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The world changed over the last yearThe world changed over the last year……
• Multiple GPGPU initiatives

– Vendors without GPGPU 
talking about it

• A few big apps:
– Game physics
– Folding@Home
– Video processing
– Finance modeling
– Biomedical
– Real-time image processing

• Courses
– UIUC – ECE 498
– Supercomputing 2006
– SIGGRAPH 2006/2007

• Lots of academic research

• Actual GPGPU companies
– PeakStream
– RapidMind
– Accelware
– …
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What can you do on GPUs other than graphics?What can you do on GPUs other than graphics?

• Large matrix/vector operations (BLAS)
• Protein Folding (Molecular Dynamics)
• FFT (SETI, signal processing)
• Ray Tracing
• Physics Simulation [cloth, fluid, collision]
• Sequence Matching (Hidden Markov Models)
• Speech Recognition (Hidden Markov Models, Neural nets)
• Databases
• Sort/Search
• Medical Imaging (image segmentation, processing)
• And many, many more…

http://www.gpgpu.org



4

Task vs. Data parallelismTask vs. Data parallelism

• Task parallel
– Independent processes with little communication
– Easy to use

• “Free” on modern operating systems with SMP

• Data parallel
– Lots of data on which the same computation is being 

executed
– No dependencies between data elements in each 

step in the computation
– Can saturate many ALUs
– But often requires redesign of traditional algorithms
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CPU vs. GPUCPU vs. GPU

• CPU
– Really fast caches (great for data reuse)
– Fine branching granularity
– Lots of different processes/threads
– High performance on a single thread of execution

• GPU
– Lots of math units
– Fast access to onboard memory
– Run a program on each fragment/vertex
– High throughput on parallel tasks

• CPUs are great for task parallelism
• GPUs are great for data parallelism
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The Importance of Data Parallelism for GPUsThe Importance of Data Parallelism for GPUs

• GPUs are designed for highly parallel tasks like 
rendering

• GPUs process independent vertices and fragments
– Temporary registers are zeroed
– No shared or static data
– No read-modify-write buffers
– In short, no communication between vertices or fragments

• Data-parallel processing
– GPU architectures are ALU-heavy

• Multiple vertex & pixel pipelines
• Lots of compute power

– GPU memory systems are designed to stream data
• Linear access patterns can be prefetched
• Hide memory latency
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GPGPU Terminology
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Arithmetic IntensityArithmetic Intensity

• Arithmetic intensity
– Math operations per word transferred
– Computation / bandwidth

• Ideal apps to target GPGPU have:
– Large data sets
– High parallelism
– Minimal dependencies between data elements
– High arithmetic intensity
– Lots of work to do without CPU intervention
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Data Streams & KernelsData Streams & Kernels

• Streams
– Collection of records requiring similar computation

• Vertex positions, Voxels, FEM cells, etc.

– Provide data parallelism

• Kernels
– Functions applied to each element in stream

• transforms, PDE, …

– No dependencies between stream elements
• Encourage high Arithmetic Intensity
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Scatter vs. GatherScatter vs. Gather

• Gather
– Indirect read from memory ( x = a[i] )
– Naturally maps to a texture fetch
– Used to access data structures and data streams

• Scatter
– Indirect write to memory ( a[i] = x )
– Difficult to emulate:

• Render to vertex array
• Sorting buffer

– Needed for building many data structures
– Usually done on the CPU
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Mapping algorithms to the GPU



12

Mapping CPU algorithms to the GPUMapping CPU algorithms to the GPU

• Basics
– Stream/Arrays -> Textures
– Parallel loops -> Quads
– Loop body -> vertex + fragment program
– Output arrays -> render targets
– Memory read -> texture fetch
– Memory write -> framebuffer write

• Controlling the parallel loop
– Rasterization = Kernel Invocation
– Texture Coordinates = Computational Domain
– Vertex Coordinates = Computational Range
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Computational ResourcesComputational Resources

