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Jane C. Blake
Editor

The second issue of the Digital Technical Journal
(March 1986) featured papers on the then
recently announced MicroVAX 11 system, a system
based on a single-chip VAX implementation. In
this seventh issue, we present papers on the scc-
ond generation of that chip set, CVAX, the two
new systems that take advantage of its increased
performance capabilitics, and a ncw version of
the VAX/VMS opcerating system for symmetric
multiprocessing.

The new mid-range systcm based on the CVAX
chip set is the VAX 6200 family of computers,
which utilizes a multiprocessing architecture.
The first of two papers by Brian Allison is an
overview of this highly configurable, expandable
system. Brian’s second paper offers insights inro
the architectural definition process for the 6200.

Onc of the major decisions made by the 6200
engineers was to design a new interconnect to
support the multiprocessor system. Rick Gillett
presents an informative discussion of the com-
plexities involved in interfacing a microprocessor
to a high-spced, multiprocessing bus.

To cnsure the availability of first-pass func-
tional parts, a design verification team of engi-
neers worked in parallel with the 6200 module
designers. Jean Basmaji, Glenn Garvey, Masood
Heydari, and Art Singer discuss the computer-
aided enginecring and verification principles the
tcam instituted for the project.

Rod Gamache and Kathy Morse then describe
the major features of symmetric multiprocessing
in the VAX/VMS operating system. Of particular
interest is their description of a new synchroniza-
tion method implemented in VAX/VMS version 5.0.
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Editor’s Introduction

In the last paperrelated to the VAX 6200 system,
Bhagyam Moses and Karen DeGregory describe the
development of workloads to measure VAX 6240
performance. As part of their discussion, they
include performance measurements and analysis.

The second new system based on the CVAX
chip sct is the low-end MicroVAX 3500/3600
system, which offers three times the performance
of its predecessor, the MicroVAX Il. In his over-
view of the major sections of the processor mod-
ule, Gary Lidington relates how schedule and
performance requirements influenced product
design decisions.

Charles DeVane then describes the MicroVAX
3500/3600 system’s two-level cachc architecture,
with emphasis on the design of the second-level
cache. He also presents some cache performance
test results.

The high performance of both the VAX 6200
family and the MicroVAX 3500/3600 system is
attributable in great measurc to the CMOS VAX
family of chips on which these systems are based.
Our five final papers address the design and
development of this chip set. Frank Fox, Paul
Gronowski, Anil Jain, Mike Leary, and Dan Miner
begin the discussion with an explanation of how
designers achieved the performance goals for the
single-chip VAX CPU by reducing ticks per
instruction and machine cycle time.

A companion to the CVAX CPU, the floating
point processor chip offers floating point perfor-
mance equal to that of the microprocessor for
integer operations. The approach taken to attain
this goal and a description of the chip are pre-
sented by Ed McLellan, Gil Wolrich, and Bob
Yodlowski.

Jeff Winston then discusses the development of
the system support chip, which provides a com-
mon core of peripheral system functions.

Next, Barry Maskas relates the design efforts of
three groups, one in Japan and two in the U.S.,
that resulted in a single-chip interface between
the CVAX microprocessor and the Q22-bus 1/0
subsystem.

In our final paper, Dave Morgan describes the
CVAX memory controller chip, CMCTL, which is
optimized for Q-bus-based systems.
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Foreword

Robert M. Supnik
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VLSI Technology, and
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Semiconductor Engineering
Microprocessor Development

In May 1985, Digital introduced the MicroVAX 11
computer system. Bascd on the MicroVAX proces-
sor chip set, the MicroVAX II system offered
unsurpassed price, performance, and reliability
characteristics. In the three years since then,
Digital has sold more than 100,000 systems
bascd on the MicroVAX chip set. There are more
MicroVAX-based systems in the field than all
other types of VAX systems combined.

In the same three years, the practice of com-
puter engineering has advanced considerably.
Faster processors, bigger memorics, quieter pack-
ages, and more complex software have appeared
in a steady stream. For Digital to remain compe-
titive, we would need, over time, a second gener-
ation of VISI-based VAX chips and systems. The
chips and systems that constitute the second
VLSI-based generation are described in this issue
of the Digital Technical Journal.

The planning for the second generation began
in 1983. That year, the LSI Group (now Semicon-
ductor Operations) formulated a multiyear pro-
gram for the development of both semiconductor
process technology and leading-edge chip prod-
ucts. The key characteristics of this process/
product plan were

s CMOS (complementary metal-oxide-semicon-
ductor) process technology (Previous Digital
chips were based on NMOS technology .)

= Multiple process generations related by opti-
calscaling

s VAX microprocessors as the leading edge chip
development projects

s Performance improvements targeted for greater
than 50 percent per year

This program not only provided the LSI Group
with an overall structure for its process and chip
development projects; it also provided Digital’s
system groups with a stable, long-term basis for
planningsystem products.

The program was also a significant leap of
faith. When it was formulated, there was no
MicroVAX business. The MicroVAX Il system was
two years away from shipment. Almost all design
resources in the LS1 Group and in the low end sys-
tem groups were busy with the MicroVAX chip
set and its related systems. Major development
projects in technology, chip design, systems
design, and manufacturing were required to
bring the program vision to fruition.

Work began with development of the under-
lying semiconductor technology. Starting in
1983, a team from Semiconductor Manufactur-
ing’s Advanced Semiconductor Development
(ASD) defined, simulated, and tested CMOS-1,
Digital’s first CMOS process. When first defined,
CMOS-I’s key features — N-well base on a p-type
epitaxial layer, two levels of metal interconnect,
2.0 micron feature size, direct scalability to
1.5 micron feature sizes — were controversial
within an industry that was still debating NMOS
versus CMOS. Over time, these choices have been
vindicated, and CMOS-1 has proven to be a main-
stream, robust, highly manufacturable process.

Equally important was development of design
methods for larger and more complex chips. The
Semiconductor Engineering Computer Aided
Design (CAD) Group continuously refined the
structured design process first deployed for
MicroVAX and V-11. The goals of this effort
were improved simulation coverage, faster
turnaround time, and more extensive automated
verification. One consequence of the increased
use of CAD tools was a dramatic increase in the
amount of computing power required. This gen-
eration of chip development projects used four



times as much computing power as the first VLSI
gencration.

The Semiconductor Engineering Microproces-
sor Group began architectural prework on the
second-generation chip set (called CVAX) in
mid-1984. The overarching goal was simple:
thrce times the performance of the MicroVAX
chip set in less than three years — a compound
performance growth rate of more than 50 per-
cent per year. The central processor design
started from the MicroVAX base but drew upon
idcas from other VAX implementations, notably
the 8700. The floating point unit design focused
on minimal execution flows for the most common
instructions. Both chips transitioned to imple-
mentation in 1985.

The original concept for the CVAX chip set
had been to build chip-for-chip analogues of
MicroVAX — a central processor and a tloating
point unit. However, as the flexibility of the new
CMOS process, and the efticiency of the CAD
tools, were appreciated by designers, the chip set
concept expanded beyond the central processor
to include key peripherals. The implementation
of these periphcral functions in VLSI chips madc
systems faster, more reliable, and less expensive.
In addition, it allowed peripheral functions to be
standardized across multiple system implementa-
tions and additional functions to be added in
modular fashion. The Semiconductor Engineer-
ing peripherals group (now Advanced Develop-
ment) specificd and implemented a memory con-
troller, a memory driver, a console interface, and
a Q-bus interface.

After the MicroVAX Il system shipped in May
1985. the Low-end Systems Group and the Mid-
range Systems Group became actively involved
in the specification of the CVAX chips and in
the definition of new systems utilizing the chip
set. In the low end, the 3500/3G00 systems
were defined as evolutionary extensions of the
MicroVAX [I. Nonetheless, the performance
targets tor the new chips posed knotty design
problems for a system family bounded by both
costand packaging considcrations.

In the mid-range, the system designers wished
to cxploit the CVAX chip set’s combination of
high performance and low cost by constructing

an extensible multiprocessor system. They
defined a new system interconncct (supported by
unique chips) tw provide unprecedented flexi-
bility and extensibility in configuring systems,
and ncw system packaging to support the con-
cept. However, a general-purpose multiprocessor
system was feasible only if the VMS operating sys-
tem could take advantage of the incremental
power offered by additional processors. This
required a major restructuring of VMS to support
symmetric (all processors equal) multiproces-
sing. Thus, the definition and implementation of
the mid-range 6200 system family and of VMS
symmetric multiprocessing support had to be
closely linked.

