
SPECIAL REPORT

Copyright © 2012 InfoWorld Media Group. All rights reserved.

i Table of contents

 INTRODUCTION
Programming trends to watch 2

BEST PRACTICES
7 deadly sins of developers 7
 n Sidebar: 10 business skills every IT pro

must master .6
Earth to developers: Grow up! 9

Beware these developer errors 11
n Sidebar: IT job spotting: Top 20 metro areas

for tech jobs . 12
Don’t be afraid to rewrite code 16

TRENDS
Programming languages on the rise 13

Copyright © 2012 InfoWorld Media Group. All rights reserved.

Survival
Guide

Developers

2Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

INTRODUCTION

Programming trends to watch
New tools, techniques, and troubles are changing how developers work

i By Peter Wayner

DepenDing on your perspective anD proximity to the bleeD-
ing edge, the world of programming evolves either too
fast or too slow. But whether you’re banging out Cobol or
hacking Node.js, one fact remains clear: Programmers must
keep an eye on the latest programming trends to remain
competitive in ever-shifting job markets.

From JavaScript everywhere to everything on the JVM,
the times and the tools are a-changing. So too is the way
programmers work, thanks to the rise of frameworks and
walled gardens, as well as a shift away from openness. Con-
cerns around bandwidth, energy, and scalability are finding
a place at the programming table, as are parallelism and the
video card. There’s so much happening that you might find
yourself thinking of going back to school, if only traditional
education wasn’t fading from relevance.

Every so often, our understanding of the ways and means
of programming needs to be renewed or replaced just like
an operating system or a library. Here we offer a look at 11
recent trends that capture how programming is changing.

PROgRAmmINg TREND NO. 1: ThE JVm IS
NOT JUST fOR JAVA ANymORE

A long time ago, Sun created Java and shared the virtual
machine with the world. By the time Microsoft created C#,
people recognized that the VM didn’t have to be limited
to one language. Anything that could be transformed into
the byte code could use it.

Now, it seems that everyone is building their language to
do just that. Leave the job of building a virtual machine to
Sun/Oracle, and concentrate your efforts on the syntactic
bells and structural whistles, goes the mantra today.

As a result, the list of JVM-dependent languages is long
and growing. Ruby lovers like how much better JRuby
works under heavy loads. Scala and Cloture allow devel-
opers to write code that is more functional and often faster
than Java when running on the same JVM.

Even Java-heads like to use the JVM without writing Java.
Take the scripting langauge Groovy, which is fully inte-
grated with the JVM and Java API. Write Groovy short-
hand, and if you also adopt Grails, you can enjoy Rails-like
coding-by-convention. Need to link in Java libraries? Voilà.
It’s designed to work seamlessly, giving you all the power
and stability of Java without the curly brackets.

PROgRAmmINg TREND NO. 2:
JAVASCRIPT IS NOT JUST fOR JAVASCRIPT

The JVM isn’t the only cross-platform solution open to all
comers. JavaScript, the langauge your kid sister uses to add
an alert box to her band’s website, is not just for JavaScript
coders any longer. The list of languages that cross-compile
to run on the fancy, just-in-time JavaScript engines is even
longer than the list that runs on the JVM.

Take Google Web Toolkit. You write Java code like you’re
writing for the Swing framework from the ‘90s, and the
GWT compiler turns it into JavaScript that runs in a browser
on a desktop, smartphone, or tablet. There’s no need for a
Java applet plug-in or JVM on the client because JavaScript
in the browser offers machine independence.

One of the newer arrivals is CoffeeScript, a shorthand
language that’s compiled down to JavaScript by inserting all
the punctuation that scripting-language users hate to type.
The idea is so popular that there are already CoffeeScript
spin-offs like Coco, Parsec-Coffee-Script, and Contracts-
Coffee-Script, each of which adds its own sophisticated
metaprogramming structures to make it easier to spin out
elaborate code.

Some extensions are so successful they’ve almost become
languages unto themselves. Think of all the Web developers
banging out workable code with jQuery, without remem-
bering or knowing anything about JavaScript scoping.

If that’s not enough, there are experiments linking pretty
much any language to JavaScript, including Ruby, Python,
Lisp, Scheme, Haskell, and OCaml.

3Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

PROgRAmmINg TREND NO. 3:
PlANTATIONS EVERywhERE

There’s a dark side to these tightly integrated stacks of
code: the walled garden.

The Internet began with the premise that there would
be no gatekeepers. Every packet would be delivered to its
destination, with our data free to wander. Alas, that promise
is eroding, and not because the ISPs are increasingly turning
to traffic shaping or deep packet inspection technologies.

These days, everyone seems to be retreating to walled
gardens, where everything is safer and simpler. If you want
to develop for the iPhone, you’ll have to write code to
Apple’s vague specifications, then Apple — and Apple alone
— will decide whether it will run on its machines. It’s not
up to you, the programmer, and it doesn’t matter what the
users say, either.

It’s not just Apple. Creating games for Facebook means
getting Facebook’s permission to connect to Facebook
users. It doesn’t matter how many people click the Like
button if Facebook decides to lock out your code.

Only a naive programmer thinks that other companies
won’t follow along.

There are deeper problems with walled gardens, beyond
loss of control. Purveyors of walled gardens could very well
keep the lion’s share of the income derived from the work
of independent developers.

These walled gardens also threaten to balkanize the cod-
ing world into separate camps according to language. One
look and you can see programmers moving from stubborn
individualists in the open frontier to hired hands. Welcome
to the new plantation.

PROgRAmmINg TREND NO. 4: NO CODE
IS AN ISlAND

A friend once told me he was heading to the woods in
Northern Michigan where his father and uncles built a cabin
by themselves. It was theirs and theirs alone. They hauled
the wood and the rock, and they could sit afterward and
gaze at the sunset with deep pride in their accomplishment.

Writing a program used to be like this. Push the compile
button, and after it churned, the code would take over
your machine. Sure, it was interacting with the OS layer,
but it was easier to point to a tangible thing that you built,
just like that cabin. See that file with the EXE suffix? I built
that one, mom.

That distinction is disappearing. Our code is living
increasingly in ecosystems. Many PHP programmers, for
instance, create plug-ins for WordPress, Drupal, Joomla, or
some other framework. Their code is a module that works
with other modules.

Sometimes the fragments are even smaller, just bits of
code dropped into fields. Many Drupal modules can be
customized with PHP, for example. The programmer is
just filling out forms with snippets of code, not building
something new that stands alone.

When these mechanisms work, the results can be uplift-
ing. More often than not, the results are mixed. While your
snippets can work well with what’s under the hood, they
often need plenty of debugging. In many cases, the errors
come from deep inside the system where you’re not sup-
posed to be looking. And there is little documentation
because no one expected you to interact with the system
this way.

