://www.slideshare.net/Blaine/scaling-twitter
http://www.slideshare.net/jduff/how-shopify-scales-rails-20443485
https://www.youtube.com/watch?v=j347oSSuNHA

Shopify	receives	833	requests/second.
They	average	a	72ms	response	time
They	run	53	application	servers	with	a	total	of	1172	application	instances	(!!!)	with
NGINX	and	Unicorn.

Shopify's	theoretical	required	instance	count	is	833	_	0.072	just	~60	application
instances.	So	why	are	they	using	1172	and	wasting	(theoretically)	95%	of	their	capacity?
If	application	instances	block	each	other	in	_any	way*,	like	when	reading	data	off	a
socket	to	receive	a	request,	Little's	Law	will	fail	to	hold.	This	is	why	I	don't	count	Puma
threads	as	an	application	instance	on	MRI.	Another	cause	can	be	CPU	or	memory
utilization	-	if	an	application	server	is	maxing	out	its	CPU	or	memory,	its	workers	cannot
all	work	at	full	capacity.	This	blocking	of	application	instances	(anything	that	stops	all
1172	application	instances	from	operating	at	the	same	time)	can	cause	major	deviations
from	Little's	Law.

Finally,	Envato	posted	in	2013	about	how	Rails	scales	for	them.	Here's	some	numbers
from	them:

Envato	receives	115	requests	per	second
They	run	an	average	of	147ms	response	time
They	run	45	app	instances.

So	the	math	is	115	*	0.147,	which	means	Envato	theoretically	requires	~17	app
instances	to	serve	their	load.	They're	running	at	37%	of	their	theoretical	maximum,	which
is	a	good	ratio.

Checklist	for	Your	App
Ensure	your	application	instances	conform	to	a	reasonable	ratio	of	what	Little's	Law
says	you	need	to	serve	your	average	load.
Across	your	application,	95th	percentile	times	should	be	within	a	4:1	ratio	of	the
average	time	required	for	a	particular	controller	endpoint.
No	controller	endpoint's	average	response	time	should	be	more	than	4	times	the
overall	application's	average	response	time.

2

1

Little's	Law

23

http://webuild.envato.com/blog/rails-still-scaling-at-envato/
http://www.slideshare.net/johnpviner/bank-west-10-deploys-a-day-at-envato-published

.	In	addition,	think	about	what	these	caveats	mean	for	scaling.	You	can	only
maximize	your	actual	throughput	if	requests	are	as	close	to	the	median	as
possible.	An	app	with	a	predictable	response	time	is	a	scalable	app.	In	fact,	you
may	obtain	more	accurate	results	from	Little's	Law	if,	instead	of	using	average
server	response	time,	you	use	your	95th	percentile	response	time.	You're	only	as
good	as	your	slowest	responses	if	your	server	response	times	are	variable	and
unpredictable.	How	do	you	decrease	95th	percentile	response	times?
Aggressively	push	work	into	background	processes,	like	Sidekiq	or	DelayedJob.
↩

.	There	is	a	distributional	form	of	Little's	Law	that	can	help	with	some	of	these
inaccuracies,	but	unless	you're	a	math	PhD,	it's	probably	out	of	your	reach.	↩

1

2

Little's	Law

24

http://web.mit.edu/dbertsim/www/papers/Queuing%20Theory/The%20distributional%20Little's%20law%20and%20its%20applications.pdf

The	Business	Case	for	Performance
We’ve	all	heard	it	before	-	websites	in	2016	are	bloated,	ad-riddled	performance
nightmares.	It	takes	10MB	of	data	to	render	a	nearly	content-less	slideshow	article	that
requires	you	to	click	“next”	30	times.	I	can’t	answer	for	the	downfall	of	journalism	in	the
modern	era,	but	I	do	have	some	insight	to	offer	in	to	how	our	performance	problems	got
this	bad.

Consider	this	talk	by	Maciej	Cegłowski	of	Pinboard	on	The	Website	Obesity	Crisis.	To
summarize	his	argument:

Most	content	on	the	web	is	primarily	text.	Everything	else	is	decoration.
Page	sizes	average	2MB,	and	many	popular	sites	like	Twitter	and	Medium	are	1MB.
However,	the	purpose	of	these	sites	is	to	deliver	text	content,	which	should	only
take	up	a	few	kB.
True	web	performance	is	not	about	delivering	ads	faster	-	it’s	about	delivering
content	(what	the	user	came	for)	without	spending	too	much	page	weight	on	things
they	don’t	want.
Tech	teams	don’t	have	the	blame	here	-	they	usually	have	their	great	designs	shat
over	by	clients	or	marketing	departments	that	add	fat	advertisement	or	tracking
Javascript	on	top.
“Minimalism”	that	hijacks	your	scroll,	forces	you	to	download	megabytes	of	assets,
and	destroys	your	privacy	purely	to	read	a	few	sentences	of	text	and	see	an	image
is	not	true	minimalism.

I	agree	with	everything	there,	but	I	take	umbrage	with	the	fourth	point	-	that	we,	as
developers,	are	mostly	blameless	in	this.

We	programmers	are	born	optimizers	-	if	there’s	a	way	to	do	it	faster	or	more	efficiently,
we’ll	do	it.	“It’s	those	darn	marketing	departments”,	it’s	argued.	I	think	it’s	our	fault	for	not
fighting	back.

I	once	received	a	bit	of	advice	from	a	programmer	that	was	moving	up	into	higher
management	at	a	Fortune	50	company:

The	business	people,	man	-	they	only	understand	numbers.	If	you	can	justify	it
with	numbers,	they’ll	do	whatever	you	tell	them.

1

The	Business	Case	for	Performance

25

http://idlewords.com/talks/website_obesity.htm

The	Case	for	Performance
The	reason	we’re	suffering	from	an	anti-performance	glut	on	the	web	is	that	technical
(I’m	including	design	and	programmers	here)	teams	cannot	adequately	quantify	and
explain	the	costs	of	sacrificing	performance	to	the	“business”	side	of	wherever	they
work.

There’s	no	doubt	that,	sometimes,	even	when	the	performance	costs	and	benefits	are
outlined,	some	businesses	will	have	to	choose	in	favor	of	bloat.	Most	advertising-based
businesses	will	necessarily	skew	towards	the	bloat-y	side	of	the	spectrum.	Every	team
will	have	different	needs.

But	most	website’s	performance	goes	to	hell	in	a	handbasket	when	conversations	like
this	occur:

Marketing	Person:	Hey,	can	you	add	this	<3rd-party>	javascript	tracker	to	our
site?	Their	sales	guy	says	it’s	really	easy	and	would	only	be	one	line	of	code.
Tech	Person:	Okay!

What	I	wish	they	sounded	like	is	this:

Marketing	Person:	Hey,	can	you	add	this	<3rd-party>	javascript	tracker	to	our
site?	Their	sales	guy	says	it’s	really	easy	and	would	only	be	one	line	of	code.
Tech:	Sure,	I’ll	try	it	out	and	get	back	to	you.	A	few	hours	later	Tech:	Hey	,	I	tried
adding	it	our	our	site.	Unfortunately,	it	increases	our	page	size	to	1MB,	which	is
30%	over	our	budget.	If	we	want	to	add	this,	we’ll	have	to	call	a	meeting	to
discuss	it,	because	we	set	that	budget	so	that	mobile	users	would	have	the	site
load	in	less	than	5	seconds.

Because	every	new	feature	almost	always	implies	the	execution	of	additional	code,
every	feature	imposes	some	kind	of	performance	cost.	Rather	than	ignore	these	costs,
we	should	quantify	them.

Technical	and	product	teams	need	to	agree	on	a	shared	set	of	performance	goals	-
these	are	extremely	easy	to	arrive	at,	because	the	research	on	the	link	between
performance	and	the	bottom	line	is	extremely	well	documented.

I’m	going	to	summarize	the	existing	research/literature	on	performance	and	business
performance,	but	you	can	find	a	huge	repository	of	these	studies	at	wpostats.com.

Slowdowns	are	Outages

The	Business	Case	for	Performance

26

https://wpostats.com/

We	all	agree	that	downtime	is	a	bad	thing.	Companies	get	obsessed	with	“5	nines”	of
uptime.	The	reason	is	obvious	-	if	the	website	is	down,	you’re	not	making	money.

But	do	we	think	about	a	temporary	slowdown	in	the	same	way	we	think	about	a	total
outage?	Isn’t	a	slowdown	really	a	partial	outage?

Here’s	an	example	I’ve	seen	-	a	site	uses	WebFonts	provided	by	a	3rd	party	service,
such	as	Typekit.	The	page	has	no	text	content	visible	until	those	fonts	are	loaded.
Inevitably,	the	3rd	party	font	provider	experiences	either	a	total	outage	or	a	slowdown,
and	delays	your	content	loading	as	a	result.	Let’s	say	you	have	a	timeout	on	your	font
loading	of	3	seconds,	and	then	the	browser	displays	its	fallback	font.	You’ve	just	slowed
your	site	down	by	3	seconds	until	your	3rd	party	provider	can	get	back	online.

This	is	not	a	full	outage,	and	all	of	your	traditional	uptime	monitors	will	fail	to	catch	this
problem	automatically.

TRAC	Research	estimates	that	organizations	are	losing	twice	as	much	revenue	from
slowdowns	as	they	compared	to	availability.	While	slowdowns	cost	the	business	about
20%	as	much	per	hour	as	a	full	outage,	organizations	experience	partial	slowdowns	10x
as	often.

Adding	3rd-party	providers	inevitably	increases	this	slowdown	risk	-	what	happens	when
any	given	external		<script>		tag	is	slow	to	load	or	times	out?

If	possible,	the	included	script	must	have	an		async		attribute	added.	No	script
injection	allowed.	If	the	3rd-party	provider	doesn’t	provide	a	non-injectable	version,
it’s	usually	simple	to	make	your	own.	For	example,	here’s	a	non-script-injected
Google	Analytics	tag.
Set	up	aggressive	timeouts	and	error	handling	if	the	3rd-party	provider	goes	down
or	suffers	a	partial	outage.	Simulate	downtime	by	adding	an	incorrect	URL	to	the
“src”	attribute	-	what	happens?	Does	your	page	fail	to	load?	Partially?	Be	defensive.
Evaluate	your	3rd-party	providers.	Google,	for	instance,	is	going	to	have	a	better
uptime	record	than	SomeNewStartupCo.
Quantify	your	downtime	risk.	Say	you	expect	your	3rd-party	provider	to	have	an
uptime	of	99%,	and	a	“full	uptime”	(as	in,	full	speed	without	slowdowns)	95%	of	the
time	(these	numbers	are	typical).	Figure	out	what	it	would	cost	your	site	during
these	downtimes.	Is	the	projected	benefit	of	the	new	integration	greater	than	this
cost?

Longer	Load	Times	are	an	Expense

The	Business	Case	for	Performance

27

http://www.slideshare.net/KenGodskind/alertsitetrac
https://gist.github.com/nateberkopec/a43f3e29d9583df33406

The	correlation	between	webpage	load	times	and	conversions	is	one	of	the	most	well-
studied	and	well-supported	in	web	performance	literature.	Let’s	just	get	the	quick	hits:

Business Conversion	Rate	Increase	per	Second	of	Load	Time

Staples 10%

AutoAnything 2.6%

GlassesDirect 7%

Etam 35%

Walmart 2%

Intuit 2-3%

Shopzilla 2%

Mozilla ~7.5%

Bing 2%

The	Aberdeen	Group 7%

This	number	will	be	different	for	every	organization,	but	there’s	no	doubt	that	the
correlation	exists.	If	you	had	to	ask	me	for	a	rule	of	thumb,	you	could	say	that	for	large
(Fortune	500)	companies,	1	second	in	load	time	equals	a	2%	change	in	conversion
rate.	For	medium	to	small	size	organizations,	1	second	equals	a	7-10%	change	in
conversions.

Let’s	do	a	back	of	the	napkin	example.

ACME	makes	$1	million/year	and	their	site	loads	in	6	seconds	on	the	average	customer
connection.	Their	conversion	rate	is	2%.	Now	let’s	say	ACME	can	aggressively	reduce
that	to	1	second.	Perhaps	they	were	able	to	ditch	all	of	their	3rd-party	Javascript	and	got
smart	about	compressing	their	assets	and	reduced	their	page	weight	significantly.	Based
on	the	studies	above,	we	would	expect	at	least	a	10%	improvement	in	conversions	for
that	5	seconds	of	load	time,	and	more	likely	we’d	see	a	70-100%	increase	in	their
conversion	rate	-	it’s	now	4%	instead	of	2%.	You	just	made	their	$1	million	business
into	a	$2	million	business.	And	heck,	let’s	do	the	pessimistic	10%	improvement	scenario
-	conversion	at	2.2%	instead	of	2%.	That’s	still	a	$100,000/year	change.	You	just	paid
your	salary.

Longer	Load	Times	Turn	Away	Users

The	Business	Case	for	Performance

28

http://www.slideshare.net/cliffcrocker/velocity-ny-how-to-measure-revenue-in-milliseconds
https://www.internetretailer.com/2010/08/19/web-accelerator-revs-conversion-and-sales-autoanything
https://info.ensighten.com/rs/ensighten/images/just-one-second-delay-in-page-load-can-cause-7-percent-loss-in-customer-conversions.pdf
http://blog.quanta-computing.com/etam-earns-20-of-conversion-by-optimising-its-online-store
http://www.slideshare.net/devonauerswald/walmart-pagespeedslide
http://velocityconf.com/velocityny2013/public/schedule/detail/30146
http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://blog.mozilla.com/metrics/category/website-optimization/
http://velocityconf.com/velocity2009/public/schedule/detail/8523
http://www.aberdeen.com/research/5136/ra-performance-web-application/content.aspx

Conversion	isn’t	the	only	thing	that	suffers	when	performance	takes	a	dive.	Not	all
business	models	are	focused	on	“conversion”	-	ad-focused	businesses	need
engagement	and	pageviews.	Turns	out	that	load	times	have	a	huge	impact	on	these
metrics	as	well.

Business Pageviews	improvement	per	second	of	load	time

GQ 11%

Etam 40%

Yahoo 22%

Shopzilla 5%

The	Aberdeen	Group 11%

These	are	numbers	that	should	make	any	marketing	department	drool.	A	10%	increase
in	traffic	is	not	easy	to	come	by	at	scale	-	but	that’s	exactly	what	you’ll	get	for	reducing
load	times	by	just	1	second.	Consider	that	most	websites	take	5-10	seconds	to	load
when	they	could	take	just	1	second	and	you	can	see	the	massive	opportunity	available.

Mobile	and	Global	Users	are	Hardest-Hit

“Mobile	users”	and	“the	international	market”	are	buzzwords	that	marketers	love.	Ahh,
but	what	would	they	do	if	they	knew	that	the	performance-sucking	deadweight	they	love
so	much	affected	those	users	the	most?

YouTube	saw	massive	increases	in	traffic	from	South	America,	Asia	and	Africa	after
reducing	page	weight	by	90%	from	1.2MB	to	100KB.	Think	about	that	-	if	YouTube	found
that	a	1.2MB	page	is	“mostly	unusable”	in	those	areas	of	the	world,	how	do	you	think	the
average	2MB	webpage	performs?	Yikes.

Etsy	added	just	160kb	of	images	to	a	mobile	site	and	saw	a	12%	increase	in	their
bounce	rate.	Bandwidth	on	mobile	is	extremely	scarce.	Consider	that	the	average
bandwidth	on	a	mobile	connection	in	the	United	States	is	just	4	megabits/second.	If	you
want	your	mobile	website	to	load	in	1	second	or	less,	your	page	weight	budget	is
vanishingly	small.	Subtract	300	milliseconds	from	your	budget	for	latency	and	you’re	left
with	just	300kb,	absolute	maximum,	and	likely	you’ll	need	to	use	much	less	than	that.

Akamai	pegs	the	average	US	connection	at	12	megabits/second	(or	just	1.5
megabytes/second).	Page	weight	targets	for	mobile	users	will	need	to	be	about	3x
smaller	than	those	for	home	broadband	users	because	of	this	huge	difference	in

The	Business	Case	for	Performance

29

http://digiday.com/publishers/gq-com-cut-page-load-time-80-percent/
http://blog.quanta-computing.com/etam-earns-20-of-conversion-by-optimising-its-online-store/
http://www.slideshare.net/stoyan/yslow-20-presentation
http://velocityconf.com/velocity2009/public/schedule/detail/7709
http://www.aberdeen.com/research/5136/ra-performance-web-application/content.aspx
http://blog.chriszacharias.com/page-weight-matters
http://radar.oreilly.com/2014/01/web-performance-is-user-experience.html
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

available	bandwidth.

Bandwidth	is	an	Expense

This	one	only	makes	sense	for	the	bigger	companies,	but	the	impact	can	be	huge	and
the	amount	of	effort	required	can	be	so	low	to	fix	it.

Netflix	reduced	their	bandwidth	bill	by	43%	just	by	turning	on	GZip.	Whoops.	I	bet	they
wish	they	did	that	earlier.

Bandwidth	ain’t	free.	Calculate	the	expense	of	a	served	asset	by	multiplying	its	size	by
your	traffic	and	your	bandwidth	costs.	What	you	find	out	might	surprise	you.

Fast	Sites	are	Cheap	Sites

Thanks	to	Little’s	Law,	we	know	that	fast	sites	are	easier	to	scale	than	slow	sites
because	they	require	fewer	resources.	This	makes	intuitive	sense	-	a	site	that	takes	100
milliseconds	to	render	on	the	server	can	serve	(at	maximum)	about	10x	as	many
requests	per	second	as	a	site	that	takes	1000	milliseconds	to	render.

Ruby	applications	are	usually	memory-constrained	-	you	could	be	running	more
instances	of	your	app	per	server	if	only	you	increased	its	available	RAM.	Memory-
sipping	Ruby	apps	are	cheap	Ruby	apps.	Memory	savings	can	translate	into	more
application	instances	per	server	and,	therefore,	better	server	costs.

How	To	Create	a	Performance	Culture
Quantify	performance	costs	in	dollars,	not	seconds.	Only	other	programmers
understand	and	empathize	with	“this	could	be	X%	faster!”.	Everyone,	however,
speaks	the	language	of	dollars	and	cents.	If	it	feels	weird	to	estimate	costs	based
on	research	carried	about	by	other	companies,	welcome	to	the	business	world.
Set	a	front-end	load	time	budget:	If	you	have	an	existing	project,	fire	up
Webpagetest.org	and	take	the	average	of	5	runs.		window.load		is	not	a	great	metric
for	this,	but	neither	is		DOMContentLoaded		or	Webpagetest’s	“SpeedIndex”.	It’s
probably	best	to	just	set	a	budget	for	several	metrics	-	I’d	say		DOMContentLoaded		and
	window.load		(in	Webpagetest,	“Document	Complete”	and	“Fully	Loaded”),	and
possibly	“start	render	time”	are	fine	places	to	start.	Agree	on	this	number	as	a	team,
record	it	somewhere	for	all	to	see.	Agree	that	if	your	site	exceeds	these	numbers,
you’ll	file	a	bug.	Increasing	the	budget	should	at	least	require	the	team’s	approval.

The	Business	Case	for	Performance

30

http://cdn.oreillystatic.com/en/assets/1/event/7/Improving%20Netflix%20Performance%20Presentation.pdf

Set	MART	and/or	M95RT:	Set	a	maximum	average	response	time	and/or	a
maximum	95th	percentile	response	time	for	your	server	responses.	Load	times	will
follow	a	power	law	distribution	rather	than	a	simple	normal	distribution,	so	it’s
important	to	capture	what’s	going	on	in	the	“long	tail”	as	well	as	what’s	happening	to
the	average	case.	Like	your	load-time	budget,	agree	on	this	number	as	a	team	and
for	all	to	see.	Quantify	the	costs	of	exceeding	this	budget	-	increased	server
requirements,	increased	user	load	times.
Set	a	page	weight	budget:	This	one	will	be	based	on	your	load	time	budget	and
your	user’s	average	bandwidth.	Your	page	weight	cannot	exceed	/	,	and	in	fact
should	probably	be	set	at	about	50%	of	that	number,	because	network	utilization	is
never	100%	while	a	web	page	loads.	.	For	your	calculations	here,	Akamai	estimates
the	following:	worldwide	average	bandwidth	is	0.625	megabytes/sec.	US	average
bandwidth	is	1.5	megabytes/second.	Worldwide	mobile	average	bandwidth	is
0.1875	megabytes/second.	US	mobile	average	bandwidth	is	0.5	megabytes/second.
Quantify	integration	costs:	Using	the	studies	above,	quantify	the	dollar	value	or
traffic	value	(in	visits/month)	of	a	second	of	load	time	to	your	organization.	Use	this
number	when	evaluating	3rd	party	integrations.
Add	automated	performance	and	page	weight	tests:	Add	automated
performance	tests	to	your	CI.	Use	my	lesson	to	see	how.

Checklist	for	Your	App
Use	the	process	in	this	lesson	to	quantify	the	cost	of	an	additional	second	of
browser	load	time.	Post	this	number	where	your	team	can	see	it.	Discuss	the
process	of	how	you	arrived	at	this	number	with	your	team	and	whoever	makes	the
business	decisions.
Set	a	front-end	load	time	budget,	and	agree	on	a	method	of	measurement.	No,	you
won't	be	able	to	perfectly	replicate	an	end-user	experience	-	that's	OK.	Agree	that
load	times	exceeding	this	budget	is	a	bug.
Set	a	maximum	acceptable	response	time	and	maximum	acceptable	95th	percentile
time.
Set	a	page	weight	budget	based	on	your	audience's	bandwidth	and	the	other
budgets	you've	set.

:The	exception	is	when	a	programmer	gets	to	try	out	some	new	technology.	Why	build
a	simple	Tic	Tac	Toe	site	when	you	can	build	it	on	Node	with	a	MongoDB	database	and
Websockets/Angular	2	front-end?!?	Maciej’s	article	calls	this	the	Call	of	Duty	web.

1

The	Business	Case	for	Performance

31

https://www.akamai.com/us/en/our-thinking/state-of-the-internet-report/

The	Business	Case	for	Performance

32

Performance	Testing
Performance	gets	a	lot	of	lip	service.	Designers	and	programmers	constantly	brag	about
how	"lightweight"	and	"minimalistic"	their	code	or	designs	are.	And	yet,	the	web	is
suffering	from	a	bloat	crisis.	This	chickenshit	minimalism	has	saddled	us	with	2MB
webpages,	deep	and	complex	DOM	trees,	and	the	problem	only	appears	to	be	getting
worse.

Developers	tend	to	work	well	with	tight	feedback	loops.	The	more	immediate	the	better:
our	test	suites	run	on	file	changes	in	our	apps,	we	run	continuous	integration	servers	to
make	sure	no	one	broke	the	build.	But	why	is	performance	testing	(and	its	cousin,	load
testing)	get	short	shrift?	I	spent	some	time	searching	for	tools	that	could	be	considered
"automated	full-stack	performance	testing"	for	Ruby	webapps,	and	came	up	with	almost
nothing.	With	great	tools	like	brakeman	and	rubocop	available	for	automated	security
and	style	checking,	respectively,	why	does	it	seem	like	there	isn't	a	comparable	solution
for	performance	or	scale?

Why	test	performance?
Perhaps	performance	just	isn't	important	enough	to	test?	Well,	as	covered	in	my
previous	lesson,	we	know	that	isn't	true.	Slow	websites	can	decrease	conversion	rates
and	drive	traffic	to	competitor's	sites	as	users	get	gradually	fed	up	with	bloated	and	slow
interfaces.

As	mentioned	in	that	lesson,	there	is	massive	value	in	a	team	MART/maximum	average
response	time.	Performance	can	be	a	feature:	a	fast	and	snappy	user	experience	is
just	another	user	story,	which	can	be	elaborated	and	acceptance	tested	just	like
any	other.	Setting	a	maximum	average	response	time	or	similar	performance	"goals"
helps	get	a	team	into	a	bug-finding-and-fixing	mindset	when	it	comes	to	performance
issues.	If	there's	no	verifiable	standard	for	performance,	performance	just	can't	"find	a
way	in"	to	our	usual	developer	workflows,	and	gets	pushed	aside	to	make	deadlines	and
stay	on	track	on	burndown	charts.	Automated	tests	help	provide	a	concrete,	black-and-
white	standard	for	the	performance	"story"	or	feature.

When	should	I	write	a	performance	test?

Performance	Testing

33

http://idlewords.com/talks/website_obesity.htm#minimalism
http://httparchive.org/trends.php#bytesTotal&reqTotal
http://brakemanscanner.org/
https://github.com/bbatsov/rubocop

The	bare	minimum	performance	test	will	start	where	your	users	start	-	your	homepage.
If,	for	some	reason,	your	organization	has	users	come	in	through	a	different	page	(check
your	analytics,	don't	guess),	start	your	performance	tests	there.

A	barebones	full-stack	performance	test	would	simply	make	a	GET	request	to	this	page
and	record	two	or	three	numbers:

Server	response	time.	In	a	test	environment,	where	the	server	and	client	are	on	the
same	machine,	this	is	the	same	thing	as	time-to-first-byte.
User	page	load	timings.		DOMContentLoaded		and		load		are	probably	the	most
important	events,	although	these	aren't	always	perfect	analogues	to	"when	the	page
becomes	usable",	which	is	the	important	thing.

An	acceptance	(some	might	call	this	an	integration)	test	is	a	great	place	to	start	with	a
Ruby	application.	For	any	given	action,	about	50%	of	the	code	executed	is	going	to	be
the	same	-	each	request	passes	through	the	same	web	server,	the	same	Rack
middleware	stack,	the	same	application	configuration,	the	same	database	setup.	By
writing	just	one	integration	test,	you've	covered	about	50%	of	the	code	in	your
application.	That's	great	-	eventually	you'll	probably	want	to	keep	writing	these	tests	until
you	reach	about	80%	coverage,	but	one	page	is	a	great	start.

Other	than	full-stack	acceptance	tests,	what	other	kinds	of	performance	tests	should	we
seek	to	write?	Every	once	in	a	while,	you	may	have	a	"hot	loop"	in	your	application,	or
you	may	implement	an	algorithm	which	you	know	will	be	executed	1000	times	or	more	in
quick	succession.	Here	are	some	examples	of	what	I'm	talking	about:

Once	I	implemented	an	algorithm	for	calculating	Customer	Lifetime	Value	for	a
SaaS	application.	The	algorithm	would	take	10,000	customer	objects	or	more	and
reduce	them	into	a	single	average	"lifetime	value"	-	the	algorithm	that	calculated
this,	if	poorly	implemented,	could	take	several	seconds	to	execute.	I	wrote	a
performance	test	to	ensure	that	my	implementation	worked	in	linear	time	and	was
fast	for	the	number	of	customers	I	expected	would	be	input	into	the	algorithm.
Background	jobs	frequently	perform	operations	against	hundreds	or	thousands	of
database	rows.	For	example,	a	job	might	update	all	of	your	customer's	account
balances.	These	jobs	are	great	candidates	for	a	quick	performance	test.
If,	when	profiling,	you	find	some	"hot"	code	in	your	application	that's	executed	many
times	during	a	request,	be	sure	to	write	performance	tests	before	fixing	any
performance-related	bugs	in	that	code.	Without	tests,	regressions	can	happen	at
any	time.

Performance	Testing

34

Baby's	First	Performance	Test	-	the
Benchmarks	Folder
A	common	pattern	for	getting	started	with	performance	testing	in	Ruby	applications	is	a
	benchmarks		folder.	Inside	of	the	folder	is	a	series	of	benchmark	files,	which	can	be	run
individually	or	as	a	suite.	This	pattern	is	most	common	in	libraries,	but	could	easily	be
adopted	to	work	with	a	full	application.

Benchmark	folders	are	not	"tests"	per	se	-	they	don't	contain	assertions.	Instead,
benchmark	folders	are	tools	for	developers	to	measure	the	impact	of	changes	in	the
code.	Run	the	benchmark	suite	against	the	master	branch,	then	compare	that	against	a
benchmark	run	on	the	feature	branch.	By	working	off	a	shared	set	of	benchmarks,
everyone	can	agree	on	how	to	measure	and	optimize	the	performance	of	the	app	or
library.

As	an	example,	let's	take	a	look	at	the	benchmarks	folder	for		jekyll		-	the	popular
blogging	framework.

We	see	a	number	of	benchmarks	listed:

Performance	Testing

35

https://github.com/jekyll/jekyll/tree/master/benchmark

A	lot	of	these	benchmarks	are	actually	comparisons	of	different	ways	to	write	the	same
Ruby	code.	Here's		string-concat	:

require	'benchmark/ips'

url	=	"http://jekyllrb.com"

Benchmark.ips	do	|x|

		x.report('+=')	{	url	+=	'/'	}

		x.report('<<')	{	url	<<	'/'	}

end

Jekyll's	maintainers	add	to	this	folder	whenever	they	make	a	change	in	their	codebase
for	performance	reasons	-	for	example,	here's	one	where	they	swapped	regex	matching
with	the		end_with?		method.	In	this	way,	the	Jekyll	project	uses	their		benchmarks		folder
to	compare	and	discuss	performance	changes	on	a	micro-level.

Moving	up	the	stack	a	little,	they	also	sometimes	add	benchmarks	to	compare
implementations	of	Jekyll	features.	For	example,	this	benchmark	covers	Jekyll's
implementation	of	their		sanitized_path		method.	In	the	future,	if	changes	are	made	to
the		sanitized_path		method,	the	benchmarks	can	be	compared	across	branches.

These	benchmarks	can	live	in	your	test	folder,	though,	too	-	this	is	how		dalli	,	the
popular	memcache	client	does	it.

When	you're	ready	to	step	up	from	the	usual		benchmarks		folder,		Minitest::Benchmark	
can	be	a	useful	tool,	especially	when	double-checking	the	performance	of	algorithms	or
similarly	"hot"	code	that	operates	over	large	collections.		Minitest::Benchmark		evaluates
the	performance	of	a	method	against	increasingly	large	inputs	-	for	example,	you	could
benchmark	a	binary	search	against	an	Array	of	10	elements,	then	100,	then	1,000,	then
10,000,	and	so	on.	Minitest	then	uses	a	statistical	regression	test	to	see	if	your	method
performed	the	way	you	expected	-	in	the	case	of	binary	search,	logarithmically.

Performance	acceptance	tests
The	next	step	for	a	web	application	would	be	adding	some	full-stack,	"integration"	style
performance	tests.	There	are	a	lot	of	ways	to	do	this	-	unfortunately,	I	have	to	say,	there
is	no	"just	add	this	to	your	Gemfile	and	add	ten	lines	of	config!"	solution.	We'll	have	to
hack	together	what	we	need	ourselves	or	use	an	external	vendor	service	(covered	in	the
next	section).

Performance	Testing

36

https://github.com/jekyll/jekyll/pull/3516
https://github.com/jekyll/jekyll/pull/3077
https://github.com/petergoldstein/dalli/blob/fa3d136a16510d4ef47da7cb54cd0eccc738ecc5/test/benchmark_test.rb

An	important	note	with	performance	acceptance	tests	-	when	setting	the	pass/fail
threshold	for	a	test	like	this,	there's	always	going	to	be	some	grey	area.	Performance
tests	can	never	truly	be	deterministic,	and	will	always	depend	on	network	conditions	or
CPU	background	load.	For	these	reasons,	I	recommend	the	following	with	performance
acceptance	tests:

If	running	in	a	testing	environment	(non-production),	you	can	still	compare	results
relative	to	each	other.	They'll	almost	certainly	not	compare	accurately	to	the
production	environment,	but	that's	OK	-	set	a	pass/fail	standard	based	on	the
performance	characteristics	of	your	CI/test	setup.
Run	the	performance	acceptance	tests	seperately	from	your	unit	and	other
acceptance/integration	tests.	You	may	want	to	allow	them	to	fail	or	to	automatically
retry	them	in	case	of	failure.
You	may	decide	that	a	hard	pass/fail	(that	breaks	the	build)	is	not	appropriate.	In
that	case,	just	tracking	the	change	in	these	performance	test	results	over	time	is	still
valuable	and	could	help	you	to	track	regressions	down	to	certain	commits.

Let's	walk	through	a	"poor	man's	performance	test"	using		wrk		(available	on	homebrew).
Here's	the	command	we'll	use:

wrk	-c	<concurrent	user	count>	-t	<cpu	core	count>	-d	10	--	latency	http://our-ser

ver/

Remember,	for	these	tests	to	work,	you're	going	to	need	as	production-like	an
environment	as	possible.	Here's	an	example	result:

nodachi:todomvc-turbolinks	nateberkopec$	wrk	-c	100	-t	4	-d	10	--latency	http://lo

calhost:3000

Running	10s	test	@	http://localhost:3000

		4	threads	and	100	connections

		Thread	Stats			Avg						Stdev					Max			+/-	Stdev

				Latency				57.40ms			10.15ms	123.95ms			76.11%

				Req/Sec			139.42					56.24			242.00					54.00%

		Latency	Distribution

					50%			55.41ms

					75%			62.03ms

					90%			70.52ms

					99%			90.06ms

		2788	requests	in	10.04s,	9.22MB	read

Requests/sec:				277.61

Transfer/sec:						0.92MB

Performance	Testing

37

When	benchmarking	like	this,	it's	important	to	know	that	the	database	mattters.	Data
should	be	either	a	copy	of	production,	if	at	all	possible,	or	similar	in	size	to	production.
This	could	require	either	the	creation	of	a	sizeable/robust		seed.rb		file	in	Rails	or	some
sort	of	anonymizer/masker	script	to	clean	your	production	database.	It's	important	that
calls	that	interact	with	the	database	return	the	same	amount	of	rows	they	would	in
production,	otherwise	you're	going	to	miss	slowdowns	from	queries	that	only	return	a
handful	of	rows	in	development	but	several	hundred	in	production.

Once	you	have	the	output	of	a	benchmark	like	this,	you	can	turn	it	into	a	pass/fail	test
with	some	Unix	magic	in	a	script,	like	so:

#!/bin/bash				

MINIMUM_REQ_SEC	=	100

wrk	-c	100	-t	4	-d	10	--latency	http://localhost:3000	>	/tmp/perf_test.txt

((grep	"Requests/sec:"	/tmp/perf_test.txt	|	awk	'$2	>=	$MINIMUM_REQ_SEC'))	||	{	

echo	"Performance	test	failed";	exit	1;	}

A	simple	script	like	this	could	be	added	to	any	CI	server's	flow.

3rd-Party	Services:	Blazemeter	and
Loader.io
While	you	can	certainly	set	up	your	own	performance	tests	on	your	own	CI	servers,
there	are	several	third-parties	that	offer	this	as	a	service	now.	Unfortunately,	the	tools
available	for	"building	your	own"	performance	tests	are	pretty	limited	-	it	doesn't	get
much	more	complex	than	the		wrk		script	example	above.	However,	some	vendors	offer
some	quite	extensive	performance	tests.	I'll	use	my	TodoMVC	implementation	as	an
example	app	to	show	you	the	differences	between	two	of	the	major	vendors	-
Blazemeter	and	Loader.io.

Most	of	these	services	require	a	URL	to	be	tested	against	-	my	advice	is	to	use	your
staging	server	and	put	it	behind	HTTP	Basic	Auth.

Blazemeter

Blazemeter	is	the	"big	boy"	solution	of	this	space.	It's	essentially	a	fancy	front-end	for
JMeter,	an	Apache	Foundation	project	for	load	testing.	It's	available	as	a	Heroku	add-on.

Performance	Testing

38

https://blazemeter.com/
http://jmeter.apache.org/

Blazemeter	tests	against	a	public	URL	-	so	you'll	need	a	staging	site	or	something	like
that,	since	you	don't	want	to	load	down	your	production	setup.	Heroku's	review	apps
feature	may	also	be	appropriate	for	this.	Just	enter	in	a	URL	you	want	to	test,	and
BlazeMeter	will	pound	it	with	concurrent	users.	It	looks	like	Blazemeter	now	supports
testing	through	a	firewall	as	well,	in	case	you'd	like	to	test	apps	not	available	at	public
URLs.

Blazemeter's	default	test	configuration	is	a	long,	slow	ramp	over	15	minutes	-	starting
from	1	user,	it	ramps	up	until	it	simulates	up	to	1000s	of	users	hitting	your	site	at	the
same	time.

The	featureset	is	extensive	and	the	reports	are	extremely	detailed	-	it's	clearly	The
Enterprise	Solution	in	this	space.	It	supports	extensive	scripting	through	JMeter	as	well	-
you	could	load	test	an	entire	checkout	flow,	for	example.	It	looks	like	you	can	even	use
Selenium	tests	to	drive	the	load	tests	as	well.	Of	all	the	providers	listed	here,	Blazemeter
clearly	had	the	most	robust	scripting	features	-	or	indeed,	most	robust	features	in	total.
All	of	those	features	don't	come	cheap	though	-	basic	plans	start	at	$150/month.

Loader.io

Loader.io	is	a	simple	load-testing	service	by	the	people	at	SendGrid.

Also	available	as	a	Heroku	add-on,	I	found	Loader.io's	interface	quite	simple	and	easy	to
use.	Even	their	free	plan	had	a	useful	amount	of	features	and	could	generate	a	decent
amount	of	load	(250	concurrent	users	over	1	minute).

However,	I	found	Loader.io's	overall	featureset	pretty	lacking.	While	it	was	simple	to	set
up	and	understand,	it	seemed	like	every	feature	was	offered	by	Blazemeter	too.	And
Blazemeter	is	only	$50	more	per	month.

Checklist	for	Your	App
Run	a	benchmark	on	your	site	locally	using		wrk	.
Set	up	a	performance	monitor/tester	for	your	application.	Ensure	it	either	runs
continuously	or	after	every	deploy.	Self-rolled	or	3rd-party	is	fine.

Lab:	Performance	Testing

Performance	Testing

39

https://devcenter.heroku.com/articles/github-integration-review-apps
https://docs.blazemeter.com/customer/portal/articles/1742430-off-premise-vs-on-premise

Exercise	1
Let's	use	Apache	Bench	to	benchmark	the	homepage	of	a	local	instance	of
Rubygems.org.	If	you	haven't	set	up	Rubygems.org	yet,	see		RUBYGEMS_SETUP.md		in	the
root	of	this	project.

Start	up	Rubygems.org	and	install	Apache	Bench.	It	generally	goes	under	the	"ab"	name
in	package	managers	-	"brew	install	ab"	to	give	it	a	shot.

Apache	Bench,	like	most	load-testing	tools,	allows	you	specify	a	number	of	requests	to
perform	concurrently,	supports	HTTP	basic	auth	(good	for	staging	servers),	SSL,
proxies,	and	setting	custom	headers.

When	using	Apache	Bench,	I	usually	use	a	concurrency	setting	somewhat	equal	to	what
I'd	expect	in	production	(~10	users	on	my	site	at	one	time,	for	example)	and	run	the	test
for	about	a	minute:

	ab	-c	10	-t	60	http://127.0.0.1:3000/	

After	running	the	benchmark,	what	conclusions	can	you	draw	from	the	results?

Experiment	with	running	Rubygems.org	with	different	application	servers,	such	as	Puma
and	thin	(Rubygems.org	will	use	Webrick	by	default).	Does	changing	the	application
server	make	any	meaningful	impact	on	results?

Solution

Notice	the	noise	in	the	results,	even	though	this	benchmark	renders	the	exact	same
page	every	time.	I	received	a	mean	time	of	625ms,	with	a	standard	deviation	of	81
milliseconds	-	that's	a	decent	size	deviation	for	so	simple	a	task!
Puma	makes	a	considerable	impact	on	the	result	here	-	when	using		bundle	exec
puma	config.ru	-w	4	-t	8:8		to	run	Puma	with	4	workers	at	8	threads	each,	I	was
able	to	process	twice	as	many	requests	in	the	60	second	benchmark.
Thin	also	performed	better	than	Webrick,	though	not	by	much	-	just	10%	more
requests/sec	on	my	machine.

Performance	Testing

40

Profiling	with	Ruby-Prof,	Stackprof	and
GPerftools
Where	does	all	the	time	go?

It’s	9	a.m.	You	sit	down	at	your	desk,	warm	coffee	in	hand,	and	pop	open	New	Relic	or
Skylight	to	take	a	look	at	your	performance	metrics.	You	do	a	spit-take	-	500	millisecond
average	response	times?!	The	95th	percentile	is	over	10	seconds?!

What	do	you	do	now?

Both	Skylight	and	New	Relic	have	some	built-in	profilers,	which	can	start	to	shed	some
light	on	where	all	the	time	goes	during	each	of	your	requests.	While	these	profilers	are
useful	(since	they	work	in	the	real	production	environment,	with	real	users	and	real
requests),	they	will	always	be	limited	by	the	fact	that	they’re	not	interactive.	They	only
live	in	the	past.	If	we	want	to	make	changes,	then	see	what	changes	in	the	profile,	we
have	to	wait	a	day	or	so	for	new	production	users	to	try	our	new	code.	That’s	not	helpful
-	and	what	if	we	make	the	wrong	change	and	make	it	worse?

I	discussed	in	a	previous	lesson,	the	difference	between	profiling	and	benchmarking:

Profiling	is	great	-	it’s	one	of	the	most	important	tools	we	have	for	answering	“Well,	what
next?”	once	we	determine	that	a	benchmark	result	or	performance	metric	is
unsatisfactory.	Profiling	points	us	to	the	bottlenecks	and	answers	“Where	does	all	the
time	go?”

However,	it	should	be	noted	that	profilers	themselves	nearly	always	impose	a
performance	cost	on	an	application.	This	makes	sense	-	in	addition	to	doing	the	work	it
had	to	do	before,	adding	a	profiler	means	the	program	has	to	do	the	work	and	keep
extremely	meticulous	records	of	how	it	did	it.	Remember	how	annoyed	you	were	in
grade	school	when	your	teachers	asked	you	to	“show	your	work”?	Same	thing.

Profiling	and	Benchmarking	-	A	Workflow
When	diagnosing	performance	issues,	my	workflow	generally	looks	like	this:

1.	 Explore	metrics	for	problems.	Are	any	metrics	on	production	in	violation	of	my
team’s	agreed-upon	performance	standards?	Anything	out	of	the	ordinary?

Profiling

41

2.	 Establish	a	reasonable	benchmark.	Once	I	observe	the	performance	issue	“in	the
wild”,	the	next	step	is	creating	a	benchmark	on	my	local	machine	that	approximates
the	same	issue	on	production.	For	example,	if	I	notice	that	our	homepage	is
rendering	slowly,	I	might	create	a	benchmark	suite	that	creates	a	server	locally,
tests	that	server	with	production-like	load,	and	outputs	the	average	response	time	in
milliseconds.	It’s	important	to	note	that	the	benchmark	time	here	will	never	exactly
match	the	time	in	production	-	your	hardware	is	different,	of	course.	But	as	long	as
we’re	in	the	same	neighborhood,	that’s	fine	(500ms	in	production	vs	1000ms	locally,
for	example.	Generally	a	factor	of	5	is	acceptable).

3.	 Profile,	and	figure	out	where	the	time	goes.	Why	is	it	slow?	Running	a	profiler	on
our	benchmark	code	will	give	us	an	idea	of	where	the	time	goes.	We’re	spending
50%	of	our	time	in	the	Integer#times	method?	We’re	spending	75%	of	our	time
making	database	calls?

4.	 Experiment	with	and	benchmark	alternatives.	Now	that	we	know	what	our	code
is	doing,	we	can	try	speeding	up	the	parts	that	are	slow.	Profilers	are	never	100%
accurate	-	if	the	profiler	says	we	spend	50%	of	our	time	in	X	method,	removing	X
method	may	not	speed	up	our	benchmark	results	by	50%.	More	on	why	in	a	bit.	But
after	making	a	change	based	on	our	profiler	results,	we	should	always	re-
benchmark	and	re-profile	to	make	sure	our	hypothesis	was	correct.

This	is	the	scientific	method,	dressed	up	a	bit.

1.	 Make	observations.
2.	 Formulate	hypotheses.
3.	 Develop	testable	predictions.
4.	 Gather	data	to	test	predictions.

When	Profilers	Lie	-	Choosing	a	Profiler
Mode
Nearly	every	profiler	will	ask	you	to	choose	a	mode.	One	of	the	biggest	problems	with
profiling	is	agreeing	upon	a	unit	of	time.	Profilers	are	fundamentally	about	asking	which
lines	of	code	take	up	what	proportion	of	execution	time,	but	the	exact	way	we	want	to
measure	that	is	not	always	clear.	There	isn’t	really	a	“right	answer”	for	what	profiler
mode	you’re	going	to	want	to	use	in	any	given	situation.	Not	all	profilers	support	all	of
these	different	approaches.

Profiling

42

Let’s	take	a	look	at	common	profiler	mode	settings	and	the	advantages	and
disadvantages	of	each.

CPU	-	clock	counter

Consider	the	following	code:

require	'ruby-prof'

def	sleeper

		sleep(4)

end

#	We’ll	get	to	RubyProf	in	a	minute,	just	know	that	I’m	profiling

#	whatever	is	in	the	given	block.

RubyProf.measure_mode	=	RubyProf::CPU_TIME

result	=	RubyProf.profile	{	sleeper	}

printer	=	RubyProf::FlatPrinter.new(result)

printer.print(STDOUT)

The	output	is	going	to	be	a	little	weird:

Measure	Mode:	cpu_time

Thread	ID:	70350977366560

Fiber	ID:	70350977841000

Total:	0.000092

Sort	by:	self_time

	%self						total						self						wait					child					calls		name

	50.00						0.000					0.000					0.000					0.000								1			Kernel#sleep

	39.13						0.000					0.000					0.000					0.000								1			Global#[No	method]

	10.87						0.000					0.000					0.000					0.000								1			Object#sleeper

Take	a	look	at	the	“total”	column	-	ordinarily	this	is	a	measure	of	how	much	time	we
spent	in	a	method.	And	it’s…	zero?	But	I	know	this	takes	at	least	4	seconds	to	execute!
What’s	going	on?

	sleep		suspends	the	current	thread	-	which	means	while	we’re	sleeping,	we’re	not	using
clock	cycles	in	the	current	thread.	The	profiler	has	nothing	to	measure	in	CPU	mode!
CPU	time	counts	the	number	of	clock	cycles	to	measure	time,	rather	than	counting
seconds.	There	are	no	seconds	or	nanoseconds	-	just	numbers	of	CPU	instructions.
Consider	instead	what	happens	when	we	give	the	thread	some	busywork	for	4	seconds
instead:

Profiling

43

require	'ruby-prof'

#	https://github.com/ruby-prof/ruby-prof/pull/137

def	sleeper

		t	=	Time.now.to_f

		while	Time.now.to_f	<	t	+	4.0

				#	busy	loop

		end

end

RubyProf.measure_mode	=	RubyProf::CPU_TIME

result	=	RubyProf.profile	{	sleeper	}

printer	=	RubyProf::FlatPrinter.new(result)

printer.print(STDOUT)

And	our	output	is:

Measure	Mode:	cpu_time

Thread	ID:	70355813210680

Fiber	ID:	70355809515860

Total:	3.954522

Sort	by:	self_time

	%self						total						self						wait					child					calls		name

	20.30						1.772					0.803					0.000					0.969			657015			<Class::Time>#now

	16.38						0.969					0.648					0.000					0.321			657015			Time#initialize

	16.18						1.579					0.640					0.000					0.939			657015			Time#to_f

	15.70						0.939					0.621					0.000					0.318			657015			Numeric#quo

	15.28						3.954					0.604					0.000					3.350								1			Object#sleeper

		8.11						0.321					0.321					0.000					0.000			657014			Fixnum#+

		8.04						0.318					0.318					0.000					0.000			657015			Fixnum#fdiv

		0.00						3.955					0.000					0.000					3.954								1			Global#[No	method]

Now	we	can	see	that	RubyProf	correctly	thinks	that	we’re	spending	approximately	4
seconds	inside	of	the	#sleeper	method,	which	is	what	we	would	expect.

Unfortunately,	modern	CPUs	(especially	those	in	power-constricted	environments	like
laptops)	do	a	lot	of	what’s	called	stepping.	This	means	they	change	their	clock	speed
based	on	the	load	they’re	under	-	when	under	high	load,	they	speed	up,	when	under	low
load,	they	wind	down.	Higher	clock	speeds	equal	higher	power	consumption.	However,
this	can	throw	off	CPU	times	-	since	CPU	time	is	basically	“Amount	of	clock	cycles”	/
“CPU	frequency”,	if	the	CPU	frequency	changes	during	your	benchmark,	you’re	gonna
have	a	bad	time.	Disabling	CPU	stepping	isn’t	usually	a	good	idea	though,	and	could
cause	your	poor	little	laptop	to	overheat	or	at	least	sound	like	a	helicopter	as	its	poor
little	CPU	fan	attempts	liftoff.

Profiling

44

Most	CPU	time	measurements	are	system-wide,	meaning	that	we	are	estimating	CPU
time	based	on	the	time	stamp	counter.	Thus,	background	work	on	your	operating	system
will	affect	the	CPU	time	-	if	your	system	is	under	load	(you’re	watching	cat	videos	while
your	profiler	runs,	for	example),	the	times	in	your	profile	will	increase.

Use	CPU	time	when	you’re	interested	in	seeing	the	profile	sans	I/O.	If	profiling	an
operation	that	waits	on	a	lot	of	I/O,	such	as	a	network	request	or	an	external	database,
CPU	time	can	eliminate	that	time	from	your	profile.	However,	you	can	also	do	this	by
excluding	certain	Ruby	modules/methods	from	your	profiling	results	(if	the	profiler	allows
it).

Don’t	use	CPU	time	when	you	need	really	accurate	results.	Speed-stepping	will
almost	certainly	screw	with	your	results.	Run	the	profile	a	few	times,	at	the	least,	and
take	the	smallest	result	(why	not	the	average?	here’s	a	good	explanation.)	In	addition,
you	can	disable	speed	stepping	on	your	laptop	for	improved	accuracy,	or	just	profile	your
code	while	pegging	your	CPU	at	max	(e.g.	don’t	run	a	single	request	against	your	Rails
app	and	profile	it,	run	10,000	requests).

Finally,	there	is	a	bug	in	Mac	OS	X’s	kernel	that	affects	many	CPU	timing	profilers	-
gperftools	and	stackprof,	two	profilers	we’ll	cover	later,	are	affected.	As	far	as	I	can	tell,
however,	ruby-prof	uses	a	different	mechanism	and	should	be	as	accurate	as	is	possible
with	CPU	timing.

Wall	time

“Wall”	time	refers	to	using	the	clock	“on	the	wall”,	as	if	we	had	a	microsecond-level	clock
on	the	wall	of	our	office	and	could	use	it	to	measure	the	amount	of	time	elapsed	from
one	method	invocation	to	another.	This	is	real	world,	"stopwatch"	time.

If	we	profile		sleep		with	wall	time,	we’ll	get	actually	accurate	output:

Measure	Mode:	wall_time

Thread	ID:	70311995300360

Fiber	ID:	70311999772520

Total:	4.003320

Sort	by:	self_time

	%self						total						self						wait					child					calls		name

100.00						4.003					4.003					0.000					0.000								1			Kernel#sleep

		0.00						4.003					0.000					0.000					4.003								1			Global#[No	method]

		0.00						4.003					0.000					0.000					4.003								1			Object#sleeper

Profiling

45

https://en.wikipedia.org/wiki/Time_Stamp_Counter
http://stackoverflow.com/a/21572772
http://research.swtch.com/macpprof

Internally,	most	wall	time	profilers	use	something	like	gettimeofday.

However,	just	like	CPU	time,	wall	time	can	be	greatly	affected	by	external	factors:

Other	processes	(resource	contention).	If	the	code	you’re	profiling	depends	on
accessing	the	disk,	and	you	happen	to	be	torrenting	some	Game	of	Thrones
episodes	at	the	same	time,	it’s	going	to	look	like	your	program	spends	a	lot	of	time
waiting	on	I/O.
Network	or	I/O	conditions.	Let’s	say	you’re	profiling	some	code	for	a	cache	store,
and	that	cache	store	uses	Redis.	When	using	wall	time,	your	final	results	will	be
affected	by	whatever	performance	characteristics	your	Redis	database	has	(it’ll
show	up	as	a	lot	of	time	spent	in		IO.select		or	similar).	This	isn’t	really	relevant
most	of	the	time,	and	usually	obscures	the	Ruby	code	that	takes	long	amounts	of
time	to	execute.

Despite	its	flaws,	wall	time	is	usually	the	mode	you’ll	want	to	use.	It’s	generally	the
most	accurate	tracing	method	for	Ruby	code	that	doesn’t	do	a	lot	of	I/O,	and	as	long	as
you're	not	watching	cat	videos	at	the	same	time,	it's	fairly	accurate.

Don’t	use	wall	time	when	I/O	is	involved	and	highly	variable.	For	example,	profiling
code	that	accesses	the	network.

Process	time

	ruby-prof	’s	README	does	a	good	job	explaining	what	process	time	measurement	is
supposed	to	do:

Process	time	measures	the	time	used	by	a	process	between	any	two	moments.	It
is	unaffected	by	other	processes	concurrently	running	on	the	system.

Ruby-prof	uses	the		clock		function	for	this.	You	may	be	thinking	this	sounds	great	-	it’s
like	CPU	time	measurement,	but	better!	Process	time	should	be	unaffected	by	other
processes	on	the	system,	eliminating	one	of	CPU	time’s	major	drawbacks,	right?

Process	time	doesn’t	include	time	spent	in	child	processes,	so	anything	that	uses		fork	
or		spawn		is	out.

However,	aside	from	that	caveat,	process	time,	if	available,	is	usually	a	better	choice
over	CPU	time.	If	you	have	code	that	spawns	subprocesses,	you	may	need	to	stick	with
CPU	time	(or	wall	time).

Process	time,	like	CPU	time,	can	be	rendered	inaccurate	by	CPU	stepping.

Profiling

46

http://linux.die.net/man/2/gettimeofday
http://linux.die.net/man/3/clock
http://ruby-doc.org/core-2.2.3/Kernel.html#method-i-fork
http://ruby-doc.org/core-2.2.3/Kernel.html#method-i-spawn

Note	that	in	some	profilers,	process	time	is	simply	called	"CPU	time".	Be	sure	to	note	in
your	profiler's	documentation	how	its	CPU	time	function	works.

Tracing

Some	Ruby	profilers	are	tracers,	which	means	that	they	try	to	be	as	accurate	as	possible
by	trying	to	measure	every	method	invocation	and	how	long	they	take,	and	then
aggregate	that	data	across	your	entire	profiling	run.	On	the	upside,	this	approach	is
extremely	accurate.	Unfortunately,	it	also	usually	comes	with	high	overhead,	making	it
inappropriate	for	production	usage.

As	far	as	I	know,	the	only	Ruby	profiler	that	takes	this	approach	is	RubyProf.	You	can
see	where	it	hooks	directly	into	Ruby’s	execution	here.

If	you've	heard	of	DTrace,	you	should	know	that	MRI	Ruby	supports	DTrace	as	of
version	2.0.

Sampling

All	of	the	approaches	we’ve	discussed	so	far	involve	aggregation.	As	I	said,	this	has	the
advantage	of	being	extremely	accurate,	but	the	disadvantage	of	having	high	overhead.
This	means	aggregating	profilers	are	inappropriate	for	production	use.	However,	there’s
another	approach:	sampling.

Just	halt	[your	program]	several	times,	and	each	time	look	at	the	call	stack.	If
there	is	some	code	that	is	wasting	some	percentage	of	the	time,	20%	or	50%	or
whatever,	that	is	the	probability	that	you	will	catch	it	in	the	act	on	each	sample.	So
that	is	roughly	the	percentage	of	samples	on	which	you	will	see	it.	There	is	no
educated	guesswork	required.	If	you	do	have	a	guess	as	to	what	the	problem	is,
this	will	prove	or	disprove	it.

Yes,	by	just	randomly	“CTRL-C”-ing	during	program	execution	and	looking	at	the	call
stack,	congratulations,	you’re	sampling!	The	problem	with	this	method,	of	course,	is	that
you’re	taking	an	extremely	small	sample.	Sampling	profilers	sample	hundreds	of	times
per	second,	giving	us	much	higher	resolution	and	accuracy	than	our	“just	halt	it!”
sampling	method.

If	you	want	to	learn	more	than	you	ever	wanted	to	know	about	how	sampling	profilers
work,	check	out	this	article.

Profiling

47

https://github.com/ruby-prof/ruby-prof/blob/master/ext/ruby_prof/ruby_prof.c#L287
http://crypt.codemancers.com/posts/2013-04-16-profile-ruby-apps-dtrace-part1/
http://research.swtch.com/pprof

So	the	“numerator”	of	any	sampling	profiler,	instead	of	a	unit	of	time,	is	actually	“number
of	times	this	method/line-of-code	appeared	when	we	randomly	sampled	the	stack.”

The	denominator,	however,	can	be	either	CPU	time	or	wall	time,	with	all	the	caveats	of
the	above.

In	general,	use	sampling	profilers	for	production,	and	use	aggregating/tracing
profilers	for	development.

ruby-prof
As	mentioned	above,	ruby-prof	works	by	hooking	into	MRI	directly	-	every	time	you	call	a
method	or	something	happens	in	the	Ruby	VM,	ruby-prof	gets	called	and	measures	how
long	it	took	the	CPU	to	do	that	thing.	This	process	is	pretty	intense	-	when	running	ruby-
prof,	expect	your	program	to	run	2-3x	slower	than	it	would	otherwise.	This	makes	it	way
too	difficult	to	deploy	ruby-prof	sanely	in	production.	Instead,	you’ll	want	to	use	one	of
the	sampling	profilers	I	talk	about	later	in	this	lesson.

	ruby-prof		is	great	for	profiling	in	development.	What	else	is	it	good	at?	In	general,	I
tend	to	reach	for	a	profiler	like	ruby-prof	when	I’m	investigating	code	outside	of	the
typical	Rack	request/response	scenario.	If	I	just	want	to	profile	a	single	request,	typically
I’ll	just	reach	for	rack-mini-profiler,	which	is	far	easier	to	use	than	any	of	the	profilers	in
this	lesson.

But	what	if	you	need	to	profile	some	Ruby	code	outside	of	a	Rack	scenario	-	say	a	test
suite?	Or	perhaps	a	library?	Or	maybe	rack-mini-profiler	isn’t	providing	the	detail	you
need?

ruby-prof	helps	us	with	these	problems.	Your	benchmark	says	your	code	is	slow	-	now
what?

Quick	and	dirty	profiling

Let’s	compare	two	different	implementations	of	binary	search	with	ruby-prof	and
benchmark-ips.	It	doesn’t	really	matter	how	they’re	implemented	-	we’ll	just	say	it’s	two
methods,		bsearch1		and		bsearch2	.	First,	I’ll	write	a	benchmark:

Profiling

48

https://github.com/ruby-prof/ruby-prof/blob/master/ext/ruby_prof/ruby_prof.c#L287

require	'benchmark/ips'

Benchmark.ips	do	|x|

		SORTED_ARRAY	=	Array.new(10_000)	{	rand(100_000)	}.sort!

		array_size	=	SORTED_ARRAY.size

		#	Typical	mode,	runs	the	block	as	many	times	as	it	can

		x.report("bsearch1")	{	bsearch1(SORTED_ARRAY,	rand(array_size))}

		x.report("bsearch2")	{	bsearch2(SORTED_ARRAY,	rand(array_size))}

		x.compare!

end

Note	how	I’m	careful	that	the	only	code	running	in	the	loop	is	the	bsearch	method.	We
don’t	want	to	calculate	the	size	of	the	loop	every	time,	or	worse,	generate	a	new	array
every	time.	And	here’s	the	output:

Calculating	-------------------------------------

												bsearch1				54.917k	i/100ms

												bsearch2				31.073k	i/100ms

												bsearch1				782.667k	(±	2.7%)	i/s	-						3.954M

												bsearch2				374.304k	(±	2.4%)	i/s	-						1.895M

Comparison:

												bsearch1:			782666.6	i/s

												bsearch2:			374303.7	i/s	-	2.09x	slower

We	know	bsearch1	is	twice	as	fast	as	bsearch2.	Awesome.	But	let’s	say	we	want	to
speed	up	bsearch2	-	so	let’s	profile	it	using	ruby-prof	to	figure	out	why	bsearch2	is	so
slow.

require	'ruby-prof'

SORTED_ARRAY	=	Array.new(10_000)	{	rand(100_000)	}.sort!

array_size	=	SORTED_ARRAY.size

RubyProf.measure_mode	=	RubyProf::CPU_TIME

result	=	RubyProf.profile	do

		1_000_000.times	{	bsearch2(SORTED_ARRAY,	rand(array_size))	}

end

printer	=	RubyProf::FlatPrinter.new(result)

printer.print(STDOUT)

Profiling

49

And	here’s	the	output:

	%self						total						self						wait					child					calls		name

	17.22					19.117				12.777					0.000					6.340	13182869			Fixnum#==

		8.54						6.340					6.340					0.000					0.000	13182869			BasicObject#==

		5.73					71.918					4.252					0.000				67.666	14182869		*Object#bsearch2

		2.14					74.196					1.590					0.000				72.606								1			Integer#times

		0.93						0.688					0.688					0.000					0.000		1000000			Kernel#rand

		0.68						0.508					0.508					0.000					0.000		1000000			Array#count

		0.00					74.196					0.000					0.000				74.196								1			Global#[No	method]

Here's	what	the	headers	here	mean:

	%self		is	the	percentage	of	the	total	time	elapsed	spent	in	this	method	call
	total		is	the	total	time	(in	seconds,	I	think,	but	I’m	honestly	not	sure)	spent	in	this
method	and	its	children	(other	methods	called	by	this	method)
	self		is	the	time	spent	in	this	method,	excluding	child	method	calls.
	wait		is	the	time	spent	waiting	here.
	child		is	the	time	spent	in	child	method	calls.		total		-		self		=		child	.
	calls		is	the	number	of	times	this	was	invoked.
	name		is	self	explanatory.

It	looks	like	whatever	in	this	method	is	calling		==		is	pretty	hot.	Also,	it	looks	like
	bsearch2		is	implemented	recursively	-	it	appears	to	be	calling	itself.	I’ll	start	by	trying	to
eliminate	the	method	call	to		==	.	I	do	that,	then	retry	my	benchmark	to	see	if	I’ve
improved	anything	-	and	whaddya	know,		bsearch2		is	now	just	1.5x	slower	than
	bsearch1	!	I	could	repeat	this	process	until	I	was	satisfied.

Generally,	this	is	what	profiler	workflow	looks	like	-	you	start	with	the	biggest	"%self"	and
keep	optimizing	your	way	downward.

Additional	profiler	modes

Aside	from	being	able	to	run	in	CPU,	process,	and	wall-clock	modes	as	explained
above,	ruby-prof	has	some	additional	modes	for	measuring	things	like	memory
allocation.	Unfortunately,	these	parts	of	ruby-prof	are	almost	completely	broken	and
unmaintained.

See	my	lesson	on	profiling	memory	usage	for	better	alternatives.

Printer	modes

Profiling

50

ruby-prof	features	several	different	ways	of	printing	output,	but	one	of	my	favorites	is	the
CallStackPrinter.	It’s	extremely	useful	when	dealing	with	Rack	applications	-	to	see	it	in
action,	check	out	my	lesson	on	slimming	down	Rails.

stackprof
stackprof	is	a	sampling	profiler	for	Ruby	2.1+.	This	is	the	profiler	used	under	the	hood	by
rack-mini-profiler.	Unlike		ruby-prof	,	it	samples	rather	than	aggregates,	making	it	usable
in	production	environments.

I	don't	find	stackprof	useful	in	development,	since		ruby-prof		usually	works	more
accurately	and	has	most	of	the	features	of		stackprof	.	However,	if	you	were	looking	at
run	your	own	profiles	in	production,	this	might	be	an	interesting	tool.	Take	a	look	at
stackprof-remote	if	using	stackprof	to	profile	a	Rails	or	Rack	application	-	it's	a	tool	that
allows	you	to	profile	an	app	with		stackprof		while	it's	running.

	stackprof		supports	wall	and	cpu	timing	modes.	Note	that		stackprof	's	method	of	CPU
timing	is	bugged	on	Mac	OS	X	(see	above).

gperftools/perftools.rb
perftools.rb	is	a	Ruby	front-end	for	Google's	gperftools.	gperftools	is	a	sampling	profiler,
like		stackprof	,	however,	it's	a	"big	boy"	tool	written	and	used	by	Google.

While,	as	far	as	I	can	tell,	mostly	similar	to		stackprof	,		gperftools		has	great	graphical
report	modes.	Check	out	this	sweet	visualization	of	a	Rails	app.

	perftools.rb		runs	in	CPU	mode	by	default.	It	is	affected	by	the	same	CPU	timing	mode
bugs	on	Mac	OS	X	as	is		stackprof	,	so	you	may	want	to	use	wall	mode	instead.

Checklist	for	Your	App
Use	a	profiler	like		ruby-prof		to	diagnose	your	application's	startup	time.	Where
does	most	time	go	during	your	app's	initialization	process?
Find	an	algorithm	or	other	"hot"	Ruby	code	in	your	app.	If	you	can't,	find	two
different	implementations	of	a	common	algorithm	(for	example,	binary	search)
online.	Use	a	combination	of	benchmarks	and	profilers	to	determine	why	one
implementation	is	faster	than	the	other,	and	try	writing	your	own	optimized	version.

Profiling

51

https://github.com/tmm1/stackprof
https://github.com/quirkey/stackprof-remote
https://github.com/tmm1/perftools.rb
https://github.com/gperftools/gperftools
http://perftools-rb.rubyforge.org/examples/rails.gif

Lab:	Profiling

Exercise	1
Let's	profile	a	benchmark	suite.

We'll	use	Dalli's	benchmark	suite	for	this	example.	Dalli	is	a	Ruby	client	for	Memcache.

1.	 	git	clone	https://github.com/petergoldstein/dalli.git	
2.	 	git	checkout	65a5a8c	
3.	 	gem	install	'ruby-prof'	
4.	 Install	and	start	a	Memcache	server.
5.	 	bundle	install	
6.	 	ruby-prof	test/benchmark_test.rb		will	run	ruby-prof	around	your	test	run.

Inspect	the	output.	What	does	it	tell	you	about	Dalli?	Use		ruby-prof	--help		to
investigate	different	options	available	to	you,	be	sure	to	try	to	use	concepts	from	the
lesson.

Solution

Dalli	spends	over	10%	of	its	time	waiting	on	IO	-	this	makes	sense,	because	it's
fundamentally	a	library	for	talking	to	a	database.
The	slowest	method	in	Dalli	is		Dalli::Ring#binary_search	.	When	using	CPU
profiling	mode,	you	can	see	that	this	single	method	takes	up	almost	14%	of	the	test
run.
We	spend	a	lot	of	time	in	the		MonitorMixin		class	-	this	is	part	of	the	standard
library.

Profiling

52

Profiling	Ruby	Memory	Usage
In	our	previous	lesson,	we	talked	about	profiling	Ruby	code.	In	addition	to	profiling
execution	time,	we	can	also	profile	memory	usage.	A	common	barrier	to	scaling	Ruby
applications	is	bloated	memory	usage	-	and	one	of	the	first	steps	to	fixing	memory	bloat
is	to	understand	where	all	of	that	memory	is	being	used.	This	is	what	memory	profiling	is
all	about.

Unfortunately,	the	Ruby	community	is	only	just	waking	up	to	the	possibilities	afforded	by
memory	profiling.	Most	of	the	tools	are	new	and	not	well	documented,	and	have	limited
feature	sets.	Memory	profiling,	unlike	CPU	profiling,	is	usually	locked	to	the	language
VM.	With	CPU	profiling,	we	can	use	Google's	perftools	profiler	pretty	much	unmodified	to
profiler	Ruby.	This	isn't	the	case	with	memory	-	different	language	virtual	machines
manage	memory	is	different	ways,	and	memory	profilers	have	to	be	aware	of	this.

This	lesson	is	targeted	at	MRI	Ruby,	mostly	because	if	you're	on	JRuby	you're	in	much
better	shape.	JRuby,	as	it	runs	on	the	Java	Virtual	Machine,	can	use	any	memory
profiler	that	works	on	the	JVM.	These	tools,	unlike	the	tools	for	MRI	Ruby,	are	much
more	mature.

There	are	five	main	tools	we	can	use	for	memory	profiling	in	MRI	Ruby:

ObjectSpace	and	objspace.so	-	introduced	in	Ruby	1.9	and	improved	and
expanded	since,		ObjectSpace		is	a	module	in	Ruby's	stdlib	that	allows	limited	object
and	memory	introspection.
GC::Profiler	-	The		GC		module,	also	in	Ruby's	stdlib,	has	included	a		Profiler	
module	since	Ruby	1.9.	It	provides	a	lot	of	interesting	statistics	about	garbage
collection.
gc_tracer	-	Written	by	Ruby	core	member	Koichi	Sasada,		gc_tracer		is	an	in-depth
tracer	for	the	new	Ruby	2.1	garbage	collector.
derailed_benchmarks	-	Written	by	Heroku	man	Richard	Schneeman,	this	swiss-
army	knife	provides	some	excellent	memory-related	profiles.
memory_profiler	-	Product	of	Discourse's	speed-demon	Sam	Saffron,
	memory_profiler		provides	several	in-depth	memory	profiling	modes.

ObjectSpace	and	objspace.so

Memory

53

https://twitter.com/schneems
https://twitter.com/samsaffron

Since	Ruby	1.9,	Ruby	has	included	a	magical	little	module	in	a	file	called		ObjectSpace	.

irb(main):001:0>	ObjectSpace.count_objects

=>	{:TOTAL=>53802,	:FREE=>31,	:T_OBJECT=>3373,	:T_CLASS=>888,	:T_MODULE=>30,	:T_FL

OAT=>4,	:T_STRING=>36497,	:T_REGEXP=>164,	:T_ARRAY=>9399,	:T_HASH=>789,	:T_STRUCT=

>2,	:T_BIGNUM=>2,	:T_FILE=>7,	:T_DATA=>1443,	:T_MATCH=>85,	:T_COMPLEX=>1,	:T_NODE=

>1050,	:T_ICLASS=>37}

Neat,	huh?	Try	running	that	in	an		irb		session	a	few	times	and	you'll	even	see	the
numbers	grow!	Most	of	these	should	be	pretty	self	explanatory	(T_CLASS	,		T_OBJECT	,
etc).	The	weird	ones	(T_NODE	,		T_DATA)	are	more	for	the	interpreter's	benefit	than	our
own	-		T_NODE		is	counting	the	nodes	of	the	abstract	syntax	tree	of	your	program,	for
example.	Just	pay	attention	to	the	Ruby	primitive	types	here.	You	can	already	see	some
applications	for	ObjectSpace	-	logging	the	ObjectSpace	counts	to	an	external	service,	for
example,	or	to	your	development	console	as	you	click	through	your	site.	You	can	do	this
without	any	performance	overhead	worries	-	these	statistics	are	already	kept	whether	or
not	you	are	using	them.

Did	you	know	you	turn	Ruby’s	garbage	collector	on	and	off?	It’s	really	simple:

GC.disable	#=>	true,	GC	is	now	disabled

GC.enable	#=>	true,	GC	is	now	enabled.

GC.start	#=>	garbage	collect	RIGHT	NOW

You	can	combine		ObjectSpace.count_objects		with		GC.start		to	test	your	own	theories
about	how	the	garbage	collector	works	on	a	micro	scale.	For	example,	how	many	strings
will	this	allocate?

100.times	do

		'hello'	+	'	'	+	'world'

end

First,	we'll	write	a	method	to	determine	what	objects	are	allocated	in	any	given	block:

Memory

54

def	allocate_count

		GC.disable

		before	=	ObjectSpace.count_objects

		yield

		after	=	ObjectSpace.count_objects

		after.each	{	|k,v|	after[k]	=	v	-	before[k]	}

		after[:T_HASH]	-=	1	#	probe	effect	-	we	created	the	before	hash.

		after[:FREE]	+=	1	#	same

		GC.enable

		after.reject	{	|k,v|	v	==	0	}

end

We	disable	the	garbage	collector,	count	the	objects,	yield	to	a	given	block,	recount	all
the	objects,	diff	the	counts,	and	re-enable	garbage	collection.	We	turn	GC	off,	because	if
the	garbage	collector	turns	on	while	we’re	counting	the	objects,	that	would	totally	mess
up	our	count.	Let's	check	the	result:

irb(main):042:0>	allocate_count	{	100.times	{	'hello'	+	'	'	+	'world'	}	}

=>	{

								:FREE	=>	-500,

				:T_STRING	=>	500

}

Did	you	get	the	right	answer	(500)?	If	not,	here's	a	hint:	Ruby	combines	the	strings	one
at	a	time	-	"hello"	+	"	"	becomes	"hello	",	and	so	on.

Using	this		allocate_method	,	we	can	"micro-benchmark"	different	idioms	to	see	which
ones	use	more	memory	than	others.	You	can	also	learn	a	lot	about	how	Ruby	memory
works	this	way	too.

Oh	-	and	check	this	out.

puts	ObjectSpace.each_object.count	#=>	42552

puts	ObjectSpace.each_object(Numeric).count	#=>	7

puts	ObjectSpace.each_object(Complex).count	#=>	1

ObjectSpace.each_object(Complex)	{	|c|	puts	c	}	#=>	0+1i

That's	right	-	you	can	iterate	through	every	live	object.	Let's	see	your	language	of	choice
do	that!

There	are	lot	of	applications	for		ObjectSpace.each_object	.		minitest		originally	used	it	to
discover	test	classes	and	methods	(it	doesn’t	anymore).	You	can	use	it	in	development
to	count	and	inspect	objects	created	in	your	application	-	for	example,	open	up	a	console

Memory

55

mid-request	(with	something	like	pry,	webconsole,	or	better_errors	and	start	counting
and	iterating	through	ActiveRecord	objects.

For	example,	here’s	a	way	to	print	all	active	objects	by	class,	giving	you	an	idea	of	what
modules	are	creating	and	retaining	the	most	objects:

ObjectSpace.each_object.

		map(&:class).

		each_with_object(Hash.new(0))	{	|e,	h|	h[e]	+=	1	}.

		sort_by	{	|k,v|	v	}

Try	this	example	yourself	and	pay	attention	to	the	output	-	it	will	look	familiar	once	we	get
to		memory_profiler	.

	require	"objspace"		extends	the	ObjectSpace	module	with	several	awesome	methods.
It's	a	kind	of	"debugging"	module,	really	-	the	documentation	comes	with	this	stern
warning:

Generally,	you	SHOULD	NOT	use	this	library	if	you	do	not	know	about	the	MRI
implementation.	Mainly,	this	library	is	for	(memory)	profiler	developers	and	MRI
developers	who	need	to	know	about	MRI	memory	usage.

There's	a	good	reason	for	this.		require	"objspace"		will	slow	any	production	application
to	a	crawl,	thanks	to	all	of	the	tracing	it	adds,	so	this	is	strictly	for	development	use	only.
With	that	caveat,		ObjectSpace		has	a	lot	of	superpowers.	You	can	read	about	all	of	them
in	the	official	documentation,	but	I'm	going	to	show	you	the	ones	that	are	really	useful	for
any	Ruby	developer	that's	trying	to	understand	how	their	app	uses	memory.

Here's	an	interesting	one:

irb(main):057:0>	ObjectSpace.count_objects_size

{

					:T_OBJECT	=>	198560,

						:T_CLASS	=>	614784,

					:T_MODULE	=>	66712,

						:T_FLOAT	=>	160,

					:T_STRING	=>	1578522,

					:T_REGEXP	=>	122875,

						:T_ARRAY	=>	630976,

							:T_HASH	=>	165672,

					:T_STRUCT	=>	160

					...

Memory

56

http://pryrepl.org/
https://github.com/rails/web-console
https://github.com/charliesome/better_errors
http://ruby-doc.org/stdlib-2.3.0/libdoc/objspace/rdoc/ObjectSpace.html

	ObjectSpace.count_objects_size		shows	you,	in	bytes,	how	much	memory	each	type	of
object	is	using.

We	can	check	the	size	of	objects	(in	bytes)	with		memsize_of	:

irb(main):062:0>	ObjectSpace.memsize_of("The	quick	brown	fox	jumps	over	the	lazy	d

og")

40

irb(main):063:0>	ObjectSpace.memsize_of("The	quick	brown	fox")

40

irb(main):064:0>	ObjectSpace.memsize_of([])

40

irb(main):065:0>	ObjectSpace.memsize_of(Array.new(10_000)	{	:a	})

80040

Note	how	this	demonstrates	a	bit	of	how	CRuby	uses	memory	that	you	may	not	have
been	aware	of	-	objects	are	pretty	much	always	at	least	40	bytes.

There's	also		memsize_of_all		to	get	the	total	memory	size	of	a	certain	class	of	objects	-
this	is	slightly	more	useful	than		ObjectSpace.count_objects_size		because	it	actually	uses
the	classes	in	your	application,	rather	than	the	internal	data	types	of	MRI:

irb(main):066:0>	ObjectSpace.memsize_of_all(String)

600682

Use	ObjectSpace	for:	Playing	around	and	enhancing	your	knowledge	of	how	Ruby
creates	and	garbage	collects	objects.	Use		ObjectSpace.each_object		to	explore	and
introspect	currently	live	objects	in	your	application.	If	any	of	the	tools	I	cover	in	this
lesson	don’t	exactly	fit	your	needs,	you	can	usually	hack	ObjectSpace	into	a	mini-tool
that	gives	you	the	output	that	you	want.

GC::Profiler
	GC	,	as	mentioned	above,	is	just	a	module	in	the	stdlib	for	working	with	the	garbage
collector.		GC::Profiler	,	in	the	words	of	the	documentation,	provides	access	to
information	on	garbage	collector	runs,	including	time	taken	and	object	sizes.
	GC::Profiler		is	included	by	default,	so	we	don't	need	to		require		anything	(unlike
	objspace).

Before	we	get	to		GC::Profiler	,	though,	let's	talk	for	a	quick	second	about	two	more
methods	available	on		GC	:

Memory

57

http://ruby-doc.org/core-2.2.0/GC.html
http://ruby-doc.org/core-2.2.0/GC/Profiler.html

	GC.count		returns	an	integer	that's	simply	the	number	of	times	the	GC	has	run	since
the	process	started.	This	includes	major	and	minor	GC	runs.	Since	Ruby	2.1,	MRI
Ruby	has	implemented	a	generational	garbage	collector,	which	means	that	objects
are	flagged	based	on	how	many	garbage	collections	they've	survived.	When	an
object	survives	a	garbage	collection,	it's	marked	"old".	Minor	GCs,	as	opposed	to
"Major"	GCs,	only	attempt	to	garbage	collect	"new"	objects.	The	principle	is	that
most	objects	die	young	-	we	don't	need	to	check	old	objects	as	often	as	we	check
new	ones.		GC.stat		is	useful	for	checking	if	GC	occurs	during	a	request	or	during
some	work.
	GC.stat		outputs	a	detailed	hash	with	some	details	on	garbage	collection.	Aside
from	the	count,	which	I've	already	described,	you'll	see	lots	of	details	about	the
heap,	free	memory,	and	more.	There's	a	lot	in	here,	and	most	of	it	won't	make	any
sense	unless	you	know	a	lot	about	how	Ruby's	GC	works.	What	I	want	to	call	your
attention	to	is		minor_gc_count		and		major_gc_count	,	which	breaks	out	the	total	GC
count	into	minor	and	major	runs.	In	addition,	the		old_objects		key	can	be	useful	for
tracking	down	leaks	-	if		old_objects		is	gradually	increasing	over	time,	it	could	be	a
memory	leak.

Anyway,	let's	talk	about		GC::Profiler		for	a	second.	As	usual,	the	performance	cost
here	is	high	-	unlike		GC.count		and		GC.stat	,	which	have	zero	overhead,		GC::Profiler	
use	in	production	is	not	advised.

Like	most	profilers,	you	can	run		GC::Profiler		with		enable		and		disable		methods,	like
so:

GC::Profiler.enable

require	'set'

GC.start

GC::Profiler.report

GC::Profiler.disable

As	you	can	see,	I	forced	a	GC	run	here	with		GC.start	.	If	a	GC	doesn't	run	between
	enable		and		disable	,		report		will	return	nil.	Here's	the	output	of	the	above:

GC	133	invokes.

Index				Invoke	Time(sec)							Use	Size(byte)					Total	Size(byte)									Total	

Object																				GC	Time(ms)

				1															1.966															801240														6315840															

157896									2.33700000000003349498

Memory

58

Note	that	the	"invokes"	number	there	is	just		GC.count	.	This	is	the	total	number	of	GCs
since	the	process	booted,	not	that	ran	during	the	profiling	run.

Each	GC	run	appears	on	its	own	line,	with	some	useful,	self-explanatory	details.	The
"Total	Size"	is	the	current	size	of	the	Ruby	heap	in	bytes.

When	to	use	GC	and	GC::Profiler:	If	one	of	your	other	tools	points	you	towards
garbage	collection	occurring	often	or	taking	a	long	time,		GC		and		GC::Profiler		are	your
friend.	You'll	be	able	to	see	just	how	often	garbage	collection	runs	in	a	certain	block	of
code	or	during	a	request,	and	how	long	it	takes.	Once	you've	zeroed	in	on	code	that
causes	garbage	collection,	use	the	other	tools	here	to	figure	out	why	so	many	objects
are	being	allocated.

gc_tracer
	gc_tracer		was	written	by	Koichi	Sasada,	Ruby	core	member.	In	many	ways,	it's	an
extension	of		GC::Profiler	,	which	can	log	GC	information	to	files	and,	when	mounted	to
your	application,	even	gives	you	a	webpage	with	GC	information.

To	add		gc_tracer		to	Rails	app,	we	add	it	to	our	Gemfile	like	so:

gem	'gc_tracer',	require:	'rack/gc_tracer'

Then,	we	need	to	insert		gc_tracer	's	middleware.	Open	up		config.ru	,	and	insert	the
following	line	above		run	MyApp::Application	:

use	Rack::GCTracerMiddleware,	view_page_path:	'/gc_tracer',	filename:	'log/gc_trac

er'

Now,	navigate	to		http://localhost:3000/gc_tracer		and	you'll	get	some	highly	detailed
information	in	a	tabular	format:

Memory

59

https://github.com/ko1/gc_tracer

You	should	also	have	a	text	file	being	logged	to	in	the	log	folder,	which	can	be	loaded
into	Excel.

The	output	here	is	fairly	opaque	-	but	most	of	the	columns	are	just	a	steady	log	of
	GC.stat	,	which	is	something	I	talk	about	above.

If	you	want	GC	information	about	background	jobs,	I	recommend	using	the	block	format
in	your	job	class:

GC::Tracer.start_logging	do

		#	do	something

end

The	log	info	will	go	to	STDERR.	You	can	also	provide	a	filename	to	output	to	a	file,	see
the	project's	README	for	more	details.

When	to	use	gc_tracer:	In	development,	you	may	want	a	constant	log	available	of
garbage	collections	and	what's	causing	them.	This	is	exactly	what		gc_tracer		provides.
	gc_tracer		may	be	particularly	useful	in	tracking	down	memory	leaks.

derailed_benchmarks
	derailed_benchmarks		is	a	complete	benchmarking	suite	for	Rails	written	by	Richard
Schneeman.	It’s	a	great	project,	and	while	it	has	lots	of	swiss-army-knife	features	for
benchmarking	all	areas	of	a	Rails	app,	I	want	to	talk	about	its	memory	benchmarks.	I
know	I	said	this	would	be	a	profiling	lesson,	but	bear	with	me!

My	favorite	feature	of		derailed_benchmarks		is	for	tracking	down	memory	bloat.	You’ve
got	an	app	that	runs	at	512MB	of	RAM	or	more	on	production,	where	do	you	start?	I	start
at	the	Gemfile	and	fire	up		derailed_benchmarks	.	Add		derailed		to	the	development
section	of	your	application’s	Gemfile	and	run		bundle	exec	derailed	bundle:mem	.	Wait	a
second	while		derailed		requires	each	of	your	gems	individually	and	checks	to	see	how
much	memory	they	use.

Here’s	some	example	output:

Memory

60

https://github.com/schneems/derailed_benchmarks

delayed_job:	18.9805	MiB	(Also	required	by:	delayed/railtie,	delayed_job_active_re

cord)

				delayed/performable_mailer:	17.8633	MiB

						mail:	17.8555	MiB	(Also	required	by:	TOP)

								mime/types:	12.9492	MiB	(Also	required	by:	/Users/nateberkopec/.gem/ruby/2

.3.0/gems/rest-client-1.8.0/lib/restclient/request,	/Users/nateberkopec/.gem/ruby/

2.3.0/gems/rest-client-1.8.0/lib/restclient/payload)

								mail/field:	2.0039	MiB

								mail/message:	0.8477	MiB

				delayed/worker:	0.6055	MiB

		rails/all:	15.8125	MiB

				rails:	7.5352	MiB	(Also	required	by:	active_record/railtie,	active_model/railt

ie,	and	10	others)

						rails/application:	5.3867	MiB

[…	continues	on	and	on]

The	indentations	in	the	output	show	dependencies	-	delayed_job	requires
delayed/performable_mailer	and	so	on.

In	this	output,	we	can	see	that		mime/types		is	required	by		delayed_job		and	several
other	libraries.	The		mime-types		gem	had	a	huge	memory	bloat	problem	that	Richard
fixed	a	while	ago,	but	most	gem	authors	haven’t	updated	their		.gemspec		files	to	require
the	correct	version	of	the		mime-types		gem	that	fixes	this	problem.

This		mime-type		bloat	is	an	extremely	common	problem	in	Ruby	gemfiles.	Go	check	your
apps	right	now	-	I	bet	at	least	one	of	them	has	this	issue.

To	fix	it,	you	can	try:

gem	'mime-types',	'~>	3.0'

…at	the	top	of	your	Gemfile.	If	you	get	a	version	conflict	(you	use	a	gem	that	depends	on
	mime-types		version	2,	you	can	do	this:

gem	'mime-types',	'~>	2.6',	require:	'mime/types/columnar'

Relax,	sit	back,	and	enjoy	20MB	of	free	extra	memory.	Rinse	and	repeat	this	process	for
other	gems	-	look	for	files	that	require	a	lot	of	memory	and	find	ways	to	eliminate	them	or
use	less	heavyweight	alternatives.	Swap		carrierwave		for		carrierwave-aws	,	and	so	on.

While		derailed	bundle:mem		is	a	static	benchmark	(it	never	actually	fires	up	your	app),
	derailed		also	has	several	dynamic	benchmarks	that	actually	boot	your	app	and		curl	
some	requests	against	it	to	simulate	user	load.

Memory

61

https://github.com/sorentwo/carrierwave-aws

There	are	three	dynamic	memory	benchmarks	in		derailed		that	I	find	useful:

	derailed	exec	perf:mem_over_time		hits	your	app	a	bunch	of	times	and	outputs	total
process	memory.	If	the	number	keeps	increasing,	congratulations,	you've	got	a	leak.
If	it	levels	off,	you're	good.
	derailed	exec	perf:objects		hits	your	app	and	looks	to	see	where	objects	are
created.	Use	it	to	pinpoint	the	memory-expensive	operations	in	your	application.

All	of	these	dynamic	benchmarks	use	the		PATH_TO_HIT		and		TEST_COUNT		environment
variables	to	determine	what	path	to	test	and	how	many	times	to	test	it.	For	example,	to
run	a	benchmark	10	times	against	/signup:

PATH_TO_HIT=/signup	TEST_COUNT=10	derailed	exec	perf:objects

When	to	use	derailed:	On	any	app,	really.		bundle:mem		is	excellent	for	auditing
Gemfiles	and	reducing	bloat.	The	dynamic	benchmarks	can	help	track	down	memory
leaks.

memory_profiler
	memory_profiler		was	originally	written	by	Sam	Saffron,	tech	head	of	Discourse.	It's
used	under-the-hood	by		derailed	,	but	it's	often	useful	to	use		memory_profiler		alone.

One	reason		memory_profiler		is	useful	is	that	it	can	be	used	like	a	traditional	profiler	and
only	profile	a	block	of	code:

require	'memory_profiler'

report	=	MemoryProfiler.report	do

		#	run	your	code	here

end

report.pretty_print

This	is	useful	when	debugging	memory-heavy	backend	jobs,	something	which
	derailed		isn't	designed	for.

	memory_profiler	's	reports	are	extensive	and	a	little	overwhelming	at	first.

Total	allocated:	914156	bytes	(8503	objects)

Total	retained:		46834	bytes	(645	objects)

Memory

62

https://github.com/SamSaffron/memory_profiler

At	the	top	of	the	report,		memory_profiler		reports	the	total	amount	of	memory	allocated
and	retained	while	it	was	run.	Retained	memory	is	memory	used	by	objects	which	will
live	on	beyond	the	profiler	run	-	these	are	objects	which	survived	garbage	collection	(so
far).	Allocated	memory	is	all	memory	allocated	during	the	profiler	run	-	this	can	be	higher
than	your	maximum	memory	usage.	Consider	-	Ruby	allocates	20	kB	of	memory,	then
GC	runs	and	frees	up	10	kB.	Then,	Ruby	allocates	an	additional	5kB	of	memory.
	memory_profiler		will	report		25000	bytes		allocated,	but	your	maximum	memory	usage
(at	the	end	of	the	run)	will	be	just	20000	bytes.	A	high	amount	of	allocated	memory	is	still
an	important	metric,	however	-	more	memory	allocated	means	the	garbage	collector	will
run	more	often,	slowing	down	your	process.

All	the	numbers	in		memory_profiler		are	in	bytes,	but	it's	important	to	note	that	they	don't
reflect	total	process	memory	usage.	Due	to	memory	fragmentation	over	time,
	memory_profiler		will	always	underestimate	versus	what	you	might	see	if	you	checked
your	Ruby	process'	memory	usage	with		ps	.

You	can	use		memory_profiler		by	itself	to	profile	blocks	of	code,	but		memory_profiler		is
generally	easiest	to	use	when	you	use	it	with	other	gems.		rack-mini-profiler		uses
	memory_profiler		to	profile	memory	during	a	request/response	in	a	Rack	app,	and
	derailed		(above)	uses	it	for	several	benchmarks.

	memory_profiler		also	works	with	C	extensions,	so	it	will	correctly	profile	memory	usage
of	gems	like	Nokogiri	that	use	C	extensions	for	significant	functionality.

When	to	use	memory_profiler:	Use		memory_profiler		when	debugging	memory	usage
of	background	jobs	or	other	non-Rack-app	scenarios.	If	debugging	memory	usage	of	a
Rack	app,	use		derailed		and		rack-mini-profiler	,	which	employ		memory_profiler		as	a
backend.

Checklist	for	Your	App
Perform	an	audit	of	your	Gemfile	with		derailed_benchmarks	.	Substitute	or	eliminate
bloated	dependencies	-		derailed	's	"TOP"	output	should	probably	be	50-60	MB.
Experiment	with		ObjectSpace		by	writing	a	logger	for	your	application	that	tracks
areas	you	suspect	may	be	memory	hotspots.
If	you're	using		rack-mini-profiler	,	install		memory_profiler		to	enable	RMP's
memory	profiling	functions.

Memory

63

Lab:	Memory	Profiling

Exercise	1
Using	Rubygems.org	(setup	described	in	another	lesson),	profile	memory	usage	on	boot
with		memory_profiler	.

Add		memory_profiler		to	the	Gemfile,	then	change		environment.rb		to	look	like	the
following:

MemoryProfiler.report	do

		require	File.expand_path('../application',	__FILE__)

		Rails.application.initialize!

end.pretty_print(to_file:	"my_report.txt")

Run		rails	runner	"puts	'hello	world'"		in	your	console,	and	open		my_report.txt	.

What	conclusions	can	you	draw	about	the	memory	usage	of	this	application?

Solution

ActiveSupport::Dependencies	requires	a	lot	of	memory	-	this	module	is	what	keeps
track	of	your	files	for	reloading	in	development.
The		tzinfo		gem	requires	a	decent	amount	of	memory	to	run	-	check	out
zoneinfo_data_source.rb	on	line	367	and	country_timezone.rb	on	line	32.

Memory

64

rack-mini-profiler	-	the	Secret	Weapon
	rack-mini-profiler		is	a	a	performance	tool	for	Rack	applications,	maintained	by	the
talented	@samsaffron.	rack-mini-profiler	provides	an	entire	suite	of	tools	for	measuring
the	performance	of	Rack-enabled	web	applications,	including	detailed	drill	downs	on
SQL	queries,	server	response	times	(with	a	breakdown	for	each	template	and	partial),
incredibly	detailed	millisecond-by-millisecond	breakdowns	of	execution	times	with	the
incredible		flamegraph		feature,	and	will	even	help	you	track	down	memory	leaks	with	its
excellent	garbage	collection	features.	I	wouldn't	hesitate	to	say	that		rack-mini-
profiler		is	my	favorite	and	most	important	tool	for	developing	fast	Ruby
webapps.

