## DL305

## Analog I/O Modules

Manual Number D3-ANLG-M


Thank you for purchasing automation equipment from Automationdirect.com ${ }^{\text {M }}$. We want your new DirectLOGICTM automation equipment to operate safely. Anyone who installs or uses this equipment should read this publication (and any other relevant publications) before installing or operating the equipment.

To minimize the risk of potential safety problems, you should follow all applicable local and national codes that regulate the installation and operation of your equipment. These codes vary from area to area and usually change with time. It is your responsibility to determine which codes should be followed, and to verify that the equipment, installation, and operation are in compliance with the latest revision of these codes.

At a minimum, you should follow all applicable sections of the National Fire Code, National Electrical Code, and the codes of the National Electrical Manufacturer's Association (NEMA). There may be local regulatory or government offices that can also help determine which codes and standards are necessary for safe installation and operation.

Equipment damage or serious injury to personnel can result from the failure to follow all applicable codes and standards. We do not guarantee the products described in this publication are suitable for your particular application, nor do we assume any responsibility for your product design, installation, or operation.

Our products are not fault-tolerant and are not designed, manufactured or intended for use or resale as on-line control equipment in hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines, or weapons systems, in which the failure of the product could lead directly to death, personal injury, or severe physical or environmental damage ("High Risk Activities"). Automationdirect.com ${ }^{\text {™ }}$ specifically disclaims any expressed or implied warranty of fitness for High Risk Activities.

For additional warranty and safety information, see the Terms and Conditions section of our Desk Reference. If you have any questions concerning the installation or operation of this equipment, or if you need additional information, please call us at 770-844-4200.

This publication is based on information that was available at the time it was printed. At Automationdirect.com ${ }^{\text {TM }}$ we constantly strive to improve our products and services, so we reserve the right to make changes to the products and/or publications at any time without notice and without any obligation. This publication may also discuss features that may not be available in certain revisions of the product.
$\square$

## Trademarks

This publication may contain references to products produced and/or offered by other companies. The product and company names may be trademarked and are the sole property of their respective owners. Automationdirect.com ${ }^{\text {M }}$ disclaims any proprietary interest in the marks and names of others.

## Copyright 2003, Automationdirect.com ${ }^{\text {TM }}$ Incorporated All Rights Reserved

No part of this manual shall be copied, reproduced, or transmitted in any way without the prior, written consent of Automationdirect.com ${ }^{\text {TM }}$ Incorporated. Automationdirect.com ${ }^{\text {TM }}$ retains the exclusive rights to all information included in this document.

## AVERTISSEMENT

Nous vous remercions d'avoir acheté l'équipement d'automatisation de Automationdirect.com ${ }^{\text {rN }}$. Nous tenons à ce que votre nouvel équipement d'automatisation DirectLOGIC ${ }^{T M}$ fonctionne en toute sécurité. Toute personne qui installe ou utilise cet équipement doit lire la présente publication (et toutes les autres publications pertinentes) avant de l'installer ou de I'utiliser.

Afin de réduire au minimum le risque d'éventuels problèmes de sécurité, vous devez respecter tous les codes locaux et nationaux applicables régissant l'installation et le fonctionnement de votre équipement. Ces codes diffèrent d'une région à l'autre et, habituellement, évoluent au fil du temps. Il vous incombe de déterminer les codes à respecter et de vous assurer que l'équipement, l'installation et le fonctionnement sont conformes aux exigences de la version la plus récente de ces codes.
Vous devez, à tout le moins, respecter toutes les sections applicables du Code national de prévention des incendies, du Code national de l'électricité et des codes de la National Electrical Manufacturer's Association (NEMA). Des organismes de réglementation ou des services gouvernementaux locaux peuvent également vous aider à déterminer les codes ainsi que les normes à respecter pour assurer une installation et un fonctionnement sûrs.
L'omission de respecter la totalité des codes et des normes applicables peut entraîner des dommages à l'équipement ou causer de graves blessures au personnel. Nous ne garantissons pas que les produits décrits dans cette publication conviennent à votre application particulière et nous n'assumons aucune responsabilité à l'égard de la conception, de l'installation ou du fonctionnement de votre produit.
Nos produits ne sont pas insensibles aux défaillances et ne sont ni conçus ni fabriqués pour l'utilisation ou la revente en tant qu'équipement de commande en ligne dans des environnements dangereux nécessitant une sécurité absolue, par exemple, l'exploitation d'installations nucléaires, les systèmes de navigation aérienne ou de communication, le contrôle de la circulation aérienne, les équipements de survie ou les systèmes d'armes, pour lesquels la défaillance du produit peut provoquer la mort, des blessures corporelles ou de graves dommages matériels ou environnementaux ("activités à risque élevé"). La société Automationdirect.com ${ }^{T M}$ nie toute garantie expresse ou implicite d'aptitude à l'emploi en ce qui a trait aux activités à risque élevé.
Pour des renseignements additionnels touchant la garantie et la sécurité, veuillez consulter la section Modalités et conditions de notre documentation. Si vous avez des questions au sujet de l'installation ou du fonctionnement de cet équipement, ou encore si vous avez besoin de renseignements supplémentaires, n'hésitez pas à nous téléphoner au 770-844-4200.
Cette publication s'appuie sur l'information qui était disponible au moment de l'impression. À la société Automationdirect.com ${ }^{\text {TM }}$, nous nous efforçons constamment d'améliorer nos produits et services. C'est pourquoi nous nous réservons le droit d'apporter des modifications aux produits ou aux publications en tout temps, sans préavis ni quelque obligation que ce soit. La présente publication peut aussi porter sur des caractéristiques susceptibles de ne pas être offertes dans certaines versions révisées du produit.

## Marques de commerce

La présente publication peut contenir des références à des produits fabriqués ou offerts par d'autres entreprises. Les désignations des produits et des entreprises peuvent être des marques de commerce et appartiennent exclusivement à leurs propriétaires respectifs. Automationdirect.com ${ }^{\text {TM }}$ nie tout intérêt dans les autres marques et désignations.

## Copyright 2003, Automationdirect.com ${ }^{\text {TM }}$ Incorporated <br> Tous droits réservés

Nulle partie de ce manuel ne doit être copiée, reproduite ou transmise de quelque façon que ce soit sans le consentement préalable écrit de la société Automationdirect.com ${ }^{\text {TM }}$ Incorporated. Automationdirect.com ${ }^{\text {M }}$ conserve les droits exclusifs à l'égard de tous les renseignements contenus dans le présent document.

## Manual Revisions

If you contact us in reference to this manual, be sure to include the revision number.
Title: DL305 Analog I/O Modules, 2nd Edition, Rev. D
Manual Number: D3-ANLG-M

| Issue | Date | Description of Changes |
| :--- | :---: | :--- |
| Original | $1 / 94$ | Original Issue |
| 2nd Edition | $3 / 96$ | Corrections |
| Rev. A | $4 / 96$ | Minor corrections |
| Rev. B | $6 / 98$ | Downsized to spiral <br> Corrected sequencing examples |
| Rev. C | $11 / 99$ | Added example programs for the D3-350 <br> CPU. |
| 3rd Edition | $2 / 03$ | Added pointer method and additional <br> D3-350 programming examples |

## Table of Contents

## Chapter 1: Getting Started

Introduction ..... 1-2
Purpose of this manual ..... 1-3
Who should read this manual ..... 1-3
How this manual is organized ..... 1-3
Supplemental Manuals ..... 1-3
DL305 Analog Components ..... 1-4
DL305 Analog I/O ..... 1-4
Thermocouple Input ..... 1-4
Temperature Input ..... 1-4
Physical Characteristics ..... 1-5
Selecting the Appropriate Module ..... 1-6
Analog Input ..... 1-6
Analog Output ..... 1-7
Special Input ..... 1-7
Analog Made Easy - Four Simple Steps ..... 1-8
Analog Input Terminology ..... 1-9
Channels per Module ..... 1-9
Input Ranges ..... 1-9
Resolution ..... 1-9
Input Type ..... 1-9
Input Impedance ..... 1-9
Conversion Method ..... 1-9
Conversion Time ..... 1-9
Linearity Error and Total Tolerance (Relative Accuracy) ..... 1-9
Accuracy vs. Temperature ..... 1-9
LED Display ..... 1-9
I/O Points Required ..... 1-9
External Power Source ..... 1-9
Base Power Required ..... 1-9
Operating Temperature ..... 1-9
Relative Humidity ..... 1-9
Terminal Type ..... 1-9
Weight ..... 1-9
Analog Output Module Terminology ..... 1-10
Channels per Module ..... 1-10
Output Ranges ..... 1-10
Resolution ..... 1-10
Output Current ..... 1-10
Output Impedance ..... 1-10
Load Impedance ..... 1-10
Conversion Time ..... 1-10
Accuracy ..... 1-10
Accuracy vs. Temperature ..... 1-10
LED Display ..... 1-10
External Power Source ..... 1-10
Base Power Required ..... 1-10
Operating Temperature ..... 1-10
Relative Humidity ..... 1-10
Terminal Type ..... 1-10
Weight ..... 1-10
I/O Points Required ..... 1-10
Chapter 2: D3-04AD 4-Channel Analog Input
Module Specifications ..... 2-2
Analog Input Configuration Requirements ..... 2-2
Setting the Module Jumpers ..... 2-3
Connecting the Field Wiring ..... 2-3
Wiring Guidelines ..... 2-3
User Power Supply Requirements ..... 2-3
Custom Input Ranges ..... 2-4
Current Loop Transmitter Impedance ..... 2-5
Removable Connector ..... 2-6
Wiring Diagram ..... 2-6
Module Operation ..... 2-7
Channel Scanning Sequence ..... 2-7
Understanding the I/O Assignments ..... 2-8
All Channel Scan Output ..... 2-8
Single Channel Scan Outputs ..... 2-9
Active Channel Selection Inputs ..... 2-9
Analog Data Bits ..... 2-10
Writing the Control Program ..... 2-11
Identifying the Data Locations ..... 2-11
Single Channel on Every Scan ..... 2-11
Reading Multiple Channels over Alternating Scans ..... 2-12
Single or Multiple Channels ..... 2-13
Scaling the Input Data ..... 2-14
Analog and Digital Value Conversions ..... 2-18
Chapter 3: F3-04ADS 4-Channel Isolated Analog Input
Module Specifications ..... 3-2
Analog Input Configuration Requirements ..... 3-2
Setting the Module Jumpers ..... 3-3
Jumper Locations ..... 3-3
Selecting the Number of Channels ..... 3-4
Selecting Input Signal Ranges ..... 3-4
Connecting the Field Wiring ..... 3-5
Wiring Guidelines ..... 3-5
User Power Supply Requirements ..... 3-5
Custom Input Ranges ..... 3-5
Current Loop Transmitter Impedance ..... 3-6
Removable Connector ..... 3-7
Wiring Diagram ..... 3-7
Module Operation ..... 3-8
Channel Scanning Sequence ..... 3-8
Understanding the I/O Assignments ..... 3-9
Active Channel Selection Inputs ..... 3-9
Analog Data Bits ..... 3-10
Writing the Control Program ..... 3-11
Identifying the Data Locations ..... 3-11
Single Channel on Every Scan ..... 3-11
Reading Multiple Channels over Alternating Scans ..... 3-12
Scaling the Input Data ..... 3-13
Analog and Digital Value Conversions ..... 3-1
Chapter 4: F3-08AD-1 8-Channel Analog Input
Module Specifications ..... 4-2
Analog Input Configuration Requirements ..... 4-2
Setting the Module Jumpers ..... 4-3
Jumper Locations ..... 4-3
Selecting the Number of Channels ..... 4-3
Connecting the Field Wiring ..... 4-4
Wiring Guidelines ..... 4-4
User Power Supply Requirements ..... 4-4
Current Loop Transmitter Impedance ..... 4-4
Removable Connector ..... 4-5
Wiring Diagram ..... 4-5
Module Operation ..... 4-6
Channel Scanning Sequence ..... 4-6
Understanding the I/O Assignments ..... 4-7
Active Channel Indication Inputs ..... 4-7
Analog Data Bits ..... 4-8
Writing the Control Program ..... 4-9
Identifying the Data Locations ..... 4-9
Single Channel on Every Scan ..... 4-9
Reading Multiple Channels over Alternating Scans ..... 4-10
Reading Multiple Channels over Alternating Scans on a DL350 ..... 4-11
Scaling the Input Data ..... 4-13
Scaling the Input Data on a DL350 ..... 4-17
Analog and Digital Value Conversions ..... 4-18
Chapter 5: F3-16AD 16-Channel Analog Input
Module Specifications ..... 5-2
Analog Input Configuration Requirements ..... 5-2
Setting the Module Jumpers ..... 5-3
Jumper Locations ..... 5-3
Selecting the Number of Channels ..... 5-3
Selecting Input Signal Ranges ..... 5-4
Gain Jumpers ..... 5-5
Variable Gain Adjustment ..... 5-5
Connecting the Field Wiring ..... 5-6
Wiring Guidelines ..... 5-6
User Power Supply Requirements ..... 5-6
Custom Input Ranges ..... 5-7
Current Loop Transmitter Impedance ..... 5-8
Removable Connector ..... 5-9
Wiring Diagram ..... 5-9
Module Operation ..... 5-10
Channel Scanning Sequence ..... 5-10
Understanding the I/O Assignments ..... 5-11
Active Channel Indicator Inputs ..... 5-12
Analog Data Bits ..... 5-13
Writing the Control Program ..... 5-14
Identifying the Data Locations ..... 5-14
Example Program ..... 5-15
Example Program for a DL350 with a Conventional Base ..... 5-16
Example Program for a DL350 with a D3-XX-1 Base ..... 5-17
Scaling the Input Data ..... 5-20
Scaling the Input Data on a DL350 with a Conventional Base ..... 5-24
Broken Transmitter Detection ..... 5-25
Analog and Digital Value Conversions ..... 5-26
Chapter 6: D3-02DA 2-Channel Analog Output
Module Specifications ..... 6-2
Analog Output Configuration Requirements ..... 6-2
Connecting the Field Wiring ..... 6-3
Wiring Guidelines ..... 6-3
User Power Supply Requirements ..... 6-3
Load Requirements ..... 6-3
Removable Connector ..... 6-4
Wiring Diagram ..... 6-4
Module Operation ..... 6-5
Channel Scanning Sequence ..... 6-5
Understanding the I/O Assignments ..... 6-6
Analog Data Bits ..... 6-7
Writing the Control Program ..... 6-8
Identifying the Data Locations ..... 6-8
Calculating the Digital Value ..... 6-8
Sending the Same Data to Both Channels ..... 6-11
Sending Specific Data to Each Channel ..... 6-12
Analog and Digital Value Conversions ..... 6-13
Chapter 7: F3-04DA-1 4-Channel Analog Output
Module Specifications ..... 7-2
Analog Output Configuration Requirements ..... 7-2
Setting the Module Jumpers ..... 7-3
Jumper Locations ..... 7-3
Selecting Output Signal Ranges ..... 7-3
Connecting the Field Wiring ..... 7-4
Wiring Guidelines ..... 7-4
User Power Supply Requirements ..... 7-4
Load Requirements ..... 7-4
Removable Connector ..... 7-5
Wiring Diagram ..... 7-5
Module Operation ..... 7-6
Channel Scanning Sequence ..... 7-6
Understanding the I/O Assignments ..... 7-7
Channel Selection Inputs ..... 7-7
Analog Data Bits ..... 7-8
Writing the Control Program ..... 7-9
Identifying the Data Locations ..... 7-9
Calculating the Digital Value ..... 7-9
Sending Data to a Single Channel ..... 7-12
Sequencing the Channel Updates ..... 7-13
Sequencing Example ..... 7-13
Analog and Digital Value Conversions ..... 7-14
Chapter 8: F3-04DAS 4-Channel Isolated Analog Output
Module Specifications ..... 8-2
Analog Output Configuration Requirements ..... 8-3
Setting the Module Jumpers ..... 8-4
Jumper Locations ..... 8-4
Selecting Input Signal Ranges ..... 8-5
Special Output Signal Ranges ..... 8-6
Connecting the Field Wiring ..... 8-7
Wiring Guidelines ..... 8-7
User Power Supply Requirements ..... 8-7
Load Requirements ..... 8-7
Removable Connector ..... 8-8
Wiring Diagram ..... 8-8
Combining Voltage Outputs ..... 8-8
Combining Current Outputs ..... 8-9
Module Operation ..... 8-10
Channel Scanning Sequence ..... 8-10
Understanding the I/O Assignments ..... 8-11
Channel Selection Inputs ..... 8-11
Analog Data Bits ..... 8-12
Writing the Control Program ..... 8-13
Identifying the Data Locations ..... 8-13
Calculating the Digital Value ..... 8-13
Sending Data to a Single Channel ..... 8-16
Sequencing the Channel Updates ..... 8-17
Analog and Digital Value Conversions ..... 8-18

## Chapter 9: F3-08THM-n 8-Channel Thermocouple Input

Introduction ..... 9-2
Automatic Conversion ..... 9-2
Hardware Features ..... 9-2
Diagnostic Features ..... 9-2
Module Specifications ..... 9-3
Analog Input Configuration Requirements ..... 9-3
Setting the Module Switches ..... 9-4
Jumper Locations ..... 9-4
Selecting ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ Operation ..... 9-4
Selecting 0-4095 Operation ..... 9-4
Connecting the Field Wiring ..... 9-5
Wiring Guidelines ..... 9-5
User Power Supply Requirements ..... 9-5
Wiring Diagram ..... 9-5
Module Operation ..... 9-6
Channel Scanning Sequence ..... 9-6
Understanding the I/O Assignments ..... 9-7
Active Channel Indicator Inputs ..... 9-7
Temperature Sign Bit ..... 9-8
Analog Data Bits ..... 9-8
Temperature Input Resolution ..... 9-8
Millivolt Input Resolution ..... 9-8
Writing the Control Program ..... 9-9
Identifying the Data Locations ..... 9-9
Automatic Temperature Conversion ..... 9-9
Using the Sign Bit ..... 9-11
Reading Multiple Channels on a DL350 with a D3-XX-1 Base ..... 9-12
Scaling the Input Data ..... 9-14
Temperature and Digital Value Conversions ..... 9-18
Millivolt and Digital Value Conversions ..... 9-18
Chapter 10: F3-08TEMP 8-Channel Temperature Input
Module Specifications ..... 10-2
Compatible Temperature Probe Specifications ..... 10-3
Analog Input Configuration Requirements ..... 10-3
Setting the Module Jumpers ..... 10-4
Factory Settings ..... 10-4
Selecting the Number of Channels ..... 10-4
Connecting the Field Wiring ..... 10-5
Wiring Guidelines ..... 10-5
User Power Supply Requirements ..... 10-5
Removable Connector ..... 10-5
Wiring Diagram ..... 10-5
Module Operation ..... 10-6
Channel Scanning Sequence ..... 10-6
Understanding the I/O Assignments ..... 10-7
Active Channel Indicator Inputs ..... 10-7
Analog Data Bits ..... 10-8
Temperature Input Resolution ..... 10-8
Writing the Control Program ..... 10-9
Identifying the Data Locations ..... 10-9
Reading the Digital Value ..... 10-9
Converting the Data to Temperature ..... 10-10
Reading Temperatures Below Zero ..... 10-12
Storing the Temperature ..... 10-13
Reading Temperatures on a DL350 with a D3-XX-1 Base ..... 10-14
Temperature and Digital Value Conversions ..... 10-17
Appendix A: DL305 Data Types and Memory Map
DL330 Memory Map ..... A-2
DL330P Memory Map ..... A-3
DL340 Memory Map ..... A-4
I/O Point Bit Map ..... A-5
Control Relay Bit Map ..... A-6
Special Relays ..... A-8
Data Registers ..... A-9
DL350 System V-Memory ..... A-11
DL350 Comm Port 2 Control Relays ..... A-12
DL350 Memory Map ..... A-13
DL350 X Input/ Y Output Bit Map ..... A-14
DL350 Control Relay Bit Map ..... A-15
DL350 Stage ${ }^{\text {m }}$ Control / Status Bit Map ..... A-17
DL350 Timer and Counter Status Bit Maps ..... A-19

## Getting Started

In This Chapter. . . .

- Introduction
- Physical Characteristics
- Analog Input Terminology
- Analog Output Module Terminology
- Selecting the Appropriate Module
- Analog Made Easy - Four Simple Steps


## Introduction

Purpose of this This manual will show you how to select and install analog input and analog output manual

Who should read this manual

Supplemental Manuals

Technical Support modules. It also shows several ways to use the analog data in your PLC program.

If you understand the DL305 oand DL350 instruction sets and system setup requirements, this manual will provide all the information you need to install and use the analog modules. This manual is not intended to be a tutorial on analog signal theory, but rather, a user reference manual for the DL305 Analog I/O modules.

If you have purchased operator interfaces or DirectSOFT ${ }^{\text {Tw }}$, you will need to supplement this manual with the manuals that are written for these products.

We realize that even though we strive to be the best, the information may be arranged in such a way you cannot find what you are looking for. First, check these resources for help in locating the information:

- Table of Contents - chapter and section listing of contents, in the front of this manual
- Quick Guide to Contents - chapter summary listing on the next page
- Appendices - reference material for key topics, near the end of this manual
- Index - alphabetical listing of key words, at the end of this manual

You can also check our online resources for the latest product support information:

- Internet - the address of our Web site is http://www.plcdirect.com
- Bulletin Board Service(BBS) - call (770)-844-4209

If you still need assistance, please call us at 800-633-0405. Our technical support group is glad to work with you in answering your questions. They are available Monday through Friday from 9:00 A.M. to 6:00 P.M. Eastern Standard Time. If you have a comment or question about any of our products, services, or manuals, please fill out and return the 'Suggestions' card that was shipped with this manual.

Chapters The main contents of this manual are organized into the following nine chapters:
\(\left.$$
\begin{array}{ll}\text { Getting Started } & \begin{array}{l}\text { introduces the various DL305 Analog modules. Also includes } \\
\text { tips on getting started and how to design a successful } \\
\text { system. }\end{array}
$$ <br>
explains the 4 channel analog input module. Provides ladder <br>

logic examples for all bases and CPUs.\end{array}\right]\)| explains the 4 channel isolated analog input module. |
| :--- |
| Provides ladder logic examples for all bases and CPUs. |

Appendices Additional reference information on the DL305 analog modules is in the following five appendices:


## Reference Appendices

- A - DL305C Data Types and Memory Map
- B - DL350 Data Types and Memory Map


## DL305 Analog Components

There are a wide variety of Analog I/O modules available for use with the DL305 family of automation products. These modules are well suited for monitoring and controlling various types of analog signals such as pressure, temperature, etc. There are modules specifically designed for thermocouple and temperature input requirements. No complex programming or module setup software is required. Simply install the module, add a few lines to your RLL program, and you're ready!


DL305 Analog I/O The following is a list of the types of analog input and analog output modules that are available.

- D3-04AD - 4 channel input, 8-bit resolution
- F3-04ADS - 4 channel isolated input, 12-bit resolution
- F3-08AD - 8 channel input, 12-bit resolution
- F3-16AD - 16 channel input, 12 -bit resolution
- D3-02DA - 2 channel output, 8-bit resolution
- F3-04DA-1 - 4 channel output, 12-bit resolution
- F3-04DAS - 4 channel isolated output, 12-bit resolution


## Thermocouple Input

There is also an 8 channel thermocouple input module that converts type $\mathrm{E}, \mathrm{J}, \mathrm{K}, \mathrm{R}$, S , or T thermocouple signals into direct temperature readings. This module can also convert other types of low-level (millivolt range) signals into digital values. The part number for this module is $\mathrm{F} 3-08 \mathrm{THM}-\mathrm{n}$, where n is the type of thermocouple. If you want a millivolt input version, simply replace n with a $1(0-50 \mathrm{mV})$ or a $2(0-100 \mathrm{mV})$. All versions offer 12-bit resolution.
Temperature Input The Temperature Input module provides 8 channels for direct temperature measurement in either Celsius or Fahrenheit from $-55^{\circ}$ to $150^{\circ} \mathrm{C}$. Order part number F3-08TEMP. This module offers 12-bit resolution.

## Physical Characteristics

The DL305 Analog Modules provide many features that make the modules easier to use. For example, the terminal block can be removed making wiring a simple task. You can also use our DINnector product line to organize your wiring even further (see our catalog for details).
Some of the modules provide LEDs used to determine the signal level. Since there are not enough LEDs to show all of the channels at once, there is a small switch underneath the terminal cover that allows you to select the channel for monitoring. Not all of the modules have this feature.
Most of the modules also have jumpers that can be set to select between the various types of signals. Each chapter will show how to set these jumpers for the selections you need.


Getting Started

## Selecting the Appropriate Module

> The following tables provide a condensed version of the information you need to select the appropriate module. The most important thing is to simply determine the number of channels required and the signal ranges that must be supported. Once you've determined these parameters, look in the specific chapter for the selected module to determine the installation and operation requirements.

## Analog Input

| Specification | D3-04AD | F3-04ADS | F3-08AD | F3-16AD |
| :---: | :---: | :---: | :---: | :---: |
| Channels | 4 | 4 | 8 | 16 |
| Input Ranges | $\begin{aligned} & 1-5 \mathrm{~V} \\ & 4-20 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0-5 \mathrm{~V} \\ & 1-5 \mathrm{~V} \\ & 0-10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & 0-20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$ | 4-20mA | $\begin{aligned} & 0-5 \mathrm{~V} \\ & 1-5 \mathrm{~V} \\ & 0-10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & 0-20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA}^{1} \end{aligned}$ |
| Resolution | 8 bit (1 in 256) | 12 bit (1 in 4096) | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Channel Isolation | Non-isolated (one common) | Isolated | Non-isolated (one common) | Non-isolated (one common) |
| Input Type | Differential | Differential | Single ended | Single ended |
| Maximum Inaccuracy at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ | 1\% | $\pm 0.3 \%$ | 0.35\% | $0.25 \%$ voltage $1.25 \%$ current |
| See Chapter . . . | 2 | 3 | 4 | 5 |

${ }^{1}$ - resolution is reduced with $4-20 \mathrm{~mA}$ signals. You should use the F3-08AD if the primary application requires $4-20 \mathrm{~mA}$ signals.

## Analog Output

| Specification | D3-02DA | FACTS F3-04DA-1 | FACTS F3-04DAS |
| :---: | :---: | :---: | :---: |
| Channels | 2 | 4 | 4 |
| Output Ranges | $\begin{aligned} & 1-10 \mathrm{VDC} \\ & 4-20 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0-5 \mathrm{~V} \\ & 0-10 \mathrm{~V} \\ & 4-12 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$ | $\begin{aligned} & 0-5 \mathrm{~V} \\ & 0-10 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \\ & 4-20 \mathrm{~mA} \end{aligned}$ |
| Resolution | 8 bit (1 in 256) | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Channel Isolation | Non-isolated (one common) | Non-isolated (one common) | Isolated |
| Output Type | Single ended | Single ended | Differential |
| Maximum Inaccuracy at $77{ }^{\circ} \mathrm{F}$ ( $25^{\circ} \mathrm{C}$ ) | $\pm 0.4 \%$ | $\begin{aligned} & \pm 0.2 \% \text { voltage } \\ & \pm 0.6 \% \text { current } \end{aligned}$ | $\pm 0.8 \%$ |
| See Chapter . . . | 6 | 7 | 8 |

## Special Input

| Specification | F3-08TEMP | FACTS F4-04DA |
| :---: | :---: | :---: |
| Channels | 8, Temperature Input | 8, Thermocouple Input |
| Input Ranges | $0-1 \mathrm{~mA}$ <br> AD590 input types | E: $-270 / 1000^{\circ} \mathrm{C},-450 / 1832{ }^{\circ} \mathrm{F}$ $\mathrm{J}:-210 / 760^{\circ} \mathrm{C},-350 / 1390^{\circ} \mathrm{F}$ $\mathrm{K}:-270 / 1370{ }^{\circ} \mathrm{C},-450 / 2500^{\circ} \mathrm{F}$ $\mathrm{R}: 0 / 1768{ }^{\circ} \mathrm{C},-32 / 3214^{\circ} \mathrm{F}$ $\mathrm{S}: 0 / 1768{ }^{\circ} \mathrm{C},-32 / 3214^{\circ} \mathrm{F}$ T: $-270 / 400^{\circ} \mathrm{C},-450 / 752^{\circ} \mathrm{F}$ $50 \mathrm{mV}: 0-50 \mathrm{mV}$ $100 \mathrm{mV}: 0-100 \mathrm{mV}$ |
| Resolution | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Channel Isolation | Non-isolated | Non-isolated |
| Input Type | Single ended | Differential |
| Maximum Inaccuracy at $77^{\circ} \mathrm{F}\left(25{ }^{\circ} \mathrm{C}\right)$ | 0.25\% | 0.35\% |
| See Chapter . . . . | 10 | 9 |

## Analog Made Easy - Four Simple Steps

Once you've selected the appropriate module, use the chapter that describes the module and complete the following steps.