In the worst examples, the errors come from someone
else’s snippets, and there’s no way to debug the two simul-
taneously because they own their code and you own yours.

These tools often work for small extensions and simple
tools that have been anticipated by the authors of the origi-
nal framework. Anything else is an invitation to hit-or-miss
debugging cycles. There’s no substitute for having all the
source code available to be read and traced with your own
stack, but that’s becoming less common.

PROgRAmmINg TREND NO. 5: OPENNESS
RETREATS

For all the success of open source software, the ability to
engage in pure tinkering is slipping away in many corners.
The success of the iPhone has everyone looking to find
ways to wall off the commons. Sure, the new car computer
systems are built with Linux, but don’t for a second think
you’ll be typing “make” and deploying to your car.

Even if we concede that it would be creepy and danger-
ous to reprogram your brake system, why can’t we hack the
nav system? The car companies are touting how their fancy
computer systems integrate with your phone, but they’re
not open the way your desktop is open. Hardly anything is
as open as the desktop used to be. Even desktop systems
may be more locked down, with some wondering whether
the new secure booting infrastructure for Windows 8 will

4Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

make it impossible to run alternative OSes.
This is bound to limit innovation in the future. After the

garage hackers and programmers finish building tools that
put a smile on their faces, they turn around and create com-
panies that do the same tasks for the average person. Slicing
off the open source experiment in this area destroys the
aftermarket. And it becomes harder for companies to hire
the programmers they need because open source tinkering
produces skilled programmers that can fill jobs.

There remain glittering exceptions, usually when the
code is shared between programmers. Some projects like
Apache still thrive and attract the kind of financial support
they need to pay top talent. Github and Sourceforge con-
tinue to add more projects. Others work well for develop-
ers experimenting with the bleeding edge. But there are
few examples of pure openness succeeding with the end
consumer, who seems drawn to the siren call of proprietary
gardens.

PROgRAmmINg TREND NO. 6:
BANDwIDTh IS NO lONgER fREE

Web programmers have grown up believing bandwidth
is free and getting ever faster. No need to worry about slow
download times — in a year, everyone’s connection will
be zippier, and the problem will disappear. Unfortunately,
those days are over, thanks to more and more ISPs adding
bandwidth caps and metering.

Regardless of whether you see this as a need to crack
down on bandwidth hogs destroying the commonwealth or
as a power grab by those who own the pipes and, by coinci-
dence, want to sell pay-per-view video feeds, bandwidth is
something programmers need to worry about consuming.

This will change many of the gimmicks built around the
cloud because traffic from your home machine to the cloud
will be metered. Will radio stations be able to stream every
bit that we hear and still make enough money on the pen-
nies from ads? Will online backup be viable?

Optimizing bandwidth consumption when designing
apps is becoming imperative. Minimizing JavaScript files
and CSS files isn’t just for speed; it also saves bandwidth.
If programmers don’t heed this trend, users of their code
could be driven away by higher bandwidth charges in the
near future.

PROgRAmmINg TREND NO. 7: ENERgy IS
NO lONgER fREE, EIThER

The cost of keeping a computer plugged in has never
been an issue. It never mattered how much energy your
rack of servers sucked down because the colo just sent you
a flat bill for each box.

No longer — energy consumption is a big issue, whether
you’re programming for smartphones or the server farm.
The biggest limitation of my Android phone is that it can
drain its battery in 8 hours doing nothing but sitting there.
Design an app that eats up battery power faster than GPS
features do and watch downloads of your app plummet.

The problem is less understood by server programmers,
who could always take power for granted. You worry about
speed, but rarely the cost of energy for completing a data-
base transaction. Google is one of several companies in
front of this issue, investing in finding the lowest-cost elec-
tricity to do extensive searches. It’s likely the company is
already deciding how to fine-tune a search based on energy
costs and how much ad revenue the search will generate.

Cloud computing is helping make this issue more obvi-
ous. Some of the more sophisticated clouds — like Google
App Engine or Amazon S3 — don’t bill by the rack or root
password. They charge for database commits and queries.
While this is a new challenge for most programmers, it’s
making the cost of energy more transparent. Get ready to
start thinking about the cost of each subroutine in dollars,
not in lines of code or milliseconds of execution time.

PROgRAmmINg TREND NO. 8:
TRADITIONAl EDUCATION NOT RElEVANT

Ask any project manager and they’ll say there’s not
enough talent from top-tier computer science departments.
They may go so far as to say they would hire a new CS
major from a top school without reading the résumé. But
ask this same desperate project manager about a middle-
aged programmer with a degree from the same school,
and they’ll hesitate and start mumbling about getting back
to you later.

Indeed, it isn’t unheard of to find major technology
companies complaining to Congress that they can’t find
Americans capable of programming, all while defending
themselves in age-discrimination lawsuits from older pro-

5Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

grammers with stellar résumés and degrees from top uni-
versities.

Some of this may suggest that education doesn’t have
the same value it used to hold. Older workers with degrees
that used to be valuable are saying companies want only
young, unfettered bodies that will work long hours. It leaves
you to wonder whether it’s the age and implied lower pay
expectations, not the knowledge that makes fresh college
graduates so desirable.

Others are simply moving beyond such questions, look-
ing instead to exploit what they see as a market distortion
caused by our infatuation with the four-year diploma. Ven-
ture capitalists are paying top talent to skip their under-
graduate years. Others are actively recruiting people with
odd degrees and pushing them through a boot camp that
teaches them practical skills, not the theoretical analysis
common in university courses.

The most prominent rejection of a traditional university
education is the program run by PayPal founder Peter Thiel.
He’s recruiting top programmers who are just leaving high
school and paying them to “stop out” of college. The kids
get a job and he gets young, malleable talent.

Others are looking at the staggering rise in tuition and
suggesting that shorter, more focused education makes
economic sense. Paying off a degree from a top-flight uni-
versity over a 40-year career can easily consume $1,500
per month ($250,000 at 6.8 percent). Online courses and
training from the vendors themselves can be dramatically
cheaper.

One article from Fast Company asked the question,
“Why hire a PhD when a self-taught kid is just as good?”

PROgRAmmINg TREND NO. 9:
ACCURACy fADES AS SCAlABIlITy
TRUmPS All

Years ago, ACID ruled the database roost. The chal-
lenge was to build a bulletproof machine that always gave
a correct and consistent answer when queried. Hurricanes,
nuclear weapons, and errant janitors unplugging the rack
could not scramble the database. The big customers were
banks, hotels, and airlines, and they wanted to make sure
bank accounts and reservations were consistent and cor-
rect.

Today, the industry is trying to find an easy way to store
ephemera from our lives. From the places we visit to the

toss-away comments between friends, the goal is to find a
fast and efficient way to store endless tidbits from every-
one on earth.