As the engineering development projects pro-
gressed, manufacturing became heavily involved
in planning and executing thc transition from
design to volume product. LSI Manufacturing in
Hudson, Massachusctts, introduced CMOS-1 into
multiple fabrication units in order to produce
prototypes quickly and to ramp up to high vol-
ume production. System manufacturing groups
in Westfield (Massachusetts), Albuquerque (New
Mexico). Puerto Rico, and other sites worked
closely with the system designers to introduce
the ncw manufacturing processes required for
system production.

The results of these development programs is a
family of VAX systems with exemplary price. per-
formance, and reliability characteristics. More-
over, the programs leave as residuals a set of
VLSI components from which other products can
be built, and base technology from which further
advances in chip and system design will evolve.
The initial program vision has been fulfilled,
even excecded. Many people, in teams and indi-
vidually., worked together to bring this about.
The exccllence of the results retlects. in full
measure. the exccellence of the work that they
have done.




An Overview of the

Brian R. Allison |

VAX 6200 Family of Systems

Digital’s VAX 6200 series is a bigh-performance, expandable family of
computer systems that combines low-cost microprocessors with high-
performance memory and 1,/0 subsystems. Based on the CMOS VAX chip
set, the VAX 6200 CPU module performs at 2.8 times the VAX-11 /780 system;
utilizing a multiprocessing architecture, system speeds are available up to
11 times the VAX-11/780 system. The memory subsystem utilizes a multi-
controller architecture for up to 256MB of total system memory. The XMI
bus, the electrical interconnect for the system, supports the multiple pro-
cessors, memory subsystems, and VAXBI channel adapters. The VAXBI is

used for all 1/0 devices.

The VAX 6200 family of computer systems is the
most recent addition to Digital’s linc of VAX com-
putcr systems. The VAX 6200 systems, primarily
based on CMOS technology. are mid-range sys-
tems which exploit multiprocessing techniques.
‘The VAX 6200 family currently comprises four
systems, all built from common subassemblics.
Any VAX 6200 system may be upgraded to any
other VAX 6200 system simply by adding CPU
and memory modules to the existing cabinct
This paper provides an overview of the system
and therefore a context for the five papers that
follow in this issue. These papers describe scv-
cral of the components in detail. the enginecring
design cffort, the performance evaluation pro-
cess, and some of the multiprocessing aspects of
the operating system.

In the past, CMOS-based microprocessor tech-
nology has been used primarily to build low-cost
systems. Today, by using multiples of these low-
Cost microprocessors, we are presented a unique
opportunity to producc a high-performance com-
puter system when the microprocessors are cou-
pled with high-performance memory and 1/0
subsystems. Although this type of system archi-
tecture will notdircctly resultin faster execution
of a single task, it docs result in greater system
throughput in applications that have sevcral
simultancously computable tasks. The architec-
turce couples the effectiveness of the VMS operat-
ing system in multiprogrammed cnvironments

with hardware optimized for cfficient multipro-
cessor operation. The result is a system that offers
similar performance for a large class of applica-
tions at a better price-performance ratio than that
offcred by traditional single-processor, high-per-
formance computcr systems.

A primary objcctive of the VAX 6200 system
design is to provide a highly configurable and
expandable computing environment. To achieve
this objective. designers chose a modular sub-
asscmbly design for the total system. This modu-
lar design provides for cost-cffective basic sys-
tems and also allows for system expansion to
achicve higher performance. All membcers of the
VAX (200 family arc housed in the samc cabinet
and usc the samce basic subassemblies. The only
difference is the number of processors, amount of
memory, and number of I/O devices. Table 1
details the configurations of the VAX 06210,
VAX 6220, VAX 6230, and VAX 6240 systems.

System Architecture

All VAX 6200 systems consist of CPU(s), mem-
ory. and I/O channel adapters connected to a
common system interconnect known as the XMI.
The VAXBI is used as the interconnect to all 1/0O
devices in the systemAl All memory and I/O
devices are equally accessible by all CPUs in the
system. Figure 1 shows a block-level diagram of
the VAX 6200 system.

Digital Tecbnical Journal
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Table 1 VAX 6200 Family System Configurations
VAX 6210 VAX 6220 VAX 6230 VAX 6240
Number of processors 1 2 3 4
Main memory 32MB 64MB 64MB 128MB
VAXBI channels 2 2 2 2
CPU cycle time 80 ns 80 ns 80 ns 80 ns
Cache size 1KB 1KB 1KB 1KB
(per CPU) 256KB 256KB 256KB 256KB
Free XMI slots 10 8 7 4
Performance 2.8 5.5 8.3 11.0
(times one
VAX-11/780 system)
Maximum CPUs 4 4 4 4
Maximum memory 256MB 256MB 256MB 256MB
Maximum VAXBI 6 6 6 6
channels
UP TO 256MB
4 CPUS MAXIMUM
UPTO 11 X VAX-11/780
cPU MEMORY
< XMI 100MB/SECOND >
| | |
VAXBI
CHANNEL
ADAPTERS ‘ |
(6 MAXIMUM)
< VAXBI 1 > < VAXBI 2 > < VAXBI 3 >
< VAXBI 4 >
KDBS0 | |DMB32| |DEBNA| |CIBCA| |DRB32 | |DEBNK
< VAXBI 5 >
< VAXBI 6 >
OPTIONAL VAXBI
EXPANDER CABINET
Figure | VAX 6200 System Block Diagram
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The primary goal of the VAX 6200 system is
to allow higher levels of system performance
through multiprocessing. To simplify software
design and to be consistent with previous multi-
processor architecture, it was essential to pro-
vide a shared memory resource. All system mem-
ory is a global resource accessible through the
same address space from each processor and from
all I/0 devices. A sophisticated multilevel cache
contained locally in each CPU minimizes mem-
ory accesses on the XMI. Cache coherency is
maintained totally by hardware.

Technology

The VAX 6200 systems are based on a number of
different CMOS technologics. The VAX CPU chip
set and the system interconnect transceivers are
implemented cntirely in Digital’s full custom
CMOS process featuring a size of 1.5 microns.”

The interface between each module and the
system interconnect is implemented in channel-
less 1.5-micron CMOS gate arrays. The number of
gates used in these arrays varies from 18K to SOK
gates. The interface to the VAXBI and the XMI
arbitration system is implemented in 1.5-micron
channeled arrays. The on-board CPU caches are
implemented with 45-nanosecond (ns) 64K-by-4
CMOS static random-access memories (SRAMs)
and industry-standard CMOS cache tag chips.

All VAX 6200 XMI and VAXBI modules are
connected to their respective backplanes by a
300-pin zero insertion force (ZIF) connector. All
modules use 10-layer controlled impedance
printed circuit boards. All cables from the mod-
ules are connected through the backplane to
improve reliability and to minimize the task of
replacing modules.

The VAX 6200 XMI backplane is a 14-layer
controlled impedance printed circuit board. Side
1 consists entirely of surface-mount contacts for
the ZIF connector. Side 2 consists of plated
through holes for power strips and I/O pins, and
surface-mount pads for resistors. These surface-
mount resistors form the termination network for
the XMl signal lines.

VAX 6200 XMI modules use a printed circuit
board very similar to the VAXBI printed circuit
board. XMI modules have the samec finger
pin design as the VAXBI, but the module size is
28 c¢cm (11.025 inches) deep instead of
20.38 cm (8.025 inches) deep

The VAX 6200 modules make use of advanced
module technology features to maximize both

the number of 1/0s available to VLSI chips and
the amount of logic that can be put on a module.
Surface-mounted components are used exten-
sively throughout the system. Further, many pas-
sive components and a limited number of active
surface-mounted components reside on side 2 of
the modules. All VAX 6200 modules limit the use
of surface mount to 50-mil lead pitch compo-
nents with vias on 100-mil centers. Across the
modules in the system, there is a mixture of small
outline integrated circuit (SOIC), plastic leaded
chip carrier (PLCC), and cerquad surface-mount
packages.

All VAX 6200 XMI modules interface to the
XMl through a set of eight semicustom parts.
Thesc eight chips are physically mounted on a
section of the module known as the “XMI cor-
ner.” This section of the module is approximately
12.7 ecm (5 inches) by 3 cm (1.2 inches) and is
located by the A, B, and C connectors of the mod-
ule. (See Figure 2.) The XMI interface area is
identical on all modules so that a common elec-
trical load is presented to all slots on the XMI.
The XMI corner has four 44-pin cerquad pack-
ages on side 1 of the module and four 44-pin
cerquad packages onside 2. In addition, approxi-
matcly 100 surface-mounted-device (SMD) sig-
nal termination resistors and bulk power capaci-
tors are divided evenly across both sides of the
module in the XMI corner.

