CW_30 Hardware

ControlWave_30 HARDWARE INSTALLATION GUIDE

For upgrade of the 3330 DPC

IMPORTANT! READ INSTRUCTIONS BEFORE STARTING!

Be sure that these instructions are carefully read and understood before any operation is attempted. Improper use of this device in some applications may result in damage or injury. The user is urged to keep this book filed in a convenient location for future reference.

These instructions may not cover all details or variations in equipment or cover every possible situation to be met in connection with installation, operation or maintenance. Should problems arise that are not covered sufficiently in the text, the purchaser is advised to contact Bristol for further information.

EQUIPMENT APPLICATION WARNING

The customer should note that a failure of this instrument or system, for whatever reason, may leave an operating process without protection. Depending upon the application, this could result in possible damage to property or injury to persons. It is suggested that the purchaser review the need for additional backup equipment or provide alternate means of protection such as alarm devices, output limiting, failsafe valves, relief valves, emergency shutoffs, emergency switches, etc. If additional in-formation is required, the purchaser is advised to contact Bristol.

RETURNED EQUIPMENT WARNING

When returning any equipment to Bristol for repairs or evaluation, please note the following: The party sending such materials is responsible to ensure that the materials returned to Bristol are clean to safe levels, as such levels are defined and/or determined by applicable federal, state and/or local law regulations or codes. Such party agrees to indemnify Bristol and save Bristol harmless from any liability or damage which Bristol may incur or suffer due to such party's failure to so act.

ELECTRICAL GROUNDING

Metal enclosures and exposed metal parts of electrical instruments must be grounded in accordance with OSHA rules and regulations pertaining to "Design Safety Standards for Electrical Systems," 29 CFR, Part 1910, Subpart S, dated: April 16, 1981 (OSHA rulings are in agreement with the National Electrical Code).

The grounding requirement is also applicable to mechanical or pneumatic instruments that include electrically-operated devices such as lights, switches, relays, alarms, or chart drives.

EQUIPMENT DAMAGE FROM ELECTROSTATIC DISCHARGE VOLTAGE

This product contains sensitive electronic components that can be damaged by exposure to an electrostatic discharge (ESD) voltage. Depending on the magnitude and duration of the ESD, this can result in erratic operation or complete failure of the equipment. Read supplemental document S14006 at the back of this manual for proper care and handling of ESD-sensitive components.

WARRANTY

- A. Bristol warrants that goods described herein and manufactured by Bristol are free from defects in material and workmanship for one year from the date of shipment unless otherwise agreed to by Bristol in writing.
- B. Bristol warrants that goods repaired by it pursuant to the warranty are free from defects in material and workmanship for a period to the end of the original warranty or ninety (90) days from the date of delivery of repaired goods, whichever is longer.
- C. Warranties on goods sold by, but not manufactured by Bristol, are expressly limited to the terms of the warranties given by the manufacturer of such goods.
- D. All warranties are terminated in the event that the goods or systems or any part thereof are (i) misused, abused or otherwise damaged, (ii) repaired, altered or modified without Bristol's consent, (iii) not installed, maintained and operated in strict compliance with instructions furnished by Bristol, or (iv) worn, injured or damaged from abnormal or abusive use in service time.
- E. THESE WARRANTIES ARE EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED (INCLUDING WITHOUT LIMITATION WARRANTIES AS TO MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE), AND NO WARRANTIES, EXPRESS OR IMPLIED, NOR ANY REPRESENTATIONS, PROMISES, OR STATEMENTS HAVE BEEN MADE BY BRISTOL UNLESS ENDORSED HEREIN IN WRITING. FURTHER, THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION OF THE FACE HEREOF.
- F. No agent of Bristol is authorized to assume any liability for it or to make any written or oral warranties beyond those set forth herein.

REMEDIES

- A. Buyer's sole remedy for breach of any warranty is limited exclusively to repair or replacement without cost to Buyer of any goods or parts found by Seller to be defective if Buyer notifies Bristol in writing of the alleged defect within ten (10) days of discovery of the alleged defect and within the warranty period stated above, and if the Buyer returns such goods to Bristol's Watertown office, unless Bristol's Watertown office designates a different location, transportation prepaid, within thirty (30) days of the sending of such notification and which upon examination by Bristol proves to be defective in material and workmanship. Bristol is not responsible for any costs of removal, dismantling or reinstallation of allegedly defective or defective goods. If a Buyer does not wish to ship the product back to Bristol, the Buyer can arrange to have a Bristol service person come to the site. The Service person's transportation time and expenses will be for the account of the Buyer. However, labor for warranty work during normal working hours is not chargeable.
- B. Under no circumstances will Bristol be liable for incidental or consequential damages resulting from breach of any agreement relating to items included in this quotation, from use of the information herein or from the purchase or use by Buyer, its em-ployees or other parties of goods sold under said agreement.

How to return material for Repair or Exchange

Before a product can be returned to Bristol for repair, upgrade, exchange, or to verify proper operation, form (GBU 13.01) must be completed in order to obtain a RA (Return Authorization) number and thus ensure an optimal lead time. Completing the form is very important since the information permits the Bristol Repair Dept. to effectively and efficiently process the repair order.

You can easily obtain a RA number by:

A. FAX

Completing the form (GBU 13.01) and faxing it to (860) 945-3875. A Bristol Repair Dept. representative will return call (or other requested method) with a RA number.

B. E-MAIL

Accessing the form (GBU 13.01) via the Bristol Web site (www.bristolbabcock.com) and sending it via E-Mail to <u>brepair@bristolbabcock.com</u>. A Bristol Repair Dept. representative will return E-Mail (or other requested method) with a RA number.

C. Mail

Mail the form (GBU 13.01) to

Bristol Inc. Repair Dept. 1100 Buckingham Street Watertown, CT 06795

A Bristol Repair Dept. representative will return call (or other requested method) with a RA number.

D. Phone

Calling the Bristol Repair Department at (860) 945-2442. A Bristol Repair Department representative will record a RA number on the form and complete Part I, then send the form to the Customer via fax (or other requested method) for Customer completion of Parts II & III.

A copy of the completed Repair Authorization Form with issued RA number should be included with the product being returned. This will allow us to quickly track, repair, and return your product to you.

Bristol Inc. Repair Authorization Form (off-line completion)

(Providing this information will permit Bristol Inc. to effectively and efficiently process your return. Completion is required to receive optimal lead time. Lack of information may result in increased lead times.)

Da	te RA #		SH_	_	Line No	
 Standard Repair Practice is as follows: Variations to this is practice may be requested in the "Special Requests" section. Evaluate / Test / Verify Discrepancy Repair / Replace / etc. in accordance with this form Return to Customer 		sis] n. o	 Please be aware of the Non warranty standard charge: There is a \$100 minimum evaluation charge, which is applied to the repair if applicable (√ in "returned" B,C, or D of part III below) 			
Pa	rt I Please complete the following inform	ation fo	or single unit	or multiple u	nit returns	
Ad	dress No(office use on	ly) Ad	ldress No		(office use onl	
Bil	l to :	Sh	ip to:			
Pu	rchase Order:	Co	ontact Name:			
Ph	one: Fax:		E	-Mail:		
Pa	rt II Please complete Parts	П&П	I for each u	nit returned		
<u> </u>		n w n				
Mo	odel No./Part No	De	scription			
ка	nge/Calibration	S /r	N			
				(Attacl	h a separate sheet if necessary	
2.	Comm. interface used: Standalone RS-485 Ethe	rnet 🗌 N	Aodem (PLM (2	2W or 4W) or S	NW) []Other:	
3.	What is the Firmware revision?		What is the S	oftware &ver	(sion?	
Pa	rt III If checking "replaced" for any question below,	, check	an alternate	option if repl	acement is not available	
A.	If product is within the warranty time period but is exc to Bristol's warranty clause, would you like the produc	luded d	ue □ repair	ed □ returne	d □ replaced □ scrapped?	
B.	If product were found to exceed the warranty period, would you like the product:			ed 🗌 returned	1 □ replaced □ scrapped?	
C.	If product is deemed not repairable would you like you	ır produ	ict:	returned	1 □ replaced □ scrapped?	
D.	If Bristol is unable to verify the discrepancy, would yo	u like tł	ne product:	returned	d □ replaced □ *see below	
* (t	Continue investigating by contacting the customer to lear hat has the most knowledge of the problem is:	rn more	about the pro	blem experier	iced? The person to contact none	
If v	we are unable to contact this person the backup person is	s:		p	hone	
Sp	ecial Requests:					
Shi	ip prepaid to: Bristol Inc., Repair Dept., 110 Phone: 860-945-2442 Fax:	0 Bucki 860-945	ingham Stree 5-3875	et, Watertown Forr	1, CT 06795 n GBU 13.01 Rev. B 04/11/0	

Bristol *Training*

GET THE MOST FROM YOUR BRISTOL BABCOCK INSTRUMENT OR SYSTEM

- Avoid Delays and problems in getting your system on-line
- Minimize installation, start-up and maintenance costs.
- Make the most effective use of our hardware and software.
- Know your system.

As you know, a well-trained staff is essential to your operation. Bristol Inc. offers a full schedule of classes conducted by full-time, professional instructors. Classes are offered throughout the year at three locations: Houston, Orlando and our Watertown, CT headquarters. By participating in our training, your personnel can learn how to install, calibrate, configure, program and maintain any and all Bristol products and realize the full potential of your system.

For information or to enroll in any class, contact our training department in Watertown at (860) 945-2343. For Houston classes, you can also contact our Houston office, at (713) 685-6200.

A Few Words About Bristol Inc.

For over 100 years, Bristol[®] has been providing innovative solutions for the measurement and control industry. Our product lines range from simple analog chart recorders, to sophisticated digital remote process controllers and flow computers, all the way to turnkey SCADA systems. Over the years, we have become a leading supplier to the electronic gas measurement, water purification, and wastewater treatment industries.

On off-shore oil platforms, on natural gas pipelines, and maybe even at your local water company, there are Bristol Inc. instruments, controllers, and systems running year-in and year-out to provide accurate and timely data to our customers.

Getting Additional Information

In addition to the information contained in this manual, you may receive additional assistance in using this product from the following sources:

Help Files / Release Notes

Many Bristol software products incorporate help screens. In addition, the software typically includes a 'read me' release notes file detailing new features in the product, as well as other information which was available too late for inclusion in the manual.

Contacting Bristol Inc. Directly

Bristol's world headquarters is located at 1100 Buckingham Street, Watertown, Connecticut 06795, U.S.A.

Our main phone numbers are:

(860) 945-2200 (860) 945-2213 (FAX)

Regular office hours are Monday through Friday, 8:00AM to 4:30PM Eastern Time, excluding holidays and scheduled factory shutdowns. During other hours, callers may leave messages using Bristol's voice mail system.

Telephone Support - Technical Questions

During regular business hours, Bristol's Application Support Group can provide telephone support for your technical questions.

For technical questions about TeleFlow products call (860) 945-8604.

For technical questions about ControlWave call (860) 945-2394 or (860) 945-2286.

For technical questions regarding Bristol's **OpenEnterprise** product, call (860) 945-3865 or e-mail: **scada@bristolbabcock.com**

For technical questions regarding **ACCOL** products, **OpenBSI Utilities**, **UOI** and all other software except for **Control**Wave and **OpenEnterprise** products, call (860) 945-2286.

For technical questions about Network 3000 hardware, call (860) 945-2502.

You can e-mail the Application Support Group at: bsupport@bristolbabcock.com

The Application Support Group maintains an area on our web site for software updates and technical information. Go to: **www.bristolbabcock.com/services/techsupport**/

For assistance in interfacing Bristol hardware to radios, contact Bristol's **Communication Technology Group** in Orlando, FL at **(407) 629-9463 or (407) 629-9464**.

You can e-mail the Communication Technology Group at: orlandoRFgroup@bristolbabcock.com

Telephone Support - Non-Technical Questions, Product Orders, etc.

Questions of a non-technical nature (product orders, literature requests, price and delivery information, etc.) should be directed to the nearest sales office (listed on the rear cover of this manual) or to your Bristol-authorized sales representative.

Please call the main Bristol Inc. number (860-945-2200) if you are unsure which office covers your particular area.

Visit our Site on the World Wide Web

For general information about Bristol Inc. and its products, please visit our site on the World Wide Web at: **www.bristolbabcock.com**

Training Courses

Bristol's Training Department offers a wide variety of courses in Bristol hardware and software at our Watertown, Connecticut headquarters, and at selected Bristol regional offices, throughout the year. Contact our Training Department at (860) 945-2343 for course information, enrollment, pricing, and scheduling.

PIP-CW_30 Upgrade Kit Hardware Installation Guide

TABLE OF CONTENTS

SECTION	TITLE	PAGE #
	SECTION 1 - ControlWave_30 INTRODUCTION	1
	SECTION 2 - ControlWave PROGRAMMING ENVIRONMENT	1
	SECTION 3 – PHYSICAL DESCRIPTION	3
3.1	CW_30 CPU Board Overview	3
3.1.1	CW_30 CPU Board Serial Comm. Port Connectors	6
3.1.2	CW_30 CPU Board Ethernet Ports	6
3.1.2.1	Ethernet CPU Engine 10/100Base-T Connectors	6
3.1.3	CW_30 CPU Board Memory	
3.1.4	CW_30 CPU Board Configuration Jumpers	
3.1.5	CW_30 CPU Board Configuration Switches	9
3.1.6	CW_30 CPU Board LEDs	10
3.2	CW_30 Communication Board (CB) Overview	12
3.2.1	Setting CB Board DIP Switches	
3.2.2	Setting CB Board Configuration Jumpers	15
3.2.3	CB Board LED Indicators	16
3.2.4	CB Board Communication Port Information	17
	SECTION 4 - ControlWave_30 CONFIGURATION	
41	Step 1 - Hardware Configuration	18
4.2	Step 2 - Software Installation on the PC Workstation	23
4.3	Step 3 - Establish Communications using either LocalView or Netview.	
110	and Run the Flash Configuration Utility	
4.4	Step 4 Create an Application-specific Control Strategy in	
	ControlWave Designer	
4.5	Step 5 - Create Application Specific Web Pages OPTIONAL)	24
4.6	Step 6 - Create an Open BSI Network Containing the CW 30,	
	or add the CW 30 to an Existing Open BSI Network	25
4.7	Step 7 - Download the Application-specific Control Strategy	
	into the CW_30 DPC	25
	SECTION 5 – OPERATIONAL DETAILS	25
F 1		0.0
5.1	Downloading the Application Load	
5.2	Upgrading CW_30 Firmware	
5.2.1	Using Local view to Upgrade CW_30 Firmware	
5.2.2 5.9.9	Using Hyperterminal to Upgrade UW_30 Firmware	
0.2.3 5 9	Coro Undumn	ປ2 ໑໑
J.J		əz
	SECTION 6 – GENERAL SERVICE NOTES	33
6.1	Extent of Field Repairs	
6.2	Disconnecting RAM Battery	
	•	

PIP-CW_30 Upgrade Kit Hardware Installation Guide

TABLE OF CONTENTS

SECTION	TITLE	PAGE #
	SECTION 6 – GENERAL SERVICE NOTES (Continued)	
6.3	Maintaining Backup Files	
	SECTION 7 – WINDIAG DIAGNOSTICS	
7.1	Diagnostics Using WINDIAG	
7.1.1	Communication Diagnostic Port Loop-back Tests	
7.1.2	Serial Comm. Port External Loop-back Test Procedure	
7.1.3	Ethernet Port Diagnostics	
7.1.3.1	10/100Base-T (RJ-45 – Twisted Pair) Port Hardware Setup	
7.1.3.2	Ethernet Port Diagnostic Test Execution	
7.1.3.3	Loop-back Out Twisted Pair Test RUN Button	
7.1.3.4	Return Hardware Address Test RUN Button	
7.1.3.5	Ethernet Port Diagnostic Error/Failure Messages	
	SECTION 8 - DISPLAY/KEYPAD ASSEMBLY OPERATION	
8.1	Operation of the Dual-button/Display/Keypad Assembly	
	SECTION 9 - CW_30 SPECIFICATIONS	
9.1	CW 30 CPU Board Specifications	
9.1.1	CPU Board Communication Port Specifications	
9.1.2	CPU Board 3.3V Power Supply Specifications	
9.1.3	CPU Board Environmental Specifications	
9.2	CW 30 Communication Board (CB) Specifications	
9.2.1	CB Board Connectors	
9.2.2	CB Board Communication Port Specifications	
9.2.3	CB Board 3.3V Power Supply Specifications	
9.2.4	CB Board Environmental Specifications	
	APPENDICES	

4 X 20 DISPLAY-KEYBOARD ASSEMBLY	Appendix DKA
MATERIAL SAFETY DATA SHEETS	Appendix Z

REFERENCED Bristol CUSTOMER INSTRUCTION MANUALS

WINDIAG - Windows Diagnostics for Bristol Controllers	D4041A
Open BSI Utilities Manual	D5081
Getting Started with ControlWave Designer	D5085
ACCOL Translator User Guide	D5086
Web_BSI Manual	D5087
ControlWave Designer Reference Manual	D5088
ControlWaveMICRO Quick Setup Guide	D5124
ControlWave Designer Programmer's Handbook	D5125

ControlWave_30 HARDWARE INSTALLATION GUIDE

SECTION 1 - ControlWave_**30 INTRODUCTION**

DPC 3330 can be field upgraded to become a **Control**Wave_**30** DPC (herein referred to as **CW_30**) by utilizing the hardware provided in an installation kit. Upgrade will require removal of the standard DPC 3330 CPU and Comm./ECOM Boards and then adding the **CW_30** CPU (CPU) and **CW_30** Communication (CB) Boards provided in the upgrade kit.