The smartest people approaching this problem quickly
realized they could make their job dramatically easier by
cutting corners and blithely ignoring any glitch. If some sta-
tus update disappeared, who would notice? If somebody
checked in to a service while at a coffee shop and failed to
be crowned mayor of that coffee shop, it wasn’t a big deal
because they would probably return again tomorrow. After
the new class of data caretakers recognized that they could
save a fortune on compute cycles and infrastructure simply
by loosening requirements, they started building NoSQL
and other so-called data stores.

Now, saving time and money by trading away accuracy
rules the Web. Try searching for an older email message
with some of the Web-based tools. They’re quietly leaving
some of the older ones out of the index. This often reflects
a slow erosion of standards for search. Google, for instance,
quietly ended the ability to use true boolean searches with
the plus sign. Expect to see more and more Web engineers
subtly tossing aside the fanatical commitment to accuracy
once common among database administrators.

PROgRAmmINg TREND NO. 10: REAl
PARAllElISm BEgINS TO gET PRACTICAl

Computer architects have been talking about machines
with true parallel architectures for years, but the program-
mers in the trenches are just starting to get the tools that
make it possible.

The parallelism is appearing in two prominent areas:
multinode databases and Hadoop jobs. Some mix the two.

Most NoSQL data stores offer to help spread the work-
load over multiple machines. Some offer automatic shard-
ing, which splits the data set into pieces, synchronizes the
machines that host a given piece, and directs queries to
the right machines as necessary. Some offer duplication or
backup, a feature that’s a bit older; some do both.

Hadoop is an open source framework that will coordi-
nate a number of machines working on a problem and
compile their work into a single answer. The project imi-
tates some of the Map/Reduce framework developed by
Google to help synchronize Web crawling efforts, but the
project has grown well beyond these roots.

Tools like this make it easier than ever to toss more than

6Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

one machine at a problem. The infrastructure is now solid
enough that the enterprise architects can rely on deploying
racks of machines with only a bit of fussing.

PROgRAmmINg TREND NO. 11: gPUS
TRUmP CPUS

Was it only a few years ago that the CPU manufacturers
created the chips that fetched the most money? Those days
are fading fast as the graphics processors are now the most
lustworthy. It’s easy to find kids who will spend $300 on
their entire computer and operating system, then $600 on
a new video card to really make it scream.

The gamers aren’t alone in their obsession with video

cards. Scientists who need high-powered computation are
reprogramming GPUs to analyze protein folding or guess
the secrets of the smallest particles.

Nvidia runs conferences for nongamers using the devices,
and they’re selling video cards by the palletload to scientists
who want to build supercomputers. Oak Ridge National
Laboratory, for instance, plans to put 18,000 Tesla GPUs
from Nvidia into one room so that they can call it the fast-
est supercomputer.

They’re presumably going to build elaborate models for
the Department of Energy, not to brag about the frame rate
they get while playing Doom.
Peter Wayner is contributing editor of the InfoWorld Test Center.

10 business skills every IT pro must master
IT pros must “develop business skills” to succeed. Here are the most valued skills you can cultivate.

The plain fact is that not all busi-
ness skills are important for IT, which
is just as well . If we needed them
all, we wouldn’t be IT professionals
anymore . We’d be too busy learn-
ing to be accountants, copywriters,
sales reps, recruiters, and purchasing
agents .

Ignore all that . Here are the 10
business skills that truly matter to
your career in IT -- a lot .

�

http://www.infoworld.com/slideshow/29772/10-business-skills-every-it-pro-must-master-185635
http://www.infoworld.com/slideshow/29772/10-business-skills-every-it-pro-must-master-185635
http://www.infoworld.com/slideshow/29772/10-business-skills-every-it-pro-must-master-185635
http://www.infoworld.com/d/microsoft-windows/first-look-windows-server-8-174588

I N F O W O R L D . C O M D E E P D I V E S E R I E S

7Developers Survival
Guidei

BEST PRACTICES

7 deadly sins of developers
Recognize the worst traits of programmers and save yourself from developer hell

i By Neil McAllister

being a gooD Developer takes a lifetime of training anD
practice. But without proper discipline, even the best pro-
grammers risk falling prey to their worse natures. Some bad
habits are so insidious that they crop up again and again,
even among the most experienced developers. I speak of
nothing less than the seven deadly sins of software devel-
opment. Read on to hear how lust, gluttony, greed, sloth,
wrath, envy, and pride may be undermining your latest
programming project as we speak.

fIRST DEADly SIN Of SOfTwARE
DEVElOPmENT: lUST
(OVERENgINEERINg)

Modern programming languages tend to add features as
they mature. They pile on layer after layer of abstraction,
with new keywords and structures designed to aid code
readability and reusability -- provided you take the time to
learn how to use them properly.

At the same time, the discipline of programming has
changed over the years. Today you have giant tomes of
design patterns to pore over, and every few months some-
one comes up with a new development methodology that
they swear will transform you into a god among program-
mers.

But what looks good on paper doesn’t always work in
practice, and just because you can do something doesn’t
mean you should. As programming guru Joel Spolsky puts
it, “Shipping is a feature. A really important feature. Your
product must have it.” Programmers who fetishize their
tools inevitably lose sight of this, and even the seemingly
simplest of projects can end up mired in development hell.
Resist your baser impulses and stick to what works.

SECOND DEADly SIN Of SOfTwARE
DEVElOPmENT: glUTTONy (fAIlINg TO
REfACTOR)

Nothing is more gratifying than shipping software. Once
you have a working product out in the wild, the tempta-

tion is strong to begin planning the next iteration. What
new features should it have? What didn’t we have time to
implement the first go-round?

It’s easy to forget that code seldom leaves the door in
perfect shape. Then, as features accumulate with successive
rounds of development, programmers tend to compound
mistakes of the past, resulting in a bloated, fragile code base
that’s too tangled to maintain effectively.

Instead of gobbling up plate after plate of new features,
restrain yourself. Evaluate your existing code for quality and
maintainability. Make code refactoring a line item on your
budget for each new round of development.

ThIRD DEADly SIN Of SOfTwARE
DEVElOPmENT: gREED (COmPETINg
ACROSS TEAmS)

The excessive desire for wealth and power -- how else
to explain the motives of programmers who compete with
their own coworkers? It starts when other teams are left off
email lists, then proceeds to closed-door meetings. Next
thing you know, one team has written a library that reimple-
ments more than half of the functionality already coded
by another team.