Figure 2 is a photograph of the three VAX 6200
XMI modules. Note that all three modules have
the identical components in the lower right cor-
ner and a similar gate array directly above the
XMI corner.

VAX 6200 CPU Module

As noted earlier, the VAX 6200 CPU (KAG2A) is
based on the CMOS VAX chip known as the CVAX.
The KAG2A is a single module that implements
a full CPU subsystem. Included on the KAG2A
module are

» The CVAX chip, which includes a 1 kilobyte
(KB) on-chip cache

® An external 256KB cache

m A floating pointaccelerator chip (CFPA)
m Console support hardware

= An interface to the XMI

Figure 3 shows a block diagram of the KAG2A
module.
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Figure 2 Three VAX 6200 XMI Modules

*_J\\>

EEPROM
32KB
DIAGNOSTIC
ROM
128K8B
cPU
Crip FPU CACHE 256KB COMSOLE
CHIP TAG CACHE
1KB CACHE 128KB
CDAL
CONSOLE CPU/XMI
SUPPORT GATE ARRAY
CHIP T
READ WRITE INVALIDATE DUPLICATE
QUEUE BUFFER QUEUE CACHE TAG
XMl
INTERFACE
CHIPS
XMl

Figure 3 VAX 6200 CPU Module (KAG2A) Block Diagram
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Using the CVAX processor with an 80-ns cycle
time, the KAG2A CPU module performance is
approximatcly 2.8 times that of the VAX-11/780
system. For a rotal system performance up to
11 times greater than the VAX-11/780, up to four
KAG2A CPU modules may be configured in a
VAX 6200 system.

The KAG2A CPU module contains a two-levcl
cache to reduce memory access time. The pri-
mary cache is 1KB in size and resides inside the
CVAX chip. This cachc contains only instruction
data to eliminate the nced to invalidate this data
as other processors write to cached data loca-
tions. (The VAX architecture provides strict rules
for modification of instruction type data.) The
sccondary cache is 250KB in siz¢ and contains
data as well as instructions. The KAG2A monitors
writce transactions on the system interconnect and
invalidates any cached locations written by
another CPU or I/0 device.

8-BIT
ECC BANK 4 8MB (64 BITS x 1M WORDS)

8-BIT | BANK 3 8MB (64 BITS x 1M WORDS)
ECC

8-BIT /

e | BANK28MB (84 BITS x 1M WORDS)

8-BIT .
e BANK 1 8MB (64 BITS x 1M WORDS)

MEMORY CONTROLLER

GATE ARRAY
16-ENTRY %‘S&IAF;YND DATA
LOCK TABLE SR QUEUE

| :

XMl
INTERFACE
CHIPS

———

Figure 4 VAX 6200 Memory Module (MS62A)
Block Diagram

Memory

The VAX 6200 memory subsystem is made up of
memory controller/array modules and is known
as thc MSG2A. The MS62A module, shown in
Figurc 4, contains a memory controller chip and
32 megabytes (MB) of 1-megabit (Mb) dynamic
RAMs (DRAMs). The MSG2A maintains a 64-bit
data path between the memory controller chip
and the RAMs, and implements an 8-bit error-cor-
recting code (ECC) for each 64-bit word. The
MS62A contains hardware to implement up to 16
“lockable” memory locations per memory array.
These memory locks are used extensively by pro-
cessors and 1/O dcevices to ensure singular access
to data structures in a shared-memory multipro-
cessor system.

The greater memory bandwidth required by
multiple processors and I/O channels is achieved
by memory interleaving. The MS62A allows inter-
leaving on 32-byte boundarics. As long as mem-
ory addresses arc randomly distributed across the
lower 6 address bits, the bandwidth of the total
memorysubsystem can be increased linearly with
the addition of interleaved memory controllers.

The MSG62A memory modules may be inter-
leaved two, four, or eight ways. The interleave
factor is automatically determined by the system
upon power-up or system initialization. How-
ever, designers have given the user the ability to
manually specify the interleave characteristics of
the memory subsystem. Up to eight MS62A mem-
ory modules may be configured in a VAX 6200
system.

1/0 Channels

The VAX 6200 system uses the VAXBI bus as the
interconnect for all 1/O devices. The system
interface to the VAXBI is a two-module set called
the DWMBA. Figure 5 shows a block diagram of
the DWMBA modules. The DWMBA/A module is
connccted ro the XMI, and the DWMBA/B module
is connccted to the VAXBI. These two modules
arc interconnected with a 120-wire cable assem-
bly which may be up to 4.6 meters (15 feet)
long.

The DWMBA allows VAXBI devices to read sys-
tem memory at up to 5.5MB per second and to
write system memory at up to 13.3MB per sec-
ond. Any VAXBI-compatible device may be con-
nected to the VAX 6200 systems through the
DWMBA. All VAX 6200 systems contain a mini-
mum of two VAXBI channels and may optionally
contain up to six VAXBI channels.
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System Interconnect, the XMI

The XMIL the primary clectrical interconnect in
the VAX 6200 family of computer systems.
CNCOMPASSCS

= The protocol obscerved by a node on the XMI
® The clectrical environment of the XMI

s The backplanc

s The logic used to implement the protocol

The XMI can support multiple processors,
multiple memory subsystems, and multiple [/0
channcl adaprers.

XMI nodes may be classified as commanders or
responders, depending on their role in a given
transaction. A commander is a node that is initiat-
ing an XMI transaction. A respondcer is the node
that must act upon the transaction. A processor
nodce usually acts as a commander. (Howevcer, a
processor node may become a responder if
another node reads a control/status register on
the CPUL) Memory nodces. on the other hand. are
always responders since they cannot initiate an
XMI transaction. 1/0O nodes may act as cither
commandcrs or responders. depending on the
type of 170 opceration. The functions of these
nodces arce further explained in scctions below.

Because the XML s a pended interconncect, sev-
cral transactions can bce in progress simulta-
ncously. When an XML commandcer initiates a
request for a read or to solicit an interrupt vector,
an identifier code s transmitted to the
sclected responder. At this point. control of the
XMI is rclinquished, and other transactions arc
allowed to take place while the responder ferches
the requested read data or interrupt vector. The
responder then arbitrates for control of the XMI
and rcturns the requested data or vector along
with the identitier code. By monitoring  the
identifier codes, the initial commander is able to
reccive the correct data and continuc.

Arbitration and data transters occur simulta-
ncously over a multiplexed ser of address and
data lines, and a scparate sct of arbitration lines.
The XMI supports quadword, octaword, and hex-
word rcads to memory, as well as quadword and
octaword memory writes. In addition, the XMI
supports longword-length read and write opera-
tions to 1/O spacc. These longword operations
imptement byte and word modes required by cer-
tain 1/0 devices

also

The XMI has 30 address bits, and the smallest
addressable entity is a single byte. XMI address
space is divided into two halves by bit 29 of
the address. When bit 29 cquals zero. an address
is said to fall into memory spacc. When bit
29 equals one, the address is said to fall within
/O space. This arrangement matches the maxi-
mum physical address as defined by the VAX
architecture and allows up to 51 2MB of physical
memory to be addressed. The XMl architecturally
allows up to 16 nodes, but is physically and elec-
trically constrained to 14 nodes.

VAXBI

BIIC

1

VAXBI
INTERFACE
GATE ARRAY

-

1BUS
TRANSCEIVERS

VAXBI
MODULE

IBUS CABLE
UP TO 15 FEET IN LENGTH

IBUS
TRANSCEIVERS

XMI
INTERFACE
GATE ARRAY

XMl
MODULE

XMl
INTERFACE
CHIPS

XMI

Figure 5 VAX 6200 VAXBI Channel Adapter

Block Diagram
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The XMI multiplexes data and address informa-
tion onto the 64-bit data path. Data transactions
are initiated with a “command and address”
cycle, followed by multiple data cycles. The max-
imum length for an XMI transaction is 32 bytes of
data. The XMI cycle time is 64 ns. The effective
bandwidth of the XMI is a function of the data
transfer size, as shown in Table 2.

The XMI architecture allows for three distinct
classes of devices.