The	best	part	-		rack-mini-profiler		is	designed	to	be	run	in	production.	Yeah!	You	can
accurately	profile	production	performance	(say	that	three	times	fast)	with		rack-mini-
profiler	.	Of	course,	it	also	works	fine	in	development.	But	your	development
environment	is	usually	a	lot	different	than	production	-	hardware,	virtualization
environments,	and	system	configuration	can	all	be	different	and	play	a	huge	part	in
performance.	Not	to	mention	Rails'	development	mode	settings,	like	reloading	classes
on	every	request!

In	this	post,	I'm	going	to	take	a	deep	dive	on		rack-mini-profiler		and	show	you	how	to
use	each	of	its	powerful	features	to	maximize	the	performance	of	your	Rails	app.

Installation
For	the	purposes	of	this	demo,	I'm	going	to	assume	you're	in	a	Rails	app.	The
installation	procedure	is	slightly	different	for	a	pure	Rack	app,	see	the	README	for
more.

First,	let's	add	the	following	gems	to	our	Gemfile,	below	any	database	gems	like	'pg'	or
'mysql2'.

gem	'pg'	#	etc	etc

gem	'rack-mini-profiler'

gem	'flamegraph'

gem	'stackprof'	#	ruby	2.1+	only

gem	'memory_profiler'

Rack	Mini	Profiler

65

https://twitter.com/samsaffron
https://github.com/MiniProfiler/rack-mini-profiler
https://github.com/MiniProfiler/rack-mini-profiler

	rack-mini-profiler		is	self	explanatory,	but	what	are	the	other	gems	doing	here?

	flamegraph		will	give	us	the	super-pretty	flame	graphs	that	we're	going	to	use	later	on.

	stackprof		is	a	stack	profiler	(imagine	that),	which	will	be	important	when	we	start
building	our	flame	graphs.	This	gem	is	Ruby	2.1+	only	-	don't	include	it	otherwise	(rack-
mini-profiler		will	fallback	to	another	gem,		fast_stack).

	memory_profiler		will	let	us	use		rack-mini-profiler	's	GC	features.

Fire	up	a	server	in	development	mode	and	hit	a	page.	You	should	see	the	new	speed

badge	in	the	upper	left.	 	We'll	get	to	what	that	does	in	a	second.

To	see	a	full	list	of	rack-mini-profiler's	features	and	info	on	how	to	trigger	them,	add		?
pp=help		to	the	end	of	any	URL.

We're	going	to	go	through	all	of	these	options	-	but	first,	we	need	to	make	our	app	run	in
production	mode	on	our	local	machine.

	rack-mini-profiler		is	designed	to	be	used	in	production.	In	Rails,	your	application
probably	behaves	differently	in	production	mode	than	in	development	mode	-	in	fact,
most	Rails	apps	are	5-10x	slower	in	development	than	they	are	in	production,	thanks	to
all	the	code	reloading	and	asset	recompilation	that	happens	per	request.	So	when
profiling	for	speed,	run	your	server	in	production	mode,	even	when	just	checking	up	on
things	locally.	Be	careful,	of	course	-	change	your	database.yml	file	so	that	it	doesn't
point	towards	your	actual	production	database	(not	necessary	for	Heroku-deployed
apps).

	rack-mini-profiler		runs	in	the	development	environment	by	default	in	Rails	apps.
We're	going	to	enable	it	in	production,	and	hide	it	behind	a	URL	parameter.	You	can	also
do	things	like	make	it	visible	only	to	admin	users,	etc.

		#	in	your	application_controller

before_filter	:check_rack_mini_profiler

def	check_rack_mini_profiler

		#	for	example	-	if	current_user.admin?

		if	params[:rmp]

				Rack::MiniProfiler.authorize_request

		end

end

1

Rack	Mini	Profiler

66

Also,	I	prefer	not	to	use		rack-mini-profiler	's	default	storage	settings	in	production.	By
default,	it	uses	the	filesystem	to	store	data.	This	is	slow	to	begin	with,	and	especially
slow	if	you're	on	Heroku	(which	doesn't	have	a	real	filesystem).

		#	in	an	initializer

Rack::MiniProfiler.config.storage	=	Rack::MiniProfiler::MemoryStore

If	you're	forcing	SSL	in	production,	you're	going	to	want	to	turn	that	off	for	now.

config.force_ssl	=	false

Finally,	I	need	to	get	the	app	running	in	production	mode. 	In	my	case	(a	Rails	4.2	app),
I	just	have	to	run	the	database	setup	tasks	in	production	mode,	compile	assets,	and	add
a	secret	key	base	to	my	rails	server	command:

RAILS_ENV=production	rake	db:reset	#	CAREFUL!

RAILS_ENV=production	rake	assets:precompile

RAILS_ENV=production	SECRET_KEY_BASE=test	rails	s

The	Speed	Badge
Great	-	you've	got	the	speed	badge.	In	my	example	app,	starting	the	rails	server	in
development	mode	and	then	hitting	the	root	url	actually	causes	two	speed	badges	to
show	up.		rack-mini-profiler		will	create	a	speed	badge	for	each	request	made	to	your
app,	including	some	asset	requests.	In	my	case,	I	also	got	a	speed	badge	for	the	favicon
request.

When	you	click	on	the	speed	badge,	you	can	see	that		rack-mini-profiler		breaks	down
the	time	your	page	took	to	render	on	a	per-template	basis.	It	breaks	out	execution	time
spent	in	the	layout,	for	example,	and	then	break	out	each	partial	that	was	rendered	as
well.	Here's	an	example	readout	from	a	different	app	I	work	on:

2

Rack	Mini	Profiler

67

I	think	this	view	is	pretty	self	explanatory	so	far.	You're	looking	at	exactly	where	your
time	goes	on	each	request	in	a	brief	overview.	When	I	look	at	this	view	for	any	given
request,	here's	what	I	look	for:

How	many	SQL	queries	am	I	generating?	This	view	generates	a	total	of	9	SQL
queries.	That	strikes	me	as	lot,	especially	since	this	is	just	the	homepage	for	a	non-
logged-in	user.	Usually,	for	simple	pages,	you	wouldn't	want	to	see	more	than	1	to	3
queries,	and	almost	always	you'd	like	just	one	query	per	ActiveRecord	model	class.
What's	my	total	request	time?	This	view	is	a	little	slow	-	85ms.	For	a	mostly	static
and	highly	visited	page	like	this	(like	I	said,	it's	the	homepage)	I'd	like	to	see	it	be
completed	in	under	50ms.
What	%	of	time	am	I	spending	in	SQL?	This	view	is	doing	fairly	well	as	far	as	time
spent	in	SQL	goes.	I	always	test	my	applications	with	a	copy	of	the	production
database	-	this	makes	sure	that	my	query	results	match	production	results	as	much
as	possible.	Too	often,	simplistic	development	databases	return	1000	results	where
a	production	database	would	return	100,000.
How	long	until	DOMContentLoaded	fires?	This	view	took	about	250ms	between
receiving	a	response	and	finishing	loading	all	the	content.	That's	pretty	good	for	a
simple	page	like	this.	Decreasing	this	time	requires	front-end	optimization	-
something	I	can't	get	into	in	this	post,	but	doing	things	like	reducing	the	number	of

Rack	Mini	Profiler

68

event	handlers	and	front-end	JavaScript,	and	optimizing	the	order	of	external
resources	being	loaded	onto	the	page.
Are	any	of	the	parts	of	the	page	taking	up	an	extreme	amount	of	time	compared	to
others?	Sometimes,	just	a	single	partial	is	taking	up	the	majority	of	the	page	load
time.	If	that's	true,	that's	where	I	start	digging	for	more	information.	In	this	case,	the
page's	load	time	looks	fairly	evenly	distributed.	It	looks	like	one	of	the	post	partials
here	is	generating	some	SQL	-	a	prime	candidate	for	caching	(or	just	getting	rid	of
the	query	in	the	first	place.

There	are	some	other	features	here	in	the	speed	badge.	Click	any	of	the	SQL	links	and
you'll	see	the	exact	query	being	executed.	Here	are	two	as	an	example:

The	number	on	the	top	left	(39.20	ms)	is	the	total	time	spent	between	rendering	this
partial	and	the	next	one	-	notice	that	this	is	slightly	different	than	the	number	to	the	right,
the	amount	of	time	actually	spent	rendering	the	partial	(16.75ms).	Whenever	I	see	"lost
time"	like	this,	I	dig	in	with	the	flamegraph	tool	to	see	exactly	where	the	time	went.	We'll
get	into	that	in	the	next	section.

Notice	that		rack-mini-profiler		calls	out	the	exact	line	in	our	view	that	triggered	the
query.

These	queries	look	like	the	view	was	probably	looking	up	the		current_user		(or	some
other	user),	and	that		current_user			has_one			Profile	.	I	probably	need	to:

Find	a	way	to	either	eliminate	this	query	or	cache	the	result	in	the	view

Rack	Mini	Profiler

69

Add	an		includes		call	to	the	original	query	so	that	the	profile	is	loaded	along	with
the	User,	reducing	my	query	count	by	1.

I	follow	this	process	for	every	query	on	the	page	-	see	if	I	can	remove	it	or	cache	the
result.	For	my	full	guide	on	Rails	caching,	check	this	post	out.

The	Flamegraph
This	is	one	of	my	favorite	parts	of		rack-mini-profiler	,	and	as	far	as	I	know,	not
duplicated	anywhere	else.	If	I	add		?pp=flamegraph		to	my	query	string,	I	can	get	this
incredible	flamegraph	of	the	same	request	I	outlined	above:

The	height	of	the	"flame"	indicates	how	deep	we	are	in	the	stack.	Think	of	the	Y	axis	as
stack	level,	and	the	X	axis	as	time.	You	can	zoom	in	and	out	with	your	mouse	scroll
wheel.

Rack	Mini	Profiler

70

http://www.nateberkopec.com/2015/07/15/the-complete-guide-to-rails-caching.html

At	the	bottom	of	the	page,	you'll	see	a	legend,	denoting	what	all	the	colors	refer	to.	Note
that	the	percentage	displayed	next	to	each	part	is	the	percentage	of	the	time	the	request
spent	inside	that	stack	frame.	For	example,	this	app	is	called	SomeApp.	It	looks	like	we
spent	76.42%	of	our	time	in	the	app	itself.	The	other	time	was	taken	up	by	rack
middleware	(like		lograge	,		airbrake		and		hirefire-resource)	and	Rails.

Looking	at	this	legend	and	poking	around	the	flamegraph	reveals	an	interesting	tidbit	-
Paperclip	appeared	in	28.3%	of	all	stack	frames!	Yikes.	That's	way	too	many	for	a
simple	homepage.	For	this	page,	I'd	look	into	ways	of	avoiding	calls	to	Paperclip.	It	looks
like	most	of	the	time	is	spent	generating	a	Paperclip::Attachment's	URL.	I	may
experiment	with	ways	to	cache	or	otherwise	avoid	recalculating	that	value.

GC	Profiling
Here's	another	awesome	part	of		rack-mini-profiler		that	I	haven't	seen	anywhere	else	-
a	set	of	tools	for	debugging	memory	issues	live	on	production!	Even	better,	it	incurs	no
performance	penalty	for	requests	where		rack-mini-profiler		is	not	enabled!

Rack	Mini	Profiler

71

profile-gc

So	let's	add		pp=profile-gc		to	our	query	string	and	see	what	we	get	(the	output	is
usually	enormous	and	takes	a	while	to	generate):

Overview

Initial	state:	object	count	-	331594,	memory	allocated	outside	heap	(bytes)	758064

22

GC	Stats:	count	:	39,	heap_allocated_pages	:	1792,	heap_sorted_length	:	2124,	heap

_allocatable_pages	:	353,	heap_available_slots	:	730429,	heap_live_slots	:	386538,

	heap_free_slots	:	343891,	heap_final_slots	:	0,	heap_marked_slots	:	386536,	heap_

swept_slots	:	343899,	heap_eden_pages	:	1439,	heap_tomb_pages	:	353,	total_allocat

ed_pages	:	1852,	total_freed_pages	:	60,	total_allocated_objects	:	4219050,	total_

freed_objects	:	3832512,	malloc_increase_bytes	:	960,	malloc_increase_bytes_limit	

:	26868266,	minor_gc_count	:	27,	major_gc_count	:	12,	remembered_wb_unprotected_ob

jects	:	9779,	remembered_wb_unprotected_objects_limit	:	19558,	old_objects	:	36615

6,	old_objects_limit	:	732312,	oldmalloc_increase_bytes	:	1344,	oldmalloc_increase

_bytes_limit	:	22319354

New	bytes	allocated	outside	of	Ruby	heaps:	1909904

New	objects:	17029

Here's	the	first	section.	If	that	output	looks	familiar	to	you,	it	is	-	it's	the	output	of
	GC.stat	.	GC	is	a	module	from	the	stdlib	that	has	a	whole	lot	of	convenience	methods
for	working	with	the	garbage	collector.		stat		gives	us	that	output	above.	For	a	full
explanation	about	what	each	of	those	values	mean,	read	Sam's	post	on	how	Ruby's	GC
works.

At	the	bottom,	you'll	see	the	new	bytes	allocated	outside	of	Ruby	heaps,	along	with	a
count	of	new	objects.	Pay	attention	to	any	requests	that	generate	abnormally	high
values	here	(10+	MB	allocated	per	request,	for	example).

Here's	the	next	section:

Rack	Mini	Profiler

72

http://ruby-doc.org/core-2.2.0/GC.html
http://samsaffron.com/archive/2013/11/22/demystifying-the-ruby-gc

ObjectSpace	delta	caused	by	request:

--

String	:	9285

Array	:	3641

Hash	:	1421

Regexp	:	375

MatchData	:	349

RubyVM::Env	:	214

Proc	:	204

Time	:	173

Psych::Nodes::Scalar	:	168

...

This	section	shows	us	the	change	(that's	what	delta	means)	in	the	total	objects	in	the
ObjectSpace	that	the	request	caused.	For	example,	after	the	request,	we	have	9285
more	Strings	than	before.

ObjectSpace	is	an	incredibly	powerful	module	-	for	example,	with
	ObjectSpace.each_object		you	can	iterate	through	every	single	currently	allocated	object
in	the	Ruby	VM.	That's	insane!

I	don't	find	this	section	useful	on	its	own	-	though	a	huge	number	of	app-specific	objects
(for	example,	let's	say	2,000		Paperclip::Attachment	s)	may	be	a	red	flag.

ObjectSpace	stats:

String	:	175071

Array	:	49440

RubyVM::InstructionSequence	:	32724

ActiveSupport::Multibyte::Unicode::Codepoint	:	27269

Hash	:	12748

RubyVM::Env	:	8102

Proc	:	7806

MIME::Types::Container	:	3816

Class	:	3371

Regexp	:	2739

MIME::Type	:	1907

...

Here's	the	total	number	of	Objects,	by	Class,	alive	in	the	VM.	This	one	is	considerably
more	interesting	for	my	application.	What's	with	all	of	those		MIME::Type	s	and
	MIME::Types::Container		objects?	I	suspect	it	might	have	something	to	do	with	Paperclip,

Rack	Mini	Profiler

73

http://ruby-doc.org/core-2.2.0/ObjectSpace.html

but	then	again,	nearly	every	gem	uses	MIME	types	somehow.	In	fact,	it's	such	a
notorious	memory	hog	that	Richard	Schneeman	recently	saved	roughly	50,000	objects
from	being	created	with	just	a	single	change!

String	stats:

444	:

352	:	:

218	:	/

129	:	:s3_path_url

117	:

116	:

108	:	a

106	:	href

96	:	<<

78	:	[&"'><]

78	:	index

73	:	#	Amazon	S3	Credentials

...

Here's	the	final	bit	of	output	-	a	count	on	the	number	of	times	a	certain	string	was
allocated.	For	example,	the	string	"index"	has	been	allocated	78	times.

This	output	is	useful	to	determine	if	a	string	should	be	extracted	to	a	constant	and
frozen.	For	example,	this	is	what	Rack	does	here	with	the	string	"chunked".

Why	would	we	do	this?	If,	for	example,	Rack	was	allocating	the	string	"chunked"	1000
times	in	a	single	request,	we	can	reduce	that	to	1	time	by	only	referring	to	a	constant
value.	In	fact,	that's	exactly	why	this	was	done.

If	all	of	this	memory	stuff	is	going	over	your	head,	don't	worry.	I	recommend	watching
John	Crepezzi's	talk	On	Memory	for	an	intro	to	how	memory	works	in	Ruby.

profile-memory

The		pp=profile-memory		parameter	uses	the	excellent	memory_profiler	gem	(which	you
should	use	on	its	own	to	benchmark	other	code).	It's	like	a	hopped-version	of		profile-
gc		from	earlier.	Instead	of	just	telling	us	what	Strings	were	allocated	during	a	request,
	profile-cg-ruby-head		tells	us	exactly	what	line	of	code	allocated	that	String.	This	is
extremely	powerful.

Here's	some	example	output:

Rack	Mini	Profiler

74

https://github.com/mime-types/ruby-mime-types/commit/3aad2228f907e21d8fac302c3f6334231baf2315
https://github.com/rack/rack/blob/master/lib/rack/response.rb#L24
https://github.com/rack/rack/commit/dc53a8c26dc55d21240233b3d83d36efdef6e924
https://www.youtube.com/watch?v=yxhrYiqatdA

Total	allocated	16986

Total	retained	1208

allocated	memory	by	gem

				769864		paperclip-4.3.0

				382958		activesupport-4.2.3

				324621		actionpack-4.2.3

				274792		activerecord-4.2.3

				246966		2.2.2/lib

				234562		actionview-4.2.3

				118650		newrelic_rpm-3.9.9.275

					72424		rack-1.6.4

					69359		nokogiri-1.6.6.2

					43845		SomeApp/app

				

allocated	memory	by	file

				689672		~/gems/paperclip-4.3.0/lib/paperclip/interpolations.rb

				224356		~/gems/activesupport-4.2.3/lib/active_support/core_ext/string/output_s

afety.rb

				136744		~/gems/actionpack-4.2.3/lib/action_dispatch/routing/route_set.rb

				104800		~/.rbenv/versions/2.2.2/lib/ruby/2.2.0/erb.rb

					84291		~/gems/actionview-4.2.3/lib/action_view/helpers/tag_helper.rb

					76272		~/gems/actionpack-4.2.3/lib/action_dispatch/journey/formatter.rb

					53964		~/gems/activerecord-4.2.3/lib/active_record/connection_adapters/postgr

esql_adapter.rb

					52145		~/gems/rack-1.6.4/lib/rack/response.rb

					43824		~/.rbenv/versions/2.2.2/lib/ruby/2.2.0/psych/scalar_scanner.rb

				

allocated	objects	by	gem

						4321		paperclip-4.3.0

						2322		activerecord-4.2.3

						2300		actionpack-4.2.3

						2082		actionview-4.2.3

						1726		activesupport-4.2.3

						1538		2.2.2/lib

							981		newrelic_rpm-3.9.9.275

There's	Paperclip	again!	Note	that	this	output	of	the	first	section	(allocated	memory)	is	in
bytes,	which	means	Paperclip	is	allocating	about	1	MB	of	objects	for	this	request.	That's
a	lot,	but	I'm	not	quite	worried	yet.	But	this	view	in	general	is	a	good	way	of	finding
memory	hogs.	The	actual	RAM	cost	will	always	be	slightly	higher	than	what	is	reported
here.	MRI	heaps	are	not	squashed	to	size.

Rack	Mini	Profiler

75

Oh	-	and	what	does	"allocated"	mean,	exactly?		memory_profiler		differentiates	between
an	"allocated"	and	a	"retained"	object.	A	"retained"	object	will	live	on	beyond	this
request,	probably	at	least	until	the	next	garbage	collection.	It	may	or	may	not	be	garbage
collected	at	that	time.

An	allocated	object	may	or	may	not	be	retained.	If	it	isn't	retained,	it's	just	a	temporary
variable	that	Ruby	knows	to	throw	away	when	it's	done	with.	Retained	objects	are	ones
we	should	really	worry	about	though	-	which	is	contained	later	on	in	the	report.

Keep	scrolling	down	and	you'll	see	the	same	output,	but	for	"retained"	objects	only.	Pay
attention	in	this	area	-	all	of	these	objects	will	stick	around	after	this	request	is	over.	If
you're	looking	for	a	memory	leak,	it's	in	there	somewhere.

analyze-memory

	pp=analyze-memory	,	new	with		rack-mini-profiler		version	0.9.6,	performs	some	basic
heap	analysis	and	lists	the	100	largest	strings	in	the	heap.	Usually,	the	largest	one	is
your	response.

I	haven't	found	a	lot	of	use	for	this	view	either,	but	if	you're	tracking	down	String
allocations,	you	may	find	it	useful.

Exception	Tracing
Did	you	know	that	raising	an	Exception	in	Ruby	is	slow?	Well,	it	is.	Up	to	32x	slower.
And	unfortunately,	some	people	and	certain	gems	use	exceptions	as	a	form	of	flow
control.	For	example,	the		stripe		gem	for	Ruby	raises	an	Exception	when	a	credit	card
transaction	is	denied.

Your	app	should	not	raise	Exceptions	anywhere	during	normal	operation.	Your	libraries
may	be	doing	this	(and	of	course,	catching	them)	without	your	knowledge.	If	you	suspect
you've	got	a	problem	with	exceptions	being	raised	and	caught	in	your	stack,	give
	pp=trace-exceptions		a	try.

Conclusion
That	wraps	up	our	tour	of		rack-mini-profiler	.	I	hope	you've	enjoyed	this	in-depth	tour
of	the	Swiss	army	knife	of	Rack/Ruby	performance.

Rack	Mini	Profiler

76

http://simonecarletti.com/blog/2010/01/how-slow-are-ruby-exceptions/

Checklist	for	Your	App
Set	up		rack-mini-profiler		to	run	in	production.
Set	up	your	application	so	it	can	run	in	production	mode	locally,	on	your	machine.
Use		rack-mini-profiler		to	see	how	many	SQL	queries	pages	generate	in	your
app.	Are	there	pages	that	generate	more	than	dozen	queries	or	so,	or	generate
several	queries	to	the	same	table?
Use		rack-mini-profiler	's	'	trace-exceptions		feature	to	make	sure	you	aren't
silently	raising	and	catching	any	exceptions.

.	In	more	recent	versions	of	rack-mini-profiler,	there's	also	a	'help'	button	on	the
speed	badge"	-	this	prints	the	help	screen	and	lists	the	various	commands
available	(all	used	by	adding	to	the	URL	query	string)	↩

.	Also,	if	you're	having	trouble	getting	the	speed	badge	to	show	up	in	production
mode	and	you're	using	Rack::Deflater	or	any	other	gzipping	middleware,	you	need
to	do	some	other	stuff	to	make	sure	rack-mini-profiler	isn't	trying	to	insert	HTML
into	a	gzipped	response.	↩

Lab:	rack-mini-profiler
This	lab	requires	that	you	have	pulled	down	and	set	up	Rubygems.org.	See
	RUBYGEMS_SETUP.md		if	you	have	not	already	set	up	the	application	locally.

Exercise	1
Add		rack-mini-profiler		to	Rubygems.org	and	try	using	it	to	identify	some	performance
issues.	What	opportunities	for	improvement	do	you	see?	Concentrate	on	problems	that
are	exposed	by		rack-mini-profiler	,	with	a	focus	on	response	time	speeds.	Click
around	and	look	at	the	different	pages,	not	just	the	homepage.	Note	that	"GUIDES"	and
"CONTRIBUTE"	actually	take	you	to	a	separate	site.

Be	sure	to	use	the	flamegraph	and	other	features	of		rack-mini-profiler	!

Solution

The	"announcements"	system	triggers	a	SQL	query	on	every	page.	The	result	of
this	query	should	be	cached	to	prevent	this	query	from	occurring	on	every	page.

1

2

Rack	Mini	Profiler

77

https://github.com/MiniProfiler/rack-mini-profiler#custom-middleware-ordering-required-if-using-rackdeflate-with-rails

Creating	a	new	Announcement	would	bust	this	cache.
The	"gems"	page	(RubygemsController#index)	contains	an	N+1	query	for	fetching
	Version		objects.	This	is	also	true	of	the	search	page.
Searching	is	slow.	The	search	page	lacks	the	correct	index	-	gems	should	be
indexed	using	their	uppercase	names	with	"UPPER()",	like	the	search	query	uses.
For	more	about	this,	see	the	databases	lesson.

There	are	probably	other	opportunities	that	I	didn't	identify	-	please	let	me	know	if	you
think	there	are	obvious	ones	that	I've	missed.

Rack	Mini	Profiler

78

Performance	Monitoring	with	New	Relic
It's	12	p.m.	on	a	Monday.	Your	boss	walks	by:	"The	site	feels...slow.	I	don't	know,	it	just
does."	Hmmm.	You	riposte	with	the	classic	developer	reply:	"Well,	it's	fast	on	my	local
machine."	Boom!	Boss	averted!

Unfortunately,	you	were	a	little	dishonest.	You	know	better	than	to	think	that	speed	in	the
local	environment	has	anything	to	do	with	speed	in	production.	You	know	that,	right?
Wait,	we're	not	on	the	same	page	here?

Several	factors	can	cause	Ruby	applications	to	have	performance	discrepancies
between	production	and	development:

Application	settings,	like	code	reloading	Rails	and	most	other	Ruby	web
frameworks	reload	(almost)	all	of	your	application	code	on	every	request	to	pick	up
on	changes	you've	made	to	files.	That's	a	pretty	slow	process.	In	addition,	there	a
lot	of	subtle	differences	between	apps	in	development	and	production	modes,
especially	surrounding	asset	pipelines.	Simpler	frameworks	may	not	have	these
behaviors,	but	don't	kid	yourself	-	if	anything	in	your	app	is	changing	in	response	to
"RACK_ENV",	you	could	be	introducing	performance	problems	that	you	can't	catch
in	development.
Caching	behavior	Rails	disables	caching	in	development	mode	by	default.	Turning
that	on	has	a	big	performance	impact	in	production.	In	addition,	caches	in
development	work	differently	than	caches	in	production,	mostly	due	to	the
introduction	of	network	latency.	Even	10ms	of	network	latency	between	your
application	server	and	your	cache	store	can	cripple	pages	that	make	many	cache
calls.
Differences	in	data	This	is	an	insidious	one,	and	the	usual	cause	for	an	app	that
seems	slow	in	production	but	fast	in	development.	Sure,	that	query	you	run	locally
(User.all,	for	example)	only	returns	100	rows	in	development	using	your	seed	data.
But	in	production,	that	query	could	return	10,000	or	100,000	rows!	In	addition,
consider	what	happens	when	those	10,000	rows	you	return	need	to	be	attached	to
10,000	other	records	because	you	used		includes		to	pre-load	them.	Get	ready	to
wait	around.
Network	latency	It	takes	time	for	a	TCP	packet	to	go	from	one	place	to	another.
And	while	the	speed	of	light	is	fast,	it	does	add	up.	As	a	rule	of	thumb,	figure	10ms
for	the	same	city,	20ms	for	a	state	or	two	away,	100ms	across	the	US	(from	NY	to

New	Relic

79

CA),	and	up	to	300ms	to	get	to	the	other	side	of	the	world.	These	numbers	can
quadruple	on	mobile	networks.	This	has	a	major	impact	when	a	page	makes	many
asset	requests	or	has	blocking	external	JavaScript	resources.
JavaScript	and	devices	JavaScript	takes	time	and	CPU	to	execute.	Most	people
don't	have	fancy	new	MacBooks	like	we	developers	do	-	and	on	mobile	devices	the
story	is	certainly	even	worse.	Consider	that	even	a	low-end	desktop	processor
sports	twice	the	computing	power	of	top-end	mobile	CPUs	and	you	can	see	how
complex	Javascript	that	"feels	fine	on	my	machine"	can	grind	a	mobile	device	to	a
halt.
System	configuration	and	resources	Unless	you're	using	containers,	system
configuration	will	always	differ	between	environments.	This	can	even	be	as	subtle
as	utilities	being	compiled	with	different	compiler	flags!	Of	course,	even	containers
will	run	on	different	physical	hardware,	which	can	have	severe	performance
consequences,	especially	regarding	threading	and	concurrency.
Virtualization	Most	people	deploy	to	shared,	virtualized	environments	nowadays.
Unfortunately,	that	means	a	physical	server	will	share	resources	with	up	to	half-a-
dozen	or	so	virtual	servers,	which	can	negatively	and	unpredictably	impact
performance	when	one	virtualized	server	is	hogging	up	the	resources	available.

So	what's	a	developer	to	do?	Why,	install	a	performance	monitoring	solution	in
production!	NewRelic	is	the	tool	I	reach	for.	Not	only	is	it	free	to	start	with,	the	tools
included	are	extensive,	even	at	the	free	level.	In	this	post,	I'm	going	to	give	you	a	tour	of
each	of	NewRelic's	features	and	how	they	can	help	you	to	diagnose	performance
hotspots	in	a	Rails	app.

Full	disclosure	-	I	don't	work	for	New	Relic,	and	no	one	from	New	Relic	paid	for	or	even
talked	to	me	about	this	lesson.

Getting	an	Overview
Let's	walk	through	the	process	I	use	when	I	look	at	a	Ruby	app	on	NewRelic.

When	I	first	open	up	a	New	Relic	dashboard,	I'm	trying	to	establish	the	broad	picture:
How	big	is	this	application?	Where	does	most	of	its	time	go?	Are	there	any	"alarm	bells"
going	off	just	on	the	main	dashboard?

A	Glossary

New	Relic	uses	a	couple	of	terms	that	we'll	need	to	define:

New	Relic

80

Transactions	This	is	New	Relic's	cross-platform	way	of	saying	"response".	In	Rails,
a	single	"transaction"	would	be	a	single	response	from	a	controller	action.
Transactions	from	a	Rails	app	in	NewRelic	look	like	"WelcomeController#index"	and
so	on.

Real-User	Monitoring	(also	RUM	and	Browser	monitoring)	If	you	enable	it,	New
Relic	will	automatically	insert	some	Javascript	for	you	on	every	page.	This
Javascript	hooks	into	the	NavigationTimingAPI	of	the	browser	and	sends	several
important	metrics	back	to	NewRelic.	Events	set	include	domContentLoaded,
domfomplete,	requestStart	and	responseEnd.	Any	time	you	see	NewRelic	refer	to
"real-user	monitoring"	or	"browser	metrics",	they're	referring	to	this.

Response	time	-	where	does	it	go?

The	web	transaction	response	time	graph	is	one	of	the	most	important	on	NewRelic,	and
forms	the	broadest	possible	picture	of	the	backend	performance	of	your	app.	NewRelic
defaults	to	30	minutes	as	the	the	timeframe,	but	I	immediately	change	this	to	the	longest
interval	available	-	preferably	about	a	month,	although	7	days	will	do.

The	first	thing	I'll	look	at	here	is	the	app	server	and	browser	response	averages.	Here
are	some	rules	of	thumb	for	what	you	should	expect	these	numbers	to	be	in	an	average
Rails	application:

App	server	avg	response	time Status

<	100ms Fast!

<	300ms Average

>	300ms Slow!

Of	course,	those	numbers	are	just	rules	of	thumb	for	Rails	applications	that	serve	up
HTML	-	your	typical	"Basecamp-style"	application.	For	simple	API	servers	that	serve
JSON	only,	I	might	divide	by	2,	for	example.

Browser	avg	load	time Status

<	3	sec Fast!

<	6	sec Average

>	6	sec Slow!

New	Relic

81

https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API

I	can	hear	the	keyboards	clattering	already	furiously	emailing	me:	"That's	so	slow!	Rails
sucks!	Blah	blah..."

I'm	just	sharing	what	I've	seen	in	the	wild	in	my	own	experience.	Remember	-	Github,
Basecamp	and	Shopify	are	all	enormous	WebScale™	Ruby	shops	that	average	50-
100ms	responses,	which	is	pretty	good	by	anyone's	measure.

Based	on	what	I'm	seeing	with	these	numbers,	I	know	where	to	pay	attention	later	on.
For	example,	if	I	notice	a	fast	or	average	backend	but	slow	browser	(real-user
monitoring)	numbers,	I'll	go	look	at	the	browser	numbers	next	rather	than	delving	deeper
into	the	backend	numbers.

Note	that	most	browser	load	times	are	1-3	seconds,	while	most	application	server
response	times	are	1-300	milliseconds.	Application	server	responses,	on	average,	are
just	10%	of	the	end-users	total	page	loading	experience.	This	means	front-end
performance	optimization	is	actually	far	more	important	that	most	Rails	developers	will
give	it	credit	for.	Back-end	optimization	remains	important	for	scaling	(lower	response
times	mean	more	responses	per	second),	but	when	thinking	about	the	browser
experience,	they	usually	mean	vanishingly	little.

Next,	I'm	considering	the	shape	of	the	response	time	graph.	Does	the	app	seem	to	slow
down	at	certain	times	of	day	or	during	deploys?

The	most	important	part	of	this	graph,	though,	is	to	figure	out	how	much	time	goes	to
what	part	of	the	stack.	Here's	a	typical	Ruby	application	-	most	of	its	time	is	spent	in
Ruby.	If	I	see	an	app	that	spends	a	lot	of	time	in	the	database,	web	external,	or	other
processes,	I	know	there's	a	problem.	Most	of	your	time	should	be	spent	in	Ruby	(running

New	Relic

82

Ruby	code	is	usually	the	slowest	part	of	your	app!).	If,	for	example,	I	see	a	lot	of	time	in
web	external,	I	know	there's	probably	a	controller	or	view	that's	waiting,	synchronously,
on	an	external	API.	That's	almost	never	necessary	and	I'd	work	to	remove	that.	A	lot	of
time	in	request	queueing	means	you	need	more	servers,	because	requests	are	spending
too	much	time	waiting	for	an	open	application	instance.

Percentiles	and	Histograms

The	histogram	makes	it	easy	to	pick	out	what	transactions	are	causing	extra-long
response	times.	Just	click	the	histogram	bars	that	are	way	far	out	to	the	right	and	pay
attention	to	what	controllers	are	usually	causing	these	actions.	Optimizing	these
transactions	will	have	the	biggest	impact	on	95%	percentile	response	times.

Most	Ruby	apps	response	time	histograms	look	like	a	power	curve.	Remember	what	I
said	above	about	Pareto.	Conversely,	be	sure	to	check	out	what	actions	take	the	least
amount	of	time	(the	histogram	bar	furthest	to	the	left).	Are	they	asset	requests?
Redirects?	Errors?	Is	there	any	way	we	can	not	serve	these	requests	(in	the	case	of
assets,	for	example,	you	should	be	using	a	CDN)?

What	realm	of	RPM	are	we	playing	in?

It's	always	helpful	to	check	what	"order	of	magnitude"	we're	at	as	far	as	scale.	Here	are
my	rules	of	thumb:

New	Relic

83

Requests	per	minute Scale

<	10 Tiny.	Should	only	have	1	server	or	dyno.

10	-	1000 Average

>	1000 High.	"Just	add	more	servers"	may	not	work	anymore.

Apps	above	1000	RPM	may	start	running	into	scaling	issues	outside	of	the	application	in
external	services,	such	as	databases	or	cache	stores.	When	I	see	scale	like	that,	I	know
my	job	just	got	a	lot	harder	because	the	surface	area	of	potential	problems	just	got
bigger.

Transactions

Now	that	I've	gotten	the	lay	of	the	land,	I'll	start	digging	into	the	specifics.	We	know	the
averages,	but	what	about	the	details?	At	this	stage,	I'm	looking	for	my	"top	5	worst
offenders"	-	where	does	the	app	slow	to	a	crawl?	What's	the	80/20	of	time	consumed	in

New	Relic

84

this	application	-	in	other	words,	in	what	actions	does	this	application	spend	80%	of	its
time?

Most	Ruby	applications	will	spend	80%	of	their	time	in	just	20%	of	the	application's
controllers	(or	code).	This	is	good	for	us	performance	tweaks	-	rather	than	trying	to
optimize	across	an	entire	codebase,	we	can	concentrate	on	just	the	top	5	or	10	slowest
transactions.

For	this	reason,	in	the	transactions	tab,	I	almost	always	sort	by	most	time	consuming.	If
the	top	5	actions	in	this	tab	consume	50%	of	the	server's	time	(they	almost	always	do),
and	we	speed	them	up	by	2x,	we've	effectively	scaled	the	application	up	by	25%!	That's
free	scale.

Alternatively,	if	an	application	is	on	the	lower	end	of	the	requests-per-minute	scale,	I
might	sort	by	slowest	average	response	time	instead.	This	sort	also	helps	if	you're
concentrating	on	squashing	95th	percentiles.

Database

New	Relic

85

	I'm	carrying
that	"worst	offender"	mindset	into	the	database.	Now,	if	the	previous	steps	have	shown
that	the	database	isn't	a	problem,	I	may	glaze	over	this	section	or	just	try	and	make	sure
it's	not	a	single	query	that's	taking	up	all	of	our	database	time.	Again,	"most	time
consuming"	is	probably	the	best	sort	here.

Here's	some	symptoms	you	might	see	here:

Lots	of	time	in	#find	If	your	top	SQL	queries	are	all	model	lookups,	you've
probably	got	a	bad	query	somewhere.	Pay	attention	to	the	"time	consumption	by
caller"	graph	on	the	right	-	where	is	this	query	being	called	the	most?	Go	check	out
those	controllers	and	see	if	you're	doing	a	WHERE	on	a	column	that	hasn't	been
properly	indexed,	or	if	you've	accidentally	added	an	N+1	query.
SQL	-	OTHER	You	may	see	this	one	if	you've	got	a	Rails	app.	Rails	periodically
issues	queries	just	to	check	if	the	database	connection	is	active,	and	those	queries
show	up	under	this	"OTHER"	label.	Don't	worry	about	them	-	there	isn't	really
anything	you	can	do	about	it.

External	Services

New	Relic

86

What	I'm	looking	for	here	is	to	make	sure	that	there	aren't	any	external	services	being
pinged	during	a	request.	Sometimes	that's	inevitable	(payment	processing)	but	usually	it
isn't	necessary.

Most	Ruby	applications	will	block	on	network	requests.	For	example,	if	to	render	my	cool
page,	my	controller	action	tries	to	request	something	from	the	Twitter	API	(say	I	grab	a
list	of	tweets),	the	end	user	has	to	wait	until	the	Twitter	API	responds	before	the
application	server	even	returns	a	response.	This	can	delay	page	loading	by	200-500ms
on	average,	with	95th	percentile	times	reaching	20	seconds	or	more,	depending	on	what
your	timeouts	are	set	at.

For	example,	what	I	can	tell	from	this	graph	is	that	Mailchimp	(purple	spikes	in	the	graph
to	the	right)	seems	to	go	down	a	lot.	Wherever	I	can,	I	need	to	make	sure	that	my	calls
to	Mailchimp	have	an	aggressive	timeout	(something	like	5	seconds	is	reasonable).	I
may	even	consider	coding	up	a	Circuit	Breaker.	If	my	app	tries	to	contact	Mailchimp	a
certain	number	of	times	and	times	out,	the	circuit	breaker	will	trip	and	stop	any	future
requests	before	they've	even	started.

GC	stats	and	Reports
To	be	honest,	I	don't	find	New	Relic's	statistics	here	useful.	You're	better	off	with	a	tool
like		rack-mini-profiler		and		memory_profiler	.	I	don't	find	New	Relic's	"average
memory	usage	per	instance"	graph	accurate	for	threaded	or	multi-process	setups	either.

If	you're	having	issues	with	garbage	collection,	I	recommend	debugging	that	in
development	rather	than	trying	to	use	New	Relic's	tools	to	do	it	in	production.	Here's	an
excellent	article	by	Heroku's	Richard	Schneeman	about	how	to	debug	memory	leaks	in
Ruby	applications.

New	Relic

87

http://martinfowler.com/bliki/CircuitBreaker.html
https://blog.codeship.com/debugging-a-memory-leak-on-heroku/

In	addition,	I'm	not	going	to	cover	the	Reports,	as	they're	part	of	New	Relic's	(rather
expensive)	paid	plans	-	they're	pretty	self-explanatory.

Browser	/	Real	user	monitoring	(RUM)

Remember	how	we	applied	an	80/20	mindset	to	the	top	offenders	in	the	web
transactions	tab?	We	want	to	do	the	same	thing	here.	Change	the	timescale	on	the	main
graph	to	the	longest	available.	Instead	of	the	percentile	graph	(which	is	the	default	view),
change	it	to	the	"Browser	page	load	time"	graph	that	breaks	average	load	time	down	by
its	components.

Request	queueing	Same	as	the	web	graph.	Notice	how	little	of	an	impact	it	usually
has	on	a	typical	Ruby	app	-	most	queueing	times	are	something	like	10-20ms,
which	is	just	a	minuscule	part	of	the	average	5	second	page	load.
Web	application	This	is	the	entire	time	taken	by	your	app	to	process	a	request.
Also	notice	how	little	time	this	takes	out	of	the	entire	stack	required	to	render	a
webpage.
Network	Latency.	For	most	Ruby	applications,	average	latency	will	be	longer	than
the	amount	of	time	spent	queuing	and	responding!	This	number	includes	the	latency
in	both	directions	-	to	and	from	your	server.
DOM	Processing	This	is	usually	the	bulk	of	the	time	in	your	graph.	DOM
Processing	in	New	Relic-land	is	the	time	between	your	client	receiving	the	full
response	and	the		DOMContentReady		event	firing.	Now,	this	is	just	the	client	having
loaded	and	parsed	the	document,	not	the	CSS	and	Javascript.	However,	this	event
is	usually	delayed	while	synchronous	Javascript	executes.	WTF	is	synchronous
Javascript?	Pretty	much	anything	without	an		async		tag.	For	more	about	getting	rid

New	Relic

88

https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded
https://developers.google.com/speed/docs/insights/BlockingJS

of	that,	check	out	Google.	In	addition,		DOMContentReady		usually	also	gets	slowed
down	by	external	CSS.	Note	that,	in	most	browsers,	the	page	pretty	much	still	looks
like	a	blank	white	window	at	this	point.
Page	Rendering	Page	Rendering,	according	to	NewRelic,	is	everything	that
happens	between	the		DOMContentReady		event	and	the		load		event.		load		won't	fire
until	every	image,	script,	and	iframe	is	fully	ready.	The	browser	may	have	started
displaying	at	least	parts	of	the	page	before	this	is	finished.	Note	also	that		load	
always	fires	after		DOMContentLoaded	,	the	event	that	you	usually	attach	most	of	your
Javascript	to	(Query's		$(document).ready		attaches	functions	to	fire	after
	DOMContentLoaded	,	for	example).

For	a	full	guide	to	optimizing	front-end	performance	issues	you	find	here,	see	my
extensive	guide	on	the	topic.

It's	important	to	note	that	while	most	users	won't	see	anything	of	your	site	until	at	least
DOM	Processing	has	finished,	they	probably	will	start	seeing	parts	of	it	during	Page
Rendering.	It's	impossible	to	know	just	how	much	of	it	they	see.	If	your	site	has	a	ton	of
images,	for	example,	Page	Rendering	might	take	ages	as	it	downloads	all	of	the	images
on	the	page.

Note	also	that	Turbolinks	and	single-page	Javascript	apps	pretty	much	break	real-user-
monitoring,	because	all	of	these	events	(DOMContentLoaded,	DOMContentReady,	load)
will	only	fire	once,	when	the	page	is	initially	loaded.	New	Relic	does	give	you	additional
information	on	AJAX	calls,	such	as	throughput	and	response	time,	if	you	pay	for	the	Pro
version	of	the	Browser	product.

Conclusion
NewRelic,	and	other	production	performance	monitoring	tools	like	it,	is	an	invaluable	tool
for	the	performance-minded	Rubyist.	You	simply	cannot	be	serious	about	speed	and	not
have	a	production	profiling	solution	installed.

As	a	takeaway,	I	hope	you've	learned	how	to	apply	an	80/20	mindset	to	your	Ruby
application	with	NewRelic.	This	mindset	can	be	applied	at	all	levels	of	the	stack,	but
don't	forget	-	profiling	that	isn't	based	on	what	the	end-user	experience	isn't	based	in
reality.	That's	why,	for	a	browser-based	application,	we	should	be	paying	attention	first	to
our	browser	experience,	not	to	our	backend,	even	if	that's	sometimes	easier	to	measure.

New	Relic

89

https://developers.google.com/speed/docs/insights/OptimizeCSSDelivery
https://developer.mozilla.org/en-US/docs/Web/Events/load
https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded

Checklist	for	Your	App
You	should	be	using	a	performance	monitor	in	production	-	NewRelic,	Skylight,	and
AppNeta	are	all	respected	vendors	in	this	space.	It	doesn't	really	matter	which	you
use,	just	use	one	of	them.
Figure	out	where	your	application	sits	in	my	performance	categories	on	the	front-
end	and	app	server	-	are	you	below	or	above	average?
Use	NewRelic	to	look	for	these	performance	problems:	network	calls	during	a
request,	your	top	5	worst	web	transactions,	and	your	top	time	consumers	on	in	the
Browser/RUM	and	app	server	histograms.

New	Relic

90

Ruby	App	Performance	Measurement
with	Skylight
New	Relic,	as	covered	in	the	other	lesson,	is	a	great	tool.	But,	it	can	sometimes	feel	a
little	overwhelming.	There's	a	lot	in	there.	And	you	get	the	sense	it's	not	designed	for
Ruby	or	Rails	web	applications	-	it's	a	one-size-fits-all	tool	for	all	kinds	of	web	apps.

Enter	Skylight.	Created	by	Tilde.io,	a	consulting	shop	with	a	few	employees	you	may
have	heard	of	(Yehuda	Katz,	former	Rails	core,	Leah	Silber,	former	Bundler/Merb
contributor,	Carl	Lerche,	current	Rails	core,	and	Godfrey	Chan,	current	Rails	core),
Skylight.io	aims	to	be	a	production	performance	profiler	exclusively	targeted	at	Rails
applications.	Interestingly,	Skylight	does	not	really	support	bare	Rack	applications,
though	it	does	support	Sinatra	and	Grape.	We'll	get	into	why	and	how	Skylight's
instrumentation	works	later	on.

This	plucky	little	upstart	seemed	interesting	enough,	and	the	team	behind	it	looked	great,
so	I	decided	to	take	a	dive	in	and	give	you	the	Skylight	counterpart	to	the	New	Relic
lesson.	We're	going	to	look	at	how	to	use	Skylight	to	identify	and	solve	performance
issues,	and	talk	about	when	Skylight	might	be	appropriate	for	your	application.

You	need	to	be	using	a	performance	monitoring	tool	in	production.	Currently,	the	only
real	competition	I	can	see	is	between	New	Relic	and	Skylight,	at	least	for	Ruby	web
applications,	though	there	are	rumblings	about	the	newcomer	AppNeta.	Honestly,	it
doesn't	matter	which	of	these	tools	you	use	-	but	you	do	need	something	recording	the
experience	of	production	end-users.	Flying	blind	isn't	an	option.

As	with	my	New	Relic	lesson,	no	one	from	Tilde.io	was	involved	in	the	creation	of	this
lesson,	and	I	have	no	relationship	with	that	company.

Skylight's	Philosophy	-	Focus	on	the	Long
Tail
Skylight	has	a	slightly	unusual	philosophy	on	performance	metrics	-	they	don't
concentrate	on	the	averages.	Skylight	is	designed	-	both	in	their	UI	and	in	the	design	of
their	profiler	-	to	catch	the	worst	of	the	performance	issues	happening	in	the	worst
cases,	not	in	the	"average".

Skylight

91

https://docs.skylight.io/running-skylight/#requirements
https://www.appneta.com/

Tilde.io	team	member	Godfrey	Chan	wrote	a	fascinating	post	about	what	he	calls	"The
Log-Normal	Reality".	The	gist	is	that	while	we	are	taught,	since	we	were	children,	to
think	in	terms	of	bell	curves	and	the	normal	distribution,	in	reality,	most	statistical
distributions	are	log-normal.	The	weird	thing	here	is	that	the	distribution	is	heavily,
heavily	skewed.	A	lot	of	the	things	we	learned	in	middle	school	statistics	no	longer	apply.

Most	web	applications	have	log-normal	distributions	of	response	times.	Here's	a
response	time	graph	I	pulled,	at	random,	from	an	application	I'm	working	on:

Why	do	most	web	applications	have	log-normal	response	time	distributions?

Cached	responses	create	a	peak	near	the	left	side	of	the	histogram.	When	caches
are	warm,	many	responses	take	just	a	few	milliseconds.
Network	conditions/external	services	may	fail	or	go	"partially	down",	leading	to
bad	slowdowns.	For	example,	if	you	have	an	action	that	depends	on	grabbing
something	from	a	Redis	server,	99%	of	that	time,	it	will	be	fast	and	work	just	great.

Skylight

92

http://blog.skylight.io/the-log-normal-reality/

But	1%	of	the	time,	the	TCP/IP	network	demons	are	going	to	get	you,	and	that	20ms
request	will	take	300ms.	Or	perhaps	you've	got	a	search	endpoint	where	certain
weird	combinations	of	search	parameters	cause	your	database	to	grind	to	a	halt,	but
the	average	user	is	searching	simple	things	like	"cat"	and	"dog".

So	far,	this	probably	all	conforms	with	your	experiences.	So	what	then,	does	Skylight	do
in	the	face	of	the	"log-normal"	reality?

Skylight	uses	logarithmic	scales	everywhere.	No,	really.	Nearly	everywhere	they
can.
Skylight	focuses	on	95th	percentile	times.	The	average	response	time	could	also
be	called	the	"50th	percentile"	time	-	50%	of	users	will	get	response	times	faster
than	this	time,	and	50%	will	get	response	times	that	are	slower.	The	95th	percentile
means	that	95	percent	of	requests	are	faster	than	this,	but	5%	are	slower.	Skylight's
philosophy	is	that	if	an	average	user	clicks	around	your	site	20	times,	they're
probably	going	to	experience	at	least	one	of	these	95th	percentile	response	times,
and	so	you	should	focus	on	these	times.	DHH	blogged	in	2009	that	averages	are
useless	in	most	cases.	Here's	an	interesting	Twitter	conversation	between	DHH	and
Yehuda	on	the	same	topic.
Instead	of	sampling,	Skylight	aggregates.	Sampling	is	when	we	profile	the
performance	of	only	a	statistically	significant	number	of	requests.	To	pull	a	number
out	of	the	air,	let's	say	we	only	instrument	10%	of	actual	requests.	This	is	fine	for
tracking	averages,	but	for	figuring	out	what	happens	in	the	95th	or	99th	percentiles,
this	isn't	enough	-	we	need	much	higher	numbers	of	samples.	Skylight	doesn't
sample	at	all	-	every	response	is	profiled!	They	can	do	this	because	of	the	design	of
their	agent,	which	I'll	get	into	later.

There's	a	couple	of	terms	Skylight	uses	that	are	unique	to	their	service.	Here's	what	they
mean:

Problem	Response:	This	is	the	95th	percentile.
Typical	Response:	The	average/median.
Popularity:	A	logarithmic	representation	of	how	often	this	endpoint	appears	in
Skylight's	reports.
Agony:	Just	a	combination	of	the	endpoint's	popularity	and	its	response	times.	Note
that	Skylight	marks	endpoint	popularity	with	a	logarithmic	scale,	which	means	that
the	agony	measure	is	also	logarithmic.	An	endpoint	with	2	"exclamation	points"	of
Agony	is	not	twice	as	bad	as	a	"1	exclamation	point"	endpoint,	it's	likely	much
worse.

Skylight

93

https://signalvnoise.com/posts/1836-the-problem-with-averages
https://twitter.com/dhh/status/653761713762889728

Identifying	Problems
Skylight's	"welcome	mat",	when	you	open	up	an	app,	is	this	response	time	graph:

Just	like	with	New	Relic,	being	able	to	"read"	graphs	such	as	this	one	is	a	critical
performance	skill.	Be	on	the	lookout	for:

Typical	vs.	Problem	ratios.	At	time	of	writing,	the	scale	on	this	graph	is	still	linear
and	not	logarithmic	-	you're	going	to	want	to	see	the	"Problem"	response	times	as
close	to	the	average	as	possible.	A	ratio	of	2-4x	should	be	expected	-	much	worse
and	you've	got	long-tail	problems.
Absolute	terms	-	are	we	fast	or	slow?	See	the	New	Relic	lesson	for	some	guides
as	to	what	you	should	expect	a	"fast"	or	"slow"	Ruby	app	to	perform	at	in	terms	of
milliseconds.
Unusual	spikyness	in	"problem"	responses.	Both	the	"normal"	and	"problem"
graphs	should	be	fairly	flat.	If	your	app	has	fairly	low	load	(<100	RPM)	and	you're
seeing	graphs	that	look	"spiky",	it	probably	means	you	have	an	endpoint	that's	both
slow	and	infrequently	hit.	Drill	down	on	the	time	periods	when	you	see	spikes	in	the
graph	that	are	not	related	to	load	-	most	of	the	time	it	will	be	a	particular	endpoint
that's	causing	the	problem.
Patterns	related	to	load.	If	you	have	spikes	in	your	graphs	at	the	same	time	as
your	RPM	increases,	you	have	scale	issues.	Most	likely,	you	just	need	more	server
instances.

Skylight	does	an	excellent	job	of	sorting	controller	endpoints	by	what	they	call	"agony",
as	defined	above.	I	find	Skylight's	"agony"	measure	extremely	accurate	as	an	ordering
for	my	"performance	to-do	list",	where	the	controller	actions	with	the	most	"agony"	are
the	places	for	me	to	focus	my	optimizing	powers.

Skylight	also	uses	some	icons	to	denote	special	problems	with	certain	actions:

	Repeated	SQL	Queries:	This	is	Skylight's	way	of	saying	"I	think	you	have

Skylight

94

an	N+1	query	here!"	Fire	up	your	application	in	development	and	check	these
endpoints	with	production-like	data	-	do	you	see	SQL	queries	in	the	logs	that	look
like	N+1's?

	High	Allocations:	Skylight's	profiler	is	unique	in	that	it	also	contains	a
memory	profiler	which	works	extremely	well	in	production.	For	more	about	memory
profilers,	be	sure	to	read	the	lesson	.	Skylight	will	pluck	out	endpoints	that	have
unusually	high	numbers	of	allocated	objects	here.	High	allocation	counts	are	bad
because	allocating	objects	takes	time,	and	in	addition	will	take	time	later	as	those
objects	are	inevitably	garbage	collected.

My	least	favorite	part	of	Skylight	is	that	this	homepage	view	is	limited	to	a	6-hour	time
view.	Longer	timescales,	like	7	days	to	30	days,	are	not	available.	This	is	a	real	bane	for
low-traffic	applications,	where	6	hours	of	time	isn't	really	a	great	indication	of	"typical"
traffic	to	your	site.

Click	an	endpoint	to	see	the	trace	for	that	individual	endpoint.	Be	sure	to	click-and-drag
on	the	histogram,	which	will	modify	the	trace	to	show	you	traces	for	only	that	section	of
the	histogram.	This	is	probably	the	best	tool	available	right	now	for	tracking	down	exactly
what	happens	in	95th	percentile	web	requests.	It's	probably	one	of	my	favorite	parts	of
Skylight	(besides	the	Agony	sort).

There's	also	a	button	here	for	showing	the	trace	with	object	allocations	as	the
fundamental	unit,	rather	than	time.	Although	I	haven't	personally	been	able	to	use	this
tool	yet,	it	seems	like	it	could	be	extremely	effective	for	tracking	down	bloated	controller
endpoints	that	allocate	unusually	large	numbers	of	objects.

Skylight

95

Under	the	hood,	Skylight	uses		ActiveSupport::Notifications		to	track	what's	going	on	in
a	Rails	application.	This	is	an	interesting	approach,	because	anything	in	your	application
and	its	libraries	can	emit	ActiveSupport::Notifications	and	Skylight	will	pick	up	on	them.
Otherwise,	you	can	write	your	own	custom	"probes".

How	Does	it	Compare?
The	bit	you've	been	waiting	for	-	is	it	better	than	New	Relic?	After	using	Skylight,	I	have
to	say	that's	a	bit	of	an	apples-and-oranges	comparison.

First,	the	length	of	this	lesson	should	tell	you	a	lot.	There's	not	all	that	much	to	Skylight	-
really,	it's	mostly	just	the	"web	transactions"	feature	of	New	Relic	as	an	entire	product.
Tilde.io	thinks	this	is	a	good	thing,	and	I	would	agree	to	an	extent	-	the	web	transactions
view	is	my	#1	most	visited	screen	in	New	Relic.

Ultimately,	you'll	have	to	decide	for	yourself	whether	Skylight's	feature	list	cuts	it	for	you.
Here	are	some	things	I	use	often	in	New	Relic	that	aren't	present	(as	of	writing,	January
2016)	in	Skylight:

Breakdown	of	average	response	times	by	component	-	time	spent	in	GC,	request
queue,	Ruby,	database	and	cache	store.
Apdex	scores,	which	I	find	to	be	a	fairly	useful	measure	of	standard	deviation	and
indicator	of	"partial	downtime".
New	Relic's	database	view	is	extremely	powerful	for	tracking	down	particular
queries	that	are	slow	app-wide.
New	Relic's	external	services	view	is	great	for	seeing	which	external	APIs	that	you
depend	on	are	slow.

However,	there	are	some	areas	where	I	think	Skylight	is	unquestionably	better:

Skylight's	agent	(the	process	that	runs	alongside	your	Ruby	process	and	takes
measurements)	is	considerably	lighter-weight	than	NewRelic's	Ruby	agent.
Skylight's	agent	is	written	in	Rust,	which	means	it's	considerably	faster	and	takes	up
less	memory	than	NewRelic's	agent.	I'd	estimate	10-30MB	of	memory	savings.
Because	the	agent	is	so	lightweight,	it	allows	Skylight	to	measure	every	request,
rather	than	New	Relic's	agent,	which	has	to	sample	certain	kinds	of	statistics	for
your	dashboard.	New	Relic	samples	their	transactions	traces	and	SQL	traces	-
these	are	running	on	every	request	with	skylight.	I	far	prefer	Skylight's	aggregation
approach	-	it	just	makes	tracking	down	95th/99th	percentile	issues	so	much	easier.
I	like	Skylight's	"opinionated"	view	of	your	data.	The	"sort	by	agony"	feature	has

Skylight

96

https://docs.skylight.io/instrumentation/

been	extremely	accurate	and	useful	for	me.	Your	mileage	may	vary.

Skylight's	pricing	is	request-based	-	up	to	100,000	requests	per	month	is	free.	That's
roughly	2	requests-per-minute.	From	there,	it	scales	up.	A	200	RPM	app	would	be
paying	about	$250	a	month.	That's	not	cheap,	in	my	opinion,	especially	when	I	can	get
the	same	monitoring	for	free,	forever,	with	an	unlimited	amount	of	dynos,	from	NewRelic.

To	sum	up	-	while	expensive,	Skylight's	ease	of	use	and	the	quality	and	presentation	of
its	data	make	it	a	worthy	competitor	to	NewRelic.	I	suspect	that	the	choice	of	one	or	the
other	will	be	dependent	on	the	application	and	problem	domain	-	only	you	will	know	for
sure	what	your	application	needs.

Checklist	for	Your	App
You	should	be	using	a	performance	monitor	in	production	-	NewRelic,	Skylight,	and
AppNeta	are	all	respected	vendors	in	this	space.	It	doesn't	really	matter	which	you
use,	just	use	one	of	them.
Try	Skylight	-	paying	particular	attention	to	their	unique	allocation	tracing.	The	agent
is	lightweight	enough	to	run	alongside	NewRelic	without	problems.

Skylight

97

Module	2:	Front-End	Optimization
This	module	is	about	the	principles	of	front-end	performance	-	what	happens	in	the
browser.	This	area	is	probably	the	most	overlooked	by	full-stack	developers.	Frequently,
we	just	expect	"the	front-end	people"	at	our	company	to	deal	with	this	problem.	A	great
number	of	us	don't	have	dedicated	"front-end	people".

When	it	comes	to	end-user	experience,	nothing	matter	more	than	front-end
performance.	Back-end	performance	is	often	just	a	tiny	component	of	a	user's	overall
perceived	load	time.	Server	responses	on	a	Rails	application	are	often	in	the	ballpark	of
100-200	milliseconds.	Add	in	100	milliseconds	of	network	latency,	and	you	get,
generously,	about	300	milliseconds.	However,	front-end	load	times	are	often	2	to	5
seconds	-	making	backend	performance	just	10	percent	or	less	of	that	total!	I	urge	you	to
pay	close	attention	to	this	module	for	these	reasons.

The	most	important	lesson	in	this	module	is	on	Chrome	Timeline	-	understanding	how	to
measure	and	profile	the	performance	of	your	front-end	is	far	more	important	than
understanding	a	single	technique	or	trick.	If	you	deeply	understand	how	to	test	and
experiment	with	the	performance	of	your	site,	you'll	be	able	to	implement	any	of	the
strategies	in	the	remainder	of	this	module.

Optimizing	the	Front-end

98

Chrome	Timeline,	Your	Front-end
Profiler
Server	response	times,	while	easy	to	track	and	instrument,	are	ultimately	a	meaningless
performance	metric	from	an	end-user	perspective.	End-users	don't	care	how	fast	your
super-turbocharged	bare-metal	Node.js	server	is	-	they	care	about	the	page	being
completely	loaded	as	fast	as	possible.	Your	boss	is	breathing	down	your	neck	about	the
site	being	slow	-	but	your	Elixir-based	microservices	architecture	has	average	server
response	times	of	10	nanoseconds!	What's	going	on?

Well,	what	does	constructing	a	webpage	actually	require?	The	server	has	to	respond
with	the	HTML	(along	with	the	network	latency	involved	in	the	round-trip),	the	JS,	CSS
and	HTML	needs	to	be	parsed,	rendered,	and	painted,	and	all	the	Javascript	tied	to	the
page	ready	event	needs	to	be	executed.	That's	actually	a	lot	of	stuff.	Usually,	server
response	times	make	up	only	a	small	fraction	of	this	total	end-user	experience,
sometimes	as	little	as	10%.	In	addition,	it's	easy	for	any	of	these	steps	to	get	out	of	hand
quickly:

Server	response	times	can	easily	balloon	without	proper	use	of	caching,	both	at	the
application	and	HTTP	layers.	Bad	SQL	queries	in	certain	parts	of	the	application
can	send	times	skyrocketing.
JS	and	CSS	assets	must	be	concatenated,	minified	and	placed	in	the	right	place	in
the	document,	or	rendering	may	be	blocked	while	the	browser	stops	to	load	external
resources	(more	on	this	later).	In	addition,	these	days	when	there's	a	JQuery	plugin
or	CSS	mixin	for	just	about	anything,	most	developers	have	completely	lost	track	of
just	how	much	CSS	and	JS	is	being	loaded	on	each	page.	Even	if,	gzipped	and
minified,	your	CSS	and	JS	assets	are	<100kb,	once	they're	un-gzipped,	they	still
must	be	parsed	and	loaded	to	create	the	DOM	and	CSSOM	(explained	in	more
detail	below).	While	gzipped	size	is	important	when	considering	how	long	CSS
or	JS	will	take	to	come	across	the	network,	uncompressed	size	is	important
for	figuring	out	how	long	it	will	take	the	client	to	parse	these	resources	and
construct	the	page.
Web	developers	(especially	non-JavaScripters,	like	Rails	devs)	have	an	awful	habit
of	placing	tons	of	code	into		$(document).ready();		or	otherwise	tying	Javascript	to
page	load.	This	ends	up	causing	heaps	of	unnecessary	Javascript	to	be	executed
on	every	page,	further	delaying	page	loads.

Chrome	Timeline

99

So	what's	a	good,	performance-minded	full	stack	developer	to	do?	How	can	we	take	our
page	loads	from	slow	to	ludicrous	speed?

But,	rather	than	just	tell	you	that	XYZ	technique	is	faster	than	another,	I'm	going	to	show
you	how	and	why.	Rather	than	take	my	word	for	it,	you	can	test	different	front-end
optimizations	for	yourself.	To	do	that,	we're	going	to	need	a	profiling	tool.

Enter	Chrome	Timeline
My	number	one	front-end	performance	tool	is	Chrome	Timeline.	While	I	use	New	Relic's
real	user	monitoring	(RUM)	to	get	a	general	idea	of	how	my	end-users	are	experiencing
page	load	times,	Chrome	Timeline	gives	you	a	millisecond-by-millisecond	breakdown	of
exactly	what	happens	during	any	given	web	interaction.	Although	I'm	going	to	show	you
how	to	use	Chrome	Timeline	to	analyze	page	loads,	you	can	also	use	it	to	profile
Javascript	interactions	once	the	page	has	loaded.

Note	that	most	of	Google's	documentation	on	Chrome	Timeline	is	severely	out	of	date
and	shows	a	"waterfall"	view	that	no	longer	exists	in	Chrome	as	of	October	2015
(Chrome	45).	This	post	is	up-to-date	as	of	that	time.

Chrome	Timeline	also	works	really	well	for	optimizing	"60fps"	JavaScript	applications.
I'm	not	going	to	get	into	that	here.	What	I'm	going	discuss	is	how	we	can	use	Chrome
Timeline	to	make	our	applications	take	as	little	time	as	possible	between	user	input
(clicking,	pushing	a	button,	hitting	enter)	and	response	(displaying	data,	moving	us	to	a
new	page,	etc),	focusing	on	the	initial	page	load.

To	open	Chrome	Timeline,	open	up	Chrome	Developer	Tools	(Cmd	+	Alt	+	I	on	Mac)
and	click	on	the	Timeline	tab.	You'll	see	a	blank	timeline	with	millisecond	markings.	For
now,	uncheck	the	"causes",	"paint"	and	"memory"	checkboxes	on	the	top,	and	disable
the	FPS	counter	by	clicking	the	bar	graph	icon,	like	this:	

These	tools	are	mostly	useful	for	people	profiling	client-side	JS	apps,	which	I	won't	get
into	here.

The	Chrome	Timeline	records	page	interactions	a	lot	like	a	VCR.	You	can	click	the	little
circular	icon	(the	record	button)	at	any	time	to	turn	on	Timeline	recording,	and	then	click
it	again	to	stop	recording.	If	the	Timeline	is	open	during	a	refresh,	it	will	automatically
record	until	the	page	has	loaded.

Chrome	Timeline

100

https://developer.chrome.com/devtools/docs/timeline

Let's	try	it	on	http://todomvc-turbolinks.herokuapp.com/.	This	is	a	TodoMVC
implementation	I	did	for	a	previous	blog	on	Turbolinks.	While	the	Timeline	is	open,	you
can	trigger	a	full	page	load	with	CMD	+	Shift	+	R	and	Chrome	will	automatically	record
the	page	load	for	you	in	Timeline.	Be	sure	you're	doing	a	hard	refresh	here,	otherwise
you	may	not	redownload	any	assets.

Note	that	browser	extensions	will	show	up	on	Chrome	Timeline.	Any	extension	that
alters	the	page	may	show	up	and	make	your	timelines	confusing.	Do	yourself	a	favor
and	disable	all	of	your	extensions	while	profiling	with	Chrome	Timeline.

We're	going	to	start	with	a	walkthrough	of	a	typical	HTML	page	load	in	Timeline,	and
then	we're	going	to	identify	what	this	performance	profile	says	about	our	application	and
how	we	can	speed	it	up.

Here's	what	my	Timeline	looked	like:

254	ms	from	refresh	to	done	-	not	bad	for	an	old	Rails	app,	eh?

Receiving	the	HTML

Chrome	Timeline

101

http://todomvc-turbolinks.herokuapp.com/
http://todomvc.com

The	first	thing	you'll	notice	is	that	big	chunk	of	idle	time	at	the	beginning.	Almost	nothing
is	happening	until	about	67ms	after	I	hard-refreshed.	What's	going	on	there?	It's	a
combination	of	server	response	time	(on	this	particular	app,	I	know	it	hovers	around
20ms),	and	network	latency	(depending	on	how	far	you	are	from	the	US	East	Coast,
anywhere	from	10-300ms).

Even	though	we	live	in	an	age	of	mass	cable	and	fiber	optic	internet,	our	HTTP	requests
still	take	a	lot	of	time	to	go	from	place	to	place.	Even	at	the	theoretical	maximum	speed
of	an	HTTP	request	(the	speed	of	light),	it	would	take	a	user	in	Singapore	about	70ms	to
reach	a	server	in	the	US.	And	HTTP	doesn't	travel	at	the	speed	of	light	-	cable	internet
works	about	half	that	speed.	In	addition,	they	make	as	many	as	a	dozen	intermediate
stops	along	the	way	along	the	Internet	backbone.	You	can	see	these	stops	using
	traceroute	.	In	addition,	you	can	get	the	approximate	network	latency	to	a	given	server
by	simply	using		ping		(that's	what	it	was	designed	for!).

For	example,	I	live	in	New	York	City.	Pinging	a	NIST	time	server	in	Oregon,	I	usually	can
see	network	latency	times	of	about	100ms.	That's	a	pretty	substantial	increase	over	the
time	we'd	expect	if	the	packets	were	traveling	at	the	speed	of	light	(~26ms).	By
comparison,	my	average	network	latency	for	a	time	server	in	Pennsylvania	is	just	20ms.
And	Indonesia?	Packets	take	a	whopping	364ms	to	make	the	round	trip.	For	websites
that	are	trying	to	keep	page	load	times	under	1	second,	this	highlights	the	importance	of
geographically	distributed	CDNs	and	mirrors.

Let's	zoom	in	on	the	first	event	on	the	timeline.	It	seems	to	happen	in	the	middle	of	this
big	idle	period.	You	can	use	the	mouse	wheel	to	zoom.

The	first	event	on	the	Timeline	is	"Receive	Response".

Chrome	Timeline

102

A	few	milliseconds	later,	you'll	see	a	(tiny)	"Receive	Data"	event.	You	might	see	one	or
two	more	miscellaneous	events	related	to	page	unloading,	another	"Receive	Data"
event,	and	finally	a	"Finish	Loading"	event.	What's	going	on	here?

The	server	has	started	responding	to	your	request	when	you	see	that	first	"Receive
Response"	event.	You'll	see	several	"Receive	Data"	events	as	bytes	come	down	over
the	wire,	completing	with	the	"Finish	Loading"	event.	This	pattern	of	events	will	occur	for
any	resource	the	page	needs	-	images,	CSS,	JS,	whatever.	Once	we've	finished
downloading	the	document,	we	can	move	on	to	parsing	it.

Parse	HTML

"Parsing	HTML"	sounds	like	a	pretty	simple	process,	but	Chrome	(and	any	browser)
actually	has	a	lot	of	work	to	do.	The	browser	will	read	the	bytes	of	HTML	off	the	network
(or	disk,	if	you're	viewing	a	page	on	your	computer),	and	convert	those	bytes	into	UTF-8
or	whatever	document	encoding	you've	specified.	Then,	the	browser	has	to	"tokenize"	-
basically	taking	the	long	text	string	of	the	HTML	and	picking	out	each	tag,	like			
and		<a>	.	Imagine	that	the	browser	converts	the	~100kb	string	of	HTML	into	an	array	of
several	strings.	Then	it	"lexes"	these	tokens	(basically	converts	them	into	fancy	objects)
and	finally	constructs	a	DOM	out	of	them.	On	complicated	pages,	these	steps	add	up	-
on	my	machine,	The	Verge	takes	over	200ms	just	to	parse	the	HTML.	Yow.

You	may	also	see	two	"Send	Request"	events	(they're	really	small)	beneath	the	"Parse
HTML"	event.	In	case	you	haven't	figured	it	out	already,	what	we're	looking	at	is	called	a
"flamegraph".	Events	underneath	other	ones	mean	that	the	upper	event	"called"	the
lower	one.	The	two	"Send	Request"	events	you	see	here	are	the	browser	requesting	the
Javascript	and	CSS	files	linked	in	the	head.	This	is	a	Rails	app,	so	there's	only	one	of
each.

In	addition,	the	Javascript	file	in	this	app	is	marked	with	an		async		attribute:

Chrome	Timeline

103

<script	src="/assets/application.js"	async="async"	data-turbolinks-track="true"></

script>

Normally,	when	a	browser	sees	a	Javascript	tag	like	this	in	the	head,	it	stops	completely
until	it	has	finished	downloading	and	evaluating	the	script.	If	the	script	is	remote,	we
have	to	wait	while	the	script	downloads.	This	can	take	a	lot	of	time	-	even	more	than	a
whole	second,	when	you	include	network	latency	and	the	time	required	to	evaluate	the
script.	The	reason	browsers	do	this	is	because	Javascript	can	modify	the	DOM	-	any
time	there's	a	script	tag,	the	browser	has	to	execute	it	because	it	could	change	the	DOM
or	layout.	For	more	about	Javascript	blocking	page	rendering,	Google	does	a	great
explanation	here.

Because	this	script	tag	was	marked	with	the		async		attribute,	this	doesn't	happen	-	the
browser	won't	"stop	the	world"	to	download	and	evaluate	the	Javascript.	This	can	be	a
huge	boost	to	speeding	up	time-to-first-paint	for	most	websites.

Browsers	will	not	wait	on	external	CSS	before	continuing	past	this	step.	If	you	think
about	it,	this	makes	sense.	CSS	cannot	modify	the	DOM,	it	can	only	style	it	and	make	it
pretty.	In	order	to	even	apply	the	CSS,	we	need	to	have	the	DOM	constructed	first.	So
the	browser,	smartly,	simply	sends	the	request	for	the	CSS	and	moves	on	to	the	next
step.

Note	that	this	"Parse	HTML"	step	will	reoccur	every	time	the	browser	has	to	read	new
HTML	-	for	example,	from	an	AJAX	request.

Recalculate	Styles

The	next	major	event	you're	going	to	see	is	the	purple	"Recalculate	Styles".
Unfortunately,	this	event	covers	a	lot	of	things	that	actually	happen	during	page
construction.	The	first	is	the	construction	of	the	CSSOM.

Chrome	Timeline

104

https://developers.google.com/speed/docs/insights/BlockingJS

As	HTML	is	to	the	DOM,	so	CSS	is	to	the	CSSOM.	Your	CSS,	after	it's	downloaded	has
to	be	converted	->	tokenized	->	lexed	->	constructed	just	like	the	HTML	was.	This
process	is	usually	the	cause	of	any	"Recalculate	Styles"	bars	you	see	at	the	beginning	of
the	page	load.

"Recalculate	Styles"	can	also	mean	a	lot	of	other	confusing	things	are	happening	with
your	CSS,	like	"recursive	calculation	of	computed	styles",	or	whatever	that	means.	The
gist	is	that	if	you're	seeing	a	lot	of	time	in	"Recalculate	Styles",	your	CSS	is	too
complicated.	Try	to	eliminate	unused	or	unnecessary	style	rules.

Why	are	we	seeing	Recalculate	Styles	events	when	the	CSS	hasn't	even	been
downloaded	yet?	The	browser	is	applying	the	browser's	default	CSS	to	the	document,
and	it	may	also	be	applying	any		style		attributes	present	in	the	HTML	markup	itself
(display:	none		being	a	common	one,	present	on	this	page).

You	will	probably	see	more	purple	events	(Recalculate	Styles	and	its	cousin,	Layout)
later	on	in	the	timeline.	Again,	your	browser	does	not	wait	for	CSS	to	finish	downloading
-	it's	already	calculating	styles	and	layouts	based	on	just	your	HTML	markup	and	the
browser	defaults	right	now.	The	rendering	events	you	see	later	on	occur	once	the	CSS	is
finished	downloading.

Layout

Slightly	after	your	first	Recalculate	Styles	event,	you	should	see	a	purple	"Layout"	event.
Basically,	at	this	point,	your	browser	has	all	of	the	DOM	and	CSSOM	in	memory	and
needs	to	turn	it	into	pixels	on	the	screen.

The	browser	traverses	the	visible	elements	of	the	DOM	(actually	the	render	tree),	and
figures	out	each	node's	visibility,	applicable	CSS	styles,	and	relative	geometry	(50%
width	of	its	parent	and	so	on).	Complicated	CSS	will	make	this	step	longer,	but	so	will
complicated	HTML.

If	you're	seeing	a	lot	of	"layout"	events	during	a	page	load,	you	may	be	experiencing
something	called	"layout	thrashing".	Any	time	you	change	the	geometry	of	an	element
(its	height,	width,	whatever),	you	trigger	a	layout	event.	And,	unfortunately,	browsers
can't	tell	what	part	of	the	page	they	need	to	recalculate.	Usually,	they	have	to	recalculate
the	layout	for	the	entire	document.	This	is	especially	slow	with	float-based	layouts,
though	it's	slightly	faster	with	flex	box	layouts.	Layout	thrashing	is	usually	going	to	be
caused	by	Javascript	messing	with	the	DOM,	though	using	multiple	stylesheets	will	also
cause	it.	For	more	about	layout	thrashing,	Google	has	an	excellent	page	on	the	topic.

Chrome	Timeline

105

https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing?hl=en

In	summary	-	in	the	"Layout"	step,	then,	the	browser	is	just	calculating	what's	visible,
what	isn't,	and	where	it	should	go	on	the	page.

DomContentLoaded

It's	generally	at	this	point	that	you'll	see	the	blue	bar	in	Timeline	-	this	is	the
	DomContentLoaded		event.	At	this	point,	your	browser	is	done	parsing	the	HTML	and
running	any	blocking	Javascript	(that	is,	Javascript	either	embedded	in	the	page	or	in	a
script	tag	that	isn't	marked		async).	Most	browsers	have	not	painted	anything	to	the
screen	by	this	point.

To	speed	up		DomContentLoaded	,	you	can	do	a	few	things:

Make	script	tags		async		where	possible.	Moving	script	tags	to	the	end	of	the
document	doesn't	help	speed	up		DomContentLoaded	,	as	the	browser	must	still
evaluate	the	Javascript	before	completing	the	construction	of	the	DOM.	All	"async"
means	is	that	the	only	part	of	the	script	executed	"synchronously"	is	the	start	of
downloading	of	the	script	itself,	its	execution	will	be	delayed	until	later.	Ilya	Grigorik
suggests	that	using		async		tags	is	generally	cleaner	and	more	effective	than	using
so-called	'async'	script	injection.
Use	less	complex	HTML	markup.
Avoid	layout	thrash	(see	above).	Don't	use	more	than	one	stylesheet	-	concatenate
your	assets!
Inline	styles	in	moderation.	Inlining	styles	means	that	the	browser	may	try	to	parse
the	stylesheet	before	moving	on	to	the	rest	of	the	document.	Google	recommends
inlining	only	styles	required	to	display	above-the-fold	content.	This	will	slow	down
DOMContentLoaded	but	will	speed	up	the	window's		load		event.	This	may	be	true,
but	you	certainly	don't	want	to	inline	all	of	your	CSS.	Also,	figuring	out	what	CSS
rules	you	need	for	the	above-the-fold	content	in	this	age	of	CSS	frameworks	and
Bootstrap	sounds	like	a	lot	of	work	to	me.	How	much	CSS	do	you	need	to	render
above-the-fold?	All	of	it.	As	a	rule	of	them,	don't	consider	inlining	all	of	your	CSS
unless	you've	got	about	50kb	or	less	of	it.	Once	HTTP2	becomes	more	common
and	we	can	download	CSS,	HTML	and	JS	over	the	same	connection,	this
optimization	will	no	longer	be	needed.

Paint

Chrome	Timeline

106

https://developer.mozilla.org/en-US/docs/Web/Events/DOMContentLoaded
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/

As	we	move	along	the	timeline	to	the	right,	you	should	start	seeing	some	green	bars	in
the	flamegraph.	These	are	Paint	related	events.	There's	a	whole	lot	that	can	go	on	in
these	events	(and	Chrome	even	provides	profiling	tools	just	for	these	painting	events),
but	I'm	not	going	to	go	too	deep	on	them	here.	All	you	need	to	know	is	that	paint	events
happen	when	the	browser	is	done	rendering	(the	purple	bars	-	the	process	of	turning
your	CSS	and	HTML	into	a	layout)	and	needs	to	turn	the	layout	into	pixels	on	a	screen.

The	green	bar	in	the	timeline	is	the	first	paint	-	the	first	time	anything	is	rendered	to
screen.	Optimizing	first	paint	is	largely	a	matter	of	optimizing	DOMContentLoaded	and
getting	the	stylesheet	to	the	client	as	fast	as	possible.	Any	stylesheet	that	doesn't	specify
a	media	query	(like		print)	will	block	page	rendering	until	we've	downloaded	it	and
parsed	it.

Parse	Author	Style	Sheet

Keep	scrolling	to	the	right	on	the	Timeline.	Wow	-	see	how	much	longer	it	took	to	get	to
this	part?

In	my	case,	it	took	almost	40	ms	of	just	waiting	around	to	download	the	whole	stylesheet
-	and	this	app's	stylesheet	isn't	even	that	big!	To	be	exact,	we	sent	the	request	for	the
stylesheet	at	about	65ms,	and	it	didn't	come	back	until	101ms.	In	reality,	this	actually
extremely	fast	(in	a	real	app,	you	would	expect	that	to	be	more	like	200-350ms	at	least),
and	we	can't	really	optimize	that	much	further.	I'm	in	NYC	and	Heroku	is	in	Virginia,	so
most	of	that	time	is	network	latency	anyway.

Once	the	stylesheet	is	downloaded,	it's	parsed.	You'll	see	another	cycle	of	purple	events
(as	the	CSSOM	is	re-calculated,	we	re-render	the	layout)	and	green	events	(now	that	the
layout	is	updated,	we	render	the	result	to	the	screen).

The	stylesheet	for	this	app	is	extremely	simple,	and	my	app	appears	to	be	wasting	about
30ms	waiting	for	the	CSS	to	download.	It	may	be	worth	investigating	the	performance
impact	of	inlining	the	entire	stylesheet	in	the	HEAD	of	this	page.	Most	sites	won't	benefit

Chrome	Timeline

107

from	this	optimization	(see	my	bit	about	this	above),	but	because	this	app	is	idling	for
about	20ms	waiting	for	the	styles	to	download,	we	may	want	to	eliminate	that	network
round-trip.

Javascript

Eventually,	you'll	notice	the	Javascript	finish	downloading	(this	is	the	"Finish	Loading"
event	for	your	Javascript	file).

A	millisecond	or	two	after	this	occurs,	you'll	see	the	big	yellow	"Evaluate	Script"	bars
start	up.	You'll	notice	the	flamegraph	start	to	get	a	lot	deeper	here.	It's	hard	to	tell	on	this
site	as	to	what's	going	on	because	the	Javascript	has	been	minified,	but	in	development
mode,	pre-minified,	you	can	learn	a	lot	about	why	it	takes	so	long	for	your	Javascript	to
evaluate	here.

Note	that	this	is	a	really,	really	simple	application,	but	because	of	the	sheer	amount	of
Javascript	involved,	it	takes	76ms	for	my	machine	just	to	parse	and	evaluate	it	all.
Remember	that	this	will	happen	on	every	page	load,	and	double	the	amount	of	time	on	a
mobile	browser.	This	isn't	even	that	much	JavaScript	in	web	terms	-	37kb	gzipped.

Eventually,	after	a	whole	lot	of	script	evaluation,	you'll	probably	see	a	couple	of
Recalculate	Style	and	Paint	events.	Your	Javascript	will	probably	do	a	few	things	to
change	the	layout	-	that's	what's	happening	here.

Finally,	you	should	see	the		load		event	fire	off.	There	will	be	several	Javascript
functions	attached	to	this	event	in	almost	every	application.

Once	all	of	those	callbacks	attached	to		load		have	completed,	you'll	see	the	red	bar,
which	signifies	the	end	of	the		load	.	This	is	generally	when	the	page	is	"ready"	and
finished	loading.	Finally!

Chrome	Timeline

108

Using	Chrome	Timeline	to	Debug	Browser
Speed
You've	got	a	site	that	takes	5-10	seconds	to	get	to	the		load		event.	How	can	you	use
Timeline	to	profile	it	and	find	the	performance	hotspots?

1.	 Hard	reload	(ctrl-shift-r)	and	load	the	Timeline	with	fresh	data
2.	 Look	at	the	pie	graph	for	the	entire	page	load.	After	hard	reloading,	Chrome	will

show	the	aggregate	stats	for	the	entire	page	load	in	the	pie	graph.	You	can	see
here	that	it	took	about	2.23	seconds	from	my	refresh	input	to	get	to		load	.	Get	an
idea	of	where	you	spend	most	of	your	time	-	is	it	in	parsing	(loading),	scripting	or
rendering	and	painting?	Is	it	idle	time?

3.	 Reduce	Idle	Idling	comes	from	slow	server	responses	and	asset	requests.	If	you're
idling	a	lot,	make	sure	your	server	is	still	zippy-quick.	If	it	is,	you	may	have	an
unoptimized	order	of	assets.	See	the	"DomContentLoaded"	section	above.

4.	 Reduce	Loading	Recall	that	"loading"	here	refers	to	time	spent	parsing	HTML	and
CSS.	To	decrease	loading	time,	you	don't	have	many	options	other	than	to
decrease	the	amount	of	HTML	and	CSS	you're	sending	to	the	client.

5.	 Reduce	Scripting	Time	spent	evaluating	scripts	is	usually	the	largest	chunk	of
page	load	time	outside	of	waiting	for	the	network.	Most	sites	use	quite	a	few
different	marketing-related	JavaScript	plugins,	like	Olark	and	Mixpanel.	Where
possible,	I	would	try	to	add		async		tags	to	these	scripts	to	get	them	off	the	rendering
critical	path,	even	if	the	vendor	proudly	claims	the	script	is	already	"async!".	Try	to
look	at	the	call	stacks	and	figure	out	where	you're	spending	most	of	your	time.

6.	 Reduce	Rendering	and	Painting	Sites	can	also	have	quite	a	few	layout	changes
and	re-renders	due	to	tools	like	Optimize.ly,	something	we	can	see	by	checking	the
"First	Layout	Invalidation"	property	of	some	of	the	"Layout"	events	in	the	Timeline.
This	is	a	tough	one.	Optimize.ly's	whole	purpose	is	to	essentially	change	the	content
of	the	page,	so	moving	it	to	an		async		script	tag	may	cause	a	"flash	of	unstyled
content"	where	part	of	the	page	would	look	one	way	and	then	suddenly	flash	into	a
different	styling.	That	isn't	acceptable,	so	we're	stuck	with	Optimize.ly's	slow	and
painful	re-layouts	here.

Checklist	for	Your	App
You	should	have	only	one	remote	JS	file	and	one	remote	CSS	file.	If	you're
using	Rails,	this	is	already	done	for	you.	Remember	that	every	little	marketing	tool	-

Chrome	Timeline

109

Olark,	Optimize.ly,	etc	etc	-	will	try	to	inject	scripts	and	stylesheets	into	the	page,
slowing	it	down.	Remember	that	the	cost	of	these	tools	is	not	free.	However,	there's
no	excuse	for	serving	multiple	CSS	or	JS	files	from	your	own	domain.	Having	just
one	JS	file	and	one	CSS	file	eliminates	network	roundtrips	-	a	major	gain	for	users
in	high-latency	network	environments	(international	and	mobile	come	to	mind).	In
addition,	multiple	stylesheets	cause	layout	thrashing.
Every	script	tag	should	have	async	and	defer	attributes.	Do	not	script	inject.
"Async"	javascripts	that	download	and	inject	their	own	scripts	(like	Mixpanel's
"async"	script	here)	are	not	truly	"asynchronous".	Using	the		async		attribute	on
script	tags	will	always	yield	a	performance	benefit.	Note	that	the	attribute	has	no
effect	on	inline	Javascript	tags	(tags	without	a		src		attribute),	so	you	may	need	to
drop	things	like	Mixpanel's	script	into	a	remote	file	you	host	yourself	(in	Rails,	you
might	put	it	into		application.js		for	example)	and	then	make	sure	that	remote	script
has	an		async		attribute.	Using		async		on	external	scripts	takes	them	off	the
blocking	render	path,	so	the	page	will	render	without	waiting	for	these	scripts	to
finish	evaluating.
CSS	goes	before	JavaScript.	If	you	absolutely	must	put	external	JS	on	your	page
and	you	can't	use	an		async		tag,	external	CSS	must	go	first.	External	CSS	doesn't
block	further	processing	of	the	page,	unlike	external	JS.	We	want	to	send	off	all	of
our	requests	before	we	wait	on	remote	JS	to	load.
Minimize	Javascript	usage	where	possible.	I	don't	care	how	small	your	JS	is
gzipped	-	any	additional	JS	you	add	takes	additional	time	for	the	browser	to
evaluate	on	every	page	load.	While	a	browser	may	only	need	to	download
JavaScripts	once,	and	can	use	a	cached	copy	thereafter,	it	will	need	to	evaluate	all
of	that	JavaScript	on	every	page	load.	Don't	believe	me	that	this	can	slow	your	page
down?	Check	out	The	Verge	and	look	at	how	much	time	their	pages	spend
executing	JavaScript.	Yowch.
$(document).ready	is	not	free	-	eliminate	event	handlers	where	possible	or
use	a	solution	that	re-uses	the	page,	like	Turbolinks	or	a	single-page-app
approach.	Every	time	you're	adding	something	to	the	document's	being	ready,
you're	adding	script	execution	that	delays	the	completion	of	page	loads.	Look	at	the
Chrome	Timeline's	flamegraph	when	your		load		event	fires	-	if	it's	long	and	deep,
you	need	to	investigate	how	you	can	tie	fewer	events	to	the	document	being	ready.
Can	you	attach	your	handlers	to		DomContentLoaded		instead?

Lab:	Chrome	Timeline

Chrome	Timeline

110

https://mixpanel.com/help/reference/javascript
http://www.theverge.com

This	lab	requires	some	extra	files.	To	follow	along,	download	the	source	code	for
the	course	and	navigate	to	this	lesson.	The	source	code	is	available	on	GitHub
(you	received	an	invitation)	or	on	Gumroad	(in	the	ZIP	archive).

Provided	is	the	actual	homepage	for	the	Ruby	language.	In	this	directory,	in	your	shell,
type:

$./serve_lab.sh

This	will	start	a	local	webserver.	The		ruby-lang.org		homepage	is	now	available	at
	localhost:8000	.

Exercise	1

Open		localhost:8000		in	Chrome	Developer	tools.	Click	the	"Network"	tab	and	where	it
says	"No	throttling",	click	and	add	a	new	custom	throttling	preset	-	100ms	of	latency	and
a	1.5	Mb/s	download	speed.	These	numbers	represent	an	average	US	connection,
based	on	numbers	from	Akamai's	State	of	the	Internet	report.	If	we	didn't	throttle,	the
requests	would	complete	unrealistically	fast.

Now	that	throttling	is	set	up,	click	the	Timeline	tab	and	perform	a	full	page	refresh	(CMD-
SHIFT-R	on	Mac,	or	right-click	the	refresh	button	and	select	"Hard	Reload").

Using	the	skills	gained	in	this	lesson,	reduce	this	page's		DOMContentLoaded		time	by	50%.
On	my	machine,		DOMContentLoaded		took	1.13	seconds,	and		Load		took	1.58	seconds.	If
your	times	are	considerably	faster,	make	sure	your	network	throttling	is	correctly	set
(there	should	be	a	yellow	exclamation	point	next	to	the	network	tab).

If	you're	struggling,	try	using	the	Network	tab	as	well.

Run		serve_solution.sh		and	compare	against	your	work.	Check	out	the		lab/solution	
directory	to	see	what	was	changed.

Chrome	Timeline

111

The	Optimal	Head	Tag
Most	of	us	developers	settle	for	page	load	times	somewhere	between	3	and	7	seconds.
We	open	up	the	graph	in	NewRelic	or	webpagetest.org,	sigh,	and	then	go	back	to
implementing	that	new	feature	that	the	marketing	people	absolutely	must	have	deployed
yesterday.

Little	do	we	realize,	perceived	front-end	load	times	closer	to	half	a	second	are	possible
for	most	(if	not	all)	websites	with	little	effort.

Most	webpages	have	slow	front-end	load	times	not	because	they're	heavy	(north	of
1MB),	or	because	they	need	200kb	of	Javascript	just	to	render	a	"Hello	World!"	(cough
Ember	cough).	It	isn't	because	the	pipes	are	too	small	either	-	bandwidth	is	really	more
than	sufficient	for	the	Web	today.

HTML,	TCP	and	latency	are	the	problems,	not	bandwidth.	Page	weight,	while
important,	is	a	false	idol.

A	1MB	webpage,	with	all	of	its	scripts	and	CSS	inlined,	will	load	faster	than	1	MB
webpage	with	100	different	asset	requests	spread	across	10	domains.	Each	of	these
asset	requests	requires	a	TCP	connection,	and	setting	up	those	connections	takes
longer	when	there's	more	network	latency.	This	is	really	TCP's	fault	-	it	was	designed	for
long,	streaming	downloads,	not	the	machine-gun	fire	of	3rd-party	Javascript	and	assets
that	most	websites	today	require.	God	forbid	you're	in	a	high-latency	environment	too,
like	a	mobile	connection	or	a	developing	country.	When	latency	starts	to	shoot	north	of
100	milliseconds,	webpages	grind	to	a	halt	trying	to	set	up	dozens	of	three-way
handshakes	to	download	all	of	the	cat	gifs	your	social	media	intern	said	would	totally
blow	up	this	blog	post	on	Reddit.