ControlWave® products have been designed and integrated as a highly adaptable, high performance Distributed Open Controller family with exceptional networking capability that provides a complete Process Automation Management Solution. The CPU and CB Boards were designed with an emphasis on providing high performance with low power consumption and scalability.

The CPU Module utilizes Sharp's LH7A400 System-on-Chip Advanced RISC Machine (ARM) microprocessor with 32-bit ARM9TDMI Reduced Instruction Set Computer (RISC) Core. In addition to the microprocessor and control logic, the CPU Board includes two communication ports that can be individually configured for RS-232 or RS-485 operation, 1MB of battery backed Static RAM (SRAM), 4MB of Synchronous Dynamic RAM (SDRAM), 512kB Boot/Downloader FLASH, 16MB simultaneous read/write FLASH, an I/O Bus Connector, up to two optional Ethernet ports.

In addition to Idle and Watchdog LEDs, there are six status LEDs located on the CPU Board that will display run time status information. Two LEDs are also provided for each Comm. Port.

CW_30 Distributed Process Controllers provide the following key features:

- ARM processor provides exceptional performance and low power consumption
- Ten independently configurable asynchronous serial communication ports (RS-232/RS-485) and one 3-wire serial RS-232 Utility Port
- Up to two optional Ethernet ports (10/100Base-T)
- Optional Expansion Comm. Modules with/without built-in modem
- Wide temperature range: $(-40 \text{ to } +70^{\circ}\text{C})$ $(-40 \text{ to } 158^{\circ}\text{F})$
- Utilizes existing DPC 3330 Chassis, Power Supply and I/O Boards
- RS-232/RS-485 Comm. Ports provided with LED status Indicators
- Battery backup for the real-time clock and the system's SRAM is provided by a 3.0V, 300mA-hr lithium coin cell battery located on the CPU Board Ass'y.
- Class I, Div. 2 Hazardous Location approval

SECTION 2 - ControlWave **PROGRAMMING ENVIRONMENT**

The ControlWave programming environment uses industry-standard tools and protocols to provide a flexible, adaptable approach for various process control applications in the water treatment, wastewater treatment, and industrial automation business.

The **Control**Wave programming environment consists of a set of integrated software tools which allow a user to create, test, implement, and download complex control strategies for use with Bristol's **CW_30** Distributed Process Controller.

The tools that make up the programming environment are:

- **Control**Wave **Designer** load building package offers several different methods for generating and debugging control strategy programs including function blocks, ladder logic, structured languages, etc. The resulting process control load programs are fully compatible with **IEC 61131-3** standards. Various communication methods are offered, including TCP/IP, serial links, as well as communication to Bristol's **Open BSI** software and networks.
- The **I/O Configuration Wizard**, accessible via a menu item in **Control**Wave Designer, allows you to define **process I/O modules** in the **CW_30** and configure the individual mapping of I/O points for digital and analog inputs and outputs.
- The ACCOL3 Firmware Library, which is imported into ControlWave Designer, includes a series of Bristol specific function blocks. These pre-programmed function blocks accomplish various tasks common to most user applications including alarming, historical data storage, as well as process control algorithms such as PID control.
- The **OPC Server** (Object Linking and Embedding (OLE) for **P**rocess Control) allows real-time data access to any OPC [Object Linking and Embedding (OLE) for Process Control] compliant third-party software packages.
- A series of **Configuration Controls** are available for setting up various aspects of the system such as historical data storage, system security, and soft switches. Additional **Data Access Controls** are also available for retrieval of real-time data values and communication statistics. The configuration controls and the data access controls utilize **ActiveX** technology and are called through a set of fixed Web pages, compatible with Microsoft® Internet Explorer. Alternatively, developers can place the controls in third-party ActiveX compatible containers such as Visual BASIC or Microsoft® Excel.
- User-defined Web Pages If desired, user-defined web pages can be stored within a PC to provide a customized human-machine interface (HMI).
- Flash Configuration Utility Parameters such as the BSAP local address, IP address, etc. are set using the Flash Configuration Utility, accessible via Open BSI LocalView or NetView.

Note: DPC 3330s that are upgraded with "CW_30 Hardware," must have their ACCOL application load converted to an IEC 61131 ControlWave Program Load. This is accomplished via the ACCOL Translator (see User Guide D5086).

Figure 1 - ControlWave - Control Strategy Software Diagram

SECTION 3 - PHYSICAL DESCRIPTION

CW-30 Upgrade kits are comprised of the following major components:

- **CW_30** CPU Board (CPU) Overview (Section 3.1)
- CW_30 Communication Board (CB) Overview (Section 3.2)

3.1 CW_30 CPU Board Overview

The multilayer CPU Board provides **CW_30** CPU, I/O monitor/control, memory and communication functions. **CW_30** CPU Boards operate over an extended temperature range with long-term product reliability.

CW_30 CPU Boards are based on a 32-bit ARM9TDMI RISC Core Processor. The CPU Board is specified to operate on **CW_30** (+12Vdc or +24Vdc systems) and with a system clock speed of 150 MHz. In addition to the microprocessor and control logic, the CPU Board includes two independently (DIP-Switch) configurable communication ports (RS-232/RS-485) (COM5 & COM6), up to two optional Ethernet ports (10/100Base-T), CPU Memory consists of 1MB of battery backed Static RAM (SRAM), 512kB Boot/Downloader FLASH and 16MB simultaneous read/write FLASH.

CPU Boards are provided backup power via a coin cell socket that accepts a 3.0V, 300mA-hr lithium battery. This 3.0V battery provides backup power for the real-time clock and the system's Static RAM (SRAM). Backup power is enabled when Configuration Jumper W3 (just below the battery) is installed in position 1 to 2.

If the 3.3Vdc that powers the unit goes out of specification, a supervisory circuit on the CPU Board switches the battery voltage to the CPU's SRAM and RTC.

The system SRAM is specified to have a standby current of 20μ A for each part (1MB), (40 μ A maximum) (plus 2uA for the RTC). For a system containing 2MB of system SRAM, a worst-case current draw of 42 μ A allows a battery life of approximately 7142 hours.

A supervisory circuit is used to switch to battery power when VCC falls out of specification. For maximum shelf life, the battery may be isolated from the circuit by removing the Backup Enable Jumper W3 from position 1 to 2 and then installing it in position 2 to 3. If the Real-time clock looses its battery backup a ControlWave Designer system variable bit (_QUEST_DATE) is set. This bit can be used to post a message or alarm to the PC (see the ControlWave Designer Programmer's Handbook - D5125, <u>System Variables</u> Section).

Basic CPU Board components and features are summarized as follows:

- LH7A400 System-on-Chip 32-bit ARM9TDMI RISC Core microprocessor
- Supports process control loads that are fully compatible with IEC 61131-3 standards
- 512KB FLASH Boot/Downloader, 29LV040B, 90 nS, 8-bit access
- 1MB SRAM, 3.3V, 256 x 16, 70 nsec., with Battery Back-up
- 4 MB SDRAM via two 1M x 16, 100MHz SDRAMs configured as a 1M x 32-bit array.
- 16MB simultaneous read/write FLASH, 90 nsec.
- 2 user configurable serial Comm. ports (RS-232/RS-485) (COM5 & COM6) (compatible with existing 3330 communication cables)
- 2 optional Ethernet ports (10/100Base-T)
- I/O Bus Interface, control for up to 12 I/O Boards
- MAC address in serial EEPROM
- Spread Spectrum clock for lower EMI
- Serial Real Time Clock with battery backup
- 8-Position general-purpose switch bank plus a 4-Position recovery switch bank
- Coin cell socket accepts a 3.0V, 300mA-hr lithium battery
- Six Status LEDs, 6 Comm. Port LEDs plus Watchdog, Idle and Comm. Port LEDs
- 3-wire (RS-232) Utility Port: Provides compatibility with existing FLASH load cable used with the 3330 CPU.

Figure 2 – CW_30 CPU Board Component Identification Diagram

3.1.1 CW_30 CPU Board Serial Comm. Port Connectors

The CPU Board supports up to two serial communication ports (COM5 and COM6). COM5 and COM6 are interconnected to a Comm. Interface Board Assembly that contains two Female D-Type connectors (see Table 10 for Comm. Port D-type connector pin assignments). The interface cable is connected to J5 on the **CW_30** CCPU Board and P2 on the Comm. Interface Board Assembly (Bristol Part No. 392574-01-2). Comm. Interface Board Assembly Connector BIP1 supports Comm. Port 5 while connector BIP2 supports Comm. Port 6. When configured for RS-485 operation Comm. Port 5 and Comm. Port 6 receivers are enabled by DTR the RS-485 driver is enabled by RTS. An eight position DIP-Switch (SW3) is assigned to Comm. Port 5 and another (SW4) is assigned to Comm. Port 6. These switches provide user configuration of RS-485 port receiver biasing and termination as well as 2-wire or 4-wire operation.

3.1.2 CW_30 CPU Board Ethernet Ports

Connection to the Ethernet can be established via one or two Ethernet Ports situated on the CPU Board. Ethernet Ports utilize 10/100Base-T RJ45 modular connectors (J1 & J2) that typically provide a twisted pair interface to an Ethernet Hub. Ethernet Port Jacks are equipped with two LEDs that function as follows: yellow = TX, green = RX activity.

3.1.2.1 Ethernet CPU Engine 10/100Base-T Connectors J2 & J3

8-pin 10/100Base-T Connectors J2 and J3 typically provide connection to a twisted pair Ethernet via an Ethernet Hub. Both ends of the Ethernet cable are equipped with modular RJ45 connectors. A typical hub provides eight (8) 10/100Base-T RJ45 ports (with port 8 having the capability to link to another hub or to an Ethernet communication port. The cable used between a CPU Module Expansion Board's Ethernet 10/100Base-T connector and an Ethernet Hub has a one-to-one wiring configuration as shown in Figure 4. Table 1 provides the assignment and definitions of 8-pin 10/100Base-T Connectors J2 & J3.

It is possible to connect two nodes in a point-to-point configuration without the use of a Hub. However; the cable used must be configured such that the $TX\pm$ Data pins are connected to the $RX\pm$ Data pins (swapped) at the opposite ends of the cable (see Figure 3).

The maximum length of one segment (CPU to Hub) is 100 meters (328 feet). The use of Category 5 shielded cable is recommended.

Pin #	Description	Pin #	Description
1TX+	Transmit Data+	5	Not Connected
2TX-	Transmit Data-	6RX-	Receive Data-
3RX+	Receive Data+	7	Not Connected
4	Not Connected	8	Not Connected

Table 1 - J	Ethernet	10/100Base-T	Connectors	J2 &	$\mathbf{J3}$	Pin Assignments
-------------	----------	--------------	------------	------	---------------	------------------------

Note: TX & RX are swapped at Hub's.

Figure 5 - 10/100Base-T Connector (P2) with Cable Configured for Loopback

3.1.3 CW_30 CPU Board Memory

Boot/downloader FLASH

Boot/download code is contained in a single 512Kbytes FLASH IC. 4-Position DIP-Switch SW1's position 3 allows start-up menu options to be displayed or boot-up from system FLASH. If SW1-3 is closed (ON) when a reset occurs, the boot-up code will cause a recovery menu to be sent out the Utility Port (on the CPU Board) to a terminal program running on an external host computer. *Note: Recovery Mode will also be initiated if CPU Board Switch SW1 positions 1 and 2 are both set* **ON** or **OFF** when a reset occurs.

FLASH Memory

The base version of the CPU Board has 16Mbytes of 3.3V, simultaneous read/write (DL) FLASH memory. System Firmware and the Boot Project are stored here.

System Memory (SRAM)

The CPU Board has 1Mbyte of static RAM, implemented with two 256K x 16, 70 nanosecond asynchronous SRAMs. All random access memory retained data is stored in SRAM. During power loss periods, SRAM is placed into data retention mode (powered by a backup 3.0V lithium battery). SRAM's operates at 3.3V and are packaged in a 44-pin uTSOP. Critical system information that must be retained during power outages or when the system has been disabled for maintenance is stored here. Data includes: Last states of all I/O, historical data, retain variables and pending alarm messages not yet reported.

Synchronous Dynamic RAM (SDRAM)

The CW_30 CPU Board contains 4 Mbytes of Synchronous Dynamic RAM (SDRAM) implemented with two 1M x 16, 100MHz Synchronous DRAMs. The running application is stored here. This allows the system to run faster than it will from the FLASH memory. SDRAM is not battery-backed.

3.1.4 CW_30 CPU Board Configuration Jumpers

CW_30 CPU Boards provide 18 User Configuration Jumpers that function as follows:

- W3 Enable/Disable Battery Back-up Selection 1 to 2 = Enable Battery Back-up 2 to 3 = Disable Battery Back-up
- W5 Status LED Enable/Disable Selection 1 to 2 = Enable Status LEDs 2 to 3 = Disable Status LEDs
- W8 Serial Comm. Port Status LED Enable/Disable Selection 1 to 2 = Enable Serial Comm. Port Status LEDs 2 to 3 = Disable Serial Comm. Port Status LEDs
- W9 BIP1 (Comm. Port 5) Configuration Selection Note: W10 through W13 ditto 1 to 2 = Set for RS-232 Operation 2 to 3 = Set for RS-485 Operation
- W14 BIP1 (Comm. Port 5) DSR/DTR Control 1 to 2 = DSR on Pin-8 of D-type Connector 2 to 3 = DTR on Pin-8 of D-type Connector

- W15 BIP1 (Comm. Port 5) Control 1 to 2 = CTS Source is from Port 2 to 3 = RTS to CTS Loopback
- W16 BIP2 (Comm. Port 6) Configuration Selection Note: W17 through W20 ditto 1 to 2 = Set for RS-232 Operation 2 to 3 = Set for RS-485 Operation
- W21 BIP2 (Comm. Port 6) DSR/DTR Control 1 to 2 = DSR on Pin-8 of D-type Connector 2 to 3 = DTR on Pin-8 of D-type Connector
- W22 BIP2 (Comm. Port 6) Control 1 to 2 = CTS Source is from Port 2 to 3 = RTS to CTS Loopback
- W23 Power Good LED Control 1 to 2 = Enable Power Good LED 2 to 3 = Disable Power Good LED

3.1.5 CW_30 CPU Board Configuration Switches

Four user-configurable DIP Switches are provided on the **CW_30** CPU Board. Eight-bit DIP-Switch SW2 is provided for user configuration settings while four-bit DIP-Switch SW1 provides forced recovery functions. Eight-bit DIP-Switch SW3 provides loopback, termination control, and receiver bias settings for the Comm. Port 5 when it has been configured for RS-485 operation (via jumpers W9 through W13). Eight-bit DIP-Switch SW4 provides loopback, termination control, and receiver bias settings for Comm. Port 6 when it has been configured for RS-485 operation (via jumpers W16 through W20).