STEP 1. Take a minute to review the detailed specifications to make sure the module meets your application requirements.


STEP 2. Set the module switches and/or jumpers to select:

- number of channels
- the operating ranges (voltage or current)
Note, some of the modules may
 not have switches.

STEP 3. Connect the field wiring to the module connector.


STEP 4. Review the module operating characteristics and write the control program.


## Analog Input Terminology

We use several different terms throughout the rest of this manual. You don't have to be an expert on analog terms to use the products, but it may help make it easier to select the appropriate modules if you take a few minutes to review these definitions.

| Channels per <br> Module | The number of analog channels or points available in the module to connect to field <br> devices. |
| :--- | :--- |
| Input Ranges | The input ranges in voltage and/or current that the module will operate properly <br> within. |
| Resolution | The number of binary weighted bits available on the digital side of the module for use <br> in converting the analog value to a digital value. |
| Input Type | Specifies if the module accepts single ended, bipolar or differential input signals. |
| Input Impedance The input impedance of the module using a voltage or current input signal. |  |
| Conversion The method the module uses to convert the analog signal to a digital value. <br> Method  |  |
| Conversion Time | The amount of time required to complete the analog to digital conversion. |

Linearity Error and The linearity and accuracy of the digital representation over the entire input range. Total Tolerance (Relative Accuracy)

Accuracy vs. The effect of temperature on the accuracy of the module.
Temperature
LED Display LED indicators on the module
I/O Points Required The number of I/O points the CPU must dedicate to the module.
External Power Some modules require a separate 24VDC power source. The 24VDC output supply

Source Required

Operating Temperature
Relative Humidity

Weight

Base Power The amount of base current required by the module. Use this value in your power

Terminal Type Indicates whether the terminal type is a removable or non-removable connector or a terminal. rating. budget calculations.

The minimum and maximum temperatures the module will operate.
The minimum and maximum humidity the module will operate. The weight of the module.

## Analog Output Module Terminology

| Channels per <br> Module | The number of analog channels or points available in the module to connect to field <br> devices. |
| :--- | :--- |
| Output Ranges | The output ranges in voltage and/or current modes the module will operate properly <br> within. |
| Resolution | The number of binary weighted bits available on the digital side of the module for use | in converting the digital value to a analog signal.

Output Current The maximum current the module will drive using a voltage output signal.
Output Impedance The output impedance of the module using a voltage output signal.
Load Impedance The minimum and maximum resistance the module can drive using a current output signal.

Conversion Time The amount of time required to complete the digital to analog conversion.
Accuracy The linearity and calibrated accuracy of the digital representation over the entire output range.

Accuracy vs. The effect of temperature on the accuracy of the module.
Temperature
LED Display LED indicators on the module

External Power
Source

Base Power Required

Operating Temperature

Relative Humidity
Terminal Type Indicates whether the terminal type is a removable or non-removable connector or a terminal.

Weight The weight of the module.

I/O Points Required The number of I/O points the CPU must dedicate to the module.

## D3-04AD 4-Channel Analog Input

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Module Specifications

The following table provides the specifications for the D3-04AD Analog Input Module. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 4 |
| :---: | :---: |
| Input Ranges | 1-5V, 4-20 mA |
| Resolution | 8 bit (1 in 256) |
| Channel Isolation | Non-isolated (one common) |
| Input Type | Differential or Single ended |
| Input Impedance | $1 \mathrm{M} \Omega$ minimum, voltage $250 \Omega$ current |
| Absolute Maximum Ratings | $0-+10 \mathrm{~V}$ maximum, voltage $0-30 \mathrm{~mA}$ maximum, current |
| Linearity | $\pm 0.8 \%$ maximum |
| Accuracy vs. Temperature | $\pm 70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum |
| Maximim Inaccuracy | $1 \%$ maximum at $25^{\circ} \mathrm{C}$ |
| Conversion Method | Sequential comparison |
| Conversion Time | 2 ms maximum |
| Power Budget Requirement | 55 mA @ 9V |
| External Power Supply | $24 \mathrm{VDC}, \pm 10 \%$, 65 mA , class 2 |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |
| Noise Rejection Ratio | Normal mode: $-6 \mathrm{~dB} / 250 \mathrm{~Hz}$ Common mode: $60 \mathrm{~dB} / 60 \mathrm{~Hz}$ ( -5 to 10 V ) |

Analog Input
Configuration Requirements

The D3-04AD Analog Input appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

There are four jumpers located on the module that select between $1-5 \mathrm{~V}$ and $4-20 \mathrm{~mA}$ signals. The module is shipped from the factory for use with $1-5 \mathrm{~V}$ signals.
If you want to use 4-20 mA signals, you have to install a jumper. No jumper is required for $1-5 \mathrm{~V}$ operation. Each channel range may be selected independently of the others.

| Range | Jumper |
| :--- | :--- |
| $1-5 \mathrm{~V}$ | Removed |
| $4-20 \mathrm{~mA}$ | Installed |



## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the signal source. Do not ground the shield at both the module and the source.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply
Requirements
The D3-04AD requires a separate power supply. The DL305 bases have built-in 24 VDC power supplies that provide up to 100 mA of current. If you only have one analog module, you can use this power source instead of a separate supply. If you have more than two analog modules, or you would rather use a separate supply, choose one that meets the following requirements: $24 \mathrm{VDC} \pm 10 \%$, Class $2,65 \mathrm{~mA}$ current (or greater, depending on the number of modules being used.)

Custom Input
Ranges

Occasionally you may have the need to connect a transmitter with an unusual signal range. By changing the wiring slightly and adding an external resistor to convert the current to voltage, you can easily adapt this module to meet the specifications for a transmitter that does not adhere to one of the standard input ranges. The following diagram shows how this works.

$R=\frac{V_{\text {max }}}{I_{\text {max }}}$
$R=$ value of external resistor
$\mathrm{V}_{\text {max }}=$ high limit of selected voltage range
$I_{\max }=$ maximum current supplied by the transmitter

Example: current transmitter capable of 50mA, 1-5V range selected.

$$
R=\frac{5 V}{50 \mathrm{~mA}} \quad \mathrm{R}=100 \mathrm{ohms}
$$

NOTE: Your choice of resistor can affect the accuracy of the module. A resistor that has $\pm 0.1 \%$ tolerance and a $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient is recommended.

Current Loop Transmitter Impedance

Standard 4 to 20 mA transmitters and transducers can operate from a wide variety of power supplies. Not all transmitters are alike and the manufacturers often specify a minimum loop or load resistance that must be used with the transmitter.
The D3-04AD provides 250 ohm resistance for each channel. If your transmitter requires a load resistance below 250 ohms, then you do not have to make any adjustments. However, if your transmitter requires a load resistance higher than 250 ohms, then you need to add a resistor in series with the module.
Consider the following example for a transmitter being operated from a 36 VDC supply with a recommended load resistance of 750 ohms. Since the module has a 250 ohm resistor, you need to add an additional resistor.


Removable Connector

The D3-04AD module has a removable connector to make wiring easier. Simply squeeze the tabs on the top and bottom and gently pull the connector from the module.

## Wiring Diagram

Note 1: Terminate all shields of the cable at their respective signal source.
Note 2: Unused channels should be shorted to 0 V or have the Jumper installed for current input for best noise immunity.
Note 3: When a differential input is not used OV should be connected to the - of that channel.


## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.
Channel Scanning Sequence are four channels, it can take up to four scans to get data for all channels. Once all channels have been scanned, the process starts over with channel 1.
You do not have to select all of the channels. Unused channels are not processed, so if you select only two channels, then each channel will be updated every other scan.


Even though the channel updates to the CPU are synchronous with the CPU scan, the module asynchronously monitors the analog transmitter signal and converts the signal to a 8 -bit binary representation. This enables the module to continuously provide accurate measurements without slowing down the discrete control logic in the RLL program.

Understanding the I/O Assignments

You may recall the D3-04AD module appears to the CPU as a 16 -point module. Some of the points are inputs to the CPU and some are outputs to the module. These 16 points provide:

- an indication of which channel is active.
- the digital representation of the analog signal.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.


- not used

Within these two register locations, the individual bits represent specific information about the analog signal.

All Channel Scan Output

The most significant point (MSP) assigned to the module acts as an output to the module and controls the channel scanning sequence. This allows flexibility in your control program.
If this output is on, all channels will be scanned sequentially. If the output is off, you can use other points to select a single channel for scanning.

| Scan | Out 117 | Channel Input |
| :--- | :--- | :---: |
| $N$ | Off | None |
| $N+1$ | On | 1 |
| $N+2$ | On | 2 |
| $N+3$ | On | 3 |
| $N+4$ | On | 4 |
| $N+5$ | On | 1 |
| $N+6$ | Off | None |
| $N+7$ | Off | None |

Single Channel Scan Outputs

Active Channel Selection Inputs

The upper register also contains two additional outputs that can be used to choose a single channel for scanning. These outputs are ignored if the channel scan output is turned on.
(Note, our example shows outputs 114 and 115. Your output point will depend on where you have installed the module.)

| Out 114 | Out 115 | Channel |
| :--- | :--- | :---: |
| Off | Off | 1 |
| On | Off | 2 |
| Off | On | 3 |
| On | On | 4 |

The first four points of the upper register are used as inputs to tell the CPU which channel is being processed. (Remember, the previous bits only tell the module which channels to scan.) In our example, when input 110 is on the module is telling the CPU it is processing channel 1. Here's how the inputs are assigned.
Input Active Channel
$110 \quad 1$
1112
1123
1134


R011
MSB
LSB
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & & & & & & \\ & \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

## - scan a single channel



- channel selection inputs

Analog Data Bits
The first register contains 8 bits which represent the analog data in binary format.

| Bit | Value | Bit | Value |  |
| :--- | :---: | :---: | :---: | :---: |
| 0 | 1 |  | 4 | 16 |
| 1 | 2 |  | 5 | 32 |
| 2 | 4 |  | 6 | 64 |
| 3 | 8 |  | 7 | 128 |



Since the module has 8 -bit resolution, the analog signal is converted into 256 "pieces" ranging from $0-255\left(2^{8}\right)$. For example, with a 1 to 5 V scale, a 1 V signal would be 0 , and a 5 V signal would be 255 . This is equivalent to a a binary value of 00000000 to 1111 1111, or 00 to FF hexadecimal. The following diagram shows how this relates to each signal range.



Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that could possibly result in a change in the data value for each signal range.

$$
\text { Resolution }=(\mathrm{H}-\mathrm{L}) / 255
$$

$\mathrm{H}=$ high limit of the signal range
$\mathrm{L}=$ low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| 1 to 5 V | 5 V | 1 V | 15.6 mV |
| 4 to 20 mA | 20 mA | 4 mA | $62.7 \mu \mathrm{~A}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

Identifying the
Data Locations
Since all channels are multiplexed into a single data word, the control program must be setup to determine which channel is being read. Since the module provides input points to the CPU, it is very easy to use the channel status bits to determine which channel is being monitored.


Single Channel on Every Scan

The following example shows a program that is designed to read a single channel of analog data into a Register location on every scan. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. This example is designed to read channel 1 . If you choose another channel, you would have to add a rung (or rungs) that use the channel select bits to select the channel for scanning. You would also have to change the rung that stores the data.


Reading Multiple Channels over Alternating Scans

The following example shows a program that is designed to read multiple channels of analog data into Register locations. This example reads one channel per scan. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc.


## Single or Multiple Channels

The following example shows how you can use the same program to read either all channels or a single channel of analog data into Register locations. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc.


The following instructions are required to scale the data. We'll continue to use the 42.9 PSI example. In this example we're using channel 1. Input 110 is the active channel indicator for channel 1 . Of course, if you were using a different channel, you would use the active channel indicator point that corresponds to the channel you were using.
| This example assumes you have already read the analog data
| and stored the BCD equivalent in R400 and R401
Scale the data


The analog value is divided by the resolution of the module, which is 256 . $(110 / 256=0.4296)$


This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the scaling factor, which is $100 .(100 \times 4296=429600)$. Notice that the most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the PSI, which is 42 PSI .


You probably noticed that the previous example yielded 42 PSI when the real value should have been 42.9 PSI. By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.

| This example assumes you have already read the analog data |
| :--- |
| and stored the BCD equivalent in R400 and R 401 |
| Scale the data |



This instruction brings the analog value (in BCD) into the accumulator.


The analog value is divided by the resolution of the module, which is 256. $(110 / 256=0.4296)$


This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is multiplied by the scaling factor, which is now 1000. $(1000 \times 4296=4296000)$. The most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450. R450 now contains the PSI, which implies 42.9.


This example program shows how you can use the instructions to load the equation constants into data registers. The example is written for channel 1, but you can easily use a similar approach to use different scales for all channels if required.
You may just use the appropriate constants in the instructions dedicated for each channel, but this method allows easier modifications. For example, you could easily use an operator interface or a programming device to change the constants if they are stored in Registers.


On the first scan, these first two instructions load the analog resolution (constant of 256) into R430 and R431.

These two instructions load the high limit of the Engineering unit scale (constant of 1000) into R432 and R433. Note, if you have different scales for each channel, you'll also have to enter the Engineering unit high limit for those as well.

This rung loads the data into the accumulator on every scan. (You could use any permissive contact.)

The DL305 CPUs perform math operations in BCD. Since we will perform math on the data, the data must be converted from binary data to BCD.

Store channel 1


The analog value is divided by the resolution of the module, stored in R430.

This instruction moves the decimal portion from the auxilliary accumulator into the regular accumulator for further operations.

The accumulator is multiplied by the scaling factor, stored in R432.

This instruction moves most significant digits (now stored in the auxilliary accumulator) into the regular accumulator for further operations.

The scaled value is stored in R400 and R401 for further use.

## Writing the Control Program (DL350)

Multiplexing: DL350 with a Conventional DL305 Base

The example below shows how to read multiple channels on an D3-04AD Analog module in the 10-17/110-117 address slot. This module must be placed in a 16 bit slot in order to work.


Store Channel 2


Store Channel 3


Store Channel 4


This writes channel 2 analog data to V3001 when bit X111 is on.

This writes channel 3 analog data to V3002 when bit X112 is on.
This writes channel 1 analog data to V3000 when bit X110 is on.

This writes channel 4 analog data to V3003 when bit X113 is on.

Multiplexing: DL350 with a D3-xx-1 Base

The example below shows how to read multiple channels on an D3-04AD Analog module in the X0 address of the base. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.


Store Channel 1


Store Channel 2


Store Channel 3


Store Channel 4


This writes channel 2 analog data to V3001 when bit X 11 is on.

This writes channel 3 analog data to V3002 when bit X 12 is on.
This writes channel 1 analog data to V3000 when bit X 10 is on.

This writes channel 4 analog data to V3003 when bit X 13 is on.

## Scaling the Input Data

Most applications usually require measurements in engineering units, Units $=(A / 255)^{*}$ S which provide more meaningful data. This is accomplished by using the conversion formula shown.

The following example shows how you would use the analog data to represent pressure (PSI) from 0 to 100. This example assumes the analog value is 110, which is slightly less than half scale. This should yield approximately 43 PSI.

A = Analog value ( $0-255$ )
$S=$ Engineering unit range

Units = value in Engineering Units


Here is how you would write the program to perform the engineering unit conversion. This example assumes you have the analog data in BCD format data loaded into V3000.


NOTE: This example uses SP1, which is always on. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.


Analog and Digital Value Conversions

Sometimes it is helpful to be able to quickly convert between the signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the analog signal <br> level ... |
| :--- | :---: | :---: |
| 1 to 5 V | $\mathrm{~A}=(4 \mathrm{D} / 255)+1$ | $\mathrm{D}=(255 / 4)(\mathrm{A}-1)$ |
| 4 to 20 mA | $\mathrm{~A}=(16 \mathrm{D} / 255)+4$ | $\mathrm{D}=(255 / 16)(\mathrm{A}-4)$ |

For example, if you are using the 1 to 5 V range and you have measured the signal at 3 V , you would use the following formula to determine the digital value that should be stored in the register location that contains the data.
$\mathrm{D}=(255 / 4)(3 \mathrm{~V}-1)$
$\mathrm{D}=(63.75)(2)$
$D=127.5$ (or 128)

## F3-04ADS 4-Channel Isolated Analog Input

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Module Specifications

The following table provides the specifications for the F3-04ADS Analog Input Module. Make sure the module meets your application requirements.

| Number of Channels | 4, isolated |
| :--- | :--- |
| Input Ranges | $0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 1-5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, <br> $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ |
| Resolution | 12 bit (1 in 4096) |
| Input Type | Differential |
| Max. Common mode voltage | $\pm 750 \mathrm{~V}$ peak continuous transformer isolation |
| Noise Rejection Ratio | Common mode: -100 dB at 60 Hz |
| Active Low-pass Filtering | -3 dB at $10 \mathrm{~Hz},-12 \mathrm{~dB}$ per octave |
| Input Impedance | $250 \Omega \pm 0.1 \%, 1 / 2 \mathrm{~W}$ current input <br> $200 \mathrm{~K} \Omega$ voltage input |
| Absolute Maximum Ratings | $\pm 40$ mA, current input $\pm 100 \mathrm{~V}$, voltage input |
| Conversion Time | 1 channel per scan, successive |
|  | approximation, AD574 |

Analog Input Configuration Requirements

The F3-04ADS Analog Input appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- The module should not be placed in the last slot of a rack (due to size constraints.)
- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

Jumper Locations
The module is set at the factory for a $4-20 \mathrm{~mA}$ signal on all four channels. If this is acceptable you do not have to change any of the jumpers. The following diagram shows how the jumpers are set.


If you examine the rear of the module, you'll notice several jumpers. The jumpers labeled +1 and +2 (located on the larger board, near the terminal block) are used to select the number of channels that will be used.
Without any jumpers the module processes one channel. By installing the jumpers you can add channels. The module is set from the factory for four channel operation.
For example, if you install the +1 jumper, you add one channel for a total of two. Now if you install the +2 jumper you add two more channels for a total of four.
Any unused channels are not processed so if you only select channels 1,2 , and 3 , channel 4 will not be active. The table shows which jumpers to install.


Jumpers installed as shown selects 4-channel operation

| Channel | $\boldsymbol{+ 1}$ | $\mathbf{+ 2}$ |
| :--- | :--- | :--- |
| 1 | No | No |
| 1,2, | Yes | No |
| $1,2,3$ | No | Yes |
| $1,2,3,4$ | Yes | Yes |

Selecting Input Signal Ranges

As you examin the jumper settings, notice there are jumpers for each individual channel. These jumpers allow you to select the type of signal (voltage or current) and the range of the signal. The following tables show the jumper selections for the various ranges. Only channel 1 is used in the example, but all channels must be set.

NOTE: The Polarity jumper selects Unipolar or Bipolar operation for all channels.

| Bipolar Signal Range | Jumper Settings |
| :---: | :---: |
| $\begin{aligned} & -5 \mathrm{VDC} \text { to }+5 \mathrm{VDC} \\ & (-20 \text { to }+20 \mathrm{~mA}) \end{aligned}$ |  |
| -10 VDC to +10 VDC |  |


| Unipolar Signal Range | Jumper Settings |
| :---: | :---: |
| 4 to 20 mA <br> (1 VDC to 5 VDC, remove the current jumper) |  |
| 0 VDC to +5 VDC <br> ( 0 to +20 mA , install the current jumper) |  |
| 0 VDC to +10 VDC |  |

## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the signal source. Do not ground the shield at both the module and the source.
- Do not run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply Requirements
Custom Input Ranges

The F3-04ADS receives all power from the base. A separate power supply is not required.
Occasionally you may have the need to connect a transmitter with an unusual signal range. By changing the wiring slightly and adding an external resistor to convert the current to voltage, you can easily adapt this module to meet the specifications for a transmitter which does not adhere to one of the standard input ranges. The following diagram shows how this works.


$$
R=\frac{10 \mathrm{~V}}{50 \mathrm{~mA}} \quad R=200 \text { ohms }
$$

Example: current transmitter capable of $50 \mathrm{~mA}, 0-10 \mathrm{~V}$ range selected

NOTE: Your choice of resistor can affect the accuracy of the module. A resistor with $\mathrm{a} \pm 0.1 \%$ tolerance and $\mathrm{a} \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient is recommended.

Current Loop Transmitter Impedance

Standard 4 to 20 mA transmitters and transducers can operate from a wide variety of power supplies. Not all transmitters are alike and the manufacturers often specify a minimum loop or load resistance that must be used with the transmitter.
The F3-04ADS provides 250 ohm resistance for each channel. If your transmitter requires a load resistance below 250 ohms, then you do not have to make any adjustments. However, if your transmitter requires a load resistance higher than 250 ohms, then you need to add a resistor in series with the module.
Consider the following example for a transmitter being operated from a 36 VDC supply with a recommended load resistance of 750 ohms. Since the module has a 250 ohm resistor, you need to add an additional resistor.


## Removable Connector

The F3-04ADS module has a removable connector to make wiring easier. Simply squeeze the top and bottom tabs and gently pull the connector from the module.

## Wiring Diagram

Note 1: Connect unused voltage or current inputs to OVDC at terminal block or leave current jumper installed (see Channel 3).
Note 2: A Series 217, 0.032A, Fast-acting fuse is recommended for $4-20 \mathrm{~mA}$ current loops.

Note 3: Transmitters may be 2, 3, or 4 wire type.
Note 4: Transmitters may be powered from separate power sources.
Note 5: Terminate all shields of the cable at their respective signal source.


## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.

Channel Scanning Sequence

The F3-04ADS module supplies1 channel of data per each CPU scan. Since there are four channels, it can take up to four scans to get data for all channels. Once all channels have been scanned the process starts over with channel 1.
You do not have to select all of the channels. Unused channels are not processed, so if you select only two channels, then each channel will be updated every other scan.


Even though the channel updates to the CPU are synchronous with the CPU scan, the module asynchronously monitors the analog transmitter signal and converts the signal to a 12-bit binary representation. This enables the module to continuously provide accurate measurements without slowing down the discrete control logic in the RLL program.

Understanding the I/O Assignments

You may recall the F3-04ADS module appears to the CPU as a 16-point module. These 16 points provide:

- an indication of which channel is active.
- the digital representation of the analog signal.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.

F3-04ADS


Within these two register locations, the individual bits represent specific information about the analog signal.

## Active Channel

 Selection InputsThe last four points of the upper register are used as inputs to tell the CPU which channel is being processed. In our example, when input 114 is on the module is telling the CPU it is processing channel 1. Here's how the inputs are assigned.

| Input | Active Channel |
| :--- | :--- |
| 114 | 1 |
| 115 | 2 |
| 116 | 3 |
| 117 | 4 |

Analog Data Bits
The remaining twelve bits represent the analog data in binary format.


Since the module has 12-bit resolution, the analog signal is converted into 4096 "pieces" ranging from $0-4095\left(2^{12}\right)$. For example, with a 0 to 10 V scale, a 0 V signal would be 0 , and a 10 V signal would be 4095 . This is equivalent to a a binary value of 000000000000 to 11111111 1111, or 000 to FFF hexadecimal. The following diagram shows how this relates to each signal range.

$$
-10 \mathrm{~V}-+10 \mathrm{~V}
$$



OV - 10V

$$
-5 \mathrm{~V}-+5 \mathrm{~V}
$$

OV-5V




Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will result in a change in the data value for each signal range.

$$
\text { Resolution }=\frac{\mathrm{H}-\mathrm{L}}{4095}
$$

$\mathrm{H}=$ high limit of the signal range
$\mathrm{L}=$ low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| -10 to +10 V | +10 V | -10 V | 4.88 mV |
| -5 to +5 V | +5 V | -5 V | 2.44 mV |
| 0 to 5 V | 5 V | 0 V | 1.22 mV |
| 0 to 10 V | 10 V | 0 V | 2.44 mV |
| 1 to 5 V | 5 V | 1 V | 0.98 mV |
| 4 to 20 mA | 20 mA | 4 mA | $3.91 \mu \mathrm{~A}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

## Identifying the Data Locations

Since all channels are multiplexed into a single data word, the control program must be setup to determine which channel is being read. Since the module provides input points to the CPU, it is very easy to use the active channel status bits to determine which channel is being monitored.

F3-04ADS


Single Channel on
Every Scan

The following example shows a program that is designed to read a single channel of analog data into a Register location on every scan. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. This example is designed to read channel 1 . Since you use jumpers to select the number of channels to scan, this is the only channel that you can use in this manner.


This rung loads the data into the accumulator on every scan. (You can use any permissive contact.)

The DL305 CPUs perform math operations in BCD. This instruction converts the binary data to BCD. (You can omit this step if your application does not require the conversion.)

## Store channel 1



The active channel inputs are used to let the CPU know which channel has been loaded into the accumulator. (Since you cannot isolate the individual channels for scanning, channel 1 is the only channel that can be used in this manner.) By using the input to control a DOUT instruction, you can easily move the data to a storage register. The BCD value will be stored in R400 and R401. (Two bytes are required for four digit BCD numbers.)

F3-04ADS 4-Channel Isolated Analog Input

Reading Multiple Channels over Alternating Scans

The following example shows a program designed to read any of the available channels of analog data into Register locations. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. Since the DL305 CPUs use 8-bit word instructions, you have to move the data in pieces. It's simple if you follow the example.


Scaling the Input Data

Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.

The following example shows how you would use the analog data to represent pressure (PSI) from 0 to 100. This example assumes the analog value is 1760. This should yield approximately 42.9 PSI.

Units $=\frac{A}{4096} S$
Units = value in Engineering Units
A = Analog value ( $0-4095$ )
$\mathrm{S}=$ high limit of the Engineering unit range


The following instructions are required to scale the data. We'll continue to use the 42.9 PSI example. In this example we're using channel 1. Input 114 is the active channel indicator for channel 1 . Of course, if you were using a different channel, you would use the active channel indicator point that corresponds to the channel you were using.
| This example assumes you have already read the analog data
| and stored the BCD equivalent in R400 and R401
Scale the data


The analog value is divided by the resolution of the module, which is 4096. $(1760 / 4096=0.4296)$


| 4 | 2 | 9 | 6 |
| :---: | :---: | :---: | :---: |
| R577 | R576 |  |  |

This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the scaling factor, which is $100 .(100 \times 4296=429600)$. Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


| Aux. Accumulator |  |
| :---: | :---: | :---: | :---: |
| 0 0 4 |  |
| R577 | R576 |

This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450. R450 now contains the PSI, which is 42 PSI.


You probably noticed the previous example yielded 42 PSI when the real value should have been 42.9 PSI. By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.


This example program shows how you can use the instructions to load these equation constants into data registers. The example is written for channel 1, but you can easily use a similar approach to use different scales for all channels if required.
You may just use the appropriate constants in the instructions dedicated for each channel, but this method allows easier modifications. For example, you could easily use an operator interface or a programming device to change the constants if they are stored in Registers.

These two instructions load the high limit of the Engineering unit scale (constant of 1000) into R432 and R433. Note, if you have different scales for each channel, you'll also have to enter the Engineering unit high limit for those as well.


On the first scan, these first two instructions load the analog resolution (constant of 4096) into R430 and R431.

This rung loads the four most significant data bits into the accumulator from Register 011.

Temporarily store the bits to Register 501.

The analog value is divided by the resolution of the module, which is stored in R430.

This instruction moves the decimal portion from the auxilliary accumulator into the regular accumulator for further operations.

The accumulator is multiplied by the scaling factor, which is stored in R432.

This instruction moves most significant digits (now stored in the auxilliary accumulator) into the regular accumulator for further operations.

The scaled value is stored in R400 and R401 for further use.