In	addition,	some	quirks	in	how	HTML	works	means	that	certain	sub-resources	must
block	page	rendering	-	leaving	the	browser	idling,	waiting	for	things	to	download	and
execute.	Preventing	(and	dealing	with)	the	various	types	of	blocking	that	can	happen
during	a	webpage	load	presents	a	major	performance	opportunity.	The	problem	of
webpage	loading	is	generally	not	a	problem	of	resources,	it's	a	problem	of	using	those
resources	efficiently	so	that	they	don't	block	each	other's	execution.

Humans	are	squishy,	and	perceived	load	times	are	not	the	same	as	window	load
times.	We	can	hack	our	user's	perceptions	to	make	them	think	the	webpage	loaded
faster	than	it	did.		window.load	,	while	a	good	starter	metric	for	measuring	page	load

The	Optimal	Head	Tag

112

http://webpagetest.org
https://support.microsoft.com/en-us/kb/172983

speed,	is	not	a	realistic	interpretation	of	how	users	look	at	webpages.	Humans	(unlike
computers)	can	begin	to	understand	the	webpage	before	it's	even	finished	completely
loading.	This	means	that	time	to	paint,	not	time	to	load	is	important.	In	addition,	time	to
paint	the	page's	usable	content	is	of	course	the	most	important	thing.	Gmail	quickly
paints	a	loading	bar,	sure,	but	you	didn't	come	to	Gmail	to	see	the	loading	bar.	You
came	to	see	the	application.	Likewise,	if	our	news	website	paints	some	divs	to	the	page
but	doesn't	actually	show	any	text	until	2	seconds	later	because	the	web	fonts	took
forever	to	load,	then	the	site	wasn't	really	usable	until	that	text	was	painted.	It's	easier	to
decrease	perceived	load	times	than	it	is	to	decrease	total	load	time	(as	measured	by
	window.load).	Amazon,	for	example,	paints	a	nearly	complete	page	just	1.5	seconds
after	a	request	is	sent,	but		window.load		doesn't	fire	until	3.5	seconds	later.

We	can	leverage	human	perception	to	disproportionately	affect	perceived	load	times
with	minimal	effort.	And	the	place	these	opportunities	can	be	exploited	is	in	a	site's
	head		tag.

The		head		tag	is	probably	the	most	important	part	of	any	webpage	from	a	performance
standpoint.	It	can	truly	make	or	break	a	speedy	page	-	two	identical	head	tags	with
different	element	ordering	can	have	speed	differences	on	an	order	of	magnitude,
especially	in	poor	network	conditions	(like	mobile	or	the	developing	world).	But
sometimes	optimizing	head	tags	can	be	confusing	-	there's	a	lot	to	understand	and
browser	technology	changes	rapidly,	meaning	yesterday's	advice	can	be	out	of	date.

In	this	article,	I'll	attempt	to	show	what	the	optimal	head	tag	looks	like	-	what	elements	in
contains,	in	what	order,	and	with	what	special	attributes	(such	as		async		and		defer)
that	will	lead	to	zippy-quick	load	times.

First,	some	definitions.	What	exactly	are	we	going	to	optimize	for?

When	thinking	about	page	load	optimization,	there	are	usually	three	important	times	for
the	end	user:

The	Optimal	Head	Tag

113

First	paint	-	When	does	the	page	first	start	painting	to	the	screen?	This	doesn't
have	to	be	all	the	content	-	frequently	it	looks	like	just	a	few	colored		div		blocks
with	no	text	in	them	(waiting	for	the	fonts	to	load).	Images	are	usually	not	loaded
yet.	Heck,	we	may	not	even	have	downloaded	the	CSS	for	anything	below	the	fold
yet	(the	initial	viewport	-	more	on	that	later).	But	this	time	is	still	important	-	it's	when
a	user	first	sees	a	reaction	to	their	input.	Decreasing	time-to-first-paint	can	be	a
critical	optimization	in	improving	user	perception	of	page	loads.	This	is	why
Facebook	hacks	the	JPEG	algorithm	to	send	a	blurred,	200	byte	version	of	cover
photos	on	mobile.	Creating	a	perception	of	the	page	loading	is	just	as	important	as
the	page	actually	loading.
First	paint	of	text	content	-	Webpages	are	text-delivery	mechanisms.	The	Web	is
typography.	When	does	the	page	start	painting	text	to	the	screen?	As	soon	as	a
page's	critical	text	has	been	painted	-	before	the	images	have	been	downloaded	or
even	any	decorative	elements	rendered	-	the	user	can	begin	processing	the
information	on	the	screen.	And	not	all	text	content	is	equal	here	-	painting
"Loading..."	to	the	screen	doesn't	count.	A	user	cannot	begin	to	do	what	they	came
to	your	website	to	do	until	the	text	on	that	page	has	painted	to	the	screen,	making
the	moment	that	text	appears	one	of	the	most	important	of	your	website's	loading
process.	This	time	can	often	be	substantially	different	than	time	to	first	paint,	for
reasons	I'll	get	into	later	on.	This	is	a	pet	theory	of	mine,	and	I	am	not	a	designer	or
information	architect	by	trade,	so	take	this	all	with	a	grain	of	salt.
The		load		event	-	The		load		event	is	the	last	major	event	the	browser	fires	during
a	webpage	load.	It	signals	that	the	browser	has	loaded	all	images,	stylesheets,	and
scripts.	Usually	(though	not	necessarily)	the	page	is	stable	by	this	point	and	doesn't
change.	We	can	say	that	when		load		has	executed,	the	page	is	done	loading.
However,	in	reality,	the	two	times	above	are	much	more	important	for	a	user's
perception	of	page	loads.	Above-the-fold	render	time	is	so	Web	2.0.

Our	optimal		head		tag	will	try	to	optimize	all	of	these	times.	It's	important	to	note	that
often	you'll	be	presented	with	a	tradeoff	-	you	can	decrease	time	to	first	paint	by
increasing	time	to	load,	and	vice	versa.	I'm	going	to	point	out	these	tradeoffs,	but
generally	I'm	going	to	prefer	to	decrease	time	to	first	text	paint.

Encoding
Here's	an	easy	optimization	to	start	us	off.	When	a	browser	downloads	your	page	off	the
network,	it's	just	a	stream	of	bits	and	bytes,	and	the	browser	doesn't	really	know	what
character	encoding	you	used.	Before	it	can	read	the	data,	it	needs	to	decide	on	a

The	Optimal	Head	Tag

114

https://code.facebook.com/posts/991252547593574
http://www.stevesouders.com/blog/2013/05/13/moving-beyond-window-onload/

character	encoding	to	use	to	read	the	document.	99.9%	of	the	time	on	the	web,	we	do
this	with	UTF-8,	but	that	isn't	guaranteed.

The	browser	has	to	decide	what	character	encoding	to	use.	There's	a	couple	of	ways	it
can	do	this	(fastest	first):

The		Content-Type		HTTP	header	By	putting	the	document's	character	encoding
right	in	the	response	headers,	you're	ensuring	that	the	browser	sets	the	right
character	encoding	before	it	even	tries	to	parse	the	document.	This	is	perfect.
	meta		tag	This	is	probably	the	most	common	option.	For	example,	Bootstrap's
example	page	does	this.	If	you	do	this,	it's	important	that	it's	the	first	element	in	the
	head	.	If	the	browser	starts	reading	the	document	with	a	different	encoding	(old	IE
will	sometimes	use	some	weird	Windows	encoding),	it	has	to	go	back	to	the
beginning	and	restart.
Guessing	If	there's	no		meta		tag,	and	no	HTTP	header,	the	browser	will	try	to
guess,	using	things	like	byte	ordering	characters.	Of	course,	there	are	obvious
compatibility	issues	there	(and	only	God	knows	what	old	IE	will	guess),	but	it's	also
probably	the	slowest	of	all	the	options.

	X-UA-Compatible		is	similar	to	character	encoding	-	we	want	as	high	up	in	the	document
as	possible	because	if	you	specify	a	value	that's	different	than	what	the	browser	is
already	using	to	parse	the	document,	you'll	restart	the	rendering	process.	If	you	have	to
specify	a	X-UA-Compatible	value,	here's	some	tips:

If	you	can,	specify		X-UA-Compatible		in	an	HTTP	header,	not	in	the	document	itself.
This	is	faster	for	the	same	reasons	as	it	is	for	character	encoding,	above.
If	it	has	to	be	in	the	document,	put		X-UA-Compatible		as	high	up	as	you	can,
specifically	within	the	first	4KB	of	the	response.	IE10	and	above	will	speculatively
prescan	the	first	4KB	of	the	document	looking	for	an		X-UA-Compatible		tag.	Putting	it
lower	on	the	page	will	cause	page	rendering	to	stop	and	restart.	Ouch.

Viewports
Here's	another	one.	If	you're	going	to	specify	a		viewport		size,	do	it	at	the	top	of	the
	head	.

Why?

Browsers	translate	this:

The	Optimal	Head	Tag

115

http://getbootstrap.com/getting-started/#template
http://blogs.msdn.com/b/ieinternals/archive/2011/07/18/optimal-html-head-ordering-to-avoid-parser-restarts-redownloads-and-improve-performance.aspx

<meta	name="viewport"	content="width=device-width,	initial-scale=1">

...into	this:

<style>

@viewport	{

		zoom:	1.0;

		width:	device-width;

}

</style>

While	the	spec	for	how	this	works	is	still	unfinished,	you	can	bet	that	most	browsers
already	implement	it	this	way.

There's	a	problem	with	this	-	if	you	put	the		viewport		meta	tag	after	your	stylesheets,
you	will	cause	a	layout	reflow	for	the	entire	document,	slowing	down	rendering.	Don't	do
that.	Keep	your	viewport	tags	at	the	top,	right	after	your	character	encoding.	In	addition,
putting	a	viewport	tag	at	the	bottom	of	the	head	will	almost	certainly	cause	a	"flash	of
unstyled	content"	as	the	CSS	is	first	loaded	in	the	default	viewport,	then	re-rendered	in
your	specified	viewport.

Concatenation	of	Assets
TCP	isn't	really	designed	for	short	bursts.	It's	got	a	load	of	overhead,	and	needs	a	lot	of
back-and-forth	just	to	set	up	a	connection.

Despite	this,	the	top	1000	websites	in	the	world	on	average	require	31-40	TCP
connections.	I'm	sure	all	of	them	are	important,	and	aren't	advertisements,	creepy	3rd-
party	trackers,	or	bloatware!	Surely,	all	of	those	requests	are	for	sub-resources	and	not	a
single	one	could	be	eliminated.

Alright,	jokes	aside,	here's	the	scoop.	Opening	a	new	TCP	connection	is	slow	-	it's
especially	slow	if	you're	asking	for	content	from	a	different	domain	(you	might	need	to
resolve	DNS,	negotiate	TLS,	and	more).	Minimize	new	connections	where	you	can.	One
of	the	easiest	places	to	do	this	is	by	concatenating	your	assets.

Although	the	Rails	asset	pipeline	has	been	a	constant	source	of	headache	for	beginner
Rails	developers,	it	is	absolutely	one	of	the	best	performance	optimizations	that	the
framework	provides.

The	Optimal	Head	Tag

116

http://www.w3.org/TR/css-device-adapt/#translation-into-viewport-properties
https://developers.google.com/speed/articles/reflow?hl=en
https://www.google.com/adwords/
http://www.mediamath.com/
https://jquery.com/

Concatenate	all	of	your	site's	stylesheets	and	scripts	into	one	file	each.	It's	2015.	There's
no	excuse.	Yes,	I	know	all	of	this	will	change	when	HTTP2	becomes	widespread.	But	it
isn't	yet,	and	might	not	be	for	at	least	another	year	or	two.

If	you've	got	a	lot	of	images,	it	may	be	time	to	start	thinking	about	image	sprites	or	an
icon	font.

All	of	this	can	be	benchmarked	in	the	wonderful	Chrome	Network	tab	-	try	different
configurations	and	watch	the	results.

Async	Defer
I'm	a	Ruby	guy,	but	I	hear	those	Javascript	people	talking	about	"async"	stuff	a	lot.	It
seems	like	the	cool	thing	these	days	-	everything	is	"asynchronous"	and	"non-blocking"!
But	I	live	in	Ruby	land,	and	most	things	in	our	applications	are	synchronous	and
blocking.	Gee,	thanks	GIL.

Ordinarily,	script	tags	with	an	external		src		attribute	(that	is,	not	inlined)	are
synchronous	and	blocking	too.

<script	type="text/javascript"	src="//some.shitty.thirdpartymarketingsite.com/crap

tracker.js"></script>

When	this	tag	is	in	the	head,	the	browser	cannot	proceed	with	rendering	the	page	until	it
has	downloaded	and	executed	the	script.	This	can	be	slow,	and	even	if	it	isn't,	if	you	do	it
6-12	times	on	one	page	it	will	be	slow	anyway	(thanks	TCP!).	Here's	an	example	you
can	test	in	your	own	browser.	Ouch,	right?	While	the	browser	cannot	proceed	with
rendering	the	page	(and	therefore	painting	anything	to	the	screen)	until	it's	finished
executing	the	script,	it	CAN	download	other	resources	further	on	in	the	document.	This	is
accomplished	with	the	browser	preloader.

You	may	be	thinking	this	is	rather	ridiculous	-	why	should	a	browser	stop	completely
when	it	sees	an	external	script	tag?	Well,	thanks	to	The	Power	of	Javascript,	that
external	script	tag	could	potentially	wreak	havoc	on	the	document	if	it	wanted.	Heck,	it
could	completely	erase	the	entire	document	and	start	over	with		document.write()	.	The
browser	just	doesn't	know.	So	rather	than	keep	moving,	it	has	to	wait,	download,	and
execute.	This	is	all	in	the	spec,	if	you	feel	like	a	little	light	reading.

However,	in	the	world	of	front-end	performance,	I'm	not	so	restricted!	This	is	not	the	only
way!	There's	an		async		attribute	that	can	be	added	to	any		script		tag,	like	so:

The	Optimal	Head	Tag

117

http://stevesouders.com/cuzillion/?c0=hc1hfff2_0_f&c1=hj1hfff2_0_f&c2=bi1hfff2_0_f&c3=bi1hfff2_0_f&c4=bi1hfff2_0_f&t=1445441057
http://www.w3.org/TR/html5/scripting-1.html#scripting-1

<script	type="text/javascript"	async	src="//some.shitty.thirdpartymarketingsite.co

m/craptracker.js"></script>

And	bam!	instantly	that	entire	Javascript	file	is	made	magically	asynchronous	right?

Well,	no.

The		async		tag	just	tells	the	browser	that	this	particular	script	isn't	required	to	render	the
page.	This	is	perfect	for	most	3rd-party	marketing	scripts,	like	Google	Analytics	or
Gaug.es.	In	addition,	if	you're	really	good	(and	you're	not	a	Javascript	single-page-app),
you	may	be	able	to	make	every	single	external	script	on	your	page		async	.

	async		downloads	the	script	file	without	stoppping	parsing	of	the	document	-	the	script
tag	is	no	longer	synchronous	with	the

There's	also	this		defer		attribute,	which	has	slightly	different	effects.	What	you	need	to
know	is	that	Internet	Explorer	9	and	below	doesn't	support		async	,	but	it	does	support
	defer	,	which	provides	a	similar	functionality.	It	never	hurts	to	just	add	the		defer	
attribute	after		async	,	like	so:

<script	type="text/javascript"	async	defer	src="//some.shitty.thirdpartymarketings

ite.com/craptracker.js"></script>

That	way	IE9	and	below	will	use		defer	,	and	everyone	who's	using	a	browser	from	after
the	Cold	War	will	use		async	.

Here's	a	great	visual	explanation	of	the	differences	between	async	and	defer.

So	add		async	defer		to	every	script	tag	that	isn't	required	for	the	page	to	render.
The	caveat	is	that	there's	no	guarantee	as	to	the	order	that	these	scripts	will	be
evaluated	in	when	using	async,	or	even	when	they'll	be	evaluated.	Even	defer,	which	is
supposed	to	execute	scripts	in	order,	sometimes	won't	(bugs,	yay).	Async	is	hard.

Stylesheets	first
You	may	have	a	few	non-	async		script	tags	remaining	at	this	point.	Webfont	loaders,	like
Typekit,	are	a	common	one	-	we	need	fonts	to	render	the	page.	Some	really	intense
marketing	JS,	like	Optimizely,	should	probably	be	loaded	before	the	page	renders	to
avoid	any	flashes	of	unstyled	content	as	well.

Put	any	CSS	before	these	blocking	script	tags.

The	Optimal	Head	Tag

118

http://www.growingwiththeweb.com/2014/02/async-vs-defer-attributes.html

			<head>

					<link	rel="stylesheet"	media="screen"	href="/assets/application.css">

					<script	src="//use.typekit.net/abcde.js"	type="text/javascript"></script>

There's	no		async		for	stylesheets.	This	makes	sense	-	we	need	stylesheets	to	render
the	page.	But	if	we	put	CSS	(external	or	inlined)	after	an	external,	blocking	script,	the
browser	can't	use	it	to	render	the	page	until	that	external	script	has	been	downloaded
and	executed.

This	may	cause	flashes	of	unstyled	content.	The	most	common	case	is	the	one	I	gave
above	-	web	fonts.	A	great	way	to	manage	this	is	with	CSS	classes.	While	loading	web
fonts	with	Javascript,	TypeKit	(and	many	other	font	loaders)	apply	a	CSS	class	to	the
body	called		wf-loading	.	When	the	fonts	are	done	loading,	it	changes	to		wf-active	.	So
with	CSS	rules	like	the	below,	we	can	hide	the	text	on	the	page	until	we've	finished
loading	fonts:

.wf-loading	p	{

		visibility:	hidden

}

While	text	is	the	most	important	part	of	a	webpage,	it's	better	to	show	some	of	the	page
(content	blocks,	images,	background	styles)	than	none	of	it	(which	is	what	happens
when	your	external	scripts	come	before	your	CSS).

Checklist	for	Your	App
Specify	content	encoding	with	HTTP	headers	where	possible.	Otherwise,	do	it
with	meta	tags	at	the	top	of	the	document.
If	using		X-UA-Compatible	,	put	that	as	far	up	in	the	document	as	possible.
	<meta	name="viewport"	...>		tags	should	go	right	below	any	encoding	tags.

Lab:	The	Optimal	Head	Tag

Exercise	1
Let's	optimize	the	head	tag	of	openstreetmap.org.

The	Optimal	Head	Tag

119

The	following	is	an	abbreviated	version	of	the	head	tag	of	OpenStreetMap.org,	an	open-
source	Rails	application:

<html	lang="en-US"	dir="ltr">

		<meta	http-equiv="X-UA-Compatible"	content="IE=edge"/>

		<meta	name="viewport"	content="width=device-width,	minimum-scale=1.0,	maximum-sc

ale=1.0"/>

		<!--[if	lt	IE	9]><script	src="/assets/html5shiv-eb6ff987ed3e1a6f2dba5ec4141d8407

4139c02feec781457f60a3506055b8c2.js"></script><![endif]-->

		<script	src="/assets/application-4cc8181acc0e1fcd15c9aabbc754b4cb2faebff5fbee02d

08ac337e8c18aaa80.js"></script>

		<link	rel="stylesheet"	media="screen"	href="/assets/screen-ltr-da6d80d62a1e392bc

97642b4911053102bd3c3a5cfbc6e127b1045b8209817ac.css"	/>

		<link	rel="stylesheet"	media="print"	href="/assets/print-ltr-f0e982d0ba074e91496

2563e26dfc48b3d2d9a05e5442932889cec8769cd2eaf.css"	/>

		<link	rel="stylesheet"	media="screen,	print"	href="/assets/leaflet-all-6a764748e

cb320fb225ae17114fe6a580c88369a0440e02bdac32ac203febdea.css"	/>

		<!--[if	IE]>

				<link	rel="stylesheet"	media="screen"	href="/assets/large-ltr-1cf527cfc2440d0b

93cd4bf36e61bd90.css"	/>

		<![endif]-->

		<meta	name="description"	content="OpenStreetMap	is	the	free	wiki	world	map."	/>

		<script	src="/assets/index-31bba8593ce3fd4ccd6c585180f31149973b722e3839d9a1e294f

dc406c86b6e.js"></script>

		<meta	name="csrf-param"	content="authenticity_token"	/>

		<meta	name="csrf-token"	content="xxB3zptEZrwNUeztoP4cCeNEGd+M4krrV32BarWQ3KPARoz

hEdvWXlWrLuZ78nbLZZXBgqREYzoBBuFiVpjv1Q=="	/>

		<title>OpenStreetMap</title>

</head>

What	problems	do	you	see?	How	could	it	be	improved?

Solution

	application.js		appears	before	any	stylesheets.	This	delays	the	evaluation	of
those	stylesheets	until	after		application.js		is	downloaded	and	executed.
	application.js		should	be	moved	to	the	end	of	the		head		tag,	or	marked	as		async	
if	possible.
No	content	encoding	specified	-	add	a		<meta	charset="utf-8">		tag	above	the	X-UA-
Compatible	tag.
There	are	three	CSS	files	here	-	they	should	all	be	concatenated	into	a	single	CSS
file.

The	Optimal	Head	Tag

120

http://www.openstreetmap.org/
https://github.com/openstreetmap/openstreetmap-website

The	Optimal	Head	Tag

121

Resource	Hints	and	Fighting	Page
Weight
There's	one	universal	law	of	front-end	performance	-	less	is	more.	Simple	pages	are
fast	pages.	We	all	know	this	-	it	isn't	controversial.	Complexity	is	the	enemy.

And	yet,	it's	trivial	to	find	a	website	whose	complexity	seems	to	reach	astronomical
levels.	Literally.	The	Apollo	Guidance	Computer	had	just	64	KB	of	ROM,	but	most
webpages	require	more	than	1MB	of	data	to	render.	There	are	some	webpages	that	are
actually	100x	as	complex	as	the	software	that	took	us	to	the	moon.	It's	perhaps	telling
that	media	and	news	sites	tend	to	be	the	worst	here	-	most	media	sites	in	2015	take
ages	to	load,	not	to	mention	all	the	time	you	spend	clicking	past	their	paywall	popups
(NYTimes)	or	full-page	advertisements	(Forbes).

Remember	when	Steve	Jobs	said	Apple's	mobile	products	would	never	support	Flash?
For	a	year	or	two	there,	it	was	a	bit	of	a	golden	age	in	web	performance	-	broadband
was	becoming	widespread,	4G	started	to	come	on	the	scene,	and,	most	importantly,
websites	started	dropping	Flash	cruft.	The	"loading!"	screens	and	unnecessarily
complicated	navigation	schemes	became	something	of	yesteryear.

That,	is,	until	the	marketing	department	figured	out	how	to	use	Javascript.	The
Guardian's	homepage	sets	advertising	tracking	cookies	across	4	different	partner
domains.	Business	Insider	thought	to	one-up	their	neighbors	across	the	pond	and	sets
cookies	across	17	domains,	requires	284	requests	(to	nearly	100	unique	domains)
and	a	4.9MB	download	which	took	a	full	9	seconds	to	load	on	my	cable	connection,
which	is	a	fairly	average	broadband	~20	megabit	pipe.	Business	Insider	is,	ostensibly,	a
news	site.	The	purpose	of	the	Business	Insider	is	to	deliver	text	content.	Why	does	that
require	5	MB	of	things	which	are	not	text?

Unfortunately,	it	seems,	the	cry	of	"complexity	is	the	enemy!"	is	lost	on	the	ones	setting
the	technical	agenda.	While	trying	to	load	every	single	tracking	cookie	possible	on	your
users,	you've	steered	them	away	by	making	your	site	slow	on	any	reasonable
broadband	connection,	and	nearly	impossible	on	any	mobile	connection.

Usually,	the	boogeyman	that	gets	pointed	at	is	bandwidth:	users	in	low-bandwidth	areas
(3G,	developing	world)	are	getting	shafted.

Resource	Hints

122

http://www.apple.com/hotnews/thoughts-on-flash/

But	the	math	doesn't	quite	work	out.	Akamai	puts	the	global	connection	speed	average
at	3.9	megabits	per	second.	So	wait	a	second	-	why	does	Business	Insider	take	9
seconds	to	load	on	my	20	megabit	pipe,	when	it's	only	4.9MB?	If	I	had	an	average
connection,	according	to	Akamai,	shouldn't	Business	Insider	load	in	2	seconds,	tops?

The	secret	is	that	"page	weight",	broadly	defined	as	the	simple	total	file	size	of	a	page
and	all	of	its	sub-resources	(images,	CSS,	JS,	etc),	isn't	the	problem.	Bandwidth	is	not
the	problem,	and	the	performance	of	the	web	will	not	improve	as	broadband
access	becomes	more	widespread.

The	problem	is	latency.

Most	of	our	networking	protocols	require	a	lot	of	round-trips.	Each	of	those	round	trips
imposes	a	latency	penalty.	Network	latency	is	a	kind	of	speed	limit	imposed	on	our
network	traffic,	governed	by	the	speed	of	light.	Which	means	that	latency	isn't	going
anywhere.

DNS	lookup	is,	and	always	will	be,	expensive.	In	10	years,	we	may	have	invented	some
better	protocols	here.	But	it's	fair	to	say	we	have	to	live	with	the	current	reality	for	at	least
a	decade.	Look	at	how	long	it's	taking	us	to	get	on	board	with	IPv6.

TCP	connections	are,	and	always	will	be,	expensive.

SSL	handshakes	are,	and	always	will	be,	expensive.	We're	going	to	be	doing	more	of
them	over	the	next	10	years.	Thanks	NSA.

Each	of	these	things	requires	at	least	one	network	round-trip	-	that	is,	a	packet	going
from	your	computer,	across	the	network,	to	someone	else's.	That	will	never	be	faster
than	the	speed	of	light	-	and	even	light	takes	30	milliseconds	to	go	from	New	York	to
San	Francisco	and	back.	Thanks	to	the	amount	of	hops	a	packet	has	to	make	across	the
internet	backbone,	usually	the	time	is	much	worse	-	2-4x.	What's	worse	is	that	these
network	round-trips	must	happen	sequentially	-	we	have	to	know	the	IP	address	before
we	start	the	three-way	handshake	for	TCP,	and	we	have	to	establish	a	TCP	connection
before	we	can	start	to	negotiate	SSL.

Setting	up	a	typical	HTTPS	connection	can	involve	5.5	round-trips.	That's	like	165
milliseconds	per	connection	on	a	really	really	good	day.	Usually	it's	better	than	this	in	the
US	because	of	CDNs.	But	150ms	per	connection	isn't	a	bad	rule	of	thumb	-	and	on
mobile	it's	much	worse,	closer	to	300.

Resource	Hints

123

The	smart	ones	among	you	may	already	see	the	solution	-	well,	Nate,	165	milliseconds
per	connection	isn't	a	problem!	We'll	just	parallelize	the	connections!	Boom!	100
connections	opened	in	165	milliseconds!

The	problem	is	that	HTML	doesn't	work	this	way	by	default.

We'd	like	to	imagine	that	the	way	a	webpage	loads	is	this:

1.	 Browser	opens	connection	to	yoursite.com,	does	DNS/TCP/SSL	setup.
2.	 Browser	downloads	the	document	(HTML).
3.	 As	soon	as	the	browser	is	done	downloading	the	document,	the	browser	starts

downloading	all	the	document's	sub	resources	at	the	same	time.
4.	 Browser	parses	the	document	and	fills	in	the	necessary	sub	resources	once	they've

been	downloaded.

Here's	what	actually	happens:

1.	 Browser	opens	connection	to	yoursite.com,	does	DNS/TCP/SSL	setup.
2.	 Browser	downloads	the	document	(HTML).
3.	 Browser	starts	parsing	the	document.	When	the	parser	encounters	a	sub-resource,

it	opens	a	connection	and	downloads	it.	If	the	sub-resource	is	an	external	script	tag,
the	parser	stops,	waits	until	it	the	script	has	downloaded,	executes	the	entire	script,
and	then	moves	on.

4.	 As	soon	as	the	parser	stops	and	has	to	wait	for	an	external	script	to	download,	it
sends	ahead	something	called	a	preloader.	The	preloader	may	notice	and	begin
downloading	resources	if	it	understands	how	to	(hint:	a	popular	Javascript	pattern
prevents	this).

Thanks	to	these	little	wrinkles,	web	page	loads	often	have	new	connections	opening
very	late	in	a	page	load	-	right	before	the	end	even!	Ideally,	the	browser	would	open	all
of	those	connections	like	in	our	first	scenario	-	immediately	after	the	document	is
downloaded.	We	want	to	maximize	network	utilization	across	the	life	of	the	webpage
load	process.

There's	four	ways	to	accomplish	this:

Don't	stop	the	parser.
Get	out	of	the	browser	preloader's	way.
Use	HTTP	caching	-	but	not	too	much.
Use	the	Resource	Hint	API.

Resource	Hints

124

Glossary
I'm	going	to	use	a	couple	of	terms	here	and	I	want	to	make	sure	we're	all	on	the	same
page.

Connection	-	A	"connection"	is	one	TCP	connection	between	a	client	(your	browser)
and	a	server.	These	connections	can	be	re-used	across	multiple	requests	through
things	like	keep-alive.
Request	-	A	browser	"requests"	resources	via	HTTP.	99%	of	the	time	when	we're
talking	about	requesting	resources,	we're	talking	about	an	HTTP	GET.	Each	request
needs	to	use	a	TCP	connection,	though	not	necessarily	a	unique	or	new	one	(see
keep-alive).
Sub-resources	-	In	browser	parlance,	a	sub-resource	is	generally	any	resource
required	to	completely	load	the	main	resource	(in	this	case,	the	document).
Examples	of	sub-resources	include	external	Javascript	(that	is,		script		tags	with	a
	src		attribute),	external	CSS	stylesheets,	images,	favicons,	and	more.
Parser	-	When	a	browser	tries	to	load	your	webpage,	it	uses	a	parser	to	read	the
document	and	decide	what	sub	resources	need	to	be	fetched	and	to	construct	the
DOM.	The	parser	is	responsible	for	getting	the	document	to	one	of	the	first
important	events	during	a	page	load,	DOMContentLoaded.

Letting	the	Preloader	do	its	Job
Sometimes	the	parser	has	to	stop	and	wait	for	an	external	resource	to	download	-	99%
of	the	time,	this	is	an	external	script.	When	this	happens,	the	browser	starts	something
called	a	preloader.	The	preloader	is	a	bit	like	a	"parser-lite",	but	rather	than	construct	the
DOM,	the	preloader	is	more	like	a	giant	regex	that	searches	for	sub	resources	to
download.	If	it	finds	a	sub-resource	(say	an	external	script	at	the	end	of	the	document),	it
will	start	downloading	it	before	the	parser	gets	to	it.

You	may	be	thinking	this	is	rather	ridiculous	-	why	should	a	browser	stop	completely
when	it	sees	an	external	script	tag?	Well,	thanks	to	The	Power	of	Javascript,	that
external	script	tag	could	potentially	wreak	havoc	on	the	document	if	it	wanted.	Heck,	it
could	completely	erase	the	entire	document	and	start	over	with		document.write()	.	The
browser	just	doesn't	know.	So	rather	than	keep	moving,	it	has	to	wait,	download,	and
execute.

Resource	Hints

125

https://en.wikipedia.org/wiki/HTTP_persistent_connection
https://en.wikipedia.org/wiki/HTTP_persistent_connection

Browser	preloaders	were	a	huge	innovation	in	web	performance	when	they	arrived	on
the	scene.	Completely	unoptimized	webpages	could	speed	up	by	20%	or	more	just
thanks	to	the	preloader	fetching	resources!

That	said,	there	are	ways	to	help	the	preloader	and	there	are	ways	to	hinder	it.	We	want
to	help	the	preloader	as	much	as	possible,	and	sometimes	we	want	to	stay	the	hell	out
of	its	way.

Stop	inserting	scripts	with	"async"	script-injection

The	marketing	department	says	you	need	to	integrate	your	site	with
SomeBozoAdService.	They	said	it's	really	easy	-	you	just	have	to	"add	five	lines	of
code!".	You	go	to	SomeBozoAdService's	developer	section,	and	find	that	they	tell	you	to
insert	this	into	your	document	somewhere:

var	t	=	document.createElement('script');

t.src	=	"//somebozoadservice.com/ad-tracker.js";

document.getElementsByTagName('head')[0].appendChild(script);

There	are	other	problems	with	this	pattern	(it	blocks	page	rendering	until	it's	done,	for
one),	but	here's	one	really	important	one	-	browser	preloaders	can't	work	with	this.
Preload	scanners	are	very	simple	-	they're	simple	so	that	they	can	be	fast.	And	when
they	see	one	of	these	async-injected	scripts,	they	just	give	up	and	move	on.	So	your
browser	can't	download	the	resource	until	the	main	parser	thread	gets	to	it.	Bummer!	It's
far	better	to	use		async		and		defer		attributes	on	your	script	tags	instead,	to	get	this:

<script	src="//somebozoadservice.com/ad-tracker.js"	async	defer></script>

Kaboom!	There	are	some	other	advantages	to		async		that	I	get	into	in	this	other	post
here,	but	be	aware	that	one	of	them	is	that	the	browser	preloader	can	get	started
downloading	this	script	before	the	parser	even	gets	there.

Here's	a	list	of	other	things	that	generally	don't	work	with	browser	preloaders:

IFrames.	Sometimes	there's	no	way	around	using	an	iframe,	but	if	you	have	the
option	-	try	not	to.	The	content	of	the	frame	can't	be	loaded	until	the	parser	gets
there.
@import.	I'm	not	sure	of	anyone	that	uses	@import	in	their	production	CSS,	but
don't.	Preloaders	can't	start	fetching		@import	ed	stylesheets	for	you.
Webfonts.	Here's	an	interesting	one.	I	could	write	a	whole	article	on	webfont	speed

Resource	Hints

126

http://www.nateberkopec.com/2015/10/21/hacking-head-tags-for-speed-and-profit.html

(I	should/will!),	but	they	usually	aren't	preloaded.	This	is	fixable	with	resource	hints
(we'll	get	to	that	in	a	second).
HTML5	audio/video.	This	is	also	fixable	with	resource	hints.

I've	heard	that	in	the	past,	preloaders	wouldn't	scan	the	body	tag	when	blocked	in	the
head.	If	that	was	ever	true,	it	is	no	longer	true	in	Webkit	based	browsers.

In	addition,	modern	preloaders	are	smart	enough	not	to	request	resources	that	are
already	cached.	Speaking	of	HTTP	caching...

HTTP	caching
The	fastest	HTTP	request	is	the	one	that	is	never	made.	That's	really	all	HTTP	caching
is	for	-	preventing	unnecessary	requests.	Cache	control	headers	are	really	for	telling
clients	"Hey	-	this	resource,	it's	not	going	to	change	quickly.	Don't	ask	me	again	for	this
resource	until..."	That's	awesome.	We	should	do	that	everywhere	possible.

Yet,	the	size	of	the	resource	cache	is	smaller	than	you	might	think.	Here's	the	default
disk	cache	size	in	modern	browsers:

Browser Cache	Size	(default)

Internet	Explorer	9+ ~250MB

Chrome 200MB

Firefox 540MB

Mobile	Safari 0

Android	(all) ~25-80	MB

Not	as	large	as	you	might	imagine.	And	you	read	that	right	-	Mobile	Safari	does	not	have
a	persistent,	on-disk	cache.

Most	browser	resource	caches	work	on	an	LRU	basis	-	last	recently	used.	So	if
something	doesn't	get	used	in	the	cache,	it's	the	first	thing	to	be	evicted	if	the	cache	fills
up.

A	pattern	I've	often	seen	is	to	use	3rd-party,	CDN-hosted	copies	of	popular	libraries	in	an
attempt	to	leverage	HTTP	caching.	The	idea	is	to	use	Google's	copy	of	JQuery	(or	what
have	you),	and	a	prospective	user	to	your	site	will	already	have	it	downloaded	before

Resource	Hints

127

http://www.guypo.com/mobile-browser-cache-sizes-round-2/

coming	to	yours.	The	browser	will	notice	it's	already	in	their	cache,	and	not	make	a	new
request.	There's	some	other	benefits,	but	I	want	to	pick	on	this	one.

This	sounds	good	in	theory,	but	given	the	tiny	size	of	caches,	I'm	not	sure	if	it	really
works	in	practice.	Consider	how	few	sites	actually	use	Google-hosted	(or	Cloudflare-
hosted,	or	whatever)	JQuery.	Even	if	they	did	-	how	often	is	your	cached	copy	pushed
out	of	the	cache	by	other	resources?	Do	you	know?

Consider	the	alternative	-	bundling	JQuery	into	your	application's	concatenated
"application.js"	file	(Rails'	default	behavior).

In	the	best	case,	the	user	already	has	the	3rd-party	CDN-hosted	JQuery	downloaded
and	cached.	The	request	to	go	and	get	your	application.js	doesn't	take	quite	as	long
because	it's	~20kb	smaller	now	that	it	doesn't	include	JQuery.	But	remember	what	we
said	above	-	bandwidth	is	hardly	the	issue	for	most	connections	(saving	20kb	is	really
saving	<100ms,	even	on	a	2MB/s	DSL	connection).

But	consider	the	worst	case	scenario	-	the	user	doesn't	have	our	3rd-party	JS
downloaded	already.	Now,	compared	to	the	"stock"	application.js	scenario,	you	have	to
make	an	additional	new	connection	to	a	new	domain,	likely	requiring	SSL/TLS
negotiation.	Without	even	downloading	the	script,	you've	been	hit	with	1-300ms	of
network	latency.	Bummer.

Consider	how	much	worse	this	gets	when	you're	including	more	than	1	library	from	an
external	CDN.	God	forbid	that	the	script	tags	aren't		async	,	or	your	user	will	be	sitting
there	for	a	while.

In	conclusion,	3rd-party	hosted	Javascript,	while	a	good	idea	and,	strictly	speaking,
faster	in	the	best-case	scenario,	is	likely	to	impose	a	huge	performance	penalty	to	users
that	don't	have	every	single	one	of	your	3rd-party	scripts	cached	already.	Far	preferable
is	to	bundle	it	into	a	single	"application.js"	file,	served	from	your	own	domain.	That	way,
we	can	re-use	the	already	warm	connection	(as	long	you	allowed	the	browser	to	"keep-
alive"	the	connection	it	used	to	download	the	document)	to	download	all	of	your	external
Javascript	in	one	go.

Resource	hints
There's	another	way	we	can	maximize	network	utilization	-	through	something	called
resource	hints.	There	are	couple	of	different	kinds	of	resource	hints.	In	general,	most	of
them	are	telling	the	browser	to	prepare	some	connection	or	resource	in	advance	of	the

Resource	Hints

128

parser	getting	to	the	actual	point	where	it	needs	the	connection.	This	prevents	the	parser
from	blocking	on	the	network.

DNS	Prefetch	-	Pretty	simple	-	tell	the	browser	to	resolve	the	DNS	of	a	given
hostname	(example.com)	as	soon	as	possible.
Preconnect	-	Tells	the	browser	to	open	a	connection	as	soon	as	possible	to	a	given
hostname.	Not	only	will	this	resolve	DNS,	it	will	start	a	TCP	handshake	and	perform
TLS	negotiation	if	the	connection	is	SSL.
Prefetch	-	Tells	to	browser	to	download	an	entire	resource	(or	sub-resource)	that
may	be	required	later	on.	This	resource	can	be	an	entire	HTML	document	(for
example,	the	next	page	of	search	results),	or	it	can	be	a	script,	stylesheet,	or	other
sub-resource.	The	resource	is	only	downloaded	-	it	isn't	parsed	(if	script)	or
rendered	(if	HTML).
Prerender	-	One	of	these	things	is	not	like	the	other,	and	prerender	is	it.	Marking	an
	<a>		tag	with		prerender		will	actually	cause	the	browser	to	get	the	linked		href	
page	and	render	it	before	the	user	even	clicks	the	anchor!	This	is	the	technology
behind	Google's	Instant	Pages	and	Facebook's	Instant	Articles.

It's	important	to	note	that	all	of	these	are	hints.	The	browser	may	or	may	not	act	upon
them.	Most	of	the	time,	though,	they	will	-	and	we	can	use	this	to	our	advantage.

Browser	support:	I've	detailed	which	browsers	support	which	resource	hints	(as	of
November	2015)	below.	However,	any	user	agent	that	doesn't	understand	a	particular
hint	will	just	skip	past	it,	so	there's	no	harm	in	including	them.	Most	resource	hints	enjoy
>50%	worldwide	support	(according	to	to	caniuse.com)	so	I	think	they're	definitely	worth
including	on	any	page.

Let's	talk	about	each	of	these	items	in	turn,	and	when	or	why	you	might	use	each	of
them:

DNS	Prefetch

<link	rel="dns-prefetch"	href="//example.com">

In	case	you're	brand	new	to	networking,	here's	a	review	-	computers	don't	network	in
terms	of	domain	names.	Instead,	they	use	IP	addresses	(like		192.168.1.1	,	etc).	They
resolve	a	hostname,	like		example.com	,	into	an	IP	address.	To	do	this,	they	have	to	go	to
a	DNS	server	(for	example,	Google's	server	at		8.8.8.8)	and	ask:	"Hey,	what's	the	IP

Resource	Hints

129

http://www.caniuse.com

address	of		some-host.com	?"	This	connection	takes	time	-	usually	somewhere	between
50-100ms,	although	it	can	take	much	longer	on	mobile	networks	or	in	developing
countries	(500-750ms).

When	to	Use	It:	But	you	may	be	asking	-	why	would	I	ever	want	to	resolve	the	DNS	for
a	hostname	and	not	actually	connect	to	that	hostname?	Exactly.	So	forget	about		dns-
prefetch	,	because	its	cousin,		preconnect	,	does	exactly	that.

Browser	Support:	Everything	except	IE	9	and	below.

Preconnect

<link	rel="preconnect"	href="//example.com">

A	preconnect	resource	hint	will	hint	the	browser	to	do	the	following:

Resolve	the	DNS,	if	not	done	already	(1	round-trip)
Open	a	TCP	connection	(1.5	round-trips)
Complete	a	TLS	handshake	if	the	connection	is	HTTPS	(2-3	round-trips)

The	only	thing	it	won't	do	is	actually	download	the	(sub)resource	-	the	browser	won't
start	loading	the	resource	until	either	the	parser	or	preloader	tries	to	download	the
resource.	This	can	eliminate	up	to	5	round-trips	across	the	network!	That	can	save	us	a
heck	of	a	lot	of	time	in	most	environments,	even	fast	home	Wifi	connections.

When	to	Use	It:	Here's	an	example	from	Rubygems.org.

Taking	a	look	at	how	Rubygems.org	loads	in	webpagetest.org,	we	notice	a	few	things.
What	we're	looking	for	is	network	utilization	after	the	document	is	downloaded	-	once	the
main	"/"	document	loads,	we	should	see	a	bunch	of	network	requests	fire	at	once.
Ideally,	they'd	all	fire	off	at	this	point.	In	a	perfect	world,	network	utilization	would	look
like	a	flat	line	at	100%,	which	then	stops	as	soon	as	the	page	loads	completely.
Preconnect	helps	us	to	do	that	by	allowing	us	to	move	some	network	tasks	earlier	in	the
page	load	process.

Notice	these	these	two	resources,	closer	to	the	end	of	the	page	load:

Resource	Hints

130

https://blog.packet-foo.com/2014/07/determining-tcp-initial-round-trip-time/
https://zoompf.com/blog/2014/12/optimizing-tls-handshake
https://rubygems.org

Two	are	related	to	gaug.es,	an	analytics	tracking	service,	and	the	other	is	a	GIF	from	a
Typekit	domain.	The	green	bar	here	is	time-to-first-byte	-	time	spent	waiting	for	a	server
response.	But	note	how	the	analytics	tracking	service	and	the	Typekit	GIF	have	teal,
orange,	and	purple	bars	as	well	-	these	bars	represent	time	spent	resolving	DNS,
opening	a	connection,	and	negotiating	SSL,	respectively.	By	adding	a	preconnect	tag	to
the	head	of	the	document,	we	can	move	this	work	to	the	beginning	of	the	page	load,	so
that	when	the	browser	needs	to	download	these	resource	it	has	a	pre-warmed
connection.	That	loads	each	resource	~200ms	faster	in	this	case.

You	may	be	wondering	-	why	hasn't	the	preloader	started	loading	these	resources
earlier?	In	the	case	of	the	gang.es	script,	it	was	loaded	with	an	"async"	script-injection
tag.	This	is	why	that	method	is	a	bit	of	a	stinker.	For	more	about	why	script-injection	isn't
a	great	idea,	see	Ilya	Grigorik's	post	on	the	topic.	So	in	this	case,	rather	than	adding	a
	preconnect		tag,	I'll	simply	change	the	gaug.es	script	to	a	regular	script	tag	with	an
	async		attribute.	That	way,	the	browser	preloader	will	pick	it	up	and	download	it	as	soon
as	possible.

In	the	case	of	that	Typekit	gif,	it	was	also	script-injected	into	the	bottom	of	the	document.
A		preconnect		tag	would	speed	up	this	connection.	However,		p.gif		is	actually	a
tracking	beacon	for	Adobe,	so	I	don't	think	that	speeding	that	up	will	provide	any
performance	benefit	to	the	user.

In	general,		preconnect		works	best	with	sub	resources	that	are	script-injected,	because
the	browser	preloader	cannot	download	these	resources.	Use	webpagetest.org	to	seek
out	sub	resources	that	load	late	and	trigger	the	DNS/TCP/TLS	setup	cost.

In	addition,	it	works	well	for	script-injected	resources	with	dynamic	URLs.	You	can	set	up
a	connection	to	the	domain,	and	then	later	use	that	connection	to	download	a	dynamic
resource	(like	the	Typekit	example	above).	See	the	W3C	spec:

The	full	resource	URL	may	not	be	known	until	the	page	is	being	constructed	by
the	user	agent	-	e.g.	conditional	loading	logic,	UA	adaptation,	etc.	However,	the
origin	from	which	one	or	more	of	these	resources	will	be	fetched	is	often	known
ahead	of	time	by	the	developer	or	the	server	generating	the	response.	In	such
cases,	a	preconnect	hint	can	be	used	to	initiate	an	early	connection	handshake
such	that	when	the	resource	URL	is	determined,	the	user	agent	can	dispatch	the
request	without	first	blocking	on	connection	negotiation.

Browser	Support:	Unfortunately,	preconnect	is	probably	the	least-supported	resource
hint.	It	only	works	in	very	modern	Chrome	and	Firefox	versions,	and	is	coming	to	Opera
soon.	Safari	and	IE	don't	support	it.

Resource	Hints

131

https://www.leaseweb.com/labs/2015/03/ghostery-blocks-adobe-typekit-hosted-fonts/

Prefetch

<link	rel="prefetch"	href="//example.com/some-image.gif">

A	prefetch	resource	hint	will	hint	the	browser	to	do	the	following:

Everything	that	we	did	to	set	up	a	connection	in	the		preconnect		hint
(DNS/TCP/TLS).
But	in	addition,	the	browser	will	also	actually	download	the	resource.
However,		prefetch		only	works	for	resources	required	by	the	next	navigation,	not
for	the	current	page.

When	to	Use	It:	Consider	using		prefetch		in	any	case	where	you	have	a	good	idea
what	the	user	might	do	next.	For	example,	if	we	were	implementing	an	image	gallery
with	Javascript,	where	each	image	was	loaded	with	an	AJAX	request,	we	might	insert
the	following	prefetch	tag	to	load	the	next	image	in	the	gallery:

<link	rel="prefetch"	href="//example.com/gallery-image-2.jpg">

You	can	even	prefetch	entire	pages.	Consider	a	paginated	search	result:

<link	rel="prefetch"	href="//example.com/search?q=test&page=2">

Browser	Support:	IE	11	and	up,	Firefox,	Chrome,	and	Opera	all	support		prefetch	.
Safari	and	iOS	Safari	don't.

Prerender
Prerender	is	prefetch	on	steroids	-	instead	of	just	downloading	the	linked	document,	it
will	actually	pre-render	the	entire	page!	This	means	that	pre	rendering	only	works	for
HTML	documents,	not	scripts	or	other	sub-resources.

This	is	a	great	way	to	implement	something	like	Google's	Instant	Pages	or	Facebook's
Instant	Articles.

Of	course,	you	have	to	be	careful	and	considerate	when	using	prefetch	and	prerender.	If
you're	prefetching	something	on	your	own	server,	you're	effectively	adding	another
request	to	your	server	load	for	every	prefetch	directive.	A	prerender	directive	can	be

Resource	Hints

132

even	more	load-intensive	because	the	browser	will	also	fetch	all	sub	resources
(CSS/JS/images,	etc),	which	may	also	come	from	your	servers.	It's	important	to	only	use
prerender	and	prefetch	where	you	can	be	pretty	certain	a	user	will	actually	use	those
resources	on	the	next	navigation.

There's	another	caveat	to	prerender	-	like	all	resource	hints,	pretenders	are	given	much
lower	priority	by	the	browser	and	aren't	always	executed.	Here's	straight	from	the	spec.

The	user	agent	may:

Allocate	fewer	CPU,	GPU,	or	memory	resources	to	pre	rendered	content.
Delay	some	requests	until	the	requested	HTML	resource	is	made	visible	-
e.g.	media	downloads,	plugin	content,	and	so	on.
Prevent	pre	rendering	from	being	initiated	when	there	are	limited	resources
available.

Browser	Support:	IE	11	and	up,	Chrome,	and	Opera.	Firefox,	Safari	and	iOS	Safari
don't	get	this	one.

Conclusion
We	have	a	long	way	to	go	with	performance	on	the	web.	I	scraped	together	a	little	script
to	check	the	Alexa	Top	10000	sites	and	look	for	resource	hints	-	here's	a	quick	table	of
what	I	found.

Resource	Hint Prevalence

	dns-prefetch	 5.0%

	preconnect	 0.4%

	prefetch	 0.4%

	prerender	 0.1%

So	many	sites	could	benefit	from	liberal	use	of	some	or	all	of	these	resource	hints,	but
so	few	do.	Most	sites	that	do	use	them	are	just	using		dns-prefetch	,	which	is	practically
useless	when	compared	to	the	superior		preconnect		(how	often	do	you	really	want	to
know	the	DNS	resolution	of	a	host	and	then	not	connect	to	it?).

I'd	like	to	back	off	from	the	flamebait-y	title	off	this	article	just	slightly.	Now	that	I've
explained	all	of	the	different	things	you	can	do	to	increase	network	utilization	during	a
webpage	load,	know	that	100%	utilization	isn't	always	possible.	Resource	hints	and	the

Resource	Hints

133

http://www.w3.org/TR/resource-hints/#speculative-resource-prefetching-prefetch

other	techniques	in	this	article	help	complex	pages	load	faster,	but	thanks	to	many
different	constraints	you	may	not	be	able	to	apply	them	in	all	situations.	Page	weight
does	matter	-	a	5MB	page	will	be	more	difficult	to	optimize	than	a	500	KB	one.	What	I'm
really	trying	to	say	is	that	page	weight	only	sorta	matters.

I	hope	I've	demonstrated	to	you	that	page	weight	-	while	certainly	correlated	with
webpage	load	speed,	is	not	the	final	answer.	You	shouldn't	feel	like	your	page	is
doomed	to	slowness	because	The	Marketing	People	need	you	to	include	8	different
external	ad	tracking	services	(although	you	should	consider	quitting	your	job	if	that's	the
case).

Checklist	for	Your	App
Reduce	the	number	of	connections	required	before	reducing	page	size.
Connections	can	be	incurred	by	requesting	resources	from	a	new	unique	domain,	or
by	requesting	more	than	one	resource	at	a	time	from	a	single	domain	on	an
HTTP/1.x	protocol.
HTTP	caching	is	great,	but	don't	rely	on	any	particular	resource	being	cached.
3rd-party	CDNs	for	resources	like	JQuery,	etc	are	probably	not	reliable	enough	to
provide	any	real	performance	benefit.
Use	resource	hints	-	especially		preconnect		and		prefetch	.

Resource	Hints

134

Turbolinks	-	The	Performance	Everyone
Forgot
A	perceived	benefit	of	a	client-side	JS	framework	is	the	responsiveness	of	its	interface	-
updates	to	the	UI	are	instantaneous.	A	large	amount	of	application	logic	(and,	usually,
state)	lives	on	the	client,	instead	of	on	the	server.	The	client-side	application	can	perform
most	tasks	without	running	back	to	the	server	for	a	round-trip.	As	a	result,	in	the	post-V8
era,	many	developers	think	traditional	server-side	languages	and	frameworks	(Ruby,
Python,	even	Java)	are	simply	too	slow	for	modern	web	applications,	which	are	now
supposed	to	behave	like	native	applications,	with	instantaneous	responses.

Is	Rails	dead?	Can	the	old	Ruby	web	framework	no	longer	keep	up	in	this	age	of	"native-
like"	performance?

A	few	days	ago	(May	21,	2015),	Shopify	IPO'd.	Shopify	(an	e-commerce	provider	that
lets	you	set	up	your	own	online	shop)	had	over	150,000	customers	and	is	a	Top	1000
site	on	Alexa.	In	addition,	Shopify	hosts	their	customers'	sites,	with	an	average	of	100ms
response	times	for	over	300	million	monthly	page	views.	Now	that's	Web	Scale.	And
they	did	it	all	on	Rails.

They're	not	the	only	ones	doing	huge	deployments	with	blazing	fast	response	times	on
Rails.	DHH	claims	Basecamp's	average	server	response	time	is	27ms.	Github	averages
about	60ms.

Turbolinks	and	View-Over-The-Wire

135

http://www.sec.gov/Archives/edgar/data/1594805/000119312515129273/d863202df1.htm
http://www.alexa.com/siteinfo/shopify.com
https://www.youtube.com/watch?v=yhseQP52yIY
https://status.github.com/

But	fast	response	times	are	only	half	of	the	equation.	If	your	server	is	blazing	fast,	but
you're	spending	500-1000ms	on	each	new	page	load	rendering	the	page,	setting	up	a
new	Javascript	VM,	and	re-constructing	the	entire	render	tree,	your	application	will	be
fast,	but	it	won't	be	instantaneous.

Enter	Turbolinks.

Turbolinks	and	other	"view-over-the-wire"
technologies
Turbolinks	received	(and	still	receives)	a	huge	amount	of	flak	from	Rails	developers
upon	its	release.	Along	with	pjax,	from	which	it	evolved,	Turbolinks	represented	a	radical
shift	in	the	way	Rails	apps	were	intended	to	be	architected.	With	hardly	any	effort	at	all,
Rails	apps	had	similar	characteristics	to	the	"Javascript	single-page	app"	paradigm:	no
full	page	loads,	pushState	usage,	and	AJAX.

But	there	was	a	critical	difference	between	Turbolinks	and	their	SPA	brethren:	instead	of
sending	data	over	the	wire,	Turbolinks	sent	fully	rendered	views.	Application	logic	was
reclaimed	from	the	client	and	kept	on	the	server	again.	Which	meant	we	got	to	write
more	Ruby!	I'll	call	this	approach	"views-over-the-wire",	becausing	we're	sending	HTML,
not	data.

"View-over-the-wire"	technologies	like	turbolinks	and	pjax	have	laid	mostly	out	of	the
limelight	since	their	release	in	~2012,	despite	their	usage	by	such	high-profile	sites	as
Shopify	and	Github.	But	with	Rails	5,	Turbolinks	is	getting	a	nice	upgrade,	with	new
features	like	partial	replacement	and	a	progress	bar	with	a	public	API.	So	I	wanted	to
answer	for	myself	the	question:	how	does	building	an	application	with	Turbolinks	feel?
Can	it	be	not	just	fast,	but	instantaneous?

And	just	what	is	an	instantaneous	response?	The	guidelines	for	human-computer
interaction	speeds	have	remained	constant	since	they	were	first	discovered	in	the	late
60's:

Turbolinks	and	View-Over-The-Wire

136

http://github.com/rails/turbolinks
https://github.com/defunkt/jquery-pjax
https://www.shopify.com/technology/15646068-rebuilding-the-shopify-admin-improving-developer-productivity-by-deleting-28-000-lines-of-javascript
http://theixdlibrary.com/pdf/Miller1968.pdf

0.1	second	is	about	the	limit	for	having	the	user	feel	that	the	system	is
reacting	instantaneously,	meaning	that	no	special	feedback	is	necessary
except	to	display	the	result.
1.0	second	is	about	the	limit	for	the	user's	flow	of	thought	to	stay
uninterrupted,	even	though	the	user	will	notice	the	delay.	Normally,	no	special
feedback	is	necessary	during	delays	of	more	than	0.1	but	less	than	1.0
second,	but	the	user	does	lose	the	feeling	of	operating	directly	on	the	data.
10	seconds	is	about	the	limit	for	keeping	the	user's	attention	focused	on	the
dialogue.	For	longer	delays,	users	will	want	to	perform	other	tasks	while
waiting	for	the	computer	to	finish,	so	they	should	be	given	feedback	indicating
when	the	computer	expects	to	be	done.	Feedback	during	the	delay	is
especially	important	if	the	response	time	is	likely	to	be	highly	variable,	since
users	will	then	not	know	what	to	expect.

See	the	rest	of	their	take	on	response	times	here."	-->

Can	Turbolinks	help	us	achieve	sub-0.1
second	interaction?
In	the	non-Turbolinks	world,	Rails	apps	usually	live	in	the	1.0	second	realm.	They	return
a	response	in	100-300ms,	spend	about	200ms	loading	the	HTML	and	CSSOM,	a	few
hundred	more	ms	rendering	and	painting,	and	then	likely	loads	of	JS	scripting	tied	to	the
onload	event.

But	in	the	Turbolinks/pjax	world,	we	get	to	cut	out	a	lot	of	the	work	that	usually	happens
when	accessing	a	new	page.	Consider:

1.	 When	using	Turbolinks,	you	don't	throw	away	your	entire	Javascript	runtime	on
every	page.	We	don't	have	to	attach	a	thousand	event	listeners	to	the	DOM,	nor
throw	out	any	JS	variables	between	page	loads.	This	requires	you	to	rethink	the
way	you	write	your	Javascript,	but	the	speed	benefits	are	big.

2.	 When	using	Turbolinks	partial	replacement,	we	don't	even	throw	away	the	entire
DOM,	instead	changing	only	the	parts	we	need	to	change.

3.	 We	don't	have	to	parse	and	tokenize	the	CSS	and	JS	ever	again	-	the	CSS	Object
Model	is	maintained.

All	of	this	translates	into	eliminating	200-700ms	on	each	new	page.	This	lets	us	move
out	of	the	1	second	human-computer	interaction	realm,	and	start	to	flirt	with	the	100	ms
realm	of	"instantaneous"	interaction.

Turbolinks	and	View-Over-The-Wire

137

http://www.nngroup.com/articles/response-times-3-important-limits/
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction?hl=en

As	an	experiment,	I've	constructed	a	TodoMVC	app	using	Rails	5	(still	under	active
development)	and	Turbolinks	3.	You	can	find	the	application	here	and	the	code	here.	It
also	uses	partial	replacement,	a	new	feature	in	Turbolinks	3.	Using	your	browsers
favorite	development	tools,	you	can	confirm	that	most	interactions	in	the	app	take	about
100-250ms,	from	the	time	the	click	event	is	registered	until	the	response	is	painted	to	the
screen.

By	comparison,	the	reference	Backbone	implementation	for	TodoMVC	takes	about	25-
40ms.	Consider	also	that	our	Backbone	implementation	isn't	making	any	roundtrips	to	a
server	to	update	data	-	most	TodoMVC	implementations	use	LocalStorage.	I	can't	find	a
live	TodoMVC	implementation	that	uses	a	javascript	framework	and	a	server	backend,
so	the	comparison	will	have	to	suffice.	In	any	case,	after	removing	network	timing,
Turbolinks	takes	about	the	same	amount	of	time	to	update	the	page	state	and	paint	the
new	elements	about	as	quickly	as	Backbone.	And	we	didn't	even	have	to	write	any	new
Javascript!

Turbolinks	also	forces	you	to	do	a	lot	of	things	you	should	be	doing	already	with	your
front-end	Javascript	-	idempotent	functions,	and	not	treating	your	DOM	ready	hooks	like
a	junk	drawer.	A	lot	of	people	griped	about	this	when	Turbolinks	came	out	-	but	you
shouldn't	have	been	doing	it	anyway!

Other	than	asking	to	re-evaluate	the	way	you	write	your	front-end	JS,	Turbolinks	doesn't
ask	you	to	change	a	whole	lot	about	the	way	you	write	Rails	apps.	You	still	get	to	use	all
the	tools	you're	used	to	on	the	backend,	because	what	you're	doing	is	still	The	Web	with
a	little	spice	thrown	in,	not	trying	to	build	native	applications	in	Javascript.

load	is	dead,	all	hail	load!

Look	in	any	Rails	project,	and	for	better	or	for	worse,	you're	going	to	see	a	lot	of	this:

$(document).ready(function	()	{	...	});

Rails	developers	are	usually	pretty	lazy	when	it	comes	to	Javascript	(although,	most
developers	are	pretty	lazy).	JQuery	waits	for	DOMContentLoaded	to	fire	before	handing
off	execution	to	the	function	in		ready	.	But	Turbolinks	takes	DOMContentLoaded	away
from	us,	and	gives	us	a	couple	other	events	instead.	Try	attaching	events	to	these
instead,	or	using	JQuery's		.on		to	attach	event	handlers	to	the	document	(as	opposed
to	individual	nodes).	This	removal	of	the		load		and		DOMContentLoaded		events	can	wreak

Turbolinks	and	View-Over-The-Wire

138

http://todomvc-turbolinks.herokuapp.com/
https://github.com/nateberkopec/todomvc-turbolinks
http://www.quirksmode.org/blog/archives/2015/05/web_vs_native_l.html
https://github.com/jquery/jquery/blob/master/src/core/ready.js#L81
https://github.com/rails/turbolinks#events

havoc	on	existing	Javascript	that	uses	page	ready	listeners	everywhere,	and	why	I
wouldn't	recommend	using	Turbolinks	on	existing	projects,	and	using	it	for	greenfield
only.

Caching	-	still	a	Rails	dev's	best	friend

DHH	has	said	it	a	hundred	times:	Rails	is	an	extraction	from	Basecamp,	and	is	best
used	when	building	Basecamp-like	applications.	Thus,	DHH's	2013	talk	on	Basecamp's
architecture	is	valuable	-	most	Rails	apps	should	be	architected	this	way,	otherwise
you're	going	to	be	spending	most	of	your	time	fighting	the	framework	rather	than	getting
things	done.

Most	successful	large-scale	Rails	deployments	make	extensive	use	of	caching.	Ruby	is
a	(comparatively)	slow	language	-	if	you	want	to	keep	server	response	times	below
300ms,	you	simply	have	to	minimize	the	amount	of	Ruby	you're	running	on	every
request	and	never	calculate	the	same	thing	twice.

Caching	can	be	a	double-edged	sword	in	small	apps,	though.	Sometimes,	the	amount	of
time	it	takes	to	read	from	the	cache	is	more	than	it	takes	to	just	render	something.	When
evaluating	whether	or	not	to	cache	something,	always	test	your	apps	locally	in
production	mode,	with	production-size	datasets	(just	a	copy	of	the	production	DB,	if	your
company	allows	it).	The	only	way	to	know	for	sure	if	caching	is	the	right	solution	for	a
block	of	code	is	to	measure,	measure,	measure.	And	how	do	we	do	that?

rack-mini-profiler	and	the	flamegraph

rack-mini-profiler	has	become	an	indispensable	part	of	my	Ruby	workflow.	It's	written	by
the	incredible	Sam	Saffron,	who's	doing	absolutely	vital	work	(along	with	others)	on
Ruby	speed	over	at	RubyBench.org.

Turbolinks	and	View-Over-The-Wire

139

https://www.youtube.com/watch?v=yhseQP52yIY
https://github.com/MiniProfiler/rack-mini-profiler
https://rubybench.org

rack-mini-profiler	puts	a	little	white	box	at	the	upper	left	of	a	page,	showing	you	exactly
how	long	the	last	request	took	to	process,	along	with	a	breakdown	of	how	many	SQL
queries	were	executed.	The	amount	of	unnecessary	SQL	queries	I've	eliminated	with
this	tool	must	number	in	the	thousands.

But	that's	not	even	rack-mini-profiler's	killer	feature.	If	you	add	in	the		flamegraph		gem	to
your	Gemfile,	you	get	a	killer	flame	graph	showing	exactly	how	long	rendering	each	part
of	your	page	took.	This	is	invaluable	when	tracking	down	exactly	what	parts	of	the	page
took	the	most	time	to	render.

Chrome	Timeline	-	the	sub-100ms	developer's	best	friend

When	you're	aiming	for	a	sub-100ms-to-glass	Turbolinks	app,	every	ms	counts.	So	allow
me	introduce	you	to	my	little	friend:	Chrome	Timeline.

Turbolinks	and	View-Over-The-Wire

140

This	bad	boy	shows	you,	in	flamegraph	format,	exactly	where	each	of	your	100ms	goes.
Read	up	on	Google's	documentation	on	exactly	how	to	use	this	tool,	and	exactly	what
means	what,	but	it'll	give	you	a	great	idea	of	which	parts	of	your	Javascript	are	slowing
down	your	page.

Rethinking	Turbolinks	3's	progress	bar

Turbolinks	3	introduces	a	progress	bar	to	the	top	of	the	page	(you	can	see	it	in	action	at
this	demo	here).	When	building	my	TodoMVC	implementation,	I	noticed	that	this
progress	bar	actually	increased	perceived	load	times	in	sub-200	ms	interactions.	I'm	not
sure	what	it	is	about	it	-	perhaps	my	brain	is	just	wired	to	think	that	an	interaction	is	slow
whenever	it	sees	a	progress	bar	or	a	spinner.

Turbolinks	exposes	a	public	API	for	the	progress	bar	-	eventually,	someone	will	hack
together	a	way	to	hide	the	progress	bar	until	a	preset	amount	of	time	has	passed	-	say,
250ms.

Non-RESTful	redirects

100ms-to-glass	is	not	a	lot	of	time.	In	most	cases,	you	may	not	even	have	time	to
redirect.	Consider	this	typical	bit	of	Rails	controller	logic:

Turbolinks	and	View-Over-The-Wire

141

https://github.com/rails/turbolinks#progress-bar

def	create

		thing	=	Thing.new(params[:thing])

		if	thing.save

				redirect_to	...

Unfortunately,	you've	just	doubled	the	number	of	round-trips	to	the	server	-	one	for	the
POST,	and	one	for	the	GET	when	you	get	your	response	back	from	the	redirect.	I've
found	that	this	alone	puts	you	beyond	100ms.	With	remote	forms	and	Turbolinks,	it
seems	to	be	far	better	to	do	non-RESTFUL	responses	here	and	just	re-render	the
(updated)	index	view.

Be	wary	of	partials

Partials	in	Rails	have	always	been	slow-ish.	They're	fast	enough	if	you're	aiming	for
300ms	responses,	but	in	the	100ms-to-glass	world,	we	can't	really	afford	any	less	than	a
50ms	server	response	time.	Be	wary	of	using	partials,	cache	them	if	you	can,	and
always	benchmark	when	adding	a	new	partial.

Response	time	goals	and	Apache	bench

Another	key	tool	for	keeping	your	Turbolinks-enabled	Rails	app	below	100ms-to-glass	is
to	keep	your	server	response	times	ridiculously	fast	-	50ms	should	be	your	goal.	Apache
Bench	is	a	great	tool	for	doing	this,	but	siege	is	another	popular	tool	that	does	the	same
thing	-	slams	your	web	server	as	fast	as	it	can	to	get	an	idea	of	your	max
requests/second.

Be	sure	to	load	up	your	rails	server	in	production	mode	when	benchmarking	with	these
tools	so	that	you	don't	have	code	reloading	slowing	down	each	request!

Turbolinks	and	View-Over-The-Wire

142

https://github.com/nateberkopec/todomvc-turbolinks/blob/master/app/controllers/todos_controller.rb#L8

In	addition,	be	sure	to	test	with	production	(or	extremely	production-like)	data.	If	queries
return	100	rows	in	development	but	return	1000	rows	in	production,	you're	going	to	see
different	performance.	We	want	our	development	environment	to	be	as	similar	to
production	as	possible.

Gzip	all	the	things!

Slap	Rack::Deflater	on	the	tippy-top	of	your	middleware	stack	to	gzip	any	asset
responses,	along	with	any	HTML.

Things	that	don't	work

I	tried	using	JRuby,	and	the	speed	impact	was	negligible.	Even	when	testing	with	a	big
concurrent	load,	multi-process	MRI	servers	like	Unicorn	or	Puma	performed	better.	Your
app	may	be	different,	but	don't	expect	a	huge	speed	boost	here.

Turbo-React	is	an	interesting	project.	It	combines	Turbolinks	with	React's	virtual	DOM
and	dom-diffing	tools,	meaning	that	Turbolinks	does	the	least	amount	of	work	possible
when	changing	the	current	document	to	the	new	one	that	came	down	the	wire	(by
default,	Turbolinks	just	swaps	out	the	entire	document).	I	gave	it	a	shot,	though,	and
didn't	notice	any	meaningful	speed	differences.	It	does,	however,	let	you	do	cool	things
like	CSS	transitions.

I	noticed	I	was	spending	30-40ms	in	scripting	on	each	Turbolinks	request.	As	a	hunch,	I
tried	swapping	JQuery	out	with	Zepto,	to	see	if	my	choice	of	framework	was	making	a
difference.	No	luck.	Zepto's	just	as	slow	as	JQuery	when	working	with	Turbolinks.	Also
unfortunately,	I	can't	forgo	JQuery	either,	since	to	stay	under	100ms	I'm	forced	to	use
remote	forms,	which	requires	a	javascript	framework	of	some	kind	(either	JQuery	to	use
jquery-ujs,	or	zepto	to	use	rails-behaviors).

Common	mistakes

Be	absolutely	certain	that	a	page	load	that	you	think	is	Turbolinks	enabled,	is
actually	Turbolinks	enabled.	Click	a	link	with	the	Developer	console	open	-	if	the
console	says	something	like	"Navigated	to	http://www.whatever.com/foo",	that	link
wasn't	Turbolinks-enabled.
Don't	render	erb	responses	that	do	things	like	append	items	to	the	current	page.
Instead,	a	Turbolinks-enabled	action	should	return	a	full	HTML	page.	Let	Turbolinks
do	the	work	of	swapping	out	the	document,	instead	of	writing	your	own,	manual

Turbolinks	and	View-Over-The-Wire

143

https://github.com/nateberkopec/todomvc-turbolinks/blob/master/config.ru
http://www.whatever.com/foo

"$("#todo-list").append("<%=	j(render(@todo))	%>");"	calls.	For	an	example,	check
out	my	TodoMVC	implementation,	which	only	uses	an	index	template.	Keep	state
(elements	having	certain	classes,	for	example)	in	the	template,	rather	than	allowing
too	much	DOM	state	to	leak	into	your	Javascript.	It's	just	unnecessary	work	that
Turbolinks	frees	us	from	doing.

Limitations	and	caveats

I'm	not	sure	how	Turbolinks	will	fare	in	more	complex	UI	interactions	-	the	TodoMVC
example	is	simple.	Caching	will	be	required	when	scaling,	which	some	people	think	is
too	complex.	I	think	that	with	smart	key-based	expiration,	and	completely	avoiding
manual	cache	expiration	or	"sweepers",	it	isn't	too	bad.

Turbolinks	doesn't	play	great	with	client	side	JS	frameworks,	due	to	the	transition	cache
and	the	lack	of	the		load		event.	Be	wary	of	multiple	instances	of	your	app	being
generated,	and	be	careful	of	Turbolinks'	transition	cache.

Integration	testing	is	still	a	pain.	Capybara	and	selenium-webdriver,	though	widely	used,
remain	difficult	to	configure	properly	and,	seemingly	no	matter	what,	are	not
deterministic	and	occasionally	experience	random	failures.

On	mobile

First,	if	you're	interested	in	fast	mobile	sites,	Ilya	Grigorik's	1000ms	to	glass	talk	is
required	viewing.	Ilya	reveals	that	for	mobile,	you're	going	to	be	spending	at	least	300-
700ms	just	waiting	for	the	network.	That	means	that,	unfortunately,	a	Turbolinks	enabled
approach	cannot	get	you	to	a	0.1ms	instantaneous	UI	on	mobile.

"View-over-the-wire"	applications	don't	work	offline,	while	client	side	JS	applications	(in
theory)	can.

Conclusion:	"View-over-the-wire"	is	better	than	it	got
credit	for

Overall,	I	quite	enjoyed	the	Turbolinks	development	experience,	and	mostly,	as	a	user,
I'm	extremely	impressed	with	the	user	experience	it	produces.	Getting	serious	about
Rails	performance	and	using	a	"view-over-the-wire"	technology	means	that	Rails	apps
will	deliver	top-shelf	experiences	on	par	with	any	clientside	framework.

Turbolinks	and	View-Over-The-Wire

144

https://github.com/nateberkopec/todomvc-turbolinks/blob/master/app/views/todos/index.html.erb

Checklist	for	Your	App
Be	aware	of	the	speed	impact	of	partials.	Use	profilers	like		rack-mini-profiler	
to	determine	their	real	impact,	but	partials	are	slow.	Iterating	over	hundreds	of	them
(for	example,	items	in	a	collection)	may	be	a	source	of	slowdown.	Cache
aggressively.
Static	assets	should	always	be	gzipped.	As	for	HTML	documents,	the	benefit	is
less	clear	-	if	you're	using	a	reverse	proxy	like	NGINX	that	can	do	it	for	you	quickly,
go	ahead	and	turn	that	on.
Eliminate	redirects	in	performance-sensitive	areas.	301	redirects	incur	a	full
network	round-trip	-	in	performance	sensitive	code,	such	as	simple	Turbolinks
responses,	it	may	be	worth	it	to	render	straight	away	rather	than	redirect	to	a
different	controller	action.	This	does	cause	some	code	duplication.

Turbolinks	and	View-Over-The-Wire

145

WebFonts,	Design's	Double-Edged
Sword
I'm	passionate	about	fast	websites.	That's	a	corny	thing	to	say,	I	realize	-	it's	something
you'd	probably	read	on	a	resume,	next	to	a	description	of	how	"detail-oriented"	and
"dedicated"	I	am.	But	really,	I	love	the	web.	The	openness	of	the	Web	has	contributed	to
a	global	coming-together	that's	created	beautiful	things	like	Wikipedia	or	the	FOSS
movement.

As	Jeff	Bezos	has	said	to	Basecamp,	nobody	is	going	to	wake	up	10	years	from	now
and	wish	their	website	was	slower.	By	making	the	web	faster,	we	can	make	bring	the
Web's	amazing	possibilities	for	collaboration	to	an	even	wider	global	audience.

Internet	access	is	not	great	everywhere	-	the	Akamai	State	of	the	Internet,	2015	puts	the
global	average	connection	bandwidth	at	5.1	Mbps.	For	those	of	you	doing	the	math	at
home,	that's	a	measly	625	kilobytes	per	second.	The	US	average	isn't	much	better	-
12.0	Mbps,	or	just	1.464	megabytes	per	second.

When	designing	the	website	for	a	project	that	wants	to	encourage	global	collaboration,
as	most	FOSS	sites	do,	we	need	to	be	thinking	about	our	users	in	low-bandwidth	areas
(which	is	to	say,	the	majority	of	global	internet	users).	We	don't	want	to	make	a	high-
bandwidth	connection	a	barrier	to	learning	a	programming	language	or	contributing	to
open-source.

It's	with	this	mindset	that	I've	been	looking	at	the	performance	of	Rubygems.org	for	the
last	few	weeks.	As	a	Rubyist,	I	want	people	all	over	the	world	to	be	able	to	use	Ruby	-
fast	connection	or	no.

Rubygems.org	is	one	of	the	most	critical	infrastructure	pieces	in	the	Ruby	ecosystem	-
you	use	it	every	time	you		gem	install		(or		bundle	install	,	for	that	matter).
Rubygems.org	also	has	a	web	application,	which	hosts	a	gem	index	and	search
function.	It	also	has	some	backend	tools	for	gem	maintainers.

I	decided	to	dig	in	to	the	front-end	performance	of	Rubygems.org	for	these	reasons.

Diagnosing	with	Chrome	Timeline
When	diagnosing	a	website's	performance,	I	do	two	things	straight	off	the	bat:

Webfonts

146

https://signalvnoise.com/posts/3112-how-basecamp-next-got-to-be-so-damn-fast-without-using-much-client-side-ui
https://www.akamai.com/us/en/multimedia/documents/content/state-of-the-internet-2015-executive-review-volume-02.pdf

Open	the	site	in	Chrome.	Open	DevTools,	and	do	a	hard	refresh	while	the	Network
tab	is	open.
Run	a	test	on	webpagetest.org.

Both	webpagetest.org	and	Google	Chrome's	Network	tools	pointed	out	an	interesting
fact	-	while	total	page	weight	was	reasonable	(about	600	KB),	over	72%	of	the	total	page
size	was	WebFonts	(434	KB!).	Both	of	these	tools	were	showing	that	page	loads	were
being	heavily	delayed	by	waiting	for	these	fonts	to	download.

I	plugged	Akamai's	bandwidth	statistics	into	DevTool's	network	throttling	function.	Using
DevTool's	throttler	is	a	bit	like	running	your	own	local	HTTP	proxy	that	will	artificially
throttle	down	network	bandwidth	to	whatever	values	you	desire.	The	results	were	pretty
dismal.	Lest	you	try	this	on	your	own	site,	don't	immediately	discard	the	results	if	you
think	they're	"way	too	slow,	our	site	never	loads	like	that!"	At	625	KB/s,	Twitter	still
manages	to	paint	within	2	seconds.	Google's	homepage	does	it	half	a	second."

Time	to
First	Paint

Time	to	Paint	Text
(fonts	loaded)

Time	to		load	
Event

US	(1.4	MB/s) 3.56s 3.83s 3.96s

Worldwide
(625	KB/s) 7.41s 7.59s 8.20s

Ouch!	I	used	DevTool's	Filmstrip	view	to	get	a	rough	idea	of	when	fonts	were	loaded	in
as	well.	You	can	use	the	fancy	new	Resource	Timing	API	to	get	this	value	precisely	(and
on	client	browsers!)	but	I	was	being	lazy.

When	evaluating	the	results	of	any	performance	test,	I	use	the	following	rules-of-thumb.
These	guidelines	for	human-computer	interaction	speeds	have	remained	constant	since
they	were	first	discovered	in	the	late	60's	:

0.1	seconds	is	about	the	limit	for	having	the	user	feel	that	the	system	is	reacting
instantaneously,	meaning	that	no	special	feedback	is	necessary	except	to	display
the	result.
1.0	second	is	about	the	limit	for	the	user's	flow	of	thought	to	stay	uninterrupted,
even	though	the	user	will	notice	the	delay.	Normally,	no	special	feedback	is
necessary	during	delays	of	more	than	0.1	but	less	than	1.0	second,	but	the	user
does	lose	the	feeling	of	operating	directly	on	the	data.
10	seconds	is	about	the	limit	for	keeping	the	user's	attention	focused	on	the
dialogue.	For	longer	delays,	users	will	want	to	perform	other	tasks	while	waiting	for
the	computer	to	finish,	so	they	should	be	given	feedback	indicating	when	the

Webfonts

147

http://www.webpagetest.org
http://googledevelopers.blogspot.com/2013/12/measuring-network-performance-with.html
http://theixdlibrary.com/pdf/Miller1968.pdf

computer	expects	to	be	done.	Feedback	during	the	delay	is	especially	important	if
the	response	time	is	likely	to	be	highly	variable,	since	users	will	then	not	know	what
to	expect.

This	is	the	Nielsen	Norman	group's	interpretation	of	the	linked	paper.	See	the	rest	of
their	take	on	response	times.

Most	webpages	become	usable	(that	is,	the	user	can	read	and	begin	to	interact	with
them)	in	the	range	of	1	to	10	seconds.	This	is	good,	but	it's	possible	that	for	many
connections	we	can	achieve	websites	that,	on	first/uncached/cold	loading,	can	be	usable
in	less	than	1	second.

Using	these	rules-of-thumb,	I	decided	we	had	some	work	to	do	to	improve
Rubygems.org's	paint	and	loading	times	on	poor	connections.	As	fonts	comprised	a
majority	of	the	site's	page	weight,	I	decided	to	start	there.

Auditing	font	usage
WebFonts	are	awesome	-	they	really	make	the	web	beautiful.	Web	design	is	95%
typography",	so	changing	fonts	can	have	a	huge	effect	on	the	character	and	feel	of	a
website.	For	these	reasons,	WebFonts	have	become	extremely	popular	-	HTTP	Archive
estimates	about	51%	of	sites	currently	use	WebFonts	and	that	number	is	still	growing.

WebFonts	are	here	to	stay,	but	that	doesn't	mean	it's	impossible	to	use	them	poorly.

Rubygems.org	was	using	Adobe	Typekit	-	a	common	setup	-	and	using	a	single
WebFont,	Aktiv	Grotesk,	for	all	of	the	site's	text.

By	using	Chrome's	Network	tab,	I	realized	that	Rubygems.org	was	loading	more	than	a
dozen	individual	weights	and	styles	of	the	site	font,	Aktiv	Grotesk.	Immediately	some	red
flags	started	to	go	up	-	how	could	I	possibly	audit	all	of	the	site's	CSS	and	determine	if
each	of	these	weights	and	styles	was	actually	being	used?

Instead	of	taking	a	line-by-line	approach	of	combing	through	the	CSS,	I	decided	to
approach	the	problem	from	first	principles	-	what	was	the	intent	of	the	design?	Why	was
Rubygems.org	using	WebFonts?

Deciding	on	Design	Intent

Webfonts

148

http://www.nngroup.com/articles/response-times-3-important-limits/
https://ia.net/know-how/the-web-is-all-about-typography-period
http://httparchive.org/trends.php#perFonts

Now,	I	am	not	a	designer,	and	I	don't	pretend	to	be	one	on	the	internet.	As	developers,
our	job	isn't	to	tell	the	designers	"Hey,	you're	dumb	for	including	over	500KB	of
WebFonts	in	your	design!".	That's	not	their	job.	As	performance-minded	web	developers,
our	job	is	to	deliver	the	designer's	vision	in	the	most	performant	way	possible.

This	is	a	screenshot	of	Rubygems.org's	homepage.	Most	of	the	text	is	set	at	around	a
~14px	size,	with	the	notable	exception	of	the	main	heading,	which	is	set	in	large	type	in
a	light	weight.	All	text	is	set	in	the	same	font,	Aktiv	Grotesk,	which	could	be	described	as
a	grotesque	or	neo-grotesque	sans-serif.	What's	a	grotesque?	Wikipedia	has	a	good
description.

Based	on	my	interpretation	of	the	design,	I	decided	the	design's	intent	was:

For	h1	tags,	use	a	light	weight	grotesque	type.
For	all	other	text,	use	a	grotesque	type	set	at	it's	usual,	context-appropriate	weight.
The	design	should	be	consistent	across	platforms.
The	design	should	be	consistent	across	most	locales/languages.

The	site's	font,	Aktiv	Grotesk,	bears	more	than	a	passing	resemblance	to	Helvetica	or
Arial	-	they're	both	grotesque	sans-serifs.	At	small	(~14px)	sizes,	the	difference	is	mostly
indistinguishable	to	non-designers.

I	already	had	found	a	way	to	eliminate	the	majority	of	the	site's	WebFont	usage	-	use
WebFonts	only	for	the	h1	header	tags.	The	rest	of	the	site	could	use	a	Helvetica/Arial
font	stack	with	little	visual	difference.	This	one	decision	eliminated	all	but	one	of	the
weights	and	styles	required	for	Rubygems.org!

Webfonts

149

https://en.wikipedia.org/wiki/Sans-serif#Grotesque

Using	WebFonts	for	"body"	text	-	paragraphs,	h3	and	lower	-	seems	like	a	loser's	game
to	me.	The	visual	differences	to	system	fonts	are	usually	not	detectable	at	these	small
sizes,	at	least	to	layman	eyes,	and	the	page	weight	implications	can	be	immense.	Body
text	usually	requires	several	styles	-	bold,	italic,	bold	italic	at	least	-	whereas	headers
usually	appear	only	in	a	single	weight	and	style.	Using	WebFonts	only	in	a	site's
headers	is	an	easy	way	to	set	the	site	apart	visually	without	requiring	a	lot	of
WebFont	downloads.

I	briefly	considered	not	using	WebFonts	at	all	-	most	systems	come	with	a	variety	of
grotesque	sans-serifs,	so	why	not	just	use	those	on	our	headers	too?	Well,	this	would
work	great	for	our	Mac	users.	Helvetica	looks	stunning	in	a	light,	100	weight.	But
Windows	is	tougher.	Arial	isn't	included	in	Windows	in	anything	less	than	400	(normal)
weight,	so	it	wouldn't	work	for	Rubygems.org's	thin-weight	headers.	And	Linux	-	well,
who	knows	what	fonts	they	have	installed?	It	felt	more	appropriate	to	guarantee	that	this
"lightweight"	header	style,	so	important	to	the	character	of	the	Rubygems.org	design,
would	be	visually	consistent	across	platforms.

So	I	had	my	plan:

Use	a	WebFont,	in	a	grotesque	sans-serif	style,	to	display	all	the	site's	h1	tags	in	a
light	weight.
Use	the	common	Helvetica/Arial	stack	for	all	other	text.

Changing	to	Google	Fonts
Immediately,	I	knew	Typekit	wasn't	going	to	cut	it	for	Rubygems.org.	Rubygems.org	is
an	open-source	project	with	many	collaborators,	but	issues	with	fonts	had	to	go	through
one	person	(or	a	cabal	of	a	few	people),	the	person	that	had	access	to	the	Typekit
account.	With	an	OSS	font,	or	a	solution	like	Google	Fonts	(where	anyone	can	create	a
new	font	bundle/there	is	no	'account'),	we	could	all	debug	and	work	on	the	site's	fonts.

That	reason	-	the	"accountless"	and	FOSS	nature	of	the	fonts	served	by	Google	Fonts	-
initially	lead	me	to	use	Google	Fonts	for	Rubygems.org.	Little	did	I	realize,	though,	that
Google	Fonts	offers	a	number	of	performance	optimizations	over	Typekit	that	would	end
up	making	a	huge	difference	for	us.

Serve	the	best	possible	format	for	a	user-agent

Webfonts

150

In	contrast	to	Typekit,	Google	Fonts	works	with	a	two-step	process:

You	include	an	external	stylesheet,	hosted	by	Google,	in	the	head	tag.	This
stylesheet	includes	all	the		@font-face		declarations	you'll	need.	The	actual	font	files
themselves	are	linked	in	this	stylesheet.
Using	the	URLs	found	in	the	stylesheet,	the	fonts	are	downloaded	from	Google's
servers.	Once	they're	downloaded,	the	browser	renders	them	in	the	document.

Typekit	uses	WebFontLoader	to	load	your	fonts	through	an	AJAX	request.

When	the	browser	sends	the	request	for	the	external	stylesheet,	Google	takes	note	of
what	user	agent	made	the	request.

But	why	would	different	browsers	need	different	fonts	served?

Not	all	font	formats	are	created	equal,	and	browsers	require	different	formats.
Ideally,	everyone	would	support	and	use	WOFF2,	the	latest	open	standard.	WOFF2
uses	some	awesome	compression	that	can	reduce	font	sizes	by	up	to	30%	over	the
more	widely	supported	WOFF1.	Some	browsers	(mostly	old	IE	and	Safari)	require
EOT,	TTF,	even	SVG.	Google	Fonts	takes	care	of	all	of	this	for	you,	rather	than	you
having	to	host	and	serve	each	of	these	formats	yourself.
Google	strips	out	font-hinting	information	for	non-Windows	users	What's	font
hinting?	Via	Wikipedia:	"Font	hinting	(also	known	as	instructing)	is	the	use	of
mathematical	instructions	to	adjust	the	display	of	an	outline	font	so	that	it	lines	up
with	a	rasterized	grid.	At	low	screen	resolutions,	hinting	is	critical	for	producing
clear,	legible	text."	This	is	pretty	cool.	Only	Windows	usually	actually	uses	this
information	in	a	font	file	-	Mac	and	other	operating	systems	have	their	own	"auto-
hinting"	that	ignores	most	of	this	information.	If	there	is	any	hinting	information	in	a
font	file,	Google	will	strip	it	out	for	non-Windows	users,	eliminating	a	few	extra	bytes
of	data.

Webfonts

151

https://github.com/typekit/webfontloader
https://en.wikipedia.org/wiki/Font_hinting

Leveraging	the	power	of	HTTP	caching

As	I	mentioned,	Google	Fonts	are	a	two-step	process:	download	the	(very	short)
stylesheet	from	Google,	then	download	the	font	files	from	wherever	Google	tells	you.

The	neat	thing	is	that	these	font	files	are	always	the	same	for	each	user	agent.

So	if	you	go	to	Rubygems.org	on	a	Mac	with	Chrome,	and	then	navigate	to	a	different
site	that	uses	the	same	Google	Fonts	served	Roboto	font	and	weight	as	we	do,	you
won't	redownload	it!	Awesome!	And	since	Roboto	is	one	of	the	most	widely	used
WebFonts,	we	can	be	reasonably	expect	that	at	least	a	minority	of	visitors	to	our	site
won't	have	to	download	anything	at	all!

Even	better,	since	Roboto	is	the	default	system	font	on	Android	and	ChromeOS,	those
users	won't	download	anything	at	all	either!	Google's	CSS	puts	the	local	version	of	the
font	higher	up	in	the	font	stack:

@font-face	{

		font-family:	'Roboto';

		font-style:	normal;

		font-weight:	100;

		src:	local('Roboto	Thin'),	local('Roboto-Thin'),	url(https://fonts.gstatic.com/s

/roboto/v15/2tsd397wLxj96qwHyNIkxHYhjbSpvc47ee6xR_80Hnw.woff2)	format('woff2');

}

Google	Font's	stylesheet	has	a	cache	lifetime	of	1	day	-	but	the	font	files	themselves
have	a	cache	lifetime	of	1	year.	All	in	all,	this	adds	up	-	many	visitors	to	Rubygems.org
won't	have	to	download	any	font	data	at	all!

Removing	render-blocking	Javascript

One	of	my	main	beefs	with	Typekit	(and	webfont.js)	is	that	it	introduces	Javascript	into
the	critical	rendering	path.	Remember	-	any	time	the	browser's	parser	encounters	a
script	tag,	it	must:

Download	the	script,	if	it	is	external	(has	a	"src"	attribute)	and	isn't	marked		async		or
	defer	.
Evaluate	the	script.

Until	it	finishes	these	two	things,	the	browser's	parser	is	stuck.	It	can't	move	on
constructing	the	page.	Rubygems.org's	Typekit	implementation	looked	like	this:

Webfonts

152

https://github.com/typekit/webfontloader

<html	lang="en-us">

		<head>

				<script	src="//use.typekit.net/omu5dik.js"	type="text/javascript"></script>

				<script>

						try{Typekit.load();}catch(e){}

				</script>

				<%=	stylesheet_link_tag("application")	%>

		</head>

Arrgh!	We	can't	start	evaluating	this	page's	CSS	until	Typekit	has	downloaded	itself	and
	Typekit.load()		has	finished.	Unfortunately,	if,	say,	Typekit's	servers	are	slow	or	are
down,		Typekit.load()		will	simply	block	the	browser	parser	until	it	times	out.	Ouuccch!
This	could	take	your	entire	site	down,	in	effect,	if	Typekit	ever	went	down	(this	has
happened	to	me	before	-	don't	be	as	ignorant	as	I!).

Far	better	would	have	been	this:

<html	lang="en-us">

		<head>

				<%=	stylesheet_link_tag("application")	%>

				<script	src="//use.typekit.net/omu5dik.js"	type="text/javascript"></script>

				<script>

						try{Typekit.load();}catch(e){}

				</script>

		</head>

At	least	in	this	case	we	can	render	everything	except	the	WebFonts	from	Typekit.	We'll
still	have	to	wait	around	for	any	of	the	text	to	show	up	until	after	Typekit	finishes,	but	at
least	the	user	will	see	some	signs	of	life	from	the	browser	rather	than	staring	at	a	blank
white	screen.

Google	Fonts	doesn't	use	any	JavaScript	(by	default,	anyway),	which	makes	it	faster
than	almost	any	JavaScript-enabled	approach.

There's	really	only	one	case	where	using	Javascript	to	load	WebFonts	makes	sense	-
preventing	flashes	of	unstyled	text.	Certain	browsers	will	immediately	render	the	fallback
font	(the	next	font	in	the	font	stack)	without	waiting	for	the	font	to	download.	Most
modern	browser	will	instead	wait,	sensibly,	for	up	to	3	seconds	while	the	font	downloads.