Programming teams seldom reinvent the wheel out of
malice, but lacking clearly defined objectives, they can eas-
ily latch onto responsibilities much broader than are strictly
necessary. The result is a redundant, unmanageable code
base, to say nothing of the budget lost to duplicated efforts.
One of the top priorities of managing a development proj-
ect should be to make sure each hand knows what the
other is doing, and that all the teams are working toward a
common goal. Share and share alike should be your motto.

fOURTh DEADly SIN Of SOfTwARE
DEVElOPmENT: SlOTh (NOT VAlIDATINg
INPUTS)

The list of basic programming mistakes is long, but the
sin of failing to validate input is so pernicious that it bears
special consideration. Why this seemingly amateur error still

8Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

crops up in code written by experienced programmers is
baffling. And yet, many commonplace security vulnerabili-
ties, from buffer overruns to SQL injection attacks, can be
traced directly to code that operates on user input without
validating it for correct formatting.

Modern programming languages provide many tools to
help coders keep this from happen-
ing, but they have to be used prop-
erly. Remember, a Web form that uses
JavaScript to validate its inputs can be
easily sidestepped by disabling Java-
Script in the browser or not using a
browser to access it at all. Input valida-
tion should be baked into the core of
your application, not sprinkled onto
the UI. Anything less is simple lazi-
ness.

fIfTh DEADly SIN
Of SOfTwARE
DEVElOPmENT: wRATh
(NOT COmmENTINg
CODE)

What act could be more hostile to
your fellow programmers than fail-
ing to comment your code? I know,
I know: Well-written code is its own best documentation.
Well, guess what? Those methods you wrote at two in the
morning last Thursday weren’t exactly well-written code.
(And if you’re a Perl hacker, you owe me nine Hail Marys.)

It’s easy for programmers to forget that the code they
write today may live on long after they’ve left the job. To the
programmers who replace them falls the unenviable task
of figuring out what each snippet of code actually means.
So have mercy, and leave them a few hints.

But remember, unintelligible comments or commenting
too much can be as bad as not commenting at all. Com-
ments like “this is broken” or “don’t touch this ever” aren’t
much help to anybody. Code is its own best documenta-
tion of what it does; comments should be there to explain
the why.

SIxTh DEADly SIN Of SOfTwARE
DEVElOPmENT: ENVy (NOT USINg
VERSION CONTROl)

It’s hard to believe there are still software projects that
exist as a directory tree on a file server, jealously guarded
by one “master maintainer.” Scattered around the office are

duplicates of this tree on individual devel-
opers’ workstations, each slightly different
-- though no one knows exactly how.

Maybe you have reasons for not imple-
menting version control on your projects.
Maybe it started small and just got out of
hand. But powerful, effective version con-
trol systems are readily available today for
free. There is no reason why you shouldn’t
make starting a code repository one of the
first steps in any project, even small ones --
unless, that is, you can’t stand to see anyone
commit code changes but yourself.

SEVENTh DEADly SIN Of
SOfTwARE DEVElOPmENT:
PRIDE (NOT UNIT TESTINg)

It’s often tempting to pat yourself on the
back for a programming job well done. But
how do you know it’s well done? What are

your metrics?
Unless you’ve validated your code against specific test

cases, you have no idea whether it works as advertised and
is completely free of defects. But all too many developers
fail to produce unit tests for their code. They claim time
spent testing is time not spent implementing features. In
fact, some developers fail to even write QA testing into
their project budgets.

What can I say, except that pride goeth before a fall? By
the time defective code arrives in the client’s hands, it’s
too late to undo the mistake. The more you plan for unit
testing before your code ships, the more damage control
you can avoid later.
Neil McAllister is a freelance writer based in San Francisco. He also writes Info-
World’s Fatal Exception blog.

SUBSCRIBE TODAY
Keep up to date on the
latest developer news
with the twice-weekly
InfoWorld Developers’
newsletter.

Delivered to your
inbox every Tuesday
and Thursday.

Don’t miss a beat,
wherever you happen
to be. Sign up now!

I N F O W O R L D . C O M D E E P D I V E S E R I E S

9Developers Survival
Guidei

i By Neil McAllister

if you’re a Developer reaDing this right now, chances are
you’re an idiot.

That is, chances are you code regularly in a language that
should never even have been invented. Or maybe you
use the wrong IDE or the wrong text editor or some ver-
sion control system that can’t possibly do the job. Maybe
you’re dedicated to a programming methodology that
never works, or your release cycles are set up all wrong.
You might debug your code the wrong way, or you have
no idea which optimizations to switch on in your compil-
ers. Whatever it is, all your projects are destined for failure.

By the same token, chances are I’m an idiot, too.
Why are developers so quick to call each other idiots,

anyway? Check out any developer forum or message
board: It won’t take long before you’ll find some seem-
ingly innocuous thread that has erupted into a full-blown
flame war.

The list of hot-button topics is endless: Emacs versus VI.
Java versus .Net. C++ versus Java. Eclipse versus NetBeans
versus Visual Studio. Perl versus Python versus Ruby. Agile
versus waterfall. Django versus Rails. Extreme programming
versus Scrum. Git versus Subversion.

You’d be hard-pressed to find a more contentious group
outside a “Star Trek” convention. Yet bickering about your
favorite sci-fi shows is all in good fun. It’s entertainment; it
doesn’t have any bearing on real life.

For many developers, on the other hand, programming is
their livelihood. When decisions about tools and practices
become polarized and zealotry takes the place of ratio-
nal discussion, it not only wastes time, but lowers morale,
causes communication breakdowns in other areas, and
at its worst threatens the successful completion of critical
objectives.

It’s grown so bad in the app dev world that groups of
developers have taken to issuing “manifestos,” as if they

were Central American revolutionaries. First there was the
Agile Manifesto. Now others are trying to come up with
the DevOps Manifesto (though the thought behind that
particular revolution seems a little harder to articulate).

In that spirit, I’d like to propose a new manifesto for those
developers who are tired of the partisan squabbling, flame
wars, name-calling, and finger-pointing. For lack of a better
name, I call it the Maturity Manifesto, and it’s organized
around a few guiding principles:

1. I wIll REJECT DOgmATIC ThINkINg
ABOUT TOOlS, PRACTICES, AND
PROCESSES

If you find yourself returning to certain websites for talk-
ing points about why your favorite tool is better than all the
others, there’s a good chance you don’t really understand
your favorite tool well enough to argue as fervently as you
do. Talking points are a great way to convince developers
why they should try a new tool or become expert in one
they already know. They are less valuable when a team is
evaluating a range of options for a specific, real-world task.

Also, resist the urge to reject a tool based solely on the
vendor that supplies it. Your personal vendor preferences
(or prejudices) may not actually reflect the best interests
of the project.

