
Advanced Programming (GPGPU)Advanced Programming (GPGPU)

Mike HoustonMike Houston

2

The world changed over the last yearThe world changed over the last year……
• Multiple GPGPU initiatives

– Vendors without GPGPU
talking about it

• A few big apps:
– Game physics
– Folding@Home
– Video processing
– Finance modeling
– Biomedical
– Real-time image processing

• Courses
– UIUC – ECE 498
– Supercomputing 2006
– SIGGRAPH 2006/2007

• Lots of academic research

• Actual GPGPU companies
– PeakStream
– RapidMind
– Accelware
– …

3

What can you do on GPUs other than graphics?What can you do on GPUs other than graphics?

• Large matrix/vector operations (BLAS)
• Protein Folding (Molecular Dynamics)
• FFT (SETI, signal processing)
• Ray Tracing
• Physics Simulation [cloth, fluid, collision]
• Sequence Matching (Hidden Markov Models)
• Speech Recognition (Hidden Markov Models, Neural nets)
• Databases
• Sort/Search
• Medical Imaging (image segmentation, processing)
• And many, many more…

http://www.gpgpu.org

4

Task vs. Data parallelismTask vs. Data parallelism

• Task parallel
– Independent processes with little communication
– Easy to use

• “Free” on modern operating systems with SMP

• Data parallel
– Lots of data on which the same computation is being

executed
– No dependencies between data elements in each

step in the computation
– Can saturate many ALUs
– But often requires redesign of traditional algorithms

5

CPU vs. GPUCPU vs. GPU

• CPU
– Really fast caches (great for data reuse)
– Fine branching granularity
– Lots of different processes/threads
– High performance on a single thread of execution

• GPU
– Lots of math units
– Fast access to onboard memory
– Run a program on each fragment/vertex
– High throughput on parallel tasks

• CPUs are great for task parallelism
• GPUs are great for data parallelism

6

The Importance of Data Parallelism for GPUsThe Importance of Data Parallelism for GPUs

• GPUs are designed for highly parallel tasks like
rendering

• GPUs process independent vertices and fragments
– Temporary registers are zeroed
– No shared or static data
– No read-modify-write buffers
– In short, no communication between vertices or fragments

• Data-parallel processing
– GPU architectures are ALU-heavy

• Multiple vertex & pixel pipelines
• Lots of compute power

– GPU memory systems are designed to stream data
• Linear access patterns can be prefetched
• Hide memory latency

7

GPGPU Terminology

8

Arithmetic IntensityArithmetic Intensity

• Arithmetic intensity
– Math operations per word transferred
– Computation / bandwidth

• Ideal apps to target GPGPU have:
– Large data sets
– High parallelism
– Minimal dependencies between data elements
– High arithmetic intensity
– Lots of work to do without CPU intervention

9

Data Streams & KernelsData Streams & Kernels

• Streams
– Collection of records requiring similar computation

• Vertex positions, Voxels, FEM cells, etc.

– Provide data parallelism

• Kernels
– Functions applied to each element in stream

• transforms, PDE, …

– No dependencies between stream elements
• Encourage high Arithmetic Intensity

10

Scatter vs. GatherScatter vs. Gather

• Gather
– Indirect read from memory (x = a[i])
– Naturally maps to a texture fetch
– Used to access data structures and data streams

• Scatter
– Indirect write to memory (a[i] = x)
– Difficult to emulate:

• Render to vertex array
• Sorting buffer

– Needed for building many data structures
– Usually done on the CPU

11

Mapping algorithms to the GPU

12

Mapping CPU algorithms to the GPUMapping CPU algorithms to the GPU

• Basics
– Stream/Arrays -> Textures
– Parallel loops -> Quads
– Loop body -> vertex + fragment program
– Output arrays -> render targets
– Memory read -> texture fetch
– Memory write -> framebuffer write

• Controlling the parallel loop
– Rasterization = Kernel Invocation
– Texture Coordinates = Computational Domain
– Vertex Coordinates = Computational Range

13

Computational ResourcesComputational Resources

• Programmable parallel processors
– Vertex & Fragment pipelines

• Rasterizer
– Mostly useful for interpolating values (texture

coordinates) and per-vertex constants

• Texture unit
– Read-only memory interface

• Render to texture
– Write-only memory interface

14

Vertex ProcessorsVertex Processors

• Fully programmable (SIMD / MIMD)
• Processes 4-vectors (RGBA / XYZW)
• Capable of scatter but not gather