Processor Nodes

Each processor node contains a CPU that exe-
cutes instructions and manipulates data con-
tained in XMI memory. The processor node can
execute any instruction set compatible with the
VAX-style byte addressing and memory locking
mechanisms. A processor node will have a cache
that must force all written data back to main
memory. Any cached processor module mustalso
monitor write traffic on the XMI and invalidate
any location in its own cache that is written into
main mcmory. Processor nodes must also be
capable of responding to interrupt requests gen-
erated either by other processors or by [/0
nodes.

1/0 Nodes

1/0 nodes generally respond to I/O space refer-
ences either by mapping the data onto another
bus or by interpreting data as a command. An
[/O node can also become a commander on the
XMI and access global XMI memory. 1/O nodes
may generate interrupt sequences directed
toward processor nodes. However, [/O nodes do
not respond to commands directed toward mem-
ory spacc.

Memory Nodes

Memory nodes act only as responders on the XMI.
They respond to read and write requests directed
toward memory address space. These requests are
generated either by processor or 1/0O nodes.

Data Integrity

The XMI contains a number of features to
enhance the integrity and reliability of the
interconnect. First, all XMI information transfer
lines arce parity protected, and XMI command
confirmation signals are ECC protected. The XMI
protocol is sufficiently robust to permit detection
and recovery of all single-bit error conditions on
thesc signals. Additionally, the XMI defines time

Table2 XMI Bandwidth Based on
Transaction Size

Transaction Interconnect
Size in Bandwidth
Bytes in MB/second
4 31.25
8 62.50
16 83.33
32 100.00

out conditions that may be used to detect and
diagnose failures.

VAX Console

The VAX 6200 system implements the standard
VAX console functionality by means of software
that conditionally executes on each of the KAG2A
CPU modules. Each KA62A CPU module contains
a serial-line interface, 256MB of read-only mem-
ory (ROM), 32MB of electronically erasable ROM
(EEROM), and 512 bytes of RAM. Control is
passed to the console software upon any one of
the following occurrences:

= System power-up
® Initialization

® Receipt of a control-P character from the con-
sole terminal

m Executionofthe HALT instruction
= Some severe error conditions

Each KAG2A CPU has access to console termi-
nal transmit-and-receive lines carried on the sys-
tem backplane. Upon power-up, control of the
system console terminal is dynamically allocated
to one of the CPUs present in the system. This
CPU, known as the “boot” processor, provides
the system interface to the console terminal as
well as to the switches and lights located on the
system control panel.

On receiving commands from the console ter-
minal, the boot processor may run diagnostics or
boot an operating system. This processor commu-
nicates with other processors by means of a struc-
ture maintained in memory known as the console
communications area (CCA).

16
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Also considered as part of the console sub-
system, a TKSO tapc drive is included in each
VAX 6200 system. The tape drive is connected to
the system by means of a TBKS0 controller mod-
ulc located on a VAXBI I/O channel and is used
for the following purposes:

s Saving all volatile parameters for the console
subsystem

s Loading the VAX Diagnostic Supervisor (VDS)
when no disk is available or functional in the
system

s Distributing operating system and layercd soft-
warce

The TKSO0 tape drive is also available under oper-
ating system control as a general-purpose data
interchange device.

Built-in Self-test

Ixtensive built-in self-test is used by all modules
contained within the VAX 6200 systems. Upon
power-up, all modules within the system, with
the exception of the DWMBA, perform a self-test
in parallel. After sclf-test is complete, the CPU
modules cxamine each other’s status; the one in
the lowest slot number that passed self-test is
sclected as the boot processor. The boot proces-
sor then continucs to execute an additional test
to cnsurce memory accessibility and finally exe-
cutes a test of the DWMBA.

Physical Packaging

All VAX 6200 systecms are housed in the same
cabinet, which is 78 ¢m (30 .5 inches) wide by
154 cm (60.5 inches) tall by 76 cm (30 inches)
deep. The cabinet contains one 14-slot XMl back-
planc, two 6-slot VAXBI backplanes, and all nec-
cssary power and cooling to sustain a wide range
of configurations. Figure 6 shows a VAX 6240
with the front door removed.

The XMI is physically implemented in a
14-slot backplane assembly containing ZIF mod-
ule connectors, signal terminating networks, and
a centralized clock and arbitration system. Mod-
ules are located on 2 ¢cm (0.8 inch) centers. The
XM backplane is supplied with +5 volts (V) for
general logic, a separate +5 V supply for mem-
ory, X 12 V for the console terminal line drivers,
and —5 2 V/—=2 V for emitter-coupled logic
(ECL). Presently none of the VAX 6200 XM
modulces utilizes the ECL voltages, but ECL is
included for potential future usc.

[ el

- a

Figure6  VAX 6240 System, Front Door
Removed

The VAX 6200 systems all contain two 6-slot
VAXBI backplanes, which arc configured as inde-
pendent channels. The first slot of cach VAXBI
backplane is occupied by the DWMBA/B module,
Icaving S slots for standard VAXBI interfaces. All
systems contain a DEBNK TK50 tape controller
and a DEBNA Ethernet controller as standard
equipment. The two VAXBI backplances are sup-
plied with +5V, £12V, —=5.2V,and -2 V.

Summary

The VAX 6200 family of systems mecrges the
CMOS VLSI VAX chip, which is used in a number
of Digital’s products, with a very high perfor-
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mance memory and [/O subsystem. This hard- References
ware, combined with the new fully symmetric

. P. Wade, “The V —AR |
multiprocessing capabilities of VMS version 5.0, LR Wa0C I TincVAXBIRBuS andomly

Configurable Design,” Digital Technical

allows very high system throughput previously i i

achievable only with ECL technology. Morcover. Journal (February 1987): 81-87.

the extensive use of CMOS technology results in 2. T. Fox. P. Gronowski, A. Jain, B. Leary, and
physically smaller systems. Thesc smaller sys- D. Miner, “The CVAX 78034 Chip, a 32-bit
tems consume less power and are more reliable Second-generation VAX Microprocessor,”
due to the lower component count and lower Digital Technical Journal (August 1988,
powcr consumption. this issue): 95-108.
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Brian R. Allison |

The Architectural Definition Process
of the VAX 6200 Family

The architectural definition of Digital’s VAX 6200 family was governed by a
twofold goal: to build a system with bigher throughput than previous
CMOS, Q-bus-based systems at a cost lower than ECL-based systems. Deci-
sions made during the definition process were influenced by firm schedule
guidelines. Furtber, the very nature of the multiple processor system
imposed its oun requirements, particularly in the definition of the XMI
bus. This new 64-bit-wide interconnect is specifically designed to meet the
memory and 1/0 needs of the symmetric multiprocessor system. Through-
out the architectural definition process, engineers continually evaluated
the interdependency of one design decision upon anotber and against the
project and schedule goals. By this process, the total definition of the sys-
tem — the XMI bus, the processor module, memory module, console sub-
system, and packaging — was achieved.

Definition of the VAX 6200 family of systems
began in March 1985. The engineers’ intent was
to design a follow-on product to the VAX 8200/
8300 family of systems. still in development at
that time. This paper discusscs the system archi-
tectural defnition process that took place during
1985.

Like the VAX 8200/8300 family before it, the
VAX 6200 family provides a system environment
for a VLSI VAX chip set. This new family of sys-
tems is a mid-range VAX implementation. In this
context, a mid-range system is defined as a pro-
duct with more capability than the Q-bus-based
systems and less capability than the emitter-cou-
pled logic (ECL) based systems.

Project Goals

The primary goal of the VAX 6200 program was
twofold: to build a system with greater system
throughput than the CMOS. Q-bus-based VAX sys-
tems, and to cnsure system cost was lower than
that of high-performance ECL-based systems.
Designers would achieve this goal by designing a
system architccture that allows a moderate num-
ber of low cost CMOS VAX microprocessors to
sharec a common system environment. Such an
cficient multiprocessor system environment
would ofter higher throughput for a large num-
ber of applications and at a cost lower than a
high-performance single processor.

Once the decision to build a multiprocessor
was made. the next question was how many
processors to include. Several small computer
manufacturers were building 8- to 32-processor
systems at the time. Our belicf was that the mar-
ket for systems with numerous processors was
fairly small because few applications would run
cfficiently on these systems. Therefore, we
decided to design the VAX 6200 as a 4-processor
system. with the possibility of expansion to
8 processors. This arrangement would allow us to
still configure cost-effective 1- to 2-processor sys-
tems. If we found a significant number of applica-
tions could bencfit from the larger number of
processors, we could expand to 8 processors.