## Writing the Control Program (DL350)

Reading Values: Pointer Method and Multiplexing


Pointer Method

There are two methods of reading values for the DL350:

- The pointer method (all system bases must be D3-xx-1 bases to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350, but for ease of programming it is strongly recommended that you use the pointer method.

NOTE: Do not use the pointer method and the PID PV auto transfer from I/O module function together for the same module. If using PID loops, use the pointer method and ladder logic code to map the analog input data into the PID loop table.

The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. These V-memory locations allow you to:

- specify the data format
- specify the number of channels to scan
- specify the storage locations

The example program shows how to setup these locations. Place this rung anywhere in the ladder program or in the Initial Stage if you are using RLLPLUS instructions. This is all that is required to read the data into V-memory locations. Once the data is in V-memory, you can perform math on the data, compare the data against preset values, and so forth. V2000 is used in the example, but you can use any user V-memory location. In this example the module is installed in slot 2. You should use the V-memory locations for your module placement.

Loads a constant that specifies the number of channels to scan and the data format. The upper byte, most significant nibble (MSN) selects the data format (i.e. $0=B C D, 8=B i n a r y)$, the $L S N$ selects the number of channels (i.e. 1, 2, 3, 4).

The binary format is used for displaying data on some operator interfaces.

Special V-memory location assigned to slot 2 that contains the number of channels to scan.

This loads an octal value for the first V-memory location that will be used to store the incoming data. For example, the O2000 entered here would designate the following addresses.
Ch1 - V2000, Ch2 - V2001, Ch3 - V2002, Ch 4 - V2003

The octal address (O2000) is stored here. V7672 is assigned to slot 2 and acts as a pointer, which means the CPU will use the octal

- or - $\left\lvert\, \begin{aligned} & \text { LD } \\ & \text { K } 8400\end{aligned}\right.$

OUT V7672
value in this location to determine exactly where to store the incoming data.

The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU, slot 1 is the module two places from the CPU, and so on. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases up to a total of 8 slots away from the DL350 CPU. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Input Module Slot-Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7670 | V7671 | V7672 | V7673 | V7674 | V7675 | V 7676 | V 7677 |

Multiplexing: DL350 with a D3-xx-1 Base

The example below shows how to read multiple channels on a F3-04ADS Analog module in the X20 adddress position of the D3-XX-1 base. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.


Multiplexing: DL350 with a Conventional DL305 Base

The example below shows how to read multiple channels on an F3-04ADS Analog module in the 20-27/120-127 address slot. This module must be placed in a 16 bit slot in order to work.


This rung loads the upper byte of analog data from the module.

SHFL K8 shifts the data to the left eight places to make room for the lower byte of data.

The ORF X20 brings the lower byte of data from the module into the accumulator. At this time there is a full word of data from the analog module in the accumulator.

The ANDD Kfff masks off the twelve least significant bits of data from the word. This is the actual analog value.

The BCD command converts the data to BCD format.

This writes channel 1 analog data to V3000 when the Channel 1 Select Bit (X124) is on.

This writes channel 2 analog data to V3001 when the Channel 2 Select Bit (X125) is on.

This writes channel 3 analog data to V3002 when the Channel 3 Select Bit (X126) is on.

This writes channel 4 analog data to V3003 when the Channel 4 Select Bit (X127) is on.

Scaling the Input Data


Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.

Units $=A \frac{H-L}{4095}$
$\mathrm{H}=$ high limit of the engineering unit range
$L=$ low limit of the engineering unit range
$A=$ Analog value (0-4095)

For example, if you wanted to measure pressure (PSI) from 0.0 to 99.9 then you would have to multiply the analog value by 10 in order to imply a decimal place when you view the value with the programming software or a handheld programmer. Notice how the calculations differ when you use the multiplier.

Here is how you would write the program to perform the engineering unit conversion. This example assumes you have BCD data loaded into the appropriate V-memory locations using instructions that apply for the model of CPU you are using.

NOTE: This example uses SP1, which is always on. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.


Analog and Digital Value Conversions

Sometimes it is helpful to be able to quickly convert between the signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the analog signal <br> level.. |
| :--- | :---: | :---: |
| -10 V to +10 V | $\mathrm{~A}=\frac{20 \mathrm{D}}{4095}-10$ | $\mathrm{D}=\frac{4095}{20}(\mathrm{~A}+10)$ |
| -5 V to +5 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}-5$ | $\mathrm{D}=\frac{4095}{10}(\mathrm{~A}+5)$ |
| 0 to 5 V | $\mathrm{~A}=\frac{5 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{5} \mathrm{~A}$ |
| 0 to 10 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{10} \mathrm{~A}$ |
| 1 to 5 V | $\mathrm{~A}=\frac{4 \mathrm{D}}{4095}+1$ | $\mathrm{D}=\frac{4095}{4}(\mathrm{~A}-1)$ |
| 4 to 20 mA | $\mathrm{~A}=\frac{16 \mathrm{D}}{4095}+4$ | $\mathrm{D}=\frac{4095}{16}(\mathrm{~A}-4)$ |

For example, if you are using the -10 to +10 V range and you have measured the signal at 6 V , you would use the following formula to determine the digital value that should be stored in the register location that contains the data.
$D=\frac{4095}{20}(A+10)$
$D=\frac{4095}{20}(6 V+10)$
$\mathrm{D}=(204.75)(16)$
$D=3276$

# F3-08AD-1 8-Channel Analog Input 

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Module Specifications

The following table provides the specifications for the F3-08AD Analog Input Module from FACTS Engineering. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 8, single ended (one common) |
| :---: | :---: |
| Input Ranges | 4-20 mA |
| Resolution | 12 bit (1 in 4096) |
| Input Impedance | 250 $\Omega \pm 0.1 \%$, 1/2W current input |
| Absolute Maximum Ratings | $\pm 30 \mathrm{~mA}$ |
| Conversion Time | $35 \mu \mathrm{~s}$ per channel 1 channel per CPU scan |
| Converter Type | Successive Approximation, AD574 |
| Linearity Error | $\pm 1$ count ( $0.03 \%$ of full scale) maximum |
| Maximum Inaccuracy | $0.35 \%$ of full scale at $77{ }^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ |
| Accuracy vs. Temperature | $57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale (including maximum offset change of 2 counts) |
| Recommended Fuse | 0.032 A, Series 217 fast-acting |
| Power Budget Requirement | 25 mA @ 9 VDC, 37 mA @ 24 VDC |
| External Power Supply | None required |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

The F3-08AD Analog Input appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

Jumper Locations The module is set at the factory for a $4-20 \mathrm{~mA}$ signal on all eight channels. If this is acceptable you do not have to change any of the jumpers. The following diagram shows how the jumpers are set.


## Selecting the Number of Channels

If you examine the rear of the module, you'll notice several jumpers. The jumpers labeled $+1,+2$ and +4 are used to select the number of channels that will be used. Without any jumpers the module processes one channel (channel 1). By installing the jumpers you can add channels. The module is set from the factory for eight channel operation.
For example, if you install the +1 jumper, you add one channel for a total of two. Now if you install the +2 jumper you add two more channels for a total of four.
Any unused channels are not processed so if you only select channels $1-4$, then the last four channels will not be active. The following table shows which jumpers to install.

| Channel(s) | $\mathbf{+ 4}$ | $\mathbf{+ 2}$ | $\mathbf{+ 1}$ |
| :--- | :--- | :--- | :--- |
| 1 | No | No | No |
| 12 | No | No | Yes |
| 123 | No | Yes | No |
| 1234 | No | Yes | Yes |
| 12345 | Yes | No | No |
| 123456 | Yes | No | Yes |
| 1234567 | Yes | Yes | No |
| 12345678 | Yes | Yes | Yes |



## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the signal source. Do not ground the shield at both the module and the source.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply The F3-08AD receives all power from the base. A separate power supply is not Requirements required.

Current Loop
Transmitter Impedance

Standard 4 to 20 mA transmitters and transducers can operate from a wide variety of power supplies. Not all transmitters are alike and the manufacturers often specify a minimum loop or load resistance that must be used with the transmitter.
The F3-08AD provides 250 ohm resistance for each channel. If your transmitter requires a load resistance below 250 ohms, then you do not have to make any adjustments. However, if your transmitter requires a load resistance higher than 250 ohms, then you need to add a resistor in series with the module.
Consider the following example for a transmitter being operated from a 36 VDC supply with a recommended load resistance of 750 ohms. Since the module has a 250 ohm resistor, you need to add an additional resistor.


Removable Connector

The F3-08AD module has a removable connector to make wiring easier. Simply squeeze the top and bottom tabs and gently pull the connector from the module.

## Wiring Diagram

Note 1: Terminate all shields at their respective signal source
Note 2: To avoid "ground loop" errors, the following transmitter types are recommended:

2 \& 3 wire: Isolation between input signal \& P/S
4 wire: Full isolation between input signal, $\mathrm{P} / \mathrm{S}$ and output signal.


F3-08AD-1 8-Channel Analog Input

## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.

Channel Scanning Sequence

The F3-08AD module supplies 1 channel of data per each CPU scan. Since there are eight channels, it can take up to eight scans to get data for all channels. Once all channels have been scanned the process starts over with channel 1.
You do not have to select all of the channels. Unused channels are not processed, so if you select only four channels, then the channels will be updated within four scans.


Even though the channel updates to the CPU are synchronous with the CPU scan, the module asynchronously monitors the analog transmitter signal and converts the signal to a 12-bit binary representation. This enables the module to continuously provide accurate measurements without slowing down the discrete control logic in the RLL program.

Understanding the I/O Assignments

You may recall the F3-08AD module appears to the CPU as a 16 -point module. These 16 points provide:

- an indication of which channel is active.
- the digital representation of the analog signal.

Since all I/O points are automatically mapped into Register ( $R$ ) memory, it is very easy to determine the location of the data word that will be assigned to the module.

F3-08AD


Within these two register locations, the individual bits represent specific information about the analog signal.
Active Channel Indication Inputs

The next to last three bits of the upper Register indicate the active channel. The indicators automatically increment with each CPU scan.
Scan Channel Inputs Active Channel

Analog Data Bits
The remaining twelve bits represent the analog data in binary format.

| Bit | Value | Bit | Value |
| :--- | :---: | ---: | ---: | ---: |
| (LSB) | 1 | 6 | 64 |
| 1 | 2 | 7 | 128 |
| 2 | 4 | 8 | 256 |
| 3 | 8 | 9 | 512 |
| 4 | 16 | 10 | 1024 |
| 5 | 32 | 11 | 2048 |

Since the module has 12-bit resolution, the analog signal is converted into 4096 "pieces" ranging from $0-4095$ ( $2^{12}$ ). For example, with a $4-20 \mathrm{~mA}$ scale, a 4 mA signal would be 0 , and a 20 mA signal would be 4095. This is equivalent to a binary value of 000000000000 to 11111111 1111, or 000 to FFF hexadecimal. The following diagram shows how this relates to each signal range.
Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will result in a change in the data value for each signal range.



Resolution $=\frac{\mathrm{H}-\mathrm{L}}{4095}$
$\mathrm{H}=$ high limit of the signal range
$\mathrm{L}=$ low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :---: | :---: | :---: | :---: |
| 4 to 20 mA | 20 mA | 4 mA | $3.91 \mu \mathrm{~A}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

## Identifying the Data Locations

Since all channels are multiplexed into a single data word, the control program must be setup to determine which channel is being read. Since the module provides input points to the CPU, it is very easy to use the active channel status bits to determine which channel is being monitored.

F3-08AD


Single Channel on Every Scan

The following example shows a program that is designed to read a single channel of analog data into a Register location on every scan. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. This example is designed to read channel 1 . Since you use jumpers to select the number of channels to scan, this is the only channel that you can use in this manner.


This rung loads the data into the accumulator on every scan. (You can use any permissive contact.)

Since the active channel indicators are all off when channel 1 is being read, you would not have to use them. (Since you cannot isolate the individual channels for scanning, channel 1 is the only channel that can be used in this manner.) The DOUT1 instruction moves the data to a storage register. The BCD value will be stored in R400 and R401. (Two bytes are required for four digit $B C D$ numbers.)

The DL305 CPUs perform math operations in BCD. This instruction converts the binary data to BCD. (You can omit this step if your application does not require the conversion.)

Reading Multiple Channels over Alternating Scans

The following example shows a program designed to read any of the available channels of analog data into Register locations. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. Since the DL305 CPUs use 8-bit word instructions, you have to move the data in pieces. It's simple if you follow the example.


## Scaling the Input Data

Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.

The following example shows how you would use the analog data to represent pressure (PSI) from 0 to 100. This example assumes the analog value is 1760. This should yield approximately 42.9 PSI.

Units $=\frac{A}{4096} S$
Units = value in Engineering Units
A = Analog value (0 - 4095)
$\mathrm{S}=$ high limit of the Engineering unit range


The following instructions are required to scale the data. We'll continue to use the 42.9 PSI example. In this example we're using channel 1. Input 114, input 115, and input 116 are all off when channel 1 data is being read. Of course, if you were using a different channel, you would use the active channel indicator point combination that corresponds to the channel you were using.
| This example assumes you have already read the analog data
| and stored the BCD equivalent in R400 and R401
Scale the data


The accumulator is then multiplied by the scaling factor, which is $100 .(100 \times 4296=429600)$. Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)

Aux. Accumulator

| 0 | 0 | 4 | 2 |
| :--- | :--- | :--- | :--- |
| R577 | R576 |  |  |

This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the PSI, which is 42 PSI .


You probably noticed the previous example yielded 42 PSI when the real value should have been 42.9 PSI. By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.

This example assumes you have already read the analog data
and stored the BCD equivalent in R400 and R401
Scale the data


This instruction brings the analog value (in BCD) into the accumulator.


The analog value is divided by the resolution of the module, which is 4096 . $(1760 / 4096=0.4296)$


| Aux. Accumulator |  |  |  |
| :---: | :---: | :---: | :---: |
| 4 | 2 | 9 | 6 |
| R577 | R576 |  |  |

This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is multiplied by the scaling factor, which is now 1000. $(1000 \times 4296=4296000)$. The most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the PSI, which implies 42.9.


This example program shows how you can use the instructions to load these equation constants into data registers. The example was written for channel 1, but you could easily use a similar approach to use different scales for all channels if required.
You could just use the appropriate constants in the instructions dedicated for each channel, but this method allows easier modifications. For example, you could easily use an operator interface or a programming device to change the constants if they are stored in Registers.


On the first scan, these first two instructions load the analog resolution (constant of 4096) into R430 and R431.

These two instructions load the high limit of the Engineering unit scale (constant of 1000) into R432 and R433. Note, if you have different scales for each channel, you'll also have to enter the Engineering unit high limit for those as well.

This rung loads the four most significant data bits into the accumulator from Register 011 on every scan. (You could use any permissive contact.)
Temporarily store the bits to Register 501.

Store channel 1


The analog value is divided by the resolution of the module, which is stored in R430.

This instruction moves the decimal portion from the auxilliary accumulator into the regular accumulator for further operations.

The accumulator is multiplied by the scaling factor, which is stored in R432.

This instruction moves most significant digits (now stored in the auxilliary accumulator) into the regular accumulator for further operations.
The scaled value is stored in R400 and R401 for further use.

## Writing the Control Program (DL350)

Reading Values: Pointer Method and Multiplexing


Pointer Method

There are two methods of reading values for the DL350:

- The pointer method (all system bases must be D3-xx-1 bases to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350, but for ease of programming it is strongly recommended that you use the pointer method.

NOTE: Do not use the pointer method and the PID PV auto transfer from I/O module function together for the same module. If using PID loops, use the pointer method and ladder logic code to map the analog input data into the PID loop table.

The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. These V-memory locations allow you to:

- specify the data format
- specify the number of channels to scan
- specify the storage locations

The example program shows how to setup these locations. Place this rung anywhere in the ladder program or in the Initial Stage if you are using RLLPLUS instructions. This is all that is required to read the data into V-memory locations. Once the data is in V-memory, you can perform math on the data, compare the data against preset values, and so forth. V2000 is used in the example, but you can use any user V-memory location. In this example the module is installed in slot 2. You should use the V-memory locations for your module placement.


Loads a constant that specifies the number of channels to scan and the data format. The upper byte, most significant nibble (MSN) selects the data format (i.e. $0=B C D, 8=$ Binary), the LSN selects the number of channels (i.e. $1,2,3,4,5,6,7,8$ ).
The binary format is used for displaying data on some operator interfaces.

Special V-memory location assigned to slot 2 that contains the number of channels to scan.

This loads an octal value for the first V-memory location that will be used to store the incoming data. For example, the O2000 entered here would designate the following addresses.
Ch1 - V2000, Ch2 - V2001, Ch3 - V2002, Ch4 - V2003,
Ch5 - V2004, Ch6 - V2005, Ch7 - V2006, Ch8 - V2007
The octal address (O2000) is stored here. V7672 is assigned to slot 2 and acts as a pointer, which means the CPU will use the octal value in this location to determine exactly where to store the incoming data.

The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU, slot 1 is the module two places from the CPU, and so on. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases up to a total of 8 slots away from the DL350 CPU. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Input Module Slot-Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7670 | V7671 | V7672 | V7673 | V7674 | V 7675 | V 7676 | V 7677 |

Multiplexing: DL350 with a Conventional DL305 Base

The example below shows how to read multiple channels on an F3-08AD Analog module in the X20-27 / X120-127 address slot. This module must be placed in a 16 bit slot in order to work.


This rung loads the upper byte of analog data from the module.

SHFL K8 shifts the data to the left eight places to make room for the lower byte of data.

The ORF X20 brings the lower byte of data from the module into the accumulator. At this time there is a full word of data from the analog module in the accumulator.

The ANDD Kfff masks off the twelve least significant bits of data from the word. This is the actual analog value.

The BCD command converts the data to BCD format.

Channel 1 Select Bit States


This writes channel one analog data to V3000 when bits X124, X125 and X126 are as shown.

Channel 2 Select Bit States


This writes channel two analog data to V3001 when bits X124, X125 and X126 are as shown.

Channel 3 Select Bit States


This writes channel three analog data to V3002 when bits X124, X125 and X126 are as shown.
example continued on next page


Multiplexing: DL350 with a D3-xx-1 Base

The example below shows how to read multiple channels on an F3-08AD Analog module in the X0 address slot of a D3-xx-1 base. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.


This rung loads the only the channel select bits into V1400. The SHFR shifts the analog data out of the word.

This rung loads the only the analog input data and converts it to BCD.

These rungs store the BCD analog input data into consecutive V memory registers. V1400 will increment once per scan from 0 to 7.

## example continued from previous page



These rungs store the BCD analog input data into consecutive V memory registers. V1400 will increment once per scan from 0 to 7 .


## Scaling the Input Data

Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.

$$
\begin{aligned}
& \text { Units }=A \frac{H-L}{4095} \\
& H=\begin{array}{c}
\text { high limit of the engineering } \\
\text { unit range }
\end{array} \\
& L=\begin{array}{l}
\text { low limit of the engineering } \\
\text { unit range }
\end{array} \\
& A=\text { Analog value }(0-4095)
\end{aligned}
$$

For example, if you wanted to measure pressure (PSI) from 0.0 to 99.9 then you would have to multiply the analog value by 10 in order to imply a decimal place when you view the value with the programming software or a handheld programmer. Notice how the calculations differ when you use the multiplier.

Here is how you would write the program to perform the engineering unit conversion. This example assumes you have BCD data loaded into the appropriate V-memory locations using instructions that apply for the model of CPU you are using.


NOTE: This example uses SP1, which is always on. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.


Analog and Digital
Sometimes it is helpful to be able to quickly convert between the signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the analog signal <br> level ... |
| :--- | :---: | :--- |
| 4 to 20 mA | $\mathrm{~A}=\frac{16 \mathrm{D}}{4095}+4$ | $\mathrm{D}=\frac{4095}{16}(\mathrm{~A}-4)$ |

For example, if you have measured the signal at 10 mA , you would use the $D=\frac{4095}{16}(A-4)$ following formula to determine the digital value that should be stored in the register location that contains the data.
$D=\frac{4095}{16}(10 \mathrm{~mA}-4)$
$\mathrm{D}=(255.93)(6)$
D $=1536$

# F3-16AD 16-Channel Analog Input 

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Module Specifications

The following table provides the specifications for the F3-16AD Analog Input Module from FACTS Engineering. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 16, single ended (one common) |
| :---: | :---: |
| Input Ranges | $\begin{aligned} & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}^{1}, 0-10 \mathrm{~V} \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}^{2} \end{aligned}$ |
| Resolution | 12 bit (1 in 4096) |
| Input Impedance | $2 \mathrm{M} \Omega$, voltage input $500 \Omega \pm 1 \%$, current input |
| Absolute Maximum Ratings | $\pm 25 \mathrm{~V}$, voltage input $\pm 30 \mathrm{~mA}$, current input |
| Conversion Time | $35 \mu \mathrm{~s}$ per channel 1 channel per CPU scan |
| Converter Type | Successive Approximation, AD574 |
| Linearity Error | $\pm 1$ count maximum |
| Maximum Inaccuracy at $77{ }^{\circ} \mathrm{F}$ ( $25^{\circ} \mathrm{C}$ ) | $0.25 \%$ of full scale, voltage input $1.25 \%$ of full scale, current input |
| Accuracy vs. Temperature | $57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale |
| Recommended Fuse | 0.032 A, Series 217 fast-acting, current inputs |
| Power Budget Requirement | 33 mA @ 9 VDC, 47 mA @ 24 VDC |
| External Power Supply | None required |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |
| 1 - requires gain adjustment with potentiometer. <br> 2 - resolution is 3275 counts (instead of 4096). Allows easier broken transmitter detection |  |

Analog Input Configuration Requirements

The F3-16AD Analog Input appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

Jumper Locations
The module is set at the factory for a $0-20 \mathrm{~mA}$ signal on all sixteen channels. If this is acceptable you do not have to change any of the jumpers. The following diagram shows the jumper locations.


Selecting the Number of Channels

If you examine the rear of the module, you'll notice several jumpers. The jumpers labeled $+1,+2,+4$ and +8 are used to select the number of channels that will be used. Without any jumpers the module processes one channel. By installing the jumpers you can add channels. The module is set from the factory for sixteen channel operation.
Any unused channels are not processed so if you only select channels $1-8$, then the last eight channels will not be active. The following table shows which jumpers to install.


Jumpers installed as shown selects 16-channel operation

| Channel(s) | Jumper |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | +8 | $\mathbf{+ 4}$ | $\boldsymbol{+ 2}$ | $\boldsymbol{+ 1}$ |
| 1 | No | No | No | No |
| 12 | No | No | No | Yes |
| 123 | No | No | Yes | No |
| 1234 | No | No | Yes | Yes |
| 12345 | No | Yes | No | No |
| 123456 | No | Yes | No | Yes |
| 1234567 | No | Yes | Yes | No |
| 12345678 | No | Yes | Yes | Yes |


| Channel(s) | Jumper |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{+ 8}$ | $\mathbf{+ 4}$ | $\mathbf{+ 2}$ | $\boldsymbol{+ 1}$ |
| 123456789 | Yes | No | No | No |
| 12345678910 | Yes | No | No | Yes |
| 1234567891011 | Yes | No | Yes | No |
| 123456789101112 | Yes | No | Yes | Yes |
| 12345678910111213 | Yes | Yes | No | No |
| 1234567891011121314 | Yes | Yes | No | Yes |
| 123456789101112131415 | Yes | Yes | Yes | No |
| 12345678910111213141516 | Yes | Yes | Yes | Yes |

Selecting Input
Signal Ranges

As you examined the jumper settings, you may have noticed there are current jumpers for each individual channel. These jumpers allow you to select the type of signal (voltage or current).
The span and polarity jumpers are used to select the signal range. The polarity and span selection affect all the channels. For example, if you select unipolar operation and a 10 V span, you can use both $0-10 \mathrm{~V}$ and $0-20 \mathrm{~mA}$ signals at the same time. Channels that will receive $0-20 \mathrm{~mA}$ signals should have the current jumper installed. The following table shows the jumper selections for the various ranges. (Only channel 1 is used in the example, but all channels must be set.)

| Bipolar Signal Range | Jumper Settings |
| :---: | :---: |
| -5 VDC to +5 VDC |  |
| -10 VDC to +10 VDC |  |
| Unipolar Signal Range | Jumper Settings |
| 0 to 20 mA (these settings are also used for the $4-20 \mathrm{~mA}$ range) |  |
| 0 VDC to +10 VDC |  |
| 0 VDC to +1 VDC |  |
| 0 VDC to +0.1 VDC |  |
| 0 VDC to +0.01 VDC |  |


| Input Signal Range | Jumper Settings |  |
| :---: | :---: | :---: |
| 0 VDC to +5 VDC (requires gain adjustment see instructions below) |  |  |
| $0 \text { VDC to +12 VDC }$ <br> (requires gain adjustment see instructions below) | Polarity <br> Bi |  |

## Variable Gain Adjustment

If you look at the terminal block closely, you'll notice a small hole conceals an adjustment potentiometer. This small potentiometer is used to adjust the gain for certain situations.
For example, if you have $0-5 \mathrm{~V}$ transmitters you have to use the $0-10 \mathrm{~V}$ scale on the module. Since the module converts the signal to a digital value between 0 and 4095 , a 5 V signal would only yield a value of 2048. Fortunately, the variable gain feature provides a simple solution. Just complete the following steps.


1. Install a jumper on the gain adjustment pins. (This jumper location is labeled ADJ. This jumper will remain installed after the gain adjustment .)
2. Apply 5 V to one of the channels.
3. Use a handheld programmer or DirectSOFT to monitor the input register that contains the analog data. (If you're not familiar with this procedure, wait until you read the section on Writing the Control Program. This will show you how to get data into a register. You can come back to this procedure later.)
4. Adjust the potentiometer until the register value reads 4094 or 4095 . The potentiometer is turned clockwise to increase the gain.

Now the module has been adjusted so a 5V signal provides a digital value of 4095 instead of 2048.

## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the signal source. Do not ground the shield at both the module and the source.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply The F3-16AD receives all power from the base. A separate power supply is not Requirements required.

Custom Input Ranges

Occasionally you may have the need to connect a transmitter with an unusual signal range. By changing the wiring slightly and adding an external resistor to convert the current to voltage, you can easily adapt this module to meet the specifications for a transmitter that does not adhere to one of the standard input ranges. The following diagram shows how this works.


$$
R=\frac{V_{\max }}{I_{\max }}
$$

$$
R=\text { value of external resistor }
$$

$$
V_{\max }=\text { high limit of selected voltage range }
$$

$$
I_{\max }=\text { maximum current supplied by the transmitter }
$$

Example: current transmitter capable of $50 \mathrm{~mA}, 0-10 \mathrm{~V}$ range selected.

$$
R=\frac{10 \mathrm{~V}}{50 \mathrm{~mA}} \quad \mathrm{R}=200 \text { ohms }
$$

NOTE: Your choice of resistor can affect the accuracy of the module. A resistor that has $\pm 0.1 \%$ tolerance and $\mathrm{a} \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient is recommended.

Current Loop Transmitter Impedance

Standard 4 to 20 mA transmitters and transducers can operate from a wide variety of power supplies. Not all transmitters are alike and the manufacturers often specify a minimum loop or load resistance that must be used with the transmitter at the various voltages.
The F3-16AD provides 500 ohm resistance for each channel. If your transmitter requires a load resistance below 500 ohms, then you do not have to make any adjustments. However, if your transmitter requires a load resistance higher than 500 ohms, then you need to add a resistor in series with the module.
Consider the following example for a transmitter being operated from a 36 VDC supply with a recommended load resistance of 750 ohms. Since the module has a 500 ohm resistor, you need to add an additional resistor.


Removable Connector

The F3-16AD module has a removable connector to make wiring easier. Simply squeeze the top and bottom tabs and gently pull the connector from the module.

## Wiring Diagram

Note 1: Terminate all shields at their respective signal source.
Note 2: Jumpers for $\mathrm{CH} 4,7,12$ and 16 are installed for current input.


## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.

## Channel Scanning

 SequenceEven though the channel updates to the CPU are synchronous with the CPU scan, the module asynchronously monitors the analog transmitter signal and converts the signal to a 12-bit binary representation. This enables the module to continuously provide accurate measurements without slowing down the discrete control logic in the RLL program.