– Can change the location of current vertex
– Cannot read info from other vertices
– Can only read a small constant memory

• Vertex Texture Fetch
– Random access memory for vertices
– Limited gather capabilities

• Can fetch from texture
• Cannot fetch from current vertex stream

15

Fragment ProcessorsFragment Processors
• Fully programmable (SIMD)
• Processes 4-component vectors (RGBA / XYZW)
• Random access memory read (textures)
• Generally capable of gather but not scatter

– Indirect memory read (texture fetch), but no indirect memory write
– Output address fixed to a specific pixel

• Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines
– Direct output (fragment processor is at end of pipeline)
– Better memory read performance

• For GPGPU, we mainly concentrate on using the fragment
processors
– Most of the flops
– Highest memory bandwidth

16

And then they were unifiedAnd then they were unified……

• Current trend is to unify shading resources
– DX10 – vertex/geometry/fragment shading have

similar capabilities
– Just a “pool of processors”

• Scheduled by the hardware dynamically
• You can get “all” the board resources through each

NVIDIA 8800GTX

17

GPGPU example GPGPU example –– Adding Vectors Adding Vectors

float a[5*5];
float b[5*5];
float c[5*5];
//initialize vector a
//initialize vector b
for(int i=0; i<5*5; i++)
{

c[i] = a[i] + b[i];
}

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

• Place arrays into 2D textures
• Convert loop body into a shader
• Loop body = Render a quad

– Needs to cover all the pixels in the output
– 1:1 mapping between pixels and texels

• Readback framebuffer into result
array

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;

18

How this basically works How this basically works –– Adding vectorsAdding vectors

Bind Input Textures

Bind Render Targets

Load Shader

Render Quad

Readback Buffer

Set Shader Params

!!ARBfp1.0

TEMP R0;

TEMP R1;

TEX R0, fragment.position, texture[0], 2D;

TEX R1, fragment.position, texture[1], 2D;

ADD R0, R0, R1;

MOV fragment.color, R0;

Vector A Vector B

Vector C

C = A+B

,

19

Rolling your own GPGPU appsRolling your own GPGPU apps
• Lots of information on GPGPU.org
• For those with a strong graphics background:

– Do all the graphics setup yourself
– Write your kernels:

• Use high level languages
– Cg, HLSL, ASHLI

• Or, direct assembly
– ARB_fragment_program, ps20, ps2a, ps2b, ps30

• High level languages and systems to make GPGPU easier
– BrookGPU (http://graphics.stanford.edu/projects/brookgpu/)
– RapidMind (http://www.rapidmind.net)
– PeakStream (http://www.peakstreaminc.com)
– CUDA – NVIDIA (http://developer.nvidia.com/cuda)

– CTM – AMD/ATI (ati.amd.com/companyinfo/researcher/documents.html)

20

Basic operationsBasic operations

• Map
• Reduce
• Scan
• Gather/Scatter

– Covered earlier

21

Map operationMap operation

• Given:
– Array or stream of data elements A
– Function ƒ(x)

• map(A, ƒ) = applies ƒ(x) to all ai A
• GPU implementation is straightforward

– A is a texture, ai are texels
– Pixel shader implements ƒ(x), reads ai as x
– Draw a quad with as many pixels as texels in A with

ƒ(x) pixel shader active
– Output(s) stored in another texture

∈

Courtesy John Owens

22

Parallel ReductionsParallel Reductions

• Given:
– Binary associative operator with identity I
– Ordered set s = [a0, a1, …, an-1] of n elements

• Reduce(, s) returns a0 a1 … an-1

• Example:
– Reduce(+, [3 1 7 0 4 1 6 3]) = 25

• Reductions common in parallel algorithms
– Common reduction operators are +, x, min, max
– Note floating point is only pseudo-associative

⊕

⊕

⊕ ⊕ ⊕

Courtesy John Owens

23

Parallel Scan (Parallel Scan (akaaka prefix sum)prefix sum)

• Given:
– Binary associative operator with identity I
– Ordered set s = [a0, a1, …, an-1] of n elements

• scan(, s) returns
[a0, (a0 a1), …, (a0 a1 … an-1)]