Building an cfficient multiprocessor system
would necessitate optimization of both hardware
and software functionality. The VMS asymmetric
multiprocessing code (VMS versions 2 through
4) that supported the VAX-11/782, VAX 8300,
and VAX 8800 systems worked well for compute-
bound, dual-processor systcms. However, asym-
metric operating system softwarc would not be
acceptable for larger scale multiprocessors. In
the existing VMS asymmetric multiprocessing
design., most operating system code was cxe-
cuted on the processor designated as the “pri-
mary” processor. Whenever a process needed to
perform 1/0 or invoke most of thec VMS system
scrvices, the process would have to be scheduled
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on the primary proccssor. The task of making
VMS more symmetric in its handling of 1/0O and
VMS system scrvices was undertaken to support
the VAX 884 0 and the VAX 6200 families.'

Discussion of how we chosc to optimize the
VAX 6200 hardware begins in the section ‘The
System Interconnect.

Schedule

In March 1985 the design of the CVAX chips was
alrcady well under way. These chips would be
delivered in time to allow systems to ship in late
1987 Bascd on the CVAX chip set schedule, we
cstablished the fol lowing schedule for the devel-
opment of the VAX 6200 system:

Six months of architectural definition
Twelve months of design/simulation

Three months to build and test approximately
five first-pass prototypes

Six months to build approximatcly 70 second-
pass prototypes

Three months for final testing and manufactur-
ing introduction

This two and a half year schedulc significantly
influenced the definition of the system architec-
turc as well as the selection of implementation
technologies. (Actual implementarion took three
years. The design/simulation phase took thrce
months longer than expected, and the first-pass
prototype phase took three months longer than
expected )

The System Interconnect

The first order of business was to define a new sys-
tem interconnect. This interconnect would have
the bandwidth required to support the memory
and I/0 nceds of the multiple processors We
outlined three requirements that would affect the
design of the new system interconnect.

s We estimated that each CVAX processor would
require between 3 megabytes (MB) and 6MB
per sccond of data to/from memory. This ratc
would depend on the clock rate of the pro-
cessor, the selected cache architecture, and
the cache “hit” rate of the program bcing
executed.

s We also cstimated that each processor could
require peaks of 1MB to 1.5MB per second of
/0 bandwidth.

s To maintain predictable memory access time,
we decided that the system bus should not be
run over 75 percent utilized.

Using thc worst-case anticipated bandwidth
needs, 80MB pcr sccond of peak bus bandwidth
would be required to support 8 processors.

Because of the tight schedule and our aware-
ness of the significant amount of time needed to
design a new system bus, we first looked into the
feasibility of using an existing bus. We consid-
cred but rejected the existing VAXBI bus, the
primary interconnect for the VAX 8200/8300
system, because of its limited 13.3MB per second
bandwidth. We also rejected the NMI bus,
the VAX 8500/8700/8800 family interconnect,
becausc this bus uses ECL technology. At one
point we even considered using the SBI from the
VAX-11/780 system with a 064-bit data path
instcad of its cxisting 32-bit data path. After
extensive analysis, however, we decided a new
system bus would have to be engincered for the
producttomeetits goals.

Although we would have to define a new bus
for processor-to-memory communications, the
schedule did not allow us to design a full com-
plement of I/O interfaces for the new bus. Since a
large number of I/O interfaces would be avail-
able on the VAXBI. the design team decided to
use the VAXBI] as the interconnect to all [/O
devices. The new system interconnect, the XMI,
would be used only to connect processors, mem-
orics, and VAXBI channel adapters. Therefore,
in addition to the requirements listed above,
the XMI architecture would also allow multiple
VAXBI channel adapters to optimize I/O through-
put where necessary for large systems. Use of the
VAXBI for 1/O adapters also had the positive
effect of minimizing the number of electrical
interconnects to the XMI; the physical length of
the XMI would consequently be shorter and the
total capacitance lower. Further discussion of the
channel adapters is presented in the section
VAXBI Channel Adapters.

In June 1985 a team of 11 senior-level engi-
neers was assembled to produce the architectural
and clectrical specification for the XMI bus and
the VAX 6200 system. In addition to architectural
and clectrical experts, this team included one
representative from each of the anticipated mod-
ule design teams. Almost all members had previ-
ously worked on projects involving the VAXBI
bus. It was understood that the XMI would be
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used solely for the VAX 6200 family of systems,
unlike the VAXBI, which would be used across
many different applications. A strict adherence to
this premise greatly helped the specification
tcam to put technical trade-offs in perspective.

XMI Electrical Interface Definition

Since most of the VAX 6200 system is CMOS and
transistor-transistor logic (TTL) based, we imme-
diately decided the XM could not be imple-
mented in ECL. To maintain a TTL-level bus and
to achieve the desired bandwidth, the data path
clearly would have to be 64 bits wide. Further. to
meet our goal of 8OMB per second bandwidth,
the XMI would have to transfer 64 bits of infor-
mation every 80 nanoscconds (ns). (This transfer
ratc assumes a protocol in which address and data
arc multiplexced. and up to 32 bytes of data can
be transferred per address cycle.)

Several electrical alternatives were considered
for the XMI. A scheme using the commercially
available FuturcBus components was seriously
considered. However, we rejected this scheme
because a large number of components would be
nccessary to implement the 64-bit data path.

The lack of commercially available compo-
nents to drive a 64-bit bus at the required speed
finally led us to a deccision. We would design a
bit-sliced custom CMOS bus interface chip set.
Each chip would transceive 11 lines, and scven
chips would be used for the entire data path.
Although the “sliced” bus interface would use
more module recal estate than a larger chip, the
sliced bus design greatly simplified the chip
packaging problems. Each chip would fit into a
standard 44-pin cerquad package. A sliced XMI
interface also allows cach chip to dissipate under
0.5 watt (W), which c¢nhances reliability and
rclieves the need for heat sinks on the part. With-
out heat sinks, the XMI interface parts can be
mounted on both sides of each module. This
arrangement saves 50 percent of the real estate
nccessaryto interface to the XML

To simplify the design of the full custom XMI
interface parts, we would keep the functional
requircments for the parts as simple as possible.
The XMI interface chips have little knowledge of
the XMI protocol and serve only as the electrical
interface. Due to the divergent needs of pro-
cessor, memory, and 1/O interfaces, designcers
already knew that cach module would need a
different VLSI chip for XMI interface functions.
We decided, therefore, that each module VLSI

chip would be required to supply the logic to
implement the bus-level protocol.

As the clectrical design of the XMI progressed,
a bus cycle as fast as 64 ns appearcd feasible.
Although not cntirely necessary to support the
stated system performance goals, the faster XMI
cycle time was strongly pursued to gain extra
margin in the system design. Furthcrmore, this
fast cycle time would allow the possibility of sys-
tem upgrades to faster processors in the future.
Consequently, 64 ns became the stated goal for
the XMI cycle time; 80 ns was the fall back strat-
egy if the design complexity of a 64-ns cycle
time began to place the overall project schedule
atrisk.

Logic design across the entire system was done
assuming a 64-ns cycle time. Eventually 64 ns
became the actual speed of the bus as the CMOS
process was characterized and the first parts were
sampled and found to contain sufficient margin to
support the faster cycle time.

XMI Protocol Definition

XMI protocol definition took place in parallel
with the electrical definition of the bus. It was
clear from the start that the bus would cycle sev-
eral times faster than the memory subsystem. This
difference in cycle times immediately led us to
the decision that the XMI would run a “pended”
bus protocol. A pended bus protocol allows con-
trol of the XMI to be relinquished between
a “read” command and the return of the data from
the memory subsystem. With multiple processors
and multiple memory controllers, scveral read
commands could be outstanding at a time.

To optimize data trafic on the XMI bus,
we needed to define data transfer commands
of several lengths. Since VAX instructions may
write as little as 1 byte of data, a 64-bit write
command was defined. (There is a mask field
associated with the write command that allows
single bytes to be written.) Since the VAXBI
bus already had commands to transfer 16 bytes
of data per address, it was essential to allow
similar commands on the XMI bus to mini-
mize the interface complexities to the VAXBI.
Eventually we added a 32-byte rcad command
to allow processors to prefetch larger amounts
of data upon cache misses. A 32-byte write
command was not implemented, because it
would be too great a burden for the memory
controller to buffer multiple 32-byte write
commands.
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In many cases the protocol of the XMI is simi-
lar to that of the VAXBI. In part this similarity
resulted because the designers of the XMI were
very familiar with the VAXBI. The similarity
between protocols was also deliberately chosen
becausc it greatly reduced the complexity of
interfacing the XMI to the VAXBI for 1/O pur-
poses.