SW#	Function	Setting - (ON = Factory Default)
SW9 1	Watehdog Frabla	ON = Watchdog circuit is enabled
5112-1	Watchildog Ellable	OFF = Watchdog circuit is disabled
CW0 0	Lock/Unlock	ON = Write to Soft Switches and FLASH files
SW2-2	Soft Switches	OFF = Soft Switches, configurations and FLASH files are locked
CW0 9	Use/Ignore	ON = Use Soft Switches (configured in FLASH)
SW2-3	Soft Switches	OFF = Ignore Soft Switch Configuration and use factory defaults
CW9 4	Core Updump	ON = Core Updump Disabled
SW2-4	See Section 3.6	OFF = Core Updump Enabled via Recovery Switch (SW1)
GWO F	CDAM Control	ON = Retain values in SRAM during restarts
5772-9	SRAM Control	OFF = Force system to reinitialize SRAM
SM9 C	System Firmware	ON = Enable remote downloading of System Firmware *
SW2-0	Load Control	OFF = Disable remote downloading of System Firmware
SW2-7	N/A	
CWO O	Erable WINDIAC	ON = Normal Operation (don't allow WINDIAG to run test)
SW2-8	Enable WINDIAG	OFF = Disable boot project (allow WINDIAG to run test)

Table 2 – CW	_30 CPU Board (General Purpose Switch SW2) Assignmer	nts
	Note: Except for SW2-4, ON = Factory Default	

***** = Boot PROM version 4.7 or higher and System PROM version 4.7 or higher

Table 3 - CW_30 CPU Board (Switch SW1) Assignments CPU/SystemRecovery Mode/Local Mode Control (Note: SW1-4 not used)

Switch	Function	Setting
SW1-1/2	Recovery/Local Mode *	Both ON or OFF = Recovery Mode SW1 OFF & SW2 ON = Local Mode
SW1-3	Force Recovery Mode *	ON = Force Recovery Mode (via CW Console) OFF = Recovery Mode disabled

* = Note: Only the CPU Board Switch SW1 settings listed in this table have been tested.

Table 4 - CW_30 CPU Board Switch SW3/SW4 AssignmentsRS-485 Loopback & Termination Control (COM5 = SW3 & COM6 = SW4)

Switch	RS-485 Function Switch ON	Setting
SW3/4-1	TX+ to RX+ Loopback/2-Wire	ON - Only for Diagnostics
SW3/4-2	TX– to RX– Loopback/2-Wire	ON - Only for Diagnostics
SW3/4-3	100 Ohm RX+ Termination	ON - End Nodes Only
SW3/4-4	100 Ohm RX– Termination	ON - End Nodes Only
SW3/4-7	RX+ Bias (End Nodes/Node)	ON - 4-Wire = Both End Nodes ON - 2-Wire = One End Node Only
SW3/4-8	RX– Bias (End Nodes/Node)	ON - 4-Wire = Both End Nodes ON - 2-Wire = One End Node Only

3.1.6 CW_30 CPU Board LEDs

CW_30 CPU Boards are equipped with 15 LEDs. Table 5 provides CPU Board LED assignments. Table 6 provides definitions for the six Status LEDS.

LED Ref.	Function	Color	LED Ref.	Function	Color
CR2	Utility Port TX	Red	CR8	Status 2	Red
CR3	Utility Port RX	Red	CR9	Status 3	Red
CR4 - Top	COM5 (BIP1) TX	Red	CR10	Status 4	Red
CR4 -	COM5 (BIP1) RX	Red	CR11	Status 5	Red
Bottom					
CR5 - Top	COM6 (BIP2)TX	Red	CR12	Status 6	Red
CR5 -	COM6 (BIP2) RX	Red	CR13	Watchdog	Red
Bottom					
CR6	Power Good	Green	CR14	Idle	Red
CR7	Status 1	Red			

Table 5 – Assignment of CW_30 CPU Board LEDs

Note: Optional Ethernet Port Jacks are equipped with two LEDs that function as follows: Yellow = TX, Green = RX activity.

Two red LEDs provide for the following status conditions when lit: WD (CR13 - Indicates a Watchdog condition has been detected) & IDLE (CR14 - Indicates that the CPU has free time at the end of its execution cycle. Normally, it should be ON most of the time. When the Idle LED is OFF, it indicates that the CPU has no free time, and may be overloaded). The green Power Good LED (CR6) is on when power is within specification. Six status LEDs provide run time status codes.

Table 6System Status Codes for Status LCDs CW_30 CPU Board (see Figure 6)

LED 6 _ CR12	LED 5 _ CR11 _	LED 4 _ CR10 _	LED 3 CR9	LED 2 CR8	LED 1 _ CR7	Status In Hex	Indication Definition	
0	0	0	0	0	0	00	Application Running	
0	0	0	0	0	1	01	Unit in Diagnostic Mode	
0	0	0	0	1	1	03	Unit Running Diagnostics	
0	0	0	1	0	0	04	Flash XSUM Error	
0	0	0	1	0	1	05	Error Initializing Application Device	
0	0	0	1	1	1	07	Flash Programming Error	
0	0	1	0	0	0	08	Using Factory Defaults *	
0	0	1	0	0	1	09	Battery Failure Detected *	
0	1	0	0	0	0	10	Waiting in Recovery Mode	
0	0	1	0	1	0	0A	Currently Loading the Boot Project	
0	0	1	0	1	1	0B	System Initialization in Progress	
0	1	0	0	1	0	12	Error Testing SRAM	
1	0	0	0	0	0	20	Application Loaded	
1	0	1	0	0	0	28	Stopped at a Break Point	
1	1	0	0	0	0	30	No Application Loaded	
1	1	1	0	0	0	38	Running with Break Points	
1	1	1	0	1	1	3B	Waiting for Power-down (after NMI)	
1	1	1	1	1	0	3E	Waiting for Updump to be Performed	
1	1	1	1	1	1	3F	Unit Crashed (Watchdog Disabled)	

* = Flashed at startup

28-28-22208	HEX		HEX	- H	IEX		HEX
1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	00	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	07	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	10	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	38
1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	01	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	08	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	12	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	3В
1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	03	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	09	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	20	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	3E
1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	04	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	0A	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	28	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	3F
1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	05	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	0B	1 CR7 2 CR8 3 CR9 4 CR10 5 CR11 6 CR12	30		

Figure 6 – CW_30 CPU Status LED Hexi-decimal Codes

3.2 CW_30 Communication Board (CB) Overview

CW_30 Communication Boards provide either four or two (depopulated version of Four Port CB) communication ports which utilize 9-pin, D-Type, female connectors. Up to 2 CBs can be installed in a **CW_30**. CB Board communication ports are labeled as follows:

First 4-Port CB contains Ports 1, 2, 7, & 8 (resides in Communication Socket #1). Second 4-Port CB contains Ports 3, 4, 9 & 10 (resides in Communication Socket #2).

First 2-Port CB Contains Ports 1 & 2 (resides in Communication Socket #1). Second 2-Port CB Contains Ports 3 & 4 (resides in Communication Socket #2).

Standard 9-Pin D-Type Connectors are used in the two port version of the CB and dual stacked D-Type Connectors are used on four port versions. When the DPC contains two 4-Port CBs, a maximum of ten ports are available (four on each CB and two on the **CW_30** CPU Board). When two 2-Port CBs are installed in a **CW_30** DPC, a maximum of six ports are available (two on each CB assembly and two on the **CW_30** CPU Board).

The communication ports can be configured for an RS-485 or RS-232 interface. The former is required for BSAP network communications, while the latter is required for devices such as a PC or printer. However; these ports can also be configured for other applications. For example, port 1 can be configured to interface with a PC while ports 2, 3, 4, etc. can be configured for use with options such as modems and printers. *It should be noted that only 2-Port CBs (Port 2) will support piggyback modems, and that RASCL "redundancy," and use of a Hand Held Terminal aren't supported.*

3.2.1 Setting CB Board DIP Switches

The procedure for setting DIP switches is identical for the two different board versions except that the 4-Port Communication Board contains four DIP switches while the 2-Port CB contains two DIP switches. When an individual switch (toggle) is pressed to the right it is set to its ON position (see Figure 7). Switches SW1 through SW4 control port configuration and are assigned as follows:

SW1 - Controls Port 1/3 SW2 - Controls Port 7/9 SW3 - Controls Port 2/4 SW4 - Controls Port 8/10

Figure 7 - Enlarged View of SW1-SW4

Figure 8 - CW_30 - 2-Port CB Board Component Identification Diagram

Figure 9 - CW_30 - 4-Port CB Board Component Identification Diagram

Switch functions are provided for RS-485 operation, in Table 7.

SW1-SW4	Function	Setting
1	TX+ to RX+ Loopback	ON = Loopback Enabled, 2-Wire OFF = Loopback Disabled, 4-Wire
2	TX– to RX– Loopback	ON = Loopback Enabled, 2-Wire OFF = Loopback Disabled, 4-Wire
3	RS-485 Termination	ON = Termination Installed OFF = No Termination
4	RS-485 Termination	ON = Termination Installed OFF = No Termination
5	OFF	
6	OFF	
7	RS-485 Bias Termination	ON = Bias Enabled OFF = No Bias
8	RS-485 Bias Termination	ON = Bias Enabled OFF = No Bias

Table 7 – CB Board DIP Switches SW1 - SW4 - RS-485 Configuration Selections

Setting switches SW1 through SW4 does not complete the set-up configuration. The jumpers listed in Table 7 must also be set to complete the procedure.

Note: When the DPC is specified with an internal 1200 bps Private Line (PL) Modem., 9600 bps Publicly Switched Telephone Network (PSTN) Modem, or a 1200 bps PL/PSTN Modem, refer to the appropriate Customer Instruction Manual, i.e., CI-1200-PL, CI-9600 (PSTN), CI-9600A (PSTN) or CI-1200 (PL/PSTN). For details on the Fiber Optic Interface, refer to Appendix FA of Instruction Manual CI-3330.

3.2.2 Setting CB Board Configuration Jumpers

The 4-Port CB and 2-Port CB Boards contains up to twenty-one configuration jumpers to set various communication parameters. The location of these jumpers is shown in Figures 8 and 9. The jumpers are set according to Table 8.

Jumper	Description	Setting	Configuration
W/ 1	Comm. Port Status LED	1 to 2	Enable Comm. Status LEDs
VV 1	Control	2 to 3	Disable Comm. Status LEDs
Wo	Port 1/2 Configuration	1 to 2	Port 1/3 = RS-232
VV Z	Fort 1/5 Configuration	2 to 3	Port $1/3 = RS-485$
Wo	Dort 1/2 Configuration	1 to 2	Port 1/3 = RS-232
VV 0	Fort 1/5 Configuration	2 to 3	Port $1/3 = RS-485$
W/ A	Port 1/2 Configuration	1 to 2	Port 1/3 = RS-232
VV 4	Fort 1/5 Conliguration	2 to 3	Port $1/3 = RS-485$
WE	Port 1/2 Configuration	1 to 2	Port 1/3 = RS-232
W 0	Fort 1/5 Configuration	2 to 3	Port $1/3 = RS-485$
We	Dort 1/2 PTS/CTS Control	1 to 2	Port 1/3 CTS Source is from Port A/C
VV O	Fort 1/3 K1S/C1S Control	2 to 3	Port 1/3 RTS to CTS Loopback
W7	Dout 1/2 DCD/DTD Coloction	1 to 2	Port $1/3$ Pin $8 = DSR$
VV 7	Fort 1/5 DSR/D1R Selection	2 to 3	Port 1/3 Pin 8 = DTR

Table 8 - CB Board Configuration Jumper Settings

Т	Description	Setting a	Courf ^e rmention
Jumper	Description	Setting	D + 1/2 DC 222
W8	Port 1/3 Configuration	1 to 2	Port $1/3 = RS - 232$
		2 to 3	Port 1/3 = RS-485
W9	Port 2/4 Configuration	1 to 2	Port $2/4 = RS - 232$
		2 to 3	Port 2/4 = RS-485
W10	Port 2/4 Configuration	1 to 2	Port $2/4 = RS - 232$
		2 to 3	Port 2/4 = RS-485
W11	Port 2/4 Configuration	1 to 2	Port $2/4 = RS - 232$
		2 to 3	Port $2/4 = RS - 485$
W12	Port 2/4 RTS/CTS Control	1 to 2	Port 2/4 CTS Source is from Port B/D
		2 to 3	Port 2/4 RTS to CTS Loopback
W13	Port 2/4 DSR/DTR Selection	1 to 2	Port $2/4$ Pin 8 = DSR
		2 to 3	Port 2/4 Pin 8 = DTR
W14	Port 2/4 Configuration	1 to 2	Port $2/4 = RS - 232$
**14	1 oft 2/4 Configuration	2 to 3	Port 2/4 = RS-485
W15	Port 2/4 Configuration	1 to 2	Port $2/4 = RS - 232$
W15	1 oft 2/4 Configuration	2 to 3	Port $2/4 = RS-485$
W16	Port 7/9 RS-XX/Modem	1 to 2	Port 7/9 = RS-232 or RS-485
W10	Control	2 to 3	Port 7/9 = Modem
W17	Dont 7/0 Configuration	1 to 2	Port 7/9 = RS-232
VV 1 7	Fort 779 Configuration	2 to 3	Port $7/9 = RS-485$
W10	De et 7/0 Ce efferne estis	1 to 2	Port $7/9 = RS-232$
W18	Port 7/9 Configuration	2 to 3	Port $7/9 = RS-485$
W10	De et 7/0 Carefierra estisa	1 to 2	Port 7/9 = RS-232
W19	Port 7/9 Configuration	2 to 3	Port $7/9 = RS-485$
Waa	De et 7/0 Ce efferne estis	1 to 2	Port 7/9 = RS-232
W20	Port 7/9 Configuration	2 to 3	Port $7/9 = RS-485$
Wol		1 to 2	Port 7/9 CTS Source is from Port G/I
W21	Port 7/9 R1S/C1S Control	2 to 3	Port 7/9 RTS to CTS Loopback
Waa	De et 7/0 DCD/DTD Calastics	1 to 2	Port 7/9 Pin 8 = DSR
W22	Port 7/9 DSR/D1R Selection	2 to 3	Port 7/9 Pin $8 = DTR$
IIIOO		1 to 2	Port 7/9 = RS-232
W23	Port 7/9 Configuration	2 to 3	Port $7/9 = RS-485$
WO 4		1 to 2	Port 8/10 = RS-232
W24	Port 8/10 Configuration	2 to 3	Port 8/10 = RS-485
WOF		1 to 2	Port 8/10 = RS-232
W25	Port 8/10 Configuration	2 to 3	Port 8/10 = RS-485
IIIoo		1 to 2	Port 8/10 = RS-232
W26	Port 8/10 Configuration	2 to 3	Port 8/10 = RS-485
		1 to 2	Port 8/10 = RS-232
W27	Port 8/10 Configuration	2 to 3	Port 8/10 = RS-485
		1 to 2	Port 8/10 CTS Source is from Port H/J
W28	Port 8/10 RTS/CTS Control	2 to 3	Port 8/10 RTS to CTS Loopback
		1 to 2	Port $8/10$ Pin $8 = DSR$
W29	Port 8/10 DSR/DTR Selection	2 to 3	Port $8/10$ Pin $8 = DTR$
		1 to 2	Port $8/10 = RS-232$
W30	Port 8/10 Configuration	2 to 3	Port $8/10 = RS-485$

Table 8 - CB Board Configuration Jumper Settings (Continued)

3.2.3 CB Board LED Indicators

The CB provide a TX and RX indicator for each communication channel. TX will light when the channel is transmitting data and RX lights when the channel is receiving data. Depending upon the data activity, the LEDs may blink or appear continuously lit during communication activity. The LEDs will be out when there is no activity (see Figures 8 & 9).

3.2.4 CB Board Communication Port Information

CB Boards will have 2 or 4 serial communication ports that are supported by 9-pin female D-type connectors that have pinouts the same as the DPC 3330 ECOM Boards (see Figures 8 and 9 and Table 10). All CB Board Comm. Ports can be individually user configured for RS-232 or RS-485 operation.

The following information is provided to support use of CB Board Comm. Ports:

- When configured for RS-232 operation, CB Comm. Ports support RTS, DTR, CTS, DCD and DSR modem control signals.
- RS-232 transceivers are enabled by the port's DTR signal, i.e., when DTR goes high the port becomes active.
- Each RS-232 transceiver has one active receiver while in the power-down mode (disabled). DCD is connected to the active receiver.
- When configured for RS-485 operation, the CB Comm. Port receiver is enabled by DTR while the driver is enabled by RTS.
- For RS-485 operation, an eight-position DIP switch (one per port) enables receiver biasing and termination as well as two-wire and 4-wire selection.
- A 15-pin header (J4) supports the following **CW_30** external communication device options on 2-Port CB Board Comm. Port 2/4: Multipurpose Interface Board (MIB), Radio Delay Interface (RDI), Transmitter Interface Board (TIB), 1200 Baud and 9600 Baud Modems.
- Optional **CW_30** Piggy-back modems are supported by ports 2/4 on 2-Port CBs only.

Table 9 - CB Board Connector J4 - Modem Option Header Pin Designations

Pin #	Signal
2	GND
3	VCC5
4	+15V
5	-15V
6	TXD
7	RTS
8	DTR
9	RXD
10	CTS
11	DSR
12	DCD

Note: Pins 1, 13, 14 and 15 are unpopulated.