2. I wIll VAlUE flExIBIlITy OVER
REPETITION

Just because it worked last time doesn’t mean it’s the
only way to do it this time. And did it really work as well
last time as it could have? Has absolutely nothing changed
-- neither the options available, the staff available, nor the
expertise of the staff -- that might make an option viable
now that wasn’t viable earlier? Try to keep an open mind
when team members raise new methods that haven’t been
tried. And even when the decision is made to reject a cer-

BEST PRACTICES

Earth to developers: Grow up!
Rational programmers must step back and remember a few basic principles

10Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

tain idea for this iteration of a project, don’t be too quick
to dismiss it if the same idea is proposed the next time.

3. I wIll wEIgh All CONSIDERATIONS
BEfORE mAkINg A DECISION

Be particularly wary of qualitative adjectives, such as
“faster,” “smaller,” “easier,” “more scalable,” and “more
robust” when arguing in favor of tools. Like synthetic bench-
marks, they seldom tell the whole story. It may be true that
the best-written C++ code will outperform the best-written
Java code at the same task. But are the C++ programmers
on your team really the best in the business? Does perfor-
mance outweigh other considerations, such as code main-
tainability or ease of memory management?

For some projects, time to market might be the most
important factor; in those cases, the “best” tool for the job
might simply be the one that gets it done fastest. Make sure
you understand your project’s priorities before you argue
in favor of any tool.

4. I wIll RECOgNIzE ThE DEfICIENCIES
Of my TOOlS, EVEN ONES I PREfER

I have yet to see a language, method, or process that
is equally good at everything. For example, C might be
the only language that makes sense for a project like the
Linux kernel, but it’s lousy for text processing. Agile meth-
ods might work wonders in small groups but fall apart at
enterprise-wide scale. Foolish programmers are those who
agitate for a specific tool again and again simply because it’s
the one they understand best; wise programmers are those

who are willing to set aside their favorite methods when
they know they aren’t ideally suited to the task at hand.

5. I wIll NOT mAkE ThE PERfECT ThE
ENEmy Of ThE gOOD

We’ve all seen terrible code, and we’ve all seen the com-
pletely wrong tool bent to a task it was never meant to
handle. These are the worst-case scenarios. Other times,
however, a less-than-optimal solution that achieves the
objective is preferable to an ideal solution that’s too dif-
ficult to implement in the time allotted. It’s important that
experienced developers raise concerns when they recog-
nize problem areas, but once those issues have been aired,
it’s time to set the debate aside and focus on the goal. Some
fights are better left for another day.

6. I wIll ADmIT my mISTAkES, RAThER
ThAN COmPOUND ThEm

We’re all wrong some of the time. We all put our feet in
our mouths some of the time. No matter how experienced
you are, no matter how sure you are of your footing, sooner
or later you’ll probably meet someone who understands a
problem or tool better than you do. These moments aren’t
defeats. They are opportunities. To be a good advocate,
you should not only be self-assured enough to argue pas-
sionately for your position, but also self-aware enough to
recognize a lesson worth learning.

Failing that, you can always go home and bicker on a
message board -- and good luck to you.
Neil McAllister writes InfoWorld’s Fatal Exception blog.

I N F O W O R L D . C O M D E E P D I V E S E R I E S

11Developers Survival
Guidei

i By Neil McAllister

programmers often like to talk about how a new tool or
a new version of their favorite platform will make coding
faster, easier, or more elegant. Although this may be true,
it ignores just how difficult and painstaking the process of
developing quality software actually is, no matter what
tools are used.

Case in point: the CWE/SANS list of the top 25 most
dangerous software errors. Each year, the list’s editors draw
upon the experience of leading software security experts
to rank programming errors by frequency, severity, and the
likelihood that they will lead to exploitable vulnerabilities.
This year’s list was published this week, and the bad news
is how few surprises it contains.

Not only is this year’s list predictable, it’s redundant. Of
the 25 errors cited, far too many can be chalked up to the
same fundamental misdeeds -- mistakes that have been
around almost since the dawn of programming itself. Will
we never learn?

ThE SAmE ERRORS, OVER AND OVER
Topping the list is “improper neutralization of special

elements used in an SQL command,” also known as the
dreaded SQL injection vulnerability, the bane of Web appli-
cations everywhere. According to IBM’s annual X-Force
Trend and Risk Report, the frequency of SQL injection
attacks increased 200 times between 2008 and 2009, and
IBM’s researchers have seen at least one “globally scaled”
SQL injection attack each summer for the past three years.

SQL injection is usually the result of improperly validated
user input, where the application parses form data into a
SQL query without checking to see whether it contains
potentially harmful SQL code. But SQL injection isn’t the
only way user input can go wrong. Of the top 25 errors list,
roughly a quarter of them can be attributed to inadequate
input validation, including OS command injection, buffer
overruns, cross-site scripting, failure to validate directory
paths, and uncontrolled output formatting strings.

Even more than input validation errors, this year’s top

25 list is rife with application security blunders of all kinds.
Some of them sound fairly esoteric, such as “inclusion of
functionality from untrusted control sphere.” But of all such
errors, the highest-ranking one on the list is “missing authen-
tication for critical function” -- in other words, the attacker
was able to gain access because there was no lock on the
door to begin with.

Developers make such errors for two main reasons. First,
they may be operating under the mistaken assumption that
a given function is too obscure to be vulnerable; they fail
to grasp the extent to which attackers may be willing to
analyze their application flows to find weaknesses. More
often, however, they simply haven’t considered how impor-
tant a given function might be to the overall security of
their application. As applications grow more complicated
and their functions are distributed across multiple systems
and resources, it’s particularly easy to lose track of the big
security picture.

whAT wE CAN lEARN fROm mISTAkES
The full CWE/SANS list is detailed, comprehensive, emi-

nently readable, and chock-full of specific, valuable advice.
If you manage a software development project, you’d be
well served to pass the link along to everyone on your team
and encourage them to study it in depth. Even a cursory
read, however, yields key insights that every developer
should keep in mind.

First, know your tools, and don’t accept their features
blindly. Among the specific recommendations given in the
CWE/SANS list are such gems as “If you are using PHP,
configure your application so that it does not use register_
globals.” This particular advice is as old as the hills, and it
has actually been the default configuration since PHP 4.2.
As of PHP 5.3, the feature in question has been deprecated.
Developers who persist in using risky platform features
because they’re there, despite countless recommendations
to the contrary, deserve what they get.

Second, don’t put too much faith in your platform just
because it’s said to be more secure. For example, managed

BEST PRACTICES

Beware these developer errors
Nothing guarantees app security as long as developers repeat their mistakes

12Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

languages such as Java and C# eliminate the possibility of
buffer overruns by doing bounds-checking at runtime. That
means Java and C# programmers are shielded from the
third-ranked error on the CWE/SANS list. But neither Java
nor C# does anything to protect you from SQL-injection
vulnerabilities caused by poorly validated user input, which
rank even higher on the list than buffer overruns. Any plat-
form is only as secure as the code that runs on it.