• Example:
scan(+, [3 1 7 0 4 1 6 3]) = [3 4 11 11 15 16 22 25]

⊕

⊕

⊕⊕ ⊕⊕

(From Blelloch, 1990, “Prefix Sums and Their Applications”)

Courtesy John Owens

24

Applications of ScanApplications of Scan

• Radix sort
• Quicksort
• String comparison
• Lexical analysis
• Stream compaction
• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms

Courtesy John Owens

25

Brook: General Purpose Streaming LanguageBrook: General Purpose Streaming Language

• Stream programming model
– GPU = streaming coprocessor

• C with stream extensions
• Cross platform

– ATI & NVIDIA
– OpenGL, DirectX, CTM
– Windows & Linux

26

StreamsStreams

• Collection of records requiring similar
computation
– particle positions, voxels, FEM cell, …

Ray r<200>;
float3 velocityfield<100,100,100>;

• Similar to arrays, but…
– index operations disallowed: position[i]
– read/write stream operators

streamRead (r, r_ptr);
streamWrite (velocityfield, v_ptr);

27

KernelsKernels

• Functions applied to streams
– similar to for_all construct
– no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {

result = a + b;
}

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c);

for (i=0; i<100; i++)
c[i] = a[i]+b[i];

28

KernelsKernels

• Kernel arguments
– input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {

result = a + b;
}

29

KernelsKernels

• Kernel arguments
– input/output streams
– gather streams

kernel void foo (..., float array[]) {
a = array[i];

}

30

KernelsKernels

• Kernel arguments
– input/output streams
– gather streams
– iterator streams

kernel void foo (..., iter float n<>) {
a = n + b;

}

31

KernelsKernels

• Kernel arguments
– input/output streams
– gather streams
– iterator streams
– constant parameters

kernel void foo (..., float c) {
a = c + b;

}

32

ReductionsReductions

• Compute single value from a stream
– associative operations only

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<100>;
float r;

sum(a,r);
r = a[0];
for (int i=1; i<100; i++)

r += a[i];

33

ReductionsReductions

• Multi-dimension reductions
– stream “shape” differences resolved by reduce

function

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<20>;
float r<5>;

sum(a,r); for (int i=0; i<5; i++)
r[i] = a[i*4];
for (int j=1; j<4; j++)

r[i] += a[i*4 + j];

34

Stream Repeat & StrideStream Repeat & Stride

• Kernel arguments of different shape
– resolved by repeat and stride

kernel void foo (float a<>, float b<>,
out float result<>);

float a<20>;
float b<5>;
float c<10>;

foo(a,b,c);

foo(a[0], b[0], c[0])
foo(a[2], b[0], c[1])
foo(a[4], b[1], c[2])
foo(a[6], b[1], c[3])
foo(a[8], b[2], c[4])
foo(a[10], b[2], c[5])
foo(a[12], b[3], c[6])
foo(a[14], b[3], c[7])
foo(a[16], b[4], c[8])
foo(a[18], b[4], c[9])

35

Matrix Vector MultiplyMatrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

M
V

V
V

T=

36

Matrix Vector MultiplyMatrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

RT sum

37

RuntimeRuntime

• Accessing stream data for graphics aps
– Brook runtime api available in C++ code
– autogenerated .hpp files for brook code

brook::initialize("dx9", (void*)device);

// Create streams
fluidStream0 = stream::create<float4>(kFluidSize, kFluidSize);
normalStream = stream::create<float3>(kFluidSize, kFluidSize);

// Get a handle to the texture being used by
// the normal stream as a backing store
normalTexture = (IDirect3DTexture9*)

normalStream->getIndexedFieldRenderData(0);

// Call the simulation kernel
simulationKernel(fluidStream0, fluidStream0, controlConstant,

fluidStream1);

38

ApplicationsApplications

ray-tracer

fft edge detect

segmentation
SAXPY

SGEMV

linear algebra

39

Brook for GPUsBrook for GPUs

• Release v0.4 available on Sourceforge
– CVS tree *much* more up to date and includes CTM

support

• Project Page
– http://graphics.stanford.edu/projects/brook

• Source
– http://www.sourceforge.net/projects/brook

• Paper:
Brook for GPUs: Stream Computing on Graphics Hardware

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, Pat Hanrahan

Fly-fishing fly images from The English Fly Fishing Shop

Understanding GPUs Through Understanding GPUs Through
BenchmarkingBenchmarking

41

IntroductionIntroduction

• Key areas for GPGPU
– Memory latency behavior
– Memory bandwidths
– Upload/Download
– Instruction rates
– Branching performance