Table 10 - CB Board RS-232/RS-485 D-Type Connector Pin Assignments Note: Identical to CW_30 CPU Bd. Ports 5 & 6 on Intf. Bd. Ass'y. 392574-01-2

Pin#	Signal RS-232	Description: RS-232 Signals	Signal RS-485	Description: RS-485 Signals
1	DTR	Data Terminal Ready Output	TXD+	Transmit Data +
2	TXD	Transmit Data Output	TXD-	Transmit Data –
3			RXD+	Receive Data +
4	RXD	Receive Data Input	RXD-	Receive Data –
5	RTS	Request To Send Output		
6	CTS	Clear To Send Input		

Table 10 - CB Board RS-232/RS-485 D-Type Connector Pin Assignments(Continued)

Pin#	Signal RS-232	Description: RS-232 Signals	Signal RS-485	Description: RS-485 Signals
7	DCD	Data Carrier Detect Input		
8*	DTR/DSR	Data Terminal Ready/ Data Set Ready Input		
9	GND	Ground	GND	Ground

Note: Identical to CW_30 CPU Bd. Ports 5 & 6 on Intf. Bd. Ass'y. 392574-01-2

* Jumper Configured, typically set for DTR on Pin-8

SECTION 4 - ControlWave_30 CONFIGURATION

There are seven (7) main steps required to configure a CW_{-30} DPC. This document provides an overview of these steps with an emphasis on the installation and configuration of the hardware. This section is also intended to serve as a reference for users who may have already upgraded at least one CW_{-30} DPC.

4.1 Step 1 - Hardware Configuration

This involves unpacking the CW_30 upgrade hardware, setting switches and setting jumpers on the new CW_30 boards, replacing the DPC 3330's CPU and ECOM Boards with the CW_30 boards, reconnecting any permanent communication cables, and connecting a communications cable to a PC workstation to facilitate downloading the application load. To upgrade the DPC 3330 to a CW_30, follow Hardware Configuration steps 1 through 5 below:

- 1. Remove the **CW_30** boards from their carton. Remove all communication cables and the CPU and ECOM Boards from the DPC 3330 being upgraded. (see Figures 2, 8 and 9 as required). Note make sure the Comm. Cables are identified for proper reinstallation.
- 2. Make sure that the Lithium Backup Battery has been enabled, i.e., Backup Battery Jumper W3 on the CW_30 CPU should be installed across jumper posts 1 and 2. Configure the CW_30 CPU Board's DIP Switches and Jumpers. Figure 2 and Tables 2 through 4 provide information on Switch Settings. Jumper settings are provided in Figure 2 and in section 3.1.5. Install the CPU Board into the CW_30.
- 3. Configure the DIP Switches and Jumpers on CB1 (and CB2 if provided) (see Figures 8 and 9). Section 3.2.1 and Table 7 provide information on CB Board DIP Switches. Section 3.2.2 and Table 8 provide information on CB Board Jumpers. If required remove the optional modem(s) from the ECOM Board(s) removed from the DPC 3330 in Hardware Configuration step # 1 and reinstall the modem onto replacement CB Board(s). *Remember, only 2-Port CB Boards support TIBs, RDIs, MIBs or Modems.* Install the replacement CB Board(s) into the CW_30.
- 4. Connect the communication port cables removed in step 1. Connect the **CW_3**0 CPU's 3-Wire Utility Port to a Communication Port of a PC (typically PC COMM. Port 1).

A CW_30 can be configured as a Master or Slave node on either a MODBUS network or a BSAP network. A variety of communication schemes are available. Three communication ports are contained on the CW_30 CPU Board. 2 or 4 communication ports are contained on each CB Board. These communication ports are discussed in Section 3.1.2, 3.1.5 and 3.1.6 (CPU) and 3.2, 3.2.1, 3.2.2 and 3.2.4 (CB). Two (2) Ethernet communication ports are available on the CPU Board (see Section 3.1.3). Serial RS-232/485 communication ports are designated as follows:

CW_30 CPU Board:

- COM5 Port BIP1 (physically located on the Interface Board Assembly): (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CPU Jumpers W9 through W15) (RS-485 operation utilizes CPU Switch SW3). Note: This port was named BIP1 on original DPC 3330s. When set for factory defaults, COM5 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- COM6 Port BIP2 (physically located on the Interface Board Assembly): (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by Jumpers W16 through W22) (RS-485 operation utilizes Switch SW4). Note: This port was named BIP2 on original DPC 3330s. When set for factory defaults, COM6 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- Utility Port 3-Wire RS-232 (for FLASH Firmware and Core Updumps) (Utilizes CCPU Switch SW1). The Utility Port operates at 115.2 Kbaud and utilizes the 1KXModem or Xmodem protocol.

<u>CW_30 CB Boards:</u>

- COM1 Port 1 on the 1st CCB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W2 through W8) (RS-485 operation utilizes CB SW1). Note: This port was named A on original DPC 3330s. When set for factory defaults, COM1 defaults to 115 Kbaud (RS-232), BSAP operation.
- COM2 Port 2 on the 1st CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W9 through W16) (RS-485 operation utilizes CB SW3). Note: This port was named B on original DPC 3330s. When set for factory defaults, COM2 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- COM3 Port 3 on the 2nd CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W2 through W8) (RS-485 operation utilizes CB SW1). Note: This port was named C on original DPC 3330s. When set for factory defaults, COM3 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- COM4 Port 4 on the 2nd CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W9 through W16) (RS-485 operation utilizes CB Switch SW3). Note: This port was named D on original DPC 3330s. When set for factory defaults, COM4 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- COM7 Port 7 on the 1st CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W17 through W23) (RS-485 operation utilizes CB SW2). Note: This port was named G on original DPC 3330s. When set for factory defaults, COM7 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- COM8 Port 8 on the 1st CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W24 through W30) (RS-485 operation utilizes CB SW4). Note: This port was named H on original DPC 3330s. When set for factory defaults, COM8 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.

- COM9 Port 9 on the 2nd CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W17 through W23) (RS-485 operation utilizes CB SW2). Note: This port was named I on original DPC 3330s. When set for factory defaults, COM9 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.
- COM10 -Port 10 on the 2nd CB: (9-Pin Female D-Type) RS-232 or RS-485 operation (Configured by CB Jumpers W24 through W30) (RS-485 operation utilizes CB Switch SW4). Note: This port was named J on original DPC 3330s. When set for factory defaults, COM10 defaults to 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation.

4.1 Step 1 - Hardware Configuration (Continued)

Communication Ports COM1 through COM10 and the Utility Port support serial asynchronous operation as listed above. Communication ports COM1 through COM10 can be configured for local communications, i.e., connected to a PC loaded with **Control**Wave Designer and OpenBSI software. The Utility Port (J8 on the **CW_30** CPU Board) is used for FLASH firmware loads or Core Updumps. The pin labels for the various RS-232/485 interface connectors are provided in Table 10 (see Figure 10 for RS-232 wiring diagrams and CPU Port J8 Pin assignments).

RS-232 & RS-485 Interfaces

CW_30 DPC RS-232 & RS-485 communication schemes are discussed herein.

RS-232 Ports

An RS-232 interface supports Point to Point, half-duplex and full-duplex communications (20 feet maximum, using data quality cable). Half-duplex communications supported by the CW_30 utilize MODBUS or BSAP protocol, while full-duplex is supported by the Point to Point (PPP) protocol. CW_30 RS-232 ports utilize the cable shown in Figure 10A - Top) to interconnect with other devices such as a PC, printer, another ControlWave series unit (other than a CW_10/30/35) when the CW_30 DPC is communicating using the full-duplex PPP protocol. The half-duplex cable of Figure 10A (Bottom), is utilized when the CW_30 is connected to a ControlWave series unit (other than a CW_10/30/35) and is running other than the PPP protocol. If communicating with a Bristol series 3305, 3310, 3330, 3335 RTU/DPC or to another CW_30/35/10 DPC/RTU, one of the cables shown in Figure 10B must be used.

CW_30 CPU Board's Utility Port utilizes the cable shown in Figure 10C.

- **Note:** The following facts regarding **CW_30** RS-232 serial communication ports should be observed when constructing communications cables:
- DCD must be high to transmit (except when dialing a modem)
- Each RS-232 transceiver has one active receiver while in powerdown mode (disabled); the DCD signal is connected to the active receiver.
- CTS must be high to transmit.
- When port is set for full-duplex operation RTS is always ON.
- DTR is always high (when port is active); DTR enables RS-232 Transceivers.
- When port is set for half-duplex operation CTS must go low after RTS goes low.
- All RS-232 Comm. ports support RTS, DTR, CTS, DCD and DSR control signals.

Figure 10 - Communication Port RS-232 Cable Wiring Diagram

RS-485 Ports

CW_30 DPCs can use an RS-485 communication port for local network communications to multiple nodes up to 4000 feet away. Since this interface is intended for network communications, Table 12 provides the appropriate connections for wiring the master, 1st slave, and nth slave. Essentially, the master and the first slave transmit and receive data on opposite lines; all slaves (from the first to the "nth") are paralleled (daisy chained) across the same lines. The master node should be wired to one end of the RS-485 cable run. A 24-

gauge paired conductor cable, such as Belden 9843 should be used. *Note: Only half-duplex RS-485 networks are supported.*

Pin	Signal	Description:
#	RS-485	RS-485 Signals
1	TXD+	Transmit Data + Output
2	TXD-	Transmit Data – Output
3	RXD+	Receive Data + Input
4	RXD-	Receive Date – Input
9	Power Ground	Ground

Table 11 - RS-485 PortConnector Pin Assignments (COM1 through COM10))

Receiver biasing and termination as well as 2/4-wire selection are enabled by eightposition DIP-Switches situated on the **CW_30** CPU Board for COM5 and COM6 or on **CW_30** CCB Boards for COM 1 through COM 4 and COM7 through COM10 as follows:

COM1: CB Board #1 Switch SW1 (see Figures 8 & 9) (see Table 7)

COM2: CB Board #1 Switch SW3 (see Figures 8 & 9) (see Table 7)

COM3: CB Board #2 Switch SW1 (see Figures 8 & 9) (see Table 7)

COM4: CB Board #2 Switch SW3 (see Figures 8 & 9) (see Table 87

COM5: CPU Board Switch SW3 (see Figure 2) (see Table 4)

COM6: CPU Board Switch SW4 (see Figure 2) (see Table 4)

COM7: CB Board #1 Switch SW2 (see Figures 8 & 9) (see Table 7)

COM8: CB Board #1 Switch SW4 (see Figures 8 & 9) (see Table 7)

COM9: CB Board #2 Switch SW2 (see Figures 8 & 9) (see Table 7)

COM10: CB Board #2 Switch SW4 (see Figures 8 & 9) (see Table 7)

Table 11 provides the connector pin assignments for all CW_30 RS-485 communication ports. Tables 4 & and 7 provide the RS-485 termination and loopback control Switch Settings for the RS-485 Ports on the CPU and CB Boards (respectively).

To ensure that the "Receive Data" lines are in a proper state during inactive transmission periods, certain bias voltage levels must be maintained at the master and most distant slave units (end nodes). These end nodes also require the insertion of 100-Ohm terminating resistors to properly balance the network. CPU and CB Board switches must be configured at each node to establish proper network performance. This is accomplished by configuring the appropriate CPU/CB Board Switches so that the 100-Ohm termination resistors and biasing networks are installed at the end nodes and are removed at all other nodes on the network (see Table 4 for CPU Boards and Table 7 for CB Boards).

From Master	To 1st Slave	To nth Slave
TXD+	RXD+	RXD+
TXD-	RXD-	RXD-
RXD+	TXD+	TXD+
RXD-	TXD-	TXD-
GND/ISOGND*	GND/ISOGND*	GND/ISOGND*

Table 12 - RS-485 Network Connections(see Table 11 for CW_30 RS-485 Port Pin # Assignments)

* ISOGND with Isolated RS-485 Ports Only!

Note: Pins 1, 2, 3, 4 & 9 of Series 3305, 3310, 3330, 3335 & 3340 RTU/DPC RS-485 Comm. Ports are assigned as follows: 1 = TXD+, 2 = TXD-, 3 = RXD+, 4 = RXD- & 9 = ISOGND.

4.1 Step 1 - Hardware Configuration (Continued)

5. Apply power to the **CW_30** DPC. Continue with Steps 2 through 7 below (Sections 4.2 through 4.7 and 5.1) and the **CW_30** will be ready for on line operation.

4.2 Step 2 - Software Installation on the PC Workstation

ControlWave **Designer** software must be installed on the PC. This is accomplished by installing the **Control**Wave **Designer Package** from the Open BSI CD ROM.

You must install the **Open BSI Network Edition**. For information on minimum system requirements and more details of the installation, see the installation procedure in Chapter 2 of the *Open BSI Utilities Manual* (document # D5081).

IMPORTANT:

When you start ControlWave Designer, you will be reminded to register the software. Unregistered software can only be used for a maximum of 30 days. For more information on the registration process, see Chapter 2 of the Open BSI Utilities Manual (document# D5081).

4.3 Step 3 - Establish Communications using either LocalView or NetView, and run the Flash Configuration Utility

Communications must be established with the **CW_30** using either LocalView or NetView.

The **CW_30** CPU Board ships from the factory with a default Flash configuration. Most users will need to edit this configuration to set the IP address (if using Ethernet – default IP address = 10.0.1.1 with IP Mask = 255.255.255.0), BSAP local address, user accounts, and port parameters. This can be done in one of two ways:

- Either open the supplied Flash Configuration Profile (FCP) file and modify it, directly in the Flash Configuration Utility, or in a text editor,
- or retrieve existing Flash Parameters directly from the unit, and edit them in the Flash Configuration Utility.

Detailed information on the Flash Configuration Utility and LocalView is included in Chapter 5 of the *Open BSI Utilities Manual* (document # D5081). NetView is described in Chapter 6 of that same manual.

4.4 Step 4 - Create an Application-specific Control Strategy in Control-Wave Designer

At this point, you can create your application-specific control strategy using **Control**Wave Designer. If you are upgrading this unit from a DPC 3330 ACCOL II-based unit, you can start by using the ACCOL Translator utility to take an existing ACCOL II load, and convert it to a ControlWave Designer project. You will then need to examine the translated project, and modify it, as necessary, to re-work logic that is unsupported in ControlWave Designer.

If you don't have a pre-existing ACCOL load to translate, you can create an all-new project in ControlWave Designer. This involves opening a new project using the '**Control**Wave **MICRO**' template, defining I/O boards using the I/O Configurator, and creating a program using one or more of the five supported IEC 61131 languages (FBD, ST, SFC, LD, or IL). Some of these languages are text based, others use graphical diagrams. The choice is up to you, depending upon your particular application.

The *ControlWave MICRO Quick Setup Guide* (document # D5124) includes a simple LD example. Additional examples are included in the manual, *Getting Started with ControlWave Designer* (document # D5085). More detailed information about ControlWave Designer and IEC 61131 is included in the *ControlWave Designer Reference Manual* (document # D5088).

The ACCOL3 Firmware Library, which is automatically accessible through the template referenced above, includes a series of function blocks which perform a variety of process control and communication functions. These can be included within your program to perform various duties including PID control, alarming, calculations, etc. Detailed information about each function block is included in the **Control**Wave Designer on-line help files.

On the variables declaration page(s) in **Control**Wave Designer, you will need to mark any variable you want to make accessible to external programs, such as Open BSI's DataView utility, as **"PDD"**. Similarly, any variables which should be collected into a database, or exported using the **O**LE for **P**rocess **Control** (OPC) Server must be marked as **"OPC"**. Variables marked as OPC can be built into a text file by the **Open BSI Signal Extractor**. The text file can then be used in the creation of a database for human machine interface (HMI) software such as OpenEnterprise, or Iconics' Genesis. These HMI software packages require that the **"Datatype conversion enable"** option be selected when generating the file using Signal Extractor. Information about the Open BSI Signal Extractor is included in Chapter 12 of the *Open BSI Utilities Manual* (document # D5081).

Once the program has been created, it is assigned to an executable task. The entire project is then saved and compiled.

Debugging of your completed control strategy program can be performed using the built-in debugger, and the I/O Simulator. Optionally, you can also use the I/O Simulator to simulate the outputs on your I/O boards, as your project executes. Note, however, that the I/O Simulator only supports the IPCxx resource; therefore, to use it, you will need to add a *second* resource (IPCxx) to your project, and make copies of your tasks and global variable worksheets under the new resource.