The bus arbitration scheme is one arca where
designers had to dcviate from the method used
by the VAXBI bus. The VAXBI uses thc¢ main
bus data path for arbitration, which requires
c¢xtra bus cycles. This approach was not fcasible
for the XMI penced protocol, since two arbi-
trations arc necessary for cach read transac-
tion. Further, the VAXBI arbitration scheme also
requirces a great deal of duplicated logic in every
module. Duc to the large number of allowable
XMI1 nodcs, it was not feasible to implement
an arbitration mechanism located on an XMI
module. To implement arbitration on any XMI
module would have required a great number of
signal pins. The solution was to implement a cen-
tralized arbiter. The XMI uses a module physi-
cally attached to the rear of the backplanc as a
centralized arbiter as well as the source of the
master clock.

The subject of data integrity on the XMI was of
great concern to the designers. Initially carrying
crror-checking and correction (ECC) bits on the
bus was considered. However, this schcme was
rcjected because additional encode/decode tim-
ing would have been required, and becausc addi-
tional bits would have to be carried on the bus.
Eventually a robust protocol was implemented
based on parity detcction and hardware/software
retries when errors are detected. All transient
single-bit crrors on the XMl arc recoverable.

XMI Physical Definition
The physical definition of the XMI was a dithcult
task. There were a great number of interdepen-
dent trade-offs for module size, module spacing,
numbcr of backplane slots. and cabinet sizc

To minimize design complexity, wc had
decided at a very early stage that each module
within the VAX 6200 system would implement a
single function. Thus the task of designing each
module was simplificd and the diagnosability of
the system cnhancced. Initially, the size of the
XMI module was largely governed by the space
nceds of the proccessor. Analysis showed that a
processor based on the CVAX chip set could fit on

a modulc the same size as the existing VAXBI
module 20.32 cm (8.0 inches) by 23.33 cm
(9 187 inches). In addition, 32MB of memory
could fit on the same size module.

System packaging was another factor to con-
sider in selecting the module size. From the very
start of the VAX 6200 program, it was not clear
what typc of system-level packaging was optimal.
Designers knew, however, that the larger systems
would primarily be placed in computer-room
environments. For these applications, a standard
153.67-cm (60.5-inch) tall cabinet would be
necessary. What was not clear was if office-type
packaging or rack-mount-type packaging would
berequired. Since VAXBI formfactor pedestal and
rack-mount box packages were both available,
designers found it very attractive to use the same
formfactor module for the XMI to ease the devel-
opment of these packages if necessary. Bascd on
the functionality fit and the desire to potentially
reuse existing packaging, we decided to adopt
the VAXBI module size for the XMI.

Another advantage to using the VAXBI module
size was the opportunity to use the VAXBI zero
insertion force (ZIF) backplane connector. His-
torically, developing new backplane connector
technologies has proven difficult and time-
consuming. The VAXBI uses a five-segment,
60-pin-per-segment connector. Of the 300 pins,
120 pins are assigned to the VAXBI signals and
180 pins to each module for I/O use. Since the
XMI has 32 more data-path bits than the VAXBI,
designers chose to allot an extra 60 pins for the
XMI signals, This leaves 120 pins for general
module use. Designers believed the arrange-
ment to be acceptable. since there are no 1/0
modules for the XMI. The only use for the 1/0
pins is to connect to the VAXBI card cages. The
120 available pins are more than adequate for
this function.

To meet the cycle time goals for the XMI bus,
the iength of the XMI would have to be limited to
about 0.3 mcters (12 inches) and the number of
loads limited to approximately 16. The XMI pro-
tocol assumed a maximum of 16 devices would
interface to the XMI bus. Eventually the number
of slots in an XMI backplane became 14 for two
different reasons. First, 14 slots would allow a
system to have 8 processors, four memory arrays,
and two VAXBI channels. Second, a 14-slot XMI
backplane would be very similar in size to the
pair of G-slot VAXBIs that alrcady existed in the
VAXBI pedestal and rack-mount box packages.
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XMI module spacing of 2.03 c¢cm (0.8 inchcs)
is the same as that on the VAXBI bus. We chose
this spacing to allow for heat-sink componcnts
on side | of th¢ module. Enough height would
rcmain to allow non-hcar-sink. surface-mountced
componentson side 2.

About 18 months into the program, the modulc
designs were complete, and both the pro-
cessor module and memory module were experi-
encing great difficulty during printed circuit
board layout. Although all components could
be placed within the area available, the very
high pin-count gatc arrays in use (223 pins)
were  causing  considerable routing problems.
To lower the schedule risk to the program.
designers decided to lengthen the module by
7.62 c¢cm (3 inches). The impact to the computer-
room packaging was minimal because a 76-cm
(30-inch) cabinct depth could accommodate
the change. However, the change in module
lecngth made impossible the adaptation of the
existing VAXBI pedestal and rack-mount packag-
ing to the XMI. At this time the pedestal-based
strategy for the MicroVAX 3500/3600 systems
was clear, thus reducing the need to package
the VAX 6200 family of systems for office usc.
Further, extremely low sales of rack-mounted
VAX 8200/8300 systems led us to the decision
that a rack-mount package was not immediately
necessary.

XMI Interface Technology

The decision o implement the XMI electrical
interface in simple full custom CMOS parts dic-
tated that each module have additional logic to
complete the XMI interface and to supply mod-
ule-specific logic. To simplify both the design of
the XMI interface parts and the CAD tools, we
dccided that all module-to-XMI interfaces would
be implemented in the same technology. Given
the aggressive design schedule, we would need a
tcchnology that was mature as well as easy to
design for.

We initially focuscd on a family of 2-micron
CMOS gate arrays available from LSI Logic and
Toshiba. However, it quickly became clear that
array limitation of approximately 10,000 gates
would force us to place multiple chips on each
module. The use of multiple chips was highly
undesirable from the perspective of design
resources, modulce real cstate, and cost. A search
was started to locate a suitable alternative. To get
the desired logic density, several semicustom

alternatives wcere  explored but ultimately
rejected because of the immaturity of their CAD
tools.

Discussions with LSI Logic Corporation led us
to consider their newly developed 1.5-micron
“Sea of Gates” array, which offers up to 50.000
routable gates. Although this array did not give us
the mature technology we were seeking. it did
appear to offer the flexibility needed by all XMI
designs. We ultimately chose the LSI Logic
LL10000 family of gate arrays because all dcsigns
could use the same technology. Morcover, we
could focus our CAD tool development on a
single technology.

The 64-bit-wide XMI data path forced the pin
count of a single interface chip to be 200-plus
pins. The LSI Logic LL1000O array was offered
in a 223-pin pin-grid-array (PGA) package which
appeared suitable. Although most of the logic
on each module was implemented in surface-
mounted components. we did not pursue a
223-pin. surface-mount package. We wanted to
avoid the manufacturing problems presented by
components with 25-mil pitch leads.

The Processor Module

The VAX 6200 processor module uses the CVAX
chip set to implement the VAX instruction set.
Due to an uncertainty about the final CVAX chip
speed. the CPU module was designed to operate
over a range of 70 ns to 100 ns. The intent was to
use “binned” parts in the VAX 6200 system. and
to use the “nominal” parts in the MicroVAX
3500/3600 systems. (Chip manufacturing pro-
cesses yield parts of different speeds; “binning”
refers to the process of testing the chips over a
range of speeds.) For the CVAX chip set, the nom-
inal parts run at 90 ns, and the binned parts run
at 80 ns.

A major system-wide architectural issue. which
primarily affected the processor module, was
whether the cache should be write-back or write-
through. Although a write-back cache could
potentially reduce the number of processor
writes on the XMI by 50 percent, such a cache
was complicated and had never before been
designed for a multiprocessor VAX system. Our
final decision was based on the need to reduce
overall risk to the program. Therefore. we would
implement the more straightforward write-
through cache design and build the extra band-
width into the XMI to handle the additional write
traffic.
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Oncce the decision to implement a writc-
through cachc was made, the major architectural
issuc for the processor module became the cache
organization. The CVAX chip contains an internal
1-kilobyte (KB). two-way sct associative cachce
accessible to the internal micro engine in one
cycle. Duc to the long latency to main memory, a
second-lcvel cache on the processor module was
imperative. The size of the second-level cache
was dctermined by the available static random-
access memory (SRAM) technology. The newly
availablc high-speed 64K-by-4 SRAMs would
provide a 256KB cache with only eight parts.
Although no accurate simulation was availablc to
indicate the ceffect of this large cache, the cffects
were assumed to bc positive. Thereforc we
decided that the higher cost of the SRAMs was a
worthwhilc trade-off given the potential gains in
system performance.