• Programmable parallel processors
– Vertex & Fragment pipelines

• Rasterizer
– Mostly useful for interpolating values (texture 

coordinates) and per-vertex constants

• Texture unit
– Read-only memory interface

• Render to texture
– Write-only memory interface
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Vertex ProcessorsVertex Processors

• Fully programmable (SIMD / MIMD)
• Processes 4-vectors (RGBA / XYZW)
• Capable of scatter but not gather

– Can change the location of current vertex
– Cannot read info from other vertices
– Can only read a small constant memory

• Vertex Texture Fetch
– Random access memory for vertices
– Limited gather capabilities

• Can fetch from texture
• Cannot fetch from current vertex stream
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Fragment ProcessorsFragment Processors
• Fully programmable (SIMD)
• Processes 4-component vectors (RGBA / XYZW)
• Random access memory read (textures)
• Generally capable of gather but not scatter

– Indirect memory read (texture fetch), but no indirect memory write
– Output address fixed to a specific pixel

• Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines
– Direct output (fragment processor is at end of pipeline)
– Better memory read performance

• For GPGPU, we mainly concentrate on using the fragment 
processors
– Most of the flops
– Highest memory bandwidth
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And then they were unifiedAnd then they were unified……

• Current trend is to unify shading resources
– DX10 – vertex/geometry/fragment shading have 

similar capabilities
– Just a “pool of processors”

• Scheduled by the hardware dynamically
• You can get “all” the board resources through each

NVIDIA 8800GTX
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GPGPU example GPGPU example –– Adding Vectors Adding Vectors 

float a[5*5];
float b[5*5];
float c[5*5];
//initialize vector a
//initialize vector b
for(int i=0; i<5*5; i++)
{

c[i] = a[i] + b[i];
}

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

• Place arrays into 2D textures
• Convert loop body into a shader
• Loop body = Render a quad

– Needs to cover all the pixels in the output
– 1:1 mapping between pixels and texels

• Readback framebuffer into result 
array

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;
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How this basically works How this basically works –– Adding vectorsAdding vectors

Bind Input Textures

Bind Render Targets

Load Shader

Render Quad

Readback Buffer

Set Shader Params

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;

Vector A Vector B

Vector C

C = A+B

,
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Rolling your own GPGPU appsRolling your own GPGPU apps
• Lots of information on GPGPU.org
• For those with a strong graphics background:

– Do all the graphics setup yourself
– Write your kernels:

• Use high level languages 
– Cg, HLSL, ASHLI

• Or, direct assembly
– ARB_fragment_program, ps20, ps2a, ps2b, ps30

• High level languages and systems to make GPGPU easier
– BrookGPU (http://graphics.stanford.edu/projects/brookgpu/)
– RapidMind (http://www.rapidmind.net)
– PeakStream (http://www.peakstreaminc.com)
– CUDA – NVIDIA (http://developer.nvidia.com/cuda)

– CTM – AMD/ATI (ati.amd.com/companyinfo/researcher/documents.html )



20

Basic operationsBasic operations

• Map
• Reduce
• Scan
• Gather/Scatter

– Covered earlier
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Map operationMap operation

• Given:
– Array or stream of data elements A
– Function ƒ(x)

• map(A, ƒ) = applies ƒ(x) to all ai A
• GPU implementation is straightforward

– A is a texture, ai are texels
– Pixel shader implements ƒ(x), reads ai as x
– Draw a quad with as many pixels as texels in A with 

ƒ(x) pixel shader active
– Output(s) stored in another texture 

∈

Courtesy John Owens
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Parallel ReductionsParallel Reductions

• Given:
– Binary associative operator    with identity I
– Ordered set s = [a0, a1, …, an-1] of n elements

• Reduce(   , s) returns a0 a1 … an-1

• Example:
– Reduce(+, [3 1 7 0 4 1 6 3]) = 25

• Reductions common in parallel algorithms
– Common reduction operators are +, x, min, max
– Note floating point is only pseudo-associative