NOTE:

From this point on, the order of steps may be varied, somewhat, depending upon the requirements of the user's application.

4.5 Step 5 – Create Application-specific Web Pages (OPTIONAL)

ControlWave series controllers, including the CW_30, can optionally export data to usercreated web pages.

A series of ActiveX controls for data collection and configuration are provided on the Open BSI CD that can be included as part of these web pages (For information on the ActiveX controls, see the *Web_BSI Manual* (document# D5087).

You can use whichever HTML creation package you want to create the pages, however, all **Control**Wave web pages must be viewed within Microsoft® Internet Explorer.

The web pages may reside either on the PC workstation, or they can be downloaded into FLASH memory at the **CW_30**. If stored at the **CW_30**, you must use the ControlView utility to retrieve the page (using FTP) for viewing in Internet Explorer.

4.6 Step 6 – Create an Open BSI Network Containing the CW_30, or add the CW_30 to an Existing Open BSI Network

In order for the CW_30 unit to function as part of a Bristol network, it is necessary to include it in the Bristol network.

If no Bristol network exists:

You need to run Open BSI's NetView software on the PC workstation in order to define a Bristol network. A series of software wizards are used to define a Network Host PC, a network, and the DPC/RTUs (controllers) assigned to the network. Finally, communication lines must be specified which handle the address assigned to the **CW_30**. Chapters 3 and 4 of the *Open BSI Utilities Manual* (document # D5081) include 'quick start' examples for performing these steps. More detailed information is included in the NetView chapter (Chapter 6) of D5081.

If a Bristol network already exists:

You will need to add the **CW_30** to the existing network using NetView's RTU Wizard. Chapter 6 of the *Open BSI Utilities Manual* (document # D5081) includes different subsections depending upon whether you are adding the unit to a BSAP network, or an IP network.

4.7 Step 7 – Download the Application-specific Control Strategy into the CW_30 DPC

Either **Control**Wave Designer or the Open BSI 1131 Downloader allows you to download your completed control strategy (application load) file into the **CW_30** DPC. Users download the control strategy into the BOOT Project area of FLASH memory; this ensures that if the **CW_30** DPC is reset, or if there has been a failure of the backup battery, that the control strategy can be restarted from the beginning, i.e., from the BOOT Project in FLASH memory.

The Open BSI 1131 Downloader also allows the user to download files (such as user-created web pages) into FLASH memory in the **Control**Wave_**30** DPC. These can then be uploaded to the PC using the ControlView utility. To download the application load, see Section 5.1 titled <u>Downloading the Application Load</u>.

SECTION 5 - OPERATIONAL DETAILS

CW_30 DPCs are shipped from the factory with firmware that allows the unit to be configured in conjunction with an IEC 61131, application program. This section provides information as follows:

- Steps required to download the application load and place the unit into 'Run' mode.
- Steps required to download system firmware.
- Core Updumps

5.1 Downloading the Application Load

Any **CW_30** DPC must have a configured application load before it can be placed into operation. For units being upgraded with the hardware discussed herein, this will require connection of the **CW_30** DPC to a PC running Windows NT (4.0 or higher), Windows 2000 or Windows XP Professional and equipped with **Control**Wave Designer software & OpenBSI software. Configuration of the application load must be performed by an individual familiar with the various programming tools. The following software user documentation is referenced:

Getting Started with **Control**Wave Designer Manual - D5085 **Control**Wave Designer Reference Manual - D5088 Open BSI Utilities Manual - D5081 Web_BSI Manual - D5087

An application load download can be initiated, i.e., from **Control**Wave Designer, or from the OpenBSI 1131 Downloader for **CW_30** DPC Nodes.

1. Make sure that the **CW_30** CPU's Recovery Switch (SW1) is set in 'Local Mode,' i.e., SW1-1 set to the **OFF** position and SW1-2 set to the **ON** position.

Note:

From the factory, COM1 defaults to 115.2 Kbaud (RS-232) using the BSAP Protocol. Don't connect COM1 to a PC unless the PC's RS-232 port in question has been configured for BSAP operation.

- 2. Once the **CW_30** DPC project has been defined, communications and configuration parameters have been set, perform the download according to either '**Control**Wave Designer' (see D5088 chapter 11) or 'The Open BSI 1131 Downloader' (see D5081 Chapter 7).
- 3. After the download has been completed leave the CPU Mode Switch (SW1) in the 'Local Mode' position.

5.2 Upgrading CW_30 Firmware

CW_30 CPU Boards ship from the factory with system firmware already installed. If an upgrade of the system firmware is required, use one of the procedures below to download the new or replacement firmware from the PC. Upgrade of system firmware via LocalView FLASH Mode requires OpenBSI 5.1 (or newer). If you have an older version of OpenBSI, FLASH upgrades are to be performed via HyperTerminal. You will need a binary (*.BIN) system firmware file that is read as follows: c_30450.bin (where c_3 is the product code and 0450 is the release number). Upgrade of an unattended **CW_30** can be accomplished from a remote PC. This capability is introduced in Section 5.2.3.

5.2.1 Using LocalView to Upgrade CW_30 Firmware

NOTE

Your CW_30 DPC must be set to Recovery Mode ENABLE (ON) prior to performing the FLASH upgrade, then set to Recovery Mode DISABLE (OFF) after the upgrade. On CW_30 DPCs this is accomplished via the CPU Board's Recovery Switch SW1. Set SW1-3 to the ON position for Recovery Mode. After setting SW1-3 to the ON position, turn power OFF and then ON again.
A communication cable (see Figure 10C) must be connected to the Utility Port on the CW_30 CPU Board and to any RS-232 port on the associated PC. The PC's RS-232 port used for this purpose must be set to run at 115.2 Kbaud. CW_30 CPU Switch SW1, position, 3 must be set ON.

Start LocalView, Choose FLASH, Enter A Name, Click on [Create]

Start LocalView by clicking on: Start \rightarrow Programs \rightarrow OpenBSI Tools \rightarrow LocalView. The New View Mode dialog box will appear (see Figure 11).

New View Mode		×
Mode:	<u>N</u> ame: myflash	<u>C</u> reate Cancel
Flash	Location: D:\OpenBSI\	Help Browse
學蛋 IP Comm		

Figure 11 - Local View - New View Mode Menu

"Mode"

Choose 'Flash' for the mode.

"Name"

Enter a name for the View Mode File in the "Name" field.

"Location"

If you want to store the View Mode File in a directory other than that shown in the **"Location"** field, enter the new location there, or use the **[Browse]** push button to find the directory.

When the "Mode", "Name", and "Location" have been specified, click on the [Create] push button to activate the Communication Setup Wizard.

Step 1 - Communication Setup

Choose the communication port you want in the **What port would you like to use:** field. Click on the **[Next]** pushbutton to activate the next wizard.

Step 2 - Flash RTU Setup

In the Flash RTU Setup Wizard, you need not set the RTU type or local address, since these are unused in this mode. Click on the **[Next]** push button to activate the Flash Data Setup Wizard.

Communication Setup :	Step 1	×
	What port would you like to use: COM1 Would you like auto baud rate detection ? Yes, please O No, Thank you What baud rate would you like to use: 38400	
	Advanced Parameters	

Flash RTU Setup : Step	2 of 3	×
	What is the type of the RTU ? CW_30	
< <u>B</u> ack <u>N</u> ex	t> Finish Cancel Help	

Figure 13 - Flash RTU Setup Menu

Step 3 - Flash Data Setup

Complete the following fields in the Flash Data Setup Wizard:

"Please enter the name of the binary file to Flash"

To upgrade system firmware, you must specify the path and name of a binary (*.BIN) file on your hard disk containing the firmware.

Click on [Finish] to install the specified BIN file in FLASH memory at the DPC.

Once the Flash download has begun, you will NOT be allowed to shut down LocalView, unless you cancel the download, or it has been completed.

The progress of the Flash download will be displayed in the window. Any mismatch in file versions, or if the type of .BIN file does not match the type of RTU/DPC, the download will be aborted.

Flash Data Setup: Step 3 of 3 🛛 🔀		
	Please, enter the <u>n</u> ame of the binary file to D:\OpenBSI\c_30450.bin Location of Flash Master File:	flash:
		<u>B</u> rowse
< <u>B</u> ack <u>N</u> e	kt > Finish Cancel	Help

Figure 15 - LocalView Downloading System Firmware Menu

Once the download has completed, set CPU Board Switch SW1-3 to the OFF position and then turn power OFF and then ON again.

5.2.2 Using HyperTerminal to Upgrade CW_30 Firmware

A communication cable (see Figure 10C) must be connected to the **CW_30** CPU Board's Utility Port and to any RS-232 port on the associated PC. The PC's RS-232 port used for this purpose must be set to run at 115.2 Kbaud. **CW_30** CPU Board Switch SW1, position, 3 must be set to the **ON** position.

- 1. If not already running, apply power to the associated PC.
- 2. Start the HyperTerminal program on the PC. Note: HyperTerminal is a Windows 95 (or newer) application utility program. If using HyperTerminal for the first time, set the communications properties (for the PC Port being utilized) via the Properties Menu as follows: Bits per second: = 115200, Data bits: = 8, Parity: = None, Stop bits: = 1, and Flow control: = None. After setting the communications properties, click OK.
- 3. Set the **CW_30** CPU Board's Recovery Switch (SW1) for 'Recovery Mode,' i.e., set CPU Board Switch SW1-3 to the ON position.
- 4. Apply power to the **CW_30** DPC. The resident BIOS will initialize and test the hardware, this process is referred to as POST (Power On Self Test).

Unless there is a problem status code 10 (Status LED #5 ON) will be posted to the CPU Board's Status LEDs. Detection of a fault during POST will be posted on the Status LEDs. When the Power On Self Test has completed, a system status code will be posted to the Status LEDs (see Table 6 and Figure 6).

Figure 16 - HyperTerminal Recovery Mode Menu

From the HyperTerminal Recovery Mode menu (Figure 16), press the 'F' key to enter FLASH download. A message will be displayed warning that the FLASH is about to be erased; press the 'Y' key at the prompt. The screen will display dots as the flash devices are being erased; this could take a few minutes.

5. When the FLASH is ready for download the letter C will be displayed on the screen. In the HyperTerminal command bar click on Transfer and then Send File (see Figure 17). In the Send File Dialog Box (see Figure 18), select "1KXmodem" for the protocol, enter the filename of the appropriate .bin file in the format "C_3xxxx.bin" (where xxxx varies from release to release). Click on the Send button to start the download (see Figure 18). When the HyperTerminal Recovery Mode Menu of Figure 16 appears, the download has completed.

😪 cw - HyperTerminal	
File Edit View Call Transfer Help	
Del a 3 I Send File	
Receive File	11
Capture Text	
Selid Text File	
Capture to Printer	
b - Boot System Firmware	
d - Debug Mode	
† - Program System Flash	
Enter Ontion:	
Flash is about to be erased. Hit Y to continue:	
Initializing Flash	
Ready to receive, Start transmit with XMODEM - 1K plus CRC	
1	
Sends a file to the remote system	
period of the second second second	

Figure 17 - HyperTerminal FLASH Download Menu (Ready to Download) - (Transfer/Send File Selected)

Bend File			?×
Folder: C:			
<u>F</u> ilename:			
			<u>B</u> rowse
Protocol:			
1K Xmodem			×
	Send	Close	Cancel
	2010		

Figure 18 - HyperTerminal Flash Download (Send File Dialog Box)

- 6. Close the HyperTerminal program. The communication cable connected between the CW_30 DPC and the PC can be removed if desired.
- 7. Set the CPU Board's Recovery Switch (SW1) for 'Local Mode,' i.e., set SW1-1 OFF and SW1-2 ON). Set SW1-3 OFF and then switch power OFF/ON.

Once the **CW_30** DPC is running its application load, status codes will be posted to the six Status LEDs on the CPU Board. These Status LED (Hex) Codes are listed in Table 6 (see Figure 6).

1K Xmode	m file send for CW_3001
Sending:	D:\MyFile\c_30450.bin
Packet:	51 Error checking: CRC
Retries:	0 Total retries: 0
Last error:	
File:	45k of 818K
Elapsed:	00:00:05 Remaining: 00:01:25 Throughput: 9216 cps
	Cancel <u>c</u> ps/bps

Figure 19 - HyperTerminal FLASH Download (Download in Process)

5.2.3 Remote Upgrade of CW_30 Firmware

It is possible to download system firmware into an unattended remote **CW_30** DPC. This function can only be accomplished if CPU Board Switch SW2-6 (associated with the unit in question) is set in the ON position (factory default). The procedure for performing a remote download of system firmware is discussed in Appendix J of the <u>Open BSI Utilities Manual</u> (document D5081). Note: Remote Upgrade of CW_30 Firmware requires Boot PROM version 4.7 or higher and System PROM version 4.7 or higher.

5.3 Core Updump

In some cases a copy of the contents of SRAM and SDRAM can be uploaded to a PC for evaluation by Bristol, Inc. engineers. This upload is referred to as a 'Core Updump.' A Core Updump may be required if the **CW_30** Distributed Process Controller repeatedly enters a 'Watchdog State' thus ill effecting system operation. A Watchdog State is entered when the system crashes, i.e., a CPU timeout occurs due to improper software operation, a firmware glitch, etc. In some cases the Watchdog State may reoccur but may not be logically reproduced.

'Crash Blocks' (a function of firmware provided for watchdog troubleshooting) are stored in CPU RAM. The user can view and save the 'Crash Blocks' by viewing the Crash Block Statistic Web Page (see Chapter 4 of the Open BSI Technician's Toolkit - D5087). Crash Block files should be forwarded to Bristol, Inc. for evaluation. If additional information is required to evaluate the condition, a Core Updump may be requested by Bristol. Once the file generated by the Core Updump has been forwarded to Bristol, it will be evaluated and the results will be provided to the user.

Follow the five steps below to perform a Core Updump.

- 1. Set CPU Board Switch SW2-1 OFF (Disable Watchdog Timer). If Switch SW2-4 is ON, set it to OFF (Enable Core Updump). Note: The factory default setting for SW2-4 is OFF.
- 2. Wait for the error condition (typically 3F on CPU Board Status LEDs).
- 3. Connect **CW_30** DPC's Utility Port to a PC (see Figure 10C).
- 4. Set CPU Board Switch (SW1- Recovery) so that SW1-1 and SW1-2 are both in either the **ON** position or the **OFF** position.
- 5. Start the PC's HyperTerminal Program (at 115.2kbaud) and generate a file using the 1KX-Modem protocol. Save the resulting Core Updump in a file to be forwarded to Bristol, Inc. for evaluation.

When the Core Updump has been completed, set the CPU Board's Recovery Switch as follows: SW1-1 is in the **OFF** position & SW1-2 is in the **ON** position.

SECTION 6 - GENERAL SERVICE NOTES

Certain questions or situations frequently arise when servicing the CW_30 DPC. Some items of interest are provided in Sections 6.1 through 6.3.

6.1 Extent of Field Repairs

Field repairs to a CW_30 DPC are strictly limited to the replacement of complete modules. Component replacement on a CW_30 DPC Module constitutes tampering and will violate the warranty. Defective CW_30 DPC components (printed circuit boards, LCD Displays, etc.) must be returned to Bristol, Inc. for authorized service.

6.2 Disconnecting RAM Battery

The CW_30 DPC's Lithium RAM battery cannot be replaced while power is on. Once the RAM battery has been replaced, the unit will still execute its FLASH-based application load (Boot Project) upon power-up, but all of the current process data will have been lost. Upon power-up, the unit will act as though it had just been booted and it will revert back to the initial values specified in its application load. The battery may be disabled by setting the CW_30 CPU Board's Battery Backup Board Jumper (W3) in position 2 to 3.

6.3 Maintaining Backup Files

It is essential to maintain a backup disk of each application load file to guard against an accidental loss of process configuration data. Without a backup record, it will be necessary to reconfigure the entire application load; that can be a very time consuming procedure. Always play it safe and keep backup copies of your operating system loads. A copy of the application load can be loaded into **CW_30** DPC FLASH memory and/or saved to a PC's Hard Drive as a ZIP file.

