
Checking	Data	Integrity	with	Datalog	(DLV)	
	
	
General	Instructions	 	

1. To get started, install the DLV system on your computer.

2. Read the DLV tutorial. There are some notions that will not be easy to understand
at first. In particular, try and understand the following most important subparts:  

– The Family Tree Example: Predicates, Variables, and Recursion

– DLV as a Deductive Database System: Comparison Operators  

3. Download	and	extract	the	datalog_assignment.zip	file.	In	the	extracted	zip	file,	you	will	
find	2	dlv	files:	family.dlv	and	publication.dlv.	

4. You	must	answer	the	following	problems	 in	the	dlv	 files	by	using	facts	that	have	been	
given.	Make	sure	you	answer	them	using	the	correct	rule	name.	

5. You	are	not	able	to	add	more	facts	other	than	the	ones	that	have	been	given.	However,	
you	can	add	additional	rules	to	support	your	answer.	

6. You	 can	 test	 your	 answer	 using	 the	 Python	 script	 dlvExecutor.py;	 execute	 it	 using	
Python2.7.	For	example:	python2.7	dlvExecutor.py	

7. After	your	answers	are	ready	(family.dlv	and	publication.dlv),	you	can	submit	them	all	at	
once	using	submit.py;	execute	the	script	using	Python	2.7	as	well.	

8. After	submission,	you	can	check	the	grading	results	in	the	Coursera	web	submission	page.	
	
Part	1:	Family	(family.dlv)	
	

	
	

1. descendant:	descendant(X,Y)	holds	if	X	is	a	descendant	of	Y	 	
2. sibling:	sibling(X	,Y)	holds	if	X	and	Y	are	siblings.	Hint:	X	and	Y	share	a	parent	P.		
3. Write	 the	 following	 integrity	 constraints	 (ICs)	 as	 “soft	 constraints”	 in	denial	 form,	 i.e.,	

write	rules	that	yield	variable	bindings	that	serve	as	“constraint	violation	witnesses”:	
a. icv_person_has_parent:		Every	person	must	have	a	parent.	Hint:	Look	at	the	IC-rules	

in	the	course	handouts.	 	

b. icv_person_has_father_mother:	Every	person	has	a	father	and	a	mother.	Hint:	Same	
idea	as	in	the	Warm-Up.	First,	write	a	rule	that	yields	the	people	for	which	the	IC	is	
satisfied.	Then	write	another	rule	that	reports	as	an	IC-violation	those	people	who	are	
not	in	the	answer	to	that	first	query.	 	

	
Part	2:	Publication	(publication.dlv)	
Consider	 “dirty”	 dataset	 store	 publication	 data	 in	 this	 following	 relation.	 The	 IC-checking	
capabilities	of	a	database	provide	a	powerful	way	to	detect	inconsistencies.		

	
This	 relational	 dataset	 has	 been	 transformed	 into	 Datalog	 format,	 which	 you	 can	 find	 in	
publication.dlv.	
	

1. Define	the	following	ICs	in	denial	form	in	Datalog	syntax.	You	can	assume	that	the	table	
is	available	as	a	Datalog	predicate	of	the	form	publication(I,	A,	Y,	T,	J,	V,	N,	F,	L,	P).	Recall	
that	 in	Datalog,	arbitrary	 (capitalized)	names	can	be	chosen	as	variables	since	 it	 is	 the	
argument	position	that	determines	which	attribute/column	is	meant.	
a. icv_pid_key:	The	publication	identifier	Pid	is	a	key,	i.e.,	if	a	row	agrees	with	another	

row	on	the	key	attribute	Pid,	then	it	also	agrees	on	all	other	attributes	(i.e.,	the	“two”	
rows	are	in	fact	one	and	the	same).	As	usual,	your	rule	should	return	the	IC-violations.	
 	

b. icv_journal_publisher:	 Every	 journal	 has	 a	 single	 publisher.	 Like	 (FD-1),	 this	 is	 a	
functional	dependency.	It	is	sometimes	written	as	Journal	→	Publisher.	 	

c. ncv_firstpage_lastpage:	 The	 last	page	 Lp	 cannot	be	 smaller	 than	 the	 first	page	Fp.	
Note:	This	numerical	constraint	can	be	evaluated	independently	on	each	row.	

2. Now	 consider	 that	 an	 additional	 table	 cites(P1,	 P2)	 is	 given,	 which	 records	 pairs	 of	
publication	P1,	P2,	where	P1	is	citing	P2.	Define	the	following	IC	in	denial	form:	 	

	
a. icv_cited_publication:	Every	cited	publication	 in	CITES	also	occurs	 in	PUBLICATION.	

This	 is	 an	 inclusion	 dependency	 and	 is	 usually	 written	 in	 the	 form:	 CITES[Pid2]	⊆	
PUBLICATION[Pid].	 	

b. ncv_p1_greater_p2:	 If	P1	cites	P2,	 then	P2’s	year	of	publication	cannot	be	greater	
than	P1’s	year	of	publication.	

	