What	this	means	is	that	using	Javascript	(really	I	mean	webfont.js)	to	load	WebFonts
makes	sense	when:

Your	WebFonts	may	reasonably	be	expected	to	take	more	than	3	seconds	to

Webfonts

153

download.	This	is	probably	true	if	you're	loading	500KB	or	more	of	WebFonts.	In
that	case,	webfont.js	(or	similar)	will	help	you	keep	text	hidden	for	longer	while	the
WebFont	downloads.
You're	worried	about	FOUC	in	old	IE	or	really	old	Firefox/Chrome	versions.	Simply
keeping	WebFont	downloads	fast	will	minimize	this	too.

unicode-range

If	you	look	at	Rubygems.org	in	Chrome,	Safari,	Firefox,	and	IE,	you'll	notice	something
different	in	the	size	of	the	font	download:

Browser Font	Format Download	Size Difference

Chrome	(Mac) WOFF2 10.0	KB 1x

Opera WOFF2 10.0	KB 1x

Safari TrueType 62.27	KB 6.27x

Firefox	(Mac) WOFF 58.9	KB 5.89x

Chrome	(Win) WOFF2 14.4	KB 1.44x

IE	Edge WOFF 78.88	KB 7.88x

What	the	hell?	How	is	Chrome	only	downloading	10KB	to	display	our	WebFont	when
Safari	and	Firefox	take	almost	6x	as	much	data?	Is	this	some	secret	backdoor
optimization	Google	is	doing	in	Chrome	to	make	other	browsers	look	bad?!	Well,	Opera
looks	pretty	good	too,	so	that	can't	be	it	(this	makes	sense	-	they	both	use	the	Blink
engine).	Is	WOFF2	just	that	good?

If	you	take	a	look	at	the	CSS	Google	serves	to	Chrome	versus	the	CSS	served	to	other
browsers,	you'll	notice	a	crucial	difference	in	the		@font-face		declaration:

@font-face	{

		font-family:	'Roboto';

		unicode-range:	U+0000-00FF,	U+0131,	U+0152-0153,	U+02C6,	U+02DA,	U+02DC,	U+2000-

206F,	U+2074,	U+20AC,	U+2212,	U+2215,	U+E0FF,	U+EFFD,	U+F000;

}

What's	all	this	gibbledy-gook?

Webfonts

154

The		unicode-range		property	describes	what	characters	the	font	supports.	Interesting,
right?	Rubygems.org,	in	particular,	has	to	support	Cyrillic,	Greek	and	Latin	Extended
characters.	Normally,	we'd	have	to	download	extra	characters	to	do	that.

By	telling	the	browser	what	characters	the	font	supports,	the	browser	can	look	at	the
page,	note	what	characters	the	page	uses,	and	then	only	download	the	fonts	it	needs	to
display	the	characters	actually	on	the	page.	Isn't	that	awesome?	Chrome	(and	Opera)
isn't	downloading	the	Cyrillic,	Latin-Extended	or	Greek	versions	of	this	font	because	it
knows	it	doesn't	need	to!	Here's	the	CSS3	spec	on	unicode-range	for	more	info

This	particular	optimization	only	really	matters	if	you	need	to	support	different	character
sets.	If	you're	just	serving	the	usual	Latin	set,	unicode-range	can't	do	anything	for	you.

There	are	other	ways	to	slim	your	font	downloads	on	Google	Fonts,	though	-	there's	a
semi-secret		text		parameter	that	can	be	given	to	Google	Fonts	to	generate	a	font	file
that	only	includes	the	exact	characters	you	need.	This	is	useful	when	using	WebFonts	in
a	limited	fashion.	This	is	exactly	what	I	do	on	this	site:

<link	href="http://fonts.googleapis.com/css?family=Oswald:400&text=NATE%20MAKES%20

APPS%20FAST"	rel="stylesheet">

This	makes	the	font	download	required	for	my	site	a	measly	1.4KB	in	Chrome	and
Opera.	Hell	yeah.

But	Nate,	I	want	to	do	it	all	myself!
Yeah,	I	get	it.	Depending	on	Big	Bad	Google	(or	any	3rd-party	provider)	never	makes
you	feel	good.	But,	let's	be	realistic:

Are	you	going	to	implement		unicode-range		optimization	yourself?	What	if	your
designer	changes	fonts?
Are	you	going	to	come	up	with	30+	varieties	of	the	same	font,	like	Google	Fonts
does,	to	serve	the	perfect	one	to	each	user	agent?
Are	you	going	to	strip	the	font-hinting	from	your	font	files	to	save	an	extra	couple	of
KB?
What	if	a	new	font	technology	comes	out	(like	WOFF2	did)	and	even	more	speed
becomes	possible?	Are	you	going	to	implement	that	yourself?
Are	you	absolutely	sure	that	there's	no	major	benefit	afforded	by	users	having
already	downloaded	your	font	on	another	site	using	Google	Fonts?

Webfonts

155

http://www.w3.org/TR/css3-fonts/#unicode-range-desc

There	are	some	strange	strategies	out	there	that	people	use	when	trying	to	make
WebFonts	faster	for	themselves.	There's	a	few	that	involve	LocalStorage,	though	I	don't
see	the	point	when	Google	Fonts	uses	the	HTTP	cache	like	a	normal,	respectable
webservice.	Inlining	the	fonts	into	your	CSS	with	data-uri	makes	intuitive	sense	-	you're
eliminating	a	round-trip	or	two	to	Google	-	but	the	benefit	rarely	pans	out	when
compared	to	the	various	other	optimizations	listed	above	that	Google	Fonts	gets	you	for
free.	Overall,	I	think	the	tradeoff	is	clearly	in	Google's	favor	here.

Checklist	for	Your	App
Stylesheets	go	before	Javascript	unless	.	Unfortunately,	Typekit	only	says	to	"put
your	embed	code	near	the	top	of	the	head	tag".	If	Typekit	(or	any	other	font-loading
Javascript)	is	higher	up	in	the		<head>		than	your	stylesheets,	your	users	will	be
seeing	a	blank	page	until	Typekit	loads.	That's	not	great.
If	you	have	FOUC	problems,	either	load	fewer	fonts	or	use	webfonts.js.	Soon,
we'll	get	the	ability	to	control	font	fallback	natively	in	the	browser,	but	until	then,	you
need	to	use	WebFontLoader.	It	may	be	worth	inlining	WebFontLoader	(or	its	smaller
cousin,	FontFaceObserver)	to	eliminate	a	network	round-trip.
If	you	can,	use	Google	Fonts.	Google	Fonts	does	a	lot	of	optimizations	you	cannot
realistically	do	yourself.	These	include	stripping	font-hinting,	serving	WOFF2	to
capable	browsers,	and	supporting		unicode-range	.	In	addition,	you	benefit	from
other	sites	using	Google	Fonts	which	may	cause	users	to	have	already	loaded	the
font	you	require!
Audit	your	WebFont	usage.	Use	Chrome	DevTools	to	decipher	what's	going	with
your	fonts.	Use	similar	system	fonts	when	text	is	too	small	to	distinguish	between
fonts.	WebFont	downloads	should	almost	always	be	less	than	100KB.

Further	Optimization
Here	are	some	links	for	further	reading	on	making	WebFonts	fast:

Ilya	Grigorik,	Optimizing	WebFont	Rendering	Performance
Adam	Beres-Deak,	Loading	webfonts	with	high	performance	on	responsive
websites	Using	LocalStorage	to	store	and	serve	WebFonts.	Try	this	one	in	your
browser	with	Chrome	Timeline	open	-	it	performs	far	worse	than	Google	Fonts	on
first	load.
Patrick	Sexton,	Webfont	options	and	speed	Great	overview	of	the	multitude	of

Webfonts

156

https://github.com/typekit/webfontloader
https://github.com/bramstein/fontfaceobserver
https://www.igvita.com/2014/01/31/optimizing-web-font-rendering-performance/
http://bdadam.com/blog/loading-webfonts-with-high-performance.html
https://varvy.com/pagespeed/web-font-options.html

options	available	to	you	outside	of	Google	Fonts.
Filament	Group,	Font	Loading	Revisited

Webfonts

157

https://www.filamentgroup.com/lab/font-events.html

HTTP/2	and	You
HTTP/2	is	coming!	No,	wait,	HTTP/2	is	here!	After	publication	in	Q1	of	2015,	HTTP/2	is
now	an	"official	thing"	in	Web-land.	As	of	writing	(December	2015),	caniuse.com
esimates	about	70%	of	browsers	globally	can	now	support	HTTP/2.	That	means	I	can
use	HTTP/2	in	my	Ruby	application	today,	right?	After	all,	Google	says	that	some	pages
can	load	up	to	50%	faster	just	by	adding	HTTP/2/SPDY	support,	it's	magical	web-speed
pixie	dust!	Let's	get	it	going!

Well,	no.	Not	really.	Ilya	Grigorik	has	written	an	experimental	HTTP/2	webserver	in
Ruby,	but	it's	not	compatible	with	Rack,	and	therefore	not	compatible	with	any	Ruby	web
framework.	While	@tenderlove	has	done	some	experiments	with	HTTP/2,	Rack	remains
firmly	stuck	in	an	HTTP/1.1	world.	While	it	was	discussed	that	this	would	change	with
Rack	2	and	Rails	5,	little	actually	changed.	Until	the	situation	changes	at	the	Rack	level,
Rails	and	all	other	Ruby	web	frameworks	are	stuck	with	HTTP/1.1.

Part	of	the	reason	why	progress	has	been	slow	here	(other	than,	apparently,	that
@tenderlove	is	the	only	one	that	wants	to	work	on	this	stuff)	is	that	Rack	is	thoroughly
designed	for	an	HTTP/1.1	world.	In	a	lot	of	ways,	HTTP/2's	architecture	will	probably
mean	that	whatever	solution	we	come	up	with	will	bear	more	resemblance	to
ActionCable	than	it	does	to	to	Rack	1.0.	Certain	situations	that	are	fairly	simply	in
HTTP/1.1	land,	such	as	multi-part	POSTs,	become	far	more	complicated	in	HTTP/2
because	of	the	protocol's	evented	nature.

Ilya	Grigorik,	Google's	public	web	performance	advocate,	has	laid	out	4	principles	for	the
web	architecture	of	the	future.	Unfortunately,	Rack	is	incompatible	with	most	of	these
principles:

Request	and	Response	streaming	should	be	the	default.	While	it	isn't	the
default,	Rack	at	least	supports	streaming	responses	(it	has	for	a	while,	at	least).
Connections	to	backend	servers	should	be	persistent.	I	don't	see	anything	in
Rack	that	stops	us	from	doing	this	at	the	moment.
Communication	with	backend	servers	should	be	message-oriented.	Here's	one
of	the	main	hangups	-	Rack	is	designed	around	the	request/response	cycle.	Client
makes	a	request,	server	makes	a	response.	While	we	have	some	limited
functionality	for	server	pushes	(see	ActionController::Live::SSE),	communication	in
Rack	is	mostly	designed	around	request/response,	not	arbitrary	messages	that	can
go	in	either	direction.

HTTP/2

158

https://github.com/http2/http2-spec
http://caniuse.com/#feat=http2
https://www.chromium.org/spdy/spdy-whitepaper 50% reduction in load time
http://tenderlovemaking.com/
https://github.com/tenderlove/the_metal
https://github.com/tenderlove/arghhh
https://twitter.com/tenderlove/status/626044968419721217
https://github.com/tenderlove/the_metal/issues/5
http://tenderlovemaking.com/
https://www.igvita.com/2012/01/18/building-a-modern-web-stack-for-the-realtime-web/
http://api.rubyonrails.org/classes/ActionController/Live/SSE.html

Communication	between	clients	and	backends	should	be	bi-directional.
Another	problem	for	Rack	-	it	isn't	really	designed	for	pushes	straight	from	the
server	without	a	corresponding	request.	Rack	essentially	assumes	it	has	direct
read/write	access	to	a	socket,	but	HTTP/2	complicates	that	considerably.

If	you're	paying	attention,	you'll	realize	these	4	principles	sound	a	hell	of	a	lot	like
WebSockets.	HTTP/2,	in	a	lot	of	ways,	obviates	Ruby	developers'	needs	for
WebSockets.	As	I	mentioned	in	my	guide	to	ActionCable,	WebSockets	are	a	layer	below
HTTP,	and	one	of	the	major	barriers	of	WebSocket	adoption	for	application	developers
will	be	that	many	of	the	things	you're	used	to	with	HTTP	(RESTful	architecture,	HTTP
caching,	redirection,	etc)	need	to	be	re-implemented	with	WebSockets.	Once	HTTP/2
gets	a	JavaScript	API	for	opening	bi-directional	streams	to	our	Rails	servers,	the
reasons	for	using	WebSockets	at	all	pretty	much	evaporate.

When	these	hurdles	are	surmounted,	HTTP/2	could	bring,	potentially,	great	performance
benefits	to	Ruby	web	applications.

HTTP/2	Changes	That	Benefit	Rubyists
Here's	a	couple	of	things	that	will	benefit	almost	every	web	application.

Header	Compression

One	of	the	major	drawbacks	of	HTTP	1.1	is	that	headers	cannot	be	compressed.	Recall
that	a	traditional	HTTP	request	might	look	like	this:

accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

accept-encoding:gzip,	deflate,	sdch

accept-language:en-US,en;q=0.8

cache-control:max-age=0

cookie:_ga=(tons	of	Base	64	encoded	data)

upgrade-insecure-requests:1

user-agent:Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_11_1)	AppleWebKit/537.36	(KHT

ML,	like	Gecko)	Chrome/47.0.2526.73	Safari/537.36

Cookies,	especially,	can	balloon	the	size	of	HTTP	requests	and	responses.
Unfortunately,	there	is	no	provision	in	the	HTTP	1.x	specification	for	compressing	these	-
unlike	response	bodies,	which	we	can	compress	with	things	like		gzip	.

HTTP/2

159

https://www.nateberkopec.com/2015/09/30/action-cable.html

Headers	can	make	up	800-1400KB	of	a	request	or	response	-	multiply	this	to	Web	Scale
and	you're	talking	about	a	lot	of	bandwidth.	HTTP/2	will	reduce	this	greatly	by
compressing	headers	with	something	fancy	called	Huffman	coding.	You	don't	really	need
to	understand	how	that	works,	just	know	this	-	HTTP/2	makes	HTTP	headers	smaller	by
nearly	80%.	And	you,	as	an	application	author,	won't	need	to	do	anything	to	take
advantage	of	this	benefit,	because	the	compression/decompression	will	happen	at	lower
levels	(probably	in	Rack	or	some	new	layer	directly	below).

This	compression	will	probably	be	one	of	the	first	HTTP2	features	that	Rails	apps	will	be
able	to	take	advantage	of,	since	header	compression/decompression	can	happen	at	the
load	balancer	or	at	the	web	server,	before	the	request	gets	to	Rack.	You	can	take
advantage	of	header	compression	today,	for	example,	by	placing	your	app	behind
Cloudflare’s	network,	which	provides	HTTP/2	termination	at	their	load	balancers.

Multiplexing

Multiplexing	is	a	fancy	word	for	two-way	communication.	HTTP	1.x	was	a	one-way	street
-	you	could	only	communicate	in	one	direction	at	a	time.	This	is	sort	of	like	a	walkie-talkie
-	if	one	person	is	transmitting	with	a	walkie-talkie,	the	person	on	the	other	walkie-talkie
can't	transmit	until	the	first	person	lets	off	the	"transmit"	button.

On	the	server	side,	this	means	that	we	can	send	multiple	responses	to	our	client	over	a
single	connection	at	the	same	time.	This	is	nice,	because	setting	up	a	new	connection	is
actually	sort	of	expensive	-	it	can	take	100-500ms	to	resolve	DNS,	open	a	new	TCP
connection,	and	perhaps	negotiate	SSL.

Multiplexing	will	completely	eliminate	the	need	for	domain	sharding,	a	difficult-to-use
HTTP	1.x	optimization	tactic	where	you	spread	requests	across	multiple	domains	to	get
around	the	browser's	6-connections-per-domain	limit.	Instead	of	each	request	we	want
to	make	in	parallel	needing	a	new	connection,	a	client	browser	can	request	several
resources	across	the	same	connection.

I	mentioned	domain	sharding	was	fraught	with	peril	-	that's	because	it	can	cause	network
congestion.	The	entire	reason	the	6-connections-per-domain	limit	even	exists	is	to	limit
how	much	data	the	server	can	spit	back	at	the	client	at	one	time.	By	using	domain
sharding,	we	run	the	risk	of	too	much	data	being	streamed	back	to	clients	and	causing
packet	loss,	ultimately	slowing	down	page	loads.	Here's	an	awesome	deconstruction	of
how	domain	sharding	too	much	actually	slowed	down	Etsy's	page	loads	by	1.5	seconds.

One	area	where	Rails	apps	can	take	advantage	of	multiplexing	today	is	by	using	an
HTTP/2	compatible	CDN	for	serving	their	assets.

HTTP/2

160

http://calendar.perfplanet.com/2013/reducing-domain-sharding/

Stream	Prioritization

HTTP/2	allows	clients	to	express	preferences	as	to	which	requests	should	be	fulfilled
first.	For	example,	browsers	can	optimize	by	asking	for	JS	and	CSS	before	images.
They	can	sort	of	do	this	today	by	delaying	requests	for	resources	they	don’t	want	right
away,	but	that's	pretty	jank	and	fraught	with	peril.

As	an	example,	here's	an	article	about	how	stream	prioritization	sped	up	a	site's	initial
paint	times	by	almost	50%.

Again,	your	Ruby	app	can	take	advantage	of	this	right	now	by	using	an	HTTP/2
compatible	CDN.

Latency	Reduction

HTTP/2	will	especially	benefit	users	in	high-latency	environments	like	mobile	networks	or
developing	countries.	Twitter	found	that	SPDY	(the	predecessor	to	HTTP/2)	sped	up
requests	in	high-latency	environments	much	more	than	in	low-latency	ones.

Binary

HTTP/2	is	a	binary	protocol.	This	means	that,	instead	of	plain	text	being	sent	across	the
wire,	we're	sending	1s	and	0s.	In	short,	this	means	HTTP/2	will	be	easier	for
implementers,	because	plain-text	protocols	are	often	more	difficult	to	control	for	edge-
cases.	But	for	clients	and	servers,	we	should	see	slightly	better	bandwidth	utilization.

Unfortunately,	this	means	you	won't	be	able	to	just		telnet		into	an	HTTP	server
anymore.	To	debug	HTTP/2	connections,	you're	going	to	need	to	use	a	tool	that	will
decode	it	for	you,	such	as	the	browser's	developer	tools	or	something	like	WireShark.

One	connection	means	one	TLS	handshake

One	connection	means	TLS	handshakes	only	need	to	happen	once	per	domain,	not
once	per	connection	(say,	up	to	6	TLS	handshakes	for	the	same	domain	if	you	want	to
download	6	resources	from	it	in	parallel).

Rails	applications	can	experience	the	full	benefit	of	this	HTTP/2	feature	today	by	being
behind	an	HTTP/2	compatible	web	server	or	load	balancer.

How	Rails	Apps	Will	Change	with	HTTP/2

HTTP/2

161

http://blog.kazuhooku.com/2015/04/dependency-based-prioritization-makes.html
https://blog.twitter.com/2013/cocoaspdy-spdy-for-ios-os-x

All	of	the	changes	I've	mentioned	so	far	will	generally	benefit	all	Ruby	web	applications	-
but	if	you'll	permit	me	for	a	minute,	let's	dive	in	to	Rails	as	a	specific	example	of	your
applications	may	have	to	change	in	the	future	to	take	full	advantage	of	HTTP/2.

Primarily,	HTTP/2	will	almost	completely	upend	the	way	Rails	developers	think	about
assets.

Concatenation	is	no	more

In	essence,	all	HTTP/2	does	is	make	requests	and	responses	cheaper.	If	requests	and
responses	are	cheap,	however,	suddenly	the	advantages	of	asset	concatenation
become	less	clear.	HTTP/2	can	transport	a	JS	file	in	10	parts	pretty	much	as	fast	as	it
can	transport	that	same	file	in	1	part	-	definitely	not	the	case	in	HTTP/1.x.

In	HTTP/1.x-world,	we've	done	a	lot	of	things	to	get	around	the	fact	that	opening	a	new
connection	to	download	a	sub-resource	was	expensive.	Rails	concatenated	all	of	our
Javascript	and	CSS	into	a	single	file.	Some	of	us	used	frameworks	like	Compass	to
automatically	sprite	our	images,	turning	many	small	.pngs	into	one.

But	since	HTTP/2	makes	many-files	just	as	cheap	as	one-file,	that	opens	up	a	whole
new	world	of	advantages	for	Rails:

Development	mode	will	get	waaaay	faster.	In	development	mode,	we	don't
concatenate	resources,	meaning	a	single	page	often	requires	dozens	of	scripts	and
css	files.	HTTP/2	should	make	this	just	as	fast	as	a	single	concatenated	file	in
production.
We	can	experiment	with	more	granular	HTTP	caching	schemes.	For	example,	in
todays	Rails'	world,	if	you	change	a	single	line	in	your	(probably	massive)
application.js,	the	entire	file	will	need	to	be	re-downloaded	by	all	of	your	clients.	With
HTTP/2,	we'll	be	able	to	experiment	with	breaking	our	one-JS	and	one-CSS
approach	into	several	different	files.	Perhaps	you'll	split	out	high-churn	files	so	that
low-churn	CSS	won't	be	affected.
We	can	amortize	large	amounts	of	CSS	and	JS	over	several	page	loads.	In	today's
Rails	world,	you	have	to	download	all	of	the	CSS	and	JS	for	the	entire	application
on	the	first	page	load.	With	HTTP/2	and	it's	cheap	connections,	we	can	experiment
with	breaking	up	JS	and	CSS	on	a	more	granular	basis.	One	way	to	do	it	might	be
per-controller	-	you	could	have	a	single	base.css	file	and	then	additional	css	files	for
each	controller	in	the	app.	Browsers	could	download	bits	and	pieces	of	your	JS	and
CSS	as	they	go	along	-	this	would	effectively	reduce	homepage	(or,	I	guess,	first-
page)	load	times	while	not	imposing	any	additional	costs	when	pages	included

HTTP/2

162

several	CSS	files.

Server	push	really	makes	things	interesting

HTTP/2	introduces	a	really	cool	feature	-	server	push.	All	this	means	is	that	servers	can
proactively	push	resources	to	a	client	that	the	client	hasn't	specifically	requested.	In
HTTP/1.x-land,	we	couldn't	do	this	-	each	response	from	the	server	had	to	be	tied	to	a
request.

Consider	the	following	scenario:

1.	 Client	asks	for		index.html		from	your	Rails	app.
2.	 Your	Rails	server	generates	and	responds	with		index.html	.
3.	 Client	starts	parsing		index.html	,	realizes	it	needs		application.css		and	asks	your

server	for	it.
4.	 Your	Rails	server	responds	with		application.css	.

With	server	push,	that	might	look	more	like	this:

1.	 Client	asks	for		index.html		from	your	Rails	app.
2.	 Your	Rails	server	generates	and	responds	with		index.html	.	While	it's	doing	this,	it

realizes	that		index.html		also	needs		application.css	,	and	starts	sending	that
down	to	the	client	as	well.

3.	 Client	can	display	your	page	without	requesting	any	additional	resources,	because	it
already	has	them!

Super	neato,	huh?	This	will	especially	help	in	high-latency	situations	where	network
roundtrips	take	a	long	time.

Unfortunately,	we	can't	tell	whether	or	not	the	client	has	already	cached	the	resource
that	we	want	to	push	to	them.	There's	an	RFC	currently	under	development	to	address
this.

Interestingly,	I	think	some	of	this	means	we	might	need	to	serve	different	versions	of
pages,	or	at	least	change	Rails'	server	behavior,	based	on	whether	or	not	the	connection
is	HTTP/2	or	not.	Perhaps	soon	this	will	be	automatically	done	by	the	framework,	but
who	knows	-	nothing	has	been	worked	on	here	yet.	It's	not	clear	yet	whether	or	not	it	will
be	your	Rails	application	or	the	CDN	pushing	assets	to	the	client.

How	to	Take	Advantage	of	HTTP/2	Today

HTTP/2

163

https://mnot.github.io/I-D/h2-cache-digest/

If	you're	curious	about	where	we	have	to	go	next	with	hhh	and	what	future	interfaces
might	look	like	in	Rails	for	taking	advantage	of	HTTP/2,	I	find	that	this	Github	thread	is
extremely	illuminating.

For	all	the	doom-and-gloom	I	just	gave	you	about	HTTP/2	still	looking	a	ways	off	for
Ruby	web	frameworks,	take	heart!	There	are	ways	to	take	advantage	of	HTTP/2	today
before	anything	changes	in	Rack	and	Rails.

Move	your	assets	to	a	HTTP/2	enabled	CDN

An	easy	one	for	most	Rails	apps	is	to	use	a	CDN	that	has	HTTP/2	support.	Cloudflare	is
probably	the	largest	and	most	well-known.

There's	no	need	to	add	a	subdomain	-	simply	directing	traffic	through	Cloudflare	should
allow	browsers	to	upgrade	connections	to	HTTP/2	where	available.	The	page	you're
reading	right	now	is	using	Cloudflare	to	serve	you	with	HTTP/2!	Open	up	your	developer
tools	to	see	what	this	looks	like.

Use	an	HTTP/2	enabled	proxy,	like	NGINX	or	h20.

You	should	receive	most	of	the	benefits	of	HTTP/2	just	by	proxying	your	Rails
application	through	an	HTTP/2-capable	server,	such	as	NGINX.

For	example,	Phusion	Passenger	can	be	deployed	as	an	NGINX	module.	NGINX,	as	of
1.9.5,	supports	HTTP/2.	Simply	configure	NGINX	for	HTTP/2	as	you	would	normally,
and	you	should	be	able	to	see	some	of	the	benefits	(such	as	header	compression).

With	this	setup,	however,	you	still	won't	be	able	to	take	advantage	of	server	push	(as
that	has	to	be	done	by	your	application)	or	the	Websocket-like	benefits	of	multiplexing.

Checklist	for	Your	App
Use	a	CDN	-	preferably	one	that	supports	HTTP/2.	Using	Rail's		asset_host	
config	setting	makes	this	extremely	simple.
If	using	NGINX,	Apache,	or	a	similar	reverse	proxy,	configure	it	to	use	HTTP/2.
NGINX	supports	HTTP/2	in	version	1.9.5	or	later.	Apache's	mod_http2	is	available
in	Apache	2.4.17	and	later.

Lab:	HTTP2

HTTP/2

164

https://github.com/tenderlove/the_metal/issues/5

This	lab	requires	some	extra	files.	To	follow	along,	download	the	source	code	for
the	course	and	navigate	to	this	lesson.	The	source	code	is	available	on	GitHub
(you	received	an	invitation)	or	on	Gumroad	(in	the	ZIP	archive).

This	lab	requires	h2o,	a	webserver	designed	for	HTTP/2.	Install	it	via	your	favorite
package	manager:

brew	install	h2o

Provided	is	the	actual	homepage	for	the	Ruby	language.	In	this	directory,	in	your	shell,
type:

$./serve_lab.sh

This	will	start	two	servers:

http://localhost:8000	is	serving	the	Ruby	homepage	on	HTTP	1.1.
http://localhost:8080	is	serving	the	Ruby	homepage	with	HTTP	2.0.

Exercise	1

Open	both	pages	in	the	Network	tab	of	your	developer	tools.	Do	you	see	any
differences?

Spoiler:

The	answer	is,	not	really.	You	should	notice	some	reduced	network	blocking	at	the
beginning	-	since	HTTP/2	opens	only	a	single	connection	to	our	local	h2o	server,	it	is	not
limited	by	parallel	connections	like	HTTP/1.x	is	(you'll	see	the	queueing	occur	as	a	grey
line	in	the	network	tab).

It's	important	to	note	that	HTTP/2	is	no	performance	panacea	-	certain	sites	will	benefit,
others	(like	ruby-lang.org)	get	minimal	benefit.

Try	to	imagine	a	scenario,	based	on	the	previous	lesson,	of	a	page	that	would	greatly
benefit	from	an	HTTP/2	enabled	server.	For	example	-	try	adding	20+	GIFs	or	images	to
the	ruby-lang	homepage.	What	happens?

HTTP/2

165

http://localhost:8000
http://localhost:8080

Fast	JavaScript	for	Rails	Developers
JavaScript	is	increasingly	becoming	important	on	the	Web.	With	single-page	applications
and	JS	frameworks	all	the	rage,	JavaScript	as	a	percentage	of	page	weight	is
ballooning.	250kb	of	JavaScript	is	considered	"lightweight"	for	a	Rails	application	now,
and	some	frameworks	will	add	megabytes	of	JavaScript	to	a	page.

One	of	the	troubles	with	JavaScript	and	page	weight	is	that	it's	a	double	whammy	-	not
only	does	the	script	need	to	be	downloaded	(this	is	where	gzipped	size	matters),	it
needs	to	be	executed	(there	is	where	non-gzipped,	non-minified	size	matters).	A	small
script,	when	gzipped,	is	not	necessarily	a	fast	one	if	it	needs	to	execute	a	large	amount
of	code	before	finishing.

This	lesson	is	coming	from	the	perspective	of	a	non-Javascript-first	developer,	for	other
"non-Javascript-first"	developers.	If	you've	been	using	a	JavaScript	framework	for	2+
years	and	it's	your	main	language	of	choice,	you	can	probably	skip	this	lesson	-	you
won't	hear	anything	from	me	that	you've	never	heard	before.	But	for	those	of	you	who
write	more	Ruby	than	you	do	JavaScript,	read	on.

Proper	script	tag	usage
One	of	the	most	important	things	to	realize	about	JavaScript	and	webpage	performance
is	that	the	script	tag	itself	is	probably	the	most	important	determinant	for	JS
performance.

Understand	how	scripts	and	stylesheets	block	the	page
load

As	explained	in	some	of	the	other	front-end	lessons	in	this	course,		script		tags	will
always,	in	some	fashion,	block	the	page	from	loading.	Here's	the	ways	they	can	do	that:

Network	blocking	Like	all	sub-resources,		script		tags	with	a		src		attribute	(often
called	"external	scripts")	will	ask	the	browser's	TCP	connection	pool	for	a
connection	(or	open	a	new	one)	to		somedomain.com	.	Browsers	have	limits	on	these
pools	-	usually	about	six	open	connections	per	domain.	Downloading	an	external
script	will	take	up	one	of	these	six	slots,	blocking	other	resources.	You	may	see	this
concern	(network	blocking)	brought	up	on	old	(2005-era)	sites	about	web

JavaScript

166

performance,	but	it	isn't	much	of	a	problem	now.	Browsers	connection	limits	back
then	used	to	be	just	2	connections	per	domain,	so	back	then	downloading	a	script
meant	you	were	almost	certainly	blocking	some	other	important	resource.
Nowadays,	you	have	6	parallel	connections	available	so	that's	far	less	likely.	In
addition,	as	HTTP/2	rolls	out,	this	concern	goes	completely	out	the	window,	as	we
can	serve	as	many	responses	as	we	want	over	a	single	HTTP/2	connection	to	a
domain.
Parser	blocking	One	of	the	first	things	the	browser	does	is	attempt	to	parse	your
HTML	("Parse	HTML"	in	Chrome	Timeline).	As	the	parser	parses	the	document,	if	it
comes	upon	a	script	tag,	it	must	stop	and	block	until	the	script	has	downloaded	(if
it's	external	and	not	inlined)	and	executed.	Here's	an	example	of	parser	blocking	-
nothing	appears	until	the	script	(with	an	artificial	2	second	delay)	has	been
downloaded	and	executed.	Parser	blocking	only	affects	parts	of	the	DOM	that
appear	after	the	script	tag	in	your	HTML.

Of	the	two,	parser	blocking	is	far	more	important.

In	addition,	Javascript	cannot	execute	until	the	CSS	Object	Model	(CSSOM)	has	been
constructed.	This	means	that	given	the	following	DOM:

<link	rel="stylesheet"	media="all"	href="/assets/application.css">

<script	src="/assets/application.js"></script>

Assume		application.css		takes	2	seconds	to	download,	and		application.js		takes	1
second	to	download	but	3	seconds	to	execute.	How	long	does	it	take	to	load	the	page?	4
seconds?	5	seconds?

It	takes	5	seconds	-	see	for	yourself.	The	critical	rendering	path	looks	like	this:	download
the	stylesheet	and	construct	CSSOM	(2	seconds),	execute	application.js	(because	it's
already	downloaded	by	this	point).	We	can't	execute	application.js	until	application.css	is
downloaded	and	executed!

Don't	script	inject

Script	injection	is	when	an	inline	script	tag	inserts	another,	external	script	tag	in	the
document.	The	most	famous	example	is	Google's	Analytics	tag:

JavaScript

167

http://stevesouders.com/cuzillion/?c0=hc1hfff0_0_f&c1=hj1hfff2_0_f&c2=bi1hfff0_0_f&c3=bi1hfff0_0_f&t=1452468665705
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model
http://stevesouders.com/cuzillion/?c0=hc1hfff2_0_f&c1=hj1hfff0_3_f&c2=bi1hfff0_0_f&c3=bi1hfff0_0_f&t=1452799391161

<script>

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new	Date();a=s.createElement(o),

m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

})(window,document,'script','//www.google-analytics.com/analytics.js','ga');

ga('create',	'UA-XXXX-Y',	'auto');

ga('send',	'pageview');

</script>

Let's	unpack	it	so	that	the	script	injection	is	clearer:

<script>

		(function(window,	document,	strScript,	url,	variableName,	scriptElement,	firstSc

ript)	{

				window['GoogleAnalyticsObject']	=	variableName;

				window[variableName]	=	window[variableName]	||	function()	{

						(window[variableName].q	=	window[variableName].q	||	[]).push(arguments);

				};

				window[variableName].l	=	1	*	new	Date();

				scriptElement	=	document.createElement(strScript),

				firstScript	=	document.getElementsByTagName(strScript)[0];

				scriptElement.async	=	1;

				scriptElement.src	=	url;

				firstScript.parentNode.insertBefore(scriptElement,	firstScript)

		})(window,	document,	'script',	'//www.google-analytics.com/analytics.js',	'ga');

		ga('create',	'UA-XXXX-Y');

		ga('send',	'pageview');

</script>

All	it's	doing	is	inserting	a	script	node	with	some	particular	properties,	and	then	using	the
	ga		object	to	queue	some	functions	up.

There's	a	problem	however	-	in	2008,	browsers	started	implementing	these	things	called
preloaders.	Preloaders	speculatively	scan	the	document,	ahead	and	separate	from	the
main	parser,	to	look	for	things	that	might	need	to	be	downloaded.	That	way,	when	the
parser	finally	gets	to	the	DOM	node,	the	preloader	can	just	hand	that	resource	to	the
parser	and	say	"hey,	already	downloaded	that	for	you."

Here's	an	example	in	action.	Based	on	what	you	already	know,	and	without	a	preloader,
you	would	expect	a	page	that	has	markup	like	this:

<link	rel="stylesheet"	media="all"	href="/assets/application.css">

<script	src="/assets/application.js"></script>

JavaScript

168

…to	take	7	seconds	to	load	if	application.css	takes	5	seconds	to	download	and
application.js	takes	2	seconds.	With	the	preloader,	however,	it	only	takes	5.	The	reason
is	the	preloader	-	while	waiting	for	the	stylesheets	to	download,	your	browser	also
downloads		application.js	.

So	what	does	this	have	to	do	with	script	injection?	Script	injection	prevents	the	preloader
from	doing	its	job.	Preloaders	are	dumb	-	they	can't	execute	Javascript.	They	basically
are	fancy	regexes	looking	for	"src"	attributes	and	"href".	They	won't	execute	your	inlined
Javascript.	Open	your	Network	tab	when	you	check	out	this	example.	At	first	glance,	it
looks	like	our	previous	example	-	a	5	second	page	load.	But	investigation	with	the
Network	tab	shows	that	the	script	doesn't	start	downloading	until	after	the	CSS	has
downloaded	-	5	seconds	later	than	our	example	with	a	regular	script	tag!

Don't	use	script	injection	-	if	you	have	to,	you	can	deconstruct	3rd-party	vendors	that
insist	that	you	do	and	turn	them	into	regular	script	tags.	Here's	an	example	with	Google
Analytics.

You	may	be	wondering	-	but	if	my	stylesheet	downloads	quickly,	I'm	still	blocking	DOM
construction!	To	which	I	reply,	absolutely	-	this	is	why	we	have		async	!

Async	defer	all	the	things

As	mentioned	in	other	lessons,	the		async		attribute	is	really	as	close	as	you	can	get	to
magical	web	performance	pixie	dust.	The		async		attribute	removes	a	script	tag	from
blocking	the	DOM	parser	and	executes	the	script	only	after	it	has	finished
downloading.	This	has	the	added	advantage	of	speeding	up	the		DOMContentLoaded	
event,	which	won't	fire	until	the	DOM	parser	has	completed	parsing	the	page.

As	an	example,	see	this	page	in	your	Network	tab.	DOMContentLoaded	fires
immediately.	Nearly	all	major	websites,	such	as	Github	and	Basecamp,	use	some
combination	of	async	and	defer	attributes.

	async		and	its	cousin,		defer		are	slightly	different	in	two	important	ways:

	async		executes	the	script	as	soon	as	it	is	downloaded.		defer		executes	it	after
	DOMContentLoaded		fires.	If	an		async		script	finished	downloading	before
	DOMContentLoaded	,	it	will	be	executed	immediately,	delaying		DOMContentLoaded		and
any	event	handlers	attached	to	that	(like		$(document).ready()).
	defer		is	supposed	to	guarantee	execution	order.		async		does	not.	If	two	script
tags	with		defer		appear	in	the	document,	the	browser	is	supposed	to	execute	them
in	order	after		DOMContentLoaded	.	Unfortunately,	this	behavior	is	buggy	-	don't	rely	on

JavaScript

169

http://stevesouders.com/cuzillion/?c0=hc1hfff5_0_f&c1=hj1hfff2_0_f&c2=bi1hfff0_0_f&c3=bi1hfff0_0_f&t=1452800109366
http://stevesouders.com/cuzillion/?c0=hc1hfff5_0_f&c1=hj1ifff2_0_f&c2=bi1hfff0_0_f&c3=bi1hfff0_0_f&t=1452800250898
https://gist.github.com/nateberkopec/a43f3e29d9583df33406
http://stevesouders.com/cuzillion/?c0=hc1hfff0_0_f&c1=bi1hfff0_0_f&c2=bi1hfff0_0_f&c3=bj1hfff2_0_t&t=1452525621434

it.

What	this	means	is	we	can	make	the	following	guideline	for	using		async		and		defer	:

Use		defer		for	advertisements	and	other	JavaScript	that	can	wait	to	execute.
Use		async		for	Javascript	that	should	be	executed	as	soon	as	possible,	like
analytics	or	user	tracking.	When	using		async	,	you	should	also	use	a		defer	
attribute.	IE8	and	IE9	do	not	support		async	,	but	support		defer	.	These	browsers
will	ignore	the	async	attribute	and	execute	the	defer	instruction.	All	other	browsers
will	perform	the	async	behavior	and	ignore	defer.
Use	neither	for	Javascript	that	is	required	for	the	page	to	render	properly.	If
your	Javascript	is	obtrusive,	you	cannot	use	either	attribute.	An	example	might	be	a
Typekit	(the	webfont	provider)	script	tag	-	if	you	add	an		async		attribute	to	Typekit's
script	tag,	your	page	will	suffer	a	flash	of	unstyled	content,	as	your	fonts	will	load
after	the	text	on	your	page	has	already	been	rendered.	Another	example	might	be	a
3rd-party	tool	like	Optimizely	which	changes	page	content	after	it	has	loaded.
Adding		async		to	an	Optimizely	script	tag	would	also	cause	a	FOUC.

In	addition,	you	won't	be	able	to	use	either	attribute	if	your	JavaScript	must	load	in	a
particular	order.	To	get	around	this,	combine	JavaScripts	that	must	load	in	a	particular
order	(for	example,	JQuery	and		jquery_ujs)	into	a	single	file.

Scripts	at	the	bottom	is	mostly	outdated	and	a
workaround

"Put	all	JavaScript	at	the	bottom	of	the	document	before	the	closing	body	tag"	is	some
tried-and-true	performance	advice,	and	it	isn't	wrong.	Check	out	this	example	-	moving
the	script	tag	to	the	top	would	delay	the	display	of	the	page	content	by	2	seconds	(try	it!).

However,		defer		gives	us	the	same	behavior	with	the	advantage	of	not	blocking
	DOMContentLoaded	!

Scripts	at	the	bottom	has	another	huge	issue	-	it	doesn't	work	with	Turbolinks.	Turbolinks
assumes	that	all	JavaScript	tags	live	in	the	HEAD	-	any	scripts	in	the		body		are
executed	on	each	page	change.	Using		async		and		defer		allows	us	to	get	better
performance	than	"scripts	at	the	bottom"	anyway,	so	that's	no	loss!

Combine	scripts	everywhere	possible	(HTTP/1.x)

JavaScript

170

http://stevesouders.com/cuzillion/?c0=hc1hfff0_0_f&c1=hj1hfff2_0_f&c2=bi1hfff0_0_f&c3=bi1hfff0_0_f&t=1452468665705
http://stevesouders.com/cuzillion/?c0=hc1hfff0_0_f&c1=hj1hfft2_0_f&c2=bi1hfff0_0_f&c3=bi1hfff0_0_f&t=1452803464562

In	the	world	of	HTTP/1.x,	downloading	many	resources	is	costly	and	could	trigger
network	blocking.	TechCrunch.com,	as	an	example,	downloads	dozens	and	dozens	of
scripts	of	varying	sizes.

Javascript,	like	any	other	asset,	should	be	concatenated	to	maximize	performance	in	the
world	of	HTTP	1.x.	In	HTTP/2,	this	isn't	required	-	the	browser	can	intelligently	manage
bandwidth	such	that	the	performance	difference	between	downloading	10	scripts	from	a
domain	and	1	script	that's	10	times	as	big	is	negligible.

There's	no	excuse	for	serving	multiple	JavaScripts	from	the	same	domain	over	an
HTTP/1.x	connection	-	concatenate!

Profiling
Profiling	is	important	part	of	your	performance	workflow	.	However,	when	it	comes	to
JavaScript,	I	recommend	just	sticking	with	Chrome	Timeline.	The	flamegraph	view
especially	is	a	more-than-adequate	profiler	for	most	applications	that	use	JavaScript
lightly	to	moderately.

Common	mistakes
And	finally,	here's	some	common	performance	mistakes	Rails	developers	make	when
working	with	JavaScript.

Cache	DOM	lookups

Don't	lookup	things	twice	-	JQuery	makes	this	"too	easy"	to	mess	up,	unfortunately.

$('#some	.complicated	.selector').addClass('whoops');

$('#some	.complicated	.selector').removeClass('ouch');

Especially	inside	of	loops	(scroll	events!)	this	can	be	a	real	performance	drag.	Cache
any	DOM	lookup	that	you	call	more	than	once:

var	$thing	=	$('#some	.complicated	.selector')

$thing.addClass('whoops');

$thing.removeClass('ouch');

JavaScript

171

Minimize	DOM	size

Want	to	know	how	many	DOM	elements	are	on	a	page?	Paste	this	in	the	console:

document.getElementsByTagName('*').length

A	simple	page	is	a	fast	page.	Less	DOM	elements	(and	less	nesting)	means	selectors
perform	faster.	How	many	DOM	elements	is	too	many?	Here's	some	famous	sites	and
their	total	element	counts,	as	of	January	2016:

|	Site	|	DOM	Elements	|	|	——	|	——	|	|	google.com	|	439	|	|	yahoo.com	|	1728	|	|
reddit.com	|	2133	|	|	twitter.com	feed	|	4727	|	|	businessinsider.com	|	2449	|	|	forbes.com
|	2072	|

Either	use	a	SPA	framework	or	Turbolinks

Unless	you	aren't	using	JavaScript	hardly	at	all	(let's	say	less	than	a	5kB	download	for
your	entire	application),	you	should	be	using	either	a	"single	page	application"
framework	like	Ember	or	Turbolinks.	Why?

Setting	up	a	webpage	is	hard	work.	One	thing	most	Javascript	frameworks	get	right	is
they	don't	throw	out	the	entire	page	when	the	user	navigates.	They	just	change	the
elements	that	need	to	be	changed	(think	React),	update	the	URL	in	the	navigation	bar,
and	carry	on.	A	regular	page	navigation	throws	away	an	entire	DOM,	CSSOM,	and
Javascript	VM.	Most	JavaScript	frameworks	don't	do	this,	which	makes	them	fast	on
navigation.

However,	neither	does	Turbolinks.	Turbolinks,	like	JavaScript	frameworks,	keeps	the
page	around.	It	just	replaces	the		body		element	with	a	new		body		element	that	it
receives	from	the	server	via	AJAX.	For	more	about	Turbolinks,	see	the	lesson.

Either	of	these	approaches	can	reduce	navigation	times	between	pages	on	your	site.	I
prefer	the	progressive-enhancement	approach	of	Turbolinks	to	the	JavaScript-heavy
approaches	of	Ember	or	React.	But	just	use	one	of	them	-	eliminate	the	work	of	setting
up	a	new	DOM	and	re-executing	all	of	your	JavaScript	on	every	page	load.

Understanding	repaint	and	reflow

JavaScript

172

Reflow	is	the	name	of	the	web	browser	process	for	re-calculating	the	positions
and	geometries	of	elements	in	the	document,	for	the	purpose	of	re-rendering	part
or	all	of	the	document.	-Google

A	repaint	occurs	when	changes	are	made	to	an	elements	skin	that	changes
visibility,	but	do	not	affect	its	layout.	Examples	of	this	include	outline,	visibility,	or
background	color.	-Nicole	Sullivan

Often,	the	browser	will	need	to	reflow	or	repaint	all	or	portions	of	the	document	to	deal
with	changes	to	the	CSS	Object	Model.	From	a	performance	perspective,	reflows
(sometimes	called	re-layouting)	are	considerably	more	important	and	taxing	than	a
repaint.

The	most	common	causes	for	reflow	are:

Adding	stylesheets.	The	second	stylesheet	tag	in	a	document,	for	example,	causes
a	reflow	as	the	new	styles	are	added.
Manipulating	classes	of	elements	and	changing		style		attributes.
Calculating	certain	numbers,	like		elem.offsetLeft	.

Here's	an	exhaustive	list	of	things	that	can	cause	reflow.

What	can	you	do	about	it?

First,	open	up	Chrome	Timeline.	The	tools	available	are	excellent	for	detecting	reflows
(Chrome	Timeline	calls	it	"layout	thrash"	and	marks	potential	incidents	with	a	red	flag	in
the	timeline).

As	mentioned	above,	a	simple	DOM	is	a	fast	DOM.	Unnecessarily	deep	DOMs	with
dozens	of	levels	will	cause	reflows	to	be	slower,	as	reflows	most	propagate	down	the
DOM	tree.	When	changing	classes	on	an	element,	do	it	as	far	down	in	the	DOM	tree	as
possible	-	the	fewer	the	child	elements,	the	faster	it	will	be.

For	more	about	reflow,	Paul	Irish's	gist	is	the	canonical	source.

$(kitchen_sink).ready()

Rails	developers	have	this	terrible	habit	of	dropping	a	million	functions	into
	$(document).ready()	.	As	these	pile	up,	page	load	slows	to	a	crawl	as	dozens	and
dozens	of	JavaScript	functions	must	be	executed	every	time	the	user	navigates	to	a	new
page.	God	forbid	that	you're	not	using	a	single-page-app	framework	or	Turbolinks,
because	attaching	and	executing	all	of	these	event	handlers	will	happen	on	every	single
page!

JavaScript

173

https://developers.google.com/speed/articles/reflow
http://www.stubbornella.org/content/2009/03/27/reflows-repaints-css-performance-making-your-javascript-slow/
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://gist.github.com/paulirish/5d52fb081b3570c81e3a

Using		async		and		defer		helps	here.	But	far	better	is	to	use	event	delegators	smartly:

$("#myID").on("click",	function()	{...});

$(document).on("click",	"#myID",	function()	{...});

The	first	function	requires	the	DOM	to	be	ready	-	otherwise	if	$("#myID")	hasn't	been
parsed	yet,	the	event	handler	will	never	attach.	The	second	approach,	however,	simply
delegates	noticing	those	events	to	the	document	itself.	This	can	be	executed	at	any	time
(if	attaching	to	the	document),	and	does	not	have	to	wait	for		DOMContentLoaded	.	In
addition,	if	elements	are	added	or	removed,	you	do	not	have	to	re-attach	their	event
handlers.

You	may	notice	that,	in	addition,	the	first	method	is	not		async		friendly.	Consider	that
line	being	included	in	an		async		script	tag	-	what	happens	if	the	script	executes	before
the	DOM	is	ready?

In	this	way,	event	delegation	is	far	superior	in	most	cases	to	attaching	event	handlers
directly.

Checklist	for	Your	App
Use	Turbolinks	or	a	single-page-app	Javascript	framework.	If	you're	on	the
"JavaScript	frameworks	are	great!"	gravy	train,	great	-	keep	using	React	or	Angular
or	whatever	else	you	guys	think	is	cool	this	week	(wink!).	However,	if	you're	not,	you
should	be	using	Turbolinks.	There's	just	too	much	work	to	be	done	when	navigating
pages	-	throwing	away	the	entire	DOM	is	wasteful	as	events	must	be	re-delegated
and	handers	reattached,	Javascript	VMs	built	and	DOMs/CSSOMs	reconstructed	on
every	page	load.
Most	pages	should	have	no	more	than	a	few	thousand	DOM	elements.	If	a
single	page	in	your	application	has	more	than	~5,000	DOM	elements,	your	selectors
are	going	to	be	adversely	affected	and	start	to	slow	down.	To	count	the	number	of
elements	on	a	page,	use		document.getElementsByTagName('*').length	.
Look	for	layout	thrash	with	Chrome	Timeline.	Load	your	pages	with	Chrome
Timeline	and	look	for	the	tiny	red	flags	that	denote	layout	thrashing.

JavaScript

174

HTTP	Caching
The	fastest	HTTP	request	is	the	one	that	is	never	made

Ancient	programmer	proverb

The	network	will	always	be	slow.	For	all	the	advances	made	in	mobile	and	home
bandwidth	over	the	years,	they	will	never	eliminate	one	of	the	most	fundamental	causes
of	slow	webpage	loads	-	network	latency.	No,	really.	We	can	never	completely	solve	this
problem.	At	least,	not	without	an	Einstein-level	breakthrough	in	our	understanding	of
physics.

A	packet	of	information	will	always	be	limited	to	the	speed	of	light.	It	will	always	take	at
least	13	milliseconds	for	a	client	in	New	York	to	send	a	packet	to	a	server	in	Los
Angeles.	Usually	it	will	take	much	longer	-	even	fiber	optic	cable	can	only	transmit
photons	at	60-70%	of	light's	maximum	speed.	The	speed	of	light	is	the	fundamental
speed	limit	of	the	universe	-	and	for	our	HTTP	requests.

Even	in	a	universe	where	we	could	invent	a	super-fiber-optic-cable	that	could	transmit
digital	signals	via	light	at	100%	efficiency,	we	still	have	problems	higher	up	the	stack.
Consider	the	following:

Opening	a	new	TCP	connection	to	a	new	domain	can	involve	as	many	as	4	or	5
network-round	trips	to	resolve	DNS,	negotiate	SSL,	and	complete	a	TCP	three-way-
handshake.
Latency	is	often	far	worse	than	ideal	due	to	network	conditions	and	topography.
Often,	in	developing	countries,	the	route	a	packet	takes	from	client	to	server	is
roundabout	and	confusing	due	to	poor	infrastructure	(or	even	satellite	internet
connections).
Mobile	is	worse.	Even	on	modern	4G	networks,	we're	talking	~200-400
milliseconds,	and	on	3G	round-trip	times	can	reach	a	full	second.

This	is	why	HTTP	caching	is	so	important.	It	will	always	be	significantly	faster	to	not
make	a	request	at	all	than	it	will	be	to	make	one.

In	addition	to	speeding	up	end-user	experiences,	HTTP	caching	reduces	load	on	your
own	servers.	Proper	HTTP	caching	can	shunt	a	huge	amount	of	bandwidth	to	3rd-party
CDNs	(by	making	content	cacheable)	or	eliminate	it	entirely.	Every	request	served	from
the	client	cache	(or	an	intermediate	cache)	is	one	that	you	didn't	have	to	serve	yourself.

HTTP	Caching

175

http://physics.stackexchange.com/questions/80043/how-fast-does-light-travel-through-a-fibre-optic-cable

For	Ruby	developers,	HTTP	caching	is	most	useful	in	these	scenarios:

Static	assets.	This	is	the	most	common	use	case,	and	the	one	you're	probably
familiar	with.	In	a	perfect	world,	your	Rails	application	should	have	almost	nothing	to
do	with	serving	your	static	assets.	HTTP	caching	helps	us	to	do	that.
JSON	APIs	and	AJAX	endpoints.	Any	endpoint	in	your	application	that	serves	JSON
(or	XML	or	any	other	non-HTML	resource)	is	a	great	candidate	for	HTTP	caching.

Why	not	cache	HTML	documents?	Unfortunately,	every	Rails	application	protects	you
from	Cross-Site-Request-Forgery	using	a	token	included	in	the		head		tag	of	the	HTML
response.	This	token	is	different	for	every	user	session	and	every	page	load.	You've
almost	certainly	seen	it	before:

<meta	name="csrf-param"	content="authenticity_token"	/>

<meta	name="csrf-token"	content="Xc0vf6L7hgbI6zRPBpNhgqrLhX7sMQMRltiFEjryce81q09yU

cPy1LPn07YKx6rzLyLQ/F/pSCpSPc8uXXRdwg=="	/>

This	makes	HTML	documents	in	Rails	pretty	much	uncacheable.	This	token	changes	on
every	page	load,	and	HTTP	caching	only	works	with	resources	that	remain	completely
unchanged.	There	are	some	ways	around	this	(edge-side	server	includes,	getting	the
CSRF	token	with	AJAX)	but	none	of	them	are	really	satisfactory	or	recommended.

We	don't	usually	have	this	problem	with	JSON	APIs	-	they	typically	don't	have	CSRF
problems,	usually	because	they	lack	any	concept	of	a	user	session.	If	you	don't	have
CSRF	tokens	on	your	HTML	pages,	you	can	also	use	HTTP	caching	for	those
documents.

Anatomy	of	a	Cache	Header
HTTP	caching	is	implemented	through	HTTP	headers.	Here's	the	headers	for	a	typical
	application.js		served	by	a	Rails	application:

HTTP	Caching

176

HTTP/1.1	200	OK

Server:	Cowboy

Date:	Mon,	18	Jan	2016	18:56:47	GMT

Connection:	keep-alive

Last-Modified:	Thu,	14	Jan	2016	18:09:41	GMT

Content-Type:	application/javascript

Cache-Control:	public,	max-age=31536000

Vary:	Accept-Encoding

Content-Length:	113134

Via:	1.1	vegur

The	relevant	cache	header	here,	and	the	one	which	implements	about	80%	of	HTTP
caching	behavior,	is		Cache-Control	.	To	break	down	this	particular	header:

	public		specifies	that	this	resource	can	be	cached	by	edge	or	"intermediate"
caches.	Anything	that	isn't	the	end-user's	browser	is	generally	considered	an	"edge"
cache.	Edge	caches	include	things	like	CDNs	or	other	intermediate	caches	like
Varnish).
	max-age		tells	the	cache	(either	the	browser	or	an	intermediate	cache,	like	your
CDN)	how	long	it	may	store	the	resource.	This	value	is	expressed	in	seconds	from
now	-	a		max-age		of	60	expires	a	minute	from	the	time	of	the	request.	In	this	case,
the	resource	expires	1	year	from	now.

These	are,	actually,	Rails'	default	cache	headers	for	assets.	They're	great	defaults	for
Rails	-	but	there's	a	wide	world	out	there	in	HTTP	caching,	and	Rails	use	case	here
(unique	filenames	with	a	changing	digest,	static	javascript	and	stylesheets)	will	not	fit
every	situation.

How	HTTP	Caches	Work:	Entity	Tagging	(ETags)	and
Revalidation

Imagine	our	browser	downloads	the		application.js		resource	above.	Based	on	the
cache-control	headers,	it	knows	it	can	cache	the	resource	and	not	request	it	again	until	a
year	from	today.	Any	subsequent	requests	for	the	resource	will	be	served	from	the	local
cache	-	no	network	requests	required!

Let's	say	our	web	browser,	Rip	van	Winkle	of	the	Web,	sleeps	for	the	next	year	and
doesn't	visit	any	other	webpages	in	that	year.	This	is	important	-	browser	caches	have	a
limited	size,	and	work	like	any	other	LRU	cache.	Entries	which	haven't	recently	been
used	will	be	evicted.	So	after	that	year	is	up,	Rip	Van	Winkle	goes	to	yourdomain.com
again.

HTTP	Caching

177

https://en.wikipedia.org/wiki/Varnish_(software

The	browser	notices	it	needs	the		application.js		subresource,	but	its	cached	version	is
expired.	The	browser	will	send	a	new	request,	but	it	will	contain	an	additional	header:
	If-Modified-Since:	Thu,	14	Jan	2016	18:09:41	GMT	.	The	origin	server	(or	intermediate
CDN	cache,	if	one	exists)	will	look	at	this	header	and	compare	it	to	the	requested
resource's		Last-Modified		date.	If	the	resource	has	been	modified,	the	origin	server	will
respond	with	the	full	resource.	If	it	hasn't,	the	origin	server	responds	with	a		304	Not
Modified		response,	saving	the	browser	from	downloading	the	entire	resource	again.	Rip
van	Winkle	can	use	his	cached	copy	of		applicaton.js		for	another	year!

There's	an	alternative	way	to	revalidate	resources	too	-	Entity	Tags,	or	ETags.	ETags
are	typically	just	short	hashes	or	digests	of	the	resource.	If	the	resource	changes,	the
ETag	changes	-	just	like	the	digest	attached	to	a	Rails	asset.

Instead	of	sending	an		If-Modified-Since		header,	a	browser	will	send	an		If-None-Match:
some-digest12345		header	when	revalidating	an	ETagged	resource.	If	the	value	of	the
	If-None-Match		header	matches	the	origin	server's		ETag		for	that	resource,	a		304	Not
Modified		response	is	served.	ETags	are	useful	for	resources	where	a	"last	modified"
date	is	unclear,	like	a	dynamic	HTML	or	JSON	resource.	Imagine	a	homepage	-	when
was	it	"last	modified"?	It's	usually	clearly	to	just	create	a	digest	for	the	resource	and	use
it	as	an	ETag.

By	default,	Rails	uses	last-modified	dates	for	static	assets	rather	than	ETags.
Unfortunately,	it	appears	that	ETags	have	several	problems	in	Rails	-	watch	the	linked
issues	for	progress	in	these	areas.	For	90%	of	applications,	you'll	want	to	work	with
setting	the	proper		Last-Modified		header.

Cache-Control

There	are	several	components	to	a		Cache-Control		header,	called	directives.	Here's	an
explanation	of	the	useful	ones	and	when	you	might	want	to	use	each.	Most	of	them
(except	public	and	private)	can	be	combined	with	each	other.

	no-store	.	As	the	original	HTTP	spec	says:	"The	purpose	of	the	no-store	directive	is
to	prevent	the	inadvertent	release	or	retention	of	sensitive	information	(for	example,
on	backup	tapes)".		no-store		prevents	any	client	from	storing	the	response	at	all.
You	might	want	to	include	this	directive	for	things	like	sensitive	responses	from
JSON	APIs	(payment	data,	order	or	customer	information,	etc).	I	can't	think	of	a
good	reason	to	use	this	on	a	static	asset.	This	prevents	all	caching	of	a	resource
anywhere.
	no-cache	.	Confusingly,	while	you	may	think	of	"caching"	and	"storing"	being

HTTP	Caching

178

https://github.com/rails/rails/issues/20333
https://github.com/rails/rails/pull/17573

basically	the	same	thing,	HTTP	caching	doesn't	think	this	way.	A	resource	with	the
	no-cache		directive	will	be	stored	on	intermediate	caches	or	CDNs,	and	will	be
stored	in	the	users	browser.	However,	caches	will	always	revalidate	the	cached
response	with	the	server.	This	is	basically	the	same	as	setting	a		max-age=0	,	as
noted	below.	This	would	only	be	really	useful	in	the	case	of	a	resource	with	a	large
filesize	(say,	north	of	100kB)	that	must	be	revalidated	but	is	often	unchanged.		no-
cache	,	although	it	still	incurs	a	round-trip	between	the	server	and	the	cache,	can
prevent	downloads	from	occurring	if	revalidation	is	successful.
	public		and		private	.		private		prevents	intermediate	caches,	like	CDNs,	from
caching	the	response.	Use	it,	perhaps	along	with	when	caching	a	resource	on	your
CDN	would	raise	a	privacy	concern.		public	,	which	is	basically	the	default
behavior,	just	specifies	that	a	resource	may	be	cached	by	any	cache.
	max-age	.	The	value,	in	seconds	from	now,	when	the	cache	should	consider	this
resource	expired	and	revalidate	it	with	the	origin	server.	Pretty	obvious	-	set	this
based	on	your	needs.	You	can	set	this	as	far	in	the	future	as	you	want.
	no-transform	.	Straight	from	the	spec:	"Implementors	of	intermediate	caches
(proxies)	have	found	it	useful	to	convert	the	media	type	of	certain	entity	bodies.	A
non-transparent	proxy	might,	for	example,	convert	between	image	formats	in	order
to	save	cache	space	or	to	reduce	the	amount	of	traffic	on	a	slow	link."	Lots	of	CDNs
today	will	modify	content,	like	images,	to	try	to	speed	up	requests.	If	for	some
reason	you	would	want	to	stop	your	intermediate	caches	from	doing	this,	add		no-
transform	.
	must-revalidate	.	You	might	think	this	is	the	same		no-cache		-	well,	it	isn't.		must-
revalidate		only	refers	to	revalidation	behavior	after	the	resource	has	expired	(say,
after	its		max-age		passes	by).	The	reason	this	header	exists	is	that	caches	may
choose	to	ignore		max-age		or	replace	it	with	their	own	value.		must-revalidate	
forces	the	cache	to	obey	the	expiration	times	in	the	Cache-Control	header.

There's	an	extremely	good	flowchart	in	Google's	guide	to	HTTP	cache	headers	available
here.

HTTP	Caching	and	Assets
Although	this	is	discussed	further	in	the	lesson	on	CDNs,	my	recommended	"static	file
serving"	setup	looks	like	this:

Your	Rails	process	should	turn	on	static	file	serving	OR,	if	using	Apache	or	NGINX,
serve	static	files	from	the	/public	directory.

HTTP	Caching

179

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en#cache-control

Use	a	CDN	that	uses	your	Rails	server	as	its	origin.	On	the	first	request,	the	CDN
fetches	the	asset	from	your	Rails	process.	From	then	on,	your	CDN	will	serve	the
asset	until	it	expires.

This	results	in	your	Rails	server	process	serving	each	asset	once,	and	from	then	on
each	asset	will	be	served	by	the	CDN.	It	imposes	basically	no	load	on	our	production
servers,	and	eliminates	complicated	and	costly	uploading	to	a	third	party	service,	like	S3.
Of	course,	if	you	have	many	assets	which	are	either	dynamically	generated,	user
uploaded,	or	extremely	large,	you	may	want	to	upload	them	somewhere	else	anyway.

This	setup	requires	proper	Cache-Control	headers,	otherwise	your	CDN	may	not	cache
your	static	assets	at	all.	When	using	Rails	and	the	Asset	Pipeline,	setting	proper	Cache-
Control	headers	is	rather	simple.

#	Rails	4

config.serve_static_assets	=	true

config.static_cache_control	=	"public,	max-age=31536000"

#	Rails	5

config.public_file_server.enabled	=	ENV['RAILS_SERVE_STATIC_FILES'].present?

config.public_file_server.headers	=	{

			'Cache-Control'	=>	"public,	max-age=31536000",

			#	in	Rails	5,	we	can	also	add	other	headers	here	for	static	assets	if	you	like

			'Server'	=>	'Rails	Asset	Server'

}

config.asset_host	=	"mycdn.com"

That's	it	-	simple	as	that.

HTTP	Caching	and	JSON	APIs
As	stated	above,	HTTP	caching	for	HTML	documents	is	pretty	much	useless	if	you	use
CSRF	protection	(which	you	should).	If	for	some	reason	your	app	doesn't	use	CSRF
tokens	embedded	in	the	HTML,	you	may	able	to	apply	this	section	in	your	application
too.	APIs	typically	don't	have	sessions,	so	this	section	is	primarily	aimed	at	them.

In	Rails,	you	can	get	a	general	idea	of	the	HTTP	caching	API	by	reading	the
ActionController::ConditionalGet	module.	This	module	is	included	in
	ActionController::Base		by	default,	so	all	of	its	methods	are	available	on	your
controllers.	In	addition,	Heroku	maintains	an	excellent	guide	on	HTTP	caching	in	Rails.

HTTP	Caching

180

https://github.com/rails/rails/blob/master/actionpack/lib/action_controller/metal/conditional_get.rb
https://devcenter.heroku.com/articles/http-caching-ruby-rails

However,		ActionController::ConditionalGet		is	just	sugar	on	top	of	setting		Cache-
Control		and	other	headers,	so	rather	than	discuss	those	sugar	methods	specifically,	I'll
discuss	the	use	of	caching	headers	for	API	resources.	Read	the	linked	guides	to	figure
out	how	to	implement	these	guidelines	with	Rails.

HTTP	caching	to	prevent	database	queries

A	great	use	of	HTTP	caching	on	an	API	is	preventing	unnecessary	database	queries.	If
the	client	has	already	requested	and	cached	the	resource,	and	needs	to	revalidate	it,	we
shouldn't	trigger	a	bunch	of	database	queries	if	it's	obvious	the	object	hasn't	been
updated.

Consider	a	Twitter-like	application.	A	User	resource	has	a	Timeline	resource,	and	to	get
a	list	of	Microposts	we	ask	for	the	users'	Timeline.	If	the	Timeline	hasn't	changed	since
the	client	last	requested	it,	we	should	serve	a	304	Not	Modified.

Here's	some	Ruby	psuedo-code	with	how	you	might	handle	this:

@timeline	=	user.timeline

if	request.headers['If-Modified-Since']	==	@timeline.microposts.maximum(:updated_at

)	#	trigger	1	simple,	fast	SQL	query	to	get	the		

		#	respond	with	304	Not	Modified

else

		#	respond	with	a	timeline,	triggering	the	full	SQL	query

end

Rails	makes	this	flow	considerably	easier	with	the		fresh_when		method:

def	show

		@timeline	=	user.timeline

		fresh_when	last_modified:	@timeline.microposts.maximum(:updated_at)

end

Recall	that	this	all	works	because	ActiveRecord	lazily	loads	the	actual	SQL	query	-
	user.timeline		doesn't	actually	execute	a	SQL	query,	because	we	haven't	used	the
results	yet,	but		user.timeline[0]		will.

Use	a	request's	provided		ETag		and		If-Modified-Since		headers	to	determine	if	any
queries	need	to	be	re-executed	-	otherwise,	try	to	serve	a	304	Not	Modified.

Public	and	private	-	controlling	cache	copies

HTTP	Caching

181

When	implementing	HTTP	caching	for	an	API,	be	sure	you're	conscious	of	where	these
resources	are	being	cached.	As	noted	in	the	discussion	of		public		vs		private		above,
anything	marked		public		will	be	stored	on	CDNs.	This	can	be	a	good	thing	or	a	bad
thing	-	it	depends	on	the	resource.	Note	that	Rails	marks	all	HTTP	cacheable
resource	in	a	controller	as		private		by	default.	If	you	want	an	API	response	to	be
cached	by	an	intermediate	CDN,	best	to	mark	it		public		explicitly.

If	you're	serving	something	that's	private	and	shouldn't	be	cached	at	all,	either	by	the
browser	or	intermediate	CDNs,	use	the		no-store		directive.

Make	sure	the	clients	have	response	caches!

Most	Ruby	HTTP	clients,	like		rest-client		or		Net::HTTP	,	do	not	have	caches.	As	of	this
writing,	January	2016,	only	the	following	Ruby	HTTP	clients	have	response	caches:

Faraday,	via	faraday-http-cache
Typhoeus,	which	makes	sense,	since	it's	just	a	curl	wrapper.

If	you're	running	an	API	server,	be	sure	that	your	clients	actually	have	response	caches
too!	If	you're	using	your	Ruby	application	as	a	backend	for	a	JavaScript-powered
browser	application,	you're	already	set	-	AJAX	requests	will	just	use	the	browser's	cache
as	normal.

One	last	tip:	minimizing	churn
Often,	especially	in	Rails	world,	the	pattern	for	Ruby	web	applications	is	to	serve	a	single
	application.js		and/or		application.css		file.	This	is	good	for	several	reasons	-	faster
downloading	over	HTTP/1.1	where	parallel	downloads	can	block,	and	concatenating	into
a	single	file	gives	bigger	gains	from	compression	algorithms	like	gzip.

There	is	one	good	case	though,	where	I'd	recommend	deviating	from	this	"one	file"
approach	-	when	components	of	your		application.js		or		application.css		churn
significantly	differently	from	the	rest.	Do	you	have	one	part	of	your	Javascript	that's
constantly	changing?	Or	is	your	application-specific	CSS	changing	constantly,	but	your
vendored	CSS	(like	Bootstrap,	perhaps)	relatively	stagnant?

In	this	case,	we	can	make	greater	use	of	HTTP	caching	by	separating	assets	into
heavily	churning	and	lightly	churning	files.

HTTP	Caching

182

https://github.com/plataformatec/faraday-http-cache
https://github.com/typhoeus/typhoeus

Let's	take	the	Javascript	example.	Let's	say	we're	working	on	a	JS-heavy	app	that	uses
React.	Our	application.js	file	may	be	changing	several	times	per	day	because	we're
pushing	so	many	changes	to	our	application	code	all	the	time.	However,	the	project
hardly	ever	updates	React	and	its	other	vendored	Javascript	libraries	-	more	like	once	a
month	than	thrice	a	day.

In	this	case,	it	would	be	far	better	to	split	the	single		application.js		into	two	files	-	a
	libraries.js		where	all	of	our	vendored	scripts	live,	and	an		application.js		where	all	of
our	app-specific	code	lives.	This	way,		libraries.js		will	more	frequently	be	able	to	be
served	from	the	HTTP	cache,	reducing	page	weight	for	our	returning	users.	I	suspect
this	could	be	a	common	optimization	for	JS-heavy	(or	even	CSS-heavy!)	applications
with	lots	of	repeat	visitors.

Be	careful	when	splitting	into	more	than	2	files	or	so	-	eventually,	you'll	start	to	cause
network	blocking	if	these	assets	are	served	over	HTTP/1.1.	With	HTTP/1.1,	we	have	to
open	new	connections	to	download	assets	simultaneously,	and	we	can	only	have	six	of
these	connections	open	at	a	single	time.

If	you're	serving	your	assets	over	HTTP/2	(over	Cloudflare,	for	example),	you	have	a	lot
more	leeway,	as	there	is	no	parallel	connection	limit	(all	assets	are	downloaded	over	1
connection).

When	experimenting	with	splitting	assets	for	improved	caching,	be	sure	to	test	the
performance	impact	in	DevTools.

Checklist	for	Your	App
Experiment	with	splitting	your	application.js/application.css	into	2	or	3	files.
Balance	cacheability	with	the	impact	to	initial	page	download	time.	Consider	splitting
files	based	on	churn	(for	example,	one	file	containing	all	the	libraries	and	one
containing	all	of	your	application	code).	If	you're	using	an	HTTP/2-enabled	CDN	for
hosting	your	static	assets,	you	can	try	splitting	them	even	further.
Double-check	to	make	sure	your	site	has	sane	cache	control	headers	set.	Use
Chrome's	Developer	Tools	Network	tab	to	see	the	cache	control	headers	for	all
responses	-	it's	an	addable	column.
If	running	an	API,	ensure	that	clients	have	response	caches.	Most	Ruby	HTTP
libraries	do	not	have	response	caches	and	will	ignore	any	caching	headers	your	API
may	be	using.	Faraday	and	Typhoeus	are	the	only	Ruby	libraries	that,	as	of	writing
(Feb	2016),	have	response	caches.

HTTP	Caching

183

Make	sure	any	user	data	is	marked	with	Cache-Control:	private.	In	extreme
cases,	like	passwords	or	other	secure	data,	you	may	wish	to	use	a		no-store	
header	to	prevent	it	from	being	stored	in	any	circumstance.
If	a	controller	endpoint	receives	many	requests	for	infrequently	changed	data,
use	Rails'	built-in	HTTP	caching	methods.	Unfortunately,	Rails'	CSRF	protection
makes	caching	HTML	documents	almost	impossible.	If	you	are	not	using	CSRF
protection	(for	example,	a	sessionless	API),	consider	using	HTTP	caching	in	your
controllers	to	minimize	work.	See	ActionController::ConditionalGet

Lab:	HTTP	Caching

Exercise	1
Describe	the	appropriate	HTTP	headers	for	the	following	resources:

A	static	asset,	such	as	Javascript	or	CSS,	with	a	digested	file	name	("application-
4cc81...").
A	static	asset	without	a	digested	file	name	("index.js")
A	JSON	response	with	some	private	user	data,	like	contact	information.
A	JSON	response	with	some	bank	account	and	credit	card	numbers.

Solution

	Cache-Control:	max-age=315360000	,	or	1	year.
	Cache-Control:	max-age=300	,	or	a	similarly	short	time,	with	a	strong	ETag	header,
such	as:		ETag:	"686897696a7c876b7e"	
	Cache-Control:	private	,	with	a	max-age	as	appropriate.
	Cache-Control:	no-store	

Exercise	2
This	lab	requires	some	extra	files.	To	follow	along,	download	the	source	code	for
the	course	and	navigate	to	this	lesson.	The	source	code	is	available	on	GitHub
(you	received	an	invitation)	or	on	Gumroad	(in	the	ZIP	archive).

HTTP	Caching

184

https://github.com/rails/rails/blob/master/actionpack/lib/action_controller/metal/conditional_get.rb

The	included	Rails	application	in	the		lab		folder	(see		app.ru)	gets	weather	reports.
Using	HTTP	caching,	instruct	browsers	to	cache	their	results	for	up	30	minutes.	Hint:	the
weather	JSON	contains	some	information	that	can	be	used	to	set	some	dates	in	your
cache	headers!

Solution

See		app_solution.ru	.

HTTP	Caching

185

Module	3:	Ruby	Optimization
This	module	is	all	about	the	nitty-gritty	of	Ruby	performance	in	our	web	application.	This
area	offers	a	lot	of	room	for	improvement	for	almost	any	Rails	application.

The	most	important	lesson	in	this	module	is	on	caching.	Every	Rails	application	should
aggressively	use	caching,	and	few	do.	That	lesson	discusses	why	caching	is	so
important,	breaks	down	Russian	Doll	caching,	and	provides	a	benchmark	and	overview
of	the	cache	backend	options	available	to	you.

Optimizing	Ruby

186

Bloat	Management
In	production,	most	Ruby	applications	are	memory-constrained.	Popular	hosts	and
deployment	targets,	like	Heroku,	DigitalOcean,	or	even	Amazon	Web	Services	force
Ruby	applications	to	contend	with	small	amounts	of	available	RAM.	Heroku's	default
dyno	size	is	still	just	512MB.

512MB	feels	like	peanuts	nowadays.	I've	seen	Rails	applications	where	a	single	instance
of	the	app	takes	up	more	than	512MB.	As	covered	in	my	lesson	on	slimming	down	your
Rails	application,	most	Rails	applications	take	up	~150-200MB	upon	startup.	After	a	few
hours	of	running	and	"burn-in",	that	can	easily	double,	and	maybe	even	triple.

This	means	that	the	memory	usage	of	our	applications	is	one	of	our	biggest
opportunities	for	improving	scalability.	In	most	cases,	decreasing	memory	usage
directly	leads	to	more	application	instances	for	the	same	given	amount	of	production
resources.

This	article	is	written	for	Unix	systems	-	if	you're	deploying	Ruby	on	Windows,	you're	on
your	own	here.	The	way	Windows	manages	memory	is	just	too	different	from	Unix.

How	do	we	measure	the	memory	usage	of	a
Ruby	application?
The	question	of	"how	much	memory	is	this	Ruby	application	using?"	is	surprisingly
difficult	to	answer.

First,	you	have	the	nebulous	word	itself:	"memory"?	What	exactly	do	we	mean	by
"memory"?

Memory	Bloat

187

Definitions	of	memory	usage

It	turns	out	that	memory	is	much	more	complicated	than	a	given	bit	of	memory	being
"used"	or	"free".	There	are	several	types	of	memory	(or,	more	accurately,	ways	of
describing	memory	usage)	on	a	modern	system:

Shared	Memory	This	is	memory	accessible	by	any	other	process	on	the	system.
Most	read-only,	non-writable	memory	is	simply	marked	"shared"	because	there	isn't
any	reason	not	to	share	it.	Shared	memory	is	memory	used	by	your	application.
Private	Memory	Memory	that	a	process	uses	for	itself	and	its	forked	child
processes.	This	is	memory	that	is	only	being	used	by	your	application.	This	memory
can	be	shared	with	forked	child	processes,	e.g.	Puma	workers.
Real	Memory	The	amount	of	physical	memory	that	the	operating	system	has	given
your	process.	It	should,	roughly,	correspond	to	the	sum	of	private	and	shared
memory.
Virtual	Memory	This	is	just	the	amount	of	memory	accessible	to	your	process	-	it
has	nothing	to	do	with	how	much	it's	actually	using.	When	a	virtual	memory	address
is	accessed,	the	operating	system	connects	the	virtual	address	to	a	real	one.	Since
the	access	is	virtualized,	that	means	the	actual	memory	can	be	anywhere	-	in	RAM,
or	in	the	hard	disk,	or	somewhere	else	entirely.	Note	in	my	screenshot	that	the
virtual	memory	for	a	fresh		irb		session	is	several	gigabytes	-		irb		doesn't	actually
need	that	much	to	run!

Memory	Bloat

188

Swap	Memory	When	RAM	is	full,	your	operating	system	will	start	to	use	the	hard
disk	as	if	it	was	RAM.	This	is	called	swapping.	Generally,	this	is	a	bad	thing,
because	accessing	data	from	a	hard	disk	is	quite	a	bit	slower	than	accessing	it	from
RAM.	However,	operating	systems	may	start	using	swap	memory	before	the	RAM
fills	up	-	at	any	time,	the	OS	may	move	memory	into	the	swap	space	to	free	up	more
memory	for	other	processes.	The	key	thing	is	to	know	whether	or	not	the	swap
memory	is	actually	being	used.	If	our	swap	usage	is	large,	but	we're	not	actually
reading	or	writing	anything	from	it,	we	don't	have	a	problem	-	our	OS	is	just	being
efficient	in	where	it	allocates	its	memory!

How	do	we	measure	it?
Now	that	we're	all	caught	up	on	terms,	how	do	we	measure	memory	usage?

Resident	Set	Size	(RSS)	In	a	simple	scenario,	RSS	is	equal	to	the	amount	of
physical	RAM	pages	(thus,	real	memory)	used	by	the	process.	However,	as	we	just
learned,	some	memory	can	be	shared	between	processes	-	so	RSS	isn't	really
equal	to	"amount	of	memory	that	would	be	freed	if	I	kill	this	process".	If	two
processes	have	5MB	of	private	memory	and	share	5MB	of	memory	between	them,
they	both	have	an	RSS	of	10MB,	but	killing	one	of	those	processes	would	only	free
up	5MB	of	memory.	However,	since	memory	can	be	swapped	(and	thus	becomes
part	of	the	"virtual"	memory	used	by	your	process),	it	isn't	a	fully	accurate
representation	of	the	"total"	memory	usage	of	your	process.	Memory	leaks	can
sometimes	have	constant	RSS	usage	for	this	reason	-	as	the	memory	slowly	leaks,
it	is	moved	to	swap	(becoming	part	of	the	virtual	memory	space),	and	is	never
accessed	again	(removing	it	from	the	resident	set).
Proportional	Set	Size	PSS	is	pretty	much	the	same	as	RSS,	except	in	the	way
they	deal	with	memory	pages.	RSS	calculates	memory	usage	in	physical	RAM	by
simply	counting	the	number	of	memory	pages	used.	PSS	takes	the	number	of
pages,	but	only	assigns	1/N	of	each	page	to	a	process	where	"N"	is	the	number	of
processes	currently	using	a	particular	memory	page.	For	this	reason,	PSS	is	usually
smaller	than	RSS.	It's	also,	generally	speaking,	a	more	accurate	represenation	of
the	amount	of	memory	usage.	However,	since	PSS	needs	to	know	how	many
processes	are	accessing	a	particular	memory	page,	it	is	impossible	to	get	PSS
accurately	from	inside	of	a	container	(Docker,	Heroku,	AWS,	other	virtual	server
environments).	It	is	possible	to	determine	these	numbers	accurate	from	outside	of
the	container.

Memory	Bloat

189

In	practical	terms,	here	are	some	tools	I	use	when	debugging	memory	usage	of	a	Ruby
application:

	ps		-	I	use		ps		with	its		-o		option	to	get	some	specific	information	about	memory
usage.		ps	|	grep	'[r]uby'	|	awk	'{print	$1}'	|	xargs	ps	-o	rss,vsz,nswap		grabs
the	PID	of	all	ruby	processes,	then	feeds	it	back	to		ps	's		-o		option	to	report	the
resident	set	size,	virtual	size,	and	number	of	swaps	in	and	out.	I	look	at	RSS	for	a
general	measure	of	much	memory	this	process	uses	right	now,	and	I	watch	virtual
size	and	number	of	swaps	to	see	if	they're	growing	over	time.	Growing	virtual	size
indicates	possible	leaking,	and	a	growing	number	of	swaps	means	that	my	system
is	under	memory	pressure	and	frequently	swapping	this	process'	memory	to	disk.
Note	that	increasing	real	memory	doesn't	necessarily	indicate	a	leak	-	increasing
real	memory	is	just	the	natural	consequence	of	virtualized	memory	becoming	real
memory	over	time.
	get_process_mem		is	a	great	tool	for	measuring	RSS	inside	of	a	Ruby	process	-
useful	if	you	want	to	use	that	number	to	do	other	things!

Great	-	so	now	you	know	how	to	accurately	get	the	picture	of	how	much	memory	your
Ruby	process	is	using.	Now	that	you	know	your	memory	usage,	how	can	we	start
reducing	it?

Reducing	Memory	Bloat
There	are	a	lot	of	ways	to	reduce	memory	bloat	-	here's	a	few	of	the	ones	I've	found
useful.

Beware	Big	Allocations

Ruby	uses	memory	in	a	funny	way	-	it	tends	not	to	release	memory	back	to	the	operating
system	after	it	is	used.

If	you	create	an	enormous	500MB	array,	Ruby	asks		malloc		to	allocate	memory.	The
amount	it	needs	depends	on	how	much	memory	is	already	allocated	for	the	heap	-	let's
say	it	has	100MB,	so	Ruby	will	ask	for	an	additional	400MB	to	be	allocated	for	the	heap.
All	well	and	good	-	your	500MB	is	allocated.	Now	let's	say	that	array	dies	off	and	gets
garbage	collected.	What's	the	memory	usage	of	your	Ruby	process	now?	100MB?

Nope.	It's	still	at	500MB.

Don't	believe	me?	Try	this	one	in	any		irb		session:

Memory	Bloat

190

https://github.com/schneems/get_process_mem

Array.new(1_000_000)	{	"string"	}

This	will	create	an	array	of	1	million	string	objects.	Check	your		irb		process'	memory
usage	with		ps		-	mine	ballooned	to	350MB.	Now,	manually	trigger	garbage	collection:

GC.start

You	might	save	about	~10%	of	your	process'	memory	usage,	but	it's	still	a	huge	number!
Once	you've	allocated	memory	to	Ruby,	Ruby	gives	it	back	to	the	operating
system	slowly.	You	can	verify	this	by	checking		GC.stat[:heap_free_slots]		-	the
number	will	be	huge!

This	means	that	momentary	memory	pressure,	whether	from	many	small	objects
or	just	a	few	big	ones,	can	cause	long-lived	memory	bloat	in	a	Ruby	process.

Here's	a	quick	list	of	scenarios	that	could	be	causing	a	temporarily	large	allocation	in
your	application:

Opening	large	files,	whether	user	attachments	or	something	from	the	filesystem
Large	ActiveRecord	queries	-	depending	on	the	size	of	the	ActiveRecord	object,	an
array	of	just	a	few	thousand	could	result	in	100+	MB	allocations.
Especially	large	webserver	responses	or	requests.
Extremely	complicated	views	-	some	views	can	result	in	tens	of	thousands	of	strings
being	allocated.

An	easy	way	to	confirm	a	hypothesis	here	is	to	use	a	tool	like		gc_tracer	,	covered	in	the
memory	profiling	lesson,	or	write	your	own	tool	for	logging		GC.stat	.	Large	amounts	of
free	heap	slots	means	that	something	is	allocating	huge	amounts	of	memory	which
never	gets	released.

If	this	behavior	of	Ruby	-	not	immediately	releasing	free	heap	slots	-	seems	silly	to	you,	it
really	isn't.	Garbage	collectors,	to	work	at	maximum	efficiency,	need	predictable
applications	with	somewhat	predictable	workload.	Garbage	collection	will	always	be
"expensive"	-	slowing	your	process	by	a	few	milliseconds	(sometimes	hundreds!)	during
collection.	Ruby's	algorithm	for	requesting	more	allocation	from	the	operating	system
works	just	fine	if	your	app	has	a	stable,	predictable	memory	load.

If	you're	suffering	from	one	of	the	scenarios	above	and	can't	refactor	it	out	of	your
application	-	reading	large	files	or	responses,	especially	-	consider	trying	a	streaming
approach	to	the	problem.	One	of	the	major	advantages	of	streaming	is	that	the	entire

Memory	Bloat

191

object	or	file	in	question	doesn't	need	to	all	be	in	memory	at	a	single	point	in	time,
reducing	overall	memory	requirements.

For	example,	instead	of	trying	to	read	a	file	of	1	million	lines	at	once	like	this:

File.read("myfile.txt").each_line	do	|line|

		do_some_work(line)

end

…	we	can	read	the	file	line	by	line,	never	keeping	more	than	a	single	line	in	memory,	like
this:

file	=	File.open("myfile.txt")

until	file.eof?

		do_some_work(file.gets)

end

Read	up	on	Ruby's	IO	library	for	more.

A	similar	effect	can	be	accomplished	by	doing	work	in	"batches"	rather	than	all	at	once,
like	ActiveRecord's	"find_each"	method.	If	you're	struggling	with	long	responses,	check
out	ActionController::Streaming,	covered	in	the	lesson	on	streaming	and	SSEs.

Oink

	oink		is	a	Rubygem	that	aims	to	help	you	manage	memory	bloat	by	reporting	memory
usage	on	a	per-request	basis.	Install		oink		and	it	will	start	logging	some	memory-related
stats.	Later,	you	can	plug	these	logs	into		oink	's	included	executable,	and		oink		can
tell	you	some	interesting	statistics,	like	which	requests	and	controller	actions	increased
your	process'	heap	by	the	most	amounts.	Conceptually,	it's	not	all	that	different	from
Skylight's	allocation	tracer.

Oink	is	an	excellent	tool	for	tracking	down	which	controller	actions	may	be	allocating
large	amounts	of	memory,	like	mentioned	above.

Gemfile	Auditing

Dependencies	have	costs	-	and	in	Ruby,	they	can	sometimes	have	significant	memory
costs.

Memory	Bloat

192

http://ruby-doc.org/core-2.3.0/IO.html
https://github.com/noahd1/oink

My	favorite	tool	for	evaluating	the	memory	cost	of	my	Gemfile	is	Richard	Schneeman's
	derailed_benchmarks	.	Derailed	includes	a	benchmark	for	evaluating	the	memory	cost	of
each	gem	in	a	Gemfile.	Essentially	what	it	does	is	open	up	a	new	ruby	process,	check
how	much	memory	it's	using,	then		require	s	a	single	gem	from	your	Gemfile,	checks
the	memory	usage,	and	subtracts	to	get	the	difference.	This	is	a	static	benchmark,
meaning	your	app	is	never	actually	run.	Since	it	doesn't	actually	load	your	application,
that	means	this	benchmark	isn't	perfect	-	other	parts	of	the	gem	may	be	loaded	later	by
other	parts	of	your	application,	or	your	particular	usage	of	a	gem	may	be	imposing	high
memory	costs.

As	an	example,	I	audited	Rubygems.org's	Gemfile	using	Derailed's	static	memory
benchmark.

First,	I	add		derailed		to	the	Gemfile:

gem	'derailed',	group:	:development

…and	run		bundle	install	.	Then,	I	run	the	benchmark:

bundle	exec	derailed	bundle:mem

The	output	is	pretty	intense	-	in	general,	it	looks	like	this:

TOP:	75.8516	MiB

delayed_job:	18.5234	MiB	(Also	required	by:	delayed/railtie,	delayed_job_active_re

cord)

				delayed/performable_mailer:	18.2383	MiB

						mail:	18.207	MiB	(Also	required	by:	TOP)

								mime/types:	14.7344	MiB

The		TOP		bit	is	pretty	self	explanatory	-	the	total	memory	usage	of	all	of	your	gems
added	together.

We	can	tell	that		delayed_job		takes	up	18MB	of	memory	at	require	time.	Derailed	also
helpfully	points	out	if	any	other	gems	require	the	same	file.	Indentation	shows	what	other
files	are	required	-		delayed_job		requires		delayed/performable_mailer	,	which	requires
'mail',	which	requires		mime_types	.

Memory	Bloat

193

https://github.com/schneems/derailed_benchmarks

The	interesting	thing	in	this	particular	output	is		mime/types		taking	up	14.7	MiB	(that's
14.7	Mebibytes,	or	15.4	Megabytes)	of	memory.	That's	a	lot!	This	older	version	of
	mime/types		used	a	inefficient	method	for	storing	its	list	of	MIME	types.	This	was	fixed	in
	mime-types		version	2.6	-	any	version	later	than	that	will	work.

All	I	had	to	do	was	add	this	to	the	top	of	the	Gemfile:

#	https://github.com/mime-types/ruby-mime-types/issues/94

#	This	can	be	removed	once	all	gems	depend	on	>	3.0

gem	'mime-types',	'>=	2.6',	require:	'mime/types/columnar'

Here's	the	full	pull-request.	This	one	small	change	saved	over	30	MB	of	process
memory!

Sometimes	you	also	can	find	gems	that	use	a	lot	of	memory	that	aren't	even	used	-	I
found	that	Rubygems.org	had	gems	for	Coffeescript	and	SASS	in	the	Gemfile	but	never
actually	had	any		.scss		or		.coffee		files	in	the	project!	Removing	those	gems	saved
another	8MB	of	memory	at	startup.

When	evaluating	the	output	of		bundle	exec	derailed	bundle:mem	,	ask	yourself	for	each
gem	-	do	we	really	need	this?	Is	there	an	alternative	out	there	that	has	the	same
functionality	at	a	lower	memory	cost?

For	example,	a	popular	gem	for	file	uploads	is		carrierwave	.		carrierwave		depends	on
	fog	,	which	installs	several	dozen	other	gems	(at	time	of	writing	-	they	say	they're	going
to	fix	this).	However,	an	alternative,	called		carrierwave-aws	,	forgoes	the		fog	
dependency	and	just	uses	the		aws		gem	directly.	This	saves	almost	10	MB	of	memory
at	require	time	-	nice!

If	you	can't	find	a	lightweight	gem	to	do	a	simple	job,	you	may	be	stuck	writing	your	own.
However,	the	decision	of	whether	or	not	to	write	your	own	code	rather	than	use	your	own
gem	is	beyond	the	scope	of	this	guide.	RubyConf	2015	featured	a	good	talk	on	the
subject.

jemalloc

I'm	always	on	the	hunt	for	"free	wins"	in	performance	-	little	changes	that	don't	require
me	to	rewrite	any	code	or	make	big	alterations,	but	still	deliver	big	performance	wins.
There	are	few	of	these	in	the	Ruby	world	-	but	I'm	starting	to	come	to	around	to	one:
jemalloc.

Memory	Bloat

194

https://github.com/rubygems/rubygems.org/pull/1172
https://github.com/rubygems/rubygems.org/pull/1173
http://confreaks.tv/videos/rubyconf2015-making-it-on-your-own-and-the-pitfalls-of-gem-dependencies

Ruby's	calls	to	its	memory	allocator	are	abstracted	-	by	default,	they	use	glibc's		malloc	,
but	Ruby	can	use	any	malloc(3)	compatible	memory	allocator.	There	are	a	lot	out	there,
giving	you	quite	a	few	choices,	like	Hoard,	tcmalloc	and	jemalloc.

However,	as	far	as	I	know,	only	one	of	these	alternative	allocators	has	received
extensive	review	by	the	Ruby	community	-	it's	also	arguably	the	strongest	option
available:	jemalloc.	Developed	by	Facebook,	jemalloc	is	a	malloc	implementation
intended	for	modern	multithreaded	applications.