SECTION 7 - WINDIAG DIAGNOSTICS

Bristol's WINDIAG Software is a diagnostic tool used for testing **CW_30** DPC electronics including, I/O circuitry, CPU memory, communications ports, etc., for proper performance. The **CW_30** DPC must be communicating with a PC equipped with the WINDIAG program. **CW_30** CPU Board configuration switch SW2-8 must be set to the OFF (Closed) position to enable diagnostics. Communication between the **CW_30** DPC (with/without application loaded) and the PC can be made via a Local or Network Port with the following restrictions:

- **CW_30** CPU Board Switch SW2-8 must be OFF to run the WINDIAG program. Setting SW2-8 OFF will prevent the 'Boot Project' from running and will place the unit into diagnostic mode.
- The CW_30 communication port connected to the PC (running the WINDIAG program) must match the speed of the PC. All serial communication ports (except COM1) can be configured for 9600 baud, 8-bits, no parity, 1 stop bit, BSAP/ControlWave Designer protocol operation by setting CW_30 CPU Switch SW2-3 OFF This can also be accomplished via user defined Soft Switches.
- Communication port COM1 is forced to 9600 baud operation when **CW_30** CPU Switches SW2-3 and SW2-8 have both been set OFF. COM1 can also be set to 9600 baud operation via user defined Soft Switches.

To use the WINDIAG program place any critical process (associated with the **CW_30** DPC unit in question) under manual control. WINDIAG cannot be run while the **CW_30** DPC application is running. Set **CW_30** CPU Board Switch SW2-8 to the OFF position. Perform steps 1 through 6 below.

- 1. Start the OpenBSI NetView Program. A menu similar to Figure 20 will appear.
- 2. To start the WINDIAG program, go to the Start Program's menu, select OpenBSI Tools, then select Utilities Programs and then select Diagnostics.
- 3. Once WINDIAG has been entered, the Main Diagnostics Menu of Figure 21 will appear.
- 4. Select the module to be tested. Enter any prompted parameters (slot #, etc.). WINDIAG will perform the diagnostics and display pass/fail results.
- 5. After all diagnostic testing has been performed, exit the WINDIAG program and then exit the NetView Program if there aren't any other CW_30 units to be tested.

When you close the NetView program you will be prompted as to whether or not you want to close the OpenBSI program; select Yes.

Figure 20 - NetView Startup Menu - Example with Multiple Networks

Figure 21 - WINDIAG Main Diagnostics Menu

6. Set CW_30 CPU Board Switch SW2-8 to the ON (Open) position and reboot the unit. The CW_30 DPC should resume normal operation.

7.1 Diagnostics Using WINDIAG

CW_30 electronics can be tested using the WINDIAG program. From WINDIAG's Main Diagnostics Menu (see Figure 18) the following diagnostic tests can be performed:

CPU & Peripherals Diagnostic:	Checks the CPU Board [except for RAM & PROM		
	(FLASH)].		
PROM/RAM Diagnostic:	Checks the CPU Board's RAM and PROM (FLASH)		
	hardware.		
EEPROM Diagnostic:	Checks I/O Module EEPROM on an I/O Module.		
Communications Diagnostic:	Checks all Comm. Ports - The External loop-back tests		
	require the use of a loop-back plug.		
Ethernet Diagnostic:	Checks Ethernet Port 1 and 2 on the CPU Board.		
Analog Output Diagnostic:	Checks AOs on various AO Modules.		
Analog Input Diagnostic:	Checks AIs on various AI Modules.		
Low Level Analog Input Diag.:	Checks AIs on the Low Level AI Module.		
Discrete I/O Diagnostic:	Checks DIs or DOs on various DI and DO Modules.		
High Speed Counter Diagnostic:	Checks HSCs on various High Speed Counter Modules.		
Keyboard & Display Diagnostics	Checks Keyboard/Keypad & Display hardware		

Information on serial communication port loop-back testing is provided herein. For additional information on WINDIAG tests, see document D4041A.

7.1.1 Communication Diagnostic Port Loop-back Tests

WINDIAG's Communications Diagnostic Menu (see Figure 24) provides for selection of the communication port to be tested. Depending on the type of network (RS-232 or RS-485) and the port in question, a special loop-back plug is required as follows:

Ports 1 through 10 - RS-232:	use a 9-pin male D-type loop-back plug or loop-back wires
	(see Fig. 22).
Ports 1 through 10 - RS-485:	use a 9-pin male D-type loop-back plug or loop-back wires
	(see Fig. 23) or configure CW_30 CPU Switches (SW3 and
	SW4) and/or CB Switches (SW1, SW2, SW3 and SW4) for
	loopback operation (see Tables 4 & 7).

This group of tests verifies the correct operation of the Communication Interface. COM1, through COM10 can be tested with this diagnostic. The **CW_30** communication port that is connected to the PC (local or network and used for running these tests) can't be tested until diagnostics has been established via one of the other ports, i.e., to test all **CW_30** serial RS-232/485 communication ports (via WINDIAG), communications with the PC will have to be established twice (each time via a different port). It should be noted that the **CW_30** communication port that is connected to the PC (RS-232, RS-485 or Ethernet) must be good for WINDIAG to run the Communications Diagnostics

7.1.2 Serial Comm. Port External Loop-back Test Procedure

1. Connect an external loop-back plug or loop-back wires to the Communication Port to be tested (see Figures 22 and 23). For RS-485 Loopback testing, CPU Switch SW3 and/or SW4 can be configured for loopback operation (see Table 4).

Figure 22 - RS-232 Loop-back Plug/Wires

🗱 Communications Diagnostic 🔹 🔋	х
Number of Passes	
Continuous/Stop arter Enor	
Port to Test COM1 💌	
Baud Rate to Test ALL ASYNC 💌	
Number of Failures	
Status: Idle	
Pass Status	_
RUN External loop-back	[
Error Status:	
Note: Port needs to be configured for BSAP mode and tested with those parameters selected. Verify loopback plug is inserted in the tested port.	

Figure 24 - WINDIAG's Communications Diagnostic Menu

- 2. Type "1," "2," "3," etc. (up to "10") for the port to test.
- 3. Set baud rate to test to 115200 baud or ALL ASYNC and the number of passes to 5.
- 4. Click on RUN button next to External loop-back.
 - Test responses:
 - a) Success All sections of test passed
 - b) Failure TXD RXD Failure
 - CTS RTS Failure
 - Execution time < 5 sec.

7.1.3 Ethernet Port Diagnostics

The Ethernet Diagnostic menu of Figure 25 is entered from the WINDIAG Main Diagnostic Menu (Figure 21). This menu provides four poke points (three associated with Ethernet circuitry test and one that provides the Return Hardware Address [which resides in FLASH]). These tests verify the operation and integrity of the PCNET (Ethernet) Controller and the Ethernet port hardware on the CPU Board and CB Board.

Ethernet Diagnostic	X
Number of Passes C Continuous/Repeat after Error C Continuous/Stop after Error	
Ethernet Port to Test: 1	
Pass Status Pass Status RUN Chip internal loop-back RUN Loop-back out AUI port RUN Loop-back out twisted pair RUN Return hardware address	
Error Status: Note: For external loop-back please see that a proper loop-back cable is attached at the selected connector Return to Menu	

Figure 25 - Ethernet Diagnostic Menu

7.1.3.1 10/100Base-T (RJ-45 - Twisted Pair) Port Hardware Setup

The 10/100Base-T Port typically provides an interface (4-twisted pair) to an Ethernet Hub. To configure the system for the Loop-Back Out Twisted Pair diagnostic test either remove the standard R-J45 cable from the CPU Board's R-J45 connector and replace it with an R-J45 cable configured for loop-back, or remove the R-J45 cable associated with the port in question from the hub and install the unterminated end into an RJ-45 Jack configured for loop-back. Table 13 provides the pin identification and description for the RJ-45 port. Pin-1 (TX+) must be connected to Pin-3 (RX+) and Pin-2 (TX-) must be connected to Pin-6 (RX-) for proper loop-back test configuration (see Figure 26).

If the "Loop-Back Out Twisted Pair" Test RUN button is selected while the port is attached to an Ethernet Hub, a Failures Status will be posted.

Pin #	Pneumonic	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	-	Not Connected
5	-	Not Connected
6	RX-	Receive Data-
7&8	-	Not Connected

Table 13 - Ethernet 10/100Base-T (RJ45) Connector Pin Assignments

Figure 26 - RJ-45 Ethernet Loop-back Plug

7.1.3.2 Ethernet Port Diagnostic Test Execution

There are four unique test buttons provided on the Ethernet Diagnostic Menu. Note: Only the "RUN Loop-back out twisted pair" and "RUN Return hardware address" tests are applicable to **CW_30** units, i.e., the "RUN Chip internal loop-back" and "RUN Loop-back out AUI port" tests aren't applicable. The applicable tests are discussed below.

7.1.3.3 Loop-back Out Twisted Pair Test RUN Button

Set the Number of Passes. Make sure that the port is properly configured with a cable or jack for loop-back testing (see Section 7.1.3.1). Click on the "RUN Loop-back out twisted pair" Test button. The test will proceed and return either 'Success' or one of the following responses under the STATUS column:

- Fail No Hardware Present
 - Loop-back Send Failed
 - Loop-back Receive Failed
 - Loop-back Compare Failed
 - Error Information Returned

When you have finished with Ethernet Diagnostic Loop-back testing, be sure to return the hardware to its normal operating configuration, i.e., disconnect the loop-back cable or jack-plug and reconnect the Ethernet cable to both the CW_30 Ethernet port and the Ethernet Hub.

7.1.3.4 Return Hardware Address Test RUN Button

Set the Number of Passes. Click on the "Return hardware address" Test button. The test will proceed and if successful the hardware address will be displayed. The hardware address will appear as 00-10-41-XX-XX-XX. The prefix 00-10-41 appears for all Bristol Ethernet Comm. ports. The remainder of the hardware address is unique for each board manufactured and is stored in EEPROM. If the error message "Error Information Returned" is displayed instead of the hardware address, and the unit has been programmed with a proper hardware address, the CPU Module should be replaced.

7.1.3.5 Ethernet Port Diagnostic Error/Failure Messages

If either a "No Hardware Present" or "Error Information Returned" message is displayed, ensure that the loop-back test requirements have been properly established (see Section 7.1.3.1). If test requirements have been met and the cable associated with the port test in question is known to be good, the CPU Module should be replaced with a good unit.

In the case of a "Loop-back Send Failed," "Loop-back Receive Failed" or Loop-back Compare Failed" message, check the cable in question. If the cable associated with the port test in question is known to be good, the CPU Module should be replaced with a good unit.

SECTION 8 – DISPLAY/KEYPED ASSEMBLY OPERATION

CW_30s support Display/Keypad assemblies (local or remote) that were present prior to the conversion to the **Control**Wave platform. Additionally, connector J6 on the **CW_30**'s CPU Board accommodates connection to one of two unique remote Display/Keypad Assemblies; one with a dual-button Keypad (see Figure 27) and one with a 25-button Keypad (see Figure 2-28). Both Display/Keypad assemblies utilize identical 4 x 20 LCD Displays. Each Display/Keypad assembly employs a unique microcontroller based Display/Keypad Interface Circuitry (situated on the remote Display/Keypad assembly that drive the LCD Display and interfaces the Keypad. Interface to the **CW_30** is made via a cable equipped with two plugs. This cable connects to the RJ-45 Display Jack (J3) on the **CW_30** Expansion Board and RJ-45 Jack (J1) on the remote Display/Keypad to set the contrast of the LCD Display.

Figure 2-27 provides mounting hardware information for the Dual-button Display/Keypad Assembly. Operation of the Dual-button Display/Keypad Assembly is discussed in Section 2.4.5.1 of this document.

Figure 2-28 provides mounting hardware information for the 25-button Display/Keypad Assembly. Information on configuring the 'Display Function Block' (required to configure the Display associated with the 25-button Display/Keypad Assembly) is provided in ControlWave Designer's On-Line Help.

Note: Operation of the 25-button Display/Keypad Assembly is discussed in Appendix DKA of this document.

8.1 Operation of the Dual-button Display/Keypad Assembly

The Display will have a timeout of 20 minutes. If there has been no keypad activity for this time the display will "logout," i.e., the display will be turned off and scrolling stopped until a key press occurs. When a key press occurs after a timeout the display will return to the opening screen.

If a shorter timeout of the display is needed for power savings, another timeout may be implemented. The processor connected to the display will control the timeout. When the timeout occurs the display will be blanked, but communications between the **CW_30** CPU and display processor will still occur. The display processor will ignore posting the messages to the screen when in the low power mode. When a key is pressed the display processor will return to displaying information to the display.

Displays are organized into screens as follows:

Opening Screen:	User defined strings
List Selection Screen:	List Name
	List Number
	<blank line=""></blank>
	<blank line=""></blank>

The List Selection screen is entered from the main opening screen by pressing the right arrow. Once here the operator can select which list is to be viewed. The operator can traverse though different list numbers by pressing the down arrow key. When the list to be scrolled is shown on the display, pressing the right arrow key will bring the operator to the Display Element screen.

Display Element Screen:	<blank line=""></blank>
	<blank line=""></blank>
	Variable Name
	Variable Name

The Display Element screen is entered from the list selection screen by pressing the right arrow. Once here the operator can view the variables in the list. Once entered the first element of the list is displayed and then next element will be displayed after the scroll timeout occurs. The scrolling will continue displaying the next element in the list and then wrapping around to the beginning of the list. The down arrow key will toggle the display through hold and scroll mode. Pressing the right arrow key will bring the operator to the list selection screen.

Figure 27 - Dual-button Display/Keypad Assembly Installation Drawing

Display/Keypad Assemblies are supported by Automatic Mode and Manual Mode.

Automatic Mode

In Automatic mode a set of screens (based on the application load) are displayed. The application programmer provides strings for the opening screen. From there the firmware is responsible for displaying the screens and responding to key presses. Screens are fixed and start off with an opening screen, which displays user information passed into the function block. Users can view a list to select which list is to be scrolled. Once the list to be scrolled has been selected, the user can scroll through the list by pressing the down arrow key. List elements will be displayed automatically, scrolling at a predetermined rate (determined by iiScrollTime). The user may pause on a variable by pressing the right arrow key. Pressing the right arrow key again will cause the list to start scrolling again.

The essence of Automatic mode is that the user can supply inputs into the function that will determine which list can be displayed, but cannot change the menu or display. The user is allowed to select a list and to start/stop scrolling.

Figure 2-28 - 25-Button Display/Keypad Assembly Installation Drawing

Manual Mode

In Manual Mode the programmer is responsible for creating each screen and displaying the next desired screen, based on key inputs. The programmer has access to all lines of the display and can provide any string that he/she desires to display. Special formats that must be adhered to that allow the programmer to display what they want on the screen are provided in the description of <u>iaScrnSruct</u> in the <u>ACCOL 3 Display function block</u> within ControlWave Designer's On-Line Help. It should be noted that currently, Manual Mode does not support reading Keypad key-presses. **Note: Manual Mode operation requires ControlWave Firmware 4.50 or newer.**

SECTION 9 - CW_30 SPECIFICATIONS

9.1 CW_30 CPU Board Specifications

Processor:	Sharp's LH7A400 32-bit System-on-Chip with 32-bit ARM9TDMI RISC Core	
Memory:	16 Mbytes of simultaneous read/write FLASH 1 Mbyte of on-board SRAM 512 Kbytes FLASH Boot/Downloader 4 Mbytes of SDRAM	
Real Time Clock:	A Semtech SH3000 support IC provides a full BCD clock calender with programmable periodic/wakeup interrupt and a programmable clock generator with adjustable spectrum spreading.	
Connectors:	(see Table 14)	

Ref.	# Pins	Function	Notes
P2	62-pin	Backplane Intf.	CW_30 I/O Bus Interface
J2	8-Pin	Ethernet Female Port # 1	10/100Base-T
J3	8-Pin	Ethernet Female Port # 2	10/100Base-T
J5	21-pin	Off-board Serial Comm. Port Intf. Connector (RS-232/485)	Interfaced via a cable to COM5 and COM6 on Interface Board Ass'y. No. # 392574-01-2.
$\mathbf{J8}$	3-pin	RS-232 Utility Port	115.2 Kbaud to PC for Firmware Flash and Core Updumps

Table 14 - CPU Board Connector Summary

9.1.1 CPU Board Communication Port Specifications

CPU Board Comm. Ports:	J8: 3-pin In-line – Utility Port (RS-232)
	J5: 21-pin Interface (Via cable) to Off-board serial Comm.
	Ports BIP1/COM5 and BIP2/COM6 (which reside on
	Interface Board Assembly 392574-01-2) COM5 & COM6
	are individually configurable for RS-232 or RS-485
	operation and utilize 9-Pin D-Type Female Connectors
	J2: 8-pin 10/100Base-T (Female) Ethernet Port 1
	J3: 8-pin 10/100Base-T (Female) Ethernet Port 1
Baud Rate:	300 to 115Kbps for RS-232 or RS-485
	See Table 9 for connector pin assignments