A third major issue relative to the caches on the
processor module was the invalidation scheme.
In the past. VAX processors have managed cache
invalidation, since proccessors and [/O devices
have always shared a common memory subsys-
tem. The issue of cache invalidation became
much more important to our program bccausc
of the multiprocessor nature of the VAX 6200
systcm. This type of system could cause large
amounts of stalc data as a process migratcs from
Processor to processor.

The LKB cache contained within the CVAX
chip caused the largest problem. If it wcre
allowed to cache data that could becomce stale,
every writc to memory would potentially have
to be invalidated within the¢ CVAX cachce.
This meant choosing onc of two approachces:
(1) broadcasting every writc in the system onto
the CDAL bus of every processor, or (2) finding a
way to maintain a duplicate tag store of tags
within the¢ CVAX chip and only passing writes
known to rcference cached data within the CVAX
onto the CDAL. Another alternative was to cache
only instruction-stream (l-stream) data within
the internal cache. This alleviates the nced to
invalidate, because I-stream data is defined to be
read-only by the VAX architecture. We projected
this alternative could cause a 3 to 5 pereent
dcgradation in CPU performance.

Analysis of the cachc-invalidate problem
proved very difficult, because we did not know
what percentage of data would be shared in this
class of multiprocessor system. With the poten-
tial for 8 processors, it was clear that all writes

could not be broadcast into each of the CVAX
chips. The possibility of maintaining a duplicate
external tag store proved to be very difficult to
implement. Consequently, we chose the alterna-
tive to store only I-stream data within the internal
CVAX cache.

A similar problem was knowing when to invali-
date data in the external cache. In this casc it was
feasible to implement a duplicate tag store. The
second-level cache has two tag stores. One is
located on the CDAL and is used for cache look-
up by the¢ CVAX chip. The second tag store is
located within the XMI interface and is used to
determine if XMI writes hit the second-level
cachc. When hits are detected, a request is
queued to invalidate the entry within the second-
level cache.

Anothcer problem to be solved on the processor
module was the issue of combining writes into
larger blocks before issuing them to the XMI.
Since the CDAL data path is only 32 bits wide, the
CVAX chip is incapable of generating a write
command any larger than 32 bits. The 64-bit data
path of the XMI would need larger writes to opcr-
ate efficicntly. The solution to this problem was
to implement a “write buffer” in the XMI inter-
face of the processor module. The write buffer
takes advantage of the fact that writes gencrated
by VAX processors are often sequential. The
writc buffer will buffer up to four sequential
32-bit writcs and combine them into a single
XMI write transaction.”

The Memory Module

The system design goal was to provide the capac-
ity for 15MB to 30MB of mcmory per processor.
As mentioned earlier, the module size was par-
tially governed by the need for 32MB of memory
per memory module. The number of slots in the
XMI backplane was also partially determined by
the desired amount of system memory.

The wide range of possible VAX 6200 con-
figurations dictated the need for an expandable
memory subsystem. Since full memory band-
width would only be nccessary for very large
conhgurations, it was decided to adopt a dis-
tributed memory architecture. An individual
memory controller could be made simpler if it
did not havce to supply full XMI bandwidth. Full
XMI bandwidth could be¢ achieved by inter-
leaving multiple memory controllers.

With the¢ module size and number of slots
dctermined, the first architectural decision to bc
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made for the memory was internal organization of
the memory. The 64-bit width of the XMI made it
desirable to have a 64-bit data path internal to
the memory module. The very tight module real
cstate made it very attractive to consider imple-
menting a 64-bit data path to reduce the number
of required ECC check bits. A 64-bit-wide darta
path was also attractive given that the processor
module would issue a read for 32 bytes whenever
there was a cache miss.

The negative side of a 64-bit internal memory
organization was that any write of less than
64 bits in width would result in a read-modify-
write operation to calculate the proper ECC
code. An analysis of the expected write traffic
through the processor’s write buffer showed that
approximately 50 percent of all writes would be
a full 64 bits in width. Further analysis showed
that as long as there was at least one memory
controller for every 2 processors, there would
be sufticient memory bandwidth for the system.
Given the performance characteristics of the
CVAX processor, it seemed reasonable to require
a 32MB memory array for every 2 processors. We
therefore decided to implement the 64-bit mem-
ory internal organization.

Since it was very difficult to design the memory
module to accommodate the full bandwidth of
the XMI. designers used memory interleaving to
provide an aggregate memory bandwidth com-
patible with the speed of the XMl bus. The inter-
lcave size of 32 bytes was determined by
the protocol of the XMI, which allows reads of
32 bytes per address cycle.

The multiprocessing design of the system
madc it possible for a single memory controller
to be the object of several simultaneous requests.
To avoid rejection of processor traffic, we
designed the memory controller with an input
qucue. This queuc accepts memory access
requests and services them in a first-in, first-out
(FIFO) order.

Initially the memory controller was designed
with a four-command queue that would reject
new requests once the queue was full. As the
design progressed, we realized that with our XM
arbitration scheme, a processor or VAXBI channel
adapter might possibly be denied memory access.
A processor or channel adapter might be denied
access for indeterminate periods of time if the
memory array was allowed to reject commands
when its queue became full. T'o avoid this prob-
lem, the memory array was allowed to assert a

signal on rhe XMI that would inhibit all new
commands from being issued on the XMl. Unfor-
tunatcly, due to the pipclined nature of the pro-
cessor and the memory array, three additional
commands could possibly be received by the
memory controller after it had determined the
nced to stop additional requests. Since the depth
of the command queue was four. the memory
array would need to “stall” the bus after receiv-
ing only a single command. Since this effectively
climinated the command qucue. we decided to
lengthen the depth of the command queue to
cight entries.

‘The VAX architecture forces the use of a hard-
warc-based memory lock to control access to
shared data structures. The memory lock is used
by some intelligent 1/0 adapters as well as
Processors.

Svstem performance sufters when there s
conflict over different lock variables that acquire
a common hardware lock. Given that Digital had
never built a fully symmetric multiprocessor sys-
tem and that major changes were being made to
VMS, we did not know what the lock trathic pat-
tern would look like in a large system. We did
know, however, that the cexisting VAXBI /O
adapters and the CVAX processor could not hold
morc than a single hardware lock at one time.
Based on this. we designed the memory con-
troller to have up to 16 locked locations. This
number seemed more than adequate given a
maximum of 8 processors and only three existing
VAXBI /O adapters that us¢ memory locks
(Ethernet, Cl, and TKS0). The granularity of
cachlock is 32 bytes to simplify the memory con-
trollers’ handling of 32-byte read requests. Lock
congestion is still possible if multiple lock vari-
ables are allocated within the same 32-byte
region of memory. An examination of VMS code
shows lock congestion to be very rare

VAXBI Channel Adapter

We had decided right from the start to design an
XMI-t0-VAXBI channel adapter to handle all 1/0.
To meet the desired maximum [/O rates of
IMB to | SMB per second for cach processor, we
would include multiple XMI-to-VAXBI adapters.
Although two VAXBI channels would allow
[.5MB per second per processor, it was decided
to allow up to eight VAXBI channcls to be con-
nected to the VAX 6200 system. The design was
not made more complex by the change from two
to cight VAXBI channel adapters.
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Designers wanted to optimize data transfer
from the VAXBI into XMI memory, since statisti-
cally more data is read from I/O devices than is
written. A double-buffered direct memory access
(DMA) data path from the VAXBI to the XMI
allows transfers at the full 13.3MB per second
VAXBI data rate.

For reads of XMI memory, it was known that
full bandwidth could not be maintained due to
the memory read latency through the VAXBI
channel adapter and the XMI memory subsystem.
Since most I/O transfers are sequential, we con-
sidered building prefetch buffers into the VAXBI
channel adapter. Because transfers could be in
progress to several VAXBI nodes atonce, multiple
prefetch buffers would be needed. Since prefetch
bufters can architecturally be considered to be
small caches, the VAXBI channel adapter would
also have to monitor all XMI traffic for potential
invalidate conditions. Eventually the need for
large amounts of buffer storage and the compli-
cation of XMI monitoring decided us against
building prefetch buffers. This decision was
influenced by other factors as well. No single
existing VAXBI I/O adapter could read at full
bandwidth, and multiple 1/O devices could be
spread across several VAXBI channels to achieve a
higher aggregate XMl read bandwidth.