• Chips analyzed
– ATI X1900XTX (R580)
– NVIDIA 7900GTX (G71)
– NVIDIA 8800GTX (G80)

42

GPUBenchGPUBench

• An open-source suite of micro-benchmarks
– GL (we’ll be using this for the talk)
– DX9 (alpha version)

• Developed at Stanford to aid our
understanding of GPUs
– Vendors wouldn’t directly tell us arch details
– Behavior under GPGPU apps different than games

and other benchmarks

• Library of results
http://graphics.stanford.edu/projects/gpubench/

43

Memory latencyMemory latency

• Questions
– Can latency be hidden?
– Does access pattern affect latency?

44

MethodologyMethodology

• Try different numbers of texture fetches
– Different access patterns:

• Cache hit – every fetch to the same texel
• Sequential – every fetch increments address by 1
• Random – dependent lookup with random texture

• Increase the ALU ops of the shader
• ALU ops must be dependent to avoid

optimization

• GPUBench test: fetchcost

45

Fetch cost Fetch cost –– ATI ATI –– cache hitcache hit

ATI X1800XT

4 ALU ops

ATI X1900XTX

12 ALU ops

Cost = max(ALU, TEX)

X1900XTX has 3X the ALUs per pipe

46

Fetch cost Fetch cost –– ATI ATI –– sequentialsequential

ATI X1800XT

8 ALU ops

ATI X1900XTX

24 ALU ops

Cost = max(ALU, TEX)

X1900XTX has 3X the ALUs per pipe

47

Fetch cost Fetch cost –– NVIDIA NVIDIA –– cache hitcache hit

Cost = sum(ALU, TEX)

4 ALU op penalty

NVIDIA 7900 GTX

48

Fetch cost Fetch cost –– NVIDIA NVIDIA –– sequentialsequential

NVIDIA 7900 GTX

8 ALU op issue penalty

Cost = sum(ALU, TEX)

49

Fetch cost Fetch cost –– NVIDIA 8800 GTXNVIDIA 8800 GTX

Cost = max(ALU, TEX)

Cache sequential

4 ALU ops
8 ALU ops

NVIDIA 8800 GTXNVIDIA 8800 GTX

50

Bandwidth to ALUsBandwidth to ALUs

• Questions
– Cache performance?
– Sequential performance?
– Random-read performance?

51

MethodologyMethodology

• Cache hit
– Use a constant as index to texture(s)

• Sequential
– Use fragment position to index texture(s)

• Random
– Index a seeded texture with fragment position to

look up into input texture(s)

• GPUBench test: inputfloatbandwidth

52

ResultsResults

ATI X1900XTX NVIDIA 7900GTX

Better effective
cache bandwidth

Better random
bandwidth

Sequential bandwidth
(SEQ) about the same

53

ResultsResults

NVIDIA 8800GTX

2X bandwidth of
7900GTX

NVIDIA 7900GTX

54

OffOff--board bandwidthboard bandwidth

• Questions
– How fast can we get data on the board (download)?
– How fast can we get data off the board (readback)?

• GPUBench tests:
– download
– readback

55

DownloadDownload

ATI X1900XTX NVIDIA 7900GTX

Host to GPU is slow

56

DownloadDownload

NVIDIA 7900GTX NVIDIA 8800GTX

Next generation not much better…

57

ReadbackReadback

ATI X1900XTX NVIDIA 7900GTX

GPU to host is slow

ATI GL Readback
performance is

abysmal

58

ReadbackReadback

NVIDIA 7900GTX NVIDIA 8800GTX

Next generation not much better…

59

Instruction Issue RateInstruction Issue Rate

• Questions
– What is the raw performance achievable?
– Do different instructions have different costs?
– Vector vs. scalar issue differences?