⊕

⊕

⊕ ⊕ ⊕

Courtesy John Owens
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Parallel Scan (Parallel Scan (akaaka prefix sum)prefix sum)

• Given:
– Binary associative operator     with identity I
– Ordered set s = [a0, a1, …, an-1] of n elements

• scan(    , s) returns
[a0, (a0 a1), …, (a0 a1 … an-1)]

• Example:
scan(+, [3 1 7 0 4 1 6 3]) = [3 4 11 11 15 16 22 25]

⊕

⊕

⊕⊕ ⊕⊕

(From Blelloch, 1990, “Prefix Sums and Their Applications”)

Courtesy John Owens
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Applications of ScanApplications of Scan

• Radix sort
• Quicksort
• String comparison
• Lexical analysis
• Stream compaction
• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms

Courtesy John Owens



25

Brook: General Purpose Streaming LanguageBrook: General Purpose Streaming Language

• Stream programming model
– GPU = streaming coprocessor

• C with stream extensions
• Cross platform

– ATI & NVIDIA
– OpenGL, DirectX, CTM
– Windows & Linux
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StreamsStreams

• Collection of records requiring similar 
computation
– particle positions, voxels, FEM cell, …

Ray r<200>;
float3 velocityfield<100,100,100>;

• Similar to arrays, but…
– index operations disallowed:       position[i]
– read/write stream operators

streamRead (r, r_ptr);
streamWrite (velocityfield, v_ptr);
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KernelsKernels

• Functions applied to streams
– similar to for_all construct
– no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {

result = a + b;
}

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c);

for (i=0; i<100; i++)
c[i] = a[i]+b[i];
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KernelsKernels

• Kernel arguments
– input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {

result = a + b;
}
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KernelsKernels

• Kernel arguments
– input/output streams
– gather streams

kernel void foo (..., float array[] ) {
a = array[i];

}
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KernelsKernels

• Kernel arguments
– input/output streams
– gather streams
– iterator streams

kernel void foo (..., iter float n<> ) {
a = n + b; 

}
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KernelsKernels

• Kernel arguments
– input/output streams
– gather streams
– iterator streams
– constant parameters

kernel void foo (..., float c ) {
a = c + b; 

}
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ReductionsReductions

• Compute single value from a stream
– associative operations only

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<100>;
float r;

sum(a,r);
r = a[0];
for (int i=1; i<100; i++)

r += a[i];
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ReductionsReductions

• Multi-dimension reductions 
– stream “shape” differences resolved by reduce 

function   

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<20>;
float r<5>;

sum(a,r); for (int i=0; i<5; i++)
r[i] = a[i*4];
for (int j=1; j<4; j++)

r[i] += a[i*4 + j];
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Stream Repeat & StrideStream Repeat & Stride

• Kernel arguments of different shape
– resolved by repeat and stride

kernel void foo (float a<>, float b<>,
out float result<>);

float a<20>;
float b<5>;
float c<10>;

foo(a,b,c);

foo(a[0],  b[0], c[0])
foo(a[2],  b[0], c[1])
foo(a[4],  b[1], c[2])
foo(a[6],  b[1], c[3])
foo(a[8],  b[2], c[4])
foo(a[10], b[2], c[5])
foo(a[12], b[3], c[6])
foo(a[14], b[3], c[7])
foo(a[16], b[4], c[8])
foo(a[18], b[4], c[9])
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Matrix Vector MultiplyMatrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

M
V

V
V

T=
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Matrix Vector MultiplyMatrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

RT sum
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RuntimeRuntime

• Accessing stream data for graphics aps
– Brook runtime api available in C++ code
– autogenerated .hpp files for brook code

brook::initialize( "dx9", (void*)device );

// Create streams
fluidStream0 = stream::create<float4>( kFluidSize, kFluidSize );
normalStream = stream::create<float3>( kFluidSize, kFluidSize );