Third, data security is hard. Unless you’re a specialist,
cryptography seems like an arcane art, and it’s tempting just
to treat it simply as magic dust that you can sprinkle onto
your applications to make them more secure. Similarly, it’s
all too easy to introduce backdoors in your authentication
scheme if you don’t treat security as a core principle in your

software design process. Improper, inconsistent, or naïve
application of security techniques is especially insidious
because it fosters a false sense of safety even as it leads to
serious vulnerabilities.

Last, and most important, the list reminds us that soft-
ware vulnerabilities are everywhere, and virtually no devel-
opment project is completely safe. With the pace of Internet
attacks accelerating, now is not the time to cut QA staff or
skimp on testing and code review. No matter what tools
you choose, developing secure applications is challenging
and laborious, yet critically important, now more than ever.
Let’s be careful out there.
Neil McAllister is a freelance writer based in San Francisco. He also writes Info-
World’s Fatal Exception blog.

IT job spotting: Top 20 metro areas for tech jobs

Dice.com reports the best areas for tech jobs, based on salaries and the number of open positions

After two straight years of flat
wages, tech pros finally got a salary
bump in 2011 . The average annual
wage for technology and engineer-
ing pros climbed 2% to $81,327
last year, according to new data
from Dice .com . In some areas, sala-
ries jumped even higher . Tech pros
reported 12% gains in Austin, Texas,
and Portland, Ore ., for instance .

Here’s a look at salaries and job
opportunities in the top 20 metro
areas for tech jobs, based on data
from Dice .

�

http://www.infoworld.com/slideshow/30927/it-job-spotting-top-20-metro-areas-tech-jobs-186111
http://www.infoworld.com/slideshow/30927/it-job-spotting-top-20-metro-areas-tech-jobs-186111
http://www.infoworld.com/slideshow/30927/it-job-spotting-top-20-metro-areas-tech-jobs-186111
http://www.infoworld.com/slideshow/30927/it-job-spotting-top-20-metro-areas-tech-jobs-186111
http://www.infoworld.com/slideshow/30927/it-job-spotting-top-20-metro-areas-tech-jobs-186111

I N F O W O R L D . C O M D E E P D I V E S E R I E S

13Developers Survival
Guidei

i By Peter Wayner

in the worlD of enterprise programming, the mainstream
is broad and deep. Code is written predominantly in one
of a few major languages.

Programmers looking for work in enterprise shops would
be foolish not to learn the major languages that underlie this
paradigm, yet a surprising number of niche languages are
fast beginning to thrive in the enterprise. Look beyond the
mainstays, and you’ll find several languages that are begin-
ning to provide solutions to increasingly common prob-
lems, as well as old-guard niche languages that continue to
occupy redoubts. All offer capabilities compelling enough
to justify learning a new way to juggle brackets, braces, and
other punctuation marks.

While the following seven niche languages offer features
that can’t be found in the dominant languages, many rely
on the dominant languages to exist. Some run on top of
the Java Virtual Machine, essentially taking advantage of
the Java team’s engineering. And when Microsoft built C#,
it explicitly aimed to make the virtual machine open to
other languages. That detail may help make deployment
easier, but it doesn’t matter much to the programmer at
creation time.

Either way, these seven languages are quickly gaining
converts in the enterprise. Perhaps it’s time to start investi-
gating their merits.

PROgRAmmINg lANgUAgES ON ThE
RISE: PyThON

There seems to be two sorts of people who love Python:
those who hate brackets, and scientists. The former helped
create the language by building a version of Perl that is
easier to read and not as chock-full of opening and closing
brackets as a C descendant. Fast-forward several years, and
the solution was good enough to be the first language avail-
able on Google’s AppEngine -- a clear indication Python has
the kind of structure that makes it easy to scale in the cloud.

Python’s popularity in scientific labs is a bit hard to
explain, given that, unlike Stephen Wolfram’s Mathematica

for mathematicians, the language never offered any data
structures or elements explicitly tuned to meet the needs
of scientists. Python creator Guido von Rossum believes
Python caught on in the labs because “scientists often need
to improvise when trying to interpret results, so they are
drawn to dynamic languages which allow them to work
very quickly and see results almost immediately.”

Scientific and engineering enterprises such as pharma-
ceutical companies aren’t the only ones tapping Python
for research. Many Wall Street firms now rely heavily on
mathematical analysis and often hire university scientists
who bring along their habit of coding in Python. Python
is becoming so popular on Wall Street that there are even
proposals to require the prospectus for a bond to include
a Python algorithm for specifying who gets what return on
the investment.

PROgRAmmINg lANgUAgES ON ThE
RISE: RUBy

Some may argue that Ruby and Python are hardly “niche”
languages, but the truth is, from an enterprise perspective,
they remain promising tools all too often pushed to the
margin. That said, Ruby, or more precisely the combina-
tion of Ruby with the Rails framework known as Ruby on
Rails, is becoming increasingly popular for prototyping. Its
entrance into the enterprise came on the heels of the Web
2.0 explosion, wherein many websites began as experi-
ments in Ruby. 37signals -- one of Ruby’s many proponents
-- actually uses Ruby to deploy code.

The secret to Ruby’s success is its use of “convention over
configuration,” wherein naming a variable “foo” causes the
corresponding column in the database to automatically be
named “foo” as well. As such, Ruby on Rails is an excellent
tool for prototyping, giving you only one reason to type
“foo”. Ruby on Rails takes care of the rest of the CRUD
scaffolding for you.

Ruby on Rails sites are devoted to cataloging data that
can be stored in tables. Well-known examples include Web
applications like Basecamp, Backcamp, and Campfire from

TRENDS

Programming languages on the rise
Once niche programming language are gaining converts in today’s enterprise

14Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

37Signals, a collection of websites that knits together group
discussions, debates, and schedules. Ruby on Rails handles
the formatting of these database tables, as well as deci-
sions about what information to display. Using Ruby on
Rails’ naming convention, production quality code can be
sketched up easily without much duplicate effort.

Many of the production-grade Ruby websites run on
JRuby, a version written in Java that sits squarely on the
JVM. JRuby users get all of the JVM’s prowess in juggling
threads, a very valuable asset in production-level deploy-
ments with many concurrent users.

PROgRAmmINg lANgUAgES ON ThE
RISE: mATlAB

Built for mathematicians to solve systems of linear equa-
tions, MATLAB has found rising interest in the enterprise,
thanks to the large volumes of data today’s organizations
need to analyze. Many of the more sophisticated statistical
techniques that match people with advertisements, songs,
or Web pages depend upon the power of algorithms like
those solved by MATLAB.

Expect MATLAB use to grow as log files grow fatter.
It’s one thing for a human to look at the list of top pages
viewed, but it takes a statistical powerhouse to squeeze
ideas from a complex set of paths. Are people more likely
to shop for clothes on Monday or Friday? Is there any
correlation between product failures and the line that pro-
duced them?