Understanding the You may recall the F3-16AD module appears to the CPU as a 16-point module. I/O Assignments These 16 points provide:

- an indication of which channel is active.
- the digital representation of the analog signal.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.

F3-16AD


Within these two register locations, the individual bits represent specific information about the analog signal.

Active Channel Indicator Inputs

The last four inputs of the upper Register indicate the active channel. The indicators automatically increment with each CPU scan.

| Scan | Channel <br> Inputs | Active <br> Channel |
| :--- | :---: | :---: |
| $N$ | 0000 | 1 |
| $\mathrm{~N}+1$ | 0001 | 2 |
| $\mathrm{~N}+2$ | 0010 | 3 |
| $\mathrm{~N}+3$ | 0011 | 4 |
| $\mathrm{~N}+4$ | 0100 | 5 |
| $\mathrm{~N}+5$ | 0101 | 6 |
| $\mathrm{~N}+6$ | 0110 | 7 |
| $\mathrm{~N}+7$ | 0111 | 8 |
| $\mathrm{~N}+8$ | 1000 | 9 |
| $\mathrm{~N}+9$ | 1001 | 10 |
| $\mathrm{~N}+10$ | 1010 | 11 |
| $\mathrm{~N}+11$ | 1011 | 12 |
| $\mathrm{~N}+12$ | 1100 | 13 |
| $\mathrm{~N}+13$ | 1101 | 14 |
| $\mathrm{~N}+14$ | 1110 | 15 |
| $\mathrm{~N}+15$ | 1111 | 16 |

R011


Analog Data Bits
The remaining twelve bits represent the analog data in binary format.


Since the module has 12-bit resolution, the analog signal is converted into 4096 "pieces" ranging from $0-4095\left(2^{12}\right)$. For example, with a 0 to 10 V scale, a 0 V signal would be 0 , and a 10 V signal would be 4095 . This is equivalent to a a binary value of 000000000000 to 11111111 1111, or 000 to FFF hexadecimal. The following diagram shows how this relates to each signal range.
$-10 \mathrm{~V}-+10 \mathrm{~V}$
$-5 \mathrm{~V}-+5 \mathrm{~V}$



20 mA

NOTE: When you use $4-20 \mathrm{~mA}$ signals, you have to use the $0-20 \mathrm{~mA}$ scale. You do not have resolution of 4096 if the $4-20 \mathrm{~mA}$ signal is present. In this case, the range is 819 to 4095 . This is because a 0 still represents 0 mA , not 4 mA .

Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will possibly result in a change in the data value for each signal range.

Resolution $=\frac{\mathrm{H}-\mathrm{L}}{4095}$
$\mathrm{H}=$ high limit of the signal range
$\mathrm{L}=$ low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| -10 to +10 V | +10 V | -10 V | 4.88 mV |
| -5 to +5 V | +5 V | -5 V | 2.44 mV |
| 0 to 5 V | 5 V | 0 V | 1.22 mV |
| 0 to 10 V | 10 V | 0 V | 2.44 mV |
| 0 to 12 V | 12 V | 0 V | 2.90 mV |
| 0 to 20 mA <br> (4 to 20 mA also) | 20 mA | 0 mA | $4.88 \mu \mathrm{~A}$ |
| 0 to 1 V | 1 V | 0 V | 0.244 mV |
| 0 to 0.1 V | 0.1 V | 0 V | 24.4 uV |
| 0 to 0.01 V | 0.01 V | 0 V | 2.44 uV |

## Writing the Control Program (DL330 / DL340)

Identifying the Data Locations

Since all channels are multiplexed into a single data word, the control program must be setup to determine which channel is being read. Since the module provides input points to the CPU, it is very easy to use the active channel status bits to determine which channel is being monitored.

F3-16AD


The following example shows a program designed to read any of the available channels of analog data into Register locations. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. Since the DL305 CPUs use 8-bit word instructions, you have to move the data in pieces. It's pretty simple if you follow the example.


Scaling the Input Data

Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.

The following example shows how you would use the analog data to represent pressure (PSI) from 0 to 100. This example assumes the analog value is 1760. This should yield approximately 42.9 PSI.

Units $=\frac{A}{4096} S$
Units = value in Engineering Units
A = Analog value ( $0-4095$ )
S = high limit of the Engineering unit range

) 42.9 PSI example.) In this example we're using channel 1. The active channel indicator inputs are all off when channel 1 data is being read. Of course, if you were using a different channel, you would use the active channel indicator point combination that corresponds to the channel you were using.
| This example assumes you have already read the analog data
| and stored the BCD equivalent in R400 and R401
Scale the data


This instruction brings the analog value (in BCD) into the accumulator.


The analog value is divided by the resolution of the module, which is 4096 . $(1760 / 4096=0.4296)$


| Aux. Accumulator |  |  |  |
| :---: | :---: | :---: | :---: |
| 4 | 2 | 9 | 6 |
| R577 | R576 |  |  |

This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the scaling factor, which is $100 .(100 \times 4296=429600)$. Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)

Aux. Accumulator

| 0 | 0 | 4 | 2 |
| :--- | :--- | :--- | :--- |
| 0 |  |  |  |
| R577 | R576 |  |  |

This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450. R450 now contains the PSI, which is 42 PSI.


You probably noticed the previous example yielded 42 PSI when the real value should have been 42.9 PSI. By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.

This example assumes you have already read the analog data
| and stored the BCD equivalent in R400 and R401
Scale the data


The analog value is divided by the resolution of the module, which is 4096 . $(1760 / 4096=0.4296)$

Aux. Accumulator

| 4 | 2 | 9 | 6 |
| :---: | :---: | :---: | :---: |
| R577 |  |  | R576 |

This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is multiplied by the scaling factor, which is now 1000 . $(1000 \times 4296=4296000)$. The most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the PSI, which implies 42.9.

 equation constants into data registers. The example is written for channel 1, but you can easily use a similar approach to use different scales for all channels if required.
You may just use the appropriate constants in the instructions dedicated for each channel, but this method allows easier modifications. For example, you could easily use an operator interface or a programming device to change the constants if they are stored in Registers.


On the first scan, these first two instructions load the analog resolution (constant of 4096) into R460 and R461.

These two instructions load the high limit of the Engineering unit scale (constant of 1000) into R462 and R463. Note, if you have different scales for each channel, you'll also have to enter the Engineering unit high limit for those as well.

This rung loads the four most significant data bits into the accumulator from Register 011 on every scan.

Temporarily store the bits to Register 501.

## Store channel 1



Broken Transmitter If you use 4-20mA signals you can easily check for broken transmitter conditions. Detection Since you have to use the $0-20 \mathrm{~mA}$ range and the lowest signal for the $4-20 \mathrm{~mA}$ transmitter is 4 mA , the lowest digital value for the signal is not 0 , but instead is 819 . If the transmitter is working properly the smallest value you should ever see is 819 . If you see a value of less than about 750 (allowing for tolerance), then you know the transmitter is broken.


This rung loads the channel ID bits into the accumulator from Register 011 on every scan.

Convert the channel ID status to BCD. We'll use relational contacts later to make the chanel selection much easier.)

Store the channel ID in R600.

## Read the data



Store channel 1


Broken transmitter indicator on channel 1

## Writing the Control Program (DL350)

Reading Values:
Pointer Method
and Multiplexing


## Pointer Method

There are two methods of reading values for the DL350:

- The pointer method (all system bases must be D3-xx-1 bases to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350, but for ease of programming it is strongly recommended that you use the pointer method.

NOTE: Do not use the pointer method and the PID PV auto transfer from I/O module function together for the same module. If using PID loops, use the pointer method and ladder logic code to map the analog input data into the PID loop table.

The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. These V-memory locations allow you to:

- specify the data format
- specify the number of channels to scan
- specify the storage locations

The example program shows how to setup these locations. Place this rung anywhere in the ladder program or in the Initial Stage if you are using RLLPLUS instructions. This is all that is required to read the data into V-memory locations. Once the data is in V-memory, you can perform math on the data, compare the data against preset values, and so forth. V2000 is used in the example, but you can use any user V-memory location. In this example the module is installed in slot 2. You should use the V-memory locations for your module placement.


The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU, slot 1 is the module two places from the CPU, and so on. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases up to a total of 8 slots away from the DL350 CPU. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Input Module Slot-Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7670 | V7671 | V7672 | V7673 | V7674 | V 7675 | V 7676 | V 7677 |

Multiplexing: DL350 with a Conventional DL305 Base

The example below shows how to read multiple channels on an F3-08AD Analog module in the 20-27/120-127 address slot. This module must be placed in a 16 bit slot in order to work.


This rung loads the upper byte of analog data from the module.

SHFL K8 shifts the data to the left eight places to make room for the lower byte of data.

The ORF X20 brings the lower byte of data from the module into the accumulator. At this time there is a full word of data from the analog module in the accumulator.

The ANDD Kfff masks off the four most significant bits of data from the word. This leaves the actual analog value.

The BCD command converts the data to BCD format.

Stores the data in V2200.

Channel 1 Select Bit States


This sends channel one analog data to V3000 when bits X124, X125, X126 and X 127 are as shown.

Channel 2 Select Bit States


This sends channel two analog data to V3001 when bits X124, X125, X126 and X127 are as shown.

Channel 3 Select Bit States


This sends channel two analog data to V3002 when bits X124, X125, X126 and X 127 are as shown.

Multiplexing: DL350 with a D3-XX-1 Base

The example below shows how to read multiple channels on an F3-16AD Analog module in the X 0 address slot of the $\mathrm{D} 3-\mathrm{XX}-1$ base. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.


This rung loads the upper byte of analog data from the module.

SHFL K12 shifts the word to the right twelve places.

Puts the four channel select bits in the lower nibble (four bits) of word V1400. This will increment once with each scan from 0 to $F$.

This rung loads the twelve bits of analog data to the module and converts it to BCD. It is the OUT to V1401.

This converts the data to BCD.

The analog data (in BCD format) is then stored in the Holding Register, V1401.

Rungs 3-18 compare the count of the chennel select bits. When the corresponding bits are true, the channel data for that channel is stored in the proper V-memory location. For sixteen channels of analog data, the module will require sixteen scans in order to update all channels.


Channel \#1 Data

Channel \#2 Data

Channel \#3 Data



Scaling the Input Data

Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.

Units $=A \frac{H-L}{4095}$
$H=$ high limit of the engineering unit range
$L=$ low limit of the engineering unit range
$A=$ Analog value (0-4095)
For example, if you wanted to measure pressure (PSI) from 0.0 to 99.9 then you would have to multiply the analog value by 10 in order to imply a decimal place when you view the value with the programming software or a handheld programmer. Notice how the calculations differ when you use the multiplier.

Here is how you would write the program to perform the engineering unit conversion. This example assumes you have BCD data loaded into the appropriate V-memory locations using instructions that apply for the model of CPU you are using.

NOTE: This example uses SP1, which is always on. You could also use an X, C, etc. permissive contact.


Analog and Digital Value Conversions

Sometimes it is helpful to be able to quickly convert between the signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the analog signal <br> level ... |
| :--- | :---: | :---: |
| -10 V to +10 V | $\mathrm{~A}=\frac{20 \mathrm{D}}{4095}-10$ | $\mathrm{D}=\frac{4095}{20}(\mathrm{~A}+10)$ |
| -5 V to +5 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}-5$ | $\mathrm{D}=\frac{4095}{10}(\mathrm{~A}+5)$ |
| 0 to 5 V | $\mathrm{~A}=\frac{5 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{5} \mathrm{~A}$ |
| 0 to 10 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{10} \mathrm{~A}$ |
| 0 to 12 V | $\mathrm{~A}=\frac{12 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{12} \mathrm{~A}$ |
| 0 to 20 mA <br> (or 4-20mA) | $\mathrm{A}=\frac{20 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{20} \mathrm{~A}$ |
| 0 to 1 V | $\mathrm{~A}=\frac{1 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{1} \mathrm{~A}$ |
| 0 to 0.1 V | $\mathrm{~A}=\frac{0.1 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{0.1} \mathrm{~A}$ |
| 0 to 0.01 V | $\ell \mathrm{~A}=\frac{0.01 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{0.01} \mathrm{~A}$ |

For example, if you are using the -10 to +10 V range and you have measured the
$D=\frac{4095}{20}(A+10)$ signal at 6 V , you would use the following formula to determine the digital value that should be stored in the register location that contains the data.
$D=\frac{4095}{20}(6 \mathrm{~V}+10)$
$\mathrm{D}=(204.75)(16)$
D $=3276$

# D3-02DA 2-Channel Analog Output 

In This Chapter. . . .

- Module Specifications
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Module Specifications

The following table provides the specifications for the D3-02DA Analog Output Module. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 2 (independent) |
| :--- | :--- |
| Output Ranges | $0-10 \mathrm{~V}, 4-20 \mathrm{~mA}$ |
| Resolution | 8 bit (1 in 256 ) |
| Output Type | Single ended |
| Output Impedance | $.5 \Omega$ maximum, voltage output |
| Output Current | 10 mA minimum, voltage output @ 10 VDC |
| Load Impedance | $550 \Omega$ maximum, $5 \Omega$ minimum, current output |
| Total Inaccuracy | $\pm 0.4 \%$ maximum at $25^{\circ} \mathrm{C}$ |
| Accuracy vs. Temperature | $\pm 50$ ppm $/{ }^{\circ} \mathrm{C}$ maximum |
| Conversion Time | $100 \mu \mathrm{~s} \mathrm{maximum} \mathrm{(2} \mathrm{channels/scan)}$ |
| Power Budget Requirement | $80 \mathrm{~mA} @ 9 \mathrm{~V}$ |
| External Power Supply | $24 \mathrm{VDC}, \pm 10 \%, 170 \mathrm{~mA}, \mathrm{class} 2$ |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to $95 \%($ non-condensing $)$ |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

The D3-02DA Analog Output appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog

Analog Output Configuration Requirements
modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the module or the power supply return ( 0 V ). Do not ground the shield at both the module and the transducer.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply
Requirements

Load Requirements

The D3-02DA requires a separate power supply. Choose a supply that meets the following requirements: 24 VDC $\pm 10 \%$, Class $2,170 \mathrm{~mA}$ current (or greater, depending on the number of modules being used.)

Each channel can be wired independently for a voltage or current transducer.

- Current transducers must have an impedance between 5 and 550 ohms
- Voltage transducers must have an impedance greater than 1 K ohms.

Removable Connector

Wiring Diagram

The D3-02DA module has a removable connector to make wiring easier. Simply remove the retaining screws and gently pull the connector from the module.

Note 1: Shields should be connected to the OV of the module or to the 0 V of the P/S.
Note 2: Unused voltage and current outputs


## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.
Channel Scanning The D3-02DA module updates both channels in the same scan. The control Sequence program updates the two channels of this module independent of each other and each channel does not have to be refreshed on each scan.


Understanding the I/O Assignments

You may recall the D3-02DA module appears to the CPU as a 16-point module. These 16 points provide the digital representation of the analog signal.
Since all I/O points are automatically mapped into Register ( R ) memory, it is very easy to determine the location of the data word that will be assigned to the module.

D3-02DA


Within these two word locations, the individual bits represent specific information about the analog signal.

Analog Data Bits
The first register contains the data for channel one (R001). The second register contains the data for channel two (R011).


Since the module has 8-bit resolution, the analog signal is converted into 256 "pieces" ranging from $0-255\left(2^{8}\right)$. For example, with a 0 to 10 V scale, a 0 V signal would be 0 , and a 10 V signal would be 255 . This is equivalent to a a binary value of 00000000 to 1111 1111, or 00 to FF hexadecimal. The following diagram shows how this relates to each signal range.



Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will result in a change in the data value for each signal range.

$$
\begin{aligned}
& \text { Resolution }=\frac{H-L}{255} \\
& H=\text { high limit of the signal range } \\
& \mathrm{L}=\text { low limit of the signal range }
\end{aligned}
$$

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| 0 to 10 V | 10 V | 0 V | 39 mV |
| 4 to 20 mA | 20 mA | 4 mA | $62.5 \mu \mathrm{~A}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

Identifying the Data Locations

Calculating the Digital Value

As mentioned earlier, you can update either channel or both channels during the same scan. Since the module does not have any channel select bits, you just simply determine the location of the data word and send the data word to the output module whenever you need to update the data.

D3-02DA


Your program has to calculate the digital value to send to the analog module. There are many ways to do this, but most all applications are understood more easily if you use measurements in engineering units. This is accomplished by using the conversion formula shown. You may have to make adjustments to the formula depending on the scale you choose for the engineering units.
$A=256 \frac{U}{H-L}$
A = Analog value ( $0-255$ )
$\mathrm{U}=$ Engineering Units
$\mathrm{H}=$ high limit of the Engineering unit range
$\mathrm{L}=$ low limit of the Engineering unit range

The following example shows how you would use Engineering Units to obtain the digital value to represent pressure (PSI) from 0 to 100. This example assumes you want to obtain a pressure of 42 PSI , which is slightly less than half scale.

$$
\begin{aligned}
& A=256 \frac{U}{H-L} \\
& A=256 \frac{42}{100-0} \\
& A=107.5(\text { or } 108)
\end{aligned}
$$

Here's how you would write the program to perform the Engineering Unit conversion. This example assumes you have calculated or loaded the engineering unit value and stored it in R400. Also, you have to perform this for both channels if you're using different data for each channel.
| This example assumes you have already loaded the Engineering unit
| value in R400.
Scale the data


This instruction loads Engineering unit value into the accumulator.


| Aux. Accumulator |  |  |
| :---: | :---: | :---: |
| 0 | 0 | 0 | 0

The Engineering unit value is divided by the Engineering unit range $(42 / 100=.42)$. In this case the range is $100 .(100-0=100)$

| Aux. Accumulator |  |
| :---: | :---: |
| 4 |  |
| 4 |  |

This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the module resolution, which is 256 . $(256 \times 4200=1075200)$. Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the Divide instruction operation.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R451 and R450. R451 and R450 now contain the digital value, which is 107.


There will probably be times when you need more precise control. For example, maybe your application requires 42.9 PSI , not just 42 PSI . By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've entered 429 as the Engineering unit value and we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.


Sending the Same Data to Both Channels

In some applications, you'll want to send the same output values to both channels. The following program example shows how to send the digital values to the module.

This example assumes you have already loaded the Engineering unit value in R450 and R451.


This rung loads the data into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Send the accumulator data to the Register that corresponds to channel 1, which is R001.

Send the accumulator data to the Register that corresponds to channel 2, which is R011.

If you want a shorter program, just combine the data scaling and output instructions.


This instruction loads Engineering unit value into the accumulator.

The Engineering unit value is divided by the Engineering unit range, which in this case is 1000. (100.0 implied range)

This instruction moves the two-byte decimal portion into the accumulator for further operations.

The accumulator is then multiplied by the module resolution, which is 256 .

This instruction moves the two-byte auxilliary accumulator into the regular accumulator.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Send the accumulator data to the Register that corresponds to channel 1, which is R001.

Send the accumulator data to the Register that corresponds to channel 2, which is R011.

Sending Specific
Data to Each Channel

In this case, the example logic is setup to send different data to each channel. Of course, you would have to have separate routines to calculate the output data and you would have to store the different values in separate registers.

This example assumes you have already loaded the Engineering unit value for Channel 1 in R450 and R451 I and the data for Channel 2 in R452 and R453.
|
Send Channel 1


This rung loads the data for channel 1 into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Send the accumulator data to the Register that corresponds to channel 1, which is R001.

This rung loads the data for channel 2 into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Send the accumulator data to the Register that corresponds to channel 2, which is R011.

## Writing the Control Program (DL350)

Multiplexing: DL350 with a Conventional DL305 Base

This example assumes the module is in the Y10-17 / Y110-117 slot of a 305 conventional base. In this example V1400 contains the BCD data for channel 1 and V1401 contains the data for channel 2.


This rung loads the data for channel 1 into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Masks off the 256 bit analog data for the module.

Send the accumulator data to the bits that correspond to channel 1.

Send Channel 2


This rung loads the data for channel 2 into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Masks off the 256 bit analog data for the module.

Send the accumulator data to the bits that correspond to channel 2.

Multiplexing: DL350 with a D3-xx-1 Base

This example assumes the module is in Y 0 address slot of a D3 $-\mathrm{xx}-1$ base . In this example V1400 contains the BCD data for channel 1 and V1401 contains the data for channel 2. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.


This rung loads the data for channel 1 into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Masks off the 256 bit analog data for the module.

Send the accumulator data to the bits that correspond to channel 1.

Send Channel 2


This rung loads the data for channel 2 into the accumulator on every scan.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module.

Masks off the 256 bit analog data for the module.

Send the accumulator data to the bits that correspond to channel 2.

Analog and Digital Value Conversions

Sometimes it is helpful to be able to quickly convert between the voltage or current signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the analog signal <br> level ... |
| :--- | :---: | :--- |
| 0 to 10 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{255}$ | $\mathrm{D}=\frac{255}{10} \mathrm{~A}$ |
| 4 to 20 mA | $\mathrm{~A}=\frac{16 \mathrm{D}}{255}+4$ | $\mathrm{D}=\frac{255}{16}(\mathrm{~A}-4)$ |

$$
\begin{aligned}
& D=\frac{255}{16}(A-4) \\
& D=\frac{255}{16}(10 \mathrm{~mA}-4) \\
& D=(15.93)(6) \\
& D=96
\end{aligned}
$$ $4-20 \mathrm{~mA}$ range and you know you need a 10 mA signal level, you would use the following formula to determine the digital value that should be sent to the module.

Your program must calculate the digital value to send to the analog module. There are many ways to do this, but most applications are understood more easily if you use measurements in engineering units. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.

$$
\begin{aligned}
& A=U \frac{255}{H-L} \\
& A=\text { Analog value }(0-255) \\
& U=\text { Engineering Units } \\
& H=\text { high limit of the engineering } \\
& \text { unit range } \\
& L=\begin{array}{l}
\text { low limit of the engineering } \\
\text { unit range }
\end{array}
\end{aligned}
$$

Calculating the Digital Value

Consider the following example which controls pressure from 0.0 to 99.9 PSI. By using the formula, you can easily determine the digital value that should be sent to the module. The example shows the conversion required to yield 49.4 PSI. Notice the formula uses a multiplier of 10 . This is because the decimal portion of 49.4 cannot be loaded, so you adjust the formula to compensate for it.

$$
\begin{aligned}
& A=10 U \frac{255}{10(H-L)} \\
& A=494 \frac{255}{1000-0} \\
& A=126
\end{aligned}
$$

D3-02DA 2-Channel Analog Output

The example program below shows how you would write the program to perform the engineering unit conversion. This example assumes you have calculated or loaded the engineering unit values in BCD and stored them in V2300 and V2301 for channels 1 and 2 respectively.

NOTE: The DL350 offers various instructions that allow you to perform math operations using BCD format. It is easier to perform math calculations in BCD and then convert the value to binary before sending the data to the module.


# F3-04DA-1 4-Channel Analog Output 

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program (DL330 / DL340)
- Writing the Control Program (DL350)


## Module Specifications

The following table provides the specifications for the F3-04DA-1 Analog Output Module. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 4 |
| :---: | :---: |
| Output Ranges | $\begin{aligned} & 0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 4-12 \mathrm{~mA}, \\ & 4-20 \mathrm{~mA} \text { (source) } \end{aligned}$ |
| Resolution | 12 bit (1 in 4096) |
| Output Type | Single ended (one common) |
| Output Impedance | $0.5 \Omega$ typical, voltage output |
| Output Current | 5 mA source, 2.5 mA sink (voltage) |
| Short-circuit Current | 40 mA typical, voltage output |
| Load Impedance | $1 \mathrm{~K} \Omega$ maximum, current output $2 \mathrm{~K}_{\Omega}$ minimum, voltage output |
| Linearity Error | $\pm 1$ count ( $\pm 0.03 \%$ maximum) |
| Maximum Inaccuracy at $77^{\circ} \mathrm{F}$ ( $25^{\circ} \mathrm{C}$ ) | $\pm 0.6 \%$ of span, current output <br> $\pm 0.2 \%$ of span, voltage output |
| Accuracy vs. Temperature | $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum |
| Conversion Time | $30 \mu \mathrm{~S}$ maximum |
| Power Budget Requirement | 144 mA @ ${ }^{\text {aV, } 108 \mathrm{~mA} \text { @ 24V }}$ |
| External Power Supply | None required |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

Analog Output Configuration Requirements

The F3-04DA-1 Analog Output appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

Jumper Locations The module is set at the factory for a $0-10 \mathrm{~V}$ signal on all four channels. (This range also allows $4-20 \mathrm{~mA}$ operation since there are separate I and V wiring terminals.) If this is acceptable you do not have to change any of the jumpers. The following diagram shows the jumper locations.


Selecting Output Signal Ranges

The jumper is set from the factory to allow either $0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ operation on all channels. In addition, you can select $0-5 \mathrm{~V}$ or $4-12 \mathrm{~mA}$ operation by moving the jumper. (Only channel 1 is used in the example, but all channels must be set.)

| Signal Range | Jumper Settings |
| :---: | :---: |
| $\begin{aligned} & 0 \text { to }+5 \mathrm{VDC} \\ & 4 \text { to } 12 \mathrm{~mA} \end{aligned}$ |  |
| $\begin{aligned} & 0 \text { VDC to }+10 \mathrm{VDC} \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} \text { Range } \\ 0-10 \mathrm{~V} \\ \boxed{\square \quad} \quad \mathbf{0 - 5 V} \end{gathered}$ |

## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the module or the power supply return ( 0 V ). Do not ground the shield at both the module and the transducer.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply The F3-04DA-1 receives all power from the base. A separate power supply is not Requirements required.

Load
Requirements

Each channel can be wired independently for a voltage or current transducer.

- Current transducers must have an impedance less than 1K ohm.
- Voltage transducers must have an impedance greater than 2 K ohms.

Removable
Connnector

The F3-04DA-1 module has a removable connector to make wiring easier. Simply squeeze the top and bottom tabs and gently pull the connector from the module.

## Wiring Diagram

Note 1: Shields should be connected to the 0V (COM) of the module

Note 2: Unused voltage \& current outputs should remain open (no connections)

Internal Module Wiring $\qquad$


## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.
Channel Scanning Sequence

The F3-04DA-1 module can update one channel per CPU scan. Your RLL program selects which channel to update, so you have complete flexibility to solve your application requirements.


Understanding the I/O Assignments

You may recall the F3-04DA-1 module appears to the CPU as a 16-point module. These 16 points provide:

- the digital representation of the analog signal.
- identification of the channel to receive the data.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.


Within these two word locations, the individual bits represent specific information about the analog signal.

Channel Selection Inputs

The last four points of the upper register are used as outputs to tell the module which channel to update. In our example, when output 114 is on, channel 1 will be updated. Here's how the outputs are assigned.
Output Channels
1141
1152
1163
1174

Analog Data Bits
The remaining twelve bits represent the analog data in binary format.

R011
R001

| Bit | Value | Bit | Value | MSB |  |  |  |  |  |  |  | SB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 (LSB) | 1 | 6 | 64 | 1 |  |  |  |  |  |  |  |  |
| 1 | 2 | 7 | 128 |  | $1 \begin{array}{ll}11 \\ 1\end{array}$ | 11 | 1 | 0 | 0 | 0 | 0 | $\begin{array}{llll}0 & 0 \\ 1 & 1 & 1\end{array}$ |
| 2 | 4 | 8 | 256 |  | 11 | 11 | 1 | 7 | 5 |  |  | 111 |
| 3 | 8 | 9 | 512 |  | 5 |  | - |  |  |  |  |  |
| 4 | 16 | 10 | 1024 |  | - dat | a bit |  |  |  |  |  |  |
| 5 | 32 | 11 | 2048 |  | - da |  |  |  |  |  |  |  |

Since the module has 12-bit resolution, the analog signal is converted into 4096 "pieces" ranging from $0-4095\left(2^{12}\right)$. For example, with a 0 to 10 V scale, a 0 V signal would be 0 , and a 10 V signal would be 4095 . This is equivalent to a a binary value of 000000000000 to 11111111 1111, or 000 to FFF hexadecimal. The following diagram shows how this relates to each signal range.

$$
\begin{gathered}
\mathrm{OV}-\mathbf{1 0 V} \\
\mathrm{OV}-\mathbf{5 V} \\
+\mathrm{V} \sum_{0}^{2----}
\end{gathered}
$$

4-12mA



Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will

$$
\mathrm{H}=\text { high limit of the signal range }
$$ possibly result in a change in the data value for each signal range.

$$
\text { Resolution }=\frac{\mathrm{H}-\mathrm{L}}{4095}
$$

L = low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| 0 to 5 V | 5 V | 0 V | 1.22 mV |
| 0 to 10 V | 10 V | 0 V | 2.44 mV |
| 4 to 12 mA | 12 mA | 4 mA | $1.95 \mu \mathrm{~A}$ |
| 4 to 20 mA | 20 mA | 4 mA | $3.91 \mu \mathrm{~A}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

Identifying the Data Locations

## Calculating the Digital Value

As mentioned earlier, you can use the channel selection bits to determine which channels will be updated. The following diagram shows the location for both the channel selection bits and data bits.