// Get a handle to the texture being used by
// the normal stream as a backing store
normalTexture = (IDirect3DTexture9*)

normalStream->getIndexedFieldRenderData(0);

// Call the simulation kernel
simulationKernel( fluidStream0, fluidStream0, controlConstant,           

fluidStream1 );



38

ApplicationsApplications

ray-tracer

fft edge detect

segmentation
SAXPY

SGEMV

linear algebra
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Brook for GPUsBrook for GPUs

• Release v0.4 available on Sourceforge
– CVS tree *much* more up to date and includes CTM 

support

• Project Page
– http://graphics.stanford.edu/projects/brook

• Source
– http://www.sourceforge.net/projects/brook

• Paper:
Brook for GPUs: Stream Computing on Graphics Hardware

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon 
Fatahalian, Mike Houston, Pat Hanrahan

Fly-fishing fly images from The English Fly Fishing Shop



Understanding GPUs Through Understanding GPUs Through 
BenchmarkingBenchmarking
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IntroductionIntroduction

• Key areas for GPGPU
– Memory latency behavior
– Memory bandwidths
– Upload/Download
– Instruction rates
– Branching performance

• Chips analyzed
– ATI X1900XTX (R580)
– NVIDIA 7900GTX (G71)
– NVIDIA 8800GTX (G80)
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GPUBenchGPUBench

• An open-source suite of micro-benchmarks
– GL (we’ll be using this for the talk)
– DX9 (alpha version)

• Developed at Stanford to aid our 
understanding of GPUs
– Vendors wouldn’t directly tell us arch details
– Behavior under GPGPU apps different than games 

and other benchmarks

• Library of results
http://graphics.stanford.edu/projects/gpubench/
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Memory latencyMemory latency

• Questions
– Can latency be hidden?
– Does access pattern affect latency?



44

MethodologyMethodology

• Try different numbers of texture fetches
– Different access patterns:

• Cache hit – every fetch to the same texel
• Sequential – every fetch increments address by 1
• Random – dependent lookup with random texture

• Increase the ALU ops of the shader
• ALU ops must be dependent to avoid 

optimization

• GPUBench test: fetchcost
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Fetch cost Fetch cost –– ATI ATI –– cache hitcache hit

ATI X1800XT

4 ALU ops

ATI X1900XTX

12 ALU ops

Cost = max(ALU, TEX)

X1900XTX has 3X the ALUs per pipe
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Fetch cost Fetch cost –– ATI ATI –– sequentialsequential

ATI X1800XT

8 ALU ops

ATI X1900XTX

24 ALU ops

Cost = max(ALU, TEX)

X1900XTX has 3X the ALUs per pipe
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Fetch cost Fetch cost –– NVIDIA NVIDIA –– cache hitcache hit

Cost = sum(ALU, TEX)

4 ALU op penalty

NVIDIA 7900 GTX
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Fetch cost Fetch cost –– NVIDIA NVIDIA –– sequentialsequential

NVIDIA 7900 GTX

8 ALU op issue penalty

Cost = sum(ALU, TEX)



49

Fetch cost Fetch cost –– NVIDIA 8800 GTXNVIDIA 8800 GTX

Cost = max(ALU, TEX)

Cache sequential

4 ALU ops
8 ALU ops

NVIDIA 8800 GTXNVIDIA 8800 GTX
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Bandwidth to ALUsBandwidth to ALUs

• Questions
– Cache performance?
– Sequential performance?
– Random-read performance?
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MethodologyMethodology

• Cache hit
– Use a constant as index to texture(s)

• Sequential
– Use fragment position to index texture(s)

• Random
– Index a seeded texture with fragment position to 

look up into input texture(s)

• GPUBench test: inputfloatbandwidth
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ResultsResults

ATI X1900XTX NVIDIA 7900GTX

Better effective 
cache bandwidth

Better random 
bandwidth

Sequential bandwidth 
(SEQ) about the same
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ResultsResults

NVIDIA 8800GTX

2X bandwidth of 
7900GTX

NVIDIA 7900GTX
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OffOff--board bandwidthboard bandwidth

• Questions
– How fast can we get data on the board (download)?
– How fast can we get data off the board (readback)?