MathWorks, the company behind MATLAB, offers a
diverse set of whitepapers showing how engineers are
searching for statistical answers. Toyota Racing, for instance,
plans its NASCAR entries by analyzing tests in wind tun-
nels and other labs. Canada’s Institute for Biodiagnostics is
searching for the best treatment for burns.

There are also a number of open source alternatives,
including Octave, Scilab, Sage, and PySci, one of the afore-
mentioned Python libraries. All of these tools help with
the complicated statistical analysis that is now becoming
common for firms trying to understand what the customer
did and what the customer may want to do in the future.

PROgRAmmINg lANgUAgES ON ThE
RISE: JAVASCRIPT

JavaScript is not an obscure language by any means. If
anything, it may be the most compiled language on Earth,

if only because every browser downloads the code and
recompiles it every time someone loads a Web page.
Despite this fact and the increasing dominance of AJAX-
savvy Web pages, JavaScript is rarely thought of as a lan-
guage that runs on the big iron.

This isn’t for lack of trying. Netscape tried to make Java-
Script the common language on its server platform back
in 1996, but ended up establishing it only in the browser.
Aptana, one of the latest devotees, throttled its develop-
ment of Jaxer when it never caught on. AppJet, a small
experimental company, used the Rhino JavaScript library
written in Java to make it simpler to code server-side. That
company was acquired by Google in 2009 and now seems
to be devoted to other projects.

Still, new applications for JavaScript abound. CouchDB,
for instance, doesn’t use SQL for queries, instead taking two
JavaScript functions, one for selection (Map) and the other
for bundling everything together (Reduce). Node.js is one
of the more exciting server-side JavaScript frameworks to
appear as of late, revitalizing the ancient dream of bringing
harmony to both client and server-side programming. The
package takes Google’s V8 JavaScript engine created for
the browser and lets it make the decisions about format-
ting outgoing data.

Everywhere people need a small amount of scripting
power, JavaScript finds new uses. One of the simplest ways
for developers of large applications to offer users the ability
to create subapplications, JavaScript continues to grow in
the enterprise, one small chunk of code at a time.

PROgRAmmINg lANgUAgES ON ThE
RISE: R

Statistical analysis is being increasingly done in R these
days, although some purists call the language S, its original
name. Tibco sells a commercial version called S-Plus.

There probably won’t be an S++ because the language is
more a version of LISP or Scheme with additional features
for computing statistical functions and then displaying the
results in pretty pictures. If the boss wants the computer
to churn through billions of lines of log files looking for
patterns, clusters, and predictive variables, R or S is a well-
loved solution.

R is another Swiss Army Knife of numerical and statistical
routines for hacking through the big data sets -- collections
big enough that it might be better called a Swiss Army

15Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

Machete. Lou Bajuk-Yorgan, senior director of product
management for Tibco’s Spotfire S-Plus, says its software
is used by a number of clients who are studying how busi-
ness or engineering projects might work or why they fail to
work. Analyzing weather patterns to find the best places to
build wind-powered generators is one example.

PROgRAmmINg lANgUAgES ON ThE
RISE: ERlANg

Does your server need to respond to many different
independent messages concurrently? Do you need to par-
cel these requests out to different cores or servers in vari-
ous parts of the world? That’s practically the definition of
the hardest part of enterprise computing. Erlang, an open
source language first created by scientists at Ericsson Com-
puting Laboratory, excels at these tasks.

The language mixes traditional facets of functional pro-
gramming (no side effects) with a modern virtual machine
that compiles down to machine code. The structure of
the language forces the programmer to build something
that’s easier to spread across multiple cores and multiple
machines. There are a number of practical implementa-
tions of Web servers and the CouchDB. That’s right: The
database that asks to receive queries written in JavaScript
instead of SQL is itself written in Erlang.

CouchDB is just the beginning. A number of project
managers dealing with “big data” are building systems for
storing large volumes of data in a scalable way. Hibari, an
open source project from Gemini Mobile, offers consistent,
scalable clusters to store key-value pairs that repair them-
selves after failure. The functional structure makes it easier
to create big applications that juggle multiple connections
efficiently.

PROgRAmmINg lANgUAgES ON ThE
RISE: COBOl

It may not be fair to call Cobol a niche language as it
was once the dominant language in the enterprise. Grace
Murray Hopper, famous for finding the first bug in the
early mainframes, helped create the language in 1959 and
it’s been enhanced hundreds of times since. Cobol jockeys
today get to play with object-oriented extensions, self-mod-
ifying code, and practically every other gimmick.

That never earned it much respect in some circles. Or
as famous academic Edsger Dijkstra put it: “The use of

Cobol cripples the mind; its teaching should, therefore, be
regarded as a criminal offense.” The folks in mainframe
shops everywhere ignored this note and soldiered on. IBM
calls one of the latest releases “Enterprise Cobol 4.2,” but it
could as easily be numbered 147.2 or maybe even 588.3.
Cobol programmers like the syntax that’s more like a natu-
ral language with actual nouns and verbs that form clauses
and sentences -- a technique that might call Ruby to mind.

While fewer schools are teaching new programmers
Cobol, the language is far from dying, with many corpora-
tions continuing to invest in their Cobol stacks. A recent
search of Dice.com showed 580 jobs mentioning Cobol
and 1,070 mentioning Ruby.

Versions of the languages run on JVMs and .Net vir-
tual machines making it possible to migrate code stacks
away from mainframes to Linux boxes. Programmers who
want to use a more modern IDE can search for plug-ins to
Eclipse, a project that is gaining new support.

PROgRAmmINg lANgUAgES ON ThE
RISE: CUDA ExTENSIONS

As libraries for programming video cards to do massively
parallel jobs, CUDA extensions are not technically a lan-
guage; they’re just extensions to C.

Still, some enterprise programmers are beginning to
unlock the massively parallel architectures normally
devoted to rendering realistic blood splattering in alterna-
tive game worlds. Moreover, recoding loops for massive
parallelism means rethinking many of the idioms from basic
C or C++ programming, making CUDA extensions all the
more valuable.

Opportunities to tape CUDA extensions include machine
vision, massive simulations, and huge statistical computa-
tions. Many problems of data analysis are naturally mas-
sively parallel, making GPU processors worth a look. One
of Nvidia’s recent conferences devoted to CUDA applica-
tions included separate tracks devoted to computational
fluid dynamics, computer vision, databases and data min-
ing, finance, and molecular dynamics. That list alone is long
enough to explain why big enterprise coders are curious.

“It’s clear that the GPU reached escape velocity,” Dan
Vivoli, senior vice president at Nvidia.