Your program has to calculate the digital value to send to the analog module. There are many ways to do this, but most all applications are understood more easily if you use measurements in engineering units. This is accomplished by using the conversion formula shown. You may have to make adjustments to the formula depending on the scale you choose for the engineering units.
$A=4096 \frac{U}{H-L}$
A = Analog value (0 - 4095)
$\mathrm{U}=$ Engineering Units
$\mathrm{H}=$ high limit of the Engineering unit range
$\mathrm{L}=$ low limit of the Engineering unit range

The following example shows how you would use Engineering units to obtain the digital value to represent pressure (PSI) from 0 to 100 . This example assumes you want to obtain a pressure of 42 PSI , which is slightly less than half scale.

$$
\begin{aligned}
& A=4096 \frac{U}{H-L} \\
& A=4096 \frac{42}{100-0} \\
& A=1720
\end{aligned}
$$

Here's how you would write the program to perform the Engineering unit conversion. This example assumes you have calculated or loaded the engineering unit value and stored it in R400. Also, you have to perform this for all channels if you're using different data for each channel.


There will probably be times when you need more precise control. For example, maybe your application requires 42.9 PSI, not just 42 PSI. By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've entered 429 as the Engineering unit value and we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.


Sending Data to a
Single Channel

The following program example shows how to send the digital value to a single channel.
This example assumes you have already loaded the Engineering unit value in R450 and R451.
Send Channel $\mathbf{1}$
This rung loads the data into the accumulator on
every scan.
Since the data is in BCD format, you have to
convert it to binary before you send the data to the
module.
Send the accumulator data to the Register that
corresponds to the module, which is R001.

If you install the F3-04DA-1 in the slot corresponding to registers 6 and 16, you have to make a slight program adjustment. This is because the DOUT5 instruction is not supported for this slot.

| This example assumes you have already loaded the Engineering unit value in R450 and R451. Send Channel 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 374 \\ -1 / ~ \end{gathered}$ | DSTR F50 <br> R450  |  | This rung loads the data into the accumulator on every scan. |
|  | BIN | F85 | Since the data is in BCD format, you have to convert it to binary before you send the data to the module. |
|  | $\begin{aligned} & \text { DOUT1 } \\ & \text { R006 } \end{aligned}$ | F61 | Send the 8 least significant data bits to the first Register that corresponds to the module which is R006. |
|  | $\begin{aligned} & \text { SHFR } \\ & \text { K008 } \end{aligned}$ | F80 | Shift the 4 most significant data bits to the right 8 places. (The data is still in the accumulator). |
|  | $\begin{aligned} & \text { DOUT3 } \\ & \text { R016 } \end{aligned}$ | F63 | Send the 4 most significant data bits to the second Register that corresponds to the module which is R016. |
|  |  | $\begin{array}{r} 164 \\ \text { (OUT) } \end{array}$ | Indicate the channel to update. In this case, channel 1 is being updated. |

## Sequencing the Channel Updates

This example shows how to send digital values to the module when you have more than one channel. This example will automatically update all four channels over four scans. The example is fairly simple and will work in most all situations, but there are instances where problems can occur. The logic must be active on the first CPU scan and all subsequent scans. If the logic gets stopped or disabled for some reason, there is no way to restart it. If you're using an RLLPLUS (Stage) program, put this logic in an initial stage that is always active. Also, you should avoid using the this example if you require the analog output logic to be used inside a Master Control Relay field of control. Even if you do not have a need for the MCR, you can still accidentally disable the analog output logic by inadvertently writing to the multiplexing control relays with an operator interface or intelligent module, such as an ASCII BASIC module, etc.
The following program example shows how to send the digital values to multiple channels. With this program, all channels will be updated within four scans. You must use the rungs in the order shown, but you can include them anywhere in the program.


When channel 4 has been updated, 160 restarts the update sequence.

When channel 3 has been updated, this rung loads the data for channel 4 into the accumulator. By turning on 117, this triggers the channel update. (Since 117 is also used as an input, this results in a one-shot.)

When channel 2 has been updated, this rung loads the data for channel 3 into the accumulator. By turning on 116, this triggers the channel update. (Since 116 is also used as an input, this results in a one-shot.)

When channel 1 has been updated, this rung loads the data for channel 2 into the accumulator. By turning on 115, this triggers the channel update. (Since 115 is also used as an input, this results in a one-shot.)

This rung loads the data for channel 1 into the accumulator. Since 374 is used, this rung automatically executes on the first scan. After that, 160 restarts this rung. If you examine the first rung, you'll notice 160 only comes on after channel 4 has been updated.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module. (You can omit this step if you've already converted the data elsewhere.)

Send the 8 least significant data bits to the first Register that corresponds to the module which is R001.
Shift the 4 most significant data bits to the right 8 places. (The data is still in the accumulator).

Send the 4 most significant data bits to the second Register that corresponds to the module which is R011.

# Writing the Control Program (DL350) 

> Reading Values: Pointer Method and Multiplexing

There are two methods of reading values:

- The pointer method (all system bases must be D3-xx-1 to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350 CPU, but for ease of programming it is strongly recommended that you use the pointer method.
The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. By using these V-memory locations you can:

- specify the number of channels to update.
- specify where to obtain the output data.

NOTE: Do not use the pointer method and the PID Control Output auto transfer to I/O module function together for the same module. If using PID loops, use the pointer method and ladder logic code to map the analog output data from the PID loop to the output module memory location(s).

The following program example shows how to set up these locations. Place this rung anywhere in the ladder program, or in the initial stage when using stage programming.


- or - $\left\lvert\, \begin{aligned} & \text { LD } \\ & \mathrm{K} 84--」\end{aligned}\right.$

Loads a constant that specifies the number of channels to scan and the data format. The lower byte, most significant nibble (MSN) selects the data format (i.e. $0=B C D, 8=B i n a r y$ ), the LSN selects the number of channels ( 1 to 4).
The binary format is used for displaying data on some operator interfaces.

Special V-memory location assigned to slot 3 that contains the number of channels to scan.

This loads an octal value for the first V-memory location that will be used to store the output data. For example, the O2000 entered here would designate the following addresses.
Ch1 - V2000, Ch2 - V2001, ch3 - V2002, ch4 - V2003
The octal address (O2000) is stored here. V7703 is assigned to slot 3 and acts as a pointer, which means the CPU will use the octal value in this location to determine exactly where to store the output data.

The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases (all bases must be D3-xx-1) up to a total of 8 slots away from the DL350. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Output Module Slot Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7700 | V7701 | V7702 | V7703 | V7704 | V7705 | V 7706 | V 7707 |

Multiplexing: DL350 with a D3-xx-01 Base

This example assumes the module is in Y0 address slot of D3-xx-1 base. In this example V2000 contains the data for channel and V2001 for channel 2, etc. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.

example program continued from previous page
|


This rung converts the appropriate analog channel data to binary for the module.

The OUTF instruction sends the 12 bits of analog data to the analog module memory address.

Multiplexing: DL350 with a Conventional DL305 Base

This example assumes the module is in the $10-17$ / 110-117 slot of a 305 conventional base. In this example V3000 contains the BCD data for channel 1 and V3001 contains the data for channel 2, etc. One more rung would be necessary for channel 4.

## Send Channel 1


example program continued on next page
example program continued from previous page.


Calculating the Digital Value

Your program must calculate the digital value to send to the analog module. There are many ways to do this, but most applications are understood more easily if you use measurements in engineering units. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.
$A=U \frac{4095}{H-L}$
A = Analog value (0-4095)
$\mathrm{U}=$ Engineering Units
$\mathrm{H}=$ high limit of the engineering unit range
$\mathrm{L}=$ low limit of the engineering unit range

Consider the following example which controls pressure from 0.0 to 99.9 PSI. By using the formula, you can easily determine the digital value that should be sent to the module. The example shows the conversion required to yield 49.4 PSI. Notice the formula uses a multiplier of 10 . This is because the decimal portion of 49.4 cannot be loaded, so you adjust the formula to compensate for it.

$$
\begin{aligned}
& A=10 U \frac{4095}{10(H-L)} \\
& A=494 \frac{4095}{1000-0} \\
& A=2023
\end{aligned}
$$

The example program shows how you would write the program to perform the engineering unit conversion. This example assumes you have calculated or loaded the engineering unit values in BCD and stored them in V2300 and V2301 for channels 1 and 2 respectively.

NOTE: The DL350 offers various instructions that allow you to perform math operations using BCD format. It is easier to perform math calculations in BCD and then convert the value to binary before sending the data to the module.


The LD instruction loads the engineering units used with channel 1 into the accumulator. This example assumes the numbers are BCD. Since SP1 is used, this rung automatically executes on every scan. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.

Multiply the accumulator by 4095 (to start the conversion).

Divide the accumulator by 1000 (because we used a multiplier of 10, we have to use 1000 instead of 100).

Store the BCD result in V3000 (the actual steps to write the data were shown earlier).

The LD instruction loads the engineering units used with channel 2 into the accumulator. This example assumes the numbers are BCD. Since SP1 is used, this rung automatically executes on every scan. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.

Multiply the accumulator by 4095 (to start the conversion).

Divide the accumulator by 1000 (because we used a multiplier of 10, we have to use 1000 instead of 100).

Store the BCD result in V3001 (the actual steps to write the data were shown earlier).

Analog and Digital Sometimes it is helpful to be able to quickly convert between the voltage or current Value Conversions signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the analog signal <br> level ... |
| :--- | :---: | :---: |
| 0 to 5 V | $\mathrm{~A}=\frac{5 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{5} \mathrm{~A}$ |
| 0 to 10 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{10} \mathrm{~A}$ |
| 4 to 12 mA | $\mathrm{~A}=\frac{12 \mathrm{D}}{4095}+4$ | $\mathrm{D}=\frac{4095}{12}(\mathrm{~A}-4)$ |
| 4 to 20 mA | $\mathrm{~A}=\frac{16 \mathrm{D}}{4095}+4$ | $\mathrm{D}=\frac{4095}{16}(\mathrm{~A}-4)$ |

For example, if you are using the $4-20 \mathrm{~mA}$ range and you know you need a 10 mA signal level, you would use the following formula to determine the digital value that should be sent to the module.
$D=\frac{4095}{16}(A-4)$
$D=\frac{4095}{16}(10 \mathrm{~mA}-4)$
$\mathrm{D}=(255.93)(6)$
$D=1536$

# F3-04DAS <br> 4-Channel Isolated Analog Output 

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program (DL340/DL350)
- Writing the Control Program (DL350)


## Module Specifications

The following table provides the specifications for the F3-04DAS Analog Output Module. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 4 |
| :---: | :---: |
| Output Ranges | $\begin{aligned} & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 1-5 \mathrm{~V}, \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \end{aligned}$ |
| Resolution | 12 bit (1 in 4096) |
| Output Type | Isolated, 750 VDC channel-to-channel 750 VDC channel-to-logic |
| Output Current | $\pm 5 \mathrm{~mA}$, voltage output |
| Short-circuit Current | $\pm 20 \mathrm{~mA}$ typical, voltage output |
| Capacitive Load Drive | $0.1 \mu \mathrm{~F}$ typical, voltage output |
| Load Impedance | $470 \Omega$ maximum, current output $2 \mathrm{~K} \Omega$ minimum, voltage output |
| Isolation Mode Rejection | 140 dB at 60 Hz |
| Linearity Error | $\pm 1$ count ( $\pm 0.03 \%$ maximum) |
| Calibration Error | $\pm 0.15 \%$ typical, $\pm 0.75 \%$ maximum of span $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum of full scale |
| Calibrated Offset Error | $\pm 1$ count maximum, current output $\pm 5 \mathrm{mV}$ typical, $\pm 50 \mathrm{mV}$ max., voltage output $\pm 0.2 \mathrm{mV}$ typical / ${ }^{\circ} \mathrm{C}$ |
| Conversion Time | $30 \mu \mathrm{~S}$ maximum, 1 channel/scan |
| Power Budget Requirement | 154 mA @9V, 145 mA @ 24V (maximum) |
| External Power Supply | None required |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

Analog Output Configuration Requirements

The F3-04DAS Analog Output appears as a 16-point module. The module can be installed in any slot configured for 16 points, but should not be installed in Slot 3 of any DL305 base. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.

WARNING: You should not install this module in Slot 3 of any DL305 base. The module has traces on the edge card connector that may become damaged if the module is repeatedly installed and removed. The solder mask that protects the traces may be scraped off, which may cause a short circuit on the l/O bus. The short circuit can lead to unpredictable system operation or cause damage to the CPU or power supply.


## Setting the Module Jumpers

Jumper Locations The module is set at the factory for a $0-10 \mathrm{~V}$ signal on all four channels. If this is acceptable you do not have to change any of the jumpers.
If you examine the top board on the module you will notice four sets of jumpers. The jumpers are assigned to the channels as follows.

- Channel 1 - Jumper JP4
- Channel 2 - Jumper JP3
- Channel 3 - Jumper JP2
- Channel 4 - Jumper JP1

NOTE: At first glance it might appear we have the channel / jumper assignments out of order. Your eyes do not deceive you. Channel 1 is controlled by JP4.

Each channel also has a jumper located on the bottom board of the module. These jumpers select a 1 V ( or 4 mA ) offset for each channel. Remove the jumper for any range that requires an offset. These jumpers are assigned as expected. JP1 selects an offset for channel 1, JP2 selects an offset for channel 2, etc.
The following diagram shows how the jumpers are assigned. It also shows the factory settings.


Selecting Input Signal Ranges

The following tables show the jumper selections for the various ranges. (Only channel 1 is used in the example, but all channels must be set.)

| Bipolar Signal Range | Jumper Settings |
| :---: | :---: |
| -5 VDC to +5 VDC | Channel 1 (JP4) <br> Offset Jumper (JP1) |
| -10 VDC to +10 VDC | Channel 1 (JP4) <br> Offset Jumper (JP1) $\square$ |
| Unipolar Signal Range | Jumper Settings |
| 4 to 20 mA <br> (1 VDC to 5 VDC) | Channel 1 (JP4)   Offset Jumper (JP1)  <br>  - - - - - <br> 1 -  - -      |
| $\begin{aligned} & 0 \text { VDC to +5 VDC } \\ & (0 \text { to }+20 \mathrm{~mA}) \end{aligned}$ | Offset Jumper (JP1) |
| 0 VDC to +10 VDC | Offset Jumper (JP1) |

Special Output Signal Ranges

The following tables show the jumper selections for some additional ranges that are not normally found in many applications. Notice you can install or remove the offset jumper to change the settings. (Only channel 1 is used in the example, but all channels must be set.)

| Signal Range Offset Installed | Signal Range Offset Removed | Jumper Settings |
| :---: | :---: | :---: |
| -10 VDC to +6 VDC | -9 VDC to +7 VDC | Channel 1 (JP4) |
| -5 VDC to +3 VDC | -4 VDC to +4 VDC | Channel 1 (JP4) |
| $\begin{aligned} & -2.5 \text { VDC to } \\ & +2.5 \text { VDC } \end{aligned}$ | $\begin{aligned} & -1.5 \mathrm{VDC} \text { to } \\ & +3.5 \mathrm{VDC} \end{aligned}$ | Channel 1 (JP4) |
| $\begin{aligned} & -2.5 \mathrm{VDC} \text { to } \\ & +1.5 \mathrm{VDC} \end{aligned}$ | $\begin{aligned} & -1.5 \text { VDC to } \\ & +2.5 \text { VDC } \end{aligned}$ | Channel 1 (JP4) |
| 0 VDC to 8 VDC | 1 VDC to 9 VDC | Channel 1 (JP4) |
| 0 VDC to 4 VDC | 1 VDC to 5 VDC | Channel 1 (JP4) |

## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the module or the power supply return ( 0 V ). Do not ground the shield at both the module and the transducer.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply The F3-04DAS receives all power from the base. A separate power supply is not Requirements required.

Load
Requirements

Each channel can be wired independently for a voltage or current transducer.

- Current transducers must have an impedance less than 470 ohms.
- Voltage transducers must have an impedance greater than 2 K ohms.


## Removable Connector

## Wiring Diagram

The F3-04DAS module has a removable connector to make wiring easier. Simply squeeze the top and bottom tabs and gently pull the connector from the module.

Note1: Shields should be connected to the respective channel's -V terminal of the module.
Note 2: Each isolated output channel may have either a voltage or current load, but not both
Note 3: An external 0.31 Amp fast-acting fuse in series with the isolated + I terminal (+15VDC) is recommended to protect against accidental shorts to the -V terminal (15VDC common)
Note 4: Do not attempt to source more than 20 mA from any one of the four isolated +15 VDC power supplies

Internal Module Wiring


Combining Voltage Outputs

You may occasionally encounter transmitters that have a very unusual signal range. Since each channel is isolated, you can "daisy chain" the channels to provide output voltage signals that are outside of the normal operating range. For example, you could connect the first two channels to provide a voltage output from 0 to 20 VDC.


Combining Current You cannot connect the current outputs in series (like the voltage outputs) but you Outputs can achieve unusual ranges with a few wiring and programming tricks. For example, let's say an application requires a $\pm 20 \mathrm{~mA}$ range. By completing the following steps, you could easily accommodate this requirement.

1. Configure channel 1 and channel 2 for $0-20 \mathrm{~mA}$.
2. Connect the +l of channel 1 to the -l of channel 2 .
3. Connect the -1 of channel 1 to the +1 of channel 2.
4. Send 0 (digital value) to channel 2 while you send 0-4095 (digital value) to channel 1. To reverse the power flow, send 0 to channel 1 while you send the 0-4095 value to channel 2. (See the section on Writing the Control Program for information on sending data values.)

WARNING: The isolated +15 VDC power supplies are rated at a maximum of 20 mA . Current ratings that exceed 20 mA will damage the module beyond repair. For example, if you used the $0-10$ VDC range for the example, the current would approach 40 mA which would cause damage to the module.


F3-04DAS 4-Channel Isolated Analog Output

## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.
Channel Scanning Sequence

The F3-04DAS module can update one channel per CPU scan. Your RLL program selects the channel to update, so you have complete flexibility in solving your application requirements.


Understanding the I/O Assignments

You may recall the F3-04DAS module appears to the CPU as a 16-point module. These 16 points provide:

- the digital representation of the analog signal.
- identification of the channel to receive the data.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.

F3-04DAS


Within these two word locations, the individual bits represent specific information about the analog signal.

The last four points of the upper register are used as outputs to tell the module which channel to update. In our example, when output 114 is on, channel 1 will be updated. Here's how the outputs are assigned.
Output Channels $114 \quad 1$ $115 \quad 2$ $116 \quad 3$ $117 \quad 4$

F3-04DAS 4-Channel Isolated Analog Output

Analog Data Bits
The remaining twelve bits represent the analog data in binary format.


Since the module has 12-bit resolution, the analog signal is converted into 4096 "pieces" ranging from $0-4095\left(2^{12}\right)$. For example, with a 0 to 10 V scale, a 0 V signal would be 0 , and a 10 V signal would be 4095 . This is equivalent to a a binary value of 000000000000 to 11111111 1111, or 000 to FFF hexadecimal. The following diagram shows how this relates to each signal range.
$-10 \mathrm{~V}-+10 \mathrm{~V}$

$$
-5 \mathrm{~V}-+5 \mathrm{~V}
$$


OV - 10V
OV - 5 V



Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will possibly result in a change in the data value for each signal range.

$$
\text { Resolution }=\frac{\mathrm{H}-\mathrm{L}}{4095}
$$

$\mathrm{H}=$ high limit of the signal range
L = low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| -10 to +10 V | +10 V | -10 V | 4.88 mV |
| -5 to +5 V | +5 V | -5 V | 2.44 mV |
| 0 to 5 V | 5 V | 0 V | 1.22 mV |
| 0 to 10 V | 10 V | 0 V | 2.44 mV |
| 1 to 5 V | 5 V | 1 V | 0.98 mV |
| 4 to 20 mA | 20 mA | 4 mA | $3.91 \mu \mathrm{~A}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

Identifying the Data Locations

As mentioned earlier, you can use the channel selection bits to determine which channels will be updated. The following diagram shows the location for both the channel selection bits and data bits.


Your program has to calculate the digital value to send to the analog module. There are many ways to do this, but most all applications are understood more easily if you use measurements in engineering units. This is accomplished by using the conversion formula shown. You may have to make adjustments to the formula depending on the scale you choose for the engineering units.
$A=4096 \frac{U}{H-L}$
A = Analog value (0-4095)
$\mathrm{U}=$ Engineering Units
$\mathrm{H}=$ high limit of the Engineering unit range
$\mathrm{L}=$ low limit of the Engineering unit range

The following example shows how you would use Engineering Units to obtain the digital value to represent pressure (PSI) from 0 to 100 . This example assumes you want to obtain a pressure of 42 PSI , which is slightly less than half scale.

$$
\begin{aligned}
& A=4096 \frac{U}{H-L} \\
& A=4096 \frac{42}{100-0} \\
& A=1720
\end{aligned}
$$

Here's how you would write the program to perform the Engineering Unit conversion. This example assumes you have calculated or loaded the engineering unit value and stored it in R400. Also, you have to perform this for all channels if you're using different data for each channel.
| This example assumes you have already loaded the Engineering unit
| value in R400.
Scale the data


This instruction loads Engineering unit value into the accumulator on every scan.


| Aux. Accumulator |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| R577 | R576 |  |  |

The Engineering unit value is divided by the Engineering unit range, which in this case is 100. ( $100-0=100$ )


This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the module resolution, which is 4096 . $(4096 \times 4200=$ 17203200). Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the Divide instruction operation.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the digital value, which is 1720 .


There will probably be times when you need more precise control. For example, maybe your application requires 42.9 PSI , not just 42 PSI . By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've entered 429 as the Engineering unit value and we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.


This instruction loads Engineering unit value into the accumulator on every scan.

Aux. Accumulator

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| R577 | R576 |  |  |

The Engineering unit value is divided by the Engineering unit range, which in this case is 1000. (100.0 implied range)


This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the module resolution, which is 4096 . $(4096 \times 4290=$ 17571840). Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the Divide instruction operation.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the digital value, which is 1757 .


## Sending Data to a Single Channel

The following program example shows how to send the digital value to a single channel.

This example assumes you have already loaded the Engineering unit value in R450 and R451.
Send Channel $\mathbf{1}$
This rung loads the data into the accumulator on
every scan.
Since the data is in BCD format, you have to
convert it to binary before you send the data to the
module.
Send the accumulator data to the Register that
corresponds to the module, which is R001.

If you install the F3-04DA-1 in the slot corresponding to registers 6 and 16, you have to make a slight program adjustment. This is because the DOUT5 instruction is not supported for this slot.


## Sequencing the Channel Updates

This example shows how to send digital values to the module when you have more than one channel. This example will automatically update all four channels over four scans. The example is fairly simple and will work in most all situations, but there are instances where problems can occur. The logic must be active on the first CPU scan and all subsequent scans. If the logic gets stopped or disabled for some reason, there is no way to restart it. If you're using an RLLPLUS (Stage) program, put this logic in an initial stage that is always active. Also, you should avoid using the this example if you require the analog output logic to be used inside a Master Control Relay field of control. You could also accidentally disable the analog output logic by inadvertently writing to the multiplexing control relays with an operator interface or intelligent module, such as an ASCII BASIC module, etc.
The following program example shows how to send the digital values to multiple channels. With this program, all channels will be updated within four scans. You must use the rungs in the order shown, but you can include them anywhere in the program.


When channel 4 has been updated, 160 restarts the update sequence.

When channel 3 has been updated, this rung loads the data for channel 4 into the accumulator. By turning on 117, this triggers the channel update. (Since 117 is also used as an input, this results in a one-shot.)

When channel 2 has been updated, this rung loads the data for channel 3 into the accumulator. By turning on 116, this triggers the channel update. (Since 116 is also used as an input, this results in a one-shot.)

When channel 1 has been updated, this rung loads the data for channel 2 into the accumulator. By turning on 115 , this triggers the channel update. (Since 115 is also used as an input, this results in a one-shot.)

This rung loads the data for channel 1 into the accumulator. Since 374 is used, this rung automatically executes on the first scan. After that, 160 restarts this rung. If you examine the first rung, you'll notice 160 only comes on after channel 4 has been updated.

Since the data is in BCD format, you have to convert it to binary before you send the data to the module. (You can omit this step if you've already converted the data elsewhere.)

Send the 8 least significant data bits to the first Register that corresponds to the module which is R001.

Shift the 4 most significant data bits to the right 8 places. (The data is still in the accumulator).

Send the 4 most significant data bits to the second Register that corresponds to the module which is R011.

## Writing the Control Program (DL350)

> Reading Values: Pointer Method and Multiplexing

There are two methods of reading values:

- The pointer method (all system bases must be D3-xx-1 to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350 CPU, but for ease of programming it is strongly recommended that you use the pointer method.

## Pointer Method

The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. By using these V-memory locations you can:

- specify the number of channels to update.
- specify where to obtain the output data.

NOTE: Do not use the pointer method and the PID Control Output auto transfer to I/O module function together for the same module. If using PID loops, use the pointer method and ladder logic code to map the analog output data from the PID loop to the output module memory location(s).

The following program example shows how to set up these locations. Place this rung anywhere in the ladder program, or in the initial stage when using stage programming.


The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases (all bases must be D3-xx-1) up to a total of 8 slots away from the DL350. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Output Module Slot Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7700 | V7701 | V7702 | V7703 | V7704 | V7705 | V7706 | V7707 |

Multiplexing:
DL350 with a
D3-xx-1 Base

This example assumes the module is in Y 0 address slot of a D3 $-\mathrm{xx}-1$. In this example V2000 contains the data for channel 1 and V2001 for channel 2, etc. in BCD. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.

example program continued from previous page
1


This rung converts the appropriate analog channel data to binary for the module.

The OUTF instruction sends the 12 bits of analog data to the analog module memory address.

Multiplexing: DL350 with
Conventional DL305 Base

This example assumes the module is in the Y0-10 / Y100-107 slot of a 305 conventional base. In this example V2000 contains the BCD data for channel 1 and V2001 contains the data for channel 2, etc. One more rung would be necessary for channel 4.

example program continued on next page
example program continued from previous page


Calculating the Digital Value

Your program must calculate the digital value to send to the analog module. There are many ways to do this, but most applications are understood more easily if you use measurements in engineering units. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.
$A=U \frac{4095}{H-L}$
A = Analog value (0-4095)
$\mathrm{U}=$ Engineering Units
$\mathrm{H}=$ high limit of the engineering unit range
$\mathrm{L}=$ low limit of the engineering unit range

Consider the following example which controls pressure from 0.0 to 99.9 PSI. By using the formula, you can easily determine the digital value that should be sent to the module. The example shows the conversion required to yield 49.4 PSI. Notice the formula uses a multiplier of 10 . This is because the decimal portion of 49.4 cannot be loaded, so you adjust the formula to compensate for it.

$$
\begin{aligned}
& A=10 U \frac{4095}{10(H-L)} \\
& A=494 \frac{4095}{1000-0} \\
& A=2023
\end{aligned}
$$

example program below shows how you would write the program to perform the engineering unit conversion. This example assumes you have calculated or loaded the engineering unit values in BCD and stored them in V2300 and V2301 for channels 1 and 2 respectively.

NOTE: The DL350 offers various instructions that allow you to perform math operations using BCD format. It is easier to perform math calculations in BCD and then convert the value to binary before sending the data to the module.