60

MethodologyMethodology

• Write long shaders with dependent
instructions
– >100 instructions
– All instructions dependent

• But try to structure to allow for multi-issue

• Test float1 vs. float4 performance
• GPUBench tests:

– instrissue

61

Results Results –– Vector issueVector issue

ATI X1900XTX NVIDIA 7900GTX

= More costly than others

62

Results Results –– Vector issueVector issue

ATI X1900XTX NVIDIA 7900GTX

Faster
ADD/SUB

Peak (single instruction)
FLOPS with MAD

63

Results Results –– Vector issueVector issue

NVIDIA 7900GTX NVIDIA 8800GTX

8800GTX is 37%
faster (peak)

64

When benchmarks go wrongWhen benchmarks go wrong……

• Smart compilers subverting testing and optimizing
away shaders. Bug found in previous subtract test.
No clever way to write RCP test found yet…
Always sanity check results against theoretical
peak!!!

NVIDIA 7800GTX

GPUBench 1.2

65

Results Results –– Scalar issueScalar issue

NVIDIA 7900GTX NVIDIA 8800GTX

8800GTX is a scalar issue
processor

66

Branching PerformanceBranching Performance

• Questions
– Is predication better than branching?
– Is using “Early-Z” culling a better option?
– What is the cost of branching?
– What branching granularity is required?
– How much can I really save branching around heavy

computation?

67

MethodologyMethodology

• Early-Z
– Set a Z-buffer and compare function to mask out compute
– Change coherence of blocks
– Change sizes of blocks
– Set differing amounts of pixels to be drawn

• Shader Branching
– If{ do a little }; else { LOTS of math}
– Change coherence of blocks
– Change sizes of blocks
– Have differing amounts of pixels execute heavy math branch

• GPUBench tests:
– branching

68

Results Results –– EarlyEarly--Z Z -- NVIDIANVIDIA

NVIDIA 7900GTX

4x4 coherence is
almost perfect!

Random is bad!

69

Results Results –– Branching Branching -- NVIDIANVIDIA

NVIDIA 7900GTX

Fully coherent
has good

performance

But overhead…

70

Results Results –– Branching Branching -- NVIDIANVIDIA

NVIDIA 7900GTX

Performance
increases with

branch
coherence

Need > 32x32 branch coherence

71

Results Results –– Branching Branching -- NVIDIANVIDIA

NVIDIA 8800GTX

Performance
increases with

branch
coherence

Need > 16x16 branch coherence
(Turns out 16x4 is as good as 16x16)

72

SummarySummary

• Benchmarks can help discern app behavior
and architecture characteristics

• We use these benchmarks as predictive
models when designing algorithms
– Folding@Home
– ClawHMMer
– CFD

• Be wary of driver optimizations
– Driver revisions change behavior

• Raster order, scheduler, compiler

	Advanced Programming (GPGPU)
	The world changed over the last year…
	What can you do on GPUs other than graphics?
	Task vs. Data parallelism
	CPU vs. GPU
	The Importance of Data Parallelism for GPUs
	Arithmetic Intensity
	Data Streams & Kernels
	Scatter vs. Gather
	Mapping CPU algorithms to the GPU
	Computational Resources
	Vertex Processors
	Fragment Processors
	And then they were unified…
	GPGPU example – Adding Vectors
	How this basically works – Adding vectors
	Rolling your own GPGPU apps
	Basic operations
	Map operation
	Parallel Reductions
	Parallel Scan (aka prefix sum)
	Applications of Scan
	Brook: General Purpose Streaming Language
	Streams
	Kernels
	Kernels
	Kernels
	Kernels
	Kernels
	Reductions
	Reductions
	Stream Repeat & Stride
	Matrix Vector Multiply
	Matrix Vector Multiply
	Runtime
	Applications
	Brook for GPUs
	Understanding GPUs Through Benchmarking
	Introduction
	GPUBench
	Memory latency
	Methodology
	Fetch cost – ATI – cache hit
	Fetch cost – ATI – sequential
	Fetch cost – NVIDIA – cache hit
	Fetch cost – NVIDIA – sequential
	Fetch cost – NVIDIA 8800 GTX
	Bandwidth to ALUs
	Methodology
	Results
	Results
	Off-board bandwidth
	Download
	Download
	Readback
	Readback
	Instruction Issue Rate
	Methodology
	Results – Vector issue
	Results – Vector issue
	Results – Vector issue
	When benchmarks go wrong…
	Results – Scalar issue
	Branching Performance
	Methodology
	Results – Early-Z - NVIDIA
	Results – Branching - NVIDIA
	Results – Branching - NVIDIA
	Results – Branching - NVIDIA
	Summary