“The processor is now reaching all different disciplines of
science and industry.”
Peter Wayner is contributing editor of the InfoWorld Test Center.

I N F O W O R L D . C O M D E E P D I V E S E R I E S

16Developers Survival
Guidei

i By Neil McAllister

in most fielDs, there’s a special kinD of shame associateD
with having to start a project over from scratch. As an
architect, for example, the last thing you want to hear is
that one of your buildings will be torn down and rebuilt
from the ground up because it can no longer support the
weight of its tenants.

According to computer scientist and entrepreneur
Michael Stonebraker, however, that’s more or less the situ-
ation confronting Facebook right now. Only in Facebook’s
case, the “building” is a Web application, and the problem
isn’t concrete or steel girders; it’s MySQL.

In 2008, Facebook famously disclosed that it had
deployed a whopping 1,800 production MySQL servers,
and the social networking giant’s growth has only acceler-
ated since then. As of now, Stonebraker says, Facebook
has split its MySQL data store into some 4,000 shards,
with 9,000 caching servers running 24/7 just to keep up
with the load.

Facebook’s struggles with MySQL are far from secret. In
fact, the company maintains a MySQL at Facebook profile
page with updates on its continuous quest to keep the open
source database running efficiently at such a massive scale.

But to hear Stonebraker tell it, that quixotic journey
should have ended long ago. He describes being saddled
with Facebook’s complex MySQL installation as “a fate
worse than death.” The only way out of this purgatory, he
says, is for Facebook to “bite the bullet and rewrite every-
thing.” In other words: Tear this building down.

Naturally, Stonebraker’s comments have ruffled a lot of
feathers in the Facebook camp. But for the sake of argu-
ment, let’s assume he’s right. Let’s assume Facebook really
is nearing the limits of what MySQL can possibly do, and
that the most effective solution at this point would be a
total rewrite.So what’s the big deal?

TRy AND TRy AgAIN
Facebook would hardly be the first high-traffic website to

attempt a major technology upgrade late into its life. In fact,

a two-stage rollout has become something of a tradition
among Web startups. The list of sites that have undergone
a major technical revamp after launch reads like a veritable
who’s who of the Web’s biggest names.

Remember when Twitter sounded like a silly idea? Its
founders must have been skeptical at first, too, which may
have been why they chose to build the site using the Ruby
on Rails framework. Rails is known for its fast development
times; according to O’Reilly Media’s Tim O’Reilly, “Power-
ful Web applications that formerly might have taken weeks
or months to develop can be produced in a matter of days.”

As Twitter’s user base grew, however, it must have soon
become evident that a few days’ coding wasn’t going to cut
it. In 2009, Twitter engineers announced that the company
had begun migrating key systems from Ruby to Scala, a
language that runs on the Java virtual machine (JVM), as a
way around bottlenecks in the Ruby runtime environment.
Today, Twitter still uses a mix of Ruby and Scala, but the
effort to migrate performance-sensitive systems to the JVM
continues (search being the most recent candidate).

Even before Ruby on Rails, developers were building
sites using other Web frameworks designed for rapid appli-
cation development. Remember ColdFusion? Now an
Adobe product, the venerable platform doesn’t get much
truck with developers these days, but in 2003 it allowed a
small group of colleagues to develop a social networking
competitor to Friendster in just 10 days. The name of their
site: MySpace.

MySpace’s user base exploded, and in 2005 the social
network and its parent company were acquired by Rupert
Murdoch’s News Corp. for $580 million. That same year,
with its back-end servers buckling under the weight of its
newfound popularity, the company began transitioning
its systems from ColdFusion to .Net, with help from New
Atlanta Communications’ BlueDragon migration tool.

START SmAll BUT STAy AgIlE
Imagine how much time, money, and effort could have

been saved had Facebook hitched its fortunes to an enter-

BEST PRACTICES

Don’t be afraid to rewrite code
When your app’s overloaded, sometimes you need to start over from scratch

17Developers Survival
Guidei

I N F O W O R L D . C O M D E E P D I V E S E R I E S

prise-class database instead of MySQL, or if Twitter or
MySpace had built their services using Java or .Net to begin
with, rather than bumbling around with Ruby on Rails or
ColdFusion. But of course, that’s all hindsight. The truth is,
there are plenty of good reasons to launch a site using the
tools you have available at the moment, even if it means
you’ll have to rewrite most of your code later.

For starters, it’s easy to criticize a popular site, but for
every Web application that succeeds, countless more fail.
It simply doesn’t make sense to invest big dollars on the
most robust, scalable tools possible when your idea has yet
to be proven in the marketplace.

Second, at the early phases of
a Web project, developer effi-
ciency is often even more impor-
tant than the efficiency of your
infrastructure. The longer it takes
to bring a site to market, the more
opportunity competitors have to
outflank you. When your bud-
get is modest, it makes sense to
choose tools that allow the small-
est staff possible to get the most
done in the least amount of time,
which is exactly what tools such
as Rails and ColdFusion offer.

Third, technology itself evolves. Who’s to say your plat-
form of choice won’t outgrow today’s performance issues,
allowing your current design to scale as your site grows?

Fourth, no matter how meticulously you plan, not every
contingency can be foreseen. Reengineering your code
base gives you the opportunity to correct past mistakes,
such as problems with your security model or your data-
base schema. It’s possible you might end up doing extensive

rewrites even if you don’t switch platforms.
Finally, a website simply is not like a building. Investing

in Web infrastructure is not the same as investing in steel
and concrete. Building Web applications is a business that’s
intrinsically more agile and flexible than building real-world
objects, which is a big part of what makes it such an exciting
business to be in. So why not act like it?

BEwARE AxE-gRINDERS
As for Michael Stonebraker, he has an axe to grind. As

the co-founder and CTO of VoltDB, Stonebraker would like
nothing better than to see
Facebook rewrite its code to
free itself of its dependence
on MySQL.

That would only lend
fuel to his arguments that
“old SQL” products, such as
MySQL, should be “sent to
the home for retired soft-
ware” and that new startups
should choose products like
VoltDB to avoid Facebook’s
“fate worse than death.”

Personally, I take Stone-
braker’s arguments with a

hefty grain of salt, even if Facebook does end up rewriting
substantial portions of its software. Given how Twitter and
MySpace both weathered their own growing pains and
how successful all three sites have been (despite MySpace’s
recent turn in fortune), most startups can only dream of
failing so spectacularly.
Neil McAllister is a freelance writer based in San Francisco. He also writes Info-
World’s Fatal Exception blog.

SUBSCRIBE TODAY
Find out where the developers
are most in demand -- look to the
InfoWorld Mobilize newsletter.

Delivered to your inbox every
Monday and Wednesday.

Don’t miss a beat, wherever you
happen to be. Sign up now!