9.1.2 CPU Board 3.3V Power Supply Specifications

Input:	+5Vdc
Output Voltages:	+3.3Vdc ±1%
Output Current:	0.6A Max. @ 3.3Vdc
Output Ripple P/P:	+3.3V Output: 10mV

Pg. 44 / Hardware Upgrade Installation Guide

9.1.3 CPU Board Environmental Specifications

Temperature:	Operating: -40 to $+158$ °F (-40 to $+70$ °C)Storage: -40 to $+185$ °F (-40 to $+85$ °C)	
Relative Humidity:	0-95% Non-condensing (Operating & Storage)	
Vibration:	1g acceleration over 10 to 150 Hz .5g acceleration over 150 to 2000 Hz	
RFI/Emissions:	In conformity with the following standards: ENV 50140 Radio-frequency electromagnetic field amplitude modulated EMV	

9.2 CW_30 Communication Board (CB) Specifications

9.2.1 CB Board Connectors

Ref.	_# Pins_	Function	Notes
J1	36-pin	Backplane Intf.	CW_30 I/O Bus Interface
J3	9-pin	RS-232/485 Serial Comm. Port 1/3	Female D-Type:
Bottom		(Bottom Left)	1 on CB#1, 3 on CB#2
J5	9-pin	RS-232/485 Serial Comm. Port 2/4	Female D-Type:
Bottom		(Bottom Right)	2 on CB#1, 4 on CB#2
J3	9-pin	RS-232/485 Serial Comm. Port 7/9	Female D-Type: 7 on CB#1, 9 on
Тор		(Top Left)	CB#2 (Not On 2-Port CBs)
J5	9-pin	RS-232/485 Serial Comm. Port 8/10	Female D-Type 8 on CB#1, 10 on
Тор		(Top Right)	CB#2 (Not on 2-Port CBs)

Table 15 – CB Board Connector Summary

9.2.2 CB Board Communication Port Specifications

CB Board Comm. Ports:	see Table 15
Baud Rate:	300 to 115Kbps for RS-232 or RS-485 See Table 10 for connector pin assignments

9.2.3 CB Board 3.3V Power Supply Specifications

Input:	+5Vdc
Output Voltages:	+3.3Vdc ±1%
Output Current:	0.6A Max. @ 3.3Vdc
Output Ripple P/P:	+3.3V Output: 10mV

9.2.4 CB Board Environmental Specifications

Temperature:	Operating :	-40 to +158 °F (-40 to +70 °C)
	<u>Storage</u> :	-40 to +185 °F (-40 to +85 °C)

Relative Humidity:	0-95% Non-condensing (Operating & Storage)
Vibration:	1g acceleration over 10 to 150 Hz .5g acceleration over 150 to 2000 Hz

ControlWave_30 DISPLAY/KEYPAD (with 25 Keys) ASSEMBLY GUIDE

Appendix DKA

Control®Vave

APPENDIX DKA

ControlWave_30 DISPLAY/KEYPAD (with 25 Keys) Assembly Guide

TABLE OF CONTENTS

SECTION	TITLE	PAGE #
DKA1.1	OVERVIEW	DKA-1
DKA2.1	DISPLAY FUNCTION BLOCK DESCRIPTION	DKA-2
DKA2.1.1	DISPLAY Function Block Parameters	DKA-2
DKA3.1	PREPARING THE ControlWave PROJECT	DKA-3
DKA4.1	USING THE KEYPAD	DKA-4
DKA4.1.1	Scrolling	DKA-5
DKA4.1.2	Signing-On	DKA-6
DKA4.1.3	Using the Clock Functions	
DKA4.1.3.1	Changing the Time	DKA-8
DKA4.1.3.2	Changing the Date	DKA-8
DKA4.1.4	Choosing a Variable List from the List Menu	DKA-8
DKA4.1.5	Moving Through a Variable List	DKA-9
DKA4.1.6	Changing Variable Parameters	DKA-9
DKA4.1.7	Signing-Off	DKA-12
DKA5.1	KEYPAD IDENTIFICATION & INSTALLATION INFO	DKA-13
NOTE: The	Dual-button Display/Keypad Assembly is discuss	ed in Section 8.1 of

PIP-CW_30 Upgrade Kit.

Appendix DKA DISPLAY/KEYPAD ASSEMBLY GUIDE

DKA1.1 OVERVIEW

Bristol Display/Keypad assemblies provide a local, user interface for the **Control**Wave **3330** (**CW_30**) DPC. These assemblies allow an operator or engineer to view and modify variable values and associated status information, via an ACCOL3 Function Block. Variables can include inputs, process variables, calculated variables, constants, set-points, tuning parameters and outputs used in a measurement or control application. Status bits include alarm state, alarm acknowledge, control, manual, and questionable data.

Setting up the Display/Keypad is a simple matter of configuring a Display Function Block in the ControlWave Designer project.

The Display/Keypad is comprised of a four line by twenty character liquid crystal display, with adjustable LCD Contrast, and a 25 button membrane key matrix. Each key has a microswitch for positive tactile feedback. This means that as you firmly depress the keys, you will feel it click as it engages. In the case of the CW_30 DPC, the Display/Keypad is located (typically panel or Enclosure Front Cover mounted) within the proximity of the CW_30 and is installed in the field by field service personnel, user, integrator, contractor, etc.

Figure 1 - Display/Keypad Assembly – 25 Button Keypad & 4 X 20 Display

Display/Keypad Assemblies are supported by Automatic Mode and Manual Mode.

Automatic Mode

In Automatic Mode a set of screens (based on the application load) are displayed. The application programmer provides strings for the opening screen. From there the firmware is responsible for displaying the screens and responding to key presses. Screens are fixed and start off with an opening screen, which displays user information passed into the function block. Users can view a list to select which list is to be scrolled. Once the list to be scrolled has been selected, the user can scroll through the list by pressing the down arrow key. List elements will be displayed automatically, scrolling at a predetermined rate (determined by iiScrollTime). The user may pause on a variable by pressing the right arrow key. Pressing the right arrow key again will cause the list to start scrolling again.

The essence of Automatic Mode is that the user can supply inputs into the function that will determine which list can be displayed, but cannot change the menu or display. The user is allowed to select a list and to start/stop scrolling.

Manual Mode

In Manual Mode the programmer is responsible for creating each screen and displaying the next desired screen, based on key inputs. The programmer has access to all lines of the display and can provide any string that he/she desires to display. Special formats that must be adhered to that allow the programmer to display what they want on the screen are provided in the description of <u>iaScrnSruct</u> in the <u>ACCOL 3 Display function block</u> within ControlWave Designer's On-Line Help. It should be noted that currently, Manual Mode does not support reading Keypad keypresses. **Note: Manual Mode operation requires ControlWave Firmware 4.50 or newer.**

If you're setting up the keypad, follow the configuration instructions provided in Section E3 of this appendix.

If your keypad has already been set up, Section DKA4.1 will tell you how to use the keypad and interpret the display.

DKA2.1 DISPLAY FUNCTION BLOCK DESCRIPTION

Keypad and display control/configuration are handled by the DISPLAY Function Block. This function block allows an operator to view/change variable data or to be allowed to scroll through lists of variable data based upon their login privileges.

In order for the keypad and display to operate, the ControlWave Designer project must include a properly configured DISPLAY Function Block. Use ControlWave Designer to configure this function block and assign the parameters according to the four steps covered in Section 3.

DKA2.1.1 DISPLAY Function Block Parameters

Referring to Figure 2, various DISPLAY Function Block Parameters are available. For information on configuring the Display Function Block, please reference on-line help in ControlWave Designer.

Figure 2 - ACCOL3 DISPLAY Function Block Parameters

DKA3.1 PREPARING THE ControlWave PROJECT

In order for the keypad and display to operate, the ControlWave Designer project must include a properly configured Display Function Block. Once the Keypad is operating, a user who has signed on with a password can scroll through the names of variable lists and choose a list to read or change. Use Up Arrow and Down Arrow keys to select the Username and use the numeric keys to enter your password. The steps that follow describe how to configure this function block.

Step 1: Creating the Identifier Display

The Identifier Display is the first display to appear when the Display Function Block is initialized and begins to execute. This display will look similar to Figure 3. Each of the first three lines of the display contains the text value of a string variable. These string variables are created utilizing iaScrnStruct parameters of the Display Function Block (See Figure 2) and your computer keyboard. Since this is the first display that the user will see, you may want the display to contain general information such as the node name of the controller or the process that the controller is monitoring.

The bottom line on the display is called the legend line. It shows which function keys are currently active and their purpose. Function keys are those keys on the Keypad that are marked ([F1] through [F4]). Function key assignments are preconfigured and cannot be changed. Using function keys is described in Section DKA4.1, <u>Using the Keypad</u>.

The legend line in Figure 3 shows that the user has two choices: to Log-in (using [F1]) or scroll (using [F2]).

Figure 3 - Creating the Identifier Message

Step 2: Defining a Scroll List

Once the Keypad is operating properly, you can automatically scroll through a list of variables created via DISPLAY Function Block Parameters <u>iiList2Scroll</u> and <u>iiListMode</u>. Scrolling can be done without entering a password. The variables in the list are displayed one at a time and in the same order in which they were entered in the variable list.

Later, we'll discuss other variable lists that can be accessed with the keypad. To distinguish this list from others, let's call this variable list the Scroll List.

Enter the number of a variable list to be scrolled. This variable list becomes the Scroll List. The Scroll List can contain different types of variables (that is, logical, analog and string). You can create a specific scroll variable list or use any list in the ControlWave Project.

Each variable in the Scroll List will be displayed for the number of seconds defined by the iiScrollTime parameter. If you don't specify a time for this parameter, the hold time will be two seconds. If you signed-on and then started scrolling you will be signed-off in 20 minutes if no keys are pressed. If you don't want to automatically stop scrolling after 20 minutes, sign-off (INIT key) before starting scrolling.

Step 3: Assigning Passwords

Step 4: Status Information

Enter a variable name on the odiStatus terminal.

See On Line Help in ControlWave Designer for Status Values.

The next section describes how to use the Keypad to access variable information.

DKA4.1 USING THE KEYPAD

The Identifier Display is the starting point from which you can go to other displays. It shows an identification message and the words <u>Login</u> and <u>Scroll</u> at the bottom of the screen (see Note 1). The identification message may contain the name of the controller, the plant equipment it is monitoring, or the variables you can expect to see when you use this display.

Note 1 : If your display shows something else, press the [F4] key until you see the words <u>Login</u> and <u>Scroll</u> on the bottom line.

If your screen is blank, turn the brightness screw clockwise. This screw is located to the left of the Keypad (looking at the rear of the 25-Button Display/Keypad Assembly (see Figure 17). If no letters appear, the controller has not been programmed properly to operate the keypad.

The words Login and Scroll at the bottom of the screen are on the legend line. It tells you which function keys (that is, key [F1] through [F4]) are active and their purpose at that time.

Up to four legends can appear on the legend line. The legend on the far left corresponds to the function of the [F1] key. The assignment for the [F4] key is on the far right. Keys [F2] and [F3] are described to the left and right of center. When no legend appears, that function key is not active at that time. For example, in Figure 4 only [F1] and [F2] are active.

Figure 4 - The Identifier Display

From the Identifier Display, you have two choices. Pressing [F1] will allow you to sign-on if you have a password. By pressing [F2] you can activate automatic scrolling through a list of variables.

Figure 5 - Identifier Display Legends and Corresponding Keypad Alignment for 25 Button Membrane Key Matrix Keypad System

DKA4.1.1 Scrolling

To begin automatic scrolling, press [F2] from the Identifier Display (Figure 4). Variable information will appear on the screen and remain there for 1 to 30 seconds (default = 2). The

variable name appears on the first line. The variable value appears on the second line and status information appears on the third line. An example is shown in Figure 6.

When all variables in the list have been displayed, they will be shown again in the same order. This is called Single Variable Mode.

Pressing Mlti [F2] activates Multiple Variable Mode. Multiple Variable Mode displays up to three (3) variables and their values on the screen simultaneously. Pressing Sngl [F2] terminates Multiple Variable Mode and returns you to Single Variable Mode.

TOTAL_MCF	TOTAL_MCF	437052.3
437052.3	VAR2	VAL
CE ME AE NA	VAR 3	VAL
Hold Mlti Exit	Go Sngl	Exit

Single Variable Mode

Multiple Variable Mode

Press HOLD [F1] to halt scrolling. Changing variable values will continue to be displayed.

Press GO [F1] to resume scrolling.

Press EXIT [F4] to return to the Identifier Display (Figure 4).

DKA4.1.2 Signing-On

To access the List Menu, you must first sign-on with a proper password. From the Identifier Display (Figure 4), press [F1]. The screen will look like Figure 7A or 7C. If the display looks like Figure 7C:

Someone else has already signed on. Go to the paragraph below that starts "Once you have successfully signed on,...".

If the display looks like Figure 7A:

Select the Username (default = system) by using the Up and Down Arrow Keys. If the Username system is displayed and no other Username is available (i.e., no others have been assigned), press [ENTER].

Enter a password using the 0 to 9 keys. For security, asterisks will appear as you enter the digits. If you make a mistake, press [F1] and try again or use the delete key to delete the previously pressed key action. The default password is 6666666 (used when a password is not known or no password has been assigned). After typing the password, press [ENTER].

If your password is not recognized, the asterisks will be erased after you press [ENTER]. Check your password and try again.

Figure 7 - Logging On

Once the correct password has been entered, the display will look like Figure 7C.

When the second line shows READ/WRITE, you can read and write variable parameters. When it shows READ ONLY you cannot change variable parameters. You are only permitted to read variable information. If your display shows READ ONLY and you want to change variable values, sign-off (press the [INIT] key) and log on with a username and password that provides Read/Write privileges.

Once you have successfully signed on, the legend line will show that you have four options. You can view and change the time and date of the local clock, access more variable lists, Scroll, or return to the Identifier Display. Use function keys F1 through F4 to select the next menu (F1 = Clock, F2 = Menu, F3 = Scroll list & F4 = Exit). Let's start by setting the local clock.

DKA4.1.3 Using the Clock Functions

From the Logged-On Display (Figure 7C), press [F1]. The screen will show the present date and time and will look like Figure 8. Follow the instructions below to change the time or date. When you're finished, press [F4] to exit.

Today's date is shown in the first line in the format month/day/year.

The current time is shown in the form of hours:minutes:seconds.

Figure 8 - Clock Display

DKA4.1.3.1 Changing the Time

From the display shown in Figure 8, press Time [F2]. Colons (:) will appear on the third line. Enter the new time there and press [ENTER]. Valid times range from 00:00:00 to 23:59:59. Invalid entries will be ignored. The display will be updated to show the new time.

Figure 9 - Time Set Display

If you make a mistake while entering the new time, use [DEL] to backspace and delete one character at a time.

DKA4.1.3.2 Changing the Date

From the clock display (Figure 8, press [F1]. Slash marks (/) will appear on the third line. Enter the new date there and press [ENTER].

Figure 10 - Date Set Display

If you make a mistake while entering the new date, use [DEL] to back space and delete one character at a time. Press [F4] to return to the Logged-On Display (Figure 7C).

DKA4.1.4 Choosing a Variable List from the List Menu

The List Menu is another area where variable information can be seen. As explained earlier in this section, your first opportunity to read variable information is by choosing the SCROLL function from the Initial Display. The variable name and value are presented from the Scroll List. This function is available to all users even without signing-on.

The List Menu will show other groups of variable which you can choose to read. This information will be more detailed than the Scroll List.

To get to the List Menu, choose MENU (press [F2]) from the Logged-On Display (Figure 7C).

Figure 11 - Using the List Menu Display

The first variable list number in the menu will appear on the second line.

Press PREV (F1) and NEXT (F2) to see the other variable lists that are available in the List Menu. You can also use the Up and Down Arrow Keys to scroll through the various lists. To move directly to a list, enter the list number, then press [ENTER].

DKA4.1.5 Moving Through a Variable List

After READ (F1) or WRITE (F2) has been pressed, the display will show the first variable in the list. An example is shown in Figure 12. Each time NEXT (F2) is pressed; the display will show the next variable in the list. PREV (F1) will show the previous variable. You can also use the Up and Down Arrow Keys to move through a list.

Automatic wraparound occurs in either direction. When you reach the end of the list, [F1] will display the first variable again. At the top of the list, [F2] will display the last variable.

DKA4.1.6 Changing Variable Parameters

From Figure 11, you can change variable parameters by pressing F2 [Write]. Then follow the directions summarized below (see Note 2).