Sam	Saffron	of	Discourse	has	confirmed	that	jemalloc	can	deliver	6-10%	smaller
memory	heaps	off	the	bat,	with	additional	gains	as	heap	sizes	grow	and	applications
continue	running.	One	of	the	things	jemalloc	gets	right	is	its	management	of	memory
fragmentation.

As	of	Ruby	2.3,	you	can	compile	Ruby	with	jemalloc	with	the	"--with-jemalloc"	option.	For
example,	when	using	the		rbenv		ruby	version	manager,	you	can:

CONFIGURE_OPTS="--with-jemalloc"	rbenv	install	2.3.0

However,	any	previously	compiled	Ruby	can	be	used	with	jemalloc	by	using	the	special
environment	variable		LD_PRELOAD	:

LD_PRELOAD=/usr/local/jemalloc/3.6.0/lib/libjemalloc.so	ruby	myscript.rb

I	have	taken	over	the	maintenance	of	an	experimental	buildpack	for	Heroku	that	allows
you	to	use	jemalloc	on	Heroku	applications	-	you	can	try	it	out	here.

For	more	information	about	memory	allocators,	there's	an	entire	lesson	on	the	subject	in
the	Environment	section	of	the	Guide.

GC	Parameters

Almost	everyone	reading	this	lesson	will	have	experimented	with	GC	parameters	at
some	point	in	their	Ruby	career	-	most	of	us	just	tried	to	copy	and	paste	some	magical
numbers	from	the	internet	and	hoped	they	made	things	better.	Usually,	they	don't.
Ruby's	garbage	collector	has	been	under	active	development	from	Ruby	2.1-2.3,	and
settings	that	worked	on	Ruby	2.1	may	be	complete	anathema	for	the	Ruby	2.3	algorithm.
Overall,	I	would	recommend	not	messing	with	these	parameters.	It	simply	isn't	worth	it
for	most	applications	anymore.

Memory	Bloat

195

https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/4802228039190
https://bugs.ruby-lang.org/issues/9113#note-12
https://github.com/mojodna/heroku-buildpack-jemalloc

It's	also	worth	noting	that,	when	tuning	garbage	collection	parameters,	you're	almost
always	working	with	a	memory/CPU	time	tradeoff.	More	frequent	garbage	collection
means	less	memory	usage,	but	more	time	spent	in	garbage	collection	and	a	slower
application	(and	vice	versa).

For	these	reasons,	I'm	not	going	to	provide	garbage	collection	parameters	here.	I	think
the	default	settings	are	Good	Enough	for	most	applications	-	if	you're	really	interested,
check	out	this	awesome	RubyConf	talk	on	how	Ruby's	GC	works	and	then	take	a	look	at
the	variables	defined	in		gc.c	.

Checklist	for	Your	App
Use	Oink	or		ps		to	look	for	large	allocations	in	your	app.	Ruby	is	greedy	-	when
it	uses	memory,	it	doesn't	usually	give	it	back	to	the	operating	system	if	it	needs	less
memory	later.	This	means	short	spikes	turn	into	permanent	bloat.
Audit	your	gemfile	using		derailed_benchmarks	,	looking	for	anything	that
require	more	than	~10MB	of	memory	Look	to	replace	these	bloated	gems	with
lighter	alternatives.
Reset	any	GC	parameters	you	may	have	tweaked	when	upgrading	Ruby
versions.	The	garbage	collector	has	changed	significantly	from	Ruby	2.0	to	2.3.	I
recommend	not	using	them	at	all,	but	if	you	must	-	unset	them	each	time	you
upgrade	before	reapplying	them	to	make	sure	they're	actually	improving	the
situation.

Memory	Bloat

196

https://www.youtube.com/watch?v=NnqId_OvUU4
https://github.com/ruby/ruby/blob/trunk/gc.c

Memory	Leaks
Memory	leaks.	They're	the	thing	that	goes	bump	in	the	night.	I'm	going	to	acknowledge
from	the	outset	that	this	is	probably	one	of	the	most	important	and	most	difficult	topics	in
this	course.

As	an	example,	there's	a	memory	leak	thread	on	the	Puma	GitHub	issue	tracker	that's
been	open	for	over	3	years.	The	discussion	goes	back	and	forth	-	there's	a	leak,	there
isn't	a	leak,	and	no	one	can	create	an	application	that	replicates	the	leaky	behavior.	It's	a
nightmare.	Some	of	the	smartest	minds	in	the	Ruby	community	are	in	that	thread	-
including	Koichi	Sasada,	Ruby	core	member	and	implementer	of	the	CRuby	virtual
machine	-	and	none	can	pin	down	exactly	what's	happening.

Part	of	the	problem	with	memory	leaks	is	that	they	can	come	from	many	sources:

Managed	Ruby	object	leaks	-	there	are	many	ways	to	write	Ruby	code	that	leaks
objects	(or	at	least	keeps	objects	around	for	longer	than	you	may	expect).
C-extension	leaks	-	frequently	one	of	the	hardest	leak	types	to	debug,	C-
extensions	in	your	gems	can	leak.	For	example,	leaks	have	been	found	in
Markdown-producing	gems	that	use	C-extensions	to	convert	text	to	Markdown.	A
leak	was	discovered	in	EventMachine's	C	interface	with	OpenSSL.	C-extensions	are
particularly	prone	to	leaking,	of	course,	because	C	is	not	a	memory-managed
language.
Leaks	in	Ruby	itself	(the	VM)	-	Although	a	completely	unsupported	hunch,	this	is
what	I	think	has	been	happening	to	the	Puma	app	server	over	the	years.	Threading
in	the	Ruby	VM	was,	until	recently,	a	relatively	untouched	area	of	the	language.
Puma	was	the	first	popular	threaded	application	server,	and	when	it	became	widely
adopted,	bugs	in	the	underlying	thread	implementation	of	Ruby	were	(or	are	being)
exposed.

The	real	tough	part	is	that	each	of	these	three	sources	of	memory	leaks	requires	a
completely	different	approach	and	set	of	tools	for	diagnosing	and	fixing	them.	The	last
two	sources	(C-extensions	and	VM	leaks)	may	simply	be	too	complicated	to	diagnose
and	track	down	for	many	Ruby	programmers.

But,	before	we	get	into	how	to	fix	leaks,	we	have	to	define	what	they	are.

Ruling	Out	Bloat

Memory	Leaks

197

https://github.com/puma/puma/issues/342

I'd	reckon	that	at	least	half	of	the	time	when	a	Ruby	programmer	thinks	they	have	a
memory	leak,	what	they're	really	battling	is	memory	bloat	instead.	First,	go	and	read	the
lesson	on	memory	bloat	if	you	haven't	already.	There	are	many	confounding	factors
which	can	make	leaks	and	bloat	look	similar	-	they	both	involve	memory	growth,	and	in
highly	memory	constrained	environments	(like	512MB	Heroku	dynos),	they	can	both
crash	servers	with	out-of-memory	errors.

What	Leaks	Look	Like

A	memory	leak	occurs	when	memory	is	continually	allocated	and	never	released	by	a
process,	even	when	that	what	is	stored	in	that	memory	is	no	longer	required.	In	Ruby
web	applications,	leaks	are	small	and	slow,	leaking	just	40-300	bytes	at	a	time.	Leaks
never	stop	growing	and	will	continue	to	leak	for	as	long	the	process	runs.

Memory	bloat	occurs	when	a	process	requires	large	amounts	of	memory,	and	that
memory	is	never	released	because	it	is	in	continual	use.	In	Ruby	web	applications,
bloat	usually	occurs	quickly,	represented	as	huge	one-time	spikes	of	1	to	even	100
megabytes.	Bloat	eventually	levels	off,	with	memory	usage	stabilizing.

Let's	sum	that	up	with	a	table:

|	|	Memory	bloat	|	Memory	leaks	|	|	————	|	——	|	—————	|	|	Allocated	memory	is
actually	required	|	Yes	|	No	|	|	Growth	|	Fast	and	large	|	Slow	and	steady	|	|	Levels	off	|
Eventually	|	Never	|

One	of	the	most	obvious	differences	between	a	leak	and	bloat	is	the	time	scale.	All	Ruby
applications	will	grow	in	memory	usage	once	they	are	initialized.	This	is	simply	the
nature	of	Ruby	and	how	we've	architected	our	Rails	frameworks.	Not	all	of	the	files	in	an
application	are	immediately		require	d	upon	startup,	and	as	these	files	are	loaded	in,
memory	usage	increases.	Caches	are	being	populated	as	well	-	one	that	causes	a	lot	of
memory	growth	in	Rails	is	the	ActiveRecord	statement	cache.	As	SQL	queries	are
executed,	ActiveRecord	caches	the	generated	SQL	statements	so	it	can	re-use	them	in
the	future.	This	is,	of	course,	stored	in	memory	-	leading	to	slow	growth	over	time.

In	a	typical	production	application,	memory	usage	should	level	off	within	2-3	hours	of
the	last	restart.	Note	that	low-volume	apps	will	take	longer	to	level	off.	At	the	maximum,
memory	usage	should	level	off	within	24	hours	in	most	applications.	If	not,	consider	that
"one	point	towards	the	leak	hypothesis."

Back	Off	The	Memory	Pressure	To	See	Clearly

Memory	Leaks

198

One	reason	Ruby	developers	confuse	bloats	for	leaks	is	that	they	never	see	the	"tail
end"	of	their	memory	usage	graph	because	the	process	crashes	quickly	or	is	restarted
automatically	by	a	"worker	killer"	or	other	process	monitor.

If	you're	unsure	if	you've	got	a	leak	or	bloat,	try	allowing	your	Ruby	processes	to	run
for	at	least	24	hours	without	a	restart.	To	do	this,	you	need	to	turn	off	any	process
monitors	that	will	automatically	restart	processes,	and	you	need	to	reduce	memory
pressure	on	your	application.

If	you're	running	multiple	workers	or	Unicorn	processes	per	server,	dial	that	down	to	just
1.	Scale	up	the	total	number	of	servers	if	necessary	to	make	up	for	the	lost	capacity.	If
necessary,	you	may	also	need	to	reduce	the	amount	of	threads	you're	using	with	a
threaded	webserver.

Alternatively,	you	could	increase	the	memory	limits	of	your	server	temporarily	-	if	on
Heroku,	upgrade	to	a	Performance	dyno	for	24	hours	(without	changing	your	worker
count).	If	on	AWS,	change	your	instance	type.

Either	way,	try	to	increase	the	amount	of	memory	headroom	any	single	process	has	to
deal	with.	Keep	increasing	the	amount	of	headroom	until	the	process	no	longer	runs	out
of	memory	and	levels	off	after	24	hours.

If,	even	after	reducing	yourself	to	just	one	Ruby	process	per	server,	you're	still	seeing
memory	growth	after	24	hours,	it's	time	to	move	on	to	the	next	stage	of	diagnosis.

Tools	We	Can	Use	To	Diagnose	Leaks

At	this	point,	you're	going	to	want	to	break	out	the	tools.

When	diagnosing	leaks,	it's	easy	to	go	down	the	rabbit	hole	of	tooling.	One	minute,
you're	just	twiddling	number-of-processes-per-dyno,	and	the	next	you're	knee	deep	in
Valgrind	trying	to	guess	which	memory	addresses	correspond	to	which	esoteric	library
you're	using.	No	really	-	many	memory	leaks	are	solved	by	extremely	esoteric	means,
especially	those	buried	deep	in	C-extensions.

Instead,	rather	than	exactly	pinpointing	a	memory	leak's	source	by	introspecting	the
memory	itself,	it's	far	easier	to	have	a	long-running	production	memory	metric	in
production.	If	you	can	graph	your	production	memory	usage	for	months	at	a	time,	it's
far	easier	to	look	back	and	identify	which	deploys	introduced	a	problem.	If	you	upgraded
a	gem	a	week	ago,	and	ever	since	your	memory	has	been	steadily	growing	until	a
restart,	you	can	probably	guess	it's	related	to	that	gem.	An	ounce	of	prevention	is

Memory	Leaks

199

worth	a	pound	of	cure	when	it	comes	to	memory	leaks	in	this	sense.	If	you're	not
tracking	memory	usage	in	production,	and	can	dig	back	into	logs	~2-3	months	old,	you're
inviting	a	leak	scenario	that	will	require	the	muckiest	of	tools	to	debug.

New	Relic	provides	this	sort	of	long-lived	memory	introspection	by	default	-	it's	available
in	their	"Ruby	VMs"	tab.	Heroku's	24	hour	memory	tracking	isn't	enough	-	you	need	to	be
able	to	step	back	at	least	a	week	at	a	time,	unless	you	plan	on	checking	your	app	for
memory	leaks	every	single	day.

Reproduce	Locally
Our	next	step,	now	that	we're	pretty	sure	that	we've	got	a	leak,	is	to	try	to	reproduce	it
locally.	At	this	point,	we're	still	not	exactly	sure	what's	causing	the	leak,	only	that	we
definitely	have	a	leak.

Use	Siege	To	Simulate	Load

We'll	set	up		siege	,	the	load	testing	utility,	to	pound	a	list	of	URLs	that	we	think	may	be
causing	a	leak.	Just	write	out	a	text	file	with	a	list	of	the	URLs	you	want	to	hit	-	it	might
look	something	like	this:

http://localhost:3000/

http://localhost:3000/gems

http://localhost:3000/gems/1

http://localhost:3000/gems/2

Then,	we	can	start	siege	with:

	siege	-c	32	-f	urls.txt	-t	5M	

	siege		will	pound	your	local	server	instance	over	and	over	with	this	list	of	URLs.	In	this
case,	we're	using	32	threaded	workers	and	the	test	will	last	for	5	minutes.	The	test
probably	needs	to	be	run	for	longer	than	you	think	-	make	sure	you're	getting	at	least
10,000	requests	completed	during	the	test	timeframe	(it	displays	in	the	output	as
"transactions	completed").

The	design	of	this	test	is	important	-	rather	than	manually	triggering	requests	to	the
webapp,	we're	doing	as	many	as	possible	so	that	we'll	trigger	lots	of	garbage	collections.
While	it's	doing	this,	we're	going	to	watch	for	a	slow	leak.

Memory	Leaks

200

Count	objects	with	GC.stat	and	ObjectSpace

While	the		siege		test	is	running,	we're	going	to	want	to	log	some	critical	numbers.

RSS	memory	usage.	This	is	what	we're	trying	to	decrease.	If	this	number	levels	off
after	10k	requests	or	more,	we	probably	don't	have	a	leak.
	GC.stat[:heap_live_slots]		This	is	the	number	of	Ruby's	memory	slots	that	are
occupied	by	objects.	If	this	number	stays	flat	while	RSS	is	increasing,	we	probably
have	a	C-extension	leak,	though	we	may	be	just	modifying	a	single	object	and
making	it	larger	over	time	(unlikely).
	GC.stat[:heap_free_slots]		If	this	number	is	large	(~10%	of	heap_live_slots),	it's	an
indicator	of	bloat.	Ruby	does	not	release	heap	memory	back	to	the	operating
system	-	high	numbers	of	heap	free	slots	is	an	indicator	that	large	amounts	of
memory	are	being	required	to	accomplish	a	task,	and	then	not	used	again.	See	the
memory	bloat	lesson	for	more.
	GC.count_objects		This	hash,	covered	in	the	memory	profiling	lesson,	will	show	the
number	of	each	type	of	object	currently	live	in	your	Ruby	process.	If	one	of	these
grows	unbounded,	we	probably	have	a	leak	in	the	Ruby	memory	space.

We	can	track	these	numbers	with	a	simple	memory-logging	thread:

Memory	Leaks

201

#	config/initializers/memlog.rb

Thread.new	do

		logger	=	Logger.new('mem_log.txt')

		logger.formatter	=	proc	{	|sev,	date,	prog,	msg|	msg	}

		headers	=	[

				"RSS",

				"Live	slots",

				"Free	slots",

				ObjectSpace.count_objects.keys

].flatten

		logger.info	headers.join(",")

		while	true

				pid	=	Process.pid

				rss	=	`ps	-eo	pid,rss	|	grep	#{pid}	|	awk	'{print	$2}'`

				memory_info	=	[

						rss.strip,

						GC.stat[:heap_live_slots],

						GC.stat[:heap_free_slots],

						ObjectSpace.count_objects.values

].flatten

				logger.info	memory_info.join(",")

				logger.info	"\n"

				sleep	5

		end

end

Add	that	to	your	config/initializers	directory,	and	you'll	get	a	comma-separated	memory
log	in	the	root	of	your	application.	Run	the	test	with		siege	,	gather	10-50k	requests,	and
then	load	this	log	into	Excel	and	start	doing	some	analysis.

Zeroing	In	on	the	Leak
It's	at	this	point	where	things	start	to	get	really	fuzzy.	As	mentioned	at	the	beginning	of
the	lesson,	there	are	a	lot	of	points	where	your	application	can	leak	and	they'll	all	require
different	tooling.

Best	Case	Scenario:	A	Ruby	Object	Leak

Memory	Leaks

202

If	you	notice	heap	live	slots	increasing,	heap	free	slots	remaining	low	(below	a	few
thousand	slots),	and	RSS	increasing,	you	probably	have	a	leak	in	the	Ruby	object
space.	This	is	good	news,	as	it's	probably	the	easiest	to	track	down.

You	have	a	Ruby	object	that	is	leaking	somewhere	-	perhaps	references	are	being
retained	to	the	object	even	though	it's	no	longer	needed.

Looking	for	leaks	with	memory_profiler

To	get	a	better	idea	of	where	the	leak	is	coming	from,	dig	in	with	the		memory_profiler	
gem.

If	you're	not	sure	exactly	where	the	leak	is	occurring,	use		memory_profiler		with		rack-
mini-profiler	.	When	both	of	these	gems	are	installed,	you	can	see	a	report	of	retained
objects	on	a	per-request	basis.	Look	for		retained	objects	by	location		in	the
	memory_profiler		report	for	actions	you	suspect	are	leaking	memory.

If	you're	reasonably	certain	that	the	leak	is	occurring	with	your	use	of	a	certain	gem,
write	a	script	that	uses	the	gem	stand-alone	and	wrap	it's	execution	in		memory_profiler	.
This	is	exactly	what	Sam	Saffron,		memory_profiler		and		rack-mini-profiler		did	to
discover	a	memory	leak	in		therubyracer	:

ENV['RAILS_ENV']	=	'production'

require	'memory_profiler'

#	this	requires	all	the	files	in	your	Rails	app.	Normally	lives	in	config.ru

require	File.expand_path("../../config/environment",	__FILE__)

#	Warmup.	This	is	important,	and	similar	to	performance

#	benchmarking.	We	want	to	run	the	code	at	*least*	once	before

#	profiling	it	to	make	sure	we're	not	profiling	the	"first	run"		

#	behavior,	which	may	be	more	complicated	than	following	runs.

#	PrettyText	is	a	module	Sam	uses	to	convert	Markdown	to	HTML.	It

#	uses	TheRubyRacer	internally.

3.times{PrettyText.cook("hello	world")}

MemoryProfiler.report	do

		50.times{PrettyText.cook("hello	world")}

end.pretty_print

You	could	use	this	snippet	as	a	general	pattern	when	testing	for	leaks	in	your	own
application.	Look	at		retained	objects	by	location		in	the	output	to	find	areas	where
you're	probably	leaking	memory.

Memory	Leaks

203

For	more	about		memory_profiler	,	see	the	memory	profiling	lesson.

Known	Leaky	Gems

It's	a	good	idea	to	make	sure	you're	not	using	any	gems	which	are	known	to	leak
memory.	There	is	a	community	maintained	project	on	Github	that	keeps	a	list	of	known
leaky	gems,	though	you	should	also	search	"memory	leak"	in	the	issues	section	of	gems
you	suspect	are	causing	you	trouble.

Some	notable	leaky	gems	include:

Celluloid,	versions	between	0.16.0	and	0.17.2
grape	<	0.2.5
oj	<	2.12.4
redcarpet	<	3.3.3
sidekiq	<	3.5.1
therubyracer	<	0.12.2

Not-So-Great:	A	C-Extension	Leak

If	heap	live	slots	and	heap	free	slots	are	remaining	constant	while	RSS	is	increasing,
you	probably	have	a	leak	in	the	C-extensions	of	one	of	your	gems.

This	is	a	difficult	situation	to	debug.	If	you	don't	have	experience	with	C	programming,
you	may	find	locating	these	leaks	difficult.	If	you	can,	you	may	just	want	to	install	a
worker	killer	(see	below)	and	hope	the	problem	doesn't	get	worse.	Otherwise,	get
prepared	for	a	multi-week	battle	against	this	leak.

For	the	strong	of	heart,	there	are	two	good	tools	I	know	of	for	tracking	down	C-extension
leaks.

Heap	Dumps

Heap	dumps	involve	turning	on	memory	allocation	tracing,	dumping	the	entire	Ruby
object	heap	to	a	file,	and	then	comparing	these	dumps	against	each	other	to	try	to	get	a
sense	of	what	objects	are	being	added	to	the	heap	(and	retained).

Heap	dumping	is	a	complicated	subject,	and	the	APIs	for	doing	this	may	change.	If	you
suspect	you	have	a	C-extension	leak	and	want	to	try	your	hand	at	heap	dumping,	I	can
point	you	to	the	following	online	resources:

Memory	Leaks

204

https://github.com/ASoftCo/leaky-gems

http://blog.codeship.com/the-definitive-guide-to-ruby-heap-dumps-part-i/
https://github.com/tenderlove/heap-analyzer
https://samsaffron.com/archive/2015/03/31/debugging-memory-leaks-in-ruby
http://gavinmiller.io/2015/debugging-memory-leaks-on-heroku/

jemalloc	Introspection

An	interesting	alternative	approach	is	to	use	the	instrumentation	available	in	your
memory	allocator	-		jemalloc		has	great	facilities	for	this.	For	more	about	installing	and
using		jemalloc		with	Ruby,	see	the	Alternative	Allocators	lesson	near	the	end	of	the
Course.

When	Ruby	is	running	with		jemalloc	,	we	can	use	the		MALLOC_CONF		environment
variable	to	trigger	some	of		jemalloc	's	built-in	profiling.

export	MALLOC_CONF='prof_leak:true,lg_prof_sample:0,prof_final:true'

As	an	example,	the	above	configuration	will	log		jemalloc	's	heap	at	exit	-	you	can	use
this	dump	to	get	an	idea	of	where	memory	may	be	leaking,	because	memory	that's	still
around	at	exit	means	it	was	probably	forgotten	by	whatever	was	supposed	to	free	it	up!

For	more	about	using		jemalloc		to	track	down	memory	leaks,	see	this	story	about
tracking	down	a	C-extension	leak	by	Oleg	Dashevskii	and	the	jemalloc	wiki	entry.

Absolutely	Awful:	A	Ruby	VM	Leak

If	heap	live	slots	and	heap	free	slots	are	remaining	constant	while	RSS	is	increasing,
and	you	can't	find	a	leak	in	your	gems	or	C-extensions,	you	may	be	experiencing	a	leak
in	the	Ruby	VM	itself.

At	this	point,	I	must	point	you	to	other	resources,	like	the	ruby-core	mailing	list.	I	am	not
a	Ruby	core	developer,	nor	do	I	ever	wish	to	be	-	and	leaks	at	this	scale	are	simply
beyond	my	technical	ability.

For	a	story	about	tracking	down	a	memory	leak	in	the	Ruby	VM,	check	out	Alexey
Gaziev's	tale	of	fixing	a	threading-related	bug	in	Ruby	2.2.

Giving	Up:	Worker-Killers

Memory	Leaks

205

http://blog.codeship.com/the-definitive-guide-to-ruby-heap-dumps-part-i/
https://github.com/tenderlove/heap-analyzer
https://samsaffron.com/archive/2015/03/31/debugging-memory-leaks-in-ruby
http://gavinmiller.io/2015/debugging-memory-leaks-on-heroku/
http://www.be9.io/2015/09/21/memory-leak/
https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking
https://evilmartians.com/chronicles/ruby-2_2-oom

If	you	can't	fix	the	problem,	you	can	put	a	band-aid	on	it.	By	simply	restarting	your
application	as	soon	as	it	starts	to	use	too	much	memory,	you	can	at	least	prevent	the
usage	of	swap	memory	and	out-of-memory	errors	from	crashing	or	slowing	down	your
application.	I	recommend	these	gems	only	as	a	"last	resort"	or	as	a	"can't	fix	now,	will	fix
later":

	puma_worker_killer	

'unicorn_worker_killer`
Phusion	Passenger	Enterprise	can	enforce	a	maximum	per-process	memory	usage
by	itself.

Checklist	for	Your	App
Get	a	long-running	memory	log.	If	you're	not	logging	memory	usage	over	a	week
or	month	long	timeframe,	you're	losing	valuable	data	that	could	be	used	when
tracking	down	memory	leaks.	Being	able	to	track	memory	usage	against	deploy
times	is	absolutely	critical	to	avoid	tons	of	hard,	dirty	debugging	work.

Memory	Leaks

206

https://github.com/schneems/puma_worker_killer
https://github.com/kzk/unicorn-worker-killer

Common	ActiveRecord	Pitfalls
ActiveRecord	is	a	double-edged	sword.	Its	great	strength	-	its	unparalleled	ease-of-use	-
is	also	the	thing	that	makes	it	likely	to	cut	you.	ActiveRecord	makes	it	easy	to	grind	your
server	to	a	halt:	just	a	few	lines	of	ActiveRecord	queries	can	easily	grind	any	Rails
process	to	a	halt.

Some	would	throw	such	a	sharp	tool	out	of	the	toolbox	altogether	-	reaching	instead	for
alternatives	in	the	Ruby	ORM	world	like	Sequel.	But	I	still	prefer	ActiveRecord's
expansive	and	powerful	API.	Of	all	the	existing	Ruby	ORMs,	I	find	its	the	one	that	lets
me	write	the	least	amount	of	SQL	to	accomplish	any	given	task	-	and	I	hate	writing	SQL.

This	lesson	will	cover	the	most	common	performance-related	issues	when	dealing	with
ActiveRecord.	This	is	inevitably	linked	to	the	lesson	on	databases,	but	we'll	be	focusing
on	the	Ruby	layer	here.

Operations	on	Many	Records	-	find_each
and	in_batches
Here's	a	really	common	pitfall	that	happens	all	the	time	in	background	jobs,	when	many
records	are	being	processed	at	once.	Perhaps	you've	got	a	batch	job	for	updating	a
bunch	of	Subscription	objects.	On	the	first	of	the	month,	their	number	of	"months	spent
as	customer"	needs	to	be	incremented	by	one	(silly	example,	I	think,	but	work	with	me).

Here's	one	way	that	might	look:

Subscription.all.each	do	|sub|

		sub.months_as_customer	+=1

		sub.save!

end

There's	a	major	problem	with	this	approach,	and	indeed,	any	ActiveRecord	query	that
uses		all		or	any	scope	that	could	return	many	records.	Before	that		each		can
enumerate	through	all	the	records,	the	query	must	be	executed	and	all	of	those	records
must	be	loaded	into	memory.	Ouch!

Here's	an	example	from	Rubygems.org:

ActiveRecord

207

https://github.com/jeremyevans/sequel

gem	=	Rubygem.limit(1).order("RANDOM()").first

require	'objspace'

ObjectSpace.memsize_of(gem)

#=>	120

all_gems	=	Rubygem.all

ObjectSpace.memsize_of_all(Rubygem)

#=>	15313024

For	more	about		memsize_of	,	check	out	the	lesson	on	memory	profiling.

Ouch	-	it	takes	at	least	15	megabytes	of	memory	to	load	up	all	120,000	Rubygems	in	the
database.	This	doesn't	count	all	of	these	objects	attributes	either,	which	also	have	to	be
instantiated.

As	described	in	the	lesson	on	memory	bloat,	huge	memory	allocations	like	this	can
cause	a	spike	in	memory	usage	that	the	process	never	really	releases	again.	A	Ruby
process	might	be	using	100MB	before	you	run	this	query,	and	then	afterward	it	sits	at
200MB,	even	though	it's	only	using	100MB	internally.

The	alternative	is	to	not	load	all	of	these	records	at	once.	Let's	say	we've	decided	that
Rubygems	aren't	LOUD	enough,	and	all	gem	names	must	be	in	ALL	CAPS.	The	naive
implementation	would	be:

Rubygem.all.each	{	|	g	|

		g.name.upcase!

		g.save

end

Running	this	code	on	my	local	machine	immediately	balloons	process	memory	from
100MB	to	330MB!	Ouch!

Using		ActiveRecord#find_each	,	though,	we	can	shrink	this	number	considerably.	Instead
of	loading	all	of	those	records	at	once,		find_each		loads	them	in	batches.	By	default,	this
batch	size	is	1000	records.

Rubygem.all.find_each	do	|g|

		g.name.upcase!

		g.save

end

ActiveRecord

208

https://github.com/rails/rails/blob/2a7cf24cb7aab28f483a6772b608e2868a9030ba/activerecord/lib/active_record/relation/batches.rb#L48

This	simple	change	keeps	process	memory	at	a	low	~120MB,	a	210MB	improvement
over	our	previous	example!		find_each		accepts	batch	sizes	and	can	even	start	at
different	points	in	the	query	(i.e.,	start	at	the	2000th	record	in	this	batch	of	10000).

There's	also	a	new	method	in	Rails	5	called		in_batches	,	which	yields	the
ActiveRecord::Relation	of	the	entire	batch	to	the	block,	rather	than	a	single	record:

Rubygem.where("downloads	>	100").in_batches	do	|relation|

		relation.update_all(popular_gem:	true)

end

Good	God	Man,	Stop	with	the	N+1s!
N+1	queries.	They're	sort	of	a	pet	peeve	of	mine	-	I	feel	like	they're	harped	on	in	nearly
every	"speed	up	your	Rails	app!"	blog	post,	so	I	almost	don't	want	to	hype	them	up	again
here.	You	should	know	better	by	now,	right?

Right	off	the	bat,	I'll	discuss	a	bit	of	advice	given	for	this	problem	that	I	don't	agree	with:	I
don't	use		bullet	.

Bullet	is	a	gem	that	is	supposed	to	identify	N+1	queries	and	opportunities	to	use	eager
loading,	which	I'll	get	to	in	a	second.	This	sounds	great	-	just	do	what	the	gem	tells	you
to	do,	right?

Using		bullet		ends	up	with	a	couple	of	problems	in	practice:

	bullet		can't	work	with	complicated	stacktraces,	meaning	it	sometimes	misses	N+1
queries	caused	by	third	party	gems	or	Rails	engines.	Or,	it	may	identify	that	an	N+1
query	is	happening	but	it	can't	tell	you	where.
Not	every	"N+1"-like	query	is	avoidable.	I	don't	like	using	code	linters,	like		bullet	
or		rubocop	,	unless	I	can	100%	comply	with	its	guidelines.	Once	you	start	ignoring	a
linters	warnings,	it	quickly	turns	into	a	case	of	"the	boy	who	cried	wolf"	-	you	start
ignoring	all	of	them.
	bullet		is	eager	(hah!)	to	suggest	eager	loading.	In	many	cases,	this	is	not
appropriate.	I'll	get	to	this	bit	in	a	second.
	bullet		discourages	the	use	of	production-like	data	in	development	-	rather	than
learning	to	identify	N+1	problems	by	watching	development	logs,	you	just	wait	for
the	(imperfect)	tool	to	tell	you	what	to	fix	and	optimize.

ActiveRecord

209

https://github.com/rails/rails/blob/2a7cf24cb7aab28f483a6772b608e2868a9030ba/activerecord/lib/active_record/relation/batches.rb#L48
https://github.com/flyerhzm/bullet

I'd	rather	we	just	all	learned	how	to	identify	N+1	issues	ourselves	-	maybe	I'm	a	bit	of	an
old	grump	on	this	point,	but	you're	free	to	try		bullet		and	see	for	yourself.

How	do	you	find	N+1	queries	"the	hard	way"?	By	reading	your	logs,	of	course!

The	nice	thing	is	that	they're	extremely	easy	to	identify	when	you	have	production-like
data	loaded	in	to	your	local,	development	database.	As	an	example,	I	loaded	up	the
Rubygems.org	production	data	dump	into	my	local	database,	and	looked	at	the
Rubygem	index.	Here's	what	I	saw:

This	is	what	an	N+1	looks	like	-	many	similar	SQL	queries,	repeating.	They're	extremely
common	on		index		actions,	but	can	be	present	anywhere	a	model	collection	is	iterated
over.

ActiveRecord

210

This	method	of	watching	the	logs	means	you	need	to	have	production-like	quantities	of
data	in	the	database.	Often,	developers	use	empty	or	nearly	empty	databases	in
development,	which	means	they'll	never	see		MyModel.all		return	10000	records	instead
of	5	or	10,	missing	the	N+1	query	in	the	process.

Now	that	I	know	I	have	an	N+1	query,	I	have	to	figure	out	where	the	SQL	query	is
coming	from.	To	do	this,	I	have	a	small	piece	of	code	I	drop	into		config/initializers	
that	logs	where	SQL	queries	are	generated.	It's	not	100%	accurate	all	the	time,	but	it
gives	me	a	good	starting	point.

#	config/initializers/query_source.rb

module	LogQuerySource

		def	debug(*args,	&block)

				return	unless	super

				backtrace	=	Rails.backtrace_cleaner.clean	caller

				relevant_caller_line	=	backtrace.detect	do	|caller_line|

						!caller_line.include?('/initializers/')

				end

				if	relevant_caller_line

						logger.debug("		↳	#{	relevant_caller_line.sub("#{	Rails.root	}/",	'')	}")
				end

		end

end

ActiveRecord::LogSubscriber.send	:prepend,	LogQuerySource	if	Rails.env.development

?

After	adding	that	initializer	and	restarting	my	server,	I	see	the	following	under	each	of	my
suspected	N+1	queries:

	↳	app/models/version.rb:112:in	`most_recent'

You	can	also	use		rack-mini-profiler		for	this	-	see	the	lesson	for	more	information.

So	something	is	calling		some_rubygem_version.most_recent		on	every	gem	on	this	index
page.	After	some	digging,	I	find	the	offending	line	in	a	partial:

<p	class="gems__gem__desc	t-text"><%=	short_info(rubygem.versions.most_recent)	%></

p>

ActiveRecord

211

This	partial	is	rendered	for	every	gem	in	the	#index.	To	test	my	hypothesis,	I	simply
remove	this	line	and	see	if	the	N+1	goes	away.	Success!

The	Rubygem	model	is	loaded	in	this	view	with	this:

@gems	=	Rubygem.letter(@letter).by_downloads.paginate(page:	@page)

…and	the		most_recent		method	looks	like	this:

def	self.most_recent

		latest.find_by(platform:	'ruby')	||	latest.order(number:	:desc).first	||	last

end

The	problem	here	is	the		find_by		call	in		most_recent		-	this	will	always	trigger	a	query,
even	if	we	add	some	eager	loading	to	the	controller!

Instead	of	doing	using	ActiveRecord	methods	that	trigger	SQL	queries,	we're	going	to
rewrite	this	method	to	use	regular	Arrays	and	Enumerable	methods.	I	ended	up	adding	a
method	the	Rubygem	model	that	looked	like	this:

def	most_recent_version

		latest	=	versions.select(&:latest).sort_by(&:number)

		latest_for_cruby	=	latest.select	{	|v|	v.platform	==	"ruby"	}

		if	latest_for_cruby.any?

				latest_for_cruby.last

		elsif	latest.any?

				latest.last

		else

				versions.last

		end

end

Note	that	this	version	is	a	lot	longer	than	the	previous		Version.most_recent		method.
Notice	also	that	I've	basically	just	replaced	ActiveRecord	query	methods	with
Enumerable	equivalents.	You	can	see	the	final	pull	request	and	discussion	here.

Queries	in	Controllers	and	Scopes	Only!

ActiveRecord

212

https://github.com/rubygems/rubygems.org/pull/1189

The	particular	example	above	from	Rubygems.org	is	an	instance	of	an	extremely
common	pattern	in	Rails	applications.	Methods	on	a	model	trigger	SQL	queries	(by	using
the	ActiveRecord	API),	and	then	those	methods	get	called	in	the	view.	Inevitably,	they
end	up	being	used	in	a	partial	or	something	that	gets	iterated	for	every	element	in	a
collection,	and	bam	-	N+1.

I've	seen	this	so	often	that	I'm	willing	to	generalize	a	rule:

Do	not	use	ActiveRecord	query	methods	inside	models.	Use	them	only	in
controllers	and	helpers.	ActiveRecord	scopes	are	excepted	from	this	rule.

In	a	way,	this	makes	intuitive	sense:	a	model	is	intended	to	represent	a	single	instance
of	the	database	row	in	the	ActiveRecord	pattern.	The	responsibility	for	querying	and
organizing	the	data	generally	comes	from	elsewhere	-	the	controller.

Here's	a	full	list	of	ActiveRecord	methods	that	could	generate	a	SQL	query,	and
therefore	an	N+1	if	used	on	an	element	of	a	larger	collection:

bind
create_with
distinct
eager_load
extending
from
group
having
includes
joins
limit
lock
none
offset
order
preload
readonly
references
reorder
reverse_order
select
uniq

ActiveRecord

213

where

Replace	Query	Methods	With	Enumerable
In	the	Rubygems	example,	we	also	replaced	ActiveRecord	query	methods	with	their
Enumerable	equivalents.	This	basically	moved	the	work	of	selecting	the	latest	Rubygem
version	from	the	database	into	our	Ruby	process.

That	probably	doesn't	make	sense	-	normally,	we	would	want	the	database	to	do	more
work,	not	less,	right?	The	database	is	surely	faster	than	whatever	we	can	do	in	Ruby?
Sometimes	that's	true	-	but	when	there's	N+1's	happening,	usually	it	isn't.

When	encountering	an	N+1,	the	solution	usually	lies	in	replacing	ActiveRecord	query
methods	(listed	above)	with	Enumerable	equivalents	-	combinations	of		select	,
	reject	,	and		sort_by	.

The	reason	why	this	is	faster	isn't	because	Ruby	is	faster	than	your	DB	-	its	because
we're	instantiating	fewer	ActiveRecord	objects.	To	return	to	the	Rubygems	example,
consider:

def	self.most_recent

		latest.find_by(platform:	'ruby')	||	latest.order(number:	:desc).first	||	last

end

In	the	worst	case,	this	triggers	3	SQL	queries:

Version	Load	(0.6ms)		SELECT		"versions".*	FROM	"versions"	WHERE	"versions"."rubyg

em_id"	=	$1	AND	"versions"."latest"	=	$2	AND	"versions"."platform"	=	$3	LIMIT	1		[[

"rubygem_id",	31121],	["latest",	"t"],	["platform",	"ruby"]]

		Version	Load	(1.9ms)		SELECT		"versions".*	FROM	"versions"	WHERE	"versions"."rub

ygem_id"	=	$1	AND	"versions"."latest"	=	$2		ORDER	BY	"versions"."number"	DESC	LIMIT

	1		[["rubygem_id",	31121],	["latest",	"t"]]

		Version	Load	(1.2ms)		SELECT		"versions".*	FROM	"versions"	WHERE	"versions"."rub

ygem_id"	=	$1		ORDER	BY	"versions"."id"	DESC	LIMIT	1		[["rubygem_id",	31121]]

For	each	one	of	these	queries,	we	have	to	instantiate	new	ActiveRecord	objects	for	each
of	the	returned	rows.	This	takes	a	lot	of	time.

Our	optimized	version	only	uses	1	set	of	ActiveRecord	objects,	and	no	new	ones	are
instantiated	when	calling	our	optimized	method.

ActiveRecord

214

There's	a	caveat	to	this	approach	-	there	are	going	to	be	times	when	doing	the	work	in
the	database	and	then	instantiating	the	ActiveRecord	object	will	be	faster	than	searching
the	larger	collection	with	Ruby.	Only	testing	and	benchmarking	will	tell	you	when	this
tradeoff	is	occurring	-	be	sure	to	benchmark	any	changes.

Select	Only	What	You	Need
Another	way	to	cut	down	on	memory	usage	(and	time!)	is	to	select	only	portions	of	the
entire	model	-	just	the	ones	that	you	need.

What	do	I	mean?	Say	you've	got	a	model	called		Car	,	and	this	model	has	several
attributes,	but	one	of	them	is		service_record	.	The		service_record		is	an	import	from	a
legacy	system	-	it's	just	a	big	text	dump	of	the	car's	maintenance	history,	probably	in
some	obscure	weird	format.	We	only	use	this	attribute	in	a	limited	part	of	the	application.

However,	each		Car	's		service_record		will	be	instantiated	whenever	we	load	up	a	Car
object.	If,	on	average,		service_records		are	fairly	large	(say,	a	few	KB),	this	could
impose	a	massive	memory	tax	on	any	actions	that	work	with	many		Car		objects.	And	we
don't	even	use	the		service_record		attribute	often!

The	solution	lies	in	an	often-overlooked	part	of	the	typical	ActiveRecord	query.	Take	a
look:

Car	Load	(193.7ms)		SELECT		"cars".*	FROM	"cars"

The	interesting	part	here	is	the	asterisk	-	we're	selecting	all	columns	from	the	Car	table.
If	we	don't	select	certain	columns,	ActiveRecord	won't	instantiate	the	corresponding
attribute.	This	saves	memory	in	Ruby,	time	in	the	database,	and	time	when	instantiating
the	ActiveRecord	object!

Rubygem.all.select(:name,	:id)

#	Rubygem	Load	(80.4ms)		SELECT	"rubygems"."name",	"rubygems"."id"	FROM	"rubygems"

I	would	only	use		select		as	a	performance	optimization	when	I	knew	I	had	a	slow	SQL
query	that	returned	many	rows.	Don't	reach	for	this	one	too	early,	as	it	increases
coupling	between	your	controllers	and	views.

If	you	try	to	access	attributes	that	you	haven't		select	ed,	ActiveRecord	will	raise	an
	ActiveModel::MissingAttributeError	:

ActiveRecord

215

Car.select(:make,	:model).first.color	#	Boom!

Note	that		select		returns	ActiveRecord	objects	-	they	just	don't	have	all	of	their
attributes	loaded.	For	example:

irb(main):001:0>	Rubygem.all.select(:name).to_a.first

Rubygem	Load	(58.0ms)		SELECT	"rubygems"."name"	FROM	"rubygems"

=>	#<Rubygem	id:	nil,	name:	"zyps">

So	how	do	you	know	what	columns	to	select?	Rails	4.2	added	the	awesome
	accessed_fields		method,	which	allows	us	to	show	what	columns	we	actually	used	in
any	given	view.	Here's	the	example	straight	from	the	Ruby	docs:

class	PostsController	<	ActionController::Base

		after_action	:print_accessed_fields,	only:	:index

		def	index

				@posts	=	Post.all

		end

		private

		def	print_accessed_fields

				p	@posts.first.accessed_fields

		end

end

You	could	then	update	your		Post.all		query	to		select		only	the	actual	fields	used	in	the
view.

If	we	don't	actually	want	ActiveRecord	objects,	and	instead	just	want	an	array	of	values,
it's	far	faster	to	use		pluck	:

irb(main):001:0>	Rubygem.all.pluck(:name).first

Rubygem	Load	(58.0ms)		SELECT	"rubygems"."name"	FROM	"rubygems"

=>	"zyps"

This	makes	sense	-	instead	of	initializing	thousands	of	complicated	ActiveRecord
objects,	we	just	initialize	a	few	simple,	primitive	objects.

Take	it	Easy	With	Lazy	Loading

ActiveRecord

216

It's	worth	familiarizing	yourself	with	ActiveRecord's	three	different	eager	loading
methods.	Each	one	will	proactively	fetch	associations	from	the	database,	rather	than
causing	another	query	when	you	try	to	access	them	later:

	eager_load		will	always	use		LEFT	OUTER	JOIN		when	eager	loading	the	model
associations.
	preload		generates	an	extra	query	for	each	model	specified	in	its	arguments.	These
queries	are	then	combined	in	Ruby,	making	it	the	slowest	of	all	the	eager	loading
methods.
	includes		is	supposed	to	"decide	for	you"	if	it's	appropriate	to	use		eager_load		or
	preload		for	loading	this	particular	set	of	ActiveRecord	associations.	Ideally,	you
would	use		eager_load		everywhere	possible,	because	it	generates	a	single	SQL
query,	not	one	for	each	association.

Generally,	you	can	just	use		includes		everywhere,	but	if	you're	not	seeing	the	results
you	want,	try	forcing	a	join	with		eager_load	.

Eager	loading	is	great,	but	sometimes,	too	much	can	be	a	bad	thing.

If	you	only	paid	attention	to		bullet		or	just	listened	to	most	advice	for	avoiding	N+1s,
you	might	think	you	should	be	dropping		includes		and	other	eager	loading	methods	into
every	controller	method	you	can	get	your	hands	on.	That	isn't	the	case.

Again,	it	comes	down	to	ActiveRecord	object	instantiation.	How	many	new	ActiveRecord
objects	does	this	query	create?	With	complicated	calls	to		includes	,	this	can	often
balloon.

For	example,	consider	this:

Car.all.includes(:drivers,	{	parts:	:vendors	},	:log_messages)

How	many	ActiveRecord	objects	might	get	instantiated	here?

The	answer	is:

#	Cars	*	(avg	#	drivers/car	+	avg	log	messages/car	+	average	parts/car	*	(averag

e	parts/vendor))

Each	eager	load	increases	the	number	of	instantiated	objects,	and	in	turn	slows	down
the	query.	If	these	objects	aren't	used,	you're	potentially	slowing	down	the	query
unnecessarily.	Note	how	nested	eager	loads	(parts	and	vendors	in	the	example	above)
can	really	increase	the	number	of	objects	instantiated.

ActiveRecord

217

Be	careful	with	nesting	in	your	eager	loads,	and	always	test	with	production-like	data	to
see	if		includes		is	really	speeding	up	your	overall	performance.

Do	Math	In	The	Database
I	advocated	removing	ActiveRecord	query	methods	from	the	model	above.	I	even
advocated	for,	in	some	cases,	trying	to	do	more	work	with	Enumerable	and	small
collections	of	Ruby	objects	rather	than	going	to	the	database	to	perform	the	same	work.

However,	when	operating	on	large	collections	of	objects	(1000s	or	more),	it	is
almost	always	faster	to	try	to	do	operations	in	the	database.	Nowhere	is	this	more
apparent	than	when	doing	mathematical	calculations,	like	averages:

Rubygem.average(:downloads).to_i

#	(28.3ms)		SELECT	AVG("rubygems"."downloads")	FROM	"rubygems"

#	=>	8722

Grabbing	each	individual	Rubygem	record	and	calculating	the	average	would	take	ages
-	by	doing	it	all	in	the	database,	we're	saving	tons	of	time	and	memory.

In	addition	to		average	,	there	are	several	of	these	methods	in
	ActiveRecord::Calculations	:

average
calculate
count
ids
maximum
minimum
pluck
sum

Note	that	this	still	fits	with	my	original	guideline:	avoiding	instantiating	ActiveRecord
objects.	By	using	ActiveRecord::Calculations,	we	can	usually	instantiate	none!

Don't	Use	Many	Queries	When	One	Will	Do

ActiveRecord

218

http://api.rubyonrails.org/classes/ActiveRecord/Calculations.html

Another	area	where	applications	typically	create	too	many	ActiveRecord	objects	is	when
doing	mass	updates.	We	already	talked	about	using		find_each	,	which	solves	the
memory	problem	associated	with	these	updates,	but	it's	still	slow	to	go	through	10,000
rows	individually,	one-by-one.

In	this	case,	you	can	drop	down	to	the	database.

When	creating	many	records,	the	clear	winner	here	seems	to	be	the		activerecord-
import		gem.	I'll	just	quote	directly	from	their	README	to	give	you	an	idea	of	the	impact:

Say	you	had	a	schema	like	this:

Publishers	have	Books
Books	have	Reviews

and	you	wanted	to	bulk	insert	100	new	publishers	with	10K	books	and	3	reviews
per	book.	This	library	will	follow	the	associations	down	and	generate	only	3	SQL
insert	statements	-	one	for	the	publishers,	one	for	the	books,	and	one	for	the
reviews.

In	contrast,	the	standard	ActiveRecord	save	would	generate	100	insert	statements
for	the	publishers,	then	it	would	visit	each	publisher	and	save	all	the	books:	100
10,000	=	1,000,000	SQL	insert	statements	and	then	the	reviews:	100	10,000	*	3	=
3M	SQL	insert	statements,

That	would	be	about	4M	SQL	insert	statements	vs	3,	which	results	in	vastly
improved	performance.	In	our	case,	it	converted	an	18	hour	batch	process	to	<	2
hours.

In	addition,	for	other	operations,	look	to	methods	on		ActiveRecord::Relation		to	operate
on	many	records	at	once:

	update_all		performs	a	single	SQL	UPDATE	to	change	the	attributes	of	many	rows
at	once.
	destroy_all		can	destroy	many	rows	at	once,	rather	than	generating	a	single
"DELETE"	query	for	many	rows.

Checklist	for	Your	App
Any	instances	of		SomeActiveRecordModel.all.each		should	be	replaced	with
	SomeActiveRecordModel.find_each		or		SomeActiveRecordModel.in_batches	.	This
batches	the	records	instead	of	loading	them	all	at	once	-	reducing	memory	bloat	and

ActiveRecord

219

heap	size.
Use	production-like	data	in	development.	Using	production-size	data	in
development	makes	N+1	problems	much	more	obvious.	Either	set	up	a	process	for
sanitizing	production	data	or	set	up	a		seeds.rb		that	creates	production-like
quanitities	in	the	database.
Pay	attention	to	your	development	logs	to	look	for	N+1	queries.	I	prefer	using
the	included	query-logging	middleware.		rack-mini-profiler		also	works	well	for	this
purpose.
ActiveRecord	instance	methods	should	not	use	query	methods	-	where,	find,
etc.	This	inevitably	causes	N+1	problems	when	these	methods	are	used	later	in	a
view.	Use	query	methods	in	scopes	(class	methods)	and	controllers	only.
When	a	query	is	particularly	slow,	use	select	to	only	load	the	columns	you
need.	If	a	particularly	large	database	query	is	slowing	a	page	load	down,	use
	select		to	use	only	the	columns	you	need	for	the	view.	This	will	decrease	the
number	of	objects	allocated,	speeding	up	the	view	and	decreasing	its	memory
impact.
Don't	eager	load	more	than	a	few	models	at	a	time.	Eager	loading	for
ActiveRecord	queries	is	great,	but	increases	the	number	of	objects	instantiated.	If
you're	eager	loading	more	than	a	few	models,	consider	simplifying	the	view.
Do	mathematical	calculations	in	the	database.	Sums,	averages	and	more	can	be
calculated	in	the	database.	Don't	iterate	through	ActiveRecord	models	to	calculate
data.
Insertion,	deletion	and	updating	should	be	done	in	a	single	query	where
possible.	You	don't	need	10,000	queries	to	update	10,000	records.	Investigate	the
	activerecord-import		gem.

Lab:	ActiveRecord
This	lab	requires	some	extra	files.	To	follow	along,	download	the	source	code	for
the	course	and	navigate	to	this	lesson.	The	source	code	is	available	on	GitHub
(you	received	an	invitation)	or	on	Gumroad	(in	the	ZIP	archive).

Exercise	1
Included	is	a	simple	and	slow	ActiveRecord	script	-		lab/script.rb	.	Speed	up	its
execution.

ActiveRecord

220

You	may	want	to	use		time		as	a	benchmark:		time	ruby	lab/script.rb	.

ActiveRecord

221

Backgrounding	Work	-	Why	Do	Now
What	You	Can	Do	Later?
Your	user	has	just	finished	signing	up	for	YourSweetService.	They	click	the	“submit”
button	on	the	signup	form,	and	wait.	And	wait.	And	wait.

What	are	they	waiting	for?

Perhaps	they’re	waiting	for	a	signup	email	to	be	sent	to	them.	Well,	if	you	think	about	it	-
that’s	sort	of	a	silly	thing	to	wait	for,	isn’t	it?	The	email	will	get	to	them	eventually.	Why
are	they	waiting?

They’re	waiting	because	your	code	probably	looks	something	like	this:

class	UsersController	<	ApplicationController

		def	create

				user	=	User.new(params[:user])

				if	user.save

						redirect_to	signup_success_url

				else

						render	:new

				end

		end

end

class	User

		after_commit	:send_signup_email

		def	send_signup_email

				UserMailer.signup_email(self).deliver

		end

end

There’s	a	problem	here	-	redirecting	the	user	won’t	occur	until	UserMailer	has	finished
delivering	the	signup	email.	That	may	take	a	while	-	rendering	an	email	takes	time,	and
UserMailer	will	still	have	to	make	a	network	connection	to	your	email	provider	to	send
the	email.	All	of	this	might	add	up	to	a	whole	second	or	so.

Controller	actions	like	this	one	-	that	always	take	more	than	~300	milliseconds	to
execute,	and	may	take	much	longer,	depending	on	network	conditions	or	an	external
service,	are	a	performance	anti	pattern	for	a	number	of	reasons:

Background	Jobs

222

They’re	unpredictable.	This	is	especially	true	if	you’re	pinging	external	service
providers	over	HTTP	-	say,	Stripe	for	payment	processing	or	Mailchimp	for	email.
You	never	know	when	it	will	take	5	seconds	instead	of	300	milliseconds	to	complete
a	job.	The	action’s	speed	varies	wildly	depending	on	the	time	of	day	or	the	current
state	of	internet	traffic.
They’re	usually	not	designed	for	failure.	Consider	the	above	example	-	what
happens	if	UserMailer	fails?
Other	requests	will	“back	up”	behind	this	one.	Requests	with	unusually	high
response	times	will	cause	other	requests	to	“back	up”	in	the	queue	of	waiting-to-be-
processed	responses,	increasing	the	response	time	of	those	otherwise	fast
requests.

When	should	a	web	transaction	be	moved	to	the	background?

The	action	always	takes	more	than	your	average	response	time	to	complete.
Some	work	just	takes	a	long	time	-	for	example,	transcoding	video	files	or
generating	PDFs.	That	sort	of	work	should	always	be	done	in	the	background.	Use
your	average	response	time	as	a	rule	of	thumb	-	if	it	always	takes	longer	than
~150%	of	your	average	response	time	and	you	can’t	make	it	any	faster,	background
it.
The	action	contacts	an	external	service	over	the	network.	Networks	are	not
reliable.	A	request	may	take	100	milliseconds,	it	may	take	100	seconds.	Not	to
mention	that	services	are	unreliable	-	Mailchimp	may	take	100	milliseconds	to
process	your	email,	it	may	never	process	it	at	all.	It’s	far	better	to	design	for	latency
and	failure	rather	than	just	hope	it	doesn’t	happen	-	background	jobs	let	us	do	this.
The	user	does	not	care	if	the	work	is	completed	immediately.	Users	don’t	need
to	wait	for	an	email	to	send	to	see	that	their	signup	completed.	If	their	credit	card
has	already	been	authorized	for	the	amount	you	wish	to	charge,	they	don’t	need	to
wait	around	for	that	charge	to	go	through.	If	you’re	doing	work	during	a	response
that	they	user	doesn’t	need	done	right	away,	you’re	wasting	their	time	-	do	it	later!

Moving	work	out	of	the	request/response	cycle	almost	by	definition	will	decrease	your
average	response	times,	and	also	contribute	to	making	them	less	variable	and	more
predictable.	This	is	awesome	and	helps	make	our	apps	more	scalable,	all	while
improving	end-user	experience.

Patterns

Background	Jobs

223

Here	are	some	assorted	patterns	for	safe,	performant	and	reliable	background	job
processing:

Idempotency	-	what	happens	if	I	retry	this?

In	computer	science,	the	term	idempotent	is	used	more	comprehensively	to
describe	an	operation	that	will	produce	the	same	results	if	executed	once	or
multiple	times.

For	any	given	background	job,	you	should	be	able	to	run	it	twice	(or	really	an	infinite
number	of	times)	and	still	get	the	result	you	desire.	For	example,	here’s	a	typical	non-
idempotent	background	job	(implemented	in	ActiveJob):

class	UserSignupMailJob	<	ActiveJob::Base

		queue_as	:default

		def	perform(user)

				UserMailer.signup_email(to:	user).deliver

		end

end

If	this	job	runs	twice,	we’ll	send	two	emails	to	the	user.	This	is	not	a	good	thing	-	our	user
doesn't	need	to	get	the	same	"Thanks	for	signing	up!"	email	twice!

Here's	where	it	gets	interesting	-	when	writing	background	jobs,	we	always	must
assume	that	it's	possible	an	enqueued	job	may	be	executed	twice.	Background	job
processors	cannot	fully	guarantee	that	a	job	will	not	be	executed	twice,	and	even	when
they	say	they	do,	there’s	usually	ways	(like	unplugging	servers	from	the	wall)	that	they
still	can.

The	solution	is	usually	to	add	some	kind	of	mechanism	that	checks	to	see	if	the	work
has	already	been	done.	The	most	reliable	way	to	do	this	is	with	a	row-level	database
lock:

Background	Jobs

224

class	UserSignupMailJob	<	ActiveJob::Base

		queue_as	:default

		around_perform	do	|job,	block|

				user	=	job.arguments.first

				user.with_lock	do

						return	if	user.signup_email_sent

						if	block.call

								user.update_attributes(signup_email_sent:	true)

						else

								retry_now	#	or	implement	your	own	backoff	procedure

						end

				end

		end

		def	perform(user)

				UserMailer.signup_email(to:	user).deliver

		end

end

That		around_perform		block	protects	against	a	number	of	scenarios:

If	for	some	reason	the	job	is	enqueued	with	the	same	user	twice,	the	email	will	only
be	sent	once.	The	first	job	will	modify	the	user’s		signup_email_sent		attribute,	and
the	second	job	will	exit	after		return	if	user.signup_email_sent	.
If	two	jobs	with	the	same	user	are	executed	at	the	same	time	(possible	if	the	user
rapidly	hit	refresh	and	sent	a	form	twice,	for	example),	the		with_lock		block	will	stop
two	workers	from	operating	on	the	same	user	at	the	same	time.	The	lock	will	block
the	second	worker	until	the	first	one	has	finished.
If,	for	some	reason,	our		deliver		method	fails	(delivery	failure,	for	example),	we	set
up	the	job	to	be	retried.

This	seems	like	a	lot	of	work,	but	you	won’t	need	to	do	this	for	every	job.	Some	work	is
naturally	idempotent	-	for	example,	if	we	wanted	to	change	a	Car	object's		color	
attribute	to	"red",	we	could	enqueue	that	job	as	many	times	as	we	wanted	and	the	end
result	would	still	be	the	same.	Just	ask	yourself	-	what	happens	if	this	job	is	run	twice
with	the	same	arguments?	Note	that	this	is	pretty	easy	to	write	a	test	for	too!

Scale	your	workers	according	to	queue	depth	and	Little’s
Law

Background	Jobs

225

Recall	our	lesson	on	scaling	-	scaling	background	job	workers	is	no	different	than	scaling
web	workers.	If	your	queue	depth	is	zero,	adding	additional	workers	is	a	waste	of
resources.	Any	“auto-scaling”	solution	you	implement	should	base	its	decisions	based
on	queue	depths	-	not	job	execution	time.

In	addition,	consider	that	the	entire	nature	of	background	jobs	is	that	they	don't	need	to
be	completed	immediately.	Unlike	our	application	servers,	a	small	amount	of	jobs	in	the
queue	may	not	be	a	bad	thing.

To	get	an	idea	of	how	many	workers	you’ll	probably	need	for	any	given	load,	you’ll	need
to	use	Little’s	Law	again:

Number	of	workers	=	Average	job	execution	time	*	Number	of	jobs	enqueued/sec

Take	one	bite	at	a	time

Jobs	should	be	as	small	as	possible	-	not	only	in	terms	of	lines	of	code,	but	in	terms	of
execution	time.	You’ll	need	the	least	amount	of	workers	if	your	jobs	reliably	execute
quickly.	Sometimes,	of	course,	that	isn’t	possible	-	you	can’t	break	the	transcoding	of	a
video	into	bite-size	chunks,	for	example.

This	gives	us	a	good	guideline	as	to	when	to	split	work	into	different	queues	-	every	job
in	a	queue	should	have	an	average	execution	time	that’s	roughly	the	same	as	every
other	job	in	the	queue.

Consider,	for	example,	a	background	job	processor	with	a	single	queue.	In	that	queue
are	10	video	transcoding	jobs	that	take	10	seconds	each,	and	100	email	sending	jobs
that	take	100	milliseconds	each.	You	have	2	workers.	If	those	two	workers	are	both
processing	transcoding	jobs,	by	some	trick	of	the	queue	ordering,	your	email	sending
jobs	will	have	to	wait.	That’s	not	great	-	far	better	here	would	be	to	use	2	queues	and	1
worker	on	each	queue.

Realize	also	that	background	job	processors	really	aren’t	that	different	from	a	distributed
map/reduce	when	you	get	down	to	it.	A	job	doesn’t	have	to	completely	finish	all	the	work
required	-	it	can	place	an	intermediate	work	product	back	on	the	queue	to	be	finished	by
another	worker.

For	example,	let’s	say	you	need	to	generate	a	PDF	report.	The	report	contains	some
statistics	from	each	of	your	100	customers.	Rather	than	write	this	as	a	single	job,	write	it
as	three:

Job	1	should	take	a	Customer	object	and	generate	the	statistics	required	for	the

Background	Jobs

226

report.	Once	those	stats	are	generated,	they	should	be	enqueued	as	arguments	for
Job	2.
Job	2	should	take	a	set	of	Customer	statistics	and	reduce	them	into	a	single	Report
object	(perhaps	represented	as	JSON	or	something	like	that).	Once	Job	2	has	all
the	Customer	statistics	it	needs	(perhaps	it	checks	if	its	Report	object	has	a	row	for
every	Customer	or	checks	the	queue	for	any	incomplete	Job	1s),	it	enqueues	it
Report	object	as	an	argument	for	Job	3.
Job	3	takes	the	completed	Report	representation	and	turns	it	into	a	PDF	document.

Say	Job	1	takes	about	1	second	per	job.	Since	100	of	these	jobs	are	enqueued	at	once,
we	can	complete	this	step	entirely	in	(100	/	number	of	workers)	seconds.	If	this	was
done	serially	in	a	single	job,	it	would	take	100	seconds	every	time.

Set	timeouts	aggressively

Since	you’re	a	good	programmer	and	you	wrote	all	of	your	jobs	so	that	they	can	be
retried	idempotently,	there’s	no	reason	not	to	set	any	and	all	network	timeouts	unusually
low.	Why?

Network	timeouts	and	long	external	service	responses	are	an	unusual	event.	We
definitely	want	to	make	sure	jobs	can’t	hang	up	completely	-	that	would	take	down	an
entire	worker!	But	if	retrying	a	job	has	no	drawbacks,	then	there’s	really	no	reason	not	to
set	your	timeouts	aggressively	and	“call	again	later”	when	service	conditions	are	poor.

The	Timeout	module	is	pretty	unreliable	-	where	possible,	use	timeouts	built	into	the
libraries	you’re	using.

Job	uniqueness	is	a	loser’s	game

There’s	not	a	great	way	to	ensure	“uniqueness”	for	any	given	background	job.	Sidekiq’s
Enterprise-only	unique	feature	advises	that	it	can	only	guarantee	uniqueness	for	a
limited	amount	of	time.

If	you’ve	designed	your	jobs	to	be	idempotent,	you	don’t	care	about	uniqueness	-	any
given	job	with	any	given	set	of	inputs	can	be	executed	an	infinite	number	of	times	with
no	change	in	output.	Rather	than	try	to	use	a	built-in	uniqueness	solution,	it’s	far	better
to	implement	jobs	in	an	idempotent	way.

Sometimes	you	can	accomplish	what	you	want	by	using	throttling	instead	-	for	example,
you	may	be	trying	to	query	an	external	service	once	every	15	minutes	and	no	faster,	for
example.	Throttling	is	much	easier	and	more	reliable	to	implement	-	you	should	be	able

Background	Jobs

227

http://www.mikeperham.com/2015/05/08/timeout-rubys-most-dangerous-api/
https://github.com/mperham/sidekiq/wiki/Ent-Unique-Jobs

to	find	a	solution	for	your	chosen	background	processor.

What	happens	when	something	goes	wrong?

Every	job	should	have	some	kind	of	failure	handler	-	be	sure	to	ask	yourself,	what
happens	if	any	given	line	in	this	worker	raises	an	exception	or	otherwise	goes	wrong?

Frequently,	you’ll	probably	want	to	wrap	any	work	inside	of	either	a	lock	or	a	database
transaction.	Transactions	ensure	that	if	an	exception	is	raised	during	your	job,	any
database	updates	will	be	rolled	back.	Make	sure	there’s	no	way	that	your	job	can	leave
work	incomplete	-	it	should	either	fail	completely	and	do	nothing,	or	succeed	and	all	work
should	be	done.	In-between	failures	can	cause	data	corruption	and	unexpected
behavior.

Set	up	a	red	flag

Often,	background	jobs	will	fail	in	such	a	way	that	they’ll	probably	never	complete
successfully.	You	need	to	be	informed	when	this	happens.

As	an	example,	Sidekiq	has	a	“retry”	queue.	Each	time	your	job	fails,	Sidekiq	places	it	in
the	retry	queue	and	tries	again	according	to	an	exponential	backoff	formula.	After	about
~5	retries	or	so,	you	can	be	pretty	much	certain	something’s	badly	wrong.	However,	by
default,	Sidekiq	will	retry	your	job	25	times	before	moving	it	into	its	“dead”	queue.	Many
(even	most)	jobs	should	raise	their	“red	flag”	far	earlier	than	that!	So	be	conscious	of
how	your	“retry”	options	are	being	set,	and	make	sure	jobs	raise	their	hands	and	ask	for
assistance	as	soon	as	it’s	clear	they’re	failing	without	hope	of	success.

Make	sure	you’re	using	an	exception	notifier	service,	and	configure	it	so	that	you’re
notified	when	a	certain	number	of	failures	occur.	You	won’t	want	to	be	notified	when	any
failure	occurs,	of	course:	jobs	fail	all	the	time	in	background	jobs	and	are	immediately	(or
nearly	so)	retried	and	succeed.	Only	you,	the	developer,	will	understand	what	a	truly
exceptional	failure	is	for	your	background	job	setup	to	maximize	the	signal/noise	ratio	in
your	exception	notifier.

Be	smart	about	memory	usage

MRI	Ruby,	once	it’s	obtained	memory	from	the	operating	system,	only	releases	it	back
very	slowly	(over	the	course	of	hours).	This	leads	to	a	fairly	common	problem	with
background	jobs:

Background	Jobs

228

1.	 A	background	job	uses	a	large	amount	of	memory	to	do	something	-	for	example,	it
loads	up	1000	ActiveRecord	objects	into	an	array	with	an	unlimited		where		query.
The	Ruby	process’	memory	usage	balloons	by	100	to	200MB	or	more.

2.	 Ruby	garbage	collects	that	worker’s	objects	after	it	has	finished,	however,	it	does
not	release	that	memory	back	to	the	operating	system.

3.	 You	now	have	a	worker	process	that	appears	to	be	bloated	and	using	100s	of	MB	of
memory,	when	really	it’s	probably	using	far	less.

Be	conscious	of	the	memory	usage	of	your	jobs	if	memory	bloat	is	a	problem	for	you.
For	example,	instead	of	loading	1000s	of	ActiveRecord	objects	at	once,	use	batch	limits
with	AR’s		find_each		method,	so	that	no	more	than	X	amount	of	records	are	loaded	at
any	one	time.

Understand	your	reliability	requirements

Depending	on	what	you	use	your	background	job	processor	for,	you	may	have	stringent
or	loose	reliability	requirements.	Ask	yourself	-	Is	it	important	that	any	of	these	jobs
execute	100%	of	the	time?	Background	job	processors	are	probably	reliable	99.99%	of
the	time	(depends	on	your	datastore	uptime	and	other	factors),	but	what	happens	if	any
given	job	just	never	succeeds?	This	is	probably	acceptable	for	many	organizations,	but
for	others	it	won’t	be.

Here	are	some	typical	problems	that	can	cause	a	job	not	to	be	executed:

Autoscaling.	If	you	kill	a	worker	while	it	is	processing	a	job,	that	job	may	not	be
returned	to	the	job	queue,	especially	if	it	is	a	long-running	job	and	your	autoscaler
terminates	the	worker	process	immediately.
“Unplugging	something	from	the	wall”.	If	any	of	the	parts	of	your	job	processor	-	the
datastore,	a	job	worker,	or	the	job	scheduler/server	-	suffer	some	kind	of
catastrophic	failure,	jobs	in	progress	may	not	be	returned	to	the	queue	where	they
belong.

Some	NoSQL-backed	job	processors,	like	Sidekiq,	have	additional	“extra	reliable”
modes.	Sidekiq	Pro	uses	a	“blocking	pop/push”	operation	to	ensure	that	if	a	worker
crashes,	the	job	is	still	returned	to	the	queue.	However,	because	of	the	way	Redis	is
implemented,	this	can	put	a	huge	performance	tax	on	the	amount	of	calls	Sidekiq	needs
to	complete	a	job.

In	general,	reliability	and	performance	are	a	tradeoff	with	background	job	processors.
Highly	reliable	solutions	are	slow,	and	extremely	fast	solutions	are	not	100%	reliable.
Also,	in	general,	SQL-database-backed	queues	are	more	reliable	than	NoSQL	-backed

Background	Jobs

229

http://apidock.com/rails/ActiveRecord/Batches/find_each
https://github.com/mperham/sidekiq/wiki/Reliability

queues	(and	suffer	a	reduction	in	performance	as	a	result).	Their	locking	mechanisms
are	more	advanced	and	can	generally	provide	some	degree	of	ACID	guarantees,	which
almost	all	NoSQL	datastores	cannot.

Your	queue	backend	should	be	in	the	same	datacenter	as
your	app

Nearly	every	background	job	processor	will	require	an	external	datastore	-	Redis,
Postgres,	etc.	Make	sure	that	datastore	is	physically	located,	ideally	colocated,	with
whatever	server	is	running	your	job	processor.	If	your	worker	server	is	in	Virginia	but
your	datastore	is	in	California,	you’re	going	to	be	imposing	at	least	50-80	milliseconds	of
network	latency	to	every	job.	That’s	a	guaranteed	way	to	slow	down	your	job	processing!

To	get	an	idea	of	just	how	important	this	penalty	can	be,	especially	in	scenarios	where
the	datastore	is	accessed	often	(many	small	jobs),	take	a	look	at	my	caching	article	and
the	benchmarks	therein.	The	speed	and	throughput	of	a	cache	varies	greatly	when	I	use
a	cache	store	~20ms	away	in	the	cloud	versus	when	I	use	one	locally	on	the	same
machine.	The	datastore	for	your	background	job	processor	works	exactly	the	same	way.

Background	Job	Processors
Here’s	a	quick	overview	of	the	choices	available	to	you	in	Ruby-land:

Resque

The	old	standby.	Resque	was	the	background	job	processor	in	its	heyday,	and	many	job
processors	now	support	a	“Resque-compatible”	interface	as	a	result.	Resque	uses	Redis
as	a	datastore.	It’s	got	a	lot	of	features	and	a	huge	community	ecosystem.

However,	the	project	has	pretty	much	stalled	in	recent	years.	The	last	release	was	two
years	ago	in	2014.

Sidekiq

Sidekiq,	four	years	old	now,	has	come	a	long	way.	With	a	Resque-compatible	interface,
Sidekiq	has	quickly	become	the	"job	processor	of	first	choice"	for	most	projects.	Sidekiq
tends	to	deal	better	with	high	loads	than	Resque	because	of	its	multithreaded
architecture	-	each	Sidekiq	worker	can	do	the	work	of	20-25	Resque	workers	when	the
work	is	IO-heavy.

Background	Jobs

230

https://en.wikipedia.org/wiki/ACID
https://github.com/resque/resque
https://github.com/mperham/sidekiq

Sidekiq	is	also	backed	by	Redis	and	has	several	additional	features	available	with	a	paid
license.

Sneakers

Sneakers	uses	RabbitMQ.

An	advantage	is	that	RabbitMQ	is	persistent,	placing	it	somewhere	between	a	database-
backed	queue	and	a	more	messaging-based	queue	like	Redis.	Unlike	Redis,	RabbitMQ
has	a	mature	clustering	feature,	and	queues	can	even	be	mirrored	across	multiple
machines,	giving	you	a	sort	of	RAID-like	data	backup.

Unfortunately,	unless	you're	already	using	RabbitMQ	in	your	application,	Sneakers	is
tough	to	recommend	-	most	Rubyists	are	unfamiliar	with	RabbitMQ.

Que

Database	backed	queues	have	advantages	and	disadvantages	-	they’re	easy	to
introspect	(just	use	SQL!)	and	tend	to	be	highly	reliable	(the	underlying	database	is
ACID-compliant,	after	all!).	However,	using	them	with	high	volumes	is	usually	difficult
because	of	the	high	amount	of	disk	space	required	to	store	large	amounts	of	jobs	and
locking	starts	to	get	slow	and	expensive.	Que	tries	to	solve	these	problems	using
Postgres’	advisory	locks.	Check	it	out	if	you’re	not	going	to	be	doing	thousands	of	jobs
per	minute	and	need	heavy	reliability	guarantees.	Because	Que	uses	lightweight
advisory	locks,	it	tends	to	perform	far	better	than	DelayedJob.

Checklist	for	Your	App
Background	work	when	it	depends	on	an	external	network	request,	need	not
be	done	immediately,	or	usually	takes	a	long	time	to	complete.
Background	jobs	should	be	idempotent	-	that	is,	running	them	twice	shouldn't
break	anything.	If	your	job	does	something	bad	when	it	gets	run	twice,	it	isn't
idempotent.	Rather	than	relying	on	"uniqueness"	hacks,	use	database	locks	to
make	sure	work	only	happens	when	it's	supposed	to.
Background	jobs	should	be	small	-	do	one	unit	of	work	with	a	single	job.	For
example,	rather	than	a	single	job	operating	on	10,000	records,	you	should	be	using
10,001	jobs:	one	to	enqueue	all	of	the	jobs,	and	10,000	additional	jobs	to	do	the
work.	Take	advantage	of	the	parallelization	this	affords	-	you're	essentially	doing
small-scale	distributed	computing.

Background	Jobs

231

https://github.com/jondot/sneakers
https://github.com/chanks/que
https://github.com/collectiveidea/delayed_job

Set	aggressive	timeouts.	It's	better	to	fail	fast	than	wait	for	a	background	job
worker	to	get	a	response	from	a	slow	host.
Background	jobs	should	have	failure	handlers	and	raise	red	flags.	Consider
what	to	do	in	case	of	failure	-	usually	"try	again"	is	good	enough.	If	a	job	fails	30
times	though,	what	happens?	You	should	probably	be	receiving	some	kind	of
notification.
Consider	a	SQL-database-backed	queue	if	you	need	background	job
reliability.	Use	alternative	datastores	if	you	need	speed.
Make	sure	external	databases	are	in	the	same	datacenter	as	your	main
application	servers.	Latency	adds	up	fast.	Usually,	in	the	US,	everyone	is	in	the
Amazon	us-east-1	datacenter,	but	that	may	not	be	the	case.	Use		ping		to	double-
check.

Background	Jobs

232

Caching	in	Rails
Caching	in	a	Rails	app	is	a	little	bit	like	that	one	friend	you	sometimes	have	around	for
dinner,	but	should	really	have	around	more	often.	Nearly	every	Rails	app	that's	serious
about	performance	could	use	more	caching,	but	most	Rails	apps	eschew	it	entirely!	And
yet,	intelligent	use	of	caching	is	usually	the	only	path	to	achieving	fast	server	response
times	in	Rails	-	easily	speeding	up	~250ms	response	times	to	50-100ms.

A	quick	note	on	definitions	-	this	lesson	will	only	cover	"application"-layer	caching.	I'm
leaving	HTTP	caching	(which	is	a	whole	'nother	beast,	and	not	even	necessary
implemented	in	your	application)	for	another	lesson.

Why	don't	we	cache	as	much	as	we	should?

Developers,	by	our	nature,	are	different	from	end-users.	We	understand	a	lot	about	what
happens	behind	the	scenes	in	software	and	web	applications.	We	know	that	when	a
typical	webpage	loads,	a	lot	of	code	is	run,	database	queries	executed,	and	sometimes
services	pinged	over	HTTP.	That	takes	time.	We're	used	to	the	idea	that	when	you
interact	with	a	computer,	it	takes	a	little	while	for	the	computer	to	come	back	with	an
answer.

End-users	are	completely	different.	Your	web	application	is	a	magical	box.	End-users
have	no	idea	what	happens	inside	of	that	box.	Especially	these	days,	end-users	expect
near-instantaneous	response	from	our	magical	boxes.	Most	end-users	wanted
whatever	they're	trying	to	get	out	of	your	web-app	yesterday.

This	rings	of	a	truism.	Yet,	we	never	set	hard	performance	requirements	in	our	user
stories	and	product	specifications.	Even	though	server	response	time	is	easy	to	measure
and	target,	and	we	know	users	want	fast	webpages,	we	fail	to	ever	say	for	a	particular
site	or	feature:	"This	page	should	return	a	response	within	100ms."	As	a	result,
performance	often	gets	thrown	to	the	wayside	in	favor	of	the	next	user	story,	the	next
great	big	feature.	Performance	debt,	like	technical	debt,	mounts	quickly.	Performance
never	really	becomes	a	priority	until	the	app	is	basically	in	flames	every	time
someone	makes	a	new	request.

In	addition,	caching	isn't	always	easy.	Cache	expiration	especially	can	be	a
confusing	topic.	Bugs	in	caching	behavior	tend	to	happen	at	the	integration	layer,
usually	the	least-tested	layer	of	your	application.	This	makes	caching	bugs	insidious	and

Caching

233

difficult	to	find	and	reproduce.

To	make	matters	worse,	caching	best	practices	seem	to	be	frequently	changing	in
the	Rails	world.	Key-based	what?	Russian	mall	caching?	Or	was	it	doll?

Benefits	of	Caching

So	why	cache?	The	answer	is	simple.	Speed.	With	Ruby,	we	don't	get	speed	for	free
because	our	language	isn't	fast	to	begin	with.	We	have	to	get	speed	from	executing	less
Ruby	on	each	request.	The	easiest	way	to	do	that	is	with	caching.	Do	the	work	once,
cache	the	result,	serve	the	cached	result	in	the	future.

But	how	fast	do	we	need	to	be,	really?

Guidelines	for	human-computer	interaction	have	been	known	since	computers	were	first
developed	in	the	1960s.	The	response-time	threshold	for	a	user	to	feel	as	if	they	are
freely	navigating	your	site,	without	waiting	for	the	site	to	load,	is	1	second	or	less.	That's
not	a	1-second	response	time,	but	1	second	"to	glass"	-	1	second	from	the	instant	the
user	clicked	or	interacted	with	the	site	until	that	interaction	is	complete	(the	DOM	finishes
painting).

1	second	"to-glass"	is	not	a	long	time.	First,	figure	about	50	milliseconds	for	network
latency	(this	is	on	desktop,	latency	on	mobile	is	a	whole	other	discussion).	Then,	budget
another	150ms	for	loading	your	JS	and	CSS	resources,	building	the	render	tree	and
painting.	Finally,	figure	at	least	250	ms	for	the	execution	of	all	the	Javascript	you've
downloaded,	and	potentially	much	more	than	that	if	your	Javascript	has	a	lot	of	functions
tied	to	the	DOM	being	ready.	So	before	we're	even	ready	to	consider	how	long	the
server	has	to	respond,	we're	already	about	~500ms	in	the	hole.	In	order	to
consistently	achieve	a	1	second	to	glass	webpage,	server	responses	should	be
kept	below	300ms.	For	a	100-ms-to-glass	webpage,	as	covered	in	another	post	of
mine,	server	responses	must	be	kept	at	around	25-30ms.

300ms	per	request	is	not	impossible	to	achieve	without	caching	on	a	Rails	app,
especially	if	you've	been	diligent	with	your	SQL	queries	and	use	of	ActiveRecord.	But	it's
a	heck	of	a	lot	of	easier	if	you	do	use	caching.	Most	Rails	apps	I've	seen	have	at	least	a
half	dozen	pages	in	the	app	that	consistently	take	north	of	300ms	to	respond,	and	could
benefit	from	some	caching.	In	addition,	using	heavy	frameworks	in	addition	to	Rails,	like
Spree,	the	popular	e-commerce	framework,	can	slow	down	responses	significantly	due
to	all	the	extra	Ruby	execution	they	add	to	each	request.	Even	popular	heavyweight
gems,	like	Devise	or	ActiveAdmin,	add	thousands	of	lines	of	Ruby	to	each	request	cycle.

Caching

234

http://theixdlibrary.com/pdf/Miller1968.pdf
http://www.nateberkopec.com/2015/05/27/100-ms-to-glass-with-rails-and-turbolinks.html

Of	course,	there	will	always	be	areas	in	your	app	where	caching	can't	help	-	your	POST
endpoints,	for	example.	If	whatever	your	app	does	in	response	to	a	POST	or	PUT	is
extremely	complicated,	caching	probably	won't	help	you.	But	if	that's	the	case,	consider
moving	the	work	into	a	background	worker	instead	(a	blog	post	for	another	day).

Getting	started

First,	Rails'	official	guide	on	caching	is	excellent	regarding	the	technical	details	of	Rails'
various	caching	APIs.	If	you	haven't	yet,	give	that	page	a	full	read-through.

Later	on	in	the	article,	I'm	going	to	discuss	the	different	caching	backends	available	to
you	as	a	Rails	developer.	Each	has	their	advantages	and	disadvantages	-	some	are
slow	but	offer	sharing	between	hosts	and	servers,	some	are	fast	but	can't	share	the
cache	at	all,	not	even	with	other	processes.	Everyone's	needs	are	different.	In	short,	the
default	cache	store,		ActiveSupport::Cache::FileStore		is	OK,	but	if	you	you're	going	to
follow	the	techniques	used	in	this	guide	(especially	key-based	cache	expiration),	you
need	to	switch	to	a	different	cache	store	eventually.

As	a	tip	to	newcomers	to	caching,	my	advice	is	to	ignore	action	caching	and	page
caching.	The	situations	where	these	two	techniques	can	be	used	is	so	narrow	that
these	features	were	removed	from	Rails	as	of	4.0.	I	recommend	instead	getting
comfortable	with	fragment	caching	-	which	I'll	cover	in	detail	now.

Profiling	Performance

Reading	the	Logs

Alright,	you've	got	your	cache	store	set	up	and	you're	ready	to	go.	But	what	to	cache?

This	is	where	profiling	comes	in.	Rather	than	trying	to	guess	"in	the	dark"	what	areas	of
your	application	are	performance	hotspots,	we're	going	to	fire	up	a	profiling	tool	to	tell	us
exactly	what	parts	of	the	page	are	slow.

My	preferred	tool	for	this	task	is	the	incredible	rack-mini-profiler.		rack-mini-profiler	
provides	an	excellent	line-by-line	breakdown	of	where	exactly	all	the	time	goes	during	a
particular	server	response.

However,	we	don't	even	have	to	use		rack-mini-profiler		or	even	any	other	profiling
tools	if	we're	too	lazy	and	don't	want	to	-	Rails	provides	a	total	time	for	page	generation
out	of	the	box	in	the	logs.	It'll	look	something	like	this:

Caching

235

http://guides.rubyonrails.org/caching_with_rails.html
https://github.com/MiniProfiler/rack-mini-profiler

Completed	200	OK	in	110ms	(Views:	65.6ms	|	ActiveRecord:	19.7ms)

The	total	time	(110ms	in	this	case)	is	the	important	one.	The	amount	of	time	spent	in
Views	is	a	total	of	the	time	spent	in	your	template	files	(index.html.erb	for	example).	But
this	can	be	a	little	misleading,	thanks	to	how	ActiveRecord::Relations	lazily	loads	your
data.	If	you're	defining	an	instance	variable	with	an	ActiveRecord::Relation,	such	as
	@users	=	User.all	,	in	the	controller,	but	don't	do	anything	with	that	variable	until	you
start	using	its	results	in	the	view	(e.g.		@users.each	do	...),	then	that	query	(and
reification	into	ActiveRecord	objects),	will	be	counted	in	the	Views	number.
ActiveRecord::Relations	are	lazily	loaded,	meaning	the	database	query	isn't	executed
until	the	results	are	actually	accessed	(usually	in	your	view).

The	ActiveRecord	number	here	is	also	misleading	-	as	far	as	I	can	tell	from	reading	the
Rails	source,	this	is	not	the	amount	of	time	spent	executing	Ruby	in	ActiveRecord
(building	the	query,	executing	the	query,	and	turning	the	query	results	into	ActiveRecord
objects),	but	only	the	time	spent	querying	the	database	(so	the	actual	time	spent	in	DB).
Sometimes,	especially	with	complicated	queries	that	use	a	lot	of	eager	loading,	turning
the	query	result	into	ActiveRecord	objects	takes	a	lot	of	time,	and	that	may	not	be
reflected	in	the	ActiveRecord	number	here.

And	where'd	the	rest	of	the	time	go?	Rack	middleware	and	controller	code	mostly.	But	to
get	a	millisecond-by-millisecond	breakdown	of	exactly	where	your	time	goes	during	a
request,	you'll	need		rack-mini-profiler		and	the		flamegraph		extension.	Using	that	tool,

Caching

236

you'll	be	able	to	see	exactly	where	every	millisecond	of	your	time	goes	during	a	request
on	a	line-by-line	basis.

Production	Mode

Whenever	I	profile	Rails	apps	for	performance,	I	always	do	it	in	production	mode.	Not
on	production,	of	course,	but	with		RAILS_ENV=production	.	Running	in	production	mode
ensures	that	my	local	environment	is	close	to	what	the	end-user	will	experience,	and
also	disables	code	reloading	and	asset	compilation,	two	things	which	will	massively	slow
down	any	Rails	request	in	development	mode.	Even	better	if	you	can	use	Docker	to
perfectly	mimic	the	configuration	of	your	production	environment.	For	instance,	if	you're
on	Heroku,	Heroku	recently	released	some	Docker	images	to	help	you	-	but	usually
virtualization	is	a	mostly	unnecessary	step	in	achieving	production-like	behavior.	Mostly,
we	just	need	to	make	sure	we're	running	the	Rails	server	in	production	mode.

As	a	quick	refresher,	here's	what	you	usually	have	to	do	to	get	a	Rails	app	running	in
production	mode	on	your	local	machine:

export	RAILS_ENV=production

rake	db:reset

rake	assets:precompile

SECRET_KEY_BASE=test	rails	s

In	addition,	where	security	and	privacy	concerns	permit,	I	always	test	with	a	copy
of	production	data.	All	too	often,	database	queries	in	development	(like	User.all)	return
just	100	or	so	sample	rows,	but	in	production,	trigger	massive	100,000	row	results	that

Caching

237

can	bring	a	site	crashing	to	its	knees.	Either	use	production	data	or	make	your	seed	data
as	realistic	as	possible.	This	is	especially	important	when	you're	making	extensive	use	of
	includes		and	Rails'	eager	loading	facilities.

Setting	a	Goal

Finally,	I	suggest	setting	a	maximum	average	response	time,	or	MART,	for	your
site.	The	great	thing	about	performance	is	that	it's	usually	quite	measurable	-	and	what
gets	measured,	gets	managed!	You	may	need	two	MART	numbers	-	one	that	is
achievable	in	development,	with	your	developer	hardware,	and	one	that	you	use	in
production,	with	production	hardware.

Unless	you	have	an	extremely	1-to-1	production/development	setup,	using	virtualization
to	control	cpu	and	memory	access,	you	simply	will	not	be	able	to	duplicate	performance
results	across	those	two	environments	(though	you	can	come	close).	That's	OK	-	don't
get	tripped	up	by	the	details.	You	just	need	to	be	sure	that	your	page	performance	is	in
the	right	ballpark.

As	an	example,	let's	say	we	want	to	build	a	100ms-to-glass	web	app.	That	requires
server	response	times	of	25-50ms.	So	I'd	set	my	MART	in	development	to	be	25ms,	and
in	production,	I'd	slacken	that	to	about	50ms.	My	development	machine	is	a	little	faster
than	a	Heroku	dyne	(my	typical	deployment	environment),	so	I	give	it	a	little	extra	time
on	production.

I'm	not	aware	of	any	tools	yet	to	do	automated	testing	against	your	maximum	acceptable
average	response	time.	We	have	to	do	that	(for	now)	manually	using	benchmarking
tools.

Apache	Bench

How	do	we	decide	what	our	site's	actual	average	response	time	is	in	development?	I've
only	described	to	you	how	to	read	response	times	from	the	logs	-	so	is	the	best	way	to
hit	"refresh"	in	your	browser	a	few	times	and	take	your	best	guess	at	the	average	result?
Nope.

This	is	where	benchmarking	tools	like		wrk		and		Apache	Bench		come	in.		Apache	Bench	,
or		ab	,	is	my	favorite,	so	I'll	quickly	describe	how	to	use	it.	You	can	install	it	on
Homebrew	with		brew	install	ab	.

Start	your	server	in	production	mode,	as	described	earlier.	Then	fire	up	Apache	Bench
with	the	following	settings:

Caching

238

ab	-t	10	-c	10	http://localhost:3000/

You'll	need	to	change	that	URL	out	as	appropriate.	The	-t	option	controls	how	long	we're
going	to	benchmark	for	(in	seconds),	and	-c	controls	the	number	of	requests	that	we'll	try
at	the	same	time.	Set	the	-c	option	based	on	your	production	load	-	if	you	have	more
than	an	average	of	1	request	per	second	(per	server),	it	would	be	good	to	increase	the	-c
option	approximately	according	to	the	formula	of	(Production	requests	per	minute	/
production	servers	or	dynes)	*	2.	I	usually	test	with	at	least	-c	2	to	flush	out	any	weird
threading/concurrency	errors	I	might	have	accidentally	committed.

Here's	some	example	output	from	Apache	Bench,	abridged	for	clarity:

...

Requests	per	second:				161.04	[#/sec]	(mean)

Time	per	request:							12.419	[ms]	(mean)

Time	per	request:							6.210	[ms]	(mean,	across	all	concurrent	requests)

...

Percentage	of	the	requests	served	within	a	certain	time	(ms)

		50%					12

		66%					13

		75%					13

		80%					13

		90%					14

		95%					15

		98%					17

		99%					18

	100%					21	(longest	request)

The	"time	per	request"	would	be	the	number	we	compare	against	our	MART.	If	you	also
have	a	95th	percentile	goal	(95	percent	of	requests	must	be	faster	than	X),	you	can	get
the	comparable	time	from	the	chart	at	the	end,	next	to	"95%".	Neat,	huh?

For	a	full	listing	of	things	you	can	do	with	Apache	Bench,	check	out	the	man	page.
Notable	other	options	include	SSL	support,	KeepAlive,	and	POST/PUT	support.

Of	course,	the	great	thing	about	this	tool	is	that	you	can	also	use	it	against	your
production	server!	If	you	want	to	benchmark	heavy	loads	though,	it's	probably	best	to	run
it	against	your	staging	environment	instead,	so	that	your	customers	aren't	affected!

From	here,	the	workflow	is	simple	-	I	don't	cache	anything	unless	I'm	not	meeting	my
MART.	If	my	page	is	slower	than	my	set	MART,	I	dig	in	with		rack-mini-profiler		to	see
exactly	which	parts	of	the	page	are	slow.	In	particular,	I	look	for	areas	where	a	lot	of	SQL

Caching

239

is	being	executed	unnecessarily	on	every	request,	or	where	a	lot	of	code	is	executed
repeatedly.

Caching	techniques

Key-based	cache	expiration

Writing	and	reading	from	the	cache	is	pretty	easy	-	again,	if	you	don't	know	the	basics	of
it,	check	out	the	Rails	Guide	on	this	topic.	The	complicated	part	of	caching	is
knowing	when	to	expire	caches.

In	the	old	days,	Rails	developers	used	to	do	a	lot	of	manual	cache	expiration,	with
Observers	and	Sweepers.	Nowadays,	we	try	to	avoid	these	entirely,	and	instead	use
something	called	key-based	expiration.

Recall	that	a	cache	is	simply	a	collection	of	keys	and	values,	just	like	a	Hash.	In	fact,	we
use	hashes	as	caches	all	the	time	in	Ruby.	Key-based	expiration	is	a	cache	expiration
strategy	that	expires	entries	in	the	cache	by	making	the	cache	key	contain	information
about	the	value	being	cached,	such	that	when	the	object	changes	(in	a	way	that	we	care
about),	the	cache	key	for	the	object	also	changes.	We	then	leave	it	to	the	cache	store	to
expire	the	(now	unused)	previous	cache	key.	We	never	expire	entries	in	the	cache
manually.