The LD instruction loads the engineering units used with channel 1 into the accumulator. This example assumes the numbers are BCD. Since SP1 is used, this rung automatically executes on every scan. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.

Multiply the accumulator by 4095 (to start the conversion).

Divide the accumulator by 1000 (because we used a multiplier of 10 , we have to use 1000 instead of 100 ).

Store the BCD result in V3000 (the actual steps to write the data were shown earlier).

The LD instruction loads the engineering units used with channel 2 into the accumulator. This example assumes the numbers are BCD. Since SP1 is used, this rung automatically executes on every scan. You could also use an $\mathrm{X}, \mathrm{C}$, etc. permissive contact.

Multiply the accumulator by 4095 (to start the conversion).

Divide the accumulator by 1000 (because we used a multiplier of 10, we have to use 1000 instead of 100).

Store the BCD result in V3001 (the actual steps to write the data were shown earlier).

F3-04DAS 4-Channel Isolated Analog Output

Analog and Digital Value Conversions

Sometimes it is helpful to be able to quickly convert between the voltage or current signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the signal level ... |
| :--- | :---: | :---: |
| -10 V to +10 V | $\mathrm{~A}=\frac{20 \mathrm{D}}{4095}-10$ | $\mathrm{D}=\frac{4095}{20}(\mathrm{~A}+10)$ |
| -5 V to +5 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}-5$ | $\mathrm{D}=\frac{4095}{10}(\mathrm{~A}+5)$ |
| 0 to 5 V | $\mathrm{~A}=\frac{5 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{5} \mathrm{~A}$ |
| 0 to 10 V | $\mathrm{~A}=\frac{10 \mathrm{D}}{4095}$ | $\mathrm{D}=\frac{4095}{10} \mathrm{~A}$ |
| 1 to 5 V | $\mathrm{~A}=\frac{4 \mathrm{D}}{4095}+1$ | $\mathrm{D}=\frac{4095}{4}(\mathrm{~A}-1)$ |
| 4 to 20 mA | $\mathrm{~A}=\frac{16 \mathrm{D}}{4095}+4$ | $\mathrm{D}=\frac{4095}{16}(\mathrm{~A}-4)$ |

For example, if you are using the -10 to +10 V range and you have measured the signal at 6 V , you would use the following formula to determine the digital value that should be stored in the register location that contains the data.
$D=\frac{4095}{20}(A+10)$
$D=\frac{4095}{20}(6 \mathrm{~V}+10)$
D $=(204.75)(16)$
$D=3276$

# F3-08THM-n 8-Channel Thermocouple Input 

In This Chapter. . . .

- Introduction
- Module Specifications
- Setting the Module Switches
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Introduction

Automatic The F3-08THM-n Thermocouple Input Module provides eight, differential Conversion thermocouple input channels (12-bit resolution). The module automatically converts type E, J, K, R, S or T thermocouple signals into direct temperature readings. No extra scaling or complex conversion is required. You can select between ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ operation.
This module is also available in versions specially designed to convert millivolt signal levels into direct digital values (0-4095). Two versions are available, one for $0-50 \mathrm{mV}$ and one for $0-100 \mathrm{mV}$.

Hardware Features The F3-08THM-n also features automatic cold junction compensation, thermocouple linearization, plus analog and digital filtering. The temperature calculation and linerazation are based on data provided by the National Bureau of Standards.

Diagnostic Thermocouple burnout and other errors are automatically reported to the CPU. For Features example, if the thermocouple becomes disconnected, then a value of 4095 is assigned to that channel.

## Module Specifications

The following table provides the specifications for the F3-08THM-n Thermocouple Input Module from FACTS Engineering. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 8, differential inputs |
| :---: | :---: |
| Input Ranges | $\begin{aligned} & \text { Type E: }-270 / 1000^{\circ} \mathrm{C},-450 / 1832{ }^{\circ} \mathrm{F} \\ & \text { Type J: }-210 / 760^{\circ} \mathrm{C},-350 / 1390^{\circ} \mathrm{F} \\ & \text { Type K: }-270 / 1370{ }^{\circ} \mathrm{C},-450 / 2500^{\circ} \mathrm{F} \\ & \text { Type R: } 0 / 1768{ }^{\circ} \mathrm{C},-32 / 3214^{\circ} \mathrm{F} \\ & \text { Type S: } 0 / 1768{ }^{\circ} \mathrm{C},-32 / 3214^{\circ} \mathrm{F} \\ & \text { Type T: }-270 / 400^{\circ} \mathrm{C},-450 / 752^{\circ} \mathrm{F} \\ & -1: 0-50 \mathrm{mV} \\ & -2: 0-100 \mathrm{mV} \end{aligned}$ |
| Resolution | 12 bit (1 in 4096) |
| Input Impedance | 27Ks DC |
| Absolute Maximum Ratings | Fault protected input, 130 Vrms or 100 VDC |
| Cold Junction Compensation | Automatic |
| Conversion Time | 15 ms per channel, minimum 1 channel per CPU scan |
| Converter Type | Successive Approximation, 574 |
| Linearity Error | $\pm 1$ count ( $0.03 \%$ of full scale) maximum |
| Maximum Inaccuracy at $77{ }^{\circ} \mathrm{F}$ ( $25^{\circ} \mathrm{C}$ ) | 0.35\% of full scale |
| Accuracy vs. Temperature | $57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale |
| Power Budget Requirement | 50 mA @ 9 VDC, 34 mA @ 24 VDC |
| External Power Supply | None required |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

Analog Input Configuration Requirements

The F3-08THM-n Thermocouple Input appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

Jumper Locations The module is set at the factory for ${ }^{\circ} \mathrm{C}$ thermocouple readings. If this is acceptable you do not have to change any of the jumpers. The following diagram shows how the jumpers are set.

WARNING: DO NOT change the calibration jumper settings. If you think this jumper has been changed, make sure it is NOT in the CAL position. All calibration is performed at the factory. Any changes to this may affect the module accuracy which could result in the risk of personal injury and/or equipment damage.

Selecting ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ Operation

There is a jumper located on the bottom of the board that selects between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ temperature measurements. This jumper (labeled ${ }^{\circ} \mathrm{F}$ ) should be removed if you require ${ }^{\circ} \mathrm{C}$ measurements.


Remove this jumper for ${ }^{\circ} \mathrm{C}$ operation.

Selecting 0-4095 Operation

There is a jumper located on the bottom of the board that allows you to disable the direct temperature conversion feature. If you install a jumper on the CNTS pin, the temperature will be represented by a digital value between 0 and 4095. For example, an E type thermocouple would have a value of 0 for $-450^{\circ} \mathrm{F}$ and a value of 4095 for $1832^{\circ} \mathrm{F}$.

NOTE: If you are using the $-1(50 \mathrm{mV})$ or the $-2(100 \mathrm{mV})$ millivolt input versions, you should make sure this jumper is installed.


Install this jumper to obtain digital values (0-4095).

## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the signal source. Do not ground the shield at both the module and the source.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply Requirements

The F3-08THM-n receives all power from the base. A separate power supply is not required.

## Wiring Diagram

Note 1: Terminate shields at the respective signal source
Note 2: Leave unused channels open (no connection)


## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.

## Channel Scanning

 SequenceThe F3-08THM-n module supplies1 channel of data per each CPU scan. Since there are eight channels, it can take up to eight scans to get data for all channels. Once all channels have been scanned the process starts over with channel 1.


Even though the channel updates to the CPU are synchronous with the CPU scan, the module asynchronously monitors the thermocouple signal and converts the signal to a temperature (or 12-bit binary) representation. This enables the module to continuously provide accurate measurements without slowing down the discrete control logic in the RLL program.

Understanding the I/O Assignments

You may recall the F3-08THM-n module appears to the CPU as a 16 -point module. These 16 points provide:

- an indication of which channel is active.
- the digital representation of the temperature.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.

F3-08THM


Within these two register locations, the individual bits represent specific information about the analog signal.
Active Channel Indicator Inputs

The next to last three bits of the upper Register indicate the active channel. The indicators automatically increment with each CPU scan.

Active Channel
Scan Inputs Channel

|  | R011 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MSB |  |  |  |  |  |
|  | 11 | 1 | 11 | 1 | 1 |
|  | 11 | 1 | 11 | 1 | 1 |
|  | 76 | 5 | 4 | 2 |  |
| $\begin{array}{r} -\mathrm{act} \\ \text { ind } \end{array}$ | ive dica | ch <br> ator | $\begin{aligned} & \text { ant } \\ & \text { inp } \end{aligned}$ |  |  |

Temperature Sign Bit

The most significant bit is used to note the sign of the temperature. If this bit is on, then the temperature is negative. If the bit is off, then the temperature is positive.

The first twelve bits represent the temperature. If you have selected the $0-4095$ scale, the following format is used.

| Bit | Value | Bit | Value |  |
| :--- | :---: | ---: | ---: | ---: |
| 0 (LSB) | 1 |  | 6 | 64 |
| 1 | 2 |  | 7 | 128 |
| 2 | 4 | 8 | 256 |  |
| 3 | 8 | 9 | 512 |  |
| 4 | 16 | 10 | 1024 |  |
| 5 | 32 | 11 | 2048 |  |


$\square$ - temperature sign


Temperature Input Resolution

Millivolt Input Resolution

Typically, the F3-08THM-n resolution enables you to detect a $1{ }^{\circ} \mathrm{C}$ change in temperature. The National Bureau of Standards publishes conversion tables that show how each temperature corresponds to an equivalent signal level.

Since the module has 12 -bit resolution, the analog signal is converted into 4096 "pieces" ranging from $0-4095\left(2^{12}\right)$. For example, with a $-2(100 \mathrm{mV})$ module a signal of 0 mV would be 0 , and a signal of 100 mV would be 4095. This is equivalent to a a binary value of 0000 00000000 to 111111111111 , or 000 to FFF hexadecimal. The diagram shows how this relates to the example signal range.
Each "piece" can also be expressed in terms of the signal level by using the equation shown. The following table shows the smallest signal levels that will result in a change in the data value for each signal range.

0-100 mV Scale


$$
\text { Resolution }=\frac{\mathrm{H}-\mathrm{L}}{4095}
$$

$\mathrm{H}=$ high limit of the signal range
$\mathrm{L}=$ low limit of the signal range

| Range | Highest Signal | Lowest Signal | Smallest Change |
| :--- | :---: | :---: | :---: |
| $0-50 \mathrm{mV}$ | 50 mV | 0 mV | $12.2 \mu \mathrm{~V}$ |
| $0-100 \mathrm{mV}$ | 100 mA | 0 mA | $24.2 \mu \mathrm{~V}$ |

Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL330 / DL340)

Identifying the Data Locations

Since all channels are multiplexed into a single data word, the control program must be setup to determine which channel is being read. Since the module provides input points to the CPU, it is very easy to use the channel status bits to determine which channel is being monitored.


Automatic
Temperature Conversion

If you are using the temperature scale ( ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ ) then you do not have to perform any scaling. Once you convert the binary temperature reading to a four-digit BCD number, you have the temperature.

The following example shows a program designed to read any of the available channels of data into Register locations. Once the data is in a Register, you can perform math on the data, compare the data against preset values, etc. Since the DL305 CPUs use 8-bit word instructions, you have to move the data in pieces. It's simple if you follow the example.

This rung loads the four data bits into the accumulator from Register 011 on every scan.

Temporarily store the bits to Register 501.

This rung loads the eight data bits into the accumulator from Register 001.

Temporarily store the bits to Register 500. Since the most significant bits were loaded into 501, now R500 and R501 contain all twelve bits in order.

Now that all the bits are stored, load all twelve bits into the accumulator.

Math operations are performed in BCD. This instruction converts the binary data to BCD. (You can omit this step if your application does not require the conversion.)

The channel selection inputs are used to let the CPU know which channel has been loaded into the accumulator. By using these inputs to control a DOUT instruction, you can easily move the data to a storage register. Notice the DOUT instruction stores the data in two bytes. (Two bytes are required for four digit BCD numbers.)


## Store channel 3



Store channel 5


## Store channel 7



Using the Sign Bit
By adding a couple of simple rungs you can easily monitor the temperature for positive vs. negative readings. (For example, you have to know whether the temperature is $+100^{\circ} \mathrm{F}$ or $-100^{\circ} \mathrm{F}$.) Notice how we've changed Channel 2 to control an output that denotes the sign of the temperature.


F3-08THM-n 8-Channel Thermocouple Input

Scaling the Input Data

If you are using the $-1(50 \mathrm{mV})$ or the $-2(100 \mathrm{mV})$ versions, you may want to scale the data to represent the measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.

NOTE: The thermocouple versions automatically provide the correct temperature readings. Scaling is not required.

The following example shows how you would use the analog data to represent pressure (PSI) from 0 to 100. This example assumes the analog value is 1760. This should yield approximately 42.9 PSI.

Units $=\frac{A}{4096} S$
Units = value in Engineering Units
A = Analog value ( $0-4095$ )
$\mathrm{S}=$ high limit of the Engineering unit range

The following instructions are required to scale the data. (We'll continue to use the 42.9 PSI example.) Once we've explained how these instructions operate, we'll show an example program.
| This example assumes you have already read the analog data
| and stored the BCD equivalent in R400 and R401
Scale the data


This instruction brings the analog value (in BCD) into the accumulator.


The analog value is divided by the resolution of the module, which is 4096. $(1760 / 4096=0.4296)$


This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is then multiplied by the scaling factor, which is $100 .(100 \times 4296=429600)$. Notice the most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contain the PSI, which is 42 PSI .


You probably noticed the previous example yielded 42 PSI when the real value should have been 42.9 PSI. By changing the scaling value slightly, we can "imply" an extra decimal of precision. Notice in the following example we've added another digit to the scale. Instead of a scale of 100, we're using 1000, which implies 100.0 for the PSI range.

This example assumes you have already read the analog data
and stored the BCD equivalent in R400 and R401
Scale the data


This instruction brings the analog value (in BCD) into the accumulator.


The analog value is divided by the resolution of the module, which is 4096 . $(1760 / 4096=0.4296)$


| Aux. Accumulator |  |  |  |
| :---: | :---: | :---: | :---: |
| 4 | 2 | 9 | 6 |
| R577 | R576 |  |  |

This instruction moves the two-byte decimal portion into the accumulator for further operations.


The accumulator is multiplied by the scaling factor, which is now 1000. $(1000 \times 4296=4296000)$. The most significant digits are now stored in the auxilliary accumulator. (This is different from the way the Divide instruction operates.)


This instruction moves the two-byte auxilliary accumulator for further operations.


This instruction stores the accumulator to R450 and R451. R450 and R451 now contains the PSI, which implies 42.9 .


This example program shows how you can use the instructions to load these equation constants into data registers. The example is written for channel 1 , but you can easily use a similar approach to use different scales for all channels if required.
You may just use the appropriate constants in the instructions dedicated for each channel, but this method allows easier modifications. For example, you could easily use an operator interface or a programming device to change the constants if they are stored in Registers.


On the first scan, these first two instructions load the analog resolution (constant of 4096) into R430 and R431.

These two instructions load the high limit of the Engineering unit scale (constant of 1000) into R432 and R433. Note, if you have different scales for each channel, you'll also have to enter the Engineering unit high limit for those as well.

This rung loads the four most significant data bits into the accumulator from Register 011 on every scan.
Temporarily store the bits to Register 501.

## Store channel 1



The analog value is divided by the resolution of the module, which is stored in R430 and R431.

This instruction moves the decimal portion from the auxilliary accumulator into the regular accumulator for further operations.

The accumulator is multiplied by the scaling factor, which is stored in R432 and R433.

This instruction moves most significant digits (now stored in the auxilliary accumulator) into the regular accumulator for further operations.

The scaled value is stored in R400 and R401 for further use.

## Writing the Control Program (DL350)

Reading Values: There are two methods of reading values for the DL350:

Pointer Method and Multiplexing

Pointer Method

- The pointer method (all system bases must be D3-xx-1 bases to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350, but for ease of programming it is strongly recommended that you use the pointer method.

The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. These V-memory locations allow you to:

- specify the data format
- specify the number of channels to scan
- specify the storage locations

The example program shows how to setup these locations. Place this rung anywhere in the ladder program or in the Initial Stage if you are using RLLPLUS instructions. This is all that is required to read the data into V-memory locations. Once the data is in V-memory, you can perform math on the data, compare the data against preset values, and so forth. V2000 is used in the example, but you can use any user V-memory location. In this example the module is installed in slot 2. You should use the V-memory locations for your module placement.



Loads a constant that specifies the number of channels to scan and the data format. The upper byte, most significant nibble (MSN) selects the data format (i.e. $0=B C D, 8=$ Binary), the $L S N$ selects the number of channels (i.e. 1, 2, 3, 4, 5, 6, 7, 8).
The binary format is used for displaying data on some operator interfaces.

Special V-memory location assigned to slot 2 that contains the number of channels to scan.

This loads an octal value for the first V-memory location that will be used to store the incoming data. For example, the O2000 entered here would designate the following addresses.
Ch1 - V2000, Ch2 - V2001, Ch3 - V2002, Ch4 - V2003,
Ch5 - V2004, Ch6 - V2005, Ch7 - V2006, Ch8 - V2007
The octal address (O2000) is stored here. V7672 is assigned to slot 2 and acts as a pointer, which means the CPU will use the octal value in this location to determine exactly where to store the incoming data.

The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU, slot 1 is the module two places from the CPU, and so on. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases up to a total of 8 slots away from the DL350 CPU. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Input Module Slot-Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7670 | V7671 | V7672 | V7673 | V7674 | V 7675 | V 7676 | V 7677 |

Multiplexing: DL350 with a D3-XX-1 Base

The example below shows how to read multiple channels on an F3-08THM Thermocouple module in the X0 address slot of the D3-xx-1 base. If any expansion bases are used in the system, they must all be D3-xx-1 to be able to use this example. Otherwise, the conventional base addressing must be used.


This loads the analog data from the module.

The BCD command converts the data to BCD format.

The scaled value is stored in V1400 with an implied decimal.

Channel 1 Select Bit States


This writes channel one data to V2000 when bits X14, X15 and X16 are as shown.

Channel 2 Select Bit States


This writes channel two data to V2001 when bits X14, X15 and X16 are as shown.

Channel 3 Select Bit States


Channel 4 Select Bit States


This writes channel four data to V2003 when bits X14, X15 and X16 are as shown.
This writes channel three data to V2002 when bits X14, X15 and X16 are as shown.


This writes channel five data to V2004 when bits X14, X15 and X16 are as shown.

This writes channel six data to V2005 when bits X14, X15 and X16 are as shown.

This writes channel seven data to V2006 when bits X14, X15 and X16 are as shown.

This writes channel eight data to V2007 when bits X14, X15 and X16 are as shown

## Using the Sign Bit

Channel 1 Selected
$X 17$ is the sign bit when in module address 0 .


When the sign bit is on, the sign control relay (C0) is set, causing the temperature on channel one to be negative.

When the sign bit is not true, the sign bit control bit is reset, causing the temperature on channel one to be positive.

Multiplexing: DL350 with a Conventional DL305 Base

The example below shows how to read multiple channels on an F3-08THM Thermocouple module in the X20-X27 / 120-127 address of a DL305 conventional base. The first six channels are shown.


Channel 1 Select Bit States


This writes channel one data to V3000 when bits X124, X125 and X126 are as shown.

This writes channel two data to V3001 when bits X124, X125 and X126 are as shown.

This writes channel three data to V3002 when bits X124, X125 and X126 are as shown.

This writes channel four data to V3003 when bits X124, X125 and X126 are as shown.

This writes channel five data to V3004 when bits X124, X125 and X126 are as shown.

Channel 6 Select Bit States


This writes channel six data to V3005 when bits X14, X15 and X16 are as shown.

$X 17$ is the sign bit when in module address 0 .

When the sign bit is on, the sign control relay (C0) is set, causing the temperature on channel one to be negative.

When the sign bit is not true, the sign bit control bit is reset, causing the temperature on channel one to be positive.

Scaling the Input Data

Most applications usually require measurements in engineering units, which provide more meaningful data. This is accomplished by using the conversion formula shown.
You may have to make adjustments to the formula depending on the scale you choose for the engineering units.

Units $=A \frac{H-L}{4095}$
$\mathrm{H}=$ high limit of the engineering unit range
$\mathrm{L}=$ low limit of the engineering unit range
$\mathrm{A}=$ Analog value (0-4095)

For example, if you wanted to measure pressure (PSI) from 0.0 to 99.9 then you would have to multiply the analog value by 10 in order to imply a decimal place when you view the value with the programming software or a handheld programmer. Notice how the calculations differ when you use the multiplier.

Here is how you would write the program to perform the engineering unit conversion. This example assumes you have BCD data loaded into the appropriate V-memory locations using instructions that apply for the model of CPU you are using.


NOTE: This example uses SP1, which is always on. You could also use an $X, C$, etc. permissive contact.


Temperature and Since the thermocouple devices are non-linear, it is much easier to rely on published Digital Value Conversions standards for conversion information. The National Bureau of Standards publishes conversion tables that show how each temperature corresponds to an equivalent signal level.
Millivolt and Digital Sometimes it is helpful to be able to quickly convert between the signal levels and the Value Conversions digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| mV Range | If you know the digital value ... | If you know the analog signal level ... |
| :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { MV50 } \\ & 0 \text { to } 50 \mathrm{mV} \end{aligned}$ | $A=\frac{50 D}{4095}$ | $D=\frac{4095}{50} A$ |
| MV100 <br> 0 to 100 mV | $A=\frac{100 D}{4095}$ | $D=\frac{4095}{100} A$ |

For example, if you are using a $-2(100 \mathrm{mV})$ version and you have measured the signal as 30 mV , you would use the following formula to determine the digital value that should be stored in the register location that contains the data.
$D=\frac{4095}{100} A$
D $=\frac{4095}{100}(30)$
$\mathrm{D}=(40.95)(30)$
$D=1229$

# F3-08TEMP 8-Channel Temperature Input 

In This Chapter. . . .

- Module Specifications
- Setting the Module Jumpers
- Connecting the Field Wiring
- Module Operation
- Writing the Control Program


## Module Specifications

The F3-08TEMP Temperature Input Module provides eight, single-ended temperature inputs for use with AD590 type temperature transmitters (range of $0-1 \mathrm{~mA}$.) The module provides 12 -bit resolution. You can use the RLL control program to select between ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ operation.
The following table provides the specifications for the F3-08TEMP Temperature Input Module from FACTS Engineering. Review these specifications to make sure the module meets your application requirements.

| Number of Channels | 8, single-ended inputs |
| :---: | :---: |
| Input Ranges | 0-1 mA |
| Resolution | 12 bit (1 in 4096) No missing codes $0.25^{\circ} \mathrm{C}$ with AD590M |
| Input Impedance | $10 \mathrm{~K} \Omega \pm 0.1 \%$ |
| Absolute Maximum Ratings | $\pm 50 \mathrm{~mA}$ |
| Conversion Time | 35us per channel, maximum 1 channel per CPU scan |
| Converter Type | Successive Approximation, AD574 |
| Linearity Error | $\pm 1$ count ( $0.03 \%$ of full scale) maximum |
| Maximum Inaccuracy at $77{ }^{\circ} \mathrm{F}$ ( $25^{\circ} \mathrm{C}$ ) | 0.25\% of full scale |
| Accuracy at $25^{\circ} \mathrm{C}$ | $\pm 1^{\circ} \mathrm{C}$ with AD590M transmitter |
| Accuracy vs. Temperature | $57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale |
| Power Budget Requirement | 25 mA @ 9 VDC, 37 mA @ 24 VDC |
| External Power Supply | None required |
| Operating Temperature | $32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ |
| Storage Temperature | $-4^{\circ}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

Compatible
Temperature Probe Specifications

The following table provides the specifications for input temperature probes compatible with this module.

| Compatible Temperature Probe Specifications |  |
| :--- | :--- |
| Transmitter Type | AD590 |
| Input Temperature Range | $-40^{\circ}$ to $212^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.100^{\circ} \mathrm{C}\right)-$ <br> (Opto 22 PN ICTD) |
|  | $-67^{\circ}$ to $302^{\circ} \mathrm{F}\left(-55^{\circ}\right.$ to $\left.150^{\circ} \mathrm{C}\right)-$ <br> (Analog Devices PN AC2626J) |
| Transmitter Output <br> for Opto 22 and <br> Analog Devices | $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}, 298.2 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$ <br> $218 \mu \mathrm{~A} @-55^{\circ} \mathrm{C}, 423 \mu \mathrm{~A} @ 150^{\circ} \mathrm{C}$ |

Analog Input Configuration Requirements

The F3-08TEMP Temperature Input appears as a 16-point module. The module can be installed in any slot configured for 16 points. See the DL305 User Manual for details on using 16 point modules in DL305 systems. The limitation on the number of analog modules are:

- For local and expansion systems, the available power budget and 16 -point module usage are the limiting factors.


## Setting the Module Jumpers

Factory Settings The module is set at the factory for eight-channel operation. If this is acceptable you do not have to change any of the jumpers. The following diagram shows how the jumpers are set.

## Selecting the Number of Channels

If you examine the rear of the module, you'll notice several jumpers. The jumpers labeled $+1,+2$ and +4 are used to select the number of channels that will be used. Without any jumpers the module processes one channel. By installing the jumpers you can add channels. The module is set from the factory for eight channel operation.
For example, if you install the +1 jumper, you add one channel for a total of two. Now if you install the +2 jumper you add two more channels for a total of four.
Any unused channels are not processed so if you only select channels $1-4$, then the last four channels will not be active. The following table shows which jumpers to install.

| Channel(s) | $\mathbf{+ 4}$ | $\mathbf{+ 2}$ | $\mathbf{+ 1}$ |
| :--- | :--- | :--- | :--- |
| 1 | No | No | No |
| 12 | No | No | Yes |
| 123 | No | Yes | No |
| 1234 | No | Yes | Yes |
| 12345 | Yes | No | No |
| 123456 | Yes | No | Yes |
| 1234567 | Yes | Yes | No |
| 12345678 | Yes | Yes | Yes |

## Connecting the Field Wiring

Wiring Guidelines Your company may have guidelines for wiring and cable installation. If so, you should check those before you begin the installation. Here are some general things to consider.

- Use the shortest wiring route whenever possible.
- Use shielded wiring and ground the shield at the signal source. Do not ground the shield at both the module and the source.
- Don't run the signal wiring next to large motors, high current switches, or transformers. This may cause noise problems.
- Route the wiring through an approved cable housing to minimize the risk of accidental damage. Check local and national codes to choose the correct method for your application.

User Power Supply Requirements

Removable
Connector

The F3-08TEMP module has a removable connector to make wiring easier. Simply remove the retaining screws and gently pull the connector from the module.

Note 1: Terminate the shield at the signal source ( 0 V reference potential)
Note 2: Connect unused AD590 current inputs to OVDC

Internal Module Wiring



## Module Operation

Before you begin writing the control program, it is important to take a few minutes to understand how the module processes and represents the analog signals.

## Channel Scanning

 SequenceThe F3-08TEMP module supplies1 channel of data per each CPU scan. Since there are eight channels, it can take up to eight scans to get data for all channels. Once all channels have been scanned the process starts over with channel 1.
You do not have to select all of the channels. Unused channels are not processed, so if you select only four channels, then the channels will be updated within four scans.


Even though the channel updates to the CPU are synchronous with the CPU scan, the module asynchronously monitors the temperature transmitter signal and converts the signal to a 12-bit binary representation. This enables the module to continuously provide accurate measurements without slowing down the discrete control logic in the RLL program.

Understanding the I/O Assignments

You may recall the F3-08TEMP module appears to the CPU as a 16-point module. These 16 points provide:

- an indication of which channel is active.
- the digital representation of the temperature.

Since all I/O points are automatically mapped into Register (R) memory, it is very easy to determine the location of the data word that will be assigned to the module.


Within these two register locations, the individual bits represent specific information about the analog signal.
Active Channel Indicator Inputs

The next to last three bits of the upper Register indicate the active channel. The indicators automatically increment with each CPU scan.