Note 2: If your display does not contain the legend Write in the legend line, your password will only allow you to read variables. If you want to change variable values at this time, you must first log-off and then log-on using the correct password. See your Systems Engineer for the correct password. Before making any changes, first check the signal inhibit status field (See Figure 12). When the display shows ME (manual enable) you can change variable parameters. When it shows MI (manual inhibit), you cannot alter the parameters of this variable. If the field indicates MI, press the OPER I/E key to change it to ME.

To change an analog value:

Press CHNG (F3) to clear the third line. Use the number keys 0 through 9 to enter the new value. The minus sign and period are also permitted. Press [ENTER].

If you make a mistake, press CHNG (F3) and enter the number again or use the [DEL] key to erase a character.

Another way to enter new values is by using the arrow up and arrow down keys (located below the [F3] key and left of the [INIT] key). These keys will raise and lower the value by 1% of the displayed amount.

To change the status of a logical variable:

Press CHNG (F3), then use either the down and up arrow keys or the [0/OFF] and [1/ON] keys to change the state of a logical variable. If the [0/OFF] and [1/ON] keys are used, you must also press [ENTER].

Figure 12 - Interpreting Variable Information

To acknowledge an alarm:

Press [ALM ACK].

To change the alarm enable/inhibit status for alarm variables:

 $Press\ [ALM\ I/E]\ key.$ (Note: This will only inhibit alarm reporting, and not alarm level detection.)

Notes for Figure 12

- 1. Variable Name (Example 1: @GV.FLOW_RATE) (Example 2: @GV.TOTAL_FLOW_RATE)
- 2. Value analog value, string value, or logical value. Values which cannot fit in this field will be shown as asterisks.

Analog values are displayed in floating point format, for example, 0.0125, 99.627, and 1287.66. When the value cannot be shown in floating point format, scientific format is used (1.287668E+10 or 1.25E-02 for example).

- 3. Questionable Data Status for analog variables, column 1 will be clear if the status is valid. It will display a question mark if the status is questionable.
- 4. Variable Inhibit Status

CE (Control Enable) means this variable can be updated by the ControlWave project. CI (Control Inhibit) means the variable cannot be updated by the ControlWave project. ME (Manual Enable) means the variable can be changed manually. MI (Manual Inhibit) means the variable cannot be changed manually.

5. Alarm Enable (for alarm variables only)

AE - variable is alarm enabled (changes will be reported). AI - variable is alarm inhibited (changes will not be reported).

6. Alarm State

For A	Analog Variables:	For 1	<u>Logical Variables</u> :
ΗH	- high-high alarm	TA	- true alarm
HI	- high alarm	FA	- false alarm
LO	- low alarm	CA	- change-of-state alarm
$\mathbf{L}\mathbf{L}$	- low-low alarm		

! - alarm is unacknowledged

Notes for Figure 12 (Continued)

7 Multiple Signal Display

In Read Mode, pressing MULT (F3) will display the variable name extension, value, and units for three variables at one time. These variables include the variable displayed when NEXT (F2) was pressed and the next two variables in the list. Press SNGL [F3] to return to viewing one variable at a time (see Figure 12A).

Ν	A	Μ	Ε			W	Ε	S	T		S	U	Ν	В	U	R	Y		Ρ
F	L	0	W				1	2	6	0		5	8	G	Α	L	S		
Α	L	Α	R	Μ			0	F	F										
Ρ	R	E	V		Ν	Ε	X	Τ		S	Ν	G	L		Ε	X		Τ	

Figure 12A - Example of MULT Display in READ Mode

Variables are shown below as they would appear in SNGL mode.

1) String
SITE_NAME
WEST SUNBURY PUMP STATION
CE ME
2) Analog
TOTAL FLOW RATE
1260.578
CE MI
3) Logical
FLOW ALARM
OFF
UE MII AE NA

DKA4.1.7 Signing-Off

Once you have logged-on, use the [INIT] key at any time to log-off. When this key has been pressed, the screen will look like Figure 13. Press Yes (F1) to sign-off. You are signed-off when the Identifier Display (Figure 3C) appears.

If you do not want to log-off, press Exit (F4) to leave the Log-Off Display.

Once you are signed-on an automatic sign-off will occur if 20 minutes has elapsed since the last key was pressed.

Figure 13 - Log-Off Display

DKA5.1 KEYPAD IDENTIFICATION & INSTALLATION INFO.

FRONT VIEW

RIGHT SIDE VIEW DETAIL

Table 1 - 25 Button Keypad Keys

KEY	FUNCTION				
F1, F2, F3, F4	Function keys will take on a variety of different functions depending on the situation. The function of these keys is listed on the legend line (bottom line) of the display.				
INIT	The INIT key is used to terminate the keyboard session and sign-off.				
0 to 9, -, .	These keys are used to change the value of analog variables in the CONFIGURATION mode. The 0/OFF and 1/ON keys are used to change the state of logical variables.				
Δ	Each press of this key will raise an analog variable value by 1% of the displayed value or turn a logical variable ON.				
∇	Each press of this key will lower an analog variable value by 1% of the displayed value or turn a logical variable OFF.				
ALM I/E	Use this key to enable or inhibit alarm variables.				
ALM ACK	Use this key to acknowledge alarms.				
A/M	Toggle between AUTO (CE) and MANUAL (CI) with this key.				
OPER I/E	Toggle between manual inhibit (MI) and enable (ME) with this key.				
DEL	Use this backspace key to erase digits that have been entered on the keypad.				
ENTER	This key is used to enter new data from the display into the controller, e.g., password or variable values.				
ControlWave_30 Material Safety Data Sheets

A Material Safety Data Sheet is provided herein to comply with OSHA's Hazard Communication Standard, 29 CFR 1910.1200. This standard must be consulted for specific requirements.

Material Safety Data Sheets are provided in the order listed in Table Z-1 below.

TABLE Z-1 MSDS for ControlWave_30 Instruction Document (PIP-CW_30 Upgrade Kit)

Manufacturer	General Description	Part Number			
DURACELL	3V Lithium Manganese Dioxide Battery	DL 2450			

Bristol, Inc. Part Number = 395620-01-5

The 3V Lithium Manganese Dioxide Battery is situated on the CW_30 CCPU Board.

Not applicable

37 A Street Needham, MA 02492 Tel 781.292.8151

Page 1 of 4

MATERIAL SAFETY DATA SHEET

NAME: DURACELL LITHIUM MANGANESE DIOXIDE COIN BATTERIES

CAS NO:

•

Effective Date: 8/8/03

Rev: 3

A. — IDENTIFICATION						
Manganese Dioxide (1313-13-9)		% Formula: Mixture Mixture 5-75 Molecular Weight: NA				
					Propylene Carbonate (108-32-7)	10-15
Lithium (7439-93-2)		Synonyms: Lithium Manganese Dioxide Coin Cells:				
Graphite, synthetic (7440-44-0)	5-10	3V-DL2016; DL2025; DL2430; DL2450;				
1,2-Dimethoxyethane (110-71-4)	1-10	DL2032; DL1616; DL1620				
Lithium Perchlorate (7791-03-9)	<1.5					
B. — PHYSICAL DATA						
Boiling Point	Meltin	a Point	Freezing	Point		
NA °F NA °C	NA °F	NA °C	NA °F	NA °C		
Specific Gravity (H ₂ O=1)	Vapor Dei	nsity (air=1)	Vapor Pressure @	°r		
NA	N	Δ	NA mm Hg			
(Ether =1)	(by volume@	°F)		°C.		
			' NA	0		
<u> </u>	Solubility	/ in Water		•		
NA	NA		pН	NA		
Appearance/Color Coin colla Contanta darla in color						
Flash Point and						
Test Method(s) 1,2-Dimethoxyethane (Approximately 3-7% of contents): 42.8 °F, 6°C (Closed Cup)						
(% by volume)	Lower	T A %	Linner NA	%		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
C. — REACTIVITY						
Stability X stable	unstable	Polymerization	may occur	X will not occur		
Conditions to Avoid			Conditions to Avoid			
Do not heat, crush, disassemble, short circuit or Not applicable						
Incompatible Materials Hazardous Decomposition Products						
Contents incompatible with strong oxidizing agents.			10n may produce haz	zardous iumes		
	toxic by-products					
		toxic by-products	•			
* IF MULTIPLE INGREDIENTS, INC	LUDE CAS NUN	BERS FOR EACH	NA=NOT	AVAILABLE		
Footnotes						
Not applicable						

D. — HEALTH HAZARD DATA

Occupational Exposure Limits PEL's, TLV's, etc.)

8-Hour TWAs: Manganese Dioxide (as Mn) - 5 mg/m³ (Ceiling) (OSHA); 0.2 mg/m³ (ACGIH/Gillette) 1,2-Dimethoxyethane - 0.15 ppm (Gillette)

Graphite (all kinds except fibrous) - 2 mg/m³ (synthetic, ACGIH); 15 mg/m³ (total, OSHA); 5 mg/m³ (respirable, OSHA)

These levels are not anticipated under normal consumer use conditions.

Warning Signals				
Not applicable				
Routes/Effects of Exposure These chemicals and metals are contained in a sealed can. For consumer use, adequate hazard warnings are				
included on both the package and on the battery. Potential for exposure should not exist unless the battery				
leaks, is exposed to high temperature, is accidentally swallowed or is mechanically, physically, or electrically abused.				
1. Inhalation	Not anticipated. Respiratory (and eye) irritation may occur if fumes are released due to heat or an abundance of leaking batteries.			
2. Ingestion	An initial x-ray should be obtained promptly to determine battery location. Batteries lodged in the esophagus should be removed immediately since leakage, burns and perforation can occur as soon as 4-6 hours after ingestion. Irritation to the internal/external mouth areas may occur following exposure to a leaking battery.			
3. Skin	a. <u>Contact</u> Irritation may occur following exposure to a leaking battery.			
	b. <u>Absorption</u> Not anticipated.			
4. Eye Contact	Irritation may occur following exposure to a leaking battery.			
5. Other	Not applicable			
E. — ENVIR				
1. Applicable Regulations All ingredients listed in TSCA inventory.				

2. DOT Hazard Class - Not applicable

3. DOT Shipping Name - Not applicable

While lithium batteries are regulated by IATA and ICAO, the type of lithium batteries offered for sale by DURACELL are considered non-hazardous per provision A45 of the IATA Dangerous Goods Regulations and provision A45 of the ICAO Technical Instructions For The Safe Transport Of Dangerous Goods By Air. Per section A45 of the IATA and ICAO regulations, properly marked, labeled and packaged DURACELL consumer lithium batteries, which are of the solid cathode type, with less than 1g lithium per cell and less than 2g lithium per battery, are exempt from further regulation. When these batteries are separated to prevent short circuits and properly packaged in strong packaging (except when installed in electronic devices), they are acceptable for air transport as airfreight without any other restrictions. In addition, when installed in equipment or when no more than 24 cells or 12 batteries meeting the A45 provision are shipped, they are not subject to special packaging, marking, labeling or shipping documentation requirements. Thus, these batteries are not considered hazardous under the current regulations and are acceptable for air transport.

Environmental Effects

These batteries pass the U. S. EPA's Toxicity Characteristic Leaching Procedure and therefore, maybe disposed of with normal waste.

F. — EXPOSURE CONTROL METHODS

Engineering Controls

General ventilation under normal use conditions.

Eye Protection

None under normal use conditions. Wear safety glasses when handling leaking batteries.

Skin Protection

None under normal use conditions. Use butyl gloves when handling leaking batteries.

Respiratory Protection None under normal use conditions.

Other Keep batteries away from small children.

G. — WORK PRACTICES

Handling and Storage

Store at room temperature. Avoid mechanical or electrical abuse. **DO NOT** short or install incorrectly. Batteries may explode, pyrolize or vent if disassembled, crushed, recharged or exposed to high temperatures. Install batteries in accordance with equipment instructions. Replace all batteries in equipment at the same time. Do not carry batteries loose in pocket or bag.

Normal Clean Up Not applicable

Waste Disposal Methods

No special precautions are required for small quantities. Large quantities of open batteries should be treated as hazardous waste. Dispose of in accordance with federal, state and local regulations. Do not incinerate, since batteries may explode at excessive temperatures.

H. — EMERGENCY PROCEDURES

Steps to be taken if material is released to the environment or spilled in the work area

Evacuate the area and allow vapors to dissipate. Increase ventilation. Avoid eye or skin contact. **DO NOT** inhale vapors. Clean-up personnel should wear appropriate protective gear. Remove spilled liquid with absorbent and contain for disposal.

Fire and Explosion Hazard	Extinguishing Media
Batteries may burst and release hazardous decomposition products when	As for surrounding area. Dry
exposed to a fire situation. See Sec. C.	chemical, alcohol foam, water or
	carbon dioxide. For incipient
	fires, carbon dioxide extinguishers
	are more effective than water.

Firefighting Procedures

Cool fire-exposed batteries and adjacent structures with water spray from a distance. Use self-contained breathing apparatus and full protective gear.

I. — FIRST AID AND MEDICAL EMERGENCY PROCEDURES

Eyes

Not anticipated. If battery is leaking and material contacts eyes, flush with copious amounts of clear, tepid water for 30 minutes. Contact physician at once.

Skin

Not anticipated. If battery is leaking, irrigate exposed skin with copious amounts of clear, tepid water for a least 15 minutes. If irritation, injury or pain persists, consult a physician.

Inhalation

Not anticipated. Respiratory (and eye) irritation may occur if fumes are released due to heat or an abundance of leaking batteries. Remove to fresh air. Contact physician if irritation persists.

Ingestion

Consult a physician. Published reports recommend removal from the esophagus be done endoscopically (under direct visualization). Batteries beyond the esophagus need not be retrieved unless there are signs of injury to the GI tract or a large diameter battery fails to pass the pylorus. If asymptomatic, follow-up x-rays are necessary only to confirm passage of larger batteries. Confirmation by stool inspection is preferable under most circumstances. If mouth area irritation/burning has occurred, rinse the mouth and surrounding area with clear, tepid water for at least 15 minutes.

Notes to Physician

- 1) For information on treatment, telephone (202)-625-3333 collect.
- 2) Potential leakage of less than 50 milligrams of propylene carbonate (CAS #108-32-1) and dimethoxyethane (CAS #110-71-4).
- 3) Dimethoxyethane readily evaporates.
- 4) Under certain misuse conditions and by abusively opening the battery, exposed lithium can react with water or moisture in the air causing potential thermal burns or fire hazard.

Replaces # 1461

The information contained in the Material Safety Data Sheet is based on data considered to be accurate, however, no warranty is expressed or implied regarding the accuracy of the data or the results to be obtained from the use thereof.

Emerson Process Management Bristol, Inc.

1100 Buckingham Street Watertown, CT 06795 Phone: +1 (860) 945-2262 Fax: +1 (860) 945-2525 www.EmersonProcess.com/Bristol

Emerson Electric Canada, Ltd.

Bristol Canada 6338 Viscount Rd. Mississauga, Ont. L4V 1H3 Canada Phone: 905-362-0880 Fax: 905-362-0882 www.EmersonProcess.com/Bristol

Emerson Process Management

BBI, S.A. de C.V. Homero No. 1343, 3er Piso Col. Morales Polanco 11540 Mexico, D.F. Mexico Phone: (52-55)-52-81-81-12 Fax: (52-55)-52-81-81-09 www.EmersonProcess.com/Bristol

Emerson Process Management

Bristol Babcock, Ltd. Blackpole Road Worcester, WR3 8YB United Kingdom Phone: +44 1905 856950 Fax: +44 1905 856969 www.EmersonProcess.com/Bristol

Emerson Process Management

Bristol, Inc. 22 Portofino Crescent, Grand Canals Bunbury, Western Australia 6230 Mail to: PO Box 1987 (zip 6231) Phone: +61 (8) 9725-2355 Fax: +61 (8) 8 9725-2955 www.EmersonProcess.com/Bristol The information in this document is subject to change without notice. Every effort has been made to supply complete and accurate information. However, Bristol, Inc. assumes no responsibility for any errors that may appear in this document.

If you have comments or questions regarding this manual, please direct them to your local Bristol sales representative, or direct them to one of the addresses listed at left.

Bristol, Inc. does not guarantee the accuracy, sufficiency or suitability of the software delivered herewith. The Customer shall inspect and test such software and other materials to his/her satisfaction before using them with important data.

There are no warranties, expressed or implied, including those of merchantability and fitness for a particular purpose, concerning the software and other materials delivered herewith.

The Emerson logo is a trade mark and service mark of Emerson Electric Co. Trademarks or copyrighted products mentioned in this document are for information only, and belong to their respective companies, or trademark holders.

Copyright (c) 2007, Bristol, Inc., 1100 Buckingham St., Watertown, CT 06795. No part of this manual may be reproduced in any form without the express written permission of Bristol, Inc.