Caching

240

http://guides.rubyonrails.org/caching_with_rails.html

In	the	case	of	an	ActiveRecord	object,	we	know	that	every	time	we	change	an	attribute
and	save	the	object	to	the	database,	that	object's		updated_at		attribute	changes.	So	we
can	use		updated_at		in	our	cache	keys	when	caching	ActiveRecord	objects	-	each	time
the	ActiveRecord	object	changes,	its	updated_at	changes,	busting	our	cache.	Rails
knows	this	and	makes	it	easy	for	us.

For	example,	let's	say	I	have	a	Todo	item.	I	can	cache	it	like	this:

<%	todo	=	Todo.first	%>

<%	cache(todo)	do	%>

		...	a	whole	lot	of	work	here	...

<%	end	%>

When	you	give	an	ActiveRecord	object	to		cache	,	Rails	realizes	this	and	generates	a
cache	key	that	looks	a	lot	like	this:

views/todos/123-20120806214154/7a1156131a6928cb0026877f8b749ac9

The		views		bit	is	self-explanatory.	The		todos		part	is	based	on	the	Class	of	the
ActiveRecord	object.	The	next	bit	is	a	combination	of	the		id		of	the	object	(123	in	this
case)	and	the		updated_at		value	(some	time	in	2012).	The	final	bit	is	what's	called	the
template	tree	digest.	This	is	just	an	md5	hash	of	the	template	that	this	cache	key	was
called	in.	When	the	template	changes	(e.g.,	you	change	a	line	in	your	template	and	then
push	that	change	to	production),	your	cache	busts	and	regenerates	a	new	cache	value.
This	is	super	convenient,	otherwise	we'd	have	to	expire	all	of	our	caches	by	hand	when
we	changed	anything	in	our	templates!

Note	here	that	changing	anything	in	the	cache	key	expires	the	cache.	So	if	any	of	the
following	items	change	for	a	given	Todo	item,	the	cache	will	expire	and	new	content	will
be	generated:

The	class	of	the	object	(unlikely)
The	object's	id	(also	unlikely,	since	that's	the	object's	primary	key)
The	object's		updated_at		attribute	(likely,	because	that	changes	every	time	the
object	is	saved)
Our	template	changes	(possible	between	deploys)

Note	that	this	technique	doesn't	actually	expire	any	cache	keys	-	it	just	leaves	them
unused.	Instead	of	manually	expiring	entries	from	the	cache,	we	let	the	cache	itself	push
out	unused	values	when	it	begins	to	run	out	of	space.	Or,	the	cache	might	use	a	time-
based	expiration	strategy	that	expires	our	old	entries	after	a	period	of	time.

Caching

241

You	can	give	an	Array	to		cache		and	your	cache	key	will	be	based	on	a	concatenated
version	of	everything	in	the	Array.	This	is	useful	for	different	caches	that	use	the	same
ActiveRecord	objects.	Maybe	there's	a	todo	item	view	that	depends	on	the	current_user:

<%	todo	=	Todo.first	%>

<%	cache([current_user,	todo])	%>

		...	a	whole	lot	of	work	here	...

<%	end	%>

Now	if	the	current_user	gets	updated	or	if	our	todo	changes,	this	cache	key	will	expire
and	be	replaced.

Russian	Doll	Caching

Don't	be	afraid	of	the	fancy	name	-	the	DHH-named	caching	technique	isn't	complicated
at	all.

We	all	know	what	Russian	dolls	look	like	-	one	doll	contained	inside	the	other.	Russian
doll	caching	is	just	like	that	-	we're	going	to	stack	cache	fragments	inside	each	other.
Let's	say	we	have	a	list	of	Todo	elements:

<%	cache('todo_list')	do	%>

		

				<%	@todos.each	do	|todo|	%>

						<%	cache(todo)	do	%>

								<li	class="todo"><%=	todo.description	%>

						<%	end	%>

				<%	end	%>

		

<%	end	%>

But	there's	a	problem	with	my	above	example	code	-	let's	say	I	change	an	existing	todo's
description	from	"walk	the	dog"	to	"feed	the	cat".	When	I	reload	the	page,	my	todo	list	will
still	show	"walk	the	dog"	because,	although	the	inner	cache	has	changed,	the	outer
cache	(the	one	that	caches	the	entire	todo	list)	has	not!	That's	not	good.	We	want	to	re-
use	the	inner	fragment	caches,	but	we	also	want	to	bust	the	outer	cache	at	the	same
time.

Russian	doll	caching	is	simply	using	key-based	cache	expiration	to	solve	this	problem.
When	the	'inner'	cache	expires,	we	also	want	the	outer	cache	to	expire.	If	the	outer
cache	expires,	though,	we	don't	want	to	expire	the	inner	caches.	Let's	see	what	that
would	like	in	our	todo_list	example	above:

Caching

242

<%	cache(["todo_list",	@todos.map(&:id),	@todos.maximum(:updated_at)])	%>

		

				<%	@todos.each	do	|todo|	%>

						<%	cache(todo)	do	%>

								<li	class="todo"><%=	todo.description	%>

						<%	end	%>

				<%	end	%>

		

<%	end	%>

Now,	if	any	of	the	@todos	change	(which	will	change	@todos.maximum(:updated_at))	or
an	Todo	is	deleted	or	added	to	@todos	(changing	@todos.map(&:id)),	our	outer	cache
will	be	busted.	However,	any	Todo	items	which	have	not	changed	will	still	have	the	same
cache	keys	in	the	inner	cache,	so	those	cached	values	will	be	re-used.	Neat,	right?
That's	all	there	is	to	it!

In	addition,	you	may	have	seen	the	use	of	the		touch		option	on	ActiveRecord
associations.	Calling	the		touch		method	on	an	ActiveRecord	object	updates'	the	record's
	updated_at		value	in	the	database.	Using	this	looks	like:

class	Corporation	<	ActiveRecord::Base

		has_many	:cars

end

class	Car	<	ActiveRecord::Base

		belongs_to	:corporation,	touch:	true

end

class	Brake	<	ActiveRecord::Base

		belongs_to	:car,	touch:	true

end

@brake	=	Brake.first

#	calls	the	touch	method	on	@brake,	@brake.car,	and	@brake.car.corporation.

#	@brake.updated_at,	@brake.car.updated_at	and	@brake.car.corporation.updated_at

#	will	all	be	equal.

@brake.touch

#	changes	updated_at	on	@brake	and	saves	as	usual.

#	@brake.car	and	@brake.car.corporation	get	"touch"ed	just	like	above.

@brake.save

@brake.car.touch	#	@brake	is	not	touched.	@brake.car.corporation	is	touched.

We	can	use	the	above	behavior	to	elegantly	expire	our	Russian	Doll	caches:

Caching

243

<%	cache	@brake.car.corporation	%>

		Corporation:	<%=	@brake.car.corporation.name	%>

		<%	cache	@brake.car	%>

				Car:	<%=	@brake.car.name	%>

				<%	cache	@brake	%>

						Brake	system:	<%=	@brake.name	%>

				<%	end	%>

		<%	end	%>

<%	end	%>

With	this	cache	structure	(and	the		touch		relationships	configured	as	above),	if	we	call
	@brake.car.save	,	our	two	outer	caches	will	expire	(because	their		updated_at		values
changed)	but	the	inner	cache	(for		@brake)	will	be	untouched	and	reused.

Which	cache	backend	should	I	use?
There	are	a	few	options	available	to	Rails	developers	when	choosing	a	cache	backend:

ActiveSupport::FileStore	This	is	the	default.	With	this	cache	store,	all	values	in	the
cache	are	stored	on	the	filesystem.
ActiveSupport::MemoryStore	This	cache	store	puts	all	of	the	cache	values	in,
essentially,	a	big	thread-safe	Hash,	effectively	storing	them	in	RAM.
Memcache	and	dalli		dalli		is	the	most	popular	client	for	Memcache	cache	stores.
Memcache	was	developed	for	LiveJournal	in	2003,	and	is	explicitly	designed	for
web	applications.
Redis	and	redis-store		redis-store		is	the	most	popular	client	for	using	Redis	as	a
cache.
LRURedux	is	a	memory-based	cache	store,	like	ActiveSupport::MemoryStore,	but	it
was	explicitly	engineered	for	performance	by	Sam	Saffron,	co-founder	of	Discourse.

Let's	dive	into	each	one	one-by-one,	comparing	some	of	the	advantages	and
disadvantages	of	each.	At	the	end,	I've	prepared	some	performance	benchmarks	to	give
you	an	idea	of	some	of	the	performance	tradeoffs	associated	with	each	cache	store.

ActiveSupport::FileStore

FileStore	is	the	default	cache	implementation	for	all	Rails	applications	for	as	far	back	as	I
can	tell.	If	you	have	not	explicitly	set		config.cache_store		in	production.rb	(or	whatever
environment),	you	are	using	FileStore.

Caching

244

FileStore	simply	stores	all	of	your	cache	in	a	series	of	files	and	folders	-	in		tmp/cache		by
default.

Advantages

FileStore	works	across	processes.	For	example,	if	I	have	a	single	Heroku	dyne
running	a	Rails	app	with	Unicorn	and	I	have	3	Unicorn	workers,	each	of	those	3	Unicorn
workers	can	share	the	same	cache.	So	if	worker	1	calculates	and	stores	my	todolist
cache	from	an	earlier	example,	worker	2	can	use	that	cached	value.	However,	this	does
not	work	across	hosts	(since,	of	course,	most	hosts	don't	have	access	to	the	same
filesystem).	Again,	on	Heroku,	while	all	of	the	processes	on	each	dyne	can	share	the
cache,	they	cannot	share	across	dynos.

Disk	space	is	cheaper	than	RAM.	Hosted	Memcache	servers	aren't	cheap.	For
example,	a	30MB	Memcache	server	will	run	you	a	few	bucks	a	month.	But	a	5GB
cache?	That'll	be	$290/month,	please.	Ouch.	But	disk	space	is	a	heckuva	lot	cheaper
than	RAM,	so	if	you	access	to	a	lot	of	disk	space	and	have	a	huge	cache,	FileStore
might	work	well	for	that.

Disadvantages

Filesystems	are	slow(ish).	Accessing	the	disk	will	always	be	slower	than	accessing
RAM.	However,	it	might	be	faster	than	accessing	a	cache	over	the	network	(which	we'll
get	to	in	a	minute).

Caches	can't	be	shared	across	hosts.	Unfortunately,	you	can't	share	the	cache	with
any	Rails	server	that	doesn't	also	share	your	filesystem	(across	Heroku	dynes,	for
example).	This	makes	FileStore	inappropriate	for	large	deployments.

Not	an	LRU	cache.	This	is	FileStore's	biggest	flaw.	FileStore	expires	entries	from	the
cache	based	on	the	time	they	were	written	to	the	cache,	not	the	last	time	they	were
recently	used/accessed.	This	cripples	FileStore	when	dealing	with	key-based	cache
expiration.	Recall	from	our	examples	above	that	key-based	expiration	does	not	actually
expire	any	cache	keys	manually.	When	using	this	technique	with	FileStore,	the	cache
will	simply	grow	to	maximum	size	(1GB!)	and	then	start	expiring	cache	entries	based	on
the	time	they	were	created.	If,	for	example,	your	todo	list	was	cached	first,	but	is	being
accessed	10	times	per	second,	FileStore	will	still	expire	that	item	first!	Least-Recently-
Used	cache	algorithms	(LRU)	work	much	better	for	key-based	cache	expiration	because
they'll	expire	the	entries	that	haven't	been	used	in	a	while	first.

Caching

245

Crashes	Heroku	dynos	Another	nail	in	FileStore's	coffin	is	its	complete	inadequacy	for
the	ephemeral	filesystem	of	Heroku.	Accessing	the	filesystem	is	extremely	slow	on
Heroku	for	this	reason,	and	actually	adds	to	your	dynes'	"swap	memory".	I've	seen	Rails
apps	slow	to	a	total	crawl	due	to	huge	FileStore	caches	on	Heroku	that	take	ages	to
access.	In	addition,	Heroku	restarts	all	dynes	every	24	hours.	When	that	happens,	the
filesystem	is	reset,	wiping	your	cache!

When	should	I	use	ActiveSupport::FileStore?

Reach	for	FileStore	if	you	have	low	request	load	(1	or	2	servers)	and	still	need	a	very
large	cache	(>100MB).	Also,	don't	use	it	on	Heroku.

ActiveSupport::MemoryStore

MemoryStore	is	the	other	main	implementation	provided	for	us	by	Rails.	Instead	of
storing	cached	values	on	the	filesystem,	MemoryStore	stores	them	directly	in	RAM	in	the
form	of	a	big	Hash.

ActiveSupport::MemoryStore,	like	all	of	the	other	cache	stores	on	this	list,	is	thread-safe.

Advantages

It's	fast	One	of	the	best-performing	caches	on	my	benchmarks	(below).
It's	easy	to	set	up	Simple	change		config.cache_store		to		:memory_store	.	Tada!

Disadvantages

Caches	can't	be	shared	across	processes	or	hosts	Unfortunately,	the	cache
cannot	be	shared	across	hosts,	but	it	also	can't	even	be	shared	across	processes
(for	example,	Unicorn	workers	or	Puma	clustered	workers).
Caches	add	to	your	total	RAM	usage	Storing	data	in	memory	adds	to	your	RAM
usage.	This	is	tough	on	shared	environments	like	Heroku	where	memory	is	highly
restrained.

When	should	I	use	ActiveSupport::MemoryStore?

If	you	have	one	or	two	servers,	with	a	few	workers	each,	and	you're	storing	small
amounts	of	cached	data	(<20MB),	MemoryStore	may	be	right	for	you.

Caching

246

Memcache	and	dalli

Memcache	is	probably	the	most	frequently	used	and	recommended	external	cache	store
for	Rails	apps.	Memcache	was	developed	for	LiveJournal	in	2003,	and	is	used	in
production	by	sites	like	Wordpress.org,	Wikipedia,	and	Youtube.

While	Memcache	benefits	from	having	some	absolutely	enormous	production
deployments,	it	is	under	a	somewhat	slower	pace	of	development	than	other	cache
stores	(because	it's	so	old	and	well-used,	if	it	ain't	broke,	don't	fix	it).

Advantages

Distributed,	so	all	processes	and	hosts	can	share	Unlike	FileStore	and
MemoryStore,	all	processes	and	dynos/hosts	share	the	exact	same	instance	of	the
cache.	We	can	maximize	the	benefit	of	caching	because	each	cache	key	is	only
written	once	across	the	entire	system.

Disadvantages

Distributed	caches	are	susceptible	to	network	issues	and	latency	Of	course,
it's	much,	much	slower	to	access	a	value	across	the	network	than	it	is	to	access	that
value	in	RAM	or	on	the	filesystem.	Check	my	benchmarks	below	for	how	much	of
an	impact	this	can	have	-	in	some	cases,	it's	extremely	substantial.
Expensive	Running	FileStore	or	MemoryStore	on	your	own	server	is	free.	Usually,
you're	either	going	to	have	to	pay	to	set	up	your	own	Memcache	instance	on	AWS
or	via	a	service	like	Memcachier.
Cache	values	are	limited	to	1MB.	In	addition,	cache	keys	are	limited	to	250	bytes.

When	should	I	use	Memcache?

If	you're	running	more	than	1-2	hosts,	you	should	be	using	a	distributed	cache	store.
However,	I	think	Redis	is	a	slightly	better	option,	for	the	reasons	I'll	outline	below.

Redis	and	redis-store

Redis,	like	Memcache,	is	an	in-memory,	key-value	data	store.	Redis	was	started	in	2009
by	Salvatore	Sanfilippo,	who	remains	the	project	lead	and	sole	maintainer	today.

In	addition	to	redis-store,	there's	a	new	Redis	cache	gem	on	the	block:	readthis.	It's
under	active	development	and	looks	promising.

Caching

247

https://github.com/redis-store/redis-store
https://github.com/sorentwo/readthis

Advantages

Distributed,	so	all	processes	and	hosts	can	share	Like	Memcache,	all	processes
and	dynos/hosts	share	the	exact	same	instance	of	the	cache.	We	can	maximize	the
benefit	of	caching	because	each	cache	key	is	only	written	once	across	the	entire
system.
Allows	different	eviction	policies	beyond	LRU	Redis	allows	you	to	select	your
own	eviction	policies,	which	gives	you	much	more	control	over	what	to	do	when	the
cache	store	is	full.	For	a	full	explanation	of	how	to	choose	between	these	policies,
check	out	the	excellent	Redis	documentation.
Can	persist	to	disk,	allowing	hot	restarts	Redis	can	write	to	disk,	unlike
Memcache.	This	allows	Redis	to	write	the	DB	to	disk,	restart,	and	then	come	back
up	after	reloading	the	persisted	DB.	No	more	empty	caches	after	restarting	your
cache	store!

Disadvantages

Distributed	caches	are	susceptible	to	network	issues	and	latency	Of	course,
it's	much,	much	slower	to	access	a	value	across	the	network	than	it	is	to	access	that
value	in	RAM	or	on	the	filesystem.	Check	my	benchmarks	below	for	how	much	of
an	impact	this	can	have	-	in	some	cases,	it's	extremely	substantial.
Expensive	Running	FileStore	or	MemoryStore	on	your	own	server	is	free.	Usually,
you're	either	going	to	have	to	pay	to	set	up	your	own	Redis	instance	on	AWS	or	via
a	service	like	Redis.
While	Redis	supports	several	data	types,	redis-store	only	supports	Strings
This	is	a	failure	of	the		redis-store		gem	rather	than	Redis	itself.	Redis	supports
several	data	types,	like	Lists,	Sets,	and	Hashes.	Memcache,	by	comparison,	only
can	store	Strings.	It	would	be	interesting	to	be	able	to	use	the	additional	data	types
provided	by	Redis	(which	could	cut	down	on	a	lot	of	marshaling/serialization).

When	should	I	use	Redis?

If	you're	running	more	than	2	servers	or	processes,	I	recommend	using	Redis	as	your
cache	store.

LRURedux

Caching

248

http://redis.io/topics/lru-cache

Developed	by	Sam	Saffron	of	Discourse,	LRURedux	is	essentially	a	highly	optimized
version	of	ActiveSupport::MemoryStore.	Unfortunately,	it	does	not	yet	provide	an
ActiveSupport-compatible	interface,	so	you're	stuck	with	using	it	on	a	low-level	in	your
app,	not	as	the	default	Rails	cache	store	for	now.

Advantages

Ridiculously	fast	LRURedux	is	by	far	the	best-performing	cache	in	my
benchmarks.

Disadvantages

Caches	can't	be	shared	across	processes	or	hosts	Unfortunately,	the	cache
cannot	be	shared	across	hosts,	but	it	also	can't	even	be	shared	across	processes
(for	example,	Unicorn	workers	or	Puma	clustered	workers).
Caches	add	to	your	total	RAM	usage	Storing	data	in	memory	adds	to	your	RAM
usage.	This	is	tough	on	shared	environments	like	Heroku	where	memory	is	highly
restrained.
Can't	use	it	as	a	Rails	cache	store	Yet.

When	should	I	use	LRURedux?

Use	LRURedux	where	algorithms	require	a	performant	(and	large	enough	to	the	point
where	a	Hash	could	grow	too	large)	cache	to	function.

Cache	Benchmarks
Who	doesn't	love	a	good	benchmark?	All	of	the	benchmark	code	is	available	here	on
GitHub.

Fetch

The	most	often-used	method	of	all	Rails	cache	stores	is		fetch		-	if	this	value	exists	in
the	cache,	read	the	value.	Otherwise,	we	write	the	value	by	executing	the	given	block.
Benchmarking	this	method	tests	both	read	and	write	performance.		i/s		stands	for
"iterations/second".

Caching

249

https://gist.github.com/nateberkopec/14d6a2fb7fe5da06a1f6

LruRedux::ThreadSafeCache:			337353.5	i/s

ActiveSupport::Cache::MemoryStore:				52808.1	i/s	-	6.39x	slower

ActiveSupport::Cache::FileStore:				12341.5	i/s	-	27.33x	slower

ActiveSupport::Cache::DalliStore:					6629.1	i/s	-	50.89x	slower

ActiveSupport::Cache::RedisStore:					6304.6	i/s	-	53.51x	slower

ActiveSupport::Cache::DalliStore	at	pub-memcache-13640.us-east-1-1.2.ec2.garantiad

ata.com:13640:							26.9	i/s	-	12545.27x	slower

ActiveSupport::Cache::RedisStore	at	pub-redis-11469.us-east-1-4.2.ec2.garantiadata

.com:							25.8	i/s	-	13062.87x	slower

Wow	-	so	here's	what	we	can	learn	from	those	results:

LRURedux,	MemoryStore,	and	FileStore	are	so	fast	as	to	be	basically
instantaneous.
Memcache	and	Redis	are	still	fast	when	the	cache	is	on	the	same	host.
When	using	a	host	far	away	across	the	network,	Memcache	and	Redis	suffer
significantly,	taking	about	~50ms	per	cache	read	(under	extremely	heavy	load).	This
means	two	things	-	when	choosing	a	Memcache	or	Redis	host,	choose	the	one
closest	to	where	your	servers	are	and	benchmark	its	performance.	Second,	don't
cache	anything	that	takes	less	than	~10-20ms	to	generate	by	itself.

Full-stack	in	a	Rails	app

For	this	test,	we're	going	to	try	caching	some	content	on	a	webpage	in	a	Rails	app.	This
should	give	us	an	idea	of	how	much	time	read/writing	a	cache	fragment	takes	when	we
have	to	go	through	the	entire	request	cycle	as	well.

Essentially,	all	the	app	does	is	set		@cache_key		to	a	random	number	between	1	and	16,
and	then	render	the	following	view:

<%	cache(@cache_key)	do	%>

		<p><%=	SecureRandom.base64(100_000)	%></p>

<%	end	%>

Average	response	time	in	ms	-	less	is	better

The	below	results	were	obtained	with	Apache	Bench.	The	result	is	the	average	of	10,000
requests	made	to	a	local	Rails	server	in	production	mode.

Redis/redis-store	(remote)	47.763
Memcache/Dalli	(remote)	43.594

Caching

250

With	caching	disabled	10.664
Memcache/Dalli	(localhost)	5.980
Redis/redis-store	(localhost)	5.004
ActiveSupport::FileStore	4.952
ActiveSupport::MemoryStore	4.648

Some	interesting	results	here,	for	sure!	Note	that	the	difference	between	the	fastest
cache	store	(MemoryStore)	and	the	uncached	version	is	about	6	milliseconds.	We	can
infer,	then,	that	the	amount	of	work	being	done	by		SecureRandom.base64(100_000)		takes
about	6	milliseconds.	Accessing	the	remote	cache,	in	this	case,	is	actually	slower	than
just	doing	the	work!

The	lesson?	When	using	a	remote,	distributed	cache,	figure	out	how	long	it
actually	takes	to	read	from	the	cache.	You	can	find	this	out	via	benchmarking,	like	I
did,	or	you	can	even	read	it	from	your	Rails	logs.	Make	sure	you're	not	caching	anything
that	takes	longer	to	read	than	it	does	to	write!

Checklist	for	Your	App
Use	a	cache.	Understand	Rails'	caching	methods	like	the	back	of	your	hand.
There	is	no	excuse	for	not	using	caching	in	a	production	application.	Any	Rails
application	that	cares	about	performance	should	be	using	application-layer	caching.
Use	key-based	cache	expiration	over	sweepers	or	observers.	Anything	that
manually	expires	a	cache	is	too	much	work.	Instead,	use	key-based	"Russian	Doll"
expiration	and	rely	on	the	cache's	"Least-Recently-Used"	eviction	algorithms.
Make	sure	your	cache	database	is	fast	to	read	and	write.	Use	your	logs	to	make
sure	that	caches	are	fast.	Switch	providers	until	you	find	one	with	low	latency	and
fast	reads.
Consider	using	an	in-memory	cache	for	simple,	often-repeated	operations.	For
certain	operations,	you	may	find	something	like	the	in-memory		LRURedux		gem	to	be
easier	to	use.

Lab:	Application	Caching

Exercise	1

Caching

251

Using	rack-mini-profiler	as	a	profiler,	identify	some	areas	of	Rubygems.org	that	could
use	application	caching.

If	you	haven't	set	up	Rubygems.org	already,	see		RUBYGEMS_SETUP.md	

Implement	these	changes.	The	default	cache	store	(the	file	store)	will	work	fine.
Remember,	you'll	have	to	turn	on	caching	in	development.

Caching

252

Making	Rails	Faster	Than	Sinatra
Summary:	Rails	has	a	reputation	for	being	slow	among	web	frameworks	-	is	it?	And	if	so,
why?	We'll	examine	Rails'	featureset	in	comparison	with	other	popular	Ruby	web
frameworks,	like	Lotus,	Cuba	and	Sinatra,	by	stripping	away	Rails	features	until	our
Rails	app	is	just	as	fast	as	a	stock	Sinatra	application.

Rails	is	slow.	We	all	know	that,	right?	Just	have	a	look	at	the	Techempower	Benchmarks
-	Rails	sits	near	the	bottom.	Java	and	C/C++-powered	examples	dominate	the	top	of	the
rankings.	Express,	a	popular	framework	for	Node.js,	clocks	in	orders	of	magnitude
faster.	Even	Django	seems	to	do	better	than	Rails.

Sidenote:	Don't	worry,	I	realize	that,	as	far	as	benchmarks	go,	TechEmpower	is	definitely
flawed.	This	is	just	for	rhetoric's	sake.	Stay	with	me	here.

Yet,	Rails	is	used	successfully	at	some	of	the	top	1000	websites	in	the	world,	as	ranked
by	Alexa.	They	tend	to	report	respectable	median	response	times,	too:

Website Alexa	Global
Ranking

Reported	Median	Response
Time

Basecamp.com #961 62	ms	(500	req/sec)

Shopify #490 ~90-100ms,	(2000	req/sec

Github #86 45-65	ms

Airbnb #532 ?

Sidenote:	Since	Shopify	is	public,	we	can	also	guess	at	how	much	it's	spending	on
servers	to	support	this.	Shopify	spent	$3.2mm	on	providing	subscription	services	in
2014,	for	revenue	of	of	$38.3mm.	Not	bad.

So	Rails	performs	poorly	on	many	benchmarks,	but	seems	to	have	the	chops	to	run	Top
1000	(and	even	Top	100)	websites.	Why	is	this?	How	can	Rails	perform	so	poorly	in	the
micro	and	yet	so	well	in	the	micro?

Let's	create	our	own	micro-benchmark	to	start	getting	some	answers.

Benchmarking	with	wrk

Slimming	Down	Your	Framework

253

https://twitter.com/dhh/status/287221705443774465
https://status.shopify.com/
https://www.shopify.com/technology/7617983-identitycache-improving-performance-one-cached-model-at-a-time
https://status.github.com/
https://www.sec.gov/Archives/edgar/data/1594805/000119312515129273/d863202df1.htm

There	are	several	benchmarking	tools	available	for	measuring	how	many	requests-per-
second	a	web	app	can	handle	-	for	this	tutorial,	we're	going	to	use		wrk	.

In	designing	this	benchmark,	I	want	to	answer	the	question	-	how	much	framework
overhead	is	involved	in	generating	the	response	to	an	extremely	simple	request?	The
application,	in	this	case,	should	be	extremely	simplistic	--	we're	measuring	the	speed	of
the	framework	rather	than	the	application.

We're	just	going	to	render	a	simple	"Hello	World!"	text	response	with	a	200	status	code.	I
don't	even	want	to	introduce	JSON	into	this,	because	the	different	frameworks	might
approach	serialization	differently.	Rendering	a	"Hello	World!"	should	be	the	purest	way	to
measure	how	much	work	the	framework	does	to	render	a	response.

Here's	a	repository	with	the	application	code	I	used.	To	keep	all	of	these	frameworks	on
roughly	the	same	footing,	I	assured	that:

None	of	their	layout/view	features	were	used	-	all	are	rendering	plaintext	responses.
All	are	running	in	their	respective	"production"	modes	if	applicable.
Logging	was	disabled	(at	these	high	loads,	logging	can	take	up	a	significant	amount
of	time).

I	ran	each	application	with:

RACK_ENV=production	puma	-q	-w	4	-t	16:16	--preload	path/to/app

and	benchmarked	that	against		wrk		running	100	concurrent	connections	in	16	threads
for	10	seconds.	I	ran	this	test	three	times	and	took	the	fastest	result.

wrk	-c	100	-t	16	http://localhost:9292/

But	who	cares	about	that	-	we	came	here	to	see	some	numbers,	dammit!

Framework Requests/sec Memory	usage	per	worker

Cuba 8555 15	MB

Lotus 5128 83	MB

Sinatra 4068 22	MB

Rails 1388 70	MB

Rack 12158 15	MB

Slimming	Down	Your	Framework

254

https://github.com/wg/wrk

We	can	immediately	identify	three	tiers,	or	groupings,	of	performance	here:

Rack	-	Bare	Metal™	All	of	the	chosen	frameworks	here	are	Rack	applications.
Really,	each	one's	feature-set	must	be	a	strict	superset	of	whatever	Rack	is	doing.
So	it's	no	suprise	that	Rack	is	the	fastest	out	of	all	of	these	frameworks.
Rack	Wrappers	Next	come	the	two	"Rack	Wrapper"	frameworks	-	Cuba	and
Sinatra.	Both	are	intended	to	be	simple	wrappers	around	Rack,	basically	making	the
process	of	making	a	Rack-compliant	application	easier.	I	was	mostly	impressed	in
terms	of	the	memory	usage	for	each	of	these	frameworks	-	both	enjoy	almost	zero
additional	overhead	over	Rack.
Rails	and	Rails-likes	Finally,	we	have	Rails.	While	Lotus	is	a	newcomer	to	the
scene,	it	enjoys	excellent	performance	in	this	test.	However,	its	featureset	imposes
a	large	memory	penalty,	just	like	Rails'	does.

Rails	isn't	looking	good	here	-	nearly	an	order	of	magnitude	slower	than	Rack	itself,	and
almost	5x	slower	than	its	most	feature-comparable	competitor,	Lotus.

So	what	is	Rails	doing	that	is	making	it	so	(relatively)	slow?

First,	I	want	to	reframe	that	question.	In	this	extremely	simple	test,	Rails	is	10x	slower
relatively	speaking	that	Rack.	But	what	does	that	mean	in	absolute	terms?	How	many
milliseconds	are	we	saving	with	Rack	per	response?	Let's	rewrite	the	graph	from	above
in	absolute	terms:

Framework Milliseconds/request ms/req	more	than	Rack

Cuba 9ms 4ms

Lotus 14ms 9ms

Sinatra 14ms 9ms

Rails 33ms 28ms

Rack 5ms N/A

Cuba	-	9.03	ms,	4ms	Lotus	-	14ms,	9ms	Sinatra	-	14.6	ms,	9ms	Rails	-	33.17	ms,	28ms
Rack	-	5.08ms

Rails	is	imposing	about	28ms	of	framework	overhead	per	response.	Of	course,	this	is
28ms	on	my	hardware,	a	shitty	Macbook	Air	from	2011.	On	actual	production	hardware,
with	Xeon	processors	and	whatnot,	this	absolute	difference	will	likely	decrease.

Slimming	Down	Your	Framework

255

Is	28	milliseconds	going	to	make	or	break	your	application?	Scroll	back	up	to	our
example	response-times-at-webscale	table.	From	a	scalability	perspective,	perhaps	it
would	be	interesting	for	Shopify	if	they	knocked	about	25%	of	the	time	off	each	request
by	eliminating	the	Rails	overhead	compared	to,	say,	Cuba.

However,	25	milliseconds	is	almost	a	meaningless	amount	of	time	for	the	end-user
experience	in	a	web-browser.	From	a	scalability	perspective,	Shopify	could	also	scale
horizontally	by	running	more	instances	of	the	Rails	application	rather	than	attempt	to
scale	by	making	their	application	faster	(see	my	post	on	Little's	Law	for	how	speeding	up
average	response	times	affects	scale).	It's	not	exactly	like	Shopify	is	drowning	in	server
costs	-	their	cost-of-revenue	for	providing	their	subscription	services	was	about	10%	of
revenue	in	2014.	They'd	probably	rather	just	throw	more	servers	at	the	problem	rather
than	rewrite	an	application	to	gain	25	milliseconds.	Hardware	will	only	get	cheaper	as
time	goes	on,	too	-	shrinking	this	framework	overhead	gap	even	further.

While	there	may	be	some	scalability	gains	in	using	microframeworks	over	Rails,	we	can
almost	authoritatively	say	that	there	aren't	any	end-user	performance	gains.	Most
websites	take	several	seconds	to	even	render	the	page	-	the	bottleneck	in	most	end-
user	experiences	on	the	web	lies	in	the	front-end,	not	the	backend.	Here's	some	back-of-
the-napkin	estimates:

Step Time

DNS	resolution 150ms

TCP	connection	opening 150	ms

Network	request	-	latency	outbound 50ms

Server	backend	response 100ms

Network	request	-	latency	on	return 50ms

HTML	document	parsing/construction 200ms

Total 700ms

The	framework	overhead	represents	less	than	5%	of	the	end-user's	experience.
Framework	overhead	in	Ruby	is,	thus,	mostly	meaningless	when	discussing	end-user
performance.	Even	for	API	applications,	framework	overhead	represents	a	tiny	fraction
of	the	overall	time	spent	completing	a	request.

But	really,	why	is	it	slow?

Slimming	Down	Your	Framework

256

https://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html

Rails	is	slower	than	other	Ruby	frameworks	for	one	reason	-	it	runs	more	Ruby	code	to
make	a	response.	It's	a	simple	as	that.	We	can	find	out	exactly	what	Ruby	code	it	runs
by	comparing	call	stack	graphs	in		ruby-prof	.

	ruby-prof	's	call-stack	graphs	are	conceptually	pretty	similar	to	flamegraphs,	which	you
might	have	seen	in	Chrome	Timeline	or		rack-mini-profiler	.	To	set	up		ruby-prof		in
this	test,	I	wanted	to	make	sure	I	inserted	its	Rack	middleware	as	high	in	the	stack	as
possible.	As	an	example,	here's	how	I	did	it	with	Sinatra:

require_relative	'./app'	#	contains	BenchmarkApp

require	'ruby-prof'

use	Rack::RubyProf,	:path	=>	'./temp'

run	BenchmarkApp

Looking	at	Sinatra's	call-stack	graph	gives	us	a	great	insight	right	out	of	the	box	-	about
30%	of	the	time	spent	in	these	simple	requests	is	spent	in	Rack	middleware.	Only	70%
of	the	time	is	spent	actually	in	your	application,	and	almost	all	of	that	is	in	of	that	in	the
Sinatra::Base#call!	method.

Almost	every	Ruby	web	framework	uses	Rack	middleware	to	provide	basic	features.
Here's	a	list	of	some	of	the	ones	Sinatra	uses	by	default,	pulled	from	our	call-stack
graph:

Rack::MethodOverride	-	Allows	POST	requests	to	behave	like	other	HTTP	methods
by	setting	a	special	HTTP	header.	Rails	uses	this	middleware	to	support	PUT	and
DELETE	HTTP	methods.
Rack::Head	-	Converts	HEAD	HTTP	methods	into	GET	requests	with	no	body.
Rack::Logger	-	Provides	a	simple,	consistent	logger	across	the	entire	application.
Rack::Protection	(including	FrameOptions,	JsonCsrf,	PathTraversal,	and
XSSHeader	middlewares)	-	Protects	against	certain	types	of	web	attacks.

As	far	as	I	can	tell,	each	Rack	middleware	included	by	default	in	a	Sinatra	app	is	pretty
much	required	for	any	production	application	on	the	public	web.

Rails'	default	middleware	stack	is	considerably	thicker.	Checking	out	the	call	stack	on
our	default	Rails	application	reveals	a	lot	more	complexity	-	I	couldn't	fit	the	entire	stack
onto	my	screen!

Speeding	Up	Rails	By	Doing	Less

Slimming	Down	Your	Framework

257

https://github.com/sinatra/sinatra/blob/master/lib/sinatra/base.rb#L897
https://github.com/rack/rack/blob/028438ffffd95ce1f6197d38c04fa5ea6a034a85/lib/rack/method_override.rb
https://github.com/rack/rack/blob/master/lib/rack/head.rb
https://github.com/rack/rack/blob/master/lib/rack/logger.rb
https://github.com/sinatra/rack-protection
http://edgeguides.rubyonrails.org/rails_on_rack.html#internal-middleware-stack

We	can	speed	up	Rails	by	thinning	out	our	call	stack	-	by	making	Rails	do	less.	Rails
includes	some	obvious	things	that	Sinatra	doesn't	-	an	entire	ORM,	a	mailing	framework,
a	background	job	framework,	and	more.	Let's	build	our	own		mini-rails		-	something
that's	more	on	feature	parity	with	Sinatra.

Did	you	know	you	can	launch	a	Rails	application	in	less	than	140	characters?

rackup	-r	action_controller/railtie	-b	'run	Class.new(Rails::Application){config.s

ecret_key_base=1;}.initialize!'

Sidenote:	Neato,	huh?	The	-r	option	is	the	same	thing	as	using		require	.	The	-b	option
evaluates	the	string	as	Ruby	code	inside	a	".ru"	file,	like	the		config.ru		file	in	any	Rails
app.		Class.new(superclass)		just	creates	a	new	anonymous	class,	which	is	mounted	as
a	Rack	app	by		run	

Try	this	in	your	console.	It's	a	pretty	useless	application	-	because	there	are	no	routes,	it
just	renders	404s.	But	it	is	a	Rails	application.

Here's	a	working,	but	non-tweetable	Rails	application	that's	more	comparable	to	our
Sinatra	app:

#	config.ru

require	'action_controller/railtie'

class	BenchmarkApp	<	Rails::Application

		config.secret_key_base	=	"test"

		routes.append	{	root	to:	"hello#world"		}

end

class	HelloController	<	ActionController::Metal

		def	world

				self.response_body	=	"Hello	World!"

		end

end

run	BenchmarkApp.initialize!

Framework Requests/sec Memory	usage	per	worker

Sinatra 4068 22	MB

Rails 1388 70	MB

Tiny	Rails 1248 35	MB

Slimming	Down	Your	Framework

258

This	tiny	1-file	Rails	app	returns	the	exact	same	response	body	as	our	other	generic
Rails	app	generated	by		rails	new	.	While	the	overall	speed	is	exactly	the	same,	this
Rails	app	needs	about	half	the	memory	of	a	standard	Rails	app.	That's	interesting	-	and
not	inconsiderable	savings	when	multipled	across	4	workers.

It's	all	in	what	I'm		require	ing.	Or,	rather,	what	I'm	*not		require	ing.

Rails	isn't	really	a	single	framework	-	it's	actually	seven,	bundled	into	one.	We	need	look
no	further	than	Rails'	gem	specification	to	tell	us	this:

#	rails.gemspec

s.add_dependency	'activesupport',	version

s.add_dependency	'actionpack',				version

s.add_dependency	'actionview',				version

s.add_dependency	'activemodel',			version

s.add_dependency	'activerecord',		version

s.add_dependency	'actionmailer',		version

s.add_dependency	'activejob',					version

s.add_dependency	'railties',						version

Although	the	Rails	gemspec	may	declare	a	dependency	on	all	of	these	frameworks,	that
doesn't	necessarily	mean	all	of	them	are	actually	loaded.		add_dependency		just	ensures
that	Bundler	downloads	these	gems	and	has	them	ready	to	use,	we	haven't	actually
	require	d	anything	yet.

When	you	type		rails	new		and	generate	a	new	Rails	app,	one	of	the	files	you'll	get	is
	config/application.rb	.	Near	the	top	of	that	file,	you'll	see	this:

require	'rails/all'

This	is	where	the	Rails	gems	actually	get		require	d.	In		railties	,	there's	an		all.rb	
file	just	like	you	might	expect.	It's	extremely	simple:

Slimming	Down	Your	Framework

259

#	rails/railties/lib/rails/all.rb

require	"rails"

%w(

		active_record

		action_controller

		action_view

		action_mailer

		active_job

		rails/test_unit

		sprockets

).each	do	|framework|

		begin

				require	"#{framework}/railtie"

		rescue	LoadError

		end

end

Neat!	Already,	you	should	be	seeing	a	possibility	for	optimization	here.	Instead	of	just
	require	-ing	all	of	Rails,	you	should		require		only	the	parts	you	need.	Here's	a	brief
description	of	each	bit	of	the	framework	and	the	possible	memory	savings	entailed	in	not
	require	ing	it.	All	memory	numbers	were	obtained	from		derailed_benchmarks	.

Sprockets.	10.3	MB.
ActiveRecord.	3.5	MB.
ActionMailer.	~0.5	MB
ActiveJob.	~0.5	MB

While	not	requiring	parts	of	Rails	we	don't	need	is	interesting,	in	reality,	we'll	probably
only	save	a	couple	of	MB	per	instance.	These	are	100%	free	gains,	though	-	all	we	had
to	do	was	change	a	line	in	our		application.rb		-	and	free	scalability	is	the	best	kind!
Most	common	exclusions	here	would	probably	be	ActionMailer	and	ActiveJob,	followed
by	ActiveRecord	for	you	folks	using	MongoDB.	If	you're	an	API	server,	try	ripping	out
Sprockets.

Dropping	Down	to	the	Metal	:horns:

You	may	have	noticed	that	the	controller	I	used	in	this	"tiny	Rails"	app	is	a	little	weird.

Slimming	Down	Your	Framework

260

https://github.com/schneems/derailed_benchmarks

class	HelloController	<	ActionController::Metal

		def	world

				self.response_body	=	"Hello	World!"

		end

end

First,	what's	ActionController::Metal?	Metal	is	the	most	basic	controller	possible	in	Rails.
ActionController::Base,	what	your	normal	controllers	inherit	from,	literally	looks	like	this:

class	ActionController::Base	<	ActionController::Metal

		include	SomeModule

		include	SomeOtherModule

end

ActionController::Base	includes	a	lot	of	these	modules	-	the	full	list	is	right	here.	Some	of
it	is	stuff	you	might	expect,	like	helpers,	redirects,	the		render		method.	Other	stuff,
though,	you	may	not	need	-	like		ForceSSL	,		HttpAuthentication	,	and		ImplicitRender	.
You	can	build	your	own		ActionController::Base		by	reading	the	source	and	including
your	own	modules,	piece	by	piece.

You'll	notice	I	didn't	even	use	the		render		method	-	Metal	doesn't	even	include	that	by
default.	All	I	can	do	is	modify	the	response	directly:

class	HelloController	<	ActionController::Metal

		def	world

				self.headers	=	{	"My-Header"	=>	"Header"	}

				self.status	=	404

				self.response_body	=	"Hello	World!"

		end

end

The	Logger

Rails	logs	a	lot	of	information	about	every	request.	By	default,	the	production	log	level	is
	:info	,	which	still	writes	to	the	log	on	every	request.	And,	again,	Rails	will	write	to	the
filesystem	by	default,	which	is	pretty	slow.	First,	let's	change	logging	to		STDOUT		(Heroku,
for	example,	already	does	this):

config.logger	=	Logger.new(STDOUT)

Slimming	Down	Your	Framework

261

https://github.com/rails/rails/blob/master/actionpack/lib/action_controller/base.rb#L203

But	what	will	really	increase	our	speed	is	disabling	the		INFO		level	messages.	These
normally	look	like	this:

I,	[2015-12-04T16:03:53.336426	#96456]		INFO	--	:	Started	GET	"/"	for	127.0.0.1	at

	2015-12-04	16:03:53	-0500

I,	[2015-12-04T16:03:53.336626	#96456]		INFO	--	:	Completed	200	OK	in	5ms	(Views:	

4.9ms)

In	general,	I	find	these	useful.	However,	if	you	don't,	you	may	consider	increasing	the	log
level	to		:warn		or	even		:error	or		:fatal	.	Doing	so	provides	our	first	real	speed	boost
in	our	config	tweaking.	The	reason	is	simple	-	logging	isn't	free!

config.log_level	=	:error

Finally,	we'll	add	in	some	config	settings	normally	set	for	us	in		production.rb	,	for	the
final	result:

require	'action_controller/railtie'

class	BenchmarkApp	<	Rails::Application

		config.secret_key_base	=	"test"

		#	Usually	set	for	us	in	production.rb

		config.eager_load	=	true

		config.cache_classes	=	true

		config.serve_static_files	=	false

		config.log_level	=	:error

		config.logger	=	Logger.new(STDOUT)

		routes.append	{	root	to:	"hello#world"		}

end

class	HelloController	<	ActionController::Metal

		def	world

				self.response_body	=	"Hello	World!"

		end

end

run	BenchmarkApp.initialize!

Slimming	Down	Your	Framework

262

Framework Requests/sec Memory	usage	per	worker

Sinatra 4068 22	MB

Rails 1388 70	MB

Tiny	Rails	(logger	tweaked) 3360 40	MB

Rails	Isn't	Slow	-	Middleware	is	Slow

If	you	run		rake	middleware		in	the	root	of	any	Rails	app,	you'll	see	dozens	of
middlewares	listed	-	even	in	a	fresh	new	Rails	app.	Not	all	of	these	are	necessary	for
every	application.	Any	middleware,	even	the	default	middlewares,	can	be	removed	in
your	app's		application.rb	:

config.middleware.delete	SomeMiddleware

But	how	do	you	know	which	middlewares	you	can	delete	safely?	Here's	a	guide:

Rack::Sendfile:	This	middleware	is	only	needed	if	you	serve	files	from	responses	-
not	likely.	This	middleware	isn't	even	supported	on	Heroku	and	can	be	safely
deleted	if	using	Heroku.
ActionDispatch::Cookies:	Only	needed	if	you	use	cookies.	Usually	a	good
candidate	for	deletion	if	you're	an	API-only	app.
ActionDispatch::Session::CookieStore	For	some	reason,	setting	the
	session_store		to	nil	doesn't	remove	this	middleware.	You'll	have	to		delete		it
manually	if	not	using	any	session	store	(again,	usually	this	is	only	for	API	apps).
ActionDispatch::Flash	Don't	use	flashes?	Toss	out	this	middleware.
Rack::MethodOverride	You	only	need	this	middleware	if	you're	serving	HTML
content	to	browsers.	API-only	apps	don't	need	this	-	delete	it.
ActionDispatch::RemoteIp	Reports	what	Rails	thinks	is	the	IP	of	the	client	by
adding	a	header	to	the	request.	If	you're	not	using	a	proxy	(Heroku	without	SSL,	for
example),	any	client	can	claim	to	be	any	IP	by	changing	the		X-Forwarded-For	
header,	making	this	middleware	unreliable.	If	you're	in	that	situation	or	if	you	don't
use	this	header,	you	can	safely	delete	the	middleware.
ActionDispatch::ShowExceptions	This	middleware	takes	care	of	sending	a	pretty
500	page	to	your	user.	If	this	middleware	is	deleted,	500-level	exceptions	will
receive	the	correct	status	code	but	an	empty	body	response.	If	all	your	API	clients
care	about	is	the	status	code,	you	may	delete	this	middleware.	HTML-serving	apps
will	want	to	keep	it.

Slimming	Down	Your	Framework

263

https://devcenter.heroku.com/articles/rack-sendfile

ActionDispatch::DebugExceptions	Logs	exceptions	when	they	occur.	If,	for	some
reason,	you	don't	care	about	exceptions	being	logged,	you	can	delete	this
middleware.
ActionDispatch::Callbacks	As	far	as	I	can	tell,	this	middleware	is	never	actually
used	by	anything	in	Rails	itself.	If	your	app	and	none	of	your	included	gems	use
	ActionDispatch::Callbacks	,	you	can	safely	remove	this	middleware.
ActionDispatch::RequestId	Adds	a	header	to	a	request/response	that	identifies	it
uniquely.	If	you	don't	use	this	(and	don't	forsee	using	it)	in	your	logs,	you	can
remove	it.	Some	webservers	have	their	own	version	of	this	feature	as	well,	making
Rails'	superfluous.
ActionDispatch::ParamsParser	Required	to	use	the	magic		params		hash	in
controllers.	I	guess,	if	you're	extremely	narrow	and	not	using	this,	you	can	delete	it.
Not	recommended.
Rack::ConditionalGet	Used	for	HTTP	caching.	99%	of	apps	should	use	this	-	so
you	probably	shouldn't	remove	it.
Rack::ETag	Again,	used	for	HTTP	caching.
Rack::Head	The	HEAD	HTTP	verb	is	used	to	request	the	headers	for	a	response
without	the	body.	If	you	don't	care	about	HTTP	compliance	or	don't	expect	any
HEAD	requests,	you	can	remove	this.
Rack::Runtime	Adds	a		X-Runtime		header	to	a	response.	If	you	don't	use	this	in
your	logs,	you	can	delete	it.	As	far	as	I	can	tell,	this	should	not	affect	services	like
New	Relic,	which	tend	to	use	a	different	header	for	determining	response	times.

I	should	emphasize	that	before	removing	any	default	Rack	middleware,	you	should	read
the	documentation	for	that	middleware	and	test	locally	first.	Removing	any	of	these
middlewares	could	cause	catastrophic	bugs.	Proceed	with	caution.

With	that	warning	out	of	the	way,	what	if	we	removed	all	of	these	middlewares	except
the	ones	Sinatra	uses?	What	would	our	framework	overhead	look	like	then?

Here's	what	our	final,	stripped-down	Sinatra-like	Rails	app	looks	like:

Slimming	Down	Your	Framework

264

require	'action_controller/railtie'

class	BenchmarkApp	<	Rails::Application

		config.secret_key_base	=	"test"

		config.log_level	=	:error

		config.cache_classes	=	true

		config.serve_static_files	=	false

		config.eager_load	=	true

		config.logger	=	Logger.new(STDOUT)

		config.cache_store	=	nil

		#	Remove	middleware	that	do	things	Sinatra	doesn't	(by	default)

		config.middleware.delete	Rack::Sendfile

		config.middleware.delete	ActionDispatch::Cookies

		config.middleware.delete	ActionDispatch::Session::CookieStore

		config.middleware.delete	ActionDispatch::Flash

		config.middleware.delete	ActionDispatch::Callbacks

		config.middleware.delete	ActionDispatch::RequestId

		config.middleware.delete	Rack::Runtime

		config.middleware.delete	ActionDispatch::ShowExceptions

		config.middleware.delete	ActionDispatch::DebugExceptions

		config.middleware.delete	Rack::ConditionalGet

		config.middleware.delete	Rack::ETag

		routes.append	{	root	to:	"hello#world"		}

end

class	HelloController	<	ActionController::Metal

		HEADERS	=	{

				'X-Frame-Options'	=>	'SAMEORIGIN',

				'X-XSS-Protection'	=>	'1;	mode=block',

				'X-Content-Type-Options'	=>	'nosniff',

				'Content-Type'	=>	'text/html'

		}

		def	world

				self.headers	=	HEADERS

				self.response_body	=	"Hello	World!"

		end

end

BenchmarkApp.initialize!

This	app	benchmarks	about	25%	faster	than	stock	Sinatra	on	my	machine:

Slimming	Down	Your	Framework

265

Framework Requests/sec Memory	usage	per	worker

Cuba 8555 15	MB

Lotus 5128 83	MB

Sinatra 4068 22	MB

Rails 1388 70	MB

Tiny	Rails 5107 44	MB

Rack 12158 15	MB

Let's	tie	up	some	loose	ends:

Why	does	Rails	still	use	more	memory	than	Sinatra?	ActiveSupport,	mostly.
ActiveSupport	has	a	lot	of	code	that	gets	loaded	in	no	matter	how	little	of	it	we	want	to
use.

Why	is	this	application	so	much	uglier	than	a	stock	Sinatra	application?	That's	a	good
question,	to	be	honest.	Rails	isn't	really	designed	to	be	used	in	this	manner,	and,	to	be
frank,	it's	not	clear	that	an	application	that	does	so	little	is	even	really	all	that	useful.	This
is	mainly	a	difference	in	philosophy	in	web	frameworks	-	miniframeworks	believe	you
should	be	handed	nothing	and	made	to	bolt	on	all	the	appropriate	parts	yourself,	while
Rails	hands	you	the	keys	to	a	Corvette	and	just	trusts	you	not	to	drive	into	the	side	of	a
barn.

Checklist	for	Your	App
Instead	of	requiring	rails/all,	require	the	parts	of	the	framework	you	need.
You're	almost	certainly	requiring	code	you	don't	need.
Don't	log	to	disk	in	production.
If	using	Rails	5,	and	running	an	API	server,	use		config.api_only	.
Remove	middleware	you're	not	using.	It	adds	up.

Lab:	Rails	Slimming
This	lab	requires	some	extra	files.	To	follow	along,	download	the	source	code	for
the	course	and	navigate	to	this	lesson.	The	source	code	is	available	on	GitHub
(you	received	an	invitation)	or	on	Gumroad	(in	the	ZIP	archive).

Slimming	Down	Your	Framework

266

Exercise	1
An	extremely	simple	Hello	World	application	is	included	in		lab/app.ru	.	Using	the
material	from	the	lesson,	modify	it	until	you	can	return	a	Hello	World	JSON	response	as
quickly	as	possible.

Slimming	Down	Your	Framework

267

Exceptions	as	Flow	Control
You	may	have	heard	this	before:	"Don't	use	exceptions	as	control	flow."

What	does	that	mean?

In	Ruby,	control	flow	is	most	often	expressed	as	an	if/else/unless	branch:

if	some_thing

		do_this

else

		other_thing

end

Control	flow	is	just	a	mechanism	that	controls	the	path	of	execution	of	our	program.	Do
we	execute	this	bit	of	code,	or	that	bit	of	code	over	there?	That's	control	flow.	Other
methods	of	control	flow	in	Ruby	are		while	,		for	,		case	,		loop	,		break	,	and		return	.

When	we	use	exceptions	as	control	flow,	it	often	looks	like	this:

begin

		do_some_thing

rescue

		other_thing

end

Of	course,	not	all		rescue	s	are	control	flow.	Really,	the	only	thing	separating	control	flow
from	exception	handling	is	that	control	flow	directs	the	ordinary,	every-day	execution	of
our	program,	and	exception	handling	should	only	be,	well,	exceptional.

Using	exceptions	as	control	flow	occurs	when	you	use		rescue		for	every-day
occurences.	To	pick	on	someone,	I'll	use	the		stripe-ruby		gem.

Here's	what	creating	a	charge	looks	like	with	Stripe:

Stripe::Charge.create(

		:amount	=>	400,

		:currency	=>	"usd",

		:source	=>	"tok_17IDJb2eZvKYlo2CIMDCEBEt",	#	obtained	with	Stripe.js,	this	corre

sponds	to	some	credit	card	#

)

Exceptions	as	Flow	Control

268

If	the	request	succeeds,	this	returns	a	Stripe::Charge	object.	If	it	fails,	it	raises	an
exception.

Maybe	I	just	have	particularly	fat	fingers	or	I'm	an	exceptionally	poor	typist,	but	I	mis-type
my	credit	card	information	all	the	time.	I've	worked	at	e-commerce	companies	before
and	I	know,	based	on	their	analytics,	that	a	lot	of	you	do	too.	Having	a	credit	card
declined	-	whether	by	typo	or	by	the	issuing	bank	-	is	not	an	exceptional	circumstance.

Why	does	this	distinction	matter?

Exceptions	in	Ruby	are	slow.	They're	slow	in	MRI,	and	they're	extremely	slow	in	JRuby.
Let's	do	some	benchmarking	to	prove	my	point	-	we'll	compare	an	if/else	statement	with
begin/rescue	and	see	how	many	iterations/sec	we	can	do	of	each.

Exceptions	as	Flow	Control

269

require	'benchmark/ips'

Customer	=	Struct.new(:status)

class	Charge

		class	Declined	<	RuntimeError;	end

		def	self.create(opts	=	{})

				false

		end

		def	self.create!(opts	=	{})

				fail	Declined

		end

end

class	TestBench

		def	fast

				customer	=	Customer.new

				if	Charge.create(amount:	400)

						customer.status	=	:active

				else

						customer.status	=	:delinquent

				end

		end

		def	slow

				customer	=	Customer.new

				Charge.create!(amount:	400)

				customer.status	=	:active

		rescue	Charge::Declined

				customer.status	=	:delinquent

		end

end

test	=	TestBench.new

Benchmark.ips	do	|x|

		x.report("if/else")	{	test.fast	}

		x.report("exceptions")	{	test.slow	}

		x.compare!

end

IN	Ruby	2.2.3,	the	exception-based	flow	is	3.44x	slower.	In	JRuby	9.0.4.0,	it's	229.53x
slower!	Wow!	Exceptions	used	to	be	extremely	slow	in	MRI	Ruby	as	well,	back	in	the
1.8	days	-	Ryan	Davis	believes	it	was	fixed	sometime	around	2004.	Exceptions	in

Exceptions	as	Flow	Control

270

https://www.reddit.com/r/ruby/comments/ap33d/how_slow_are_ruby_exceptions/c0is0yj

unexceptional	circumstances	can	impose	a	major	performance	penalty	-	especially	in
JRuby	(as	of	this	writing,	2016.	I'm	sure	they're	working	on	it).

Let's	look	at	some	more	common	situations	where	exceptions	are	used	when	faster
methods	might	be	available	-	Rails.	Rails	has	several	methods	which	have	exception-
raising	and	non-exception-raising	versions:

Regular	method Same	method,	raises	exceptions	on	fail

	save	 	save!	

	find	 	where		or		find_by	

	destroy	 	destroy!	

Think	about	it	-	how	often	is	not	finding	a	record	an	exceptional	case?	It's	pretty	easy	to
find	some	anti-pattern	uses	of		find		by	searching	Github	for		rescue
ActiveRecord::RecordNotFound	.	Here's	one	I	found:

		def	user_loggedin?

				User.find(session[:user_id])

		rescue	ActiveRecord::RecordNotFound

				false

		end

...which	could	be	written	as:

		def	user_loggedin?

				User.find_by(id:	session[:user_id])

		end

Here's	another	real-world	example	found	on	Github:

		def	set_cart

				@cart	=	Cart.find(session[:cart_id])

		rescue	ActiveRecord::RecordNotFound

				@cart	=	Cart.create

				session[:cart_id]	=	@cart.id

		end

You	could	rewrite	this	as:

Exceptions	as	Flow	Control

271

		@cart	=	Cart.find_by(id:	session[:cart_id])

		unless	@cart

				@cart	=	Cart.create

				session[:cart_id]	=	@cart.id

		end

What	do	you	do	when	a	3rd-party	library	is	raising	exceptions	in	everyday	operation	(like
the	Stripe	example	I	gave	above)?	Usually,	you're	kind	of	stuck	from	a	performance
perspective	at	least,	because	as	long	as	the	underlying	library	is	raising	exceptions,	they
have	to	be	rescued	somewhere.	You're	best	off	looking	for	libraries	that	get	the	same
task	done	without	using	exceptions.

One	area	I	find	that	this	happens	a	lot	is	HTTP	libraries	-	it's	common	to	raise	exceptions
for	4XX	and	5XX	errors.	This	could	be	a	huge	performance	drag	on,	say,	a	web	crawler
that	may	be	issuing	hundreds	of	requests	per	second	to	possibly	unreliable	URLs.	As	far
as	I	know,	the	only	Ruby	HTTP	library	that	doesn't	raise	exceptions	on	4XX/5XX	status
codes	is	Typhoeus.

So	is	there	ever	a	good	time	to	use	exceptions	for	control-flow-like	behavior?	Jim
Weirich	didn't	think	so.	Here's	what	he	said	to	Avdi	Grimm:

Exceptions	should	not	be	used	for	flow	control,	use	throw/catch	for	that.	This
reserves	exceptions	for	true	failure	conditions.

Interesting	-	let's	take	a	look	at		throw		and		catch		for	a	moment	-	they're	awfully
underused	in	Ruby	these	days.

catch(:done)	do

		i	=	0

		loop	do

				i	+=	1

				throw	:done	if	i	>	100_000

		end

end

finish_up

A	contrived	example,	I	admit.		throw		and		catch		are	basically		raise		and		rescue	
without	a	stack	trace	-	the	thing	that	makes	exceptions	so	expensive	in	Ruby	is	all	the
work	required	to	gather	up	a	stack	trace	and	package	it	in	the	exception's		backtrace	
method.		throw		doesn't	do	this	-	all	it	does	is	is	throw	a	symbol	(I	used		:done	,	but	you

Exceptions	as	Flow	Control

272

https://github.com/typhoeus/typhoeus
http://devblog.avdi.org/2014/05/21/jim-weirich-on-exceptions/
http://ruby-doc.org/core-2.2.0/Exception.html#method-i-backtrace

can	call	it	whatever)	up	the	stack	to	be		catch	ed	by	a	block	of	the	same	name.	We	can
also	provide	a	second	parameter	to		throw		that	will	be	returned	by	the		catch		block.
This	lets	us	speed	up	our	exceptions-as-control-flow	example	from	earlier:

require	'benchmark/ips'

Customer	=	Struct.new(:status)

class	Charge

		def	self.create(opts	=	{})

				false

		end

		def	self.create!(opts	=	{})

				throw	:failed,	:delinquent

		end

end

class	TestBench

		def	fast

				customer	=	Customer.new

				if	Charge.create(amount:	400)

						customer.status	=	:active

				else

						customer.status	=	:delinquent

				end

		end

		def	slow

				customer	=	Customer.new

				customer.status	=	catch(:failed)	do

						Charge.create!(amount:	400)

				end

		end

end

test	=	TestBench.new

Benchmark.ips	do	|x|

		x.report("if/else")	{	test.fast	}

		x.report("throw/catch")	{	test.slow	}

		x.compare!

end

In	JRuby,	throw/catch	is	4.4x	slower	than	an	if/else,	but	in	MRI	Ruby	it's	just	1.4x	slower
-	nearly	the	same	speed!

TL:DR;

Exceptions	as	Flow	Control

273

When	should	you	use	exceptions?

Is	this	a	failure?		begin		and		rescue		are	a	little	cutesy	-	did	you	know		fail		is	a
synonym	in	Ruby	for		raise	?	When	looking	at	a		raise		in	your	code,	ask	yourself	-
could	I	write		fail		here	instead?	If	not,	is	this	really	an	exceptional	case?
Am	I	throwing	away	the	exception	when	I	rescue	it?	When	an	exception	is
raised,	do	you	actually	do	anything	when	you	rescue	it?	If	not,	you	may	be	using
exceptions	as	flow	control.
Can	I	use	throw/catch	here	instead?	Throw	and	catch	are	a	much	faster
replacement	for	unwinding	the	stack	in	situations	that	require	it.
Can	I	find	a	different	3rd	party	library	that	doesn't	raise	exceptions?	For
example,	Typhoeus	doesn't	raise	exceptions	on	HTTP	failures.

Checklist	for	Your	App
Eliminate	exceptions	as	flow	control	in	your	application.	Most	exceptions
should	trigger	a	500	error	in	your	application	-	if	a	request	that	returns	a	200
response	is	raising	and	rescuing	exceptions	along	the	way,	you	have	problems.	Use
	rack-mini-profiler	's	exception-tracing	functions	to	look	for	such	controller	actions.

Exceptions	as	Flow	Control

274

Webservers	and	I/O	models
Scaling	is	an	intimidating	topic.	Most	blog	posts	and	internet	resources	around	scaling
Ruby	apps	are	about	scaling	Ruby	to	tens	of	thousands	of	requests	per	minute.	That's
Twitter	and	Shopify	scale.	These	are	interesting	-	it's	good	to	know	the	ceiling,	how
much	Ruby	can	achieve	-	but	not	useful	for	the	majority	of	us	out	there	that	have	apps
bigger	than	1	server	but	less	than	100	servers.	Where's	the	"beginner's	guide"	to
scaling?	I	think	the	problem	is	that	most	people	aren't	comfortable	writing	about	how	big
they	are	until	they're	huge.

Thus,	most	scaling	resources	for	Ruby	application	developers	are	completely
inappropriate	for	their	needs.	The	techniques	Twitter	used	to	scale	from	10
requests/second	to	600	requests/second	are	not	going	to	be	appropriate	for	getting	your
app	from	10	requests/minute	to	1000	requests/minute.	Mega-scale	has	its	own	unique
set	of	problems	-	database	I/O	especially	becomes	an	issue,	as	your	app	tends	to	scale
horizontally	(across	processes	and	machines)	while	your	database	scales	vertically
(adding	CPU	and	RAM).	All	of	this	combines	to	make	scaling	a	tough	topic	for	most
Rails	application	developers.	When	do	I	scale	up?	When	do	I	scale	down?

Since	I'm	limiting	this	discussion	to	1000	rpm	or	less,	here's	what	I	won't	discuss:	scaling
the	DB	or	other	datastores	like	Memcache	or	Redis,	using	a	high-performance	message
queue	like	RabbitMQ	or	Kafka,	or	distributing	objects.	Also,	I'm	not	going	to	tell	you	how
to	get	faster	response	times	in	this	post,	although	doing	so	will	help	you	scale.

Also,	I	won't	cover	devops	or	anything	beyond	your	application	server	(Unicorn,	Puma,
etc.)	First,	although	it	seems	shocking	to	admit,	I've	spent	my	entire	professional	career
deploying	applications	to	the	Heroku	platform.	I	work	for	small	startups	with	less	than
1000	requests/minute	scale.	Most	of	the	time,	you're	the	sole	developer	or	one	of	a
handful.	For	small	teams	at	small	scales	like	this,	I	think	Heroku's	payoff	is	immense.
Yes,	you	can	pay	perhaps	even	50%	more	on	your	server	bill,	but	the	developer	hours	it
saves	screwing	with	Chef/Ansible/Docker/DevOps	Flavor	Of	The	Week	pays	off	big	time.
I	just	don't	have	the	experiences	to	share	on	scaling	custom	setups	(Docker,	Chef,	what-
have-you)	on	non-Heroku	platforms.	Second,	when	you're	running	less	than	1000
requests/minute,	your	devops	workflow	doesn't	really	need	to	be	specialized	all	that
much.	All	of	the	material	in	this	post	should	apply	to	all	Ruby	apps,	regardless	of	devops
setup.

Webserver	Choice

275

As	a	consultant,	I've	gotten	to	see	quite	a	few	Rails	applications.	And	most	of	them	are
over-scaled	and	wasting	money.

Heroku’s	dyno	sliders	and	the	many	services	of	AWS	make	scaling	simple,	but	they	also
make	it	easy	to	scale	even	when	you	don’t	need	to.	Many	Rails	developers	think	that
scaling	dynos	or	upping	their	instance	size	will	make	their	application	faster.	Yes,	scaling
dynos	on	Heroku	will	NEVER	make	your	application	faster	unless	your	app	has	requests
queued	and	waiting	most	of	the	time	(explained	below).	Even	PX	dynos	will	only	make
performance	more	consistent,	not	faster.	Changing	instance	types	on	AWS	though	(for
example,	T2	to	M4)	may	change	performance	characteristics	of	app	instances.	When
they	see	that	their	application	is	slow,	their	first	reflex	is	to	scale	dynos	or	up	their
instance	sizes	(indeed	-	Heroku	support	will	usually	encourage	them	to	do	just	this!
Spend	more	money,	that	will	solve	the	problem!).	Most	of	the	time	though,	it	doesn't	help
their	problem.	Their	site	is	still	slow.

As	a	glossary	for	this	post:	host	refers	to	a	single	host	machine,	virtualized	or	physical.
On	Heroku,	this	is	a	Dyno.	Sometimes	people	will	call	this	a	server,	but	for	this	post,	I
want	to	differentiate	between	your	host	machine	and	the	application	server	that	runs	on
that	machine.	A	single	host	may	run	many	app	servers,	like	Unicorn	or	Puma.	On
Heroku,	a	single	host	runs	a	single	app	server.	An	app	server	has	many	app	instances,
which	may	be	separate	"worker"	processes	(like	Unicorn)	or	threads	(Puma	when
running	on	JRuby	in	multithreaded).	For	the	purposes	of	this	post,	a	multi-threaded	web
server	with	a	single	app	instance	on	MRI	(like	Puma)	is	not	an	app	instance	because
threads	cannot	be	executed	at	the	same	time.	Thus,	a	typical	Heroku	setup	might	have	1
host/dyno,	with	1	app	server	(1	Puma	master	process)	with	3-4	app	instances	(Puma
clustered	workers).

Scaling	increases	throughput,	not	speed.	Scaling	hosts	only	speeds	up	response
times	if	requests	are	spending	time	waiting	to	be	served	by	your	application.	If	there	are
no	requests	waiting	to	be	served,	scaling	only	wastes	money.

In	order	to	learn	about	how	to	scale	Ruby	apps	correctly	from	1	to	1000	requests/minute,
we're	going	to	need	to	learn	a	considerable	amount	about	how	your	application	server
and	HTTP	routing	actually	works.

I'm	going	to	use	Heroku	as	an	example,	but	many	custom	devops	setups	work
quite	similarly.

Ever	wondered	exactly	what	the	"routing	mesh"	was	or	where	requests	get	queued
before	being	routed	to	your	server?	Well,	you're	about	to	find	out.

Webserver	Choice

276

How	requests	get	routed	to	app	servers
One	of	the	most	important	decisions	you	can	make	when	scaling	a	Ruby	web	application
is	what	application	server	you	choose.	Most	Ruby	scaling	posts	are	thus	out	of	date,
because	the	Ruby	application	server	world	has	changed	dramatically	in	the	last	5	years,
and	most	of	that	whirlwind	of	change	has	happened	only	in	the	last	year.	However,	to
understand	the	advantages	and	disadvantages	of	each	application	server	choice,	we're
going	to	have	to	learn	how	requests	even	get	routed	to	your	application	server	in	the	first
place.

Understandably,	a	lot	of	developers	don't	understand	how,	exactly,	requests	are	routed
and	queued.	It	isn't	simple.	Here's	the	gist	of	what	most	Rails	devs	already	understand
about	Heroku	does	it:

"I	think	routing	changed	between	Bamboo	and	Cedar	stacks."
"Didn't	RapGenius	got	pretty	screwed	over	back	in	the	day?	I	think	it	was	because
request	queueing	was	being	incorrectly	reported."
"I	should	use	Unicorn.	Or,	wait,	I	guess	Heroku	says	I	should	use	Puma	now.	I	don't
know	why."
"There's	a	request	queue	somewhere.	I	don't	really	know	where."

Heroku's	documentation	on	HTTP	routing	is	a	good	start,	but	it	doesn't	quite	explain	the
whole	picture.	For	example,	it's	not	immediately	obvious	why	Heroku	recommends
Unicorn	or	Puma	as	your	application	server.	It	also	doesn't	really	lay	out	where,	exactly,
requests	get	"queued"	and	which	queues	are	the	most	important.	So	let's	follow	a
request	from	start	to	finish!

The	life	of	a	request

When	a	request	comes	in	to	yourapp.herokuapp.com,	the	first	place	it	stops	is	a	load
balancer.	These	load	balancers'	job	is	to	make	sure	the	load	between	Heroku's	routers
is	evenly	distributed	-	so	they	don't	do	much	other	than	decide	to	which	router	the
request	should	go.	The	load	balancer	passes	off	your	request	to	whichever	router	it
thinks	is	best	(Heroku	hasn't	publicly	discussed	how	their	load	balancers	work	or	how
the	load	balancers	make	this	decision).

Now	we're	at	the	Heroku	router.	There	are	an	undisclosed	number	of	Heroku	routers,	but
we	can	safely	assume	that	the	number	is	pretty	large	(100+?).	The	router's	job	is	to	find
your	application's	dynos	and	pass	on	the	request	to	a	dyno.	So	after	spending	about	1-
5ms	locating	your	dynos,	the	router	will	attempt	to	connect	to	a	random	dyno	in	your

Webserver	Choice

277

app.	Yes,	a	random	one.	This	is	where	RapGenius	got	tripped	up	a	few	years	ago	(back
then,	Heroku	was	at	best	unclear	and	at	worst	misleading	about	how	the	router	chose
which	dyno	to	route	to).	Once	Heroku	has	chosen	a	random	dyno,	it	will	then	wait	up	to
five	seconds	for	that	dyno	to	accept	the	request	and	open	a	connection.	While	this
request	is	waiting,	it	is	placed	in	the	router's	request	queue.	However,	each	router	has	its
own	request	queue,	and	since	Heroku	hasn't	told	us	how	many	routers	it	has,	there
could	be	a	huge	number	of	router	queues	at	any	given	time	for	your	application.	Heroku
will	start	throwing	away	requests	from	the	request	queue	if	it	gets	too	large,	and	it	will
also	try	to	quarantine	dynos	that	are	not	responding	(but	again,	it	only	does	this	on	an
individual	router	basis,	so	every	router	on	Heroku	has	to	individually	quarantine	bad
dynos).	Most	of	the	time,	this	isn't	a	big	deal	-	the	router	is	able	to	connect	to	a	dyno
almost	immediately,	and	passes	the	request	to	the	dyno's	open	TCP	socket.	Once
connected,	the	socket	on	the	dyno	will	accept	the	connection	even	if	the	webserver	is
busy	processing	other	requests.	This	is	called	the	"backlog"	-	we'll	get	to	that	in	a
second.

All	of	this	is	basically	how	most	custom	setups	use	NGINX.	See	this	DigitalOcean
tutorial.	Sometimes	NGINX	plays	the	role	of	both	load	balancer	and	reverse-proxy	in
these	setups.	All	of	this	behavior	can	be	duplicated	using	custom	NGINX	setups,	though
you	may	want	to	choose	more	aggressive	settings.	NGINX	can	actually	actively	send
health-check	requests	to	upstream	application	servers	to	check	if	they're	alive.	Custom
NGINX	setups	tend	not	to	have	their	own	request	queues,	however.

There	are	two	critical	details	here	for	Heroku	users:	the	router	will	wait	up	to	5	seconds
for	a	successful	connection	to	your	dyno	and	while	it's	waiting,	other	requests	will	wait	in
the	webserver's	backlog.

Connecting	to	your	server	-	the	importance	of	server
choice

The	router	(custom	setup	people	-	when	I	say	router,	you	say	'NGINX'	or	'Apache)
attempting	to	connect	to	the	server	is	the	most	critical	stage	for	you	to	understand,	and
what	happens	differs	greatly	depending	on	your	choice	of	web	server.	Here's	what
happens	next,	depending	on	your	server	choice:

Webrick	(Rails	default)

Webrick	is	a	single-process	web	server.

Webserver	Choice

278

https://www.digitalocean.com/community/tutorials/how-to-scale-ruby-on-rails-applications-across-multiple-droplets-part-1

It	will	keep	the	router's	connection	open	until	it	has	downloaded	the	entirety	of	the
request	from	the	router.	The	router	will	then	move	on	to	the	next	request.	Your	Webrick
server	will	then	take	the	request,	run	your	application	code,	and	then	send	back	the
response	to	the	router.	During	all	of	this	time,	your	host	is	busy	and	will	not	accept
connections	from	other	routers.	If	a	router	attempts	to	connect	to	this	host	while	the
request	is	being	processed,	the	router	will	wait	(up	to	5	seconds,	on	Heroku)	until	the
host	is	ready.	The	router	will	not	attempt	to	open	other	connections	to	other	dynos	while
it	waits.	The	problems	with	Webrick	are	exaggerated	with	slow	requests	and	uploads.

If	someone	is	trying	to	upload	a	4K	HD	video	of	their	cat	over	a	56k	modem,	you're	out
of	luck	-	Webrick	is	going	to	sit	there	and	wait	while	that	request	downloads,	and	will	not
do	anything	in	the	meantime.	Got	a	mobile	user	on	a	3G	phone?	Too	bad	-	Webrick	is
going	to	sit	there	and	not	accept	any	other	requests	while	it	waits	for	that	user's	request
to	slowly	and	painfully	complete.

Webrick	can't	deal	well	with	slow	client	requests	or	slow	application	responses.

Thin

Thin	is	an	event-driven,	single-process	web	server.	There's	a	way	to	run	multiple	Thins
on	a	single	host	-	however,	they	must	all	listen	on	different	sockets,	rather	than	a	single
socket	like	Unicorn.	This	makes	the	setup	Heroku-incompatible.

Thin	uses	EventMachine	under	the	hood	(this	process	is	sometimes	called	Evented	I/O.
It	works	not	unlike	Node.js.),	which	gives	you	several	benefits,	in	theory.	Thin	opens	a
connection	with	the	router	and	starts	accepting	parts	of	the	request.	Here's	the	catch
though	-	if	suddenly	that	request	slows	down	or	data	stops	coming	in	through	the	socket,
Thin	will	go	off	and	do	something	else.	This	provides	Thin	some	protection	from	slow
clients,	because	no	matter	how	slow	a	client	is,	Thin	can	go	off	and	receive	other
connections	from	other	routers	in	the	meantime.	Only	when	a	request	is	fully
downloaded	will	Thin	pass	on	your	request	to	your	application.	In	fact,	Thin	will	even
write	large	requests	(like	uploads)	to	a	temporary	file	on	the	disk.

Thin	is	multi-threaded,	not	multi-process,	and	threads	only	run	one	at	a	time	on	MRI.	So
while	actually	running	your	application,	your	host	becomes	unavailable	(with	all	the
negative	consequences	outlined	under	the	Webrick	section	above).	Unless	you	get
fancy	with	your	use	of	EventMachine,	too,	Thin	cannot	accept	other	requests	while
waiting	for	I/O	in	the	application	code	to	finish.	For	example	-	if	your	application	code
POSTs	to	a	payments	service	for	credit	card	authorization,	Thin	cannot	accept	new
requests	while	waiting	for	that	I/O	operation	to	complete	by	default.	Essentially	you'd

Webserver	Choice

279

need	to	modify	your	application	code	to	send	events	back	to	Thin's	EventMachine
reactor	loop	to	tell	Thin	"Hey,	I'm	waiting	for	I/O,	go	do	something	else".	Here's	more
about	how	that	works.

Thin	can	deal	with	slow	client	requests,	but	it	can't	deal	with	slow	application	responses
or	application	I/O	without	a	whole	lot	of	custom	coding.

Unicorn

Unicorn	is	a	single-threaded,	multi-process	web	server.

Unicorn	spawns	up	a	number	of	"worker	processes"	(app	instances),	and	those
processes	all	sit	and	listen	on	a	single	Unix	socket,	coordinated	by	the	"master	process".
When	a	connection	request	comes	in	from	a	host,	it	does	not	go	to	the	master	process,
but	instead	directly	to	the	Unicorn	socket	where	all	of	the	worker	processes	are	waiting
and	listening.	This	is	Unicorn's	special	sauce	-	no	other	Ruby	web	servers	(that	I	know
of)	use	a	Unix	domain	socket	as	a	sort	of	"worker	pool"	with	no	"master	process"
interference.	A	worker	process	(which	is	only	listening	on	the	socket	because	it	isn't
processing	a	request)	accepts	the	request	from	the	socket.	It	waits	on	the	socket	until
the	request	is	fully	downloaded	(setting	off	alarm	bells	yet?)	and	then	stops	listening	on
the	socket	to	go	process	the	request.	After	it's	done	processing	the	request	and	sending
a	response,	it	listens	on	the	socket	again.

Unicorn	is	vulnerable	to	slow	clients	You	can	use	NGINX	in	a	custom	setup	to	buffer
requests	to	Unicorn,	eliminating	the	slow-client	issue.	This	is	exactly	what	Passenger
does,	below.	While	downloading	the	request	off	the	socket,	Unicorn	workers	cannot
accept	any	new	connections,	and	that	worker	becomes	unavailable.	Essentially,	you	can
only	serve	as	many	slow	requests	as	you	have	Unicorn	workers.	If	you	have	3	Unicorn
workers	and	4	slow	requests	that	take	1000ms	to	download,	the	fourth	request	will	have
to	sit	and	wait	while	the	other	requests	are	processed.	This	method	is	sometimes	called
multi-process	blocking	I/O.	In	this	way,	Unicorn	can	deal	with	slow	application	responses
(because	free	workers	can	still	accept	connections	while	another	worker	process	is	off
working)	but	not	(many)	slow	client	requests.	Notice	that	Unicorn's	socket-based	model
is	a	form	of	intelligent	routing,	because	only	available	application	instances	will	accept
requests	from	the	socket.

Phusion	Passenger	5

Passenger	uses	a	hybrid	model	of	I/O	-	it	uses	a	multi-process,	worker-based	structure
like	Unicorn,	however	it	also	includes	a	buffering	reverse	proxy.

Webserver	Choice

280

http://www.bigfastblog.com/rubys-eventmachine-part-3-thin

This	is	important	-	it's	a	bit	like	running	NGINX	in	front	of	your	application's	workers.	In
addition,	if	you	pay	for	Passenger	Enterprise,	you	can	run	multiple	app	threads	on	each
worker	(like	Puma,	below).	To	see	why	Phusion	Passenger	5's	built-in	reverse	proxy	(a
customized	NGINX	instance	written	in	C++,	not	Ruby)	is	important,	let's	walk	through	a
request	to	Passenger.	Instead	of	a	socket,	Heroku's	router	connects	to		NGINX		directly
and	passes	off	a	request	to	it.	This		NGINX		is	a	specially	optimized	build,	with	a	whole	lot
of	fancy	techniques	that	make	it	extremely	efficient	at	serving	Ruby	web	applications.	It
will	download	the	entire	request	before	forwarding	it	on	to	the	next	step	-	protecting	your
workers	from	slow	uploads	and	other	slow	clients.

Once	it	has	completed	downloading	the	request,		NGINX		forwards	the	request	on	to	a
HelperAgent	process,	which	determines	which	worker	process	should	handle	the
request.	Passenger	5	can	deal	with	slow	application	responses	(because	its
HelperAgent	will	route	requests	to	unused	worker	processes)	and	slow	clients	(because
it	runs	its	own	instance	of		NGINX	,	which	will	buffer	them).

Puma	(threaded	only)

Puma,	in	its	default	mode	of	operation,	is	a	multi-threaded,	single-process	server.

When	an	application	connects	to	your	host,	it	connects	to	an	EventMachine-like	Reactor
thread,	which	takes	care	of	downloading	the	request,	and	can	asynchronously	wait	for
slow	clients	to	send	their	entire	request	(again,	just	like	Thin).	When	the	request	is
downloaded,	the	Reactor	spawns	a	new	Thread	that	communicates	with	your	application
code,	and	that	thread	processes	your	request.	You	can	specify	the	maximum	number	of
application	Threads	running	at	any	given	time.	Again,	in	this	configuration,	Puma	is
multi-threaded,	not	multi-process,	and	threads	only	run	one	at	a	time	on	MRI	Ruby.
What's	special	about	Puma,	however,	is	that	unlike	Thin,	you	don't	have	to	modify	your
application	code	to	gain	the	benefits	of	threading.	Puma	automatically	yields	control
back	to	the	process	when	an	application	thread	waits	on	I/O.	If,	for	example,	your
application	is	waiting	for	an	HTTP	response	from	a	payments	provider,	Puma	can	still
accept	requests	in	the	Reactor	thread	or	even	complete	other	requests	in	different
application	threads.	So	while	Puma	can	deliver	a	big	performance	increase	while	waiting
on	I/O	operations	(like	databases	and	network	requests)	while	actually	running	your
application,	your	host	becomes	unavailable	during	processing,	with	all	the	negative
consequences	outlined	under	the	Webrick	section	above.	Puma	(in	threaded-only	mode)
can	deal	with	slow	client	requests,	but	it	can't	deal	with	slow,	CPU-bound	application
responses.

Webserver	Choice

281

Puma	(clustered)

Puma	has	a	"clustered"	mode,	where	it	combines	its	multi-threaded	model	with	Unicorn's
multi-process	model.

In	clustered	mode,	Heroku's	routers	connect	to	Puma's	"master	process",	which	is
essentially	just	the	Reactor	part	of	the	Puma	example	above.	The	master	process'
Reactor	downloads	and	buffers	incoming	requests,	then	passes	them	to	any	available
Puma	worker	sitting	on	a	Unix	socket	(similar	to	Unicorn).	In	clustered	mode,	then,
Puma	can	deal	with	slow	requests	(thanks	to	a	separate	master	process	whose
responsibility	it	is	to	download	requests	and	pass	them	on)	and	slow	application
responses	(thanks	to	spawning	multiple	workers).

But	what	does	it	all	mean?

If	you've	been	paying	attention	so	far,	you've	realized	that	a	scalable	Ruby	web
application	needs	slow	client	protection	in	the	form	of	request	buffering,	and	slow
response	protection	in	the	form	of	some	kind	of	concurrency	-	either	multithreading	or
multiprocess/forking	(preferably	both).	That	only	leaves	Puma	in	clustered	mode	and
Phusion	Passenger	5	as	scalable	solutions	for	Ruby	applications	on	Heroku	running
MRI/C	Ruby.	If	you're	running	your	own	setup,	Unicorn	with	NGINX	becomes	a	viable
option.

Each	of	these	web	servers	make	varying	claims	about	their	"speed"	-	I	wouldn't	get	too
caught	up	on	it.	All	of	these	web	servers	can	handle	1000s	of	requests	per	minute,
meaning	that	it	takes	them	less	than	1ms	to	actually	handle	a	request.	If	Puma	is
0.001ms	faster	than	Unicorn,	then	that's	great,	but	it	really	doesn't	help	you	much	if	your
Rails	application	takes	100ms	on	average	to	turn	around	a	request.	The	biggest
difference	between	Ruby	application	servers	is	not	their	speed,	but	their	varying	I/O
models	and	characteristics.	As	I've	discussed	above,	I	think	that	Puma	in	clustered
mode	and	Phusion	Passenger	5	are	really	the	only	serious	choices	for	scaling	Ruby
application	because	their	I/O	models	deal	well	with	slow	clients	and	slow	applications.
They	have	many	other	differences	in	features,	and	Phusion	offers	enterprise	support	for
Passenger,	so	to	really	know	which	one	is	right	for	you,	you'll	have	to	do	a	full	feature
comparison	for	yourself.

"Queue	time"	-	what	does	it	mean?

Webserver	Choice

282

As	we've	seen	through	the	above	explanation,	there	isn't	really	a	single	"request	queue".
In	fact,	your	application	may	be	interacting	with	hundreds	of	"request	queues".	Here	are
all	the	places	a	request	might	"queue":

At	the	load	balancer,	Unlikely,	as	load	balancers	are	tuned	to	be	fast.	(~10	load
balancer	queues?)
At	any	of	the	100+	Heroku	routers.	Remember	that	each	router	queue	is	separate
(100+	router	queues).
If	using	a	multiprocess	server	like	Unicorn,	Puma	or	Phusion	Passenger,	queueing
at	the	"master	process"	or	otherwise	inside	the	host	(1	queue	per	host).

So	how	in	the	heck	does	New	Relic	know	how	to	report	queue	times?

Well,	this	is	how	RapGenius	got	burned.

In	2013,	RapGenius	got	burned	hard	when	they	discovered	that	Heroku's	"intelligent
routing"	was	not	intelligent	at	all	-	in	fact,	it	was	completely	random.	Essentially,	when
Heroku	was	transitioning	from	Bamboo	to	Cedar	stacks,	they	also	changed	the	load
balancer/router	infrastructure	for	everyone	-	Bamboo	and	Cedar	stacks	both!	So
Bamboo	stack	apps,	like	RapGenius,	were	suddenly	getting	random	routing	instead	of
intelligent	routing	By	intelligent	routing,	we	just	mean	something	better	than	random.
Usually	intelligent	routing	involves	actively	pinging	the	upstream	application	servers	to
see	if	they're	available	to	accept	a	new	request.	This	decreases	wait	time	at	the	router.

Even	worse,	Heroku's	infrastructure	still	reported	stats	as	if	it	had	intelligent	routing	(with
a	single	request	queue,	not	one-queue-per-router).	Heroku	would	report	queue	time
back	to	New	Relic	(in	the	form	of	a	HTTP	header),	which	New	Relic	displayed	as	the
"total	queue	time".	However,	that	header	was	only	reporting	the	time	that	particular
request	spent	in	the	router	queue,	which,	if	there	are	100s	of	routers,	could	be	extremely
low,	regardless	of	load	at	the	host!	Imagine	-	Heroku	connects	to	Unicorn's	master
socket,	and	passes	a	request	onto	the	socket.	Now	that	request	spends	500ms	on	the
socket	waiting	for	an	application	worker	to	pick	it	up.	Previously,	that	500ms	would	be
unnoticed	because	only	router	queue	time	was	reported.

Nowadays,	New	Relic	reports	queue	times	based	on	an	HTTP	header	reported	by
Heroku	called		REQUEST_START	.	This	header	marks	the	time	when	Heroku	accepted	the
request	at	the	load	balancer.	New	Relic	just	subtracts	the	time	that	your	application
worker	started	processing	the	request	from		REQUEST_START		to	get	the	queue	time.	So	if
	REQUEST_START		is	exactly	12:00:00	p.m.,	and	your	application	doesn't	start	processing
the	request	until	12:00:00.010,	New	Relic	reports	that	as	10ms	of	queue	time.	What's
nice	about	this	is	that	it	takes	into	account	the	time	spent	at	all	levels:	time	at	the	load

Webserver	Choice

283

balancer,	time	at	the	Heroku	routers,	and	time	spent	queueing	on	your	host	(whether	in
Puma's	master	process,	Unicorn's	worker	socket,	or	otherwise).	Unfortunately,	though,
this	measurement	isn't	that	accurate	-	New	Relic	is	comparing	system	clocks	at	the
millisecond	level	of	two	different	machines.	Of	course,	by	setting	the	correct	headers	on
your	own	NGINX/apache	instance,	you	can	get	accurate	request	queueing	times	with
your	custom	setup.

When	do	I	scale	app	instances?
Don’t	scale	your	application	based	on	response	times	alone.	Your	application	may
be	slowing	down	due	to	increased	time	in	the	request	queue,	or	it	may	not.	If	your
request	queue	is	empty	and	you’re	scaling	hosts,	you’re	just	wasting	money.	Check	the
time	spent	in	the	request	queue	before	scaling.

The	same	applies	to	worker	hosts.	Scale	them	based	on	the	depth	of	your	job	queue.	If
there	aren’t	any	jobs	waiting	to	be	processed,	scaling	your	worker	hosts	is	pointless.	In
effect,	your	worker	dynos	and	web	dynos	are	exactly	the	same	-	they	both	have
incoming	jobs	(requests)	that	they	need	to	process,	and	should	be	scaled	based	on	the
number	of	jobs	that	are	waiting	for	processing.

NewRelic	provides	time	spent	in	the	request	queue,	although	there	are	gems	that	will
help	you	to	measure	it	yourself.	If	you’re	not	spending	a	lot	of	time	(>5-10ms	of	your
average	server	response	time)	in	the	request	queue,	the	benefits	to	scaling	are
extremely	marginal.

Checklist	for	Your	App
Use	Puma,	Unicorn-behind-NGINX	or	Phusion	Passenger	as	your	application
server.	The	I/O	models	of	these	app	servers	are	most	suited	for	Rails	applications.
If	using	Unicorn,	it	must	be	behind	a	reverse	proxy	like	NGINX	-	do	not	use	Unicorn
in	environments	where	you	do	not	control	the	routing,	such	as	Heroku.

Webserver	Choice

284

Idiomatically	Fast	Ruby
Ruby	is	a	language	where	there's	more	than	one	way	to	do	things.	This	is	great,
because	it	usually	allows	for	expressive	code	-	natural	language	often	is	complex	and
has	meaning	that	depends	on	the	context,	so	our	code	should	allow	similar	flexibility	that
languages	do.

Ruby	is	unique	for	providing	simple	aliases	for	certain	methods	-		map		vs		collect	,	for
example.	Many	programmers	think	this	is	silly	-	but	imagine	if	we	thought	the	same	way
about	the	English	language!	"Big	and	large	mean	the	same	thing,	we	should	eliminate
one	of	those	words	and	use	only	one!"	What	a	sad	world	we'd	live	in.	The	truth	is	that
Ruby	isn't	written	for	the	benefit	of	the	machine	-	it's	written	for	the	benefit	of	human
beings	reading	it.	And	so,	where	appropriate,	we	can	use	different	ways	of	writing	the
same	expression	to	clearly	communicate	to	the	reader	of	the	code	rather	than	the	Ruby
interpreter.

However,	not	all	Ruby	expressions	are	exactly	equivalent	(that	is,	they	don't	trigger
exactly	the	same	response	from	the	interpreter).	Consider:

[:a,	:b,	:c].sort_by	{	rand	}

[:a,	:b,	:c].shuffle

Each	of	these	lines	will	return	an	array	of	the	original	elements	in	a	random	order	-
however,	one	of	these	methods	is	much	faster	than	the	other.	Using		shuffle		is	almost
6.6x	faster	with	this	small	array	-	for	an	array	of	100,000	elements	it's	12x	slower!	JRuby
and	MRI	Ruby	perform	almost	exactly	the	same	in	this	respect.