Active Channel
Scan Inputs Channel

| N | 000 | 1 |
| :--- | :--- | :--- |
| $\mathrm{~N}+1$ | 001 | 2 |
| $\mathrm{~N}+2$ | 010 | 3 |
| $\mathrm{~N}+3$ | 011 | 4 |
| $\mathrm{~N}+4$ | 100 | 5 |
| $\mathrm{~N}+5$ | 101 | 6 |
| $\mathrm{~N}+6$ | 110 | 7 |
| $\mathrm{~N}+7$ | 111 | 8 |
| $\mathrm{~N}+8$ | 000 | 1 |

Analog Data Bits


Temperature Input Typically, the F3-08TEMP resolution enables you to detect a $0.1^{\circ} \mathrm{F}$ change in Resolution temperature.
Now that you understand how the module and CPU work together to gather and store the information, you're ready to write the control program.

## Writing the Control Program (DL 330 / DL340)

## Identifying the Data Locations

Since all channels are multiplexed into a single data word, the control program must be setup to determine which channel is being read. Since the module provides input points to the CPU, it is very easy to use the channel status bits to determine which channel is being monitored.

F3-08TEMP


Reading the Digital The following example program is designed to read any of the available channels of Value data. Once the data is read, you'll have to add some logic to convert the data into a ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ temperature. (More on the conversion in a minute. For now, let's just read the value into the accumulator.) Since the DL305 CPUs use 8-bit word instructions, you have to move the data in pieces. It's simple if you follow the example.


This rung loads the four data bits into the accumulator from Register 011 on every scan.

Temporarily store the bits to Register 501.

This rung loads the eight data bits into the accumulator from Register 001.

Temporarily store the bits to Register 500. Since the most significant bits were loaded into 501, now R500 and R501 contain all twelve bits in order.

Now that all the bits are stored, load all twelve bits into the accumulator.

Math operations are performed in BCD. This instruction converts the binary data to BCD. (We'll have to use math to convert the value to a temperature.)

Converting the Once the input data is stored in a register location, you will need to convert it to Data to Temperature represent the temperature you are measuring. Use the formulas shown to convert the data to show the temperature in ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$.

## For ${ }^{\circ} \mathrm{C}$ Readings

$$
\begin{aligned}
& \text { Temp }=1000 \frac{\mathrm{~A}}{4096}-273.2 \\
& \text { Temp }=\text { temperature in }{ }^{\circ} \mathrm{C} \\
& \mathrm{~A}=\text { Analog value }(0-4095) \\
& 273.2={ }^{\circ} \mathrm{K} \text { offset } \\
& \left(0^{\circ} \mathrm{K}=-273.2^{\circ} \mathrm{C}\right)
\end{aligned}
$$

## For ${ }^{\circ}$ F Readings

$$
\begin{aligned}
& \text { Temp }=1000 \frac{\mathrm{~A}}{2276}-459.6 \\
& \text { Temp }=\text { temperature in }{ }^{\circ} \mathrm{F} \\
& \mathrm{~A}=\text { Analog value }(0-4095) \\
& 459.6={ }^{\circ} \mathrm{K} \text { offset } \\
& \left(0^{\circ} \mathrm{K}=-459.6^{\circ} \mathrm{F}\right)
\end{aligned}
$$

You can't quite enter the formula exactly as is with the DL305 instruction set. You have to use a value that implies the decimal point of precision. Plus, since we can move the decimal portion into the accumulator, we do not have to multiply the value by 1000 .
The following instructions show you how to solve the conversion problem. (We'll continue to use the $150^{\circ} \mathrm{C}$ example.)
The following example shows how you would use the analog data to represent the temperature. This example assumes

$$
\text { Temp }=1000 \frac{1733}{4096}-273.2
$$ the analog value is 1733 . This should yield approximately $150^{\circ} \mathrm{C}$.

$$
\text { Temp }=149.9
$$



NOTE: This example uses ${ }^{\circ} \mathrm{C}$. To use ${ }^{\circ} \mathrm{F}$, simply change the scaling factor and offset instructions to use the F formula.

- ${ }^{\circ}$ F scale - Constant of 2276 for scaling factor, constant of 4596 for offset.
- ${ }^{\circ}$ C scale - constant of 4096 for scaling factor, constant of 2732 for offset.



## Reading Temperatures Below Zero

You have to perform some additional calculations if the temperature is below zero. Since the DL305 sets a special contact 775 if the subtraction results in a value below zero, you can use this to indicate further calculations are required. The following example shows the scaling and zero indication for a temperature of -30 C.

$$
\text { Temp }=1000 \frac{996}{4096}-273.2
$$



Temp $=-30.0$


The analog value is divided by ${ }^{\circ} \mathrm{C}$ scaling factor, which is 4096 . $(996 / 4096=0.2431)$


This instruction moves the two-byte decimal portion into the accumulator for further operations.


Now subtract the ${ }^{\circ} \mathrm{K}$ offset from the accumulator. (The ${ }^{\circ} \mathrm{K}$ offset is 2732 , which represents $273.2^{\circ}$.


Since the DL305 encountered a negative number, it turns contact 775 on to indicate a borrow.

If 775 is on, the value is temporarily stored in registers (R500 and R501 in this case).


Store 0000 in the accumulator. This will allow us to calculate the correct value.


Now subtract the original answer (which was 0699.) $0-0699=0301$, or $30.1^{\circ} \mathrm{C}$


## Storing the Temperature

Once you've read the data and converted it to a temperature, you can use the channel selection inputs to store each of the eight channels. Once you've stored the data you can perform data comparisons, additional math, etc.


## Writing the Control Program (DL350)

Reading Values:
Pointer Method
and Multiplexing

Pointer Method

There are two methods of reading values for the DL350:

- The pointer method (all system bases must be D3-xx-1 bases to support the pointer method)
- Multiplexing

You must use the multiplexing method with remote I/O modules (the pointer method will not work). You can use either method when using DL350, but for ease of programming it is strongly recommended that you use the pointer method.

The DL350 has special V-memory locations assigned to each base slot that greatly simplifies the programming requirements. These V-memory locations allow you to:

- specify the data format
- specify the number of channels to scan
- specify the storage locations

The example program shows how to setup these locations. Place this rung anywhere in the ladder program or in the Initial Stage if you are using RLLPLUS instructions. This is all that is required to read the data into V-memory locations. Once the data is in V-memory, you can perform math on the data, compare the data against preset values, and so forth. V2000 is used in the example, but you can use any user V-memory location. In this example the module is installed in slot 2. You should use the V-memory locations for your module placement.


- or - $\left\lvert\, \begin{aligned} & L D \\ & K 8800\end{aligned}\right.$

Loads a constant that specifies the number of channels to scan and the data format. The upper byte, most significant nibble (MSN) selects the data format (i.e. $0=B C D, 8=$ Binary), the LSN selects the number of channels (i.e. $1,2,3,4,5,6,7,8$ ).
The binary format is used for displaying data on some operator interfaces.

Special V-memory location assigned to slot 2 that contains the number of channels to scan.

This loads an octal value for the first V-memory location that will be used to store the incoming data. For example, the O2000 entered here would designate the following addresses.
Ch1-V2000, Ch2 - V2001, Ch3 - V2002, Ch4 - V2003,
Ch5 - V2004, Ch6 - V2005, Ch7 - V2006, Ch8 - V2007
The octal address (O2000) is stored here. V7672 is assigned to slot 2 and acts as a pointer, which means the CPU will use the octal value in this location to determine exactly where to store the incoming data.

The table shows the special V-memory locations used with the DL350. Slot 0 (zero) is the module next to the CPU, slot 1 is the module two places from the CPU, and so on. Remember, the CPU only examines the pointer values at these locations after a mode transition. The pointer method is supported on expansion bases up to a total of 8 slots away from the DL350 CPU. The pointer method is not supported in slot 8 of a 10 slot base.

| Analog Input Module Slot-Dependent V-memory Locations |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slot | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| No. of Channels | V7660 | V7661 | V7662 | V7663 | V7664 | V7665 | V7666 | V7667 |
| Storage Pointer | V7670 | V7671 | V7672 | V7673 | V7674 | V 7675 | V 7676 | V 7677 |

Multiplexing: DL350 with a D3-XX-1 Base

The example below shows how to read an Analog Devices AD590 temperature transducer on an F3-08TEMP Temperature Input module in the X0 address of the D3-xx-1 Base. If any expansion bases are used in the system, they must all be D3 $-x x-1$ to be able to use this example. Otherwise, the conventional base addressing must be used.


This loads the offset for Celcus conversion, which is 273.2 degrees.

This stores the offset in V1401.

This loads the scaling factor, 4096.

This stores the scaling factor in V1402.

This loads the first twelve bits.

This converts to BCD.

This shifts the BCD value 16 bits to the left. This is the equivalent of multiplying by 1000.

This scales the value for Celsius.

This subtracts the offset for Celsius.

This stores the 12 Bit Analog Data in V1400.

Loads a Zero into the accumulator.

Subtracts the value in V1400 from zero, resulting in a negative number.

This scales the value for Celsius.

Sets control relay C0.


The negative indicator bit


These two rungs control the negative indicator bit. When the channels select bits are true for a particular channel and C0 is on, the negative bit for that channel is set. When the temperature goes above 0 Celsius, the bit is reset.
Notice that this only applies to Channels 1.

The remaining channels are shown below, without covering the negative bit logic.
Channel 2 Select Bit States


This writes channel two data to V2001 when bits X14, X15 and X16 are as shown.

Channel 3 Select Bit States


This writes channel three data to V2002 when bits X14, X15 and X16 are as shown.

Channel 4 Select Bit States


Channel 5 Select Bit States


Channel 6 Select Bit States


Channel 7 Select Bit States


## Channel 8 Select Bit States



This writes channel seven analog data to V3006 when bits X124, X125 and X126 are as shown.
This writes channel four analog data to V3003 when bits X124, X125 and X126 are as shown.

This writes channel five analog data to V3004 when bits X124, X125 and X126 are as shown.

This writes channel six analog data to V3005 when bits X124, X125 and X126 are as shown.

This writes channel eight analog data to V3007 when bits X124, X125 and X126 are as shown.

Temperature and Digital Value Conversions

Sometimes it is helpful to be able to quickly convert between the signal levels and the digital values. This is especially helpful during machine startup or troubleshooting. The following table provides formulas to make this conversion easier.

| Range | If you know the digital value ... | If you know the temperature ... |
| :--- | :---: | :---: |
| -55 to $150^{\circ} \mathrm{C}$ | $\mathrm{T}=\frac{1000 \mathrm{D}}{4095}-273.2$ | $\mathrm{D}=\frac{4095}{1000}(\mathrm{~T}+273.2)$ |
| -67 to $302^{\circ} \mathrm{F}$ | $\mathrm{T}=\frac{1000 \mathrm{D}}{2276}-459.6$ | $\mathrm{D}=\frac{2276}{1000}(\mathrm{~T}+459.6)$ |

For example, if you have measured the temperature at $30^{\circ} \mathrm{C}$, you would use the following formula to determine the digital

$$
D=\frac{4095}{1000}(T+273.2)
$$ value that should be stored in the register location that contains the temperature.

$$
D=\frac{4095}{1000}(30+273.2)
$$

D = (4.095) (303.2)

$$
D=1241
$$

# DL305 <br> Data Types and Memory Map 

In This Chapter. . . .

- DL330 Memory Map
- DL330P Memory Map
- DL340 Memory Map
— I/O Point Bit Map
- Control Relay Bit Map
- Special Relays
- Data Registers


## DL330 Memory Map

| Memory Type | Discrete Memory Reference (octal) | Register Memory Reference (octal) | Qty. Decimal | Symbol |
| :---: | :---: | :---: | :---: | :---: |
| Input / Output Points | $\begin{aligned} & 000-157 \\ & 700-767 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { R000 - R015 } \\ \text { R070 - R076 } \end{array}$ | 168 Total | $\stackrel{0}{4}^{000} \overbrace{}^{010})$ |
| Control Relays | 160-373 | R016-R037 | 140 | $\overbrace{}^{\mathrm{CO}} \vdash \quad \mathrm{c}^{\mathrm{co}})$ |
| Special Relays | $\begin{aligned} & 374-377 \\ & 770-777 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { R037 } \\ \text { R077 } \end{array}$ | 12 | $\stackrel{772}{-\gg} \quad-\left({ }^{376}\right)$ |
| Timers / Counters | $\begin{aligned} & 600-673 \\ & 674-677^{*} \end{aligned}$ | None | 64 | $-\underbrace{}_{\text {K100 }^{\text {T600 }}}-\underbrace{\text { KN10 }}$ |
| Timer / Counter Current Values | None | $\begin{aligned} & \text { R600 - R673 } \\ & \text { R674 - R677* } \end{aligned}$ | 64 | $\stackrel{\mathrm{R} 600}{ } \mid \geq{ }^{\mathrm{K} 100}$ |
| Timer / Counter Status Bits | $\begin{aligned} & \text { T600 - T673 } \\ & \text { T674 - T677* } \end{aligned}$ | None | 64 | $\begin{aligned} & \mathrm{T} 600 \\ & +\quad \vdash \end{aligned}$ |
| Data Words | None | R400-R563 | 116 | None specific, used with many instructions |
| Shift Registers | 400-577 | None | 128 |  |
| Special Registers | None | R574-R577 | 4 | R574 - R575 used with FAULT <br> R576 - R577 Auxiliary Accumulator |

[^0]
## DL330P Memory Map

| Memory Type | Discrete Memory Reference (octal) | Register Memory Reference (octal) | $\begin{gathered} \text { Qty. } \\ \text { Decimal } \end{gathered}$ | Symbol |
| :---: | :---: | :---: | :---: | :---: |
| Input / Output Points | $\begin{aligned} & 000-157 \\ & 700-767 \end{aligned}$ | $\begin{array}{\|l} \text { R000 - R015 } \\ \text { R070 - R076 } \end{array}$ | 168 Total |  |
| Control Relays | $\begin{aligned} & 160-174 \\ & 200-277 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { R016 - R017 } \\ \text { R020 - R027 } \end{array}$ | 77 | $\left.H^{\mathrm{co}} \vdash \quad-^{\mathrm{co}}\right)-$ |
| Special Relays | $\begin{aligned} & 175-177 \\ & 770-777 \end{aligned}$ | $\begin{aligned} & \text { R017 } \\ & \text { R077 } \end{aligned}$ | 11 | $\left.\stackrel{772}{-\gg} \quad-{ }^{176}\right)$ |
| Timers / Counters | $\begin{aligned} & 600-673 \\ & 674-677^{*} \end{aligned}$ | None | 64 | $-\underbrace{\text { TMR }}{ }^{\text {K100 }}{ }^{\text {T600 }}-\begin{gathered}\text { KNT C600 } \\ \end{gathered}$ |
| Timer / Counter Current Values | None | $\begin{aligned} & \hline \text { R600 - R673 } \\ & \text { R674 - R677* } \end{aligned}$ | 64 | $\stackrel{\mathrm{R} 600}{ } \mid \geq{ }^{\mathrm{K} 100}$ |
| Timer / Counter Status Bits | $\begin{aligned} & \hline \text { T600 - T673 } \\ & \text { T674-T677* } \end{aligned}$ | None | 64 | $\begin{aligned} & \mathrm{T} 600 \\ & -\quad \mid \end{aligned}$ |
| Data Words | None | R400 - R563 | 116 | None specific, used with many instructions |
| Stages | S0-S177 | R100-R117 | 128 | $\underbrace{\text { SG } 001}$ - ${ }^{\text {S1 }}$ |
| Special Registers | None | R574-R577 | 4 | R574 - R575 used with FAULT <br> R576 - R577 Auxiliary Accumulator |

[^1] R564 - R573 contain the preset value used with the Timer / Counter Setpoint Unit. R674 - R677 contain the current values for these timers or counters.

## DL340 Memory Map

| Memory Type | Discrete Memory Reference (octal) | Register Memory Reference (octal) | Qty. Decimal | Symbol |
| :---: | :---: | :---: | :---: | :---: |
| Input / Output Points | $\begin{aligned} & 000-157 \\ & 700-767 \end{aligned}$ | $\begin{aligned} & \text { R000 - R015 } \\ & \text { R070 - R076 } \end{aligned}$ | 168 Total | $\stackrel{000}{-} \vdash \quad{ }^{010}$ |
| Control Relays | $\begin{aligned} & 160-373 \\ & 1000-1067 \end{aligned}$ | $\begin{aligned} & \text { R016 - R037 } \\ & \text { R100 - R106 } \end{aligned}$ | 180 | $\overbrace{}^{\mathrm{CO}} \vdash \quad \underbrace{\mathrm{CO}})$ |
| Special Relays | $\begin{aligned} & 374-377 \\ & 770-777 \\ & 1070-1077 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { R037 } \\ \text { R077 } \\ \text { R107 } \end{array}$ | 20 | $\left.\stackrel{772}{-\gg} \quad-^{376}\right)$ |
| Timers / Counters | $\begin{aligned} & 600-673 \\ & 674-677^{*} \end{aligned}$ | None | 64 | $-\underbrace{}_{\text {K100 }^{\text {T600 }}}-$KNT C600 |
| Timer / Counter Current Values | None | $\begin{aligned} & \text { R600 - R673 } \\ & \text { R674 - R677 } \end{aligned}$ | 64 | $\stackrel{\mathrm{R} 600}{ }\|\geq\|^{\mathrm{K} 100}$ |
| Timer / Counter Status Bits | $\begin{aligned} & \hline \text { T600 - T673 } \\ & \text { T674 - T677* } \end{aligned}$ | None | 64 | $\begin{aligned} & \mathrm{T} 600 \\ & +\quad \end{aligned}$ |
| Data Words | None | $\begin{array}{\|l\|} \hline \text { R400 - R563 } \\ \text { R700 - R767 } \end{array}$ | 172 | None specific, used with many instructions |
| Shift Registers | 400-577 | None | 128 |  |
| Special Registers | None | $\begin{array}{\|l} \text { R574 - R577 } \\ \text { R770 - R777 } \end{array}$ | 12 | R574-R575 used with FAULT R576-R577 Auxiliary Accumulator R770-R777 Communications Setup |

* T/ C Setpoint Unit Only. Can be used as data registers if the Timer/Counter Setpoint Unit or Thumbwheel Interface Module is not used. R564 - R573 contain the preset value used with the Timer /

Counter Setpoint Unit. R674 - R677 contain the current values for these timers or counters.

## I/O Point Bit Map

These tables provide a listing of the individual Input points associated with each register location for the DL330, DL330P, and DL340 CPUs.

| MSB | I/O References |  |  |  |  |  | LSB | Register |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 007 | 006 | 005 | 004 | 003 | 002 | 001 | 000 | R0 |
| 017 | 016 | 015 | 014 | 013 | 012 | 011 | 010 | R1 |
| 027 | 026 | 025 | 024 | 023 | 022 | 021 | 020 | R2 |
| 037 | 036 | 035 | 034 | 033 | 032 | 031 | 030 | R3 |
| 047 | 046 | 045 | 044 | 043 | 042 | 041 | 040 | R4 |
| 057 | 056 | 055 | 054 | 053 | 052 | 051 | 050 | R5 |
| 067 | 066 | 065 | 064 | 063 | 062 | 061 | 060 | R6 |
| 077 | 076 | 075 | 074 | 073 | 072 | 071 | 070 | R7 |
| 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | R10 |
| 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | R11 |
| 127 | 126 | 125 | 124 | 123 | 122 | 121 | 120 | R12 |
| 137 | 136 | 135 | 134 | 133 | 132 | 131 | 130 | R13 |
| 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 | R14 |
| 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | R15 |
| 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | n/a |
| 177 | 176 | 175 | 174 | 173 | 172 | 171 | 170 | n/a |
| 707 | 706 | 705 | 704 | 703 | 702 | 701 | 700 | R70 |
| 717 | 716 | 715 | 714 | 713 | 712 | 711 | 710 | R71 |
| 727 | 726 | 725 | 724 | 723 | 722 | 721 | 720 | R72 |
| 737 | 736 | 735 | 734 | 733 | 732 | 731 | 730 | R73 |
| 747 | 746 | 745 | 744 | 743 | 742 | 741 | 740 | R74 |
| 757 | 756 | 755 | 754 | 753 | 752 | 751 | 750 | R75 |
| 767 | 766 | 765 | 764 | 763 | 762 | 761 | 760 | R76 |

NOTE: $160-167$ can be used as I/O in a DL330 or DL330P CPU under certain conditions. $160-177$ can be used as I/O in a DL340 CPU under certain conditions. You should consult the DL305 User Manual to determine which configurations allow the use of these points.

These points are normally used as control relays. You cannot use them as both control relays and as I/O points. Also, if you use these points as I/O, you cannot access these I/O points as a Data Register reference.

## Control Relay Bit Map

The following tables provide a listing of the individual control relays associated with each register location for the DL305 CPUs.

NOTE: 160 - 167 can be used as I/O in a DL330 or DL330P CPU under certain conditions. $160-177$ can be used as I/O in a DL340 CPU under certain conditions. You should consult the DL305 User Manual to determine which configurations allow the use of these points.

You cannot use them as both control relays and as I/O points. Also, if you use these points as I/O, you cannot access these I/O points as a Data Register reference.

| MSB | Control Relay References |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | R16 |
| Number |  |  |  |  |  |  |  |  |$|$

[^2]| MSB | DL330PControl Relay References LSB |  |  |  |  |  |  | Register Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | R16 |
|  |  |  | 174 | 173 | 172 | 171 | 170 | R17 |
| 207 | 206 | 205 | 204 | 203 | 202 | 201 | 200* | R20 |
| 217 | 216 | 215 | 214 | 213 | 212 | 211 | 210 | R21 |
| 227 | 226 | 225 | 224 | 223 | 222 | 221 | 220 | R22 |
| 237 | 236 | 235 | 234 | 233 | 232 | 231 | 230 | R23 |
| 247 | 246 | 245 | 244 | 243 | 242 | 241 | 240 | R24 |
| 257 | 256 | 255 | 254 | 253 | 252 | 251 | 250 | R25 |
| 267 | 266 | 265 | 264 | 263 | 262 | 261 | 260 | R26 |
| 277* | 276 | 275 | 274 | 273 | 272 | 271 | 270 | R27 |

* Control relays 200-277 can be made retentive by setting a CPU dipswitch. See the DL305 User Manual for details on setting CPU dipswitches.

| MSB | Control Relay References |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | RSB |
| Register |  |  |  |  |  |  |  |  |
| Number |  |  |  |  |  |  |  |  |$|$

[^3]
## Special Relays

The following table shows the Special Relays used with the DL305 CPUs.

| CPUs | Special Relay | Description of Contents |
| :---: | :---: | :---: |
| DL330P | 175 | $100 \mathrm{~ms} \mathrm{clock}$,on for 50 ms and off for 50 ms . |
|  | 176 | Disables all outputs except for those entered with the SET OUT instruction. |
|  | 177 | Battery voltage is low. |
| $\begin{aligned} & \text { DL330 } \\ & \text { DL340 } \end{aligned}$ | 374 | On for the first scan cycle after the CPU is switched to Run Mode. |
|  | 375 | 100 ms clock, on for 50 ms and off for 50 ms . |
|  | 376 | Disables all outputs except for those entered with the SET OUT instruction. |
|  | 377 | Battery voltage is low. |
| $\begin{gathered} \text { DL330 } \\ \text { DL330P } \\ \text { DL340 } \end{gathered}$ | 770 | Changes timers to 0.01 second intervals. Timers are normally 0.1 second time intervals. |
|  | 771 | The external diagnostics FAULT instruction (F20) is in use. |
|  | 772 | The data in the accumulator is greater than the comparison value. |
|  | 773 | The data in the accumulator is equal to the comparison value. |
|  | 774 | The data in the accumulator is less than the comparison value. |
|  | 775 | An accumulator carry or borrow condition has occurred. |
|  | 776 | The accumulator value is zero. |
|  | 777 | The accumulator has an overflow condition. |
| DL340 | 1074 | The RX or WX instruction is active. |
|  | 1075 | An error occurred during communications with the RX or WX instructions. |
|  | 1076 | Port 2 communications mode: on = ASCII mode, off $=$ HEX mode |
|  | 1077 | Port 1 communications mode: on = ASCII mode, off = HEX mode |

## Data Registers

The following 8-bit data registers are primarily used with data instructions to store various types of application data. For example, you could use a register to hold a timer or counter preset value.
Some data instructions call for two bytes, which will correspond to two consecutive 8 -bit data registers such as R401 and R400. The LSB (Least Significant Bit) will be in register R400 as bit0 and the MSB (Most Significant Bit) will be in register R401 as bit17.