• GPUBench tests:
– download
– readback
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DownloadDownload

ATI X1900XTX NVIDIA 7900GTX

Host to GPU is slow



56

DownloadDownload

NVIDIA 7900GTX NVIDIA 8800GTX

Next generation not much better…
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ReadbackReadback

ATI X1900XTX NVIDIA 7900GTX

GPU to host is slow

ATI GL Readback 
performance is 

abysmal
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ReadbackReadback

NVIDIA 7900GTX NVIDIA 8800GTX

Next generation not much better…
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Instruction Issue RateInstruction Issue Rate

• Questions
– What is the raw performance achievable?
– Do different instructions have different costs?
– Vector vs. scalar issue differences?
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MethodologyMethodology

• Write long shaders with dependent 
instructions
– >100 instructions
– All instructions dependent

• But try to structure to allow for multi-issue

• Test float1 vs. float4 performance
• GPUBench tests: 

– instrissue
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Results Results –– Vector issueVector issue

ATI X1900XTX NVIDIA 7900GTX

= More costly than others
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Results Results –– Vector issueVector issue

ATI X1900XTX NVIDIA 7900GTX

Faster 
ADD/SUB

Peak (single instruction) 
FLOPS with MAD
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Results Results –– Vector issueVector issue

NVIDIA 7900GTX NVIDIA 8800GTX

8800GTX is 37% 
faster (peak)
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When benchmarks go wrongWhen benchmarks go wrong……

• Smart compilers subverting testing and optimizing 
away shaders.  Bug found in previous subtract test.  
No clever way to write RCP test found yet…
Always sanity check results against theoretical 
peak!!!

NVIDIA 7800GTX

GPUBench 1.2
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Results Results –– Scalar issueScalar issue

NVIDIA 7900GTX NVIDIA 8800GTX

8800GTX is a scalar issue 
processor
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Branching PerformanceBranching Performance

• Questions
– Is predication better than branching?
– Is using “Early-Z” culling a better option?
– What is the cost of branching?
– What branching granularity is required?
– How much can I really save branching around heavy 

computation?
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MethodologyMethodology

• Early-Z
– Set a Z-buffer and compare function to mask out compute
– Change coherence of blocks
– Change sizes of blocks
– Set differing amounts of pixels to be drawn

• Shader Branching
– If{ do a little }; else { LOTS of math}
– Change coherence of blocks
– Change sizes of blocks
– Have differing amounts of pixels execute heavy math branch

• GPUBench tests:
– branching
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Results Results –– EarlyEarly--Z Z -- NVIDIANVIDIA

NVIDIA 7900GTX

4x4 coherence is 
almost perfect!

Random is bad!
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Results Results –– Branching Branching -- NVIDIANVIDIA

NVIDIA 7900GTX

Fully coherent 
has good 

performance

But overhead…
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Results Results –– Branching Branching -- NVIDIANVIDIA

NVIDIA 7900GTX

Performance 
increases with 

branch 
coherence

Need > 32x32 branch coherence
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Results Results –– Branching Branching -- NVIDIANVIDIA

NVIDIA 8800GTX

Performance 
increases with 

branch 
coherence

Need > 16x16 branch coherence
(Turns out 16x4 is as good as 16x16 )
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SummarySummary

• Benchmarks can help discern app behavior 
and architecture characteristics

• We use these benchmarks as predictive 
models when designing algorithms
– Folding@Home
– ClawHMMer
– CFD

• Be wary of driver optimizations
– Driver revisions change behavior

• Raster order, scheduler, compiler
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