In	the	case	of	MRI	Ruby,	the	reason	is	pretty	simple	if	you	look	at	how	each	method	is
implemented.	Here's	Array#shuffle:

static	VALUE

rb_ary_shuffle(int	argc,	VALUE	argv,	VALUE	ary)

{

				ary	=	rb_ary_dup(ary);

				rb_ary_shuffle_bang(argc,	argv,	ary);

				return	ary;

}

...and	here's		sort_by		:

Idioms

285

static	VALUE

rb_ary_sort_by_bang(VALUE	ary)

{

				VALUE	sorted;

				RETURN_SIZED_ENUMERATOR(ary,	0,	0,	ary_enum_length);

				rb_ary_modify(ary);

				sorted	=	rb_block_call(ary,	rb_intern("sort_by"),	0,	0,	sort_by_i,	0);

				rb_ary_replace(ary,	sorted);

				return	ary;

}

	rb_block_call		is	doing	the	actual	work	of	your	array	-	which	means	that	for	every
element	in	the	array,	Ruby	has	to	execute		rand	,	then	place	that	element	in	the	new,
sorted	array.	By	contrast,		shuffle		uses		rb_ary_shuffle_bang		which	sorts	your	array
with	pure	C.	JRuby	works	almost	exactly	the	same	way,	though	it's	Java	instead	of	C.

So	this	lesson	is	about	faster	idioms	-	when	you	can	do	something	one	of	many	ways,
which	way	is	the	fastest?

First,	a	warning	and	preface:	don't	optimize	your	code	unless	your	metrics	tell	you	do	so.
None	of	the	following	idioms	are	silver	bullets,	and	none	of	them	will	magically	make
your	Rails	application	average	100ms/response	instead	of	300.	However,	as	you're
writing	Ruby,	I	think	you	should	be	aware	of	the	tradeoffs	you're	making	when	choosing
one	particular	idiom	over	another.	These	are	things	you	just	want	to	have	"in	the	back	of
your	mind"	while	writing	Ruby	code,	and	it's	also	a	"checklist"	when	you	come	across	a
hotspot	in	your	Ruby	code	and	you're	looking	for	ways	to	optimize	it.

Of	course,	we're	going	to	use		benchmark/ips		for	comparing	approaches.	Here's	the
generic	test	script:

require	'benchmark/ips'

MY_ARRAY	=	(1..100_000).to_a

Benchmark.ips	do	|x|

		x.report("sort_by")	{	MY_ARRAY.sort_by	{	rand	}	}

		x.report("shuffle")	{	MY_ARRAY.shuffle	}

		x.compare!

end

I'm	only	going	to	include	the	idioms	I	think	are	significantly	(more	than	1.5x)	faster	than
their	alternatives	on	Ruby	2.2.

Idioms

286

https://github.com/jruby/jruby/blob/master/core/src/main/java/org/jruby/RubyArray.java#L3735

loop	vs	while	true

loop	do

		some_work

		break	if	some_thing

end

#	4x	faster

while	true	do

		some_work

		break	if	some_thing

end

Starting	off	with	a	weird	one	-		loop		is	just	slow	in	Ruby.		while	true		is	almost	4x	faster.

The	reason	for	this	is	more	clear	if	you	look	at		loop	's	implementation.	Loop	is	just	fancy
syntax	for	creating	an	Enumerator	that	never	ends	(until	it	sees	a		break).		while	,
meanwhile,	is	not	implemented	as	a	method	on	Kernel,	but	is	an	optimized	control
structure	implemented	entirely	in	C.

Splatting	arguments

Splatting	arguments	is	extremely	slow	in	Ruby	when	passing	large	amounts	of	data	-
check	this	out:

arguments	=	(1..100).to_a

MyModule.some_method(*arguments)

MyModule.some_method(arguments)	#	3x	faster

The	first	way	of	passing		arguments		is	almost	3x	slower	than	just	passing	the	array.
Whoa!	This	just	gets	worse	for	larger	arrays.

OpenStruct

OpenStruct's	are	basically	fancy	Hashes	-	in	fact,	they	just	use	a	Hash	object	internally
to	keep	track	of	their	state.	Normally	we	use	OpenStructs	to	have	a	Hash-like	object	but
with	some	additional	flexibility:

Idioms

287

https://www.omniref.com/ruby/2.2.3/symbols/Kernel/loop?d=566414775&n=0

require	'ostruct'

customer	=	OpenStruct.new

customer.name	=	"DHH"

customer.active?	=	true

#	15x	faster

customer	=	{}

customer[:name]	=	"DHH"

customer.name	#	"DHH"

customer[:name]	#	"DHH",	2x	faster

Unfortunately,	OpenStructs	are	much	slower	than	Hashes.	While	they're	useful	for	things
like	test	doubles,	using	them	in	production	code	where	a	Hash	would	do	is	not	advised	-
accessing	attributes	in	an	OpenStruct	is	about	twice	as	slow	as	accessing	keys	in	a
Hash,	and	creating	them	is	about	15	times	slower.

Array#bsearch

(1..100_000_000).to_a.find	{	|number|	number	>	77_777_777	}

#	Over	3,000,000	times	faster

(1..100_000_000).to_a.bsearch	find	{	|number|	number	>	77_777_777	}

When	working	with	sorted	arrays	(for	example,	Arrays	converted	from	Ranges),	using
Array#bsearch	is	much	faster	than	Array#find	(alias	of	Array#detect).	This	speed
difference	gets	wider	when	the	array	gets	larger	-	on	huge	arrays,	the	difference	can	be
in	the	magnitude	of	5-10	seconds,	or	relatively	speaking,	3	million	times	faster.

Of	course,	for	anyone	with	a	computer	science	degree,	the	reason	is	obvious	-	binary
searching	is	O(log	n)	in	the	average	case,	and	Array#find	is	a	naive	implementation	that
is	O(n).

Array#bsearch	was	added	with	Ruby	2.0.

Arrays	vs	Sets	#include?

Arrays	and	Sets,	while	similar,	have	different	performance	characteristics.

Recall	that	Sets	are	basically	Arrays	but	are	unordered	and	do	not	have	duplicates.
These	critical	differences	allow	Sets	to	actually	be	syntax	sugar	on	top	of	Hashes.	If	you
think	about	it,	an	Array	that	is	unordered	with	no	duplicates	is	exactly	like	a	Hash	with	no

Idioms

288

https://www.omniref.com/ruby/2.2.3/symbols/Array/bsearch?d=566371037&n=0
http://ruby-doc.org/stdlib-2.2.4/libdoc/set/rdoc/Set.html

values,	only	keys.

This	means	that	several	operations	on	Sets	are	faster	than	the	equivalent	Array	-
	include?		is	almost	2x	faster.	Be	sure	to	check	each	method	with	a	microbenchmark
though	-	some	are	also	slower	(for	example,	checking	intersections/unions/differences
between	Sets,	and	iterators	like	each).

Array#sample

[*1..100].shuffle.first

[*1..100].sample	#	18x	faster!

Array#shuffle	is	an	equivalent	to	Array#sample.first	-	except	it	allocates	one	less	Array.
Using	Array#sample.first	is	18x	slower	than	Array#sample!

Enumerable#flat_map

ARRAY	=	(1..100).to_a

ARRAY.map	{	|e|	[e,	e]	}.flatten

ARRAY.flat_map	{	|e|	[e,	e]	}	#	1.5x	faster

This	is	a	simple	one	-		some_array.flatten.map		creates	2	new	arrays	(one	of		some_array	
flattened	and	then	one	after		map		is	run),	but		some_array.flat_map		only	creates	1	new
array.	This	makes		array.flat_map		about	1.5x	faster!

Enumerable#find_index

Same	thing	here	-	rather	than		some_array.index(some_array.find(element))	,
	some_array.find_index(element)		not	only	reads	better,	but	it's	about	1.5x	faster!

In	this	case,	rather	than	creating	another	array,		find_index		is	optimized	in	C.

#detect	vs	#select.first,	reverse.detect	vs	select.last

	select.first		and		select.last		are	almost	always	slower	than	using		detect		-	about	4
times	slower	on	an	Array	of	just	100	elements,	in	fact!

The	reason	is	simple	if	you	think	about	it	-		select		has	to	iterate	over	the	entire	array.
Consider:

Idioms

289

https://github.com/rails/rails/pull/17245

(1..100).to_a.select	{	|el|	el	==	15	}.first

Ruby	will	execute	the	block	inside		select		100	times!		find		short_circuits	as	soon	as	it
finds	the	correct	element:

(1..100).to_a.find	{	|el|	el	==	15	}

This	will	only	execute	15	times	-	once	Ruby	finds	the	first	element	that	makes	the	block
	true	,	it	will	stop	looking.

Range#cover?

NEW_YEAR	=	Date.new(2015,	1,	1)

NEW_YEAR_EVE	=	Date.new(2015,	12,	31)

MY_BIRTHDAY	=	Date.new(2015,	9,	17)

(NEW_YEAR..NEW_YEAR_EVE).include?	MY_BIRTHDAY

#	482x	faster

(NEW_YEAR..NEW_YEAR_EVE).cover?	MY_BIRTHDAY

Although	they	both	return	the	same	result,	Range#include?	(and	its	alias,
Range#member?)	is	slower	than	Range#cover?	because	#include?	has	to	iterate	over
every	element	in	the	range.	#cover?	just	checks	if	the	argument	is	between	the
beginning	and	end	of	the	range.

This	difference	is	especially	apparent	for	large	Ranges	of	Dates,	where	#cover?	can	be
500x	faster!

Range#include?	is	just	as	fast	as	Range#cover?,	however,	if	the	Range	is	numeric.	With
a	numeric	Range,	#include?	and	#cover?	use	the	same	implementation.

Hash[]

HASH	=	Hash[*('a'..'z').to_a]

HASH.dup

#	2x	faster

Hash[HASH]

Idioms

290

Here's	a	weird	one	-		Hash.dup		is	slower	than		Hash[]	,	almost	2x	as	much!	@tenderlove
discovered	this	one	when	tracking	down	performance	issues	in	Rails	integration	tests.

Two	things	to	be	aware	of	here	-		Hash[]		is	considerably	less	idiomatic,	and	it	doesn't
rehash	the	new	object.

Block	arguments

def	some_method	&block

		block.call

end

def	some_method_without_block_args

		yield

end

some_method	{	1	+	1	}

#	~3-4x	faster

some_method_without_block_args	{	1	+	1	}

Block	arguments	are,	unfortunately,	slower	than	just		yield	ing.	Up	to	4x	slower	on	MRI
Ruby,	in	fact!	Here's	a	detailed	explanation	on	Omniref.	In	fact,	just	having	a	block
argument	at	all,	even	if	it	isn't	called,	slows	down	a	method	by	3-4x.

String#start_with?	and	#end_with?

Got	any	regexes	looking	to	match	on	the	start	or	end	of	a	String?	Well,	String#start_with
and	#end_with	can	be	considerably	faster	-	around	3-4x	faster,	actually.

String#tr	vs	String#gsub

When	replacing	a	few	characters	in	a	string	(common	when,	say,	replacing	spaces	with
hyphens	for	URL-ization),		tr		is	up	to	4x	faster	than		gsub		(or	even		sub).		gsub		is
designed	to	work	with	Regexes,	while	the	implementation	of		tr		is	much	simpler
because	it	only	works	with	strings	(although	it	has	some	special	syntax	with	similar
things	to	Regexes,	like	^).

Learning	more

Idioms

291

http://tenderlovemaking.com/2015/02/11/weird-stuff-with-hashes.html
https://www.omniref.com/ruby/2.2.0/symbols/Proc/yield?#annotation=4087638&line=711
http://ruby-doc.org/core-2.2.0/String.html#method-i-tr

That	about	covers	the	biggest	"mini-speed-optimizations"	you	can	do	in	MRI	Ruby	as	of
version	2.2.4.	To	learn	more,	check	out	the	fast-ruby	project.	Most	of	the	examples	and
source	material	for	this	lesson	was	lifted	from	this	awesome	community	project.

Checklist	for	Your	App
Where	possible,	use	faster	idioms.	See	the	entire	Idioms	lesson	for	commonly
slow	code	that	can	be	sped	up	by	a	significant	amount.

Idioms

292

https://github.com/JuanitoFatas/fast-ruby

ActionController::Live	and
ActionController::Streaming
This	lesson	will	cover	two	critically	under-used	tools	for	Rails	performance	-
	ActionController::Live		and		ActionController::Streaming	.	In	a	way,	they're	"the	same,
but	different."	Both	modules	are	about	decoupling	us	from	the	usual	flow	of	"request	and
response",	although	these	modules	do	different	things.

We'll	cover	each	one	in	turn.

ActionController::Streaming	-	Start	Sending
Faster
In	a	typical	request/response	cycle,	your	Rails	application	will	not	send	data	back	to	the
browser	until	it	has	completely	rendered	the	response.	To	put	it	simply,	imagine	that
once	our	Rails	server	has	received	a	request,	it	takes	100	milliseconds	to	determine
what	the	"body"	string	looks	like	in	the	final	HTTP	response.	Only	when	it	has	completely
rendered	the	entire	response	does	it	actually	send	any	data	back	to	the	client.

If	you	think	about	it,	though	-	does	this	make	a	lot	of	sense?	What	if,	once	we	had
finished	rendering	the	"head"	tag,	we	sent	it	to	the	browser	right	away?

Instead	of	waiting	until	the	entire	response	has	been	rendered,	we	can	start	streaming
the	response	back	to	the	client	as	soon	as	we've	determined	what	the	response	is.	This
can	actually	really	help	in	a	number	of	scenarios,	and	it's	exactly	what	Google	does	on
its	most	important	page:	your	search	results.

Streaming

293

95%	of	web	pages	look	a	lot	like	Google's	search	results	page.	There's	a	header
section,	which	is	simple	and	comparatively	easy	to	determine	what	to	render.	If	this	was
a	Rails	app,	the	header	would	just	be	a	simple	form	tag	and	a	few	images.	We	can
render	that	in	just	a	few	milliseconds!

Don't	forget	about	the		<head>		tag,	which	is,	necessarily,	above	any	part	of	the	page
	<body>	.	These	are	also	usually	pretty	fast	to	render	on	your	server.

The	main	body	section,	though,	is	often	far	more	complicated.	This	is	especially	true	of
"search"	pages	-	they	often	involve	one	or	more	big	database	queries,	several	partials,
and	more	things	that	slow	down	view	rendering.	80%	of	the	time	in	most	views	is	spent
in	the	"body"	sections	of	the	page.

As	we've	discussed	before,	the	appearance	of	speed	is	just	as	important	to	the	end	user
as	actual	speed.	We	know	that,	in	all	cultures,	humans	typically	start	reading	at	the	top
and	work	their	way	down,	so	we	should	focus	on	making	the	top	part	of	a	web-page
render	as	fast	as	possible,	possibly	before	the	eye	has	even	recognized	that	the	rest	of
the	page	hasn't	loaded	yet!

This	is	exactly	Google's	strategy	in	its	search	results.	You	can	see	if	a	HTTP	response	is
being	streamed	by	looking	for	the		Transfer-Encoding:	chunked		header:

$	curl	-i	www.google.com

HTTP/1.1	200	OK

Date:	Tue,	23	Feb	2016	17:49:09	GMT

Expires:	-1

Cache-Control:	private,	max-age=0

Content-Type:	text/html;	charset=ISO-8859-1

Transfer-Encoding:	chunked

Streaming

294

Note	that	there	isn't	a	Content-Length	header	-	that's	because	the	server	doesn't	know
how	long	the	response	will	be	yet!

There's	another	benefit	to	streaming	down	responses	-	a	client	can	start	downloading
assets,	like	CSS	and	JSS,	far	earlier.	Imagine	that	our	homepage	usually	takes	250
milliseconds	to	render.	Returning	a	response	with	streaming	enabled	might	look
something	like	this:

1.	 Render	and	stream	down	the		<head>		tag.	Once	received,	client	finds	the	included
	application.css		and		application.js		assets	and	begins	downloading	them.	If
there	is	any	inlined	CSS,	elements	in	the	(not	yet	streamed)		body		tag	will	be
immediately	rendered	using	that	inlined	CSS.	Time:	10	milliseconds.

2.	 Render	and	stream	down	the	header	section	of	the	site.	If	this	is	a	search	page,
perhaps	it's	the	usual	site	header	with	a	few	images	and	a	form	tag.	If	there	was
inlined	CSS	in	the		head	,	this	tag	will	be	rendered	immediately	using	that	CSS,
otherwise	nothing	will	render	until		application.css		downloads.	Time:	10
milliseconds.

3.	 Begin	rendering/streaming	body.	As	ActiveRecord	queries	begin	executing,
streaming	pauses	while	they	are	completed	and	the	corresponding	parts	of	the	body
are	rendered	to	HTML.	Time:	230	milliseconds.

In	the	above	scenario,	our	browser	can	start	downloading	the	CSS/JS	assets	in	the
	head		230	milliseconds	earlier	thanks	to	response	streaming!	If	enough	CSS	is	inlined,
or	if	the	CSS	has	already	been	downloaded	and	is	cached	from	a	previous	request,	we
can	even	start	rendering	parts	of	the	page	about	200	milliseconds	earlier	than	we	could
without	streaming!	Neato!

Every	browser	has	supported	streaming	(sometimes	called	"flushing")	for	years	-	so	you
don't	have	to	worry	about	browser	support.

Response	streaming	is	also	stupid	easy	to	use	in	Rails!	Just	add		stream:	true		to	your
	render		calls!

class	PostsController

		def	index

				@posts	=	Post.all

				render	stream:	true

		end

end

There	are	some	caveats	though	-	let's	get	to	those.

Streaming

295

Streaming	Inverts	the	Rendering	Flow

Streaming	inverts	the	typical	rendering	flow	in	a	Rails	application.	Usually,	a	controller
action	renders	your	view	template	first	("app/views/hello/world.html.erb"),	then	renders
the	layout	("app/views/layouts/application.html.erb").	Streaming	inverts	this	order.	This
has	some	important	consequences.

content_for

You	may	have	used		content_for		in	your	views	before.

//	application.html.erb

<head>

		<script><%=	yield	:javascript	%></script>

</head>

<body>	<%=	yield	%>	</body>

//	my_view.html.erb

<%	content_for	:javascript	do	%>

alert("My	view!")

<%	end	%>

This	won't	work	with	streaming,	though	-	Rails	will	render	the	layout	first,	and	the	script
tag	in	the		head		will	be	empty.	Rails	pushes	the		yield	javascript		part	of	the	response
to	the	client	before	the		content_for		block	in	the	actual	view	template	is	ever	executed.
Bummer!

In	the	case	above,	I	would	move	the		yield	:javascript		block	to	the	end	of	the
response:

//	application.html.erb

<head>

</head>

<body>

<%=	yield	%>

<script><%=	yield	:javascript	%></script>

</body>

//	my_view.html.erb

<%	content_for	:javascript	do	%>

alert("My	view!")

<%	end	%>

Middleware	that	modify	responses

Streaming

296

Streaming	doesn't	play	well	with	certain	middlewares	-	in	particular,	it	has	problems	with
the	ETag	middleware.

As	an	example,	here's	how	the	Rack::ETag	middleware	basically	works:

def	call(env)

		status,	headers,	body	=	@app.call(env)

		if	should_generate_etag?(status,	headers)

				digest	=	calculate_etag_digest(body)

				headers[ETAG_STRING]	=	%(W/"#{digest}")	if	digest

		end

		[status,	headers,	body]

end

Recall	from	our	lesson	on	HTTP	caching	that	ETags	are	basically	just	hash	digests	of
the	entire	body	of	a	response.	If	the	resource	changes,	the	ETag	changes,	which	tells
the	browser	or	client	to	expire	their	local	cached	copy.

Now	think	about	this	in	the	context	of	streaming	-	how	can	you	generate	the	ETag	of	a
response	that	hasn't	been	fully	generated	yet?	You	can't!	ETags	are	incompatible	with
streaming	for	this	reason.

Any	middleware	that	attempts	to	modify	the	body	or	headers	after	those	responses	have
been	generated	is	similarly	affected.

If	you	encounter	a	problem	with	a	middleware,	check	the	Rails	issue	tracker	for	the
latest.

Partials	don't	stream

As	of	writing	(February	2016),	partials	don't	stream	in	quite	the	way	you'd	expect.
Consider	the	following	template:

1

<%=	render	partial:	"sleeps_for_one_second"	%>

2

<%=	render	partial:	"sleeps_for_one_second"	%>

3

Streaming

297

…and	the	partial	looks	like:

Partial	rendered!

<%	sleep(1)	%>

Partial	finished!

Upon	initially	loading	this	page,	you	might	expect	to	see	"1	Partial	rendered!"	initially
upon	loading	this	page,	but	you	won't	-	instead	you'll	see	"1",	wait	a	second,	and	then	"1
Partial	rendered!	Partial	finished!".	When	streaming	partials,	Rails	only	flushes	the	output
to	the	stream	after	the	entire	partial	has	finished	rendering.	This	isn't	really	a	problem	so
much	as	a	missed	opportunity,	but	it's	something	to	be	aware	of.

HAML	doesn't	work

If	you're	using	HAML	for	views,	you're	just	straight	out	of	luck	-	HAML	has	been
incompatible	with	streaming	for	years	and	that	doesn't	show	many	signs	of	changing.
See	their	issue	tracker	for	more.

ERB	and	Slim,	my	recommended	template	languages	(see	"The	Easy	Mode	Stack")	are
both	compatible	with	streaming.

JSON	and	XML	stream	by	default

JSON	and	XML	responses	are	automatically	streamed.	For	example,	the	following
action:

def	json_endpoint

		big_object	=	(1..1_000_000).to_a

		render	json:	big_object

end

…will	automatically	stream.	No	need	for		stream:	true	.

Errors	are	Pretty	Clever

What	happens	if	an	exception	is	raised	halfway	down	the	page?	Rails	actually	handles
this	cleverly	-	if	an	exception	gets	raised,	Rails	appends	the	following	to	the	response:

Streaming

298

https://github.com/haml/haml/issues/436

"><script>window.location	=	"/500.html"</script></html>

This	redirects	the	browser	to		500.html		immediately.

Unfortunately,	this	means	streaming	also	breaks	the	way	most	exception-catching	gems
-	like	Airbrake,	Sentry,	and	Honeybadger	-	work.	These	gems	may	not	report	exceptions
for	streaming	responses,	although	supporting	streaming	is	pretty	easy.	Be	sure	to	test
this	locally	before	pushing	it	to	production!

ActionController::Live	-	Server-Sent	Events
You	want	to	build	a	chat	app.	Time	for	WebSockets,	right?	Fire	up	that	ActionCable	and
let	'er	rip!

Well,	not	so	fast	-	Rails	has	an	interesting	little	tool,	available	since	Rails	4,	called
	ActionController::Live	.	It's	a	bit	like	one-directional	WebSockets	that	only	work	from
server-to-client,	not	the	other	way	around.	AC::Live	uses	a	little-known	web	API	called
Server-Sent	Events,	or	SSEs,	to	establish	a	long-lived	connection	between	a	client	and
server.	Using	SSEs,	we	can	send	data	to	the	client	without	a	corresponding	request!

Polling	be	gone!	Rather	than	polling	every	five	seconds	or	so,	we	can	simply	push
events	to	the	browser	whenever	they	happen.	In	addition,	AC::Live	just	uses	threads	to
accomplish	its	task	-	unlike	ActionCable,	there's	no	need	to	run	a	separate	server.
Neato!

There's	one	major	caveat	to	SSE's	-	they're	not	supported	by	any	version	of	Internet
Explorer.	However,	never	fear	-	there	are	lot	of	options	for	polyfills	for	IE8+	support	if	you
need	them.

Here's	what	a	SSE	looks	like:

id:	1\n

event:	chat_message\n

retry:	5000\n

data:	"Nate	said:	SSEs	are	cool!"\n\n

id:	2\n

event:	chat_message\n

retry:	5000\n

data:	"Lili	said:	OMG,	I	kno	rite!"\n\n

Streaming

299

Note	that	the	three	fields	of	the	message	are	separated	by	newlines	and	the	entire
message	is	separated	by	two	newlines.

The	id	is	simply	any	number,	meant	to	uniquely	identify	the	event.	These	should
probably	be	incrementing	in	order	to	take	advantage	of	SSE's	built-in	reconnection
features	-	browsers	will	automatically	attempt	to	reconnect	whenever	their	connection	to
the	server	is	severed,	unlike	a	WebSockets	connection.	The	browser	will	send	a		Last-
Event-ID		header	along	with	this	reconnection	request,	so	the	server	can	pick	up	where	it
left	off	and	resend	any	lost	events.	This	field	is	optional,	though.

The	event	field	is	a	generic	event	name	for	the	data.	It	can	be	anything	you	want,	and	is
generally	just	for	the	browser's	benefit	so	you	can	send	multiple	types	of	data	along	a
single	SSE	stream.

The	retry	field	is	an	integer,	in	milliseconds,	specifying	how	long	the	client	should	wait
before	attempting	to	reconnect,	if	it	thinks	the	connection	has	been	lost.	You	don't	have
to	specify	this	field	if	you	don't	want	-	the	default	behavior	is	probably	fine.

Finally,	the	data	is	the	actual	message.

How	might	we	implement	a	chat	application	using		ActionController::Live	?

First,	we'll	need	to	make	sure	we're	using	Puma	or	Passenger	as	our	webserver	-
Unicorn	won't	work,	because	it	will	automatically	terminate	any	connections	that	are
open	for	more	than	30	seconds.	Well,	that	won't	work!

The	code	for	a	chat	application	might	look	something	like	this:

Streaming

300

class	MessagesController	<	ApplicationController

		include	ActionController::Live

		def	stream

				response.headers['Content-Type']	=	'text/event-stream'

				sse	=	SSE.new(response.stream,	retry:	5000,	event:	"chatMessage")

				begin

						loop	do

								Comment.on_change(timeout:	30)	do	|data|

										sse.write(data)

								end

								sse.write(";")

						end

				rescue	IOError

						#	connection	closed!

				ensure

						sse.close

				end

		end

end

class	Message	<	ActiveRecord::Base

		def	self.on_change(opts	=	{})

				connection.execute	"LISTEN	#{table_name}"

				loop	do

						connection.raw_connection.wait_for_notify(opts[:timeout])	do	|event,	pid,	me

ssage|

								yield	message

						end

				end

		ensure

				connection.execute	"UNLISTEN	#{table_name}"

		end

		after_create	:notify_new_message

		def	notify_new_message

				self.class.connection.execute	"NOTIFY	#{self.class.table_name},	'new	message'"

		end

end

Let's	break	this	down	-	first	we	need	to	set	the	right	content-type	for	Server-Sent	Events.
Next,	we	create	a	new		SSE		object	(provided	by		ActionController::Live::SSE).

Streaming

301

Then,	we	enter	a	loop	-	we'll	wait	for	any	new	Messages	using	a	Postgres
LISTEN/NOTIFY	pubsub	connection.	This	connection	times	out	every	30	seconds,	and
then	we	emit	an	SSE	comment	character	(";")	directly	to	the	stream	to	make	sure	our
client	is	still	listening.	If	the	heartbeat	cannot	be	delivered,	an		IOError		will	be	raised,
causing	the	connection	to	be	closed.

The	reason	we	send	a	heartbeat	is	partly	to	make	sure	that	the	connection	is	still	open,
and	partly	so	that	no	intermediaries	close	the	connection	while	we're	still	using	it.	For
example,	Heroku	kills	connections	that	haven't	had	data	sent	over	them	in	the	last	55
seconds:

Heroku	supports	HTTP	1.1	features	such	as	long-polling	and	streaming
responses.	An	application	has	an	initial	30	second	window	to	respond	with	a
single	byte	back	to	the	client.	However,	each	byte	transmitted	thereafter	(either
received	from	the	client	or	sent	by	your	application)	resets	a	rolling	55	second
window.	If	no	data	is	sent	during	the	55	second	window,	the	connection	will	be
terminated.

I've	also	included	some	code	for	what	an	"on_change"	method	might	look	like.	I've	used
Postgres	as	an	example,	but	you	could	also	use	the	pub/sub	functions	of	Redis	or	any
other	datastore.	If	I	wanted	to	get	really	fancy	I	could	use	some	multithreading	magic
here	instead	of	a	database	timeout	to	trigger	the	heartbeat,	but	that's	definitely	beyond
the	scope	of	this	lesson.

Finally,	we're	gonna	need	to	listen	for	new	events	in	the	browser.	This	bit	is	pretty
simple:

var	source	=	new	EventSource('/messages');

source.addEventListener('chatMessage',	function(e)	{

			console.log(e.data);

});

You'll	probably	want	to	do	something	more	useful	than	writing	chat	messages	to	the
console,	but	I	think	you	get	the	idea.

Checklist	for	Your	App
Use	streaming	liberally	with	landing	pages	and	complex	controller	endpoints.
Nearly	every	large	website	uses	response	streaming	to	improve	end-user	load
times.	It's	most	important	to	add	"render	stream:	true"	on	landing	pages	and

Streaming

302

complex	actions	so	that	users	can	start	receiving	bits	of	your	response	as	fast	as
possible,	reduce	time-to-first-byte	and	allowing	them	to	download	linked	assets	in
the		head		tag	as	soon	as	possible.	You	should	also	be	streaming	large	file
responses,	such	as	large	CSV	or	JSON	objects.
Use	ActionController::Live	before	trying	ActionCable	or	other	"real	time"
frameworks.	If	you	don't	need	"real-time"	communication	back	to	the	server,	and
only	need	to	push	"real-time"	updates	from	server	to	client,	Server	Sent	Events
(SSEs)	can	be	much	simpler	than	using	ActionCable.

Streaming

303

Action	Cable	-	Friend	or	Foe?
One	of	the	marquee	features	of	Rails	5	(likely	releasing	sometime	Q1/Q2	2016)	is	Action
Cable,	Rails'	new	framework	for	dealing	with	WebSockets.	Action	Cable	has	generated	a
lot	of	interest,	though	perhaps	for	the	wrong	reasons.	"WebSockets	are	those	cool	things
the	Node	people	get	to	use,	right?"	and	"I	heard	WebSockets	are	The	Future™"	seem	to
be	the	prevailing	attitudes,	resulting	in	a	lot	of	confusion	and	uncertainty	about	Action
Cable's	purpose	and	promise.	It	doesn't	help	that	current	online	conversation	around
WebSockets	is	thick	with	overly	fancy	buzzwords	like	"realtime"	and	"full-duplex".	In
addition,	some	claim	that	a	WebSockets-based	application	is	somehow	more	scalable
than	traditional	implementations.	What's	a	Rails	application	developer	to	make	of	all	of
this?

This	won't	be	a	tutorial	or	a	how-to	article	-	instead,	we're	going	to	get	into	the	why	of
Action	Cable,	not	the	how.

Let's	start	with	a	review	of	how	we	got	here	-	what	problem	is	WebSockets	trying	to
solve?	How	did	we	solve	this	problem	in	the	past?

Don't	hit	the	refresh	button!
The	Web	is	built	around	the	HTTP	request.	In	the	good	old	days,	you	requested	a	page
(GET)	and	received	a	response	with	the	page	you	requested.	We	developed	an
extensive	methodology	(REST)	to	create	a	stateless	Web	based	on	requesting	and
modifying	resources	on	the	server.

It's	important	to	realize	that	an	HTTP	request	is	stateless	-	in	order	for	us	to	know	who	is
making	the	request,	the	request	must	tell	us	itself.	Without	reading	the	contents	of	the
request,	there's	really	no	way	of	knowing	what	request	belongs	to	which	session.
Usually,	in	Rails,	we	do	this	with	a	secure	"signed"	cookie	that	carries	a	user	ID.	A
signed	cookie	means	that	a	client	can't	tamper	with	its	value	-	important	if	you	want	to
prevent	session	hijacking!

As	the	web	grew	richer,	with	video,	audio	and	more	replacing	the	simple	text-only	pages
of	yesteryear,	we	started	to	crave	a	constant,	uninterrupted	connection	between	server
and	client.	There	were	places	where	we	wanted	the	server	to	communicate	back	to	the
client	(or	vice	versa)	frequently:

ActionCable

304

Clients	needing	to	send	rapidly	to	the	server.	High-throughput	environments,	like
online	browser-based	games,	needed	clients	and	servers	to	be	able	to	exchange
several	messages	per	second.	Imagine	trying	to	implement	an	first	person	shooter's
networking	code	with	HTTP	requests.	Sometimes	this	is	called	a	"full-duplex"	or	"bi-
directional"	communication.
"Live"	data.	Web	pages	started	to	have	"live"	elements	-	like	a	comments	section
that	automatically	updated	when	a	new	comment	was	added	(without	a	page
refresh),	chat	rooms,	constant-updated	stock	tickers	and	the	like.	We	wanted	the
page	to	update	itself	when	the	data	changed	on	the	server	without	user	input.
Sometimes	this	is	called	a	"realtime"	application,	though	I	find	that	term	buzzwordy
and	usually	inaccurate.	"Realtime"	implies	constant,	nano-second	resolution
updating.	The	reality	is	that	the	comments	section	on	your	website	probably	doesn't
change	every	nano-second.	If	you're	lucky,	it'll	change	once	every	minute	or	so.	I
prefer	the	term	"Live"	for	this	reason.	We	all	know	"live"	broadcasts	are	every	so
slightly	delayed	by	a	few	seconds,	but	we'll	still	call	it	"live!".
Streaming.	HTTP	proved	unsuitable	for	streaming	data.	For	many	years,	streaming
video	required	third-party	plugins	(remember	RealPlayer?).	Even	now,	streaming
data	other	than	video	remains	a	complex	task	without	WebSockets	(remote	desktop
connections,	for	example),	and	it	remains	nearly	impossible	to	stream	binary	data	to
Javascript	without	Flash	or	Java	applets	(eek!).

The	Road	to	WebSockets
Over	the	years,	we've	developed	a	lot	of	different	solutions	to	these	problems.	Some	of
them	haven't	really	stood	the	test	of	time	-	Flash	XMLSocket	relays,	and		multipart/x-
mixed-replace		come	to	mind.	However,	several	techniques	for	solving	the	"realtime"
problem(s)	are	still	in	use:

Polling

Polling	involves	the	client	asking	the	server,	on	a	set	interval	(say,	three	seconds)	if
there	is	any	new	data.	Returning	to	the	"live	comments"	example,	let's	say	we	have	a
page	with	a	comments	section.	To	create	this	application	with	polling,	we	can	write	some
Javascript	to	ask	the	server	every	three	seconds	for	the	latest	comment	data	in	JSON
format.	If	there	is	new	data,	we	can	update	the	comment	section.

ActionCable

305

The	advantage	of	polling	is	that	it's	rock-solid	and	extremely	simple	to	set	up.	For	these
reasons,	it's	in	wide	use	all	over	the	Web.	It's	also	resistant	to	network	outage	and
latency	-	if	you	miss	1	or	2	polls	because	the	network	went	out,	for	example,	no	problem!
You	just	keep	polling	until	eventually	it	works	again.	Also,	thanks	to	the	stateless	nature
of	HTTP,	IP	address	changes	(say,	a	mobile	client	with	data	roaming)	won't	break	the
application.

However,	you	might	already	have	alarm	bells	going	off	in	your	head	here	regarding
scalability.	You're	adding	considerable	load	to	your	servers	by	causing	every	client	to	hit
your	server	every	3	seconds.	There	are	ways	to	alleviate	this	-	HTTP	caching	is	a	good
one	-	but	the	fact	remains,	your	server	will	have	to	return	a	response	to	every	client
every	3	seconds,	no	matter	what.

Also,	while	polling	is	acceptable	for	"live"	applications	(most	people	won't	notice	a	3-
second	delay	in	your	chat	app	or	comments	thread),	it	isn't	appropriate	for	rapid	back-
and-forth	(like	games)	or	streaming	data.

Long-polling

Long-polling	is	a	bit	like	polling,	but	without	a	set	interval	between	requests	(or	"polls").
The	client	sends	a	request	to	the	server	for	new	data	-	if	the	server	has	new	data,	then	it
sends	a	response	back	like	normal.	If	there	isn't	any	new	data,	though,	it	holds	the
request	open,	effectively	creating	a	persistent	connection,	and	then	when	it	receives	new
data,	completes	the	response.

Exactly	how	this	is	accomplished	varies.	There	are	several	"sub-techniques"	of	long-
polling	you	may	have	heard	of,	like	BOSH	and	Comet).	Suffice	it	so	say,	long-polling
techniques	are	considerably	more	complicated	than	polling,	and	can	often	involve	weird
hacks	like	hidden	iframes.

Long-polling	is	great	when	data	doesn't	change	often.	Let's	say	we	connect	to	our	live
comments,	and	45	seconds	later	a	new	comment	is	added.	Instead	of	15	polls	to	the
server	over	45	seconds	from	a	single	client,	a	server	would	open	only	1	persistent
connection.

However,	it	quickly	falls	apart	if	data	changes	often.	Instead	of	a	live	comments	section,
consider	a	stock	ticker.	A	stock's	price	can	changes	at	the	millisecond	interval	(or	faster!)
during	a	trading	day.	That	means	any	time	the	client	asks	for	new	data,	the	server	will
return	a	response	immediately.	This	can	get	out	of	hand	quickly,	because	as	soon	as	the

ActionCable

306

https://en.wikipedia.org/wiki/BOSH
https://en.wikipedia.org/wiki/Comet_(programming

client	gets	back	a	response	it	will	make	a	new	request.	This	could	result	in	5-10	requests
per	second	per	client.	You	would	be	wise	to	implement	some	limits	in	your	client!	Then
again,	as	soon	as	you've	done	that,	your	application	isn't	really	RealTime™	anymore!

Server-sent	Events	(SSEs)

Server-sent	Events	are	essentially	a	one-way	connection	from	the	server	to	the	client.
Clients	can't	use	SSEs	to	send	data	back	to	the	server.	Server-sent	Events	got	turned
into	a	browser	API	back	in	2006,	and	is	currently	supported	by	every	major	browser
except	any	version	of	Internet	Explorer.

Using	server-side	events	is	really	quite	simple	from	the	(Javascript)	client's	side.	You	set
up	an		EventSource		object,	define	an		onmessage		callback	describing	what	you'll	do	when
you	get	a	new	message	from	the	server,	and	you're	off	to	the	races.

Server-sent	event	support	was	added	to	Rails	in	4.0,	through	ActionController::Live.

Serving	a	client	with	SSEs	requires	a	persistent	connection.	This	means	a	few	things:
using	Server-sent	events	won't	work	pretty	much	at	all	on	Heroku,	since	they'll	terminate
any	connections	after	30	seconds.	Unicorn	will	do	the	same	thing,	and	WEBrick	won't
work	at	all.	So	you're	stuck	using	Puma	or	Thin,	and	you	can't	be	on	Heroku.	Oh,	and	no
one	using	your	site	can	use	Internet	Explorer.	You	can	see	why	ActionController::Live
hasn't	caught	on.	It's	too	bad	-	the	API	is	really	simple	and	for	most	implementations
("live"	comments,	for	example)	SSE's	would	work	great.

How	WebSockets	Work
This	is	the	part	where	I	say:	"WebSockets	to	the	rescue!"	right?	Well,	maybe.	But	first,
let's	investigate	what	makes	them	unique.

Persistent,	stateful	connection

Unlike	HTTP	requests,	WebSocket	connections	are	stateful.	What	does	this	mean?	To
use	a	metaphor	-	HTTP	requests	are	like	a	mailbox.	All	requests	come	in	to	the	same
place,	and	you	have	to	look	at	the	request	(e.g.,	the	return	address)	to	know	who	sent	it
to	you.	In	contrast,	WebSocket	connections	are	like	building	a	pipe	between	a	server
and	the	client.	Instead	of	all	the	requests	coming	in	through	one	place,	they're	coming	in
through	hundreds	of	individual	pipes.	When	a	new	request	comes	through	a	pipe,	you
know	who	sent	the	request,	without	even	looking	at	the	actual	request.

ActionCable

307

http://tenderlovemaking.com/2012/07/30/is-it-live.html

The	fact	that	WebSockets	are	a	stateful	connection	means	that	the	connection	between
a	particular	client	machine	and	server	must	remain	constant,	otherwise	the	connection
will	be	broken.	For	example	-	a	stateless	protocol	like	HTTP	can	be	served	by	any	of	a
dozen	or	more	of	your	Ruby	application's	servers,	but	a	WebSocket	connection	must	be
maintained	by	a	single	instance	for	the	duration	of	the	connection.	This	is	sometimes
called	"sticky	sessions".	As	far	as	I	can	tell,	Action	Cable	solves	this	problem	using
Redis.	Basically,	each	Action	Cable	server	instance	listens	to	a	Redis	pubsub	channel.
When	a	new	message	is	published,	the	Action	Cable	server	rebroadcasts	that	message
to	all	connected	clients.	Because	all	of	the	Action	Cable	servers	are	connected	to	the
same	Redis	instance,	everyone	gets	the	message.	It	also	makes	load	balancing	a	lot
more	difficult.	However,	in	return,	you	don't	need	to	use	cookies	or	session	IDs.

No	data	frames

To	generalize	-	let's	say	that	every	message	has	data	and	metadata.	The	data	is	the
actual	thing	we're	trying	to	communicate,	and	metadata	is	data	about	the	data.	You
might	say	a	communication	protocol	is	more	efficient	if	it	requires	less	metadata	than
another	protocol.

HTTP	needs	a	decent	amount	of	metadata	to	work.	In	HTTP,	metadata	is	carried	in	the
form	of	HTTP	headers.

Here	are	some	sample	headers	from	an	HTTP	response	of	a	Rails	server:

HTTP/1.1	200	OK

Content-Type:	text/html;	charset=utf-8

Vary:	Accept-Encoding

X-Runtime:	0.121484

X-Powered-By:	Phusion	Passenger	5.0.14

X-Xss-Protection:	1;	mode=block

Set-Cookie:	_session_id=f9087b681653d9daf948137f7ece14bf;	path=/;	secure;	HttpOnly

Server:	NGINX/1.8.0	+	Phusion	Passenger	5.0.14

Via:	1.1	vegur

Cache-Control:	max-age=0,	private,	must-revalidate

Date:	Wed,	23	Sep	2015	19:43:03	GMT

X-Request-Id:	effc7fe2-0ab8-4462-8b64-cb055f5d1b13

Strict-Transport-Security:	max-age=31536000

Content-Length:	39095

Connection:	close

X-Content-Type-Options:	nosniff

Etag:	W/"469b11fcecff716247571b85ff1fc7ae"

Status:	200	OK

X-Frame-Options:	SAMEORIGIN

ActionCable

308

Yikes,	that's	652	bytes	before	we	even	get	to	the	data.	And	we	haven't	even	gotten	to
the	cookie	data	you	sent	with	the	request,	which	is	probably	another	2,000	bytes.	You
can	see	how	inefficient	this	might	be	if	our	data	is	really	small	or	if	we're	making	a	lot	of
requests.

WebSockets	gets	rid	of	most	of	that.	To	open	a	WebSockets	connection,	the	client
makes	a	HTTP	request	to	the	server	with	a	special		upgrade		header.	The	server	makes
an	HTTP	response	that	basically	says	"Cool,	I	understand	WebSockets,	open	a
WebSockets	connection."	The	client	then	opens	a	WebSockets	pipe.

Once	that	WebSockets	connection	is	open,	data	sent	along	the	pipe	requires	hardly	any
metadata	at	all,	usually	less	than	about	6	bytes.	Neat!

What	does	all	of	this	mean	to	us	though?	Not	a	whole	lot.	You	could	easily	do	some
fancy	math	here	to	prove	that,	since	you're	eliminating	about	2KB	of	data	per	message,
at	Google	scale	you	could	be	saving	petabytes	of	bandwidth.	Honestly,	I	think	the
savings	here	are	going	to	vary	a	lot	from	application	to	application,	and	unless	you're	at
Top	10,000	on	Alexa	scale,	any	savings	from	this	might	amount	to	a	few	bucks	on	your
AWS	bill.

Two-way	communication

One	thing	you	hear	a	lot	about	WebSockets	is	that	they're	"full-duplex".	What	the	hell
does	that	mean?	Well,	clearly,	full	duplex	is	better	than	half-duplex	right?	That's	double
the	duplexes!

All	that	full-duplex	really	means	is	simultaneous	communication.	With	HTTP,	the	client
usually	has	to	complete	their	request	to	the	server	before	the	server	can	respond.	Not	so
with	WebSockets	-	clients	(and	servers)	can	send	messages	across	the	pipe	at	any	time.

The	benefits	of	this	to	application	developers	are,	in	my	opinion,	somewhat	unclear.
Polling	can	simulate	full-duplex	communication	(at	a	~3	second	resolution,	for	example)
fairly	simply.	It	does	reduce	latency	in	certain	situations	-	for	example,	instead	of
requiring	a	request	to	pass	a	message	back	to	the	client,	the	server	can	just	send	a
message	immediately,	as	soon	as	it's	ready.	But	the	applications	where	~1-3	second	of
latency	matters	are	few	-	gaming	being	an	obvious	exception.	Basecamp's	chat	app,
Campfire,	used	3-second	polling	for	10	years.

Caniuseit?

ActionCable

309

What	browsers	can	you	actually	use	WebSockets	in?	Pretty	much	all	of	them.	This	is
one	of	WebSockets'	biggest	advantages	over	SSE,	their	nearest	competitor.
caniuse.com	puts	WebSockets'	global	adoption	rate	at	about	85%,	with	the	main
laggards	being	Opera	Mini	and	old	versions	of	the	Android	browser.

Enter	Action	Cable
Action	Cable	was	announced	at	RailsConf	2015	in	DHH's	keynote.	He	briefly	touched	on
polling	-	Basecamp's	chat	application,	Campfire,	has	used	a	3-second	polling	interval	for
over	10	years.	But	then,	David	said:

"If	you	can	make	WebSockets	even	less	work	than	polling,	why	wouldn't	you	do
it?"

That's	a	great	mission	statement	for	Action	Cable,	really.	If	WebSockets	were	as	easy	as
polling,	we'd	all	be	using	it.	Continuous	updates	are	just	simply	better	than	3-second
updates.	If	we	can	get	continuous	updates	without	paying	any	cost,	then	we	should	do
that.

That's	our	yardstick	-	is	Action	Cable	as	easy	(or	easier)	to	use	than	polling?

API	Overview

Action	Cable	provides	the	following:

A	"Cable"	or	"Connection",	a	single	WebSocket	connection	from	client	to	server.	It's
worthwhile	to	note	that	Action	Cable	assumes	you	will	only	have	one	WebSocket
connection,	and	you'll	send	all	the	data	from	your	application	along	different...
"Channels"	-	basically	subdivisions	of	the	"Cable".	A	single	"Cable"	connection	has
many	"Channels".
A	"Broadcaster"	-	Action	Cable	provides	its	own	server.	Yes,	you're	going	to	be
running	another	server	process	now.	Essentially,	the	Action	Cable	server	just	uses
Redis'	pubsub	functions	to	keep	track	of	what's	been	broadcasted	on	what	cable
and	to	whom.

Action	Cable	essentially	provides	just	one	class,		Action	Cable::Channel::Base	.	You're
expected	to	subclass	it	and	make	your	own	Cables,	just	like	ActiveRecord	models	or
ActionController.

Here's	a	full-stack	example,	straight	from	the	Action	Cable	source:

ActionCable

310

http://caniuse.com/websockets
https://www.youtube.com/watch?v=KJVTM7mE1Cc#t=42m30s

		#	app/channels/application_cable/connection.rb

		module	ApplicationCable

				class	Connection	<	Action	Cable::Connection::Base

						#	uniquely	identify	this	connection

						identified_by	:current_user

						#	called	when	the	client	first	connects

						def	connect

								self.current_user	=	find_verified_user

						end

						protected

								def	find_verified_user

										#	session	isn't	accessible	here

										if	current_user	=	User.find(cookies.signed[:user_id])

												current_user

										else

												#	writes	a	log	and	raises	an	exception

												reject_unauthorized_connection

										end

								end

				end

		end

		class	WebNotificationsChannel	<	ApplicationCable::Channel

				def	subscribed

						#	called	every	time	a

						#	client-side	subscription	is	initiated

						stream_from	"web_notifications_#{current_user.id}"

				end

				def	like(data)

						comment	=	Comment.find(data['comment_id')

						comment.like(by:	current_user)

						comment.save

				end

		end

		#	Somewhere	else	in	your	app

		Action	Cable.server.broadcast	\

				"web_notifications_1",	{	title:	'New	things!',	body:	'All	shit	fit	for	print'	

}

		#	Client-side	coffescript	which	assumes	you've	already	requested	the	right	to	se

nd	web	notifications

		@App	=	{}

		App.cable	=	Cable.createConsumer	"ws://cable.example.com"

		App.cable.subscriptions.create	"WebNotificationsChannel",

				received:	(data)	->

						#	Called	every	time	we	receive	data

						new	Notification	data['title'],	body:	data['body']

ActionCable

311

				connected:	->

						#	Called	every	time	we	connect

				like:	(data)	->

						@perform	'like',	data

A	couple	of	things	to	notice	here:

Note	that	the	channel	name	"WebNotificationsChannel"	is	implicit,	based	on	the
name	of	class.
We	can	call	the	public	methods	of	our	Channel	from	the	client	side	code	-	I've	given
an	example	of	"liking"	a	notification.
	stream_from		basically	establishes	a	connection	between	the	client	and	a	named
Redis	pubsub	queue.
	Action	Cable.server.broadcast		adds	a	message	in	a	Redis	pubsub	queue.
We	have	to	write	some	new	code	for	looking	up	the	current_user.	With	polling,
usually	whatever	code	we	already	have	written	works	just	fine.

Overall,	I	think	the	API	is	pretty	slick.	We	have	that	Rails-y	feel	of	a	Cable's	class
methods	being	exposed	to	the	client	automatically,	the	Cable's	class	name	becoming	the
name	of	the	channel,	et	cetera.

Yet,	this	does	feel	like	a	lot	of	code	to	me.	And,	in	addition,	you're	going	to	have	to	write
more	JavaScript	than	what	you	have	above	to	connect	everything	together.	Not	to
mention	that	now	we've	got	a	Redis	dependency	that	we	didn't	have	before.

What	I	didn't	show	above	is	some	things	that	Action	Cable	gives	you	for	free,	like	a	3-
second	heartbeat	on	all	connections.	If	a	client	can't	be	contacted,	we	automatically
disconnect,	calling	the		unsubscribe		callback	on	our	Channel	class.

In	addition,	the	code,	as	it	stands	right	now,	is	a	joy	to	read.	Short,	focused	classes	with
well-named	and	terse	methods.	In	addition,	it's	extremely	well	documented.	DHH	ain't	no
slouch.	It's	a	fast	read	too,	weighing	in	at	about	850	lines	of	Ruby	and	200	lines	of
CoffeeScript.

Performance	and	Scaling
Readers	of	my	blog	will	know	that	my	main	focus	is	on	performance	and	Ruby	app
speed.	It's	been	vaguely	claimed	that	WebSockets	offers	some	sort	of	scaling	or
performance	benefit	to	polling.	That	makes	some	intuitive	sense	-	surely,	large	sites	like
Facebook	can't	make	a	3-second	polling	interval	work.

ActionCable

312

https://github.com/rails/actioncable

But	moving	from	polling	to	WebSockets	involves	a	big	trade-off.	You're	trading	a	high
volume	of	HTTP	requests	for	a	high	volume	of	persistent	connections.	And	persistent
connections,	in	a	virtual	machine	like	MRI	that	lacks	true	concurrency,	sounds	like
trouble.	Is	it?

Persistent	connections

Also	note	that	your	server	must	provide	at	least	the	same	number	of	database
connections	as	you	have	workers.	The	default	worker	pool	is	set	to	100,	so	that
means	you	have	to	make	at	least	that	available.

Action	Cable's	server	uses	EventMachine	and	Celluloid	under	the	hood.	However,	while
Action	Cable	uses	a	worker	pool	to	send	messages	to	clients,	it's	just	a	regular	old	Rack
app	and	will	need	to	be	configured	for	concurrency	in	order	to	accept	many	incoming
concurrent	connections.

What	do	I	mean?	Let's	turn	to		thor	,	a	WebSockets	benchmarking	tool.	It's	a	bit	like
	siege		or		wrk		for	WebSockets.	We're	going	to	open	up	1500	connections	to	an	Action
Cable	server	running	on	Puma	(in	default	mode,	Puma	will	use	up	to	16	threads),	with
varying	incoming	concurrency:

Simultaneous	WebSocket	connections Mean	connection	time

3 17ms

30 196ms

300 1638ms

As	you	can	see,	Action	Cable	slows	linearly	in	response	to	more	concurrent
connections.	Allowing	Puma	to	run	in	clustered	mode,	with	4	worker	processes,
improves	results	slightly:

Simultaneous	WebSocket	connections Mean	connection	time

3 9ms

30 89ms

300 855	ms

Interestingly,	these	numbers	are	slightly	better	than	a	node.js	application	I	found,	which
seemed	to	completely	crumple	under	higher	load.	Here	are	the	results	against	this
node.js	chat	app:

ActionCable

313

https://github.com/sitegui/nodejs-websocket/blob/master/samples/chat/server.js

Simultaneous	WebSocket	connections Mean	connection	time

3 5ms

30 65ms

300 3600	ms

Unfortunately,	I	can't	really	come	up	with	a	great	performance	measure	for	outbound
messaging.	Really,	we're	going	to	have	to	wait	to	see	what	happens	with	Action	Cable	in
the	wild	to	know	the	full	story	behind	whether	or	not	it	will	scale.	For	now,	the	I/O
performance	looks	at	least	comparable	to	Node.	That's	surprising	to	me	-	I	honestly
didn't	expect	Puma	and	Action	Cable	to	deal	with	this	all	that	well.	I	suspect	it	still	may
come	crashing	down	in	environments	that	are	sending	many	large	pieces	of	data	back
and	forth	quickly,	but	for	ordinary	apps	I	think	it	will	scale	well.	In	addition,	the	use	of	the
Redis	pubsub	backend	lets	us	scale	horizontally	the	way	we're	used	to.

What	other	tools	are	available?
That	concludes	our	look	at	Action	Cable.	What	alternatives	exist	for	the	Rails	developer?

Polling

Let's	take	the	example	from	above	-	basically	pushing	"notifications",	like	"new
message!",	out	to	a	waiting	client	web	browser.	Instead	of	pushing,	we'll	have	the	client
basically	ask	an	endpoint	for	our	notification	partial	every	5	seconds.

function	webNotificationPoll(url)	{

		$.ajax({

				url	:	url,

				ifModified	:	true

		}).done(function(response)	{

				$('#notifications').html(response);

				//	maybe	you	call	some	fancy	JS	here	to	pop	open	the	notification	window,	do	s

ome	animation,	whatever.

		});

}

setInterval(webNotificationPoll($('#notifications').data('url'),	5000);

Note	that	we	can	use	HTTP	caching	here	(the	ifModified	option)	to	simplify	our
responses	if	there	are	no	new	notifications	available	for	the	user.

ActionCable

314

Our	show	controller	might	be	as	simple	as:

class	WebNotificationsController	<	ApplicationController

		def	show

				@notifications	=	current_user.notifications.unread.order(:updated_at)

				if	stale?(last_modified:	@notifications.last.updated_at.utc,	etag:	@notificati

ons.last.cache_key)

						render	:show

				end

				#	note	that	if	stale?	returns	false,	this	action

				#	automatically	returns	a	304	not	modified.

		end

end

Seems	pretty	straightforward	to	me.	Rather	than	reaching	for	Action	Cable	first,	in	most
"live	view"	situations,	I	think	I'll	continue	reaching	for	polling.

MessageBus

MessageBus	is	Sam	Saffron's	messaging	gem.	Not	limited	to	server-client	interaction,
you	can	also	use	it	for	server	to	server	communication.

Here's	an	example	from	Sam's	README:

message_id	=	MessageBus.publish	"/channel",	"message"

MessageBus.subscribe	"/channel"	do	|msg|

		#	block	called	in	a	background	thread	when	message	is	received

end

//	in	client	JS

MessageBus.start();	//	call	once	at	startup

//	how	often	do	you	want	the	callback	to	fire	in	ms

MessageBus.callbackInterval	=	5000;

MessageBus.subscribe("/channel",	function(data){

		//	data	shipped	from	server

});

I	like	the	simplicity	of	the	API.	On	the	client	side,	it	doesn't	look	all	that	different	from
stock	polling.	However,	being	backed	by	Redis	and	allowing	for	server-to-server
messaging	means	you're	gaining	a	lot	in	reliability	and	flexibility.

ActionCable

315

https://github.com/SamSaffron/message_bus

In	a	lot	of	ways,	MessageBus	feels	like	"Action	Cable	without	the	WebSockets".

MessageBus	does	not	require	a	separate	server	process.

Sync

Sync	is	a	gem	for	"real-time"	partials	in	Rails.	Under	the	hood,	it	uses	WebSockets	via
Faye.	In	a	lot	of	ways,	I	feel	like	Sync	is	the	"application	layer"	to	Action	Cable's
"transport	layer".

The	API	is	no	more	than	changing	this:

<%=	render	partial:	'user_row',	locals:	{user:	@user}	%>

to	this:

<%=	sync	partial:	'user_row',	resource:	@user	%>

But,	unfortunately,	it	isn't	that	simple.	Sync	requires	that	you	sprinkle	calls	throughout
your	application	any	time	the		@user		is	changed.	In	the	controller,	this	means	adding	a
	sync_update(@user)		to	the	controller's	update	action,		sync_destroy(@user)		to	the
destroy	action,	etc.	"Syncing"	outside	of	controllers	is	even	more	of	a	nightmare.

Sync	seems	to	extend	its	fingers	all	through	your	application,	which	feels	wrong	for	a
feature	that's	really	just	an	accident	of	the	view	layer.	Why	should	my	models	and
background	jobs	care	that	my	views	are	updated	over	WebSockets?

Others

There	are	several	other	solutions	available.

ActionController::Live.	This	might	work	if	you're	OK	with	never	supporting	Internet
Explorer.
Faye.	Working	with	Faye	directly	is	probably	more	low-level	than	you'll	ever	actually
need.
websocket-rails.	While	I'd	love	another	alternative	for	the	"WebSockets	for	Rails!"
space,	this	gem	hasn't	been	updated	since	the	announcement	of	Action	Cable
(actually	over	a	year	now).

ActionCable

316

https://github.com/chrismccord/sync

What	do	we	really	want?
Overall,	I'm	left	with	a	question:	I	know	developers	want	to	use	WebSockets,	but	what	do
our	applications	want?	Sometimes	the	furor	around	WebSockets	feels	like	it's	putting	the
cart	before	the	horse	-	are	we	reaching	for	the	latest,	coolest	technology	when	polling	is
good	enough?

"If	you	can	make	WebSockets	easier	than	polling,	then	why	wouldn't	you	want
WebSockets?"

I'm	not	sure	if	Action	Cable	is	easier	to	use	than	polling	(yet).	I'll	leave	that	as	an
exercise	to	the	reader	-	after	all,	it's	a	subjective	question.	You	can	determine	that	for
yourself.

But	I	think	providing	Rails	developers	access	to	WebSockets	is	a	little	bit	like	showing	up
at	a	restaurant	and,	when	you	order	a	sandwich,	being	told	to	go	make	it	yourself	in	the
back.	WebSockets	are,	fundamentally,	a	transportation	layer,	not	an	application	in
themselves.

Let's	return	to	the	three	use	cases	for	WebSockets	I	cited	above	and	see	how	Action
Cable	performs	on	each:

Clients	needing	to	send	rapidly	to	the	server.	Action	Cable	seems	appropriate
for	this	sort	of	use	case.	I'm	not	sure	how	many	people	are	out	there	writing
browser-based	games	with	Rails,	but	the	amount	of	access	the	developer	is	given
to	the	transport	mechanism	seems	wholly	appropriate	here.
"Live"	data	The	"live	comments"	example.	I	predict	this	will	be,	by	far,	the	most
common	use	case	for	Action	Cable.	Here,	Action	Cable	feels	like	overkill.	I	would
have	liked	to	see	DHH	and	team	double	down	on	the	"view-over-the-wire"	strategy
espoused	by	Turbolinks	and	make	Action	Cable	something	more	like	"live	Rails
partials	over	WebSockets".	It	would	have	greatly	simplified	the	amount	of	work
required	to	get	a	simple	example	working.	I	predict	that,	upon	release,	a	number	of
gems	that	build	upon	Action	Cable	will	be	written	to	fill	this	gap.
Streaming	Honestly,	I	don't	think	anyone	with	a	Ruby	web	server	is	streaming
binary	data	to	their	clients.	I	could	be	wrong.

In	addition,	I'm	not	sure	I	buy	into	"WebSockets	completely	obviates	the	need	for	HTTP!"
rhetoric.	HTTP	comes	with	a	lot	of	goodies,	and	by	moving	away	from	HTTP	we'll	lose	it
all.	Caching,	routing,	multiplexing,	gzipping	and	lot	more.	You	could	reimplement	all	of
these	things	in	Action	Cable,	but	why?

ActionCable

317

So	when	should	a	Rails	developer	be	reaching	for	Action	Cable?	At	this	point,	I'm	not
sure.	If	you're	really	just	trying	to	accomplish	something	like	a	"live	view"	or	"live	partial",
I	think	you	may	either	want	to	wait	for	someone	to	write	the	inevitable	gem	on	top	of
Action	Cable	that	makes	this	easier,	or	just	write	it	yourself.	However,	for	high-
throughput	situations,	where	the	client	is	communicating	several	times	per	second	back
to	the	server,	I	think	Action	Cable	could	be	a	great	fit.

Checklist	for	Your	App
If	considering	ActionCable,	look	at	the	alternatives	first.	If	all	you	want	is	a	"live
partial",	consider	the	chapter	on	SSEs	and	streaming	or	the		message_bus		gem.
Polling	is	easier	to	implement	for	most	sites,	and	has	a	far	less	complicated
backend	setup.

ActionCable

318

Module	4:	The	Environment
This	module	is	about	"everything	else"	-	the	remaining	bits	of	the	environment,	outside
from	your	application's	code	or	the	user's	browser,	that	can	make	a	difference	in	your
app's	performance.

The	most	important	lesson	in	this	module	is	on	CDNs	-	content	delivery	networks	are	an
as	essential	optimization	tool	for	any	website.

The	Environment

319

All	about	CDNs
Using	a	Content-Delivery	Network	(also	known	as	a	CDN)	is	one	of	those	things	that	I
think	everyone	should	be	using	in	2016.	There's	really	no	reason	not	to	use	a	CDN	on	a
web	application	in	2016.	Using	a	CDN	to	deliver	assets	can	greatly	improve	network
performance	for	your	website	-	especially	in	parts	of	the	world	far	distant	from	your
application	servers.

They're	also	extremely	easy	to	use	and	deploy	-	for	most	Rails	apps,	it's	a	one-line
change	in	your	configuration.

This	lesson	gets	into	the	details	of	CDNs	-	how	they	work,	why	they're	helpful,	how	to	set
one	up	on	your	application,	and	how	to	choose	between	the	many	vendors	available.

What's	the	role	of	a	CDN?
CDNs	perform	three	critical	functions	for	a	typical	Ruby	web	application:	decreasing
network	latency	for	end-users,	reducing	load	and	bandwidth,	and	(sometimes)	modifying
your	static	assets	to	make	them	even	more	efficient.

CDNs	decrease	network	latency

This	is	probably	the	biggest	win	of	a	CDN.

CDNs	use	what	are	called	"points	of	presence"	-	usually	called	PoPs,	to	distribute	your
cached	assets	all	over	the	world.	You	can	imagine	PoPs	as	small	datacenters,	owned	by
the	CDN,	distributed	around	the	world.	A	typical	CDN	will	have	a	few	dozen	PoPs	place
in	strategic	locations	across	the	globe.	As	an	example,	Amazon	CloudFront	has	15	PoPs
in	the	United	States,	10	in	Europe,	9	in	Asia,	2	in	Australia,	and	2	in	South	America.

PoPs	work	by	caching	your	content	geographically	close	to	the	end-user.	For	example	-
if	your	server	is	located	in	Amazon's	US-East	datacenter	(located	in	Virginia),	but
someone	from	the	Netherlands	looks	at	your	site,	that	response	will	be	cached	by	a	PoP
closest	to	that	user.	If	you	were	using	CloudFront,	it	would	probably	be	cached	in
Amazon's	Amsterdam	PoP.	Further	requests	for	that	asset	by	anyone	nearest	to	the
Amsterdam	PoP	will	be	served	by	Amsterdam,	not	Virginia/US-East.

CDNs

320

CDNs	can	only	cache	responses	that	are	HTTP-cacheable,	which	means	the	correct
headers	must	be	set.

However,	CDNs	also	perform	important	network	optimization	even	when	resources	are
not	cached.	This	is	called	an	"uncached	origin	fetch"	(the	CDN	is	fetching	an	uncached
resource	from	the	origin	server,	your	application).	Your	client	browsers	connections
terminate	with	a	nearby	server	PoP,	not	your	single	application	server.	This	means	that
SSL	negotiation	and	TCP	connection	opening,	among	other	things,	can	be	significantly
faster	for	client	browsers.	Your	CDN	can	maintain	a	pool	of	open	connections	between
their	CDN	backbone	and	your	origin	server,	unlike	your	client	browsers,	which	are
probably	connecting	to	you	for	the	first	time.

Many	CDNs	use	this	nearby	termination	on	both	ends	of	the	connection,	meaning	that
traffic	will	be	routed	across	the	CDN's	optimized	backbone,	further	reducing	latency.

This	also	means	that	one	of	the	key	factors	in	choosing	a	CDN	can	be	the	location	of	its
PoPs	-	if	you	have	an	application	which	is	used	heavily	by	European	or	Asian	users,	for
example,	you	will	definitely	be	looking	at	a	different	set	of	CDNs	than	someone	who's
optimizing	for	American	users.	More	on	that	later.

CDNs	reduce	load	on	your	application

CDNs	are	basically	free	(or	almost-free)	bandwidth.	By	serving	HTTP-cacheable
resources	from	a	CDN	instead	of	your	own	servers,	you're	simply	saving	money.

Consider	this	-	Amazon	Web	Services	has	two	different	pricing	rates	for	bandwidth.	One
is	the	rate	for	their	cloud	storage	service	S3	and	on-demand	computing	resource	EC2,
and	the	other	is	for	their	CDN	offering,	CloudFront.	Bandwidth	on	EC2	and	S3	costs	15
cents	for	the	first	10	terabytes	a	month.	The	prices	for	CloudFront	are	almost	exactly	half
-	eight	and	half	cents	for	the	first	10	terabytes.	I'm	not	a	business	expert,	but	"cut	your
costs	by	half"	sounds	like	a	good	strategy	to	me.	As	a	side	note,	you	can	cut	costs	even
further	on	some	CDNs	by	restricting	the	number	of	PoPs	that	you	use	in	their	network.

Some	CDNs	even	provide	bandwidth	for	free	-	Cloudflare,	for	example,	does	not	have
bandwidth	limits.

In	addition,	if,	god	forbid,	you're	serving	asset	requests	directly	from	your	application	-
either	your	webserver,	like	NGINX	or	Apache,	or	your	Rails	app	directly,	as	is	common
on	Heroku	-	consider	that	the	time	your	server	spends	serving	cacheable	HTTP	assets	is
"crowding	out"	time	it	could	spend	serving	the	kinds	of	requests	it	should	be	serving.

CDNs

321

Asset	requests	are	usually	quite	fast,	it's	true	-	just	a	few	milliseconds	each	-	but
consider	that	most	pages	require	3-4	static	assets,	and	multiply	that	by	thousands	of
users,	and	you	can	see	how	serving	your	own	assets	can	get	out	of	hand.

Every	request	served	by	the	CDN	is	money	in	your	pocket	-	whether	it's	in	reduced
bandwidth	bills	or	in	taking	load	off	of	your	application	servers.

CDNs	can	perform	modification	of	your	static	assets	to
make	them	more	efficient

Some	CDNs	go	a	step	further	than	acting	as	just	a	big,	geographically	convenient
intermediate	HTTP	cache.	Certain	CDNs	-	CloudFlare	being	the	most	obvious	in	this
category	-	will	modify	your	content	en-route	to	make	it	more	efficient.

Here's	a	shortlist	of	modifications	a	CDN	may	perform	to	your	HTTP-cacheable	content:

Images	may	be	modified	in	several	ways.	It's	extremely	common	for	CDNs	to
modify	images	before	storing	them.	This	isn't	a	surprise	-	images	comprise	a	fair
portion	of	overall	Internet	bandwidth	usage,	and	most	sites	poorly	compress	their
own	images.	JPEGs	may	be	re-compressed	at	a	lower	quality	level	or	have	EXIF
information	stripped,	PNGs	may	be	re-compressed,	GIFs	may	have	frames
dropped.	Some	CDNS	offer	ways	to	mobile-optimize	images,	loading	blurred
"placeholder"	images	in	place	of	the	actual	image,	and	then	"lazy	loading"	the	real
image	once	the	user	scrolls.
Responses	may	be	minified	and	gzip	compressed.	If	the	origin	server	hasn't
already	gzipped	or	minified	their	CSS,	Javascript	or	HTML,	many	CDNs	will	do	this-
on-the-fly.

CDNs	are	a	cheap-and-easy	way	to	get	some	benefits	of
HTTP/2

As	mentioned	in	the	HTTP/2	lesson,	using	a	CDN	is	a	cheap-and-easy	way	to	get	some
of	the	benefits	of	HTTP/2	without	changing	much.

Usually,	the	majority	of	a	page's	download	weight	is	in	its	static	assets.	The	document
itself	is,	comparatively,	not	usually	heavy.	Just	a	few	kilobytes	or	so.	By	moving	our
assets	to	an	HTTP/2	compatible	CDN,	we	can	get	a	lot	of	the	benefits	of	HTTP/2	-
improved	bandwidth	management,	increased	parallelism,	and	header	compression	-
without	changing	a	single	line	of	code	in	our	application.

CDNs

322

My	recommended	CDN	setup
I	recommend	using	a	CDN	with	your	Rails	application	set	as	the	origin	server.
Uncacheable	document	responses,	like	HTML	documents,	will	be	served	by	the	Rails
application,	but	everything	else	should	be	served	by	the	CDN.	I	do	not	recommend	using
intermediate	steps	-	such	as	uploading	assets	to	S3	first	-	or	using	a	CDN	whose	origin
you	do	not	control	(so-called	3rd-party	CDNs,	typically	used	for	serving	popular	CSS	or
Javascript	libraries).

The	12-Factor	advantage	-	simplicity!

The	12	Factor	Application	is	a	set	of	principles	for	creating	easily	maintained	web
applications.	One	of	these	principles	(called	"factors")	is	called	"Dev-Prod	Parity":	keep
development,	staging,	and	production	as	similar	as	possible.

I'm	just	going	to	quote	a	short	section	here,	though	the	whole	document	is	worth	reading:

The	twelve-factor	developer	resists	the	urge	to	use	different	backing	services
between	development	and	production,	even	when	adapters	theoretically	abstract
away	any	differences	in	backing	services.	Differences	between	backing	services
mean	that	tiny	incompatibilities	crop	up,	causing	code	that	worked	and	passed
tests	in	development	or	staging	to	fail	in	production.	These	types	of	errors	create
friction	that	disincentivizes	continuous	deployment.	The	cost	of	this	friction	and	the
subsequent	dampening	of	continuous	deployment	is	extremely	high	when
considered	in	aggregate	over	the	lifetime	of	an	application.

Using	S3	in	production	and	serving	assets	directly	from	the	server	in	development	is	a
common	pattern	in	Rails	applications.	Unfortunately,	this	requires	the	maintenance	of	an
entire	upload	process,	and	differences	in	the	configuration	of	S3	versus	your	Rails
application	server	means	that	assets	may	be	served	quite	differently	in	production	than
they	are	in	development.	Always	using	your	Rails	application	as	your	CDN's	origin
reduces	the	different	between	production	and	development,	making	your	life
easier.

In	addition,	this	approach	means	cacheable	documents	-	like	JSON	responses	-	are
cached	exactly	the	same	way	as	cacheable	static	assets,	like	JS	and	CSS.

Some	may	be	protesting	-	but	you	just	told	me	the	benefit	of	a	CDN	was	to	prevent	my
application	server	from	serving	static	assets	or	other	cacheable	resources!	Most	Rails
applications,	which	have	a	dozen	or	so	static	assets,	are	best	served	by	this	approach.

CDNs

323

http://12factor.net/

On	the	first	request	of	a	certain	asset,	say		application.css	,	the	CDN	will	ask	your	Rails
server	for	the	file,	and	then	will	never	ask	for	it	again.	Each	static	asset	should	only	be
served	once	to	the	CDN,	which	is	no	big	deal	at	all!

Of	course,	there	will	be	scenarios	where	this	is	not	possible.	If	your	application	has	user-
uploaded	content,	or	static	assets	are	somehow	generated	dynamically,	you	must	use	a
separate	origin,	such	as	Amazon	S3,	for	those	assets.	If	the	number	of	static	assets	is
few	but	they	are	requested	many	times,	use	your	Rails	application	as	an	origin	server.	If
there	are	many	assets	which	may	be	requested	just	a	few	times	each,	it's	probably	worth
it	to	offload	those	assets	to	a	separate	origin	entirely.

Avoiding	Common	Mistakes

Here	are	some	common	pitfalls	in	deploying	CDNs	on	web	applications.

The	CDNJS	pipe	dream

Although	this	isn't	common	in	the	Rails	community,	the	use	of	CDNs	whose	origin	is	not
owned	by	you	is	becoming	increasingly	common.	I'll	call	them	"3rd-party	CDNs"	-	sites
like	CDNjs	and	BootstrapCDN.	Usually,	developers	use	these	to	add	popular	libraries
such	as	Bootstrap,	React,	and	others	to	their	pages.	I	have	a	couple	of	problems	with
this	approach:

Gzip	performance	is	adversely	affected.	Gzip	works	best	on	large	files.	This
makes	intuitive	sense	-	a	compression	algorithm	works	better	when	it	has	more	bits
to	work	with,	more	similar	chunks	of	data	to	compress.	Taking	10	Javascript
libraries,	putting	them	into	separate	files,	and	compressing	them	will	always	have	a
larger	total	file	size	than	concatenating	those	10	libraries	into	one	file	and
compressing	the	single	file.
If	using	HTTP/1,	it's	always	faster	to	download	1	resource	rather	than	2.	Often,
sites	will	include	more	than	1	of	these	3rd-party	hosted	libraries.	However,	as	we
know	from	the	front-end	module	of	this	course,	this	will	always	be	slower	in
HTTP/1.x	than	downloading	those	same	resources	as	a	single	concatenated	file.
With	HTTP/1.x,	we	have	to	open	new	connections	to	download	each	of	these
resources!	Far	better	to	concatenate	all	of	these	resources	together,	like	the	Rails
asset	pipeline	does	by	default.
Most	of	these	frameworks	have	parts	you	don't	need.	Particularly	in	the	case	of
Bootstrap,	it	doesn't	make	much	sense	to	download	the	entirety	of	these	common
frameworks.	Bootstrap,	for	example,	makes	it	extremely	easy	to	include	only	the

CDNs

324

parts	of	the	framework	that	you	use.	Why	use	the	stock	version	and	waste	the	bits?
Frequently	combined,	leading	to	domain	explosion.	For	some	reason,	sites
often	tend	to	combine	these	3rd-party	CDNs.	Doing	so	just	leads	to	more	DNS
lookups,	SSL	negotiations,	and	TCP	connections	-	slowing	down	your	page	load.
The	caching	benefits	are	a	pipe	dream.	Many	cite,	without	data,	that	because
other	sites	sometimes	use	these	3rd-party	CDNs,	many	users	will	already	have
cached	versions	stored	on	their	device.	Unfortunately,	this	completely	ignores	both
the	prevalence	of	the	use	of	these	3rd	party	CDNs,	but	also	ignores	that	user
caches	are	difficult	to	rely	on.	Especially	on	mobile	devices,	caches	are	of	a	limited
size,	and	files	can	be	evicted	at	any	time.

S3	(or	your	app	server)	is	not	a	CDN

I've	seen	a	lot	of	Rails	applications	that	set	an	S3	bucket	as	their		asset_host		and	leave
it	at	that	-	scroll	up	and	re-read	the	benefits	of	a	CDN.	You're	not	getting	any	of	those	-
S3	is	not	geographically	distributed	(all	of	your	assets	will	be	served	from	whatever	zone
you're	in,	again,	probably	US-East).

It's	easy	to	mark	assets	as	"Do	Not	Modify!"

As	mentioned,	CDNs	frequently	modify	responses	in-transit	-	sometimes,	though,	you
may	not	want	this	behavior.	An	example	is	medical	imaging:	medical	images	have	strict
standards	and	usually	need	to	be	transmitted	losslessly,	with	no	modification	of	the	data.

This	is	easy	to	accomplish	by	setting	the		no-transform		directive	in	a	response's	Cache-
Control	headers.	A	header	of		Cache-Control:	no-transform		instructs	any	intermediate
caches	to	not	modify	the	resource	in	any	way.

An	overview	of	the	CDN	options	available
Different	CDNs	have	different	options	-	primarily,	they	differ	in	how	many	"bells	and
whistles"	they	offer	and	the	location	of	their	Points	of	Presence.	The	CDNs	in	this	list
don't	have	any	real,	appreciable	difference	in	uptime	(as	measured	by	third	parties)	or
even	in	bandwidth	speed.

There	are	also	some	upmarket	CDNs,	such	as	Akamai,	which	I	won't	cover	here.
They're	designed	for	sites	in	the	top	10,000	in	the	world,	which	I	assume	are	not	reading
this	guide.

CDNs

325

Cloudflare

Cloudflare	is	my	preferred	choice	for	small-scale	projects	(as	with	my	Skylight	and
NewRelic	reviews,	I	have	no	relationship	with	Cloudflare).

Cloudflare's	free	tier	is	an	incredible	gift	to	the	small-to-medium-size	website	-	it	offers	a
great	list	of	features	and	gives	you	free	unlimited	bandwidth.	Really,	with	Cloudflare,	the
amount	of	money	you	save	on	bandwidth	is	only	limited	by	how	much	you	can	make
HTTP-cacheable.	Incredible!

In	addition,	Cloudflare's	recent	HTTP/2	upgrade	means	that	cached	resources	will	be
served	over	HTTP/2	connections,	gracefully	downgrading	to	HTTP/1	where	necessary.

I've	also	found	Cloudflare	easy	to	use	and	setup	-	its	web	interface	is	miles	ahead	of
Amazon's,	for	example.

Cloudflare	seems	to	have	a	great	dedication	to	speed	-	they're	frequently	the	first	CDN
to	publicly	deploy	performance	features,	like	HTTP/2.	As	of	February	2016,	they	are	the
only	CDN	to	walk	out	with	a	perfect	score	from	istlsfastyet.com,	making	Cloudflare
(theoretically)	the	fastest	CDN	for	SSL-served	content.

Cloudflare's	"market	advantage"	is	in	the	wide	variety	of	features	they	offer	-
unfortunately,	some	of	these	are	simple	bloatware.	For	example,	they	can	(if	you	turn
these	features	on)	inject	some	scripts	into	your	site	that	do	things	like	scramble	email
addresses	or	other	trivial	tasks	you	could	do	yourself.	Also,	some	of	the	performance
related	features,	such	as	RocketLoader,	strike	me	as	fancy	proprietary	junk	-	not	likely	to
really	improve	performance	in	most	situations.

Finally,	Cloudfront	can	sometimes	perform	poorly	on	bandwidth	tests.	If	serving	large,
~100+	MB	files,	you	should	probably	look	elsewhere.

Amazon	CloudFront

When	looking	for	a	CDN,	many	want	to	hitch	themselves	to	a	big,	proven	company.
Amazon	certainly	fits	the	bill,	and	CloudFront	is	widely	used	for	that	reason.

However,	it's	a	bit	of	a	bear	to	use	sometimes.	The	web	interface	isn't	great,	and	the
API-based	tools	are	similarly	difficult	to	understand.	Invalidations	-	removing	content
from	the	cache	-	are	a	pain,	and	actually	cost	you	money.

The	API	is	extensive,	making	CloudFront	a	good	choice	for	complex	workflows.	The	list
of	PoP	locations	is	long	as	well.

CDNs

326

https://istlsfastyet.com/

Windows	Azure

Windows	Azure	offers	their	own	CDN	-	interestingly,	they	recently	partnered	with
Akamai,	the	8-ton-gorilla	in	the	space.	Unfortunately,	the	exact	details	of	this	partnership
are	unclear	-	I	would	not	count	on	your	assets	being	served	by	Akamai's	PoPs	just	yet.

Azure	performs	well	in	CDN	comparison	tests,	especially	when	transferring	large	files.

Azure's	bandwidth	prices	are	comparable	to	Amazon	CloudFront,	though	their
"Premium"	offering	is	nearly	double	the	price.

Unfortunately,	Azure	does	not	allow	SSL	with	custom	domains.

CacheFly

An	interesting	vendor,	CloudFly's	PoP	locations	are	broadly	comparable	to	Amazon
CloudFront,	with	the	addition	of	some	PoPs	in	Canada	and	even	one	in	South	Africa.

CacheFly	is	clearly	trying	to	corner	the	market	on	beating	their	competitor's	bandwidth
numbers.	Every	benchmark	I	could	find	routinely	put	CacheFly	at	the	top	when	large	files
were	concerned.

Unfortunately,	speed	isn't	cheap.	Prices	are	50-100%	more	than	Amazon	CloudFront.

Checklist	for	Your	App
Use	a	CDN.	Simple	as	that	-	pick	a	vendor	based	on	price	and	point-of-presence
locations	relative	to	your	users.

CDNs

327

Interacting	with	(SQL)	Databases
The	database	can	be	a	scary	thing.	Bigger	companies	will	almost	always	employ	a	DBA
-	a	database	administrator	-	whose	sole	job	is	to	be	the	person	responsible	for	most	of
the	things	I'm	going	to	cover	in	this	lesson.	I'm	not	a	DBA,	but	I	do	know	some	things
about	interacting	with	SQL	databases!

This	article	is	mainly	going	to	talk	about	Postgres,	the	most	popular	SQL	database	used
in	Rails	applications.	Most	of	it,	however,	is	broadly	applicable	to	all	SQL	databases.

Indexing	and	You
What	happens	when	you	look	for	a		User		with	an	email	of		donaldtrump@gmail.com	?

Usually,	a	database	will	do	what's	called	a	sequential	scan:	it	simply	looks	at	each	and
every	row	in	the	database	and	compares	the	row's		email		field	to	your	search.	However,
by	adding	an	index	to	the		email		column,	we	can	do	an	index	scan	instead.	Unlike	a
sequential	scan,	index	scans	are	far	faster	-	instead	of	searching	in	linear	time,	we	can
search	the	database	in	logarithmic	time.

We	can	add	indexes	in	our	migrations:

add_index	:users,	:email

Why	not	just	index	all	the	things?	Maintaining	indexes	is	hard	work	-	every	time	we	add	a
new	row	(or	update	an	existing	email),	we	also	have	to	update	an	index.	Essentially,
indexes	trade	write	speed	for	read	speed.

We	can	combine	fields	in	our	indexes	too	-	the	fields	used	in	our	index	must	exactly
match	the	fields	used	in	our	query.	For	example,	if	we	frequently	query	on	User		email	
and		name	,	like	so:

User.where(name:	"Donald",	email:	"donaldtrump@gmail.com")

…then	this	index	setup	will	work:

Databases

328

add_index	:users,	:email

add_index	:users,	:name

In	this	case,	Postgres	will	combine	the	indexes	into	what's	called	a	"bitmap	index	scan".
However,	we	can	also	combine	these	indexes	into	one	for	a	super-fast	index:

add_index	:users,	[:email,	:name]

Though	normally	we	want	to	be	pretty	stingy	with	adding	indexes,	there	are	a	few
scenarios	where	you	should	almost	always	add	an	index:

Foreign	keys	For	example,	is	Users	have_many	Posts,	you'll	want	to	index
	user_id		on	the	Post	model.	Foreign	key	columns	are	guaranteed	to	be	queried	on
frequently,	so	it	makes	sense	to	make	them	as	fast	as	possible.
Polymorphic	relationships	Polymorphic	associations	are	another	great	place	for
indexes.	If	you	have	a	generic	Comment	model	that	can	be	attached	to	Posts	and
Pictures,	for	example,	make	sure	that	you've	got	a	combined	index	for
	commentable_type		and		commentable_id	.
Primary	keys	Postgres	automatically	creates	a	unique	index	on	our		id		columns,
so	we	don't	have	to	do	this	ourselves.	Double-check	to	make	sure	your	database
does,	too.
updated_at	In	Russian	Doll	caching	schemes,	you	will	probably	frequently	be
querying	on		updated_at		to	bust	caches.

Indexes	have	an	order	-	usually,	they'll	be	sorted	in	ascending	order.	Sometimes,	this
isn't	appropriate	-	for	example,	you	may	frequently	be	querying	based	on		updated_at		if
you're	using	a	key-based	expiration	approach:

<%=	cache	[@product_group,	@product_group.products.max(&:updated_at)]	do	%>

In	this	case,	an	ascending	index	is	inappropriate	-	we	probably	want	a	descending	index
to	make	that	"MAX"	query	as	fast	possible.

add_index	:product_groups,	:updated_at,	order:	{	updated_at:	"DESC	NULLS	LAST"	}

We	can	also	do	what's	called	a	"partial"	index	-	only	indexing	under	certain	conditions.
This	makes	sense	when	we	frequently	query	for	only	certain	parameters.	For	example,	if
you	frequently	look	up	which	customers	have	been	billed,	but	never	look	up	customers

Databases

329

that	have	been	billed:

add_index	:customers,	:billed,	where:	"billed	=	false"

Also,	we	can	index	with	expressions.	A	common	case	for	an	expression	in	an	index	is	for
user	emails	-	frequently,	we	want	to	do	a	case	insensitive	search	for	emails	and	do	a
query	that's	something	like		SELECT	*	FROM	users	WHERE	lower(email)	=
"donaldtrump@gmail"	.	We	can	create	an	index	for	this	exact	case:

add_index	:users,	:email,	where:	"lower(email)"

It's	also	worth	noting	that	indexes	should	be	unique	indexes	where	possible	-	unique
indexes	help	ensure	your	data	matches	your	constraints,	but	they're	also	faster	than
regular	indexes.

How	to	EXPLAIN	ANALYZE
Postgres	comes	with	an		EXPLAIN	ANALYZE		query,	which	can	be	prepended	to	any	query
to	show	you	how	Postgres'	query	planner	decides	how	to	perform	the	query.

Did	we	mention	Postgres	has	a	query	planner?	Deciding	exactly	how	to	execute	any
given	query	is	not	an	entirely	straightforward	decision	for	a	database	-	it	has	to	do	decide
on	thousands	of	different	ways	it	could	possibly	join	or	execute	even	the	simplest	of
queries!

Here's	some	example	output:

EXPLAIN	ANALYZE	SELECT	"rubygems".*	FROM	"rubygems";

				QUERY	PLAN																																																				

	Seq	Scan	on	rubygems		(cost=0.00..2303.32	rows=119632	width=47)	(actual	time=0.00

6..18.498	rows=119632	loops=1)

	Planning	time:	0.050	ms

	Execution	time:	25.286	ms

(3	rows)

Postgres	believes	this	query	will	return	119k	rows,	and	that	each	row	is	approximately
47	bytes	(width).	The		cost		parameter	is	an	abstract,	relative	representation	of	how
long	it	should	take	to	execute	something	-	what	it's	saying	here	is	that	it	costs	about	"0"

Databases

330

to	get	the	first	row,	and	"2303.32"	to	get	all	the	rows.

We	also	have	the	actual	time	required	to	run	the	sequential	scan	step	here	-	18.498
milliseconds.

99%	of	"I	don't	think	my	index	is	getting	used?"	problems	can	be	solved	by
digging	in	to	the	"EXPLAIN	ANALYZE"	results.	This	is	the	primary	reason	I	use
	EXPLAIN	ANALYZE		-	so	let's	show	an	example	of	looking	at	indexes:

EXPLAIN	ANALYZE	SELECT	"rubygems".*	FROM	"rubygems"	ORDER	BY	"name";

	Index	Scan	using	index_rubygems_on_name	on	rubygems		(cost=0.42..8921.50	rows=119

632	width=47)	(actual	time=0.505..199.385	rows=119632	loops=1)

	Planning	time:	2.580	ms

	Execution	time:	206.392	ms

(3	rows)

Neat	-	you	can	see	that	this	particular	query	uses	a	named	index,	and	that	this	index
takes	about	200	milliseconds	to	complete	the	query.	Generally,	I	look	for	slow	queries	in
my	performance	monitor	-	like	New	Relic	-	then	I	pop	open	a		psql		session	on	my
production	database	(or	a	copy	of	it	if	I'm	paranoid)	and	start	running		EXPLAIN	ANALYZE	
to	figure	out	what	work	can	be	done.

If	you're	still	not	satisfied	and	need	more	output,	you	can	use		EXPLAIN	(ANALYZE,
BUFFERS,	VERBOSE)		to	show	even	more	data	about	the	query	plan,	like	how	much	of	the
query	was	served	by	the	database's	caches:

EXPLAIN	(ANALYZE,	BUFFERS,	VERBOSE)	SELECT	"rubygems".*	FROM	"rubygems"

	ORDER	BY	"updated_at";

	Sort		(cost=16075.23..16374.31	rows=119632	width=47)	(actual	time=145.414..185.74

8	rows=119632	loops=1)

			Output:	id,	name,	created_at,	updated_at,	downloads,	slug

			Sort	Key:	rubygems.updated_at

			Sort	Method:	external	merge		Disk:	6056kB

			Buffers:	shared	hit=1107,	temp	read=759	written=759

			->		Seq	Scan	on	public.rubygems		(cost=0.00..2303.32	rows=119632	width=47)	(act

ual	time=0.008..17.226	rows=119632	loops=1)

									Output:	id,	name,	created_at,	updated_at,	downloads,	slug

									Buffers:	shared	hit=1107

	Planning	time:	0.058	ms

	Execution	time:	201.463	ms

Databases

331

Cleaning	Up	After	Yourself	-	Database
Vacuuming
Some	databases	(Postgres	and	SQLite	being	the	best	examples)	use	a	technology
called	MVCC	(multiversion	concurrency	control)	to	provide	concurrent	access	to	the
database	even	in	situations	where	database	rows	may	be	locked	for	updates.	Instead	of
just	straight-up	locking	a	record	for	updating,	an	MVCC	database	will	create	a	copy	of
the	row,	marking	it	as	"new	data",	and	the	"old	data"	will	be	discarded	once	the	"new
data"	transaction	has	been	completed	and	written	to	the	database.

The	problem	is	that	these	bits	of	"old	data"	are	sometimes	left	behind	and	not	cleaned
up	properly.	This	is	what	the		VACUUM		instruction	is	for!

Vacuuming	is	important	for	two	main	reasons:

It	saves	disk	space.	This	"old	data"	can	take	up	a	significant	amount	of	space	on	a
write-heavy	database.
The	Postgres	query	planner	(discussed	above)	uses	statistics	that	may	be	thrown
off	by	too	much	"old	data"	laying	around.	Vacuuming	can	make	these	statistics	more
accurate	and,	thus,	the	query	planner	more	efficient.

Postgres	comes	with	an	"autovacuum"	function	which	is	not	on	by	default	-	if	running
your	own	database,	make	sure	this	is	on.	Heroku,	for	example,	autovacuums	by	default.
The	autovacuum	daemon	does	not	automatically	give	disk	space	back,	though	-	to	do
that,	you	need	to	use	the	special		VACUUM	FULL	,	which	needs	an	exclusive	lock	on	the
entire	database.

Turn	on	autovacuuming	and,	when	updating	your	database	or	otherwise	taking	it	offline
for	maintenance,	I	suggest	also	running	a		VACUUM	FULL		to	keep	your	database	tidy	and
your	query	planner	accurate.	This	is	doubly	important	for	long-lived	applications	or
applications	with	lots	of	writes.

Connection	Pools	and	Thread	Math
Here's	a	quick	lesson	on	Ruby	web-app	thread	math.

Scaling	a	Ruby	web	application	usually	means	more	threads	and	more	processes	-	but,
usually,	you	may	not	be	thinking	about	how	these	application	instances	are	talking	to
shared	resources	in	your	architecture.	For	example	-	when	you	scale	from	1	to	10
servers,	how	do	they	all	handle	coordinating	with	that	single	Redis	server?

Databases

332

This	kind	of	thing	can	happen	in	a	lot	of	different	places:

Your	database.	ActiveRecord	uses	a	connection	pool	to	communicate	with	your
database.	When	a	thread	needs	to	communicate	to	the	database,	it	spins	up	a	new
connection	in	the	connection	pool.	This	pool	can	have	a	limited	size	-	for	example,	if
that	pool	size	is	5,	only	up	to	5	threads	can	talk	to	your	database	at	once	per-
process.	5	servers	running	a	single	process	with	5	threads	each	means	a	total	of	25
possible	database	connections.	5	servers	running	Puma	in	"clustered"	mode	with	3
workers	and	5	threads	per	worker	means	a	total	of	5	3	5	=	75	possible	connections.
Your	database	has	a	maximum	connection	limit	-	you	can	see	how	simply	"scale	the
servers!"	could	possibly	overload	your	database	with	more	connections	than	it	could
handle.
Redis,	memcache,	and	other	key-value	stores.	As	an	example,	Sidekiq	has	a
connection	pool	when	communicating	with	Redis.	Manuel	van	Rijn	has	made	an
excellent	calculator	specifically	for	calculating	connection	pool	sizes	with	Redis	and
Sidekiq:	http://manuel.manuelles.nl/sidekiq-heroku-redis-calc/

Go	and	check	your	architecture	right	now	-	how	many	connections	can	your	databases
support?	As	an	example,	Heroku	Postgres'	"standard	0"	tier	offers	120	connections.	The
entry	level	Heroku	Redis	offering	allows	just	40	connections	at	once.