NOTE: Data Registers are retentive.

| DL330 / DL330P <br> 8-Bit Data Registers |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 407 | 406 | 405 | 404 | 403 | 402 | 401 | 400 |  |
| 417 | 416 | 415 | 414 | 413 | 412 | 411 | 410 |  |
| 427 | 426 | 425 | 424 | 423 | 422 | 421 | 420 |  |
| 437 | 436 | 435 | 434 | 433 | 432 | 431 | 430 |  |
| 447 | 446 | 445 | 444 | 443 | 442 | 441 | 440 |  |
| 457 | 456 | 455 | 454 | 453 | 452 | 451 | 450 |  |
| 467 | 466 | 465 | 464 | 463 | 462 | 461 | 460 |  |
| 477 | 476 | 475 | 474 | 473 | 472 | 471 | 470 |  |
| 507 | 506 | 505 | 504 | 503 | 502 | 501 | 500 |  |
| 517 | 516 | 515 | 514 | 513 | 512 | 511 | 510 |  |
| 527 | 526 | 525 | 524 | 523 | 522 | 521 | 520 |  |
| 537 | 536 | 535 | 534 | 533 | 532 | 531 | 530 |  |
| 547 | 546 | 545 | 544 | 543 | 542 | 541 | 540 |  |
| 557 | 556 | 555 | 554 | 553 | 552 | 551 | 550 |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| DL340 <br> 8-Bit Data Registers |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 407 | 406 | 405 | 404 | 403 | 402 | 401 | 400 |  |
| 417 | 416 | 415 | 414 | 413 | 412 | 411 | 410 |  |
| 427 | 426 | 425 | 424 | 423 | 422 | 421 | 420 |  |
| 437 | 436 | 435 | 434 | 433 | 432 | 431 | 430 |  |
| 447 | 446 | 445 | 444 | 443 | 442 | 441 | 440 |  |
| 457 | 456 | 455 | 454 | 453 | 452 | 451 | 450 |  |
| 467 | 466 | 465 | 464 | 463 | 462 | 461 | 460 |  |
| 477 | 476 | 475 | 474 | 473 | 472 | 471 | 470 |  |
| 507 | 506 | 505 | 504 | 503 | 502 | 501 | 500 |  |
| 517 | 516 | 515 | 514 | 513 | 512 | 511 | 510 |  |
| 527 | 526 | 525 | 524 | 523 | 522 | 521 | 520 |  |
| 537 | 536 | 535 | 534 | 533 | 532 | 531 | 530 |  |
| 547 | 546 | 545 | 544 | 543 | 542 | 541 | 540 |  |
| 557 | 556 | 555 | 554 | 553 | 552 | 551 | 550 |  |
| 7 |  |  |  | 563 | 562 | 561 | 560 |  |
| 707 | 706 | 705 | 704 | 703 | 702 | 701 | 700 |  |
| 717 | 716 | 715 | 714 | 713 | 712 | 711 | 710 |  |
| 727 | 726 | 725 | 724 | 723 | 722 | 721 | 720 |  |
| 737 | 736 | 735 | 734 | 733 | 732 | 731 | 730 |  |
| 747 | 746 | 745 | 744 | 743 | 742 | 741 | 740 |  |
| 757 | 756 | 755 | 754 | 753 | 752 | 751 | 750 |  |
| 767 | 766 | 765 | 764 | 763 | 762 | 761 | 760 |  |

## DL350 System V-memory

| System V-memory | Description of Contents | Default Values / Ranges |
| :---: | :---: | :---: |
| V7620-V7627 V7620 V7621 V7622 V7623 V7624 V7625 V7626 V7627 | Locations for DV-1000 operator interface parameters <br> Sets the V-memory location that contains the value. <br> Sets the V -memory location that contains the message. <br> Sets the total number ( $1-16$ ) of V-memory locations to be displayed. <br> Sets the V-memory location that contains the numbers to be displayed. <br> Sets the V-memory location that contains the character code to be displayed. <br> Contains the function number that can be assigned to each key. <br> Reserved <br> Reserved | $\begin{aligned} & \text { V0 - V3777 } \\ & \text { V0 - V3777 } \\ & 1-16 \\ & \text { V0 - V3777 } \\ & \text { V0 - V3777 } \\ & \text { V-memory for X, Y, or C } \\ & 0,1,2,3,12 \\ & \text { Default=0000 } \end{aligned}$ |
| V7630-V7632 | Reserved | - |
| V7633 | User defined timer interrupt/operation of battery/Binary instruction sign flag* <br> Bit $12 \quad$ ON with battery sign flag. ON use sign flag OFF no sign flag <br> Bit $15 \quad$ Binary instruction sign flag. ON use sign flag OFF no sign flag |  |
| V7634 | User defined timer interrupt |  |
| V7640 | Loop Table Beginning address | V1400-V7340 |
| V7641 | Number of Loops Enabled | 1-4 |
| V7642 | Error Code - V-memory Error Location for Loop Table |  |
| V7643-V7647 | Reserved |  |
| V7650 | Port 2 End-code setting Setting (A55A), Nonprocedure communications start. |  |
| V7651 | Port 2 Data format -Non-procedure communications format setting. |  |
| V7652 | Port 2 Format Type setting - Non-procedure communications type code setting. |  |
| V7653 | Port 2 Terminate-code setting - Non-procedure communications Termination code setting. |  |
| V7654 | Port 2 Store V-mem address - Non-procedure communication data store V-Memory address. |  |
| V7655 | Port 2 Setup area -0-7 Comm protocol (flag 0) 8-15 Comm time out/response delay time (flag 1) |  |
| V7656 | Port 2 setup area-0-15 Communication (flag2, flag 3) |  |
| V7657 | Port 2 setup area - Bit to select use of parameter |  |
| V7660-V7707 | Set-up Information |  |
| V7710-V7717 | Reserved |  |
| V7720-V7722 | Locations for DV-1000 operator interface parameters. |  |
| V7720 | Titled Timer preset value pointer |  |
| V7721 | Title Counter preset value pointer |  |
| V7722 | HiByte-Titled Timer preset block size, LoByte-Titled Counter preset block size |  |
| V7730-V7737 | For slot 0 to 7 D3-DCM |  |
| V7747 | Location contains a 10 ms counter. This location increments once every 10 ms . |  |
| V7750 | Reserved |  |


| System <br> V-memory | Description of Contents |
| :--- | :--- |
| V7751 | Fault Message Error Code - stores the 4-digit code used with the FAULT instruction when the <br> instruction is executed. |
| V7752 | Reserved |
| V7753 | Reserved |
| V7754 | Reserved |
| V7755 | Error code - stores the fatal error code. |
| V7756 | Error code - stores the major error code. |
| V7757 | Error code - stores the minor error code. |
| V7760-V7762 | Reserved |
| V7763-V7764 | Location for syntax error information. |
| V7765 | Scan - stores the total number of scan cycles that have occurred since the last Program Mode to Run <br> Mode transition. |
| V7766 | Contains the number of seconds on the clock. (00 to 59). |
| V7767 | Contains the number of minutes on the clock. (00 to 59). |
| V7770 | Contains the number of hours on the clock. (00 to 23). |
| V7771 | Contains the day of the week. (Mon, Tue, etc.). |
| V7772 | Contains the day of the month (1st, 2nd, etc.). |
| V7773 | Contains the month. (01 to 12) |
| V7774 | Contains the year. (00 to 99) |
| V7775 | Scan - stores the current scan time (milliseconds). |
| V7776 | Scan - stores the minimum scan time that has occurred since the last Program Mode to Run Mode <br> transition (milliseconds). <br> V7777Scan - stores the maximum scan time that has occurred since the last Program Mode to Run Mode <br> transition (milliseconds). |

## DL350 Comm Port 2 Control Relays

The following system control relays are valid only for D3-350 CPU remote I/O setup on Communications Port 2.

| System CRs | Description of Contents |
| :--- | :--- |
| C740 | Completion of setups - ladder logic must turn this relay on when it has finished writing to <br> the Remote I/O setup table |
| C741 | Erase received data - turning on this flag will erase the received data during a communica- <br> tion error. |
| C743 | Re-start - Turning on this relay will resume after a communications hang-up on an error. |
| C750 to C757 | Setup Error - The corresponding relay will be ON if the setup table contains an error (C750 <br> = master, C751 = slave 1... C757=slave 7 |
| C760 to C767 | Communications Ready - The corresponding relay will be ON if the setup table data is valid <br> (C760 = master, C761 = slave 1... C767=slave 7 |

## DL350 Memory Map

| Memory Type | Discrete Memory Reference (octal) | Word Memory Reference (octal) | Qty. Decimal | Symbol |
| :---: | :---: | :---: | :---: | :---: |
| Input Points | X0 - X777 | V40400 - V40437 | 512 | $\mathrm{H}^{\mathrm{xo}}$ |
| Output Points | Y0 - Y777 | V40500 - V40537 | 512 | $\overbrace{}^{Y 0})$ |
| Control Relays | C0-C1777 | V40600 - V40677 | 1024 |  |
| Special Relays | SP0 - SP777 | V41200 - V41237 | 512 | $\begin{gathered} \text { SPO } \\ -1 \quad \end{gathered}$ |
| Timer Current Values | None | V0 - V377 | 256 | $\xrightarrow{\text { Vo }}\|\geq\|^{\mathrm{K} 100}$ |
| Timer Status Bits | T0 - T377 | V41100 - V41117 | 256 | $\psi^{\mathrm{TO}} \vdash$ |
| Counter Current Values | None | V1000 - V1177 | 128 | $\xrightarrow{\text { V1000 }}\|\geq\|^{\mathrm{K} 100}$ |
| Counter Status Bits | CT0 - CT177 | V41140 - V41147 | 128 |  |
| Data Words | none | $\begin{array}{\|l\|} \hline \text { V1400 - V7377 } \\ \text { V10000-V17777 } \end{array}$ | $\begin{aligned} & 3072 \\ & 4096 \end{aligned}$ | None specific, used with many instructions |
| Stages | S0-S1777 | V41000 - V41077 | 1024 | $\underbrace{S G} \quad-\quad{ }^{\text {SO }}$ |
| System parameters | None | V7400-V7777 | 256 | System specific, used for various purposes |

## DL 350 X Input / Y Output Bit Map

This table provides a listing of the individual Input points associated with each V-memory address bit.

| MSB |  | DL350 Input (X) and Output (Y) Points |  |  |  |  |  |  |  |  |  |  |  | LSB |  | X Input Address | Y Output Address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
| 017 | 016 | 015 | 014 | 013 | 012 | 011 | 010 | 007 | 006 | 005 | 004 | 003 | 002 | 001 | 000 | V40400 | V40500 |
| 037 | 036 | 035 | 034 | 033 | 032 | 031 | 030 | 027 | 026 | 025 | 024 | 023 | 022 | 021 | 020 | V40401 | V40501 |
| 057 | 056 | 055 | 054 | 053 | 052 | 051 | 050 | 047 | 046 | 045 | 044 | 043 | 042 | 041 | 040 | V40402 | V40502 |
| 077 | 076 | 075 | 074 | 073 | 072 | 071 | 070 | 067 | 066 | 065 | 064 | 063 | 062 | 061 | 060 | V40403 | V40503 |
| 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | V40404 | V40504 |
| 137 | 136 | 135 | 134 | 133 | 132 | 131 | 130 | 127 | 126 | 125 | 124 | 123 | 122 | 121 | 120 | V40405 | V40505 |
| 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 | V40406 | V40506 |
| 177 | 176 | 175 | 174 | 173 | 172 | 171 | 170 | 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | V40407 | V40507 |
| 217 | 216 | 215 | 214 | 213 | 212 | 211 | 210 | 207 | 206 | 205 | 204 | 203 | 202 | 201 | 200 | V40410 | V40510 |
| 237 | 236 | 235 | 234 | 233 | 232 | 231 | 230 | 227 | 226 | 225 | 224 | 223 | 222 | 221 | 220 | V40411 | V40511 |
| 257 | 256 | 255 | 254 | 253 | 252 | 251 | 250 | 247 | 246 | 245 | 244 | 243 | 242 | 241 | 240 | V40412 | V40512 |
| 277 | 276 | 275 | 274 | 273 | 272 | 271 | 270 | 267 | 266 | 265 | 264 | 263 | 262 | 261 | 260 | V40413 | V40513 |
| 317 | 316 | 315 | 314 | 313 | 312 | 311 | 310 | 307 | 306 | 305 | 304 | 303 | 302 | 301 | 300 | V40414 | V40514 |
| 337 | 336 | 335 | 334 | 333 | 332 | 331 | 330 | 327 | 326 | 325 | 324 | 323 | 322 | 321 | 320 | V40415 | V40515 |
| 357 | 356 | 355 | 354 | 353 | 352 | 351 | 350 | 347 | 346 | 345 | 344 | 343 | 342 | 341 | 340 | V40416 | V40516 |
| 377 | 376 | 375 | 374 | 373 | 372 | 371 | 370 | 367 | 366 | 365 | 364 | 363 | 362 | 361 | 360 | V40417 | V40517 |
| 417 | 416 | 415 | 414 | 413 | 412 | 411 | 410 | 407 | 406 | 405 | 404 | 403 | 402 | 401 | 400 | V40420 | V40520 |
| 437 | 436 | 435 | 434 | 433 | 432 | 431 | 430 | 427 | 426 | 425 | 424 | 423 | 422 | 421 | 420 | V40421 | V40521 |
| 457 | 456 | 455 | 454 | 453 | 452 | 451 | 450 | 447 | 446 | 445 | 444 | 443 | 442 | 441 | 440 | V40422 | V40522 |
| 477 | 476 | 475 | 474 | 473 | 472 | 471 | 470 | 467 | 466 | 465 | 464 | 463 | 462 | 461 | 460 | V40423 | V40523 |
| 517 | 516 | 515 | 514 | 513 | 512 | 511 | 510 | 507 | 506 | 505 | 504 | 503 | 502 | 501 | 500 | V40424 | V40524 |
| 537 | 536 | 535 | 534 | 533 | 532 | 531 | 530 | 527 | 526 | 525 | 524 | 523 | 522 | 521 | 520 | V40425 | V40525 |
| 557 | 556 | 555 | 554 | 553 | 552 | 551 | 550 | 547 | 546 | 545 | 544 | 543 | 542 | 541 | 540 | V40426 | V40526 |
| 577 | 576 | 575 | 574 | 573 | 572 | 571 | 570 | 567 | 566 | 565 | 564 | 563 | 562 | 561 | 560 | V40427 | V40527 |
| 617 | 616 | 615 | 614 | 613 | 612 | 611 | 610 | 607 | 606 | 605 | 604 | 603 | 602 | 601 | 600 | V40430 | V40530 |
| 637 | 636 | 635 | 634 | 633 | 632 | 631 | 630 | 627 | 626 | 625 | 624 | 623 | 622 | 621 | 620 | V40431 | V40531 |
| 657 | 656 | 655 | 654 | 653 | 652 | 651 | 650 | 647 | 646 | 645 | 644 | 643 | 642 | 641 | 640 | V40432 | V40532 |
| 677 | 676 | 675 | 674 | 673 | 672 | 671 | 670 | 667 | 666 | 665 | 664 | 663 | 662 | 661 | 660 | V40433 | V40533 |
| 717 | 716 | 715 | 714 | 713 | 712 | 711 | 710 | 707 | 706 | 705 | 704 | 703 | 702 | 701 | 700 | V40434 | V40534 |
| 737 | 736 | 735 | 734 | 733 | 732 | 731 | 730 | 727 | 726 | 725 | 724 | 723 | 722 | 721 | 720 | V40435 | V40535 |
| 757 | 756 | 755 | 754 | 753 | 752 | 751 | 750 | 747 | 746 | 745 | 744 | 743 | 742 | 741 | 740 | V40436 | V40536 |
| 777 | 776 | 775 | 774 | 773 | 772 | 771 | 770 | 767 | 766 | 765 | 764 | 763 | 762 | 761 | 760 | V40437 | V40537 |

## DL350 Control Relay Bit Map

This table provides a listing of the individual control relays associated with each V-memory address bit.


| MSB | Additional DL350 Control Relays (C) |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| 1017 | 1016 | 1015 | 1014 | 1013 | 1012 | 1011 | 1010 | 1007 | 1006 | 1005 | 1004 | 1003 | 1002 | 1001 | 1000 | V40640 |
| 1037 | 1036 | 1035 | 1034 | 1033 | 1032 | 1031 | 1030 | 1027 | 1026 | 1025 | 1024 | 1023 | 1022 | 1021 | 1020 | V40641 |
| 1057 | 1056 | 1055 | 1054 | 1053 | 1052 | 1051 | 1050 | 1047 | 1046 | 1045 | 1044 | 1043 | 1042 | 1041 | 1040 | V40642 |
| 1077 | 1076 | 1075 | 1074 | 1073 | 1072 | 1071 | 1070 | 1067 | 1066 | 1065 | 1064 | 1063 | 1062 | 1061 | 1060 | V40643 |
| 1117 | 1116 | 1115 | 1114 | 1113 | 1112 | 1111 | 1110 | 1107 | 1106 | 1105 | 1104 | 1103 | 1102 | 1101 | 1100 | V40644 |
| 1137 | 1136 | 1135 | 1134 | 1133 | 1132 | 1131 | 1130 | 1127 | 1126 | 1125 | 1124 | 1123 | 1122 | 1121 | 1120 | V40645 |
| 1157 | 1156 | 1155 | 1154 | 1153 | 1152 | 1151 | 1150 | 1147 | 1146 | 1145 | 1144 | 1143 | 1142 | 1141 | 1140 | V40646 |
| 1177 | 1176 | 1175 | 1174 | 1173 | 1172 | 1171 | 1170 | 1167 | 1166 | 1165 | 1164 | 1163 | 1162 | 1161 | 1160 | V40647 |
| 1217 | 1216 | 1215 | 1214 | 1213 | 1212 | 1211 | 1210 | 1207 | 1206 | 1205 | 1204 | 1203 | 1202 | 1201 | 1200 | V40650 |
| 1237 | 1236 | 1235 | 1234 | 1233 | 1232 | 1231 | 1230 | 1227 | 1226 | 1225 | 1224 | 1223 | 1222 | 1221 | 1220 | V40651 |
| 1257 | 1256 | 1255 | 1254 | 1253 | 1252 | 1251 | 1250 | 1247 | 1246 | 1245 | 1244 | 1243 | 1242 | 1241 | 1240 | V40652 |
| 1277 | 1276 | 1275 | 1274 | 1273 | 1272 | 1271 | 1270 | 1267 | 1266 | 1265 | 1264 | 1263 | 1262 | 1261 | 1260 | V40653 |
| 1317 | 1316 | 1315 | 1314 | 1313 | 1312 | 1311 | 1310 | 1307 | 1306 | 1305 | 1304 | 1303 | 1302 | 1301 | 1300 | V40654 |
| 1337 | 1336 | 1335 | 1334 | 1333 | 1332 | 1331 | 1330 | 1327 | 1326 | 1325 | 1324 | 1323 | 1322 | 1321 | 1320 | V40655 |
| 1357 | 1356 | 1355 | 1354 | 1353 | 1352 | 1351 | 1350 | 1347 | 1346 | 1345 | 1344 | 1343 | 1342 | 1341 | 1340 | V40656 |
| 1377 | 1376 | 1375 | 1374 | 1373 | 1372 | 1371 | 1370 | 1367 | 1366 | 1365 | 1364 | 1363 | 1362 | 1361 | 1360 | V40657 |
| 1417 | 1416 | 1415 | 1414 | 1413 | 1412 | 1411 | 1410 | 1407 | 1406 | 1405 | 1404 | 1403 | 1402 | 1401 | 1400 | V40660 |
| 1437 | 1436 | 1435 | 1434 | 1433 | 1432 | 1431 | 1430 | 1427 | 1426 | 1425 | 1424 | 1423 | 1422 | 1421 | 1420 | V40661 |
| 1457 | 1456 | 1455 | 1454 | 1453 | 1452 | 1451 | 1450 | 1447 | 1446 | 1445 | 1444 | 1443 | 1442 | 1441 | 1440 | V40662 |
| 1477 | 1476 | 1475 | 1474 | 1473 | 1472 | 1471 | 1470 | 1467 | 1466 | 1465 | 1464 | 1463 | 1462 | 1461 | 1460 | V40663 |
| 1517 | 1516 | 1515 | 1514 | 1513 | 1512 | 1511 | 1510 | 1507 | 1506 | 1505 | 1504 | 1503 | 1502 | 1501 | 1500 | V40664 |
| 1537 | 1536 | 1535 | 1534 | 1533 | 1532 | 1531 | 1530 | 1527 | 1526 | 1525 | 1524 | 1523 | 1522 | 1521 | 1520 | V40665 |
| 1557 | 1556 | 1555 | 1554 | 1553 | 1552 | 1551 | 1550 | 1547 | 1546 | 1545 | 1544 | 1543 | 1542 | 1541 | 1540 | V40666 |
| 1577 | 1576 | 1575 | 1574 | 1573 | 1572 | 1571 | 1570 | 1567 | 1566 | 1565 | 1564 | 1563 | 1562 | 1561 | 1560 | V40667 |
| 1617 | 1616 | 1615 | 1614 | 1613 | 1612 | 1611 | 1610 | 1607 | 1606 | 1605 | 1604 | 1603 | 1602 | 1601 | 1600 | V40670 |
| 1637 | 1636 | 1635 | 1634 | 1633 | 1632 | 1631 | 1630 | 1627 | 1626 | 1625 | 1624 | 1623 | 1622 | 1621 | 1620 | V40671 |
| 1657 | 1656 | 1655 | 1654 | 1653 | 1652 | 1651 | 1650 | 1647 | 1646 | 1645 | 1644 | 1643 | 1642 | 1641 | 1640 | V40672 |
| 1677 | 1676 | 1675 | 1674 | 1673 | 1672 | 1671 | 1670 | 1667 | 1666 | 1665 | 1664 | 1663 | 1662 | 1661 | 1660 | V40673 |
| 1717 | 1716 | 1715 | 1714 | 1713 | 1712 | 1711 | 1710 | 1707 | 1706 | 1705 | 1704 | 1703 | 1702 | 1701 | 1700 | V40674 |
| 1737 | 1736 | 1735 | 1734 | 1733 | 1732 | 1731 | 1730 | 1727 | 1726 | 1725 | 1724 | 1723 | 1722 | 1721 | 1720 | V40675 |
| 1757 | 1756 | 1755 | 1754 | 1753 | 1752 | 1751 | 1750 | 1747 | 1746 | 1745 | 1744 | 1743 | 1742 | 1741 | 1740 | V40676 |
| 1777 | 1776 | 1775 | 1774 | 1773 | 1772 | 1771 | 1770 | 1767 | 1766 | 1765 | 1764 | 1763 | 1762 | 1761 | 1760 | V40677 |

## DL350 Stage ${ }^{T M}$ Control / Status Bit Map

This table provides a listing of the individual Stage ${ }^{T M}$ control bits associated with each V-memory address.


| MSB | DL350 Additional Stage (S) Control Bits (continued) |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
| 1017 | 1016 | 1015 | 1014 | 1013 | 1012 | 1011 | 1010 | 1007 | 1006 | 1005 | 1004 | 1003 | 1002 | 1001 | 1000 | V41040 |
| 1037 | 1036 | 1035 | 1034 | 1033 | 1032 | 1031 | 1030 | 1027 | 1026 | 1025 | 1024 | 1023 | 1022 | 1021 | 1020 | V41041 |
| 1057 | 1056 | 1055 | 1054 | 1053 | 1052 | 1051 | 1050 | 1047 | 1046 | 1045 | 1044 | 1043 | 1042 | 1041 | 1040 | V41042 |
| 1077 | 1076 | 1075 | 1074 | 1073 | 1072 | 1071 | 1070 | 1067 | 1066 | 1065 | 1064 | 1063 | 1062 | 1061 | 1060 | 3 |
| 1117 | 1116 | 1115 | 1114 | 1113 | 1112 | 1111 | 1110 | 1107 | 1106 | 1105 | 1104 | 1103 | 1102 | 1101 | 1100 | 41044 |
| 1137 | 1136 | 1135 | 1134 | 1133 | 1132 | 1131 | 1130 | 1127 | 1126 | 1125 | 1124 | 1123 | 1122 | 1121 | 1120 | V41045 |
| 1157 | 1156 | 1155 | 1154 | 1153 | 1152 | 1151 | 1150 | 1147 | 1146 | 1145 | 1144 | 1143 | 1142 | 1141 | 1140 | V41046 |
| 1177 | 1176 | 1175 | 1174 | 1173 | 1172 | 1171 | 1170 | 1167 | 1166 | 1165 | 1164 | 1163 | 1162 | 1161 | 1160 | V41047 |
| 1217 | 1216 | 1215 | 1214 | 1213 | 1212 | 1211 | 1210 | 1207 | 1206 | 1205 | 1204 | 1203 | 1202 | 1201 | 1200 | V41050 |
| 1237 | 1236 | 1235 | 1234 | 1233 | 1232 | 1231 | 1230 | 1227 | 1226 | 1225 | 1224 | 1223 | 1222 | 1221 | 1220 | V41051 |
| 125 | 1256 | 1255 | 1254 | 1253 | 1252 | 1251 | 125 | 1247 | 1246 | 1245 | 1244 | 1243 | 1242 | 1241 | 1240 | 52 |
| 1277 | 1276 | 1275 | 1274 | 1273 | 1272 | 1271 | 1270 | 1267 | 1266 | 1265 | 1264 | 1263 | 1262 | 1261 | 1260 | V41053 |
| 1317 | 1316 | 1315 | 1314 | 1313 | 1312 | 1311 | 1310 | 1307 | 1306 | 1305 | 1304 | 1303 | 1302 | 1301 | 1300 | 41054 |
| 1337 | 1336 | 1335 | 1334 | 1333 | 1332 | 1331 | 1330 | 1327 | 1326 | 1325 | 1324 | 1323 | 1322 | 1321 | 1320 | V41055 |
| 1357 | 1356 | 1355 | 1354 | 1353 | 1352 | 1351 | 1350 | 1347 | 1346 | 1345 | 1344 | 1343 | 1342 | 1341 | 1340 | V41056 |
| 1377 | 1376 | 1375 | 1374 | 1373 | 1372 | 1371 | 1370 | 1367 | 1366 | 1365 | 1364 | 1363 | 1362 | 1361 | 1360 | 41057 |
| 1417 | 1416 | 1415 | 1414 | 1413 | 1412 | 1411 | 1410 | 1407 | 1406 | 1405 | 1404 | 1403 | 1402 | 1401 | 1400 | 41060 |
| 1437 | 1436 | 1435 | 1434 | 1433 | 1432 | 1431 | 1430 | 1427 | 1426 | 1425 | 1424 | 1423 | 1422 | 1421 | 1420 | V41061 |
| 1457 | 1456 | 1455 | 1454 | 1453 | 1452 | 1451 | 1450 | 1447 | 1446 | 1445 | 1444 | 1443 | 1442 | 1441 | 1440 | V41062 |
| 1477 | 1476 | 1475 | 1474 | 1473 | 1472 | 1471 | 1470 | 1467 | 1466 | 1465 | 1464 | 1463 | 1462 | 1461 | 1460 | V41063 |
| 1517 | 1516 | 1515 | 1514 | 1513 | 1512 | 1511 | 1510 | 1507 | 1506 | 1505 | 1504 | 1503 | 1502 | 1501 | 1500 | V41064 |
| 1537 | 1536 | 1535 | 1534 | 1533 | 1532 | 1531 | 1530 | 1527 | 1526 | 1525 | 1524 | 1523 | 1522 | 1521 | 1520 | 41065 |
| 1557 | 1556 | 1555 | 1554 | 1553 | 1552 | 1551 | 1550 | 1547 | 1546 | 1545 | 1544 | 1543 | 1542 | 1541 | 1540 | V41066 |
| 1577 | 1576 | 1575 | 1574 | 1573 | 1572 | 1571 | 1570 | 1567 | 1566 | 1565 | 1564 | 1563 | 1562 | 1561 | 1560 | V41067 |
| 1617 | 1616 | 1615 | 1614 | 1613 | 1612 | 1611 | 1610 | 1607 | 1606 | 1605 | 1604 | 1603 | 1602 | 1601 | 1600 | V41070 |
| 1637 | 1636 | 1635 | 1634 | 1633 | 1632 | 1631 | 1630 | 1627 | 1626 | 1625 | 1624 | 1623 | 1622 | 1621 | 1620 | V41071 |
| 1657 | 1656 | 1655 | 1654 | 1653 | 1652 | 1651 | 1650 | 1647 | 1646 | 1645 | 1644 | 1643 | 1642 | 1641 | 1640 | V41072 |
| 1677 | 1676 | 1675 | 1674 | 1673 | 1672 | 1671 | 1670 | 1667 | 1666 | 1665 | 1664 | 1663 | 1662 | 1661 | 1660 | V41073 |
| 1717 | 1716 | 1715 | 1714 | 1713 | 1712 | 1711 | 1710 | 1707 | 1706 | 1705 | 1704 | 1703 | 1702 | 1701 | 1700 | V41074 |
| 1737 | 1736 | 1735 | 1734 | 1733 | 1732 | 1731 | 1730 | 1727 | 1726 | 1725 | 1724 | 1723 | 1722 | 1721 | 1720 | V41075 |
| 1757 | 1756 | 1755 | 1754 | 1753 | 1752 | 1751 | 1750 | 1747 | 1746 | 1745 | 1744 | 1743 | 1742 | 1741 | 1740 | V41076 |
| 1777 | 1776 | 1775 | 1774 | 1773 | 1772 | 1771 | 1770 | 1767 | 1766 | 1765 | 1764 | 1763 | 1762 | 1761 | 1760 | V41077 |

## DL350 Timer and Counter Status Bit Maps

This table provides a listing of the individual timer and counter contacts associated with each V-memory address bit.

| MSB |  |  |  | DL350 Timer (T) and Counter (CT) Contacts |  |  |  |  |  |  |  |  |  | LSB |  | Timer Address | Counter <br> Address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
| 017 | 016 | 015 | 014 | 013 | 012 | 011 | 010 | 007 | 006 | 005 | 004 | 003 | 002 | 001 | 000 | V41100 | V41140 |
| 037 | 036 | 035 | 034 | 033 | 032 | 031 | 030 | 027 | 026 | 025 | 024 | 023 | 022 | 021 | 020 | V41101 | V41141 |
| 057 | 056 | 055 | 054 | 053 | 052 | 051 | 050 | 047 | 046 | 045 | 044 | 043 | 042 | 041 | 040 | V41102 | V41142 |
| 077 | 076 | 075 | 074 | 073 | 072 | 071 | 070 | 067 | 066 | 065 | 064 | 063 | 062 | 061 | 060 | V41103 | V41143 |
| 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | V41104 | V41144 |
| 137 | 136 | 135 | 134 | 133 | 132 | 131 | 130 | 127 | 126 | 125 | 124 | 123 | 122 | 121 | 120 | V41105 | V41145 |
| 157 | 156 | 155 | 154 | 153 | 152 | 151 | 150 | 147 | 146 | 145 | 144 | 143 | 142 | 141 | 140 | V41106 | V41146 |
| 177 | 176 | 175 | 174 | 173 | 172 | 171 | 170 | 167 | 166 | 165 | 164 | 163 | 162 | 161 | 160 | V41107 | V41147 |

This portion of the table shows additional Timer contacts available with the DL350.



[^0]:    * T/ C Setpoint Unit Only. Can be used as data registers if the Timer/Counter Setpoint Unit or Thumbwheel Interface Module is not used. R564 - R573 contain the preset value used with the Timer / Counter Setpoint Unit. R674 - R677 contain the current values for these timers or counters.

[^1]:    * T/ C Setpoint Unit Only. Can be used as data registers if the Timer/Counter Setpoint Unit or Thumbwheel Interface Module is not used, which provides a total of 128 data registers.

[^2]:    * Control relays $340-373$ can be made retentive by setting a CPU dipswitch. See the DL305 User Manual for details on setting CPU dipswitches.

[^3]:    * Control relays 340-373 can be made retentive by setting a CPU dipswitch. See the DL305 User Manual for details on setting CPU dipswitches.