Now,	how	many	connections	"per	server"	are	possible?	Let's	go	back	to	a	Sidekiq
example.	Let's	say	we're	running	Puma,	with	2	workers	and	3	threads	per	worker.
Without	a	limit	on	the	connection	pool,	Sidekiq	will	use	up	6	connections	per	server	at
once	-	one	for	each	thread	on	the	server.	With	the	entry	level	Heroku	Redis	plan,	that
gives	us	a	theoretical	limit	of	just	~	6	servers	(dynos	in	Heroku	parlance)	before	we	run
out	of	connections.	At	that	point,	we'll	start	seeing	dropped	connections	and	other	bad
behavior.

Check	your	setup,	and	be	aware	for	the	next	time	you	get	crushed	with	load	-	you	may
have	to	start	upgrading	databases	just	to	get	more	concurrent	connections!

Disabling	Durability
People	frequently	ask	me	how	to	speed	up	their	test	suite.	There	are	a	lot	of	ways	to	do
this,	but	an	easy	one	is	to	speed	up	your	database.

In	production,	we	want	our	database	to	be	reliable	and	durable.	SQL	databases	are
designed	around	the	ACID	constraints	-	however,	maintaining	these	guarantees	of
Atomicity,	Consistency,	Isolation	and	Durability	is	a	costly	endeavour.	In	a	test

Databases

333

http://manuel.manuelles.nl/sidekiq-heroku-redis-calc/

environment,	we	usually	don't	care	about	data	corruption	or	loss.	If	it	happens,	we	just
run	the	test	suite	again!

What	follows	is	a	list	of	recommendations	for	settings	to	try	to	speed	up	your	SQL
databases	in	test	environments.	Do	not	apply	these	settings	to	production	databases,	or
Bad	Things	will	probably	happen.	Try	these	settings	one	at	a	time,	and	see	if	they	speed
up	your	overall	suite	time.

Of	course,	you	probably	shouldn't	be	writing	to	the	database	much	during	your	tests
anyway	-	but	if	you	are	(or	you're	stuck	with	someone	else's	application	that	does),	here
are	those	quick	tips:

Place	the	database	into	RAMdisk

A	"RAMdisk"	is	just	a	diskspace	partition	that	lives	in	your	system's	RAM	rather	than
your	disk	drive.	Treating	your	RAM	like	a	disk	drive	can	make	for	fast	reads	and	writes	-
up	to	10	times	faster	than	an	SSD.

Creating	these	is	considerably	easier	on	Linux	systems,	but	most	people	develop	locally
on	Mac,	so	my	instructions	will	be	for	doing	this	on	a	Mac	with	OSX	10.11	(El	Capitan).
There	are	several	good	tutorials	for	running	a	RAMdisk	database	on	Linux	online.

First,	we	need	to	know	how	big	our	RAMdisk	should	be.	The	following	SQL	will	print	out
the	disk	sizes	of	every	database	in	our	Postgres	server:

SELECT	pg_database.datname,		

							pg_size_pretty(pg_database_size(pg_database.datname))	AS	size		

		FROM	pg_database;

								datname								|		size			

-----------------------+---------

	gemcutter_development	|	1210	MB

	gemcutter_test								|	10	MB

To	be	on	the	safe	side,	I'll	create	a	50MB	RAMdisk	for	this	application.	Basically	this
involves	using		hdiutil	,	a	system	utility.	The	arguments	are	sort	of	complicated	and
hard	to	understand,	so	I	use	a	short	bash	script	to	format	them	correctly	for	me.
Basically,	it	looks	like	this:

Databases

334

https://gist.github.com/rxin/5085564

echo	"Create	ramdisk..."

RAMDISK_SIZE_MB=$2

RAMDISK_SECTORS=$((2048	*	$RAMDISK_SIZE_MB))

DISK_ID=$(hdiutil	attach	-nomount	ram://$RAMDISK_SECTORS)

echo	"Disk	ID	is	:"	$DISK_ID

diskutil	erasevolume	HFS+	"ramdisk"	${DISK_ID}

Now	I	have	a	50MB	RAMdisk,	mounted	at		/Volumes/ramdisk	.	We	need	to	create	what
Postgres	calls	a	"tablespace"	at	this	disk	location	-	we	do	that	like	this:

psql	<database—name>	c	"create	tablespace	ramdisk	location	'/Volumes/ramdisk'"

Now	we	need	our		database.yml		to	run	from	the	tablespace	we	just	created:

test:

		adapter:	postgresql

		...

		tablespace:	ramdisk

Run		rake	db:test:prepare		again	(because	the	database	must	be	recreated)	and	voila	-
enjoy	your	free	speed.	In	my	testing	with	the	Rubygems.org	codebase,	using	a	RAMdisk
shaved	about	10%	of	the	total	test	suite	execution	time.	Not	a	whole	lot,	but	remember	-
I	didn't	have	to	change	any	application	code,	so	I	consider	this	win	"free".

Turn	off	fsync	and	synchronous	commit

Postgres	(and	many	other	SQL	databases)	maintains	something	called	the	"write-ahead-
log".	Postgres	writes	all	modifications	to	the	"write-ahead-log"	before	actually	executing
them	-	this	allows	the	database	to	"start	where	it	left	off"	if	a	catastrophic	failures	occurs
during	an	operation.

Of	course,	in	a	test	or	even	development	environment,	if	this	happens,	well,	we	don't
really	care	-	so	we	can	just	turn	it	off.

We	can't	turn	off	the	write-ahead-log	entirely,	but	we	can	make	it	considerably	faster.

You	can	disable	writing	the	write-ahead	log	to	the	disk	with	the		fsync		configuration
setting.		fsync		can	be	disabled	in	your		postgresql.conf		file	or	with	the	server
command	line.

Databases

335

In	ordinary	operation,	the	actual	database	transaction	happens	after	the	write-ahead-log
has	finished	being	written	to.	Again,	since	we	don't	care	about	the	write-ahead-log,	we
can	"de-sync"	these	operations	by	turning	off		synchronous_commit		in	our
	postgresql.conf		for	another	speed	boost.

Checklist	For	Your	App
Get	familiar	with	database	indexing	Indexes	are	the	key	to	fast	queries.	There	are
several	situations	where	you	should	always	be	indexing	your	database	columns	-
polymorphic	associations,	foreign	keys,	and		updated_at		and		created_at		if	using
those	attributes	in	your	caching	scheme.
ANALYZE	difficult/long	queries	Are	you	unsure	if	a	certain	query	is	using	an
index?	Take	your	top	5	worst	queries	from	your	performance	monitor	and	plug	them
into	an	EXPLAIN	ANALYZE	query	to	debug	them.
Make	sure	your	database	is	being	vacuumed	Autovacuum	is	mandatory	for	any
MVCC	database	like	Postgres.	When	updating	or	otherwise	taking	down	a	Postgres
DB	for	maintenance,	be	sure	to	also	run	a		VACUUM	FULL	.
Double	check	your	thread	math.	Make	sure	you	have	enough	concurrent
connections	available	across	your	application	-	do	you	have	enough	connections
available	at	the	database?	What	about	your	cache?
Consider	disabling	database	durability	in	test	environments.	Some,	thought	not
all,	test	suites	would	benefit	from	a	faster	database.	We	can	gain	database
performance	by	sacrificing	some	of	the	durability	guarantees	we	need	in	production.

Databases

336

Is	JRuby	For	Me?
When	I	got	started	with	Ruby,	in	2010,	there	really	was	no	alternative	to	the	default
implementation	of	Ruby,	CRuby.	Most	people	were	vaguely	aware	of	JRuby,	but	it
wasn't	widely	used,	and	making	an	application	run	on	JRuby	was	a	pain.

I'm	happy	to	say	that	situation	has	changed	-	JRuby	enjoys	a	vibrant	contributor
community,	a	wide	following	in	enterprise	deployments,	and	an	increasingly	bright	future
with	skunkworks	moonshots	like	JRuby+Truffle.

This	lesson	gives	an	overview	of	what	the	hubbub	around	JRuby	is	all	about,	where
JRuby	is	going	in	the	future,	how	to	run	your	application	on	JRuby,	and	lists	some
practical	tips	for	working	and	deploying	on	the	Java	Virtual	Machine.

Why	is	JRuby	fast?
Fundamentally,	JRuby's	philosophy	is	to	re-use	the	decades	of	work	that	has	gone	into
the	Java	Virtual	Machine	by	re-using	it	to	run	Ruby	instead	of	Java.	There	are	a	lot	of
JVM-based	languages	-	you	may	have	heard	of	Clojure,	Scala,	or	Groovy.	These
language	implementations	turn	source	code	into	bytecode	that	the	JVM	can	understand
and	run.	Although	we	often	speak	of	"the	JVM",	really,	what	we	mean	is	the	JVM
specification.	The	JVM	is	an	abstract	concept,	and	there	even	many	implementations	of
the	JVM.	The	official	one,	which	is	the	one	JRuby	installations	use,	is	the	HotSpot	VM,
distributed	as	a	part	of	Oracle's	Java	Runtime	Environment.	HotSpot	is	over	15	years
old,	and	a	lot	of	work	from	large	corporations	has	gone	into	making	it	as	fast	as	possible.

In	order	to	run	your	Ruby	code	as	fast	as	possible	JRuby	makes	a	couple	of	tradeoffs:

JRuby	uses	more	memory	at	boot.	Optimizing	the	performance	of	a	language
almost	always	involves	a	memory/CPU	tradeoff.	A	language	can	be	faster	by
eagerly	loading	code	paths	or	caching	the	results	of	code	execution,	but	this	will
necessarily	result	in	higher	memory	use.	JRuby,	thus,	tends	to	use	more	memory
than	the	equivalent	application	running	with	MRI.	There's	a	major	exception,	here
though	-	JRuby	tends	to	use	more	memory	in	the	simplest	case,	though	it	uses	far
less	memory	than	MRI	as	it	scales.	Also,	this	tradeoff	of	memory-for-performance	is
tuneable.	We'll	get	to	both	points	in	a	second.
JRuby	takes	longer	to	start	up.	JRuby	uses	a	limited	amount	of	"just-in-time"

JRuby

337

compilation,	explained	further	below.	However,	when	you	restart	a	JVM,	it	does	not
save	the	optimized	code	snippets	it	generated,	and	has	to	re-generate	them	the
next	time	it	boots.	The	JIT,	for	this	reason,	may	actually	slow	down	really	short
tasks,	such	as	installing	a	Rubygem.
JRuby	has	a	warmup	period.	Even	after	starting	up,	JRuby	may	be	slower	than
CRuby.	Several	of	JRuby's	performance	optimizations	require	code	to	be	run	a	few
times	before	JRuby	can	actually	optimize	it	-	for	example,	certain	optimizations	may
only	"turn	on"	once	a	bit	of	code	is	executed	50	or	more	times	in	quick	succession.
No	access	to	C	extensions.	This	used	to	be	a	much	more	painful	tradeoff,	but	you
can't	use	C	extensions	in	JRuby.	C	extensions	are	essentially	small	C	programs	that
interface	directly	with	the	Ruby	VM,	sharing	memory	space	with	it.	This	is	pretty
much	impossible	for	JRuby.	Some	popular	C	extensions	you	may	use	are	gems	like
	nokogiri	,	which	uses		libxml2		to	use	C	to	parse	HTML.

In	return,	though,	we	get	several	benefits:

JRuby	is	fast	after	its	warmup	period.	In	a	long-running	process,	all	of	the	start-
up	costs	of	JRuby	get	paid	back.	JRuby	maintains	a	set	of	running	benchmarks	at
JRuby.org,	and	they	show	that,	overall,	JRuby	is	1.3x	as	fast	as	Ruby	2.3.
True	parallel	threads,	cheaply.	If	a	30%	speedup	isn't	that	interesting	to	you	(it	is
to	me!),	consider	this	-	in	JRuby,	threads	can	be	executed	in	parallel.	There	is	no
"interpreter	lock"	or	"virtual	machine	lock"	-	threads	can	simply	execute	at	the	same
time,	making	for	true	parallel	execution.	In	highly	concurrent	situations	(for	example,
serving	many	web	requests	at	once),	this	makes	the	JVM	much	more	efficient	and
performant	than	its	CRuby	cousin.
An	extremely	mature	garbage	collection	process.	On	the	JVM,	you	actually	have
a	choice	of	the	garbage	collector	you	use.	In	fact,	you	have	4	choices!	Each	one
has	more	disadvantages	and	advantages	than	we	can	get	into	here,	but	know	that
garbage	collection	(and,	therefore,	overall	memory	usage)	is	far	more	mature	and
stable	on	the	JVM	than	in	CRuby.
Portability.	Java	was	designed	to	be	a	portable	language.	Officially,	CRuby	only
supports	Linux	on	x86	architectures.	By	contrast,	the	HotSpot	VM	that	JRuby	uses
supports	ARM	and	SPARC	architectures,	and	has	official	support	for	Windows,
Mac,	Linux	and	Solaris.
Access	to	the	Java	ecosystem.	Although	JRuby	doesn't	get	C	extensions,	it	does
get	access	to	running	Java	code	inside	of	Ruby.	Any	Java	library,	of	which	there	are
several,	can	be	called	by	your	Ruby	program.

JRuby

338

http://jruby.org/bench9000/

This	collection	of	tradeoffs	means	the	JRuby	makes	a	lot	of	sense	in	long-lived
enterprise	deployments,	especially	in	situations	where	high	concurrency	is	required	(for
example,	maintaining	many	persistent	connections	at	once	with	WebSockets).	As	an
example,	top-shelf	game	publishers	have	use	JRuby	and	the	Torquebox	application
server	as	the	network	back-ends	to	videogames	for	tracking	achievements	and	user
analytics.

Where	is	JRuby	going?
Part	of	the	reason	why	I	wanted	to	cover	JRuby	in	this	course	is	because	I	feel	its	future
is	so	bright.	Development	on	the	JRuby	project	has	skyrocketed	in	the	last	few	years,
especially	since	the	version	9.0.0.0	release,	and	it	shows	no	signs	of	slowing.

Several	performance	optimizations	are	"on	their	way"	in	2016.

JRuby	has	has	an	ace-in-the-hole	when	it	comes	to	performance	-	JRuby+Truffle.	This
project	is	truly	the	dark	horse	of	Ruby's	future.	Led	by	Chris	Seaton	of	Oracle,	its	goal	is
to	integrate	JRuby	with	the	Graal	dynamic	compiler	and	the	Truffle	AST	interpreter.

The	Truffle	project	is	an	extremely	high	performance	implementation	of	Ruby	-	on
JRuby's	own	benchmarks,	it	performs	64x	faster	than	Ruby	2.3.	If	the	Truffle	project
succeeds	in	its	aims,	it	would	be	like	the	release	of	the	V8	Javascript	compiler	all	over
again:	an	electric	rebirth	of	an	otherwise	slow	language.

However,	the	Truffle	project	is	a	long	way	to	completely	supporting	Ruby.	It	only	recently
became	complete	enough	to	run	a	Sinatra	application	in	2015,	and	is	only	capable	of
"Hello	World"-type	applications	in	Rails	as	of	2016.

If	you're	interested	in	how	Truffle	works	and	why	it's	so	much	faster	than	CRuby,	check
out	Chris	Seaton's	blog.	Chris	is	an	extremely	smart	guy	(he	has	a	PhD	in	programming
languages),	and	does	a	great	job	of	explaining	the	extremely	complex	work	that	goes	in
to	optimizing	a	language	VM.

JRuby	is	slowly	moving	forward	on	compatibility	and	ease-of-use,	though	it's	doing	fairly
well	to	begin	with.	Let's	take	a	look	at	how	difficult	it	is	to	convert	an	existing	Rails
application	to	JRuby.

Switching	to	JRuby
Running	your	Rails	app	on	JRuby	is	a	surprisingly	simple	process.

JRuby

339

http://chrisseaton.com/rubytruffle/

Installing	JRuby

First,	we	have	to	make	sure	we're	running	an	up-to-date	version	of	Java.	As	of	writing,
this	is	Java	8.	To	check	which	version	of	Java	you	have,	run		java	-version		in	the
console.	Weirdly,	the	Java	Development	Kit	versions	are	prefixed	with	a	"1",	so	we're
looking	for	version	"1.8.x":

$	java	-version

java	version	"1.8.0_65"

Java(TM)	SE	Runtime	Environment	(build	1.8.0_65-b17)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.65-b01,	mixed	mode)

If	you've	got	an	older	version	(1.7.x		or		1.6.x),	you	need	to	install	a	more	recent
version	of	the	Java	Development	Kit.

Next,	we	have	to	install	JRuby.	This	process	will	depend	on	the	Ruby	version	manager
you	use	(RVM,	rbenv,	etc.).	I	use		chruby		and		ruby-install	,	so	my	install	looks	like
this:

$	ruby-install	jruby	9.0.5.0	&&	chruby	jruby

You	can	test	your	JRuby	install	at	this	point	by	booting	an	interactive	console	with		jirb	.
Just	run		jirb		in	your	console.

Switching	To	JRuby-friendly	Gems

Next,	we	need	to	make	sure	all	of	the	dependencies	of	our	project	are	JRuby-
compatible.	Here's	the	common	ones:

Database	gems	need	to	be	swapped	for	the	JDBC	equivalents.		pg		must	be
swapped	for		activerecord-jdbcpostgresql-adapter	,	and	so	on.
Application	servers	should	be	changed	for		puma	,		torquebox		or		trinidad	.
Application	servers	that		fork		won't	work	with	JRuby.
	therubyracer		needs	to	be	changed	to		therhinoracer			therubyracer		uses	the	V8
engine	to	compile	Javascript,	and	the		therhinoracer		uses	the	JVM.
Other	C-extension	gems	that	will	fail	to	compile	-	for	example,		better_errors	
depends	on		binding_of_caller	,	which	uses	a	C-extension.		dalli	's		kgio		also
uses	a	C-extension.	If	you	see	gem	fail	to	compile,	it's	got	a	C-extension.

We	can	make	these	gem	swaps	dependent	on	the	version	of	Ruby	we're	running:

JRuby

340

platforms	:ruby	do

		gem	'pg'

		gem	'unicorn'

		gem	'therubyracer'

end

platforms	:jruby	do

		gem	'activerecord-jdbc-adapter'

		gem	'puma'

		gem	'therhinoracer'

end

That's	it!

For	the	most	up-to-date	information	on	this	topic,	I	suggest	reading	Heroku's	step-by-
step	on	moving	an	existing	app	to	JRuby.

Practical	tips
Java	7	shipped	with	a	important	feature	called		invokedynamic		-	it's	a	feature	that
increases	the	performance	of	dynamically	typed	languages	(like	Ruby!)	running	on	the
JVM.	It's	been	supported	in	JRuby	since	version	1.1,	and	it's	pretty	critical	for
performance	-	applications	can	see	a	2-4x	speedup.	Be	sure	to	turn	it	on	when	testing
out	JRuby.	You	can	enable		invokedynamic		on	the	command	line:		-
Xcompile.invokedynamic=true	.	This	will	significantly	slow	down	startup	time,	especially	for
Rails	applications,	but	should	pay	off	after	the	JVM	has	warmed	up.

Speaking	of	warmup	and	startup	time,	the	JRuby	developers	realize	that	this	is	one	of
the	major	blockers	for	wider	JRuby	adoption.	In	JRuby	1.7,	the		—dev		flag	was
introduced,	which	tells	the	JVM	to	basically	prefer	faster	startup	over	increased
optimization	after	boot.	It	turns	off		invokedynamic	,	as	explained	above,	and	disables	the
JVM	bytecode	compiler.	Also,	the	JVM	has	a	notion	of	running	in	"client"	or	"server"
mode	-	these	are	actually	two	different	compilers	that	are	suited	towards	running	a	client
app	or	a	server	app.	Running	with	the		dev		flag	enables	"client"	mode,	further	improving
boot	times.	When	developing,	you	may	just	want	to	turn	this	on	all	the	time	by	changing
the		JRUBY_OPTS		environment	variable:		export	JRUBY_OPTS="--dev"	

I	mentioned	above	that	JRuby	tends	to	use	more	memory	than	CRuby.	JRuby	and	the
JVM,	unlike	CRuby,	have	the	notion	of	a	"maximum	heap	size".	If	we	set	a	maximum
heap	size,	JRuby	will	not	use	memory	beyond	that	limit.	The	maximum	can	be	set	with

JRuby

341

https://devcenter.heroku.com/articles/moving-an-existing-rails-app-to-run-on-jruby

the		-Xmx		parameter:		-Xmx256m		sets	the	maximum	heap	size	to	256MB.	This	could	also
be	tuned	upward	in	a	production	environment.

Most	of	the	lesson	material	on	profiling	in	this	Guide	does	not	apply	to	JRuby	-	however,
the	Java	Virtual	Machine	has	a	mature	ecosystem	for	profiling	tools,	all	of	which	will
work	out	of	the	box	with	JRuby.	JRuby	also	ships	with	a	profiler	-	it	can	be	enabled	with
the		—profile		flag	on	the	command	line	or	used	similarly	to	RubyProf:

require	'jruby/profiler'

result	=	JRuby::Profiler.profile	do

		#	code

end

If	you've	used	the	Spring	preloader	with	Rails	before,	you	might	be	wondering	if	a	similar
approach	would	work	to	offset	JRuby's	large	startup	costs.	Spring	uses	the		fork	
system	command,	however,	which	doesn't	really	make	sense	for	use	with	the	JVM.
JRuby	support	is	currently	under	development	for	Spring	-	check	here	for	more
information.

If	you're	unsure	about	whether	or	not	a	particular	gem	will	work	with	JRuby,	check	to	see
if	the	project	already	tests	on	JRuby.	Most	open-source	projects	use	TravisCI	or	a
similar	service	to	run	their	tests	for	free,	and	you	can	see	if	their	test	suite	passes	on
JRuby	or	not.

You	may	notice	that,	while	this	Guide	has	a	lesson	on	JRuby,	it	has	no	lesson	on
Rubinius,	Opal	or	any	other	Ruby	implementation.	As	far	as	I	can	tell,	as	of	2016,	JRuby
seems	the	only	plausible	alternative	Ruby	implementation	for	non-trivial	production	use.
JRuby's	wide	adoption	in	the	enterprise	ensures	that	the	community	will	remain	strong
for	years	to	come,	while	other	implementations	have	failed	to	gain	major	production
deployments.	JRuby's	core	team	is	strong	too	-	with	corporate	support	from	RedHat	and
Oracle,	JRuby	has	14	committers	with	over	500	commits	each.	As	a	comparison,
Rubinius	has	7	(with	many	of	them	not	contributing	since	2009),	and	Opal	just	3.

JRuby

342

https://github.com/rails/spring/pull/449

Checklist	for	Your	App
Consider	JRuby.	JRuby	is	a	mature	alternative	to	C	Ruby,	employed	by	many
large	enterprise	deployments.	It's	become	more	usable	with	the	JRuby	9.0.0.0
release,	and	development	appears	to	only	be	speeding	up	as	time	goes	on.

JRuby

343

Alternative	Memory	Allocators
Have	you	talked	to	your	memory	allocator	lately?	Sent	it	a	card	for	its	birthday,	or	asked
how	its	mother	was	doing?	I	didn't	think	so	-	memory	allocators	are	often	taken	for
granted	by	Ruby	programmers.	Just	get	me	the	memory	I	need,	don't	use	too	much,	and
do	it	quickly!

This	is,	of	course,	by	design.	Ruby	is	a	language	designed	to	shunt	brain	cycles	away
from	memory	allocation,	type	checking,	and	boilerplate	and	allow	you	to	focus	on	code
that	is	readable,	beautiful,	and	fun	to	work	with.	If	we	wanted	to	think	about	how	our
memory	gets	allocated,	we'd	be	writing	C!

We've	already	discussed	memory	profiling	and	dealing	with	bloat	and	leaks.	Most	of
those	lessons	have	dealt	with	things	going	on	inside	of	the	Ruby	VM.	However,
something	has	to	be	the	liaison	between	the	Ruby	VM	and	the	operating	system's
memory.	That's	what	a	memory	allocator	is	for.

Your	Rails	application	usually	will	(and	frequently	does)	allocate	memory	during	a
request	-	this	means	that	the	performance	of	our	memory	allocator	is	an	extremely
important	part	of	our	overall	application	performance.	In	addition,	memory	allocators	can
have	an	impact	on	the	overall	memory	usage	of	our	programs,	as	they	all	deal	with
freeing	and	defragmenting	memory	differently.

One	of	the	reasons	I'm	so	interested	in	memory	allocator	choice	for	Ruby	programs	is
that	it's,	possibly,	a	free	improvement	to	your	application's	performance	and	memory
usage.	Changing	memory	allocators	does	not	require	any	change	to	your	application
code,	and	is	generally	a	completely	painless	process.	I'm	always	for	free	wins	-	so	let's
dig	in.

Allocating	an	object	in	Ruby
A	quick	warning	-	Ruby's	garbage	collector	was	under	active	development	from	versions
2.0	to	2.3.	This	lesson	will	refer	to	GC	behavior	in	Ruby	2.3,	which	may	differ	from	your
version.	For	example,	many	keys	in		GC.stat		changed	in	version	2.1.

When	you	start	a	new	Ruby	process,	Ruby	automatically	allocates	a	certain	amount	of
memory	for	itself.

Memory	Allocators

344

https://bugs.ruby-lang.org/issues/9924

In	Ruby,	memory	is	organized	into	pages	and	slots	-	pages	have	many	slots,	and	each
slot	contains	a	single		RVALUE	.	These		RVALUE		objects	normally	has	a	size	of	40	bytes.
You	can	verify	this	yourself	by	checking		GC::INTERNAL_CONSTANTS[:RVALUE_SIZE]	.

Ruby	starts	up	with	a	certain	number	of	initial	heap	slots,	determined	by	the	environment
variable		RUBY_GC_HEAP_INIT_SLOTS	.	Roughly,	the	amount	of	memory	your	new	Ruby
process	should	take	up	should	be	equal	to	the	number	of	heap	slots	it	starts	with,
multiplied	by	the	size	of	a	heap	slot	(again,	40	bytes).

Once	Ruby	runs	out	of	free	heap	slots,	it	asks	the	memory	allocator	to	request	more
memory	from	the	operating	system	for	more	heap	slots.	It	doesn't	request	memory	from
the	operating	system	every	time	you	allocate	an	object	-	for	example:

MyObject.new

…doesn't	necessarily	trigger	a	memory	allocation.

However,	if	we	were	out	of	heap	slots,	Ruby	will	start	up	the	memory	allocator	and	ask
for	more	memory.	The	number	of	heap	slots	it	allocates	depends	on	the	GC	variable
	RUBY_GC_HEAP_GROWTH_FACTOR		-	by	default,	this	is	1.8.	The	number	of	total	heap	slots	we'll
want	after	allocating	is	equal	to	the	current	number	of	slots	multiplied	by	this	factor.	If
we've	got	40000	full	slots,	and	we	want	to	grow	the	heap,	we'll	end	up	with	72,000	slots.

Enter	malloc!
This	process	of	enlarging	the	Ruby	heap	is	managed	by		malloc(3)	,	a	function	in	the	C
programming	language	that	allocates	memory	dynamically.	This	function	is	actually
carried	out	by	any	number	of	possible	memory	allocation	libraries	-	by	default,	Ruby
uses	the	standard		malloc		implementation	included	in		glibc	.

There	are	several	alternative		malloc(3)		compatible	memory	allocators	out	there:

	ptmalloc2		-	This	is		glibc	's	default	malloc.
	dlmalloc		-	Doug	Lea's	Memory	Allocator.		ptmalloc2		is	a	fork	of	this	allocator,
because		dlmalloc		has	some	critical	limitations	-	it	doesn't	work	with	virtual	memory
and	isn't	designed	to	work	with	threaded	programs.	It	was	written	in	1987,	originally
-	back	then,	you	only	had	1	thread!
	jemalloc		-	Developed	by	facebook,		jemalloc		is	designed	to	be	performant	for
multithreaded	programs.
	tcmalloc		-	"Thread-Caching	Malloc",	also	designed	for	multithreaded	work.

Memory	Allocators

345

Developed	by	Google.
	hoard		-	Non-free	(in	the	GNU	sense	of	the	word)	allocator.	Intended	to	improve
fragmentation	in	multi-thread/multi-core	programs.

Memory	allocators	have	a	lot	of	critical	problems	to	deal	with	-	the	most	important	for	us
are	performance,	dealing	with	threads	and	reducing	fragmentation.

What	makes	a	memory	allocator	fast?	Like	most	programs,	the	program	does	the	least
amount	of	work	possible	will	be	the	fastest.	All	memory	allocators	are	written	in	highly
optimized	C	code	-	generally,	their	speed	differences	come	in	how	efficiently	they	deal
with	problem	of	multithreading.

What	makes	a	memory	allocator	good	for	multi-threaded	programs?	In	general,	the
problem	of	managing	threads	that	want	to	allocate	memory	at	the	same	time	is	complex
-	we	need	to	be	sure	that	two	threads	don't	claim	the	same	piece	of	memory.	If	they	do,
that	will	almost	certainly	result	in	a	crash	of	the	entire	program	-	quite	literally	a
segmentation	fault.	Some	memory	allocators	manage	this	problem	with	locks,	like	your
database.	Some	allocators,	like		tcmalloc	,	use	caching	strategies	to	create	almost-
lockless	access	to	memory	for	multiple	threads.	Other	memory	allocators	that	are
particularly	good	for	multithreaded	programs	use	completely	lockless	designs.

What	makes	a	memory	allocator	good	at	reducing	fragmentation?	In	general,	there	is	a
tradeoff	between	memory	usage	and	performance.	Fast	algorithms	tend	to	use	more
memory,	and	we	can	reduce	memory	usage	by	sacrificing	some	performance.	This	is
also	true	in	memory	allocators	-		jemalloc	,	while	still	fast,	implements	several	strategies
to	reduce	memory	fragmentation	that	should,	overall,	reduce	the	amount	of	memory
usage	of	your	program.

How	do	I	use	an	alternate	malloc
implementation?
In	general,	the	easiest	way	to	load	an	alternative		malloc		implementation	right	now	in
Ruby	2.3	is	to	"trick"	Ruby	into	thinking	that	your	chosen		malloc		is	the	system	default
	malloc		-	we	do	this	by	using	the		LD_PRELOAD		environment	variable	in	Linux,	or
	DYLD_INSERT_LIBRARIES		on	Mac.

For	example,	to	install	and	use		jemalloc		on	Mac:

Memory	Allocators

346

$	brew	install	jemalloc

$	DYLD_INSERT_LIBRARIES=/usr/local/Cellar/jemalloc/4.0.0/lib/libjemalloc.dylib	rub

y	-e	"puts	'jemalloc'"

On	a	Linux	box,	use		LD_PRELOAD	:

$	LD_PRELOAD=/home/nate/src/jemalloc-4.0.0/lib/libjemalloc.so		ruby	-e	"puts	'jema

lloc'"

In	Ruby	2.3,	you	may	now	configure		jemalloc		as	the	default	memory	allocator,	if
	jemalloc		is	installed	-	just		./configure	--with-jemalloc	.	This	support	doesn't	exist	for
any	other	allocator	-	all	others	must	use		DYLD_INSERT_LIBRARIES		or		LD_PRELOAD	.

Memory	allocator	benchmarks
Which	memory	allocator	do	you	use?	I've	prepared	some	benchmarks	and	ran	all	of	the
competitors	on	my	local	machine	-	consider	running	these	yourself,	especially	on	your
production	hardware.	I'm	going	to	use	Sam	Saffron's	"GC	stress	test",	which	essentially
just	allocates	a	billion	strings.	In	addition,	I'm	going	to	try	a	60-second	"dynamic"
benchmark	against	Rubygems.org	-	the	benchmark	involves	taking	32	load-testing
workers	and	requesting	random	Rubygems	from	the	site's	index.

Sam's	"GC	stress	test"	will	give	us	an	idea	of	the	overall	speed	of	the	allocator,	while	our
dynamic	benchmark	against	Rubygems.org	will	give	us	a	better	idea	of	our	performance
in	a	real-world,	multi-threaded	and	multi-process	situation.

glibc

In	the	GC	stress	test,		glibc		took	5.9	seconds	to	complete	the	test,	on	average.	It	was
the	slowest	allocator	on	this	measure.	It	took	up	185MB	of	RSS,	which	made	it
"average"	on	my	machine	on	this	test.

In	the	dynamic	benchmark	against	Rubygems.org,		malloc		performed	somewhat
inconsistently.	Once,	I	even	saw		malloc	's	end	total	of	RSS	usage	double	compared	to
other	implementations.	In	general,	however,	it	did	well	-	its	memory	usage	at	the	end	of
the	test	was	about	~180MB	of	RSS	per	worker.

Here's	the	abridged	about	from		siege	,	the	load	testing	tool	I	used	for	this	test:

Memory	Allocators

347

Transactions:															14343	hits

Response	time:																0.16	secs

Longest	transaction:												0.80

Shortest	transaction:												0.02

jemalloc
	DYLD_INSERT_LIBRARIES=/usr/local/Cellar/jemalloc/4.0.0/	

I	expected		jemalloc		to	be	the	clear	winner	here,	but	it	didn't	perform	quite	as	well	as	I
thought	it	would.	It's	the	preferred	allocator	of	the	Discourse	project,	whose	tech	lead
Sam	Saffron	claims	saves	them	10%	of	their	RSS	usage.

In	the	GC	stress	test,		jemalloc		completed	it	in	an	average	of	5.2	seconds,	roughly	15%
faster	than		malloc	.	However,	the	GC	stress	test	is	a	slightly	unrealistic	scenario	-	it's
really	the	"worst	case	scenario"	for	any	allocator,	so	it's	difficult	to	draw	any	big
conclusions	from	this	test.

In	our	more	real-world	Rubygems.org	test,		jemalloc	

Transactions:															14869	hits

Response	time:																0.14	secs

Longest	transaction:												1.08

Shortest	transaction:												0.02

tcmalloc
	DYLD_INSERT_LIBRARIES=/usr/local/Cellar/gperftools/2.4/lib/libtcmalloc.dylib	

	tcmalloc		is	distributed	as	part	of	Google's		gperftools		package	-	to	use	it,	you'll	need
to		brew	install	gperftools		and	look	for	it	there.

	tcmalloc		did	well	in	the	GC	stress	test,	with	a	fast	5.1	second	completion	time,	making
it	also	15%	faster	than	the	standard		malloc	.

It	performed	more	or	less	equal	to	the	default	implementation	in	the	real-world
Rubygems.org	benchmark,	however:

Transactions:															14334	hits

Response	time:																0.16	secs

Transaction	rate:											47.90	trans/sec

Longest	transaction:												1.17

Shortest	transaction:												0.02

Memory	Allocators

348

hoard

DYLD_INSERT_LIBRARIES=~/Code/Hoard/src/libhoard.dylib

Hoard	is	not	available	on		homebrew	,	probably	due	to	the	licensing	-	it	does	not	use	a
free	software	license.	You	have	to	download	and	compile	the	source	yourself,	and	if	you
use	it	on	a	commercial	project,	you	need	to	pay	for	a	license.

	hoard		performed	more	or	less	equal	to		jemalloc		on	all	measures	-	its	GC	stress	test
results	were	almost	identical,	and	the	real-world	benchmark	was	also	more	or	less
equal.

Transactions:															14213	hits

Response	time:																0.17	secs

Transaction	rate:											47.43	trans/sec

Longest	transaction:												1.07

Shortest	transaction:												0.02

Conclusions
Changing	your	memory	allocator	is	a	low-downside,	possible-high-upside	change
to	your	Ruby	application.	All	of	the	memory	allocators	tested	here	were	highly	stable
under	production	loads	and	situations,	so	I	think	they're	all	"ready	for	production".	In
addition,	because	changing	memory	allocators	requires	no	code	changes,	I	think	it's	a
performance	optimization	anyone	should	try,	especially	if	they're	struggling	with	memory
bloat.

In	real-world,	production	situations,	I've	found		jemalloc		to	be	a	slightly	more	consistent
performer	than	the	default.	Although	my	synthetic	"real-world"	benchmark	didn't	really
show	any	significant	differences	between	implementations,	I	still	think	that	in	production
situations	-	where	many	users	may	be	hitting	many	different	routes	at	once	-	these
memory	allocators	can	make	a	small	difference.	And	since	it's	trivial	to	change,	why	not?

However,	as	shown	by	the	real-world	Rubygems.org	benchmark,	the	performance
implications	may	be	minimal.	None	of	the	allocators	showed	significant	differences	in
total	memory	usage	at	boot	time	or	even	in	total	RSS	usage	at	the	end	of	our	real-world
benchmark.

Memory	Allocators

349

If	you'd	like	to	try	an	alternative	allocator	on	Heroku,	you	can	check	out	the		jemalloc	
buildpack	that	I	help	maintain.	It's	a	10-second	install	with	the	new	native	"multi-
buildpack"	Heroku	features,	and	has	performed	well	in	production	for	my	clients.

Checklist	for	Your	App
Try	a	different	memory	allocator.		jemalloc		is	a	well-tested	and	proven
alternative.	It	may	have	a	small	impact	on	total	memory	usage	and	performance.

Memory	Allocators

350

https://github.com/mojodna/heroku-buildpack-jemalloc

Making	SSL	Fast	and	Secure
The	web	is	waking	up	to	security.	Thanks	to	recent	revelations	about	the	extent	of
government	surveillance	and	ever-more	high-profile	attacks	on	corporations	and
celebrities,	we're	starting	to	realize	that	we	must	encrypt	everything.	Also	until	recently,
doing	this	-	SSLizing	everything	under	the	sun	-	was	difficult	and	expensive.	Now,	with
services	like	LetsEncrypt.org	and	SSL	termination	offered	by	intermediate	CDNs	like
Cloudflare,	it's	easy	and	even	free	to	set	up	SSL	on	any	website.

First,	a	little	bit	of	definition	-	what's	the	difference	between	SSL,	TLS,	and	HTTPS?

SSL	and	TLS	are	really	the	same	thing	-	when	SSL	was	invented	by	Netscape	in	the
90s,	they	called	it	the	Secure	Socket	Layer.	At	the	height	of	the	internet	boom	in	1999,
the	Internet	Engineering	Taskforce	(IETF)	codified	the	until-then-proprietary	technology
as	Transportation	Layer	Security,	or	TLS.	Most	people	still	call	it	"SSL",	which	is	pretty
much	correct	(since	they're	just	different	versions	of	the	same	technology),	so	that's
what	I'll	use	here	to	avoid	confusion.

SSL	sits	between	TCP	and	HTTP	in	the	network	stack	-	it	lives	on	top	of	TCP,	but
beneath	("transporting")	the	application-layer	concern	of	HTTP.	HTTPS	is	literally	just
"HTTP	over	SSL",	and	is	not	a	separate	protocol	to	HTTP.

Also	at	the	outset,	let's	get	another	fact	straight	-	SSL	does	not	impose	enough	of	a
performance	cost	to	make	any	argument	about	"it's	too	slow	to	use."	Cryptographic
functions	used	by	SSL	are,	with	modern	hardware,	a	negligible	fraction	of	CPU	time	on
client	and	server.	SSL	does	not	impact	network	bandwidth/throughput	in	any	meaningful
way.	It	does,	however,	impose	a	small	latency	penalty.	This	latency	penalty	is	a
necessary	consequence	of	how	SSL	works,	and	we	have	a	lot	of	of	knobs	in	the	SSL
protocol	that	we	can	twiddle	to	reduce	this	penalty.

As	performance-minded	web	application	developers,	what	we're	concerned	about	is	this:

SSL

351

This	is	a	chart	from	webpagetest.org,	charting	Rubygems.org's	initial	page	load	time.
SSL	requires	several	network	round-trips	to	establish,	meaning	that	SSL	will	add
(average	round-trip	time	*	#	of	round	trips)	of	a	delay	to	your	initial	page	load.	In	the
above	case,	SSL	added	181	milliseconds	-	with	careful	configuration	twiddling,	we	can
reduce	this	by	over	100	milliseconds,	making	SSL's	overhead	almost	trivial.

It's	worth	noting	that	181	milliseconds	may	not	seem	like	a	lot	-	it	isn't,	really.	However,	it
does	add	up	-	SSL	negotiation	must	happen	on	every	new	TCP	connection	between
client	and	server,	imposing	huge	penalties	when	several	parallel	connections	are
opened	to	download,	say,	your	CSS,	JS	and	images	in	parallel.	Also,	SSL	hits	mobile
users	the	hardest	-	in	connection	environments	that	are	spotty,	SSL	negotiation	can	take
far	longer	as	critical	packets	must	be	re-sent	as	they	are	dropped.

A	Quick	Overview	of	How	SSL	Works
First,	we	need	to	get	on	common	ground	regarding	how	SSL	works.	The	average
developer's	knowledge	of	SSL	probably	only	goes	as	deep	as	"it	encrypts	my	HTTP
connection	so	the	NSA	can't	read	it"	-	which	is	good,	because	SSL	should	be	easy	to
implement	for	developers	like	us	and	shouldn't	require	an	in-depth	knowledge	of	the
protocol.

SSL	negotiation	takes	a	few	basic	steps:

1.	 We	have	to	open	a	new	TCP	connection.	This	requires	a	network	roundtrip.
2.	 Next,	the	client	(let's	just	say	it's	a	browser),	sends	a	list	of	cipher	suites	and	other

important	information	about	its	SSL	capabilities	to	the	server.
3.	 The	server	picks	a	cipher	from	the	list,	and	sends	its	SSL	certificate	back	to

the	client.
4.	 The	client,	which	now	has	an	agreed-upon	common	cipher	and	SSL	version,	sends

its	key	exchange	parameters	back	to	the	server.
5.	 The	server	processes	those	key	exchange	parameters,	verifies	the	message,

and	returns	a	'Finished'	message	back	to	the	client.
6.	 The	client	decrypts	the		Finished		message,	and	we	now	have	a	secure	SSL

connection.

This	is	pretty	complicated.	Security	isn't	simple.	What	you'll	notice	is	that	this	process
requires	two	full	round-trips.	With	some	work,	we	can	reduce	that	to	one	in	most	cases,
making	our	SSL	experiences	as	fast	as	possible.

SSL

352

SSL	Sessions
This	is	probably	the	most	important	SSL	optimization	we	can	make	-	session
resumption.

With	SSL	sessions,	the	server	can	send	a	"session	identifier"	along	with	its	certificate
during	the	SSL	negotiation	process.	Think	of	this	SSL	session	identifier	as	a	bit	like	the
session	cookie	in	Rails	application.	However,	while	a	Rails	session	cookie	represents	a
user	login	to	your	application,	the	SSL	session	identifier	represents	a	set	of	agreed-upon
SSL	parameters.	A	session	identifier	basically	just	stands	for	"the	client	and	server	have
agreed	to	this	particular	set	of	TLS	version	and	cipher	suite."

The	advantage	of	this	is	that	the	client	can	store	this	session	identifier.	In	the	future,
when	opening	a	new	connection,	the	client	can	skip	an	entire	network	roundtrip,
because	the	cipher	suite	and	TLS	version	have	already	been	negotiated.	This	usually
halves	your	total	SSL	negotiation	time.

As	an	example,	here's	how	SSL	session	resumption	looks	in		nginx.conf	:

http	{

		ssl_session_cache			shared:SSL:10m;

		ssl_session_timeout	10m;

}

A	necessary	consequence	of	SSL	session	resumption	is	that	the	server	must	keep	track
of	these	sessions	-	NGINX	accomplishes	the	task	with	a	cache.	In	the	example	above,
sessions	live	for	10	minutes	and	the	cache	has	a	10MB	size.	The	need	for	a	session
cache	can	be	alleviated	by	something	called	a	session	ticket	-	NGINX	uses	these	by
default.	Check	your	server	documentation	for	more	details.	Not	all	browsers	support
session	tickets,	either,	so	you'll	probably	still	want	a	session	cache.

SSL	sessions	are	not	enabled	by	default	on	most	webservers.	The	reason	is	that	it
makes	proper	load	balancing	far	more	complicated	-	when	enabling	SSL	sessions,
consult	your	local	DevOps	guy	and	do	some	research	on	how	it	may	affect	your	load-
balancing.

OCSP	Stapling

SSL

353

SSL	certificates	can	be	revoked.	If,	say,	an	attacker	discovers	your	server's	private	key,
they	could	pretend	to	be	you	and	use	your	SSL	certificate	on	their	own	servers.	If	this
ever	happened,	you	would	want	to	revoke	your	SSL	certificate.

Clients	must	verify	whether	or	not	the	SSL	certificate	provided	to	them	by	the	server	has
been	revoked	or	not.	Simply	presenting	a	certificate	to	the	client	is	not	enough	-	the
client	has	no	idea	whether	or	not	this	certificate	is	still	good!

There	are	two	ways	for	a	client	browser	to	do	this	-	the	Certificate	Revocation	List,	and
the	Online	Certificate	Status	Protocol.

The	Certificate	Revocation	List,	or	CRL,	is	just	an	enormous	list	of	SSL	certificates	that
have	been	revoked,	listed	by	serial	number.	This	list	is	maintained	by	the	Certificate
Authority,	the	people	you	buy	your	SSL	certificate	from.	The	problem	with	the	CRL
approach	is	that	this	list	is	pretty	long	-	downloading	it	and	searching	through	it	takes
time.	However,	it	can	be	cached	by	client	browsers.

The	Online	Certificate	Status	Protocol,	or	OCSP,	is	the	CRL's	"real-time"	equivalent.
Instead	of	checking	for	the	certificate's	serial	number	in	a	huge	list,	the	browser	sends	a
network	request	to	the	certificate	authority	and	asks	"is	this	particular	certificate	#123	still
valid?".	To	use	a	Rails	metaphor:	if	CRL	is	CertificatesController#index,	think	of	OCSP
as	CertificatesController#show.	The	disadvantage	is	that	OCSP	incurs	an	additional
network	round-trip,	and	OCSP's	performance	is	vastly	dependent	on	how	fast	the
Certificate	Authority's	servers	are.	I	hope	you	didn't	pick	a	cut-rate	discount	CA!

What's	a	developer	to	do	with	this	information?	We	can	enable	something	called	OCSP
stapling	-	the	server	can	include	the	OCSP	response	from	the	certificate	authority	when
it	presents	its	certificate	to	the	client.	In	effect	the	server	is	saying,	"you	don't	need	to
check	if	this	revoked,	here's	a	signed	response	from	my	Certificate	Authority	saying	its
valid".

Check	your	webserver's	documentation	to	see	if	OCSP	stapling	is	supported.	Qualys'
SSL	test,	explained	in	more	detail	below,	will	tell	you	if	OCSP	stapling	is	already	enabled
on	your	site.

It's	important	to	note	that	OCSP	stapling	will	only	help	for	a	limited	subset	of	browsers	-
unfortunately,	exactly	how	browsers	check	for	certificate	revocation	varies	wildly	across
browsers.	OCSP	stapling	can't	hurt	the	performance	of	any	of	them	though,	so	it's
"better	safe	than	sorry".

HSTS

SSL

354

HSTS	stands	for	HTTP	Strict	Transport	Security.	It's	primarily	a	security	measure	-	it
protects	against	cookie	hijacking	and	protocol	downgrades.	For	example,	if	your	users
sign	up	for	your	site	over	SSL	and	receive	a	session	cookie	over	SSL,	that	cookie	is,	so
far,	a	secret	and	not	decryptable	by	any	men-in-the-middle.	However,	let's	say	that	the
next	day	the	user	types	"http://yoursite.com/"	into	the	address	bar.	The	session	cookie
they	received	yesterday	gets	sent,	in	plaintext,	across	the	network.	Eventually,	they'll
probably	get	redirected	to	the	SSL	version	of	your	website,	but	their	session	cookie	has
now	been	compromised	and	could	be	grabbed	by	men-in-the-middle	looking	to
impersonate	them.	This	is	similar	to	how	Ashton	Kutcher's	Twitter	account	got	hacked	a
few	years	back..

HSTS	closes	these	loopholes	by	telling	the	browser	that	it	should	never	attempt	to
connect	to	your	domain	over	an	unencrypted	connection.	By	turning	on	HSTS,	you're
telling	any	client	browser	that	connects	to	you	that	the	only	way	to	connect	to
	yoursite.com		is	over	SSL.	This	prevents	browser	from	accidentally	presenting	sensitive
information	in	plaintext.

You	should	probably	enable	HSTS	for	the	security	benefits	alone.	It	also	has	a	nice
performance	benefit,	though	-	it	eliminates	unnecessary	HTTP-to-HTTPS	redirects.
Unless,	for	some	weird	reason,	people	must	connect	to	your	domain	over	unencrypted
connections,	you	should	turn	on	HSTS.

Cipher	Suite	Selection
Cipher	suites	can	make	a	difference	in	SSL	performance.	Some	cryptographic	methods
are	just	faster	than	others,	so	we	should	not	support	slow	cryptographic	methods	on	our
servers.

Some	SSL	optimization	guides	may	advocate	this,	and	provide	a	list	of	"fast"	cipher
suites	for	your	particular	webserver.	I	do	not	recommend	choosing	cipher	suites
based	on	performance	characteristics,	however.	Cipher	selection	is	probably	one	of
the	most	important	parts	of	a	secure	SSL	connection,	because	attacks	against	these
ciphers	are	evolving	all	the	time.	Decisions	on	cipher	suites	should	be	made	primarily
with	security	in	mind,	not	performance.	Besides,	the	server	always	has	the	final	choice
as	to	what	cipher	will	be	used.	During	SSL	negotiation,	the	client	simply	presents	a	list	of
ciphers	it	supports.	The	server	is	the	member	of	the	negotiation	that	decides	exactly
which	cipher	will	be	used,	which	means	that	most	servers	will	intelligently	pick	the	fastest
and	most	secure	cipher	the	client	supports.

SSL

355

http://yoursite.com/
https://threatpost.com/celebrity-ashton-kutcher-firesheepd-ted-conference-030311/74993/

Instead,	you	should	choose	your	server's	list	of	supported	ciphers	based	on	Mozilla's
recommendations.	Mozilla	maintains	a	public	wiki	with	up-to-date	suggestions	for	secure
and	fast	ciphersuites.	Mostly,	the	decision	depends	on	what	level	of	browser	support	is
required.

False	Start
SSL	sessions	reduce	our	SSL	negotiation	by	a	full	network	round-trip	for	returning
visitors;	SSL	False	Start	can	help	us	reduce	SSL	negotiation	by	a	full	round-trip	even	for
new	visitors.

In	the	usual	SSL	negotiation,	the	client	waits	for	an	encrypted	"Finish"	message	from	the
server	before	sending	any	application	data.	This	makes	sense	-	by	that	point	in	the	SSL
negotiation,	the	client	and	server	have	already	agreed	upon	a	cipher	suite	and	TLS
version	along	with	the	shared	encryption	key.	Assuming	no	one	has	tampered	with	the
negotiation	process	so	far,	the	client	can	proceed.	This	eliminates	another	full	network
round-trip.

Support	for	false	start	depends	largely	on	the	client	browser.	IE	will	always	attempt	false
starts,	Safari	will	attempt	it	if	the	ciphersuite	enables	forward	secrecy,	and	Chrome	and
Firefox	need	forward	secrecy	and	something	called	an	"ALPN"	advertisement.

Forward	Secrecy

Forward	secrecy	is	a	property	of	some	ciphers	that	essentially	protects	communications
in	the	case	of	the	private	key	being	compromised.	If	the	private	key	is	discovered,	the
attacker	cannot	decrypt	communications	from	the	past	that	were	transmitted	using	that
certificate/private	key.

Think	about	how	important	this	is	in	protecting	communications	from	a	large,	organized
attacker.	If	a	large	organization,	such	as	an	ISP	or	a	government	agency,	was	recording
all	encrypted	Internet	traffic	across	the	backbone,	it	could,	in	theory,	decrypt	those
communications	at	a	later	date	if	they	discover	(or	subpoena!)	the	private	keys	for	the
SSL	certificate	used.	Forward	secrecy	prevents	this.

Forward	secrecy	is	required	by	Chrome,	Safari,	and	Firefox	to	enable	SSL	false	start.

If	your	cipher	suites	support	Diffie-Hellman	key	exchange,	you	support	forward	secrecy.

ALPN

SSL

356

https://wiki.mozilla.org/Security/Server_Side_TLS

Chrome	and	Firefox	additionally	require	Application	Layer	Protocol	Negotiation	(ALPN)
in	order	to	attempt	SSL	False	Start.

Essentially,	in	the	usual	SSL	handshake,	the	protocol	of	the	application	layer	has	not	yet
been	negotiated.	We've	established	our	SSL	tunnel,	but	we	haven't	decided	things	like
which	version	of	HTTP	we'll	use	(HTTP	1.x,	SPDY,	HTTP	2,	etc).	ALPN	allows	servers
to	negotiate	the	application	protocol	while	they	are	negotiating	the	SSL	connection.	That
this	would	be	a	requirement	for	sending	application	early	(that's	all	false	start	is)	makes	a
lot	of	sense.

Most	webservers	work	with	ALPN,	so	long	as	your	webserver	is	compiled	against
OpenSSL	versions	1.02	or	greater.

CDNs	allow	termination	close	to	the	user
As	mentioned	in	the	article	about	content	delivery	networks,	CDNs	allow	connections	to
terminate	close	to	your	user's	physical	location.	This	can	greatly	reduce	round-trip	times
during	SSL	negotiation,	meaning	CDNs	make	SSL	even	faster!

Check	your	certificate	chain
Your	webserver	doesn't	usually	provide	just	a	single	SSL	certificate	to	the	client	-	it
provides	a	chain	of	several	certificates.	Usually,	this	is	your	server	certificate	and	an
intermediate	certificate.

Browsers	ship	with	a	small	set	of	root	certificates	-	these	root	certificates	have	been
evaluated	as	trustworthy	by	the	browser.	When	you	buy	an	SSL	certificate,	your	server
certificate	gets	associated	with	one	of	these	root	certificates	via	an	intermediate
certificate.

In	order	to	verify	your	server's	SSL	certificate,	the	browser	must	verify	that	the	entire
chain	is	correct.	To	this	end,	make	sure	that	you're	providing	the	intermediate	certificates
to	the	browser	-	otherwise,	the	browser	will	have	to	go	and	download	the	intermediates
themselves,	causing	additional	network	round-trips.

Also,	since	the	browser	ships	its	own	root	certificates,	your	server	should	not	provide	the
root	certificate	in	the	certificate	bundle	-	it's	completely	unnecessary	and	a	waste	of	bits.

To	check	what	certificates	you're	providing,	use	Qualys'	SSL	tool	(linked	below).

SSL

357

Turn	off	compression
While	you're	digging	through	your	server	configurations,	you	may	come	across
something	called	"SSL	compression".	In	theory,	this	sounds	great,	right?	Normally	we're
always	looking	to	compress	our	responses.	Not	in	this	case,	though.

Enabling	SSL	compression	makes	you	vulnerable	to	the	"CRIME	attack",	exposing	you
to	session	hijacking.	In	addition,	SSL	compression	may	attempt	to	re-compress	already
compressed	assets,	like	images,	wasting	CPU.	Most	browsers	disable	SSL	compression
already,	but	don't	turn	it	on	for	your	server	either.

Tools
This	lesson	has	given	you	an	overview	of	how	to	improve	SSL	negotiation	times	on	your
application.	To	that	end,	there	are	two	excellent	tools	and	resources	you	should	be
aware	of:

The	Mozilla	Wiki	and	SSL	Configuration	Tool.	The	Mozilla	Wiki	contains	a	lot	of
information	about	the	technical	implementation	and	background	of	the	features
outlined	above.	In	addition,	Mozilla	maintains	a	configuration-file	generator	with	their
recommended	SSL	configurations	for	Apache,	NGINX,	Lighttpd,	HAProxy	and	AWS
Elastic	Load	Balancer.
The	Qualys	Labs	SSL	test	Qualys	maintains	a	tool	for	checking	on	the	SSL
configuration	of	any	domain.	Use	this	tool	to	double-check	that	you	support	all	of	the
performance	optimizations	mentioned	in	this	lesson.

Checklist	For	Your	App
Test	your	SSL	configuration	for	performance.	I	prefer	Qualys'	SSL	tool.	The	key
settings	to	look	for	are	session	resumption,	OCSP	stapling,	HSTS,	Diffie-Helman
key	exchange,	and	number	of	certificates	provided.	Use	Mozilla's	configuration
generator	to	get	a	set	of	sensible	defaults.

SSL

358

https://wiki.mozilla.org/Security/Server_Side_TLS
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.ssllabs.com/ssltest/

The	Easy	Mode	Stack
Developers	are	lazy.	Sometimes,	we	just	want	the	easy	answer	-	that's	why	Stack
Overflow	(and	copy-paste)	is	so	popular.	Sometimes,	we	can	be	intellectually	lazy	too.
We'd	just	like	someone	more	experienced	than	us	to	tell	us	what	to	do,	or	what	tool	to
use,	so	we	can	get	on	with	our	day	or	whatever	crazy	user	story	the	client	requested.

However,	sometimes	"easy	answers"	can	be	an	interesting	starting	point	for	better
development.	Take	Sandi	Metz's	rules:

1.	 Classes	can	be	no	longer	than	one	hundred	lines	of	code.
2.	 Methods	can	be	no	longer	than	five	lines	of	code.
3.	 Pass	no	more	than	four	parameters	into	a	method.	Hash	options	are

parameters.
4.	 Controllers	can	instantiate	only	one	object.	Therefore,	views	can	only	know

about	one	instance	variable	and	views	should	only	send	messages	to	that
object	(@object.collaborator.value	is	not	allowed).

They're	not	really	rules,	of	course	-	they're	more	like	guidelines.	Sandi	says	"you	should
break	these	rules	only	if	you	have	a	really	good	reason	or	if	your	pair	lets	you."	They're
not	infallible,	and	they're	not	true	for	all	cases.	Heck,	they	may	not	even	be	true	for	most
cases,	but	you	should	try	to	follow	the	rule	first	before	breaking	it.

I	often	get	asked	whether	or	not	I	think	technology	A	or	approach	B	is	good.	I	have
compiled	all	of	these	opinions	into	this	document,	which	I'll	call	my	"Easy	Mode	Stack".
This	stack	is	intended	to	be	a	starting	point	in	your	own	Ruby	web	application	stacks	-	if
you	don't	know	what	technology	to	use	for	any	particular	layer,	just	use	the	one	I
mention	here.	If	you	don't	like	it,	fine,	move	on	and	try	something	else.	But,	I	suggest	you
try	the	one	listed	here	first.

The	Easy	Mode	Stack	represents	a	stack	that	I	think	is	the	best	combination	between
cost,	ease	of	use,	and	performance	available	today.	Where	I	mention	a	particular
vendor,	I	do	not	have	any	commercial	relationships	with	that	vendor.

Content	Delivery	Network:	Cloudflare.	I	recommend	Cloudflare	because	it's	brain-dead
simple	to	set	up	(change	your	DNS	and	kaboom,	you're	done)	and	free	(with	no
bandwidth	limits).	However,	I	avoid	most	of	Cloudflare's	"add	on"	features,	like	Railgun
and	Rocket	Loader.	Be	sure	to	turn	on	SSL	and	HTTP/2,	if	it	isn't	turned	on	already!

Easy	Mode	Stack

359

https://robots.thoughtbot.com/sandi-metz-rules-for-developers

Reasons	to	deviate	from	this:	If	your	customers	are	outside	of	the	U.S.,	pay	attention	to
point-of-presence	locations	and	choose	the	CDN	with	the	best	performance	and	lowest
latency	for	the	geographical	location	of	your	customers.

Javascript	Framework:	View-over-the-wire.	For	new,	greenfield	apps,	I	recommend
going	with	Turbolinks.	For	older,	legacy	apps,	I	recommend	using	jquery-pjax.	Turbolinks
works	much	better	with	a	"global"	approach	-	the	entire	application	should	just	be
Turbolinks-enabled.	jquery-pjax	is	much	easier	to	sprinkle	in	here	and	there.	Both
technologies	are	fundamentally	just	HTML	over	AJAX.	This	approach	is	far	simpler	than
3rd-party	Javascript	frameworks	such	as	React	or	Ember,	and,	as	I	discuss	in	the
Turbolinks	lesson,	just	as	fast.	Reasons	to	deviate	from	this:	If	you're	already	using	a
single-page-app	framework,	just	stick	with	it.	There	is	no	good	reason	not	to	use	either
Turbolinks/view-over-the-wire	or	a	single-page-app	framework.

Webserver:	Nginx,	with	optional	openresty.	Nginx	seems	to	have	emerged	as	the	clear
winner	in	the	webserver	wars,	with	significant	memory	savings	and	performance
improvements	over	Apache.	If	you're	interested	in	doing	some	heavyweight	configuration
with	Nginx	and	would	rather	avoid	its	somewhat	draconic	config	files,	you	can	use
openresty	to	script	nginx	using	the	Lua	programming	language.	Neat!	Reasons	to
deviate	from	this:	h2o	is	an	interesting	new	project	that	claims	to	be	even	faster	than
nginx.

Application	Server:	Puma.	Puma	combines	an	excellent	I/O	model	with	simple,	easy-
to-use	configuration.	Application	servers	are	unlikely	to	be	the	bottlenecks	in	your	stack,
and	Puma	appears	to	be	"fast	enough".	Reasons	to	deviate	from	this:	Phusion
Passenger	Enterprise	and	Unicorn	behind	a	reverse-proxy	like	nginx	are	also	acceptable
alternatives,	but	each	comes	with	caveats.	Passenger	isn't	free,	and	Unicorn	won't	run
your	application	in	multiple	threads.

Host:	Heroku.	One	thing	I	like	about	Heroku	is	that	it	forces	you	into	some	good
performance	best	practices	from	the	start	-	you	must	design	to	scale	horizontally,	rather
than	just	"adding	more	memory!",	and	since	the	containers	are	so	memory-constrained,
you'll	have	to	make	sure	your	app	isn't	memory-bloated.	It's	worth	noting	that	there	is	no
performance	difference	between	Heroku's	1x	and	2x	dynos.	There	may	be	a	small	boost
in	changing	to	a	"PX"	dyno,	because	those	dynos	are	not	on	shared	hosts,	but	such
benefits	will	be	marginal.	Reasons	to	deviate	from	this:	If	your	devops	setup	can't	work
on	Heroku,	you'll	need	to	roll	your	own.	Most	people	severely	overestimate	how	much	of
a	"special	snowflake"	their	app	is,	however.

Easy	Mode	Stack

360

https://github.com/defunkt/jquery-pjax
http://www.staticshin.com/top-tens/things-about-openresty.html

Webfonts:	Google	Fonts.	With	user-agent-specific	optimization,	a	world-class	CDN,	and
some	excellent	optimizations	around	the	"unicode-range"	property,	Google	Fonts
delivers	an	enormous	performance	bang	for,	well,	$0.	Reasons	to	deviate	from	this:	If
your	designer	needs	a	particular	font,	you'll	have	to	host	your	own.	Emulate	Google's
approach	-	CSS	stylesheets	with	external	font	resources.	Prefer	WOFF2.	Do	not	inline
fonts.	See	the	Webfonts	lesson	for	more	on	what	optimizations	can	be	applied.

Ruby	Web	Framework:	Rails.	I've	thought	long	and	hard	about	this	one,	but	I	just	don't
see	a	use-case	that	Rails	doesn't	cover	well.	Its	main	competitors	-	Lotus,	Sinatra,	Cuba,
and	Volt	-	all	suffer	from	the	same	flaws:	they're	equally	as	performant	as	Rails	once
they're	on	feature	parity	with	Rails	(see	the	"Slimming	Rails"	lesson)	and	none	of	them
have	the	community	or	ecosystem	Rails	does.	Reasons	to	deviate	from	this:	There	isn't
a	performance	reason	to	prefer	another	web	framework,	though	there	may	be	aesthetic
ones.	If	you	don't	believe	Rails	has	made	"the	right	choices"	in	terms	of	architecture	or
software	design,	I	know	I	won't	convince	you	otherwise.

HTTP	library:	Typhoeus.	Typhoeus	is	really	just	a	wrapper	around		curl	.	This	is	a	good
thing	-	it	means	Typhoeus	is	really	good	at	making	requests	in	parallel.	Also,	it's	the	only
Ruby	HTTP	library	I	know	of	that	doesn't	use	exceptions	to	note	if	a	request	has	failed	or
not	-	see	the	Exceptions	as	Control	Flow	chapter	for	why	this	is	important.	Also,
Typhoeus	is	the	only	Ruby	HTTP	library	that	comes	with	a	built-in	response	cache.
Reasons	to	deviate	from	this:	If	pluggability	is	important	to	you,	use	Faraday.

Database:	Postgres.	The	NoSQL	wars	have	cooled,	and	Postgres	has	come	out	on	top.
With	full-text	search,	Postgres	is	also	probably	"enough"	for	80%	of	applications	that
bolt-on	heavyweight	services	like	Elasticsearch.	Also,	if	you	really	need	to	store	JSON
documents	like	a	NoSQL	database,	it	turns	Postgres	is	actually	faster	at	that	than
MongoDB.	Reasons	to	deviate	from	this:	You	are	a	DBA	and	know	what	you're	doing.	If
you	think	set	theory	is	a	bunch	of	crap,	use	a	NoSQL	database.

Database	Vendor:	Whichever	is	closest	to	you.	The	amount	of	network	latency	between
your	application	server	and	your	database	should	be	as	low	as	possible	-	this	connection
will	likely	have	dozens	of	roundtrips	occurring	per	request.	For	this	reason,	it	is
absolutely	imperative	that	your	database	and	your	application	server	bet	as	physically
close	as	possible.	An	easy	way	to	ensure	this	is	to	just	use	the	same	vendor	for	your
database	as	you	do	for	your	application	hosting	-	Heroku	Postgres	for	Heroku,	Amazon
RDS	when	using	Amazon	EC2,	etc.	Reasons	to	deviate	from	this:	None.

Easy	Mode	Stack

361

https://github.com/EnterpriseDB/pg_nosql_benchmark

Cache	Backend:	Redis.	The	popular	choice	here	is	Memcache,	but,	as	shown	in	my
caching	benchmarks,	it	offers	little,	if	any,	performance	advantage.	Since	I	also
recommend	using	Redis	for	your	background	job	processor,	simplify	your	stack	and	just
use	Redis	for	your	cache	backend	as	well.	However,	I	would	not	recommend	using	the
same	Redis	instance	for	both.	When	used	for	caching,	Redis	must	be	configured	for
"least-recently-used"	eviction,	which	is	not	the	default.	This	eviction	scheme	is
inappropriate	for	background	jobs.	Reasons	to	deviate	from	this:	None.

Background	Job	Processor:	Sidekiq.	Consistently	the	fastest	background	job
processor,	and	only	getting	faster	-	Sidekiq	4	was	a	near-order-of-magnitude
improvement	on	previous	versions.	Reasons	to	deviate	from	this:	If	you	need	greater
reliability	and	introspection,	you	should	choose	a	database-backed	queue.	Currently,	my
favorite	DB-backed	queue	is	Que,	discussed	in	the	Background	Jobs	lesson.

Perfomance	Monitoring:	New	Relic.	If	Skylight	is	good	enough	for	you,	then	go	for	it	-
but	I	find	its	pricing	scheme	is	just	too	much	for	most	small	applications.	You	can	get	a
lot	done	with	New	Relic's	free	plan.	Read	the	full	lessons	on	each	to	make	the	decision
for	yourself.	Reasons	to	deviate	from	this:	AppNeta	seems	like	a	strong	alternative.
There	is	no	reason	not	to	have	one	of	these	tools	installed.

Performance	Testing:	Local,	with	siege,	ab,	or	wrk.	All	of	these	tools	-		siege	,		ab	,
and		wrk	,	are	local	tools	you	can	install	anywhere.		siege		has	an	excellent	feature	that
will	hit	URLs	as	listed	from	a	file,	and		wrk		is	easily	extensible	with	a	Lua	scripting
engine.	Reasons	to	deviate	from	this:	There	are	a	lot	of	3rd-party	vendors	for	this,
discussed	in	the	Performance	Testing	lesson.	These	vendors	seem	to	only	make	sense
if	you	want	to	integrate	performance	testing	into	a	CI	framework.

Real-time	framework:	message_bus.	I	cannot	recommend	ActionCable	-	at	least	not
yet.	WebSockets	is	simply	overkill	for	most	applications,	and,	as	of	Rails	5.0,
ActionCable	feels	half-baked.		message_bus		uses	polling,	which	should	work	for	80%	of
web	applications,	and	achieves	the	same	end	result	as	ActionCable	with	far	less
complexity.	Reasons	to	deviate	from	this:	If	you're	really	sold	on	ActionCable,	go	for	it.

User	Authentication	has_secure_password.	Sometimes	I	wonder	if	beginning	Rails
developers	even	know	about	this	method,	included	in	ActiveModel.	Using	the	secure
BCrypt	hashing	mechanism,	you	can	accomplish	80%	of	what	most	applications	drop	in
Devise	for.	Reasons	to	deviate	from	this:	You	need	OAuth	integration.	Don't	do	OAuth
yourself.

Easy	Mode	Stack

362

http://redis.io/topics/lru-cache

Memory	Allocator:	jemalloc.	As	discussed	in	the	lesson	on	memory	allocators,	most
memory	allocators	can,	at	best,	give	you	a	tiny	speed	boost	and	maybe	some	5-10%
RSS	savings.	However,	changing	your	memory	allocator	requires	no	code	changes,	and
all	of	the	allocators	I've	tested	have	been	equally	stable.	Reasons	to	deviate	from	this:
There's	no	good	reason	not	to	at	least	try	an	alternative	allocator.

Ruby	Implementation	CRuby.	CRuby	continues	to	improve	incrementally	in	terms	of
performance,	though	Matz	has	publicly	announced	his	goal	of	a	3x	speed	improvement
for	Ruby	3.	CRuby	remains	"fast	enough"	for	most	applications,	and	the	drawbacks	of
JRuby	-	increased	memory	usage	and	startup	time	-	make	it	still	a	bit	of	a	pain.	Reasons
to	deviate	from	this:	If	JRuby's	developer-mode	quirks	don't	bother	you,	go	for	it.	It
remains	difficult	to	use	CRuby	for	development	and	JRuby	in	production.

View	Templates	erb,	or	Slim	if	you	must.		erb		templates	remain	5-8x	faster	than
HAML,	and	2-4x	faster	than	Slim.	If,	however,	you	must	have	a	fancier	view	templating
language,	Slim	is	the	fastest	of	all	the	alternatives.	Slim	even	maintains	a	running
benchmark	that	runs	with	their	CI	tests.	Reasons	to	deviate	from	this:	None.

Easy	Mode	Stack

363

The	Checklist
1.	 Ensure	production	application	instance	counts	roughly	conform	to	Little's

Law.	Ensure	your	application	instances	conform	to	a	reasonable	ratio	of	what
Little's	Law	says	you	need	to	serve	your	average	load.

2.	 95th	percentile	times	should	not	be	too	extreme.	Across	your	application,	95th
percentile	times	should	be	within	a	4:1	ratio	of	the	average	time	required	for	a
particular	controller	endpoint.

3.	 No	controller	endpoint's	average	response	time	should	be	more	than	4	times
the	overall	application's	average	response	time.

4.	 Quantify	the	cost	of	an	additional	second	of	browser	load	time.	Post	this
number	where	your	team	can	see	it.	Discuss	the	process	of	how	you	arrived	at	this
number	with	your	team	and	whoever	makes	the	business	decisions.

5.	 Set	a	front-end	load	time	budget,	and	agree	on	a	method	of	measurement.	No,
you	won't	be	able	to	perfectly	replicate	an	end-user	experience	-	that's	OK.	Agree
that	load	times	exceeding	this	budget	is	a	bug.

6.	 Set	a	maximum	acceptable	response	time	and	maximum	acceptable	95th
percentile	time.

7.	 Set	a	page	weight	budget,	based	on	your	audience's	bandwidth	and	the	other
budgets	you've	set.

8.	 Set	up	a	long-term	performance	benchmark.	Run	a	benchmark	on	your	site
using	tools	like		siege	,		ab	,	or		wrk	,	or	use	a	3rd-party	vendor.

9.	 Learn	to	use	profilers.	Use	a	profiler	like		ruby-prof		to	diagnose	your	application's
startup	time.	Where	does	most	time	go	during	your	app's	initialization	process?

10.	 Perform	an	audit	of	your	Gemfile	with		derailed_benchmarks	.	Substitute	or
eliminate	bloated	dependencies	-		derailed	's	"TOP"	output	should	probably	be	50-
60	MB	for	the	average	app.

11.	 Consider	logging	memory	statistics	in	production.	Experiment	with
	ObjectSpace		by	writing	a	logger	for	your	application	that	tracks	areas	you	suspect
may	be	memory	hotspots	or	use	a	pre-built	logger	like		gc_tracer	.	If	you're	not
logging	memory	usage	over	a	week	or	month	long	timeframe,	you're	losing	valuable
data	that	could	be	used	when	tracking	down	memory	leaks.	Being	able	to	track
memory	usage	against	deploy	times	is	absolutely	critical	to	avoid	tons	of	hard,	dirty
debugging	work.

12.	 Set	up		rack-mini-profiler		to	run	in	production.	Use	the	optional		flamegraph	
and		memory_profiler		add-ons.	Use		rack-mini-profiler		to	see	how	many	SQL

The	Complete	Checklist

364

queries	pages	generate	in	your	app.	Are	there	pages	that	generate	more	than
dozen	queries	or	so,	or	generate	several	queries	to	the	same	table?

13.	 Your	application	should	be	able	to	run	in	the	production	environment	locally.
Set	up	your	application	so	it	can	run	in	production	mode	locally,	on	your	machine.

14.	 Developers	should	have	access	to	production-like	data.	Using	production-like
data	in	development	ensures	that	developers	experience	the	true	performance	of
the	application	when	working	locally.	For	most	apps,	you	can	just	load	a	sanitized
dump	of	the	production	database.

15.	 Use	a	performance	monitor	in	production	-	NewRelic,	Skylight,	and	AppNeta	are
all	respected	vendors	in	this	space.	It	doesn't	really	matter	which	you	use,	just	use
one	of	them.

16.	 You	should	have	only	one	remote	JS	file	and	one	remote	CSS	file.	If	you're
using	Rails,	this	is	already	done	for	you.	Remember	that	every	little	marketing	tool	-
Olark,	Optimize.ly,	etc	etc	-	will	try	to	inject	scripts	and	stylesheets	into	the	page,
slowing	it	down.	Remember	that	the	cost	of	these	tools	is	not	free.	However,	there's
no	excuse	for	serving	multiple	CSS	or	JS	files	from	your	own	domain.	Having	just
one	JS	file	and	one	CSS	file	eliminates	network	roundtrips	-	a	major	gain	for	users
in	high-latency	network	environments	(international	and	mobile	come	to	mind).	In
addition,	multiple	stylesheets	cause	layout	thrashing.

17.	 Every	script	tag	should	have	async	and	defer	attributes.	Do	not	script	inject.
"Async"	javascripts	that	download	and	inject	their	own	scripts	(like	Mixpanel's
"async"	script	here)	are	not	truly	"asynchronous".	Using	the		async		attribute	on
script	tags	will	always	yield	a	performance	benefit.	Note	that	the	attribute	has	no
effect	on	inline	Javascript	tags	(tags	without	a		src		attribute),	so	you	may	need	to
drop	things	like	Mixpanel's	script	into	a	remote	file	you	host	yourself	(in	Rails,	you
might	put	it	into		application.js		for	example)	and	then	make	sure	that	remote	script
has	an		async		attribute.	Using		async		on	external	scripts	takes	them	off	the
blocking	render	path,	so	the	page	will	render	without	waiting	for	these	scripts	to
finish	evaluating.

18.	 CSS	goes	before	JavaScript.	If	you	absolutely	must	put	external	JS	on	your	page
and	you	can't	use	an		async		tag,	external	CSS	must	go	first.	External	CSS	doesn't
block	further	processing	of	the	page,	unlike	external	JS.	We	want	to	send	off	all	of
our	requests	before	we	wait	on	remote	JS	to	load.

19.	 Minimize	Javascript	usage	where	possible.	I	don't	care	how	small	your	JS	is
gzipped	-	any	additional	JS	you	add	takes	additional	time	for	the	browser	to
evaluate	on	every	page	load.	While	a	browser	may	only	need	to	download
JavaScripts	once,	and	can	use	a	cached	copy	thereafter,	it	will	need	to	evaluate	all
of	that	JavaScript	on	every	page	load.	Don't	believe	me	that	this	can	slow	your	page

The	Complete	Checklist

365

https://mixpanel.com/help/reference/javascript

down?	Check	out	The	Verge	and	look	at	how	much	time	their	pages	spend
executing	JavaScript.	Yowch.

20.	 Use	a	front-end	solution	that	re-uses	the	DOM,	like	Turbolinks	or	a	single-
page-app	approach.	If	you're	on	the	"JavaScript	frameworks	are	great!"	gravy	train,
great	-	keep	using	React	or	Angular	or	whatever	else	you	guys	think	is	cool	this
week	(wink!).	However,	if	you're	not,	you	should	be	using	Turbolinks.	There's	just
too	much	work	to	be	done	when	navigating	pages	-	throwing	away	the	entire	DOM
is	wasteful	as	events	must	be	re-delegated	and	handers	reattached,	Javascript	VMs
built	and	DOMs/CSSOMs	reconstructed	on	every	page	load.

21.	 Specify	content	encoding	with	HTTP	headers	where	possible.	Otherwise,	do	it
with	meta	tags	at	the	very	top	of	the	document.

22.	 If	using		X-UA-Compatible	,	put	that	as	far	up	in	the	document	as	possible.
23.	 	<meta	name="viewport"	...>		tags	should	go	right	below	any	encoding	tags.

They	should	always	appear	before	any	CSS.
24.	 Reduce	the	number	of	connections	required	to	load	a	page.	Connections	can

be	incurred	by	requesting	resources	from	a	new	unique	domain,	or	by	requesting
more	than	one	resource	at	a	time	from	a	single	domain	on	an	HTTP/1.x	protocol.

25.	 HTTP	caching	is	great,	but	don't	rely	on	any	particular	resource	being	cached.
3rd-party	CDNs	for	resources	like	JQuery,	etc	are	probably	not	reliable	enough	to
provide	any	real	performance	benefit.

26.	 Use	resource	hints	-	especially		preconnect		and		prefetch	.
27.	 Be	aware	of	the	speed	impact	of	partials.	Use	profilers	like		rack-mini-profiler	

to	determine	their	real	impact,	but	partials	are	slow.	Iterating	over	hundreds	of	them
(for	example,	items	in	a	collection)	may	be	a	source	of	slowdown.	Cache
aggressively.

28.	 Static	assets	should	always	be	gzipped.	As	for	HTML	documents,	the	benefit	is
less	clear	-	if	you're	using	a	reverse	proxy	like	NGINX	that	can	do	it	for	you	quickly,
go	ahead	and	turn	that	on.

29.	 Eliminate	redirects	in	performance-sensitive	areas.	301	redirects	incur	a	full
network	round-trip	-	in	performance	sensitive	code,	such	as	simple	Turbolinks
responses,	it	may	be	worth	it	to	render	straight	away	rather	than	redirect	to	a
different	controller	action.	This	does	cause	some	code	duplication.

30.	 Use	a	CDN	-	preferably	one	that	supports	HTTP/2.	Using	Rails'		asset_host	
config	setting	makes	this	extremely	simple.

31.	 If	using	NGINX,	Apache,	or	a	similar	reverse	proxy,	configure	it	to	use	HTTP/2.
NGINX	supports	HTTP/2	in	version	1.9.5	or	later.	Apache's	mod_http2	is	available
in	Apache	2.4.17	and	later.

32.	 Most	pages	should	have	no	more	than	a	few	thousand	DOM	elements.	If	a

The	Complete	Checklist

366

http://www.theverge.com

single	page	in	your	application	has	more	than	~5,000	DOM	elements,	your	selectors
are	going	to	be	adversely	affected	and	start	to	slow	down.	To	count	the	number	of
elements	on	a	page,	use		document.getElementsByTagName('*').length	.

33.	 Look	for	layout	thrash	with	Chrome	Timeline.	Load	your	pages	with	Chrome
Timeline	and	look	for	the	tiny	red	flags	that	denote	layout	thrashing.

34.	 Experiment	with	splitting	your	application.js/application.css	into	2	or	3	files.
Balance	cacheability	with	the	impact	to	initial	page	download	time.	Consider	splitting
files	based	on	churn	(for	example,	one	file	containing	all	the	libraries	and	one
containing	all	of	your	application	code).	If	you're	using	an	HTTP/2-enabled	CDN	for
hosting	your	static	assets,	you	can	try	splitting	them	even	further.

35.	 Double-check	to	make	sure	your	site	has	sane	cache	control	headers	set.	Use
Chrome's	Developer	Tools	Network	tab	to	see	the	cache	control	headers	for	all
responses	-	it's	an	addable	column.

36.	 If	running	an	API,	ensure	that	clients	have	response	caches.	Most	Ruby	HTTP
libraries	do	not	have	response	caches	and	will	ignore	any	caching	headers	your	API
may	be	using.	Faraday	and	Typhoeus	are	the	only	Ruby	libraries	that,	as	of	writing
(Feb	2016),	have	response	caches.

37.	 Make	sure	any	user	data	is	marked	with	Cache-Control:	private.	In	extreme
cases,	like	passwords	or	other	secure	data,	you	may	wish	to	use	a		no-store	
header	to	prevent	it	from	being	stored	in	any	circumstance.

38.	 If	a	controller	endpoint	receives	many	requests	for	infrequently	changed	data,
use	Rails'	built-in	HTTP	caching	methods.	Unfortunately,	Rails'	CSRF	protection
makes	caching	HTML	documents	almost	impossible.	If	you	are	not	using	CSRF
protection	(for	example,	a	sessionless	API),	consider	using	HTTP	caching	in	your
controllers	to	minimize	work.	See	ActionController::ConditionalGet

39.	 Use	Oink	or		ps		to	look	for	large	allocations	in	your	app.	Ruby	is	greedy	-	when
it	uses	memory,	it	doesn't	usually	give	it	back	to	the	operating	system	if	it	needs	less
memory	later.	This	means	short	spikes	turn	into	permanent	bloat.

40.	 Audit	your	gemfile	using		derailed_benchmarks	,	looking	for	anything	that
require	more	than	~10MB	of	memory	Look	to	replace	these	bloated	gems	with
lighter	alternatives.

41.	 Reset	any	GC	parameters	you	may	have	tweaked	when	upgrading	Ruby
versions.	The	garbage	collector	has	changed	significantly	from	Ruby	2.0	to	2.3.	I
recommend	not	using	them	at	all,	but	if	you	must	-	unset	them	each	time	you
upgrade	before	reapplying	them	to	make	sure	they're	actually	improving	the
situation.

42.	 Any	instances	of		SomeActiveRecordModel.all.each		should	be	replaced	with
	SomeActiveRecordModel.find_each		or		SomeActiveRecordModel.in_batches	.	This

The	Complete	Checklist

367

https://github.com/rails/rails/blob/master/actionpack/lib/action_controller/metal/conditional_get.rb

batches	the	records	instead	of	loading	them	all	at	once	-	reducing	memory	bloat	and
heap	size.

43.	 Pay	attention	to	your	development	logs	to	look	for	N+1	queries.	I	prefer	using
the	query-logging	middleware	shown	in	the	lesson	on	ActiveRecord.		rack-mini-
profiler		also	works	well	for	this	purpose.

44.	 Restrict	query	methods	-	where,	find,	etc	-	to	scopes	and	controllers	only.
Using	query	methods	in	model	instance	methods	inevitably	leads	to	N+1s.

45.	When	a	query	is	particularly	slow,	use	select	to	only	load	the	columns	you
need.	If	a	particularly	large	database	query	is	slowing	a	page	load	down,	use
	select		to	use	only	the	columns	you	need	for	the	view.	This	will	decrease	the
number	of	objects	allocated,	speeding	up	the	view	and	decreasing	its	memory
impact.

46.	 Don't	eager	load	more	than	a	few	models	at	a	time.	Eager	loading	for
ActiveRecord	queries	is	great,	but	increases	the	number	of	objects	instantiated.	If
you're	eager	loading	more	than	a	few	models,	consider	simplifying	the	view.

47.	 Do	mathematical	calculations	in	the	database.	Sums,	averages	and	more	can	be
calculated	in	the	database.	Don't	iterate	through	ActiveRecord	models	to	calculate
data.

48.	 Insertion,	deletion	and	updating	should	be	done	in	a	single	query	where
possible.	You	don't	need	10,000	queries	to	update	10,000	records.	Investigate	the
	activerecord-import		gem.

49.	 Background	work	when	it	depends	on	an	external	network	request,	need	not
be	done	immediately,	or	usually	takes	a	long	time	to	complete.

50.	 Background	jobs	should	be	idempotent	-	that	is,	running	them	twice	shouldn't
break	anything.	If	your	job	does	something	bad	when	it	gets	run	twice,	it	isn't
idempotent.	Rather	than	relying	on	"uniqueness"	hacks,	use	database	locks	to
make	sure	work	only	happens	when	it's	supposed	to.

51.	 Background	jobs	should	be	small	-	do	one	unit	of	work	with	a	single	job.	For
example,	rather	than	a	single	job	operating	on	10,000	records,	you	should	be	using
10,001	jobs:	one	to	enqueue	all	of	the	jobs,	and	10,000	additional	jobs	to	do	the
work.	Take	advantage	of	the	parallelization	this	affords	-	you're	essentially	doing
small-scale	distributed	computing.

52.	 Set	aggressive	timeouts.	It's	better	to	fail	fast	than	wait	for	a	background	job
worker	to	get	a	response	from	a	slow	host.

53.	 Background	jobs	should	have	failure	handlers	and	raise	red	flags.	Consider
what	to	do	in	case	of	failure	-	usually	"try	again"	is	good	enough.	If	a	job	fails	30
times	though,	what	happens?	You	should	probably	be	receiving	some	kind	of
notification.

The	Complete	Checklist

368

54.	 Consider	a	SQL-database-backed	queue	if	you	need	background	job
reliability.	Use	alternative	datastores	if	you	need	speed.

55.	 Make	sure	external	databases	are	in	the	same	datacenter	as	your	main
application	servers.	Latency	adds	up	fast.	Usually,	in	the	US,	everyone	is	in	the
Amazon	us-east-1	datacenter,	but	that	may	not	be	the	case.	Use		ping		to	double-
check.

56.	 Use	a	cache.	Understand	Rails'	caching	methods	like	the	back	of	your	hand.
There	is	no	excuse	for	not	using	caching	in	a	production	application.	Any	Rails
application	that	cares	about	performance	should	be	using	application-layer	caching.

57.	 Use	key-based	cache	expiration	over	sweepers	or	observers.	Anything	that
manually	expires	a	cache	is	too	much	work.	Instead,	use	key-based	"Russian	Doll"
expiration	and	rely	on	the	cache's	"Least-Recently-Used"	eviction	algorithms.

58.	 Make	sure	your	cache	database	is	fast	to	read	and	write.	Use	your	logs	to	make
sure	that	caches	are	fast.	Switch	providers	until	you	find	one	with	low	latency	and
fast	reads.

59.	 Consider	using	an	in-memory	cache	for	simple,	often-repeated	operations.	For
certain	operations,	you	may	find	something	like	the	in-memory		LRURedux		gem	to	be
easier	to	use.

60.	 Instead	of	requiring	rails/all,	require	the	parts	of	the	framework	you	need.
You're	almost	certainly	requiring	code	you	don't	need.

61.	 Don't	log	to	disk	in	production.	It's	slow.
62.	 If	using	Rails	5,	and	running	an	API	server,	use		config.api_only	.
63.	 Eliminate	exceptions	as	flow	control	in	your	application.	Most	exceptions

should	trigger	a	500	error	in	your	application	-	if	a	request	that	returns	a	200
response	is	raising	and	rescuing	exceptions	along	the	way,	you	have	problems.	Use
	rack-mini-profiler	's	exception-tracing	functions	to	look	for	such	controller	actions.

64.	 Use	Puma,	Unicorn-behind-NGINX	or	Phusion	Passenger	as	your	application
server.	The	I/O	models	of	these	app	servers	are	most	suited	for	Rails	applications.
If	using	Unicorn,	it	must	be	behind	a	reverse	proxy	like	NGINX	-	do	not	use	Unicorn
in	environments	where	you	do	not	control	the	routing,	such	as	Heroku.

65.	Where	possible,	use	faster	idioms.	See	the	entire	Idioms	lesson	for	commonly
slow	code	that	can	be	sped	up	by	a	significant	amount.	Don't	go	crazy	with	this	one,
though	-	always	prefer	more	readable	code	over	faster	code,	and	allow	your
performance	changes	to	be	driven	by	benchmarks	rather	than	speculation.

66.	 Use	streaming	liberally	with	landing	pages	and	complex	controller	endpoints.
Nearly	every	large	website	uses	response	streaming	to	improve	end-user	load
times.	It's	most	important	to	add	"render	stream:	true"	on	landing	pages	and
complex	actions	so	that	users	can	start	receiving	bits	of	your	response	as	fast	as

The	Complete	Checklist

369

possible,	reduce	time-to-first-byte	and	allowing	them	to	download	linked	assets	in
the		head		tag	as	soon	as	possible.	You	should	also	be	streaming	large	file
responses,	such	as	large	CSV	or	JSON	objects.

67.	 Use	ActionController::Live	before	trying	ActionCable	or	other	"real	time"
frameworks.	If	you	don't	need	"real-time"	communication	back	to	the	server,	and
only	need	to	push	"real-time"	updates	from	server	to	client,	Server	Sent	Events
(SSEs)	can	be	much	simpler	than	using	ActionCable.	Consider	polling,	too	-	it	is
easier	to	implement	for	most	sites,	and	has	a	far	less	complicated	backend	setup.

68.	 Get	familiar	with	database	indexing	Indexes	are	the	key	to	fast	queries.	There	are
several	situations	where	you	should	always	be	indexing	your	database	columns	-
polymorphic	associations,	foreign	keys,	and		updated_at		and		created_at		if	using
those	attributes	in	your	caching	scheme.

69.	 ANALYZE	difficult/long	queries	Are	you	unsure	if	a	certain	query	is	using	an
index?	Take	your	top	5	worst	queries	from	your	performance	monitor	and	plug	them
into	an	EXPLAIN	ANALYZE	query	to	debug	them.

70.	 Make	sure	your	database	is	being	vacuumed	Autovacuum	is	mandatory	for	any
MVCC	database	like	Postgres.	When	updating	or	otherwise	taking	down	a	Postgres
DB	for	maintenance,	be	sure	to	also	run	a		VACUUM	FULL	.

71.	 Double	check	your	thread	math.	Make	sure	you	have	enough	concurrent
connections	available	across	your	application	-	do	you	have	enough	connections
available	at	the	database?	What	about	your	cache?

72.	 Consider	disabling	database	durability	in	test	environments.	Some,	though	not
all,	test	suites	would	benefit	from	a	faster	database.	We	can	gain	database
performance	by	sacrificing	some	of	the	durability	guarantees	we	need	in	production.

73.	 Consider	JRuby.	JRuby	is	a	mature	alternative	to	C	Ruby,	employed	by	many
large	enterprise	deployments.	It's	become	more	usable	with	the	JRuby	9.0.0.0
release,	and	development	appears	to	only	be	speeding	up	as	time	goes	on.

74.	 Try	a	different	memory	allocator.		jemalloc		is	a	well-tested	and	proven
alternative.	It	may	have	a	small	impact	on	total	memory	usage	and	performance.

75.	 Test	your	SSL	configuration	for	performance.	I	prefer	Qualys'	SSL	tool.	The	key
settings	to	look	for	are	session	resumption,	OCSP	stapling,	HSTS,	Diffie-Helman
key	exchange,	and	number	of	certificates	provided.	Use	Mozilla's	configuration
generator	to	get	a	set	of	sensible	defaults.

The	Complete	Checklist

370

	Introduction
	Setting Up Rubygems.org
	Principles and Tools
	An Economist, A Physicist, and a Linguist Walk Into a Bar...
	Little's Law
	The Business Case for Performance
	Performance Testing
	Profiling
	Memory
	Rack Mini Profiler
	New Relic
	Skylight

	Optimizing the Front-end
	Chrome Timeline
	The Optimal Head Tag
	Resource Hints
	Turbolinks and View-Over-The-Wire
	Webfonts
	HTTP/2
	JavaScript
	HTTP Caching

	Optimizing Ruby
	Memory Bloat
	Memory Leaks
	ActiveRecord
	Background Jobs
	Caching
	Slimming Down Your Framework
	Exceptions as Flow Control
	Webserver Choice
	Idioms
	Streaming
	ActionCable

	The Environment
	CDNs
	Databases
	JRuby
	Memory Allocators
	SSL

	Easy Mode Stack
	The Complete Checklist