To ease physical implementation, the VAXBI
channel adapter was implemented on two mod-
ules that were interconnected by four 60-pin
cables between their 1/O pins. Unlike the
VAX 8500/8700/8800 VAXBI channel adapter,
the VAX 6200 could not use a single XMI module
to connect to multiple VAXBI buses. The 6200 is
restricted by the 120 I/O pins available on an
XMI module.

Console Subsystem

The console function in a VAX 6200 system is
performed by code run on the CVAX CPUs. This
use of the main CPU-based console contrasts with
the more traditional use of a dedicated front-end
processor, which has access to all system
resources. We chose to use a main CPU-based
console primarily because we had no way to
externally access the internal state of the CVAX
processor. Furthermore, we did not want to add
the costof a dedicated console processor.

A side benefit to a system design that employs
multiple processors, memories and 1/0O adapters,
is the opportunity to design in cxtra availability
by reconfiguring the system in the event of a sin-
gle component failure. To accommodate for

reconfiguration, all processors would have to be
allowed access to the physical console terminal
as well as the physical front control panel of the
system. This access is accomplished by busing
the signals that interface to the console terminal
and front control panel across the XMI. However,
we needed a mechanism to ensure that only one
of the processors would actually respond to the
console terminal and front control panel. This
mechanism is a protocol whereby the processor
in the lowest XMI slot that passes self-test
assumcs control of these external resources. The
processor that takes control of the console termi-
nal is known as the “primary processor.” The pri-
mary processor communicates with all other pro-
cessors by means of a message passing protocol
through system memory.

It is necessary for the console subsystem to
have access to a mass storage device. Such access
is needed for distribution of software and for
loading of diagnostics. The TK50 was selected
because of its high density and the availability of
a preexisting VAXBI interface (the DEBNK). The
TK70 was not used because there was no VAXBI
interface to it. The only other alternative was the
RX50, which has superior access time but a data
capacity of only 400KB. The longer time to run
diagnostics from the TK50 was unimportant
since the system can be diagnosed largely by
means of diagnostics contained in CPU read-only
memory (ROM) and by the built-in self-test con-
tained in all VAXBI [/O adapters. Further, the
TKS50 makes an excellent software distribution
device and allows VAX 6200 systems to be
configured without nine-track magtape drives.

In previous systems dependent on ROM-based
console programs and ROM-based diagnostics,
code updates have been a problem. To alleviate
the need to physically change the ROM, each
VAX 6200 processor contains a 32KB electroni-
cally erasable ROM (EEROM). Most console and
diagnostic code is accessed by means of an
address table contained in the EEROM. In the
event that a code bug needs to be corrected, the
address table is rewritten to point to a replace-
ment routine that is also written into the EEROM.
The console program implements a routine that
can patch the EEROM image from a database
distributed on TKSO rape.

Power and Packaging

As noted earlier, we projected that the VAX 6200
system would be used as a large system generally
located in computer-room environments. An
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important goal was to design for a high degree of
flexibility and configurability in the system. The
decision to use a 14-slot XMI backplane had been
based on desired maximum configurations and
the size of existing pedestal and rack-mount
packages.

In addition to housing the XMI backplane, the
computer-room package would need to house
VAXBI backplanes to accommodate 1/0 adapters.
The VA.XBI backplane is manufactured in cas-
cadeable G6-slot segments. It seemed that two
6-slot VAXBI backplanes would provide adequate
1/0 adapters for most systems. To ensure that all
customers’ [/O requirements could be met, a
design was also initiated for a VAXBI expander
cabinet that could house four additional 6-slot
VAXBI backplanes.

To avoid developing a new power subsystem,
we looked into modifying an existing power sys-
tem. Although we could find no preexisting per-
fect match, we did locate a previously designed
5 volt (V) regulator specified at 100-ampere (A)
output. We respecified this design to 120 A by
using slightly higher power components. The
VAXBI requires £12 V, —5.2 V. and —2 V in
addition to the main +5 V channel. To accommo-
date the VAXBI requirements, a new regulator
was designed. The XMI backplane is supplied
with two of the 5 V regulators (one formain logic
and one for memory). Although not required by
any current designs, one of the £ 12V, =52V,
and — 2 V regulators also supplies the XMI for
potential future designs. The two VAXBI back-
planes are supplied by one +5 V rcgulator and
oneofthe £12V, —5.2V, —2V regulators.

Conclusion

The design of a complex system like the
VAX 6200 is much more than making well-
informed engineering decisions based on hard
data. Engineers based the initial system definition
on their perceptions of the needs for future com-
puting systems. The definition was further
shaped by what was technically feasible with a
defined degree of risk. Throughout the architec-
tural specification phase, many trade-offs were
made with only partial data and the intuitive
insight of very experienced engineers.

The design process for the VAX 6200 system
was extremely smooth, and the product was
designed within six months of the initial engi-
neering goals. Due to the large degree of built-in
configuration flexibility, the product definition
never changed enough to force a change in direc-

tion during the design phase. Careful balancing
of technical complexity with the necessary
minimum functionality yielded an architecture
that could be implemented with a manageable
amount of risk in a bounded amount of time.
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Richard B. Gillett, Jr. |

Interfacing a VAX Microprocessor
to a High-speed Multiprocessing Bus

The design decisions involved in interfacing a microprocessor (CVAX)
to a bigh-speed, shared-memory multiprocessing bus (XMI) are more
complex than those encountered in designing a single-processor sys-
tem. Although the same basic interface architectures are used, the signifi-
cantly different multiprocessing environment requires a much more
complex implementation. In particular, the performance of a multiproces-
sor system is very dependent on the efficiency of its main memory inter-
Sace. To achieve the desired system performance, appropriate compro-
mises between design complexity and performance must be made. In the
case of the VAX 6200 system, performance simulations made early in the
project guided the complexity/performance trade-offs. Actual system
performance results bave largely confirmed the validity of the design

trade-offs.

The primary goal of the VAX 6200 design was to
provide a general-purpose, high-performance,
mid-range VAX computing system. Further, this
system design would take advantage of Digital’s
proprietary CMOS technology and VMS version
5.0 symmetric multiprocessing capabilities. VMS
version 5.0 has dramatically changed the way we
approach mid-range system design; no longer do
we design a systcm to support just one or two
processors. With the ability to effectively utilize
the power of four or more processors within the
same system came the need to design signifi-
cantly higher performance interconnects to tie
these processors together.

The VAX 6200 was to be Digital’s first CMOS
multiprocessor system. The designers were there-
fore strongly motivated to provide the best per-
forming product they could within reasonable
time and complexity constraints. Complexity was
of particular concern since the product schedule
did not allow for the production of second-pass
parts prior to the first shipment to customers.
Complex multiprocessor interfaces give ample
opportunities for the kinds of elusive design bugs
that can be very difficult and time-consuming
to exercise and diagnose. In addition, unlike
other recent VAX systems, the VAX 6200 system
requircd a major new release of VMS. (In many
ways the new release represented a new operat-

ing system.) We expected its availability could
bethe critical pathto product shipment.

The operating system software would probably
not stabilize in time for us to discover and fix
any major hardware problems and still stay on
our original schedule. Unfortunately, until the
operating system stabilizes, testing for complex
bugs is difficult. This concern about complexity
relative to the schedule affected several design
decisions.

On the VAX 6200 CPU module, the design
challenge was to interface a custom CMOS VAX
microprocessor (called CVAX) to a high-speed
multiprocessor bus (called XMI). The trade-offs
made during the design of a multiprocessor sys-
tem are more complex than those made in
designing a single-processor system. For a single-
processor system, the performance trade-offs are
relatively straightforward. The goal is to design
the highest performance single-processor system
that is practically possible. For a multiprocessor
system, the goal of maximum single-processor
performance must be tempered to obtain maxi-
mum system throughput (i.e., multiprocessor
performance).

The foundation of the CPU interface is the
cache subsystem, which reduces the effective
read access time to main memory. By reducing
the processor’s need to access main memory, a
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cache improves both single-processor and multi-
processor system performance. This paper dis-
cusses the complexities involved in choosing the
optimal cache design and the simulation tech-
niques used to ensure informed design decisions.

One of the biggest problems in cache design is
choosing the correct set of workloads to charac-
terize the cache performance. Cache perfor-
mance can vary tremendously with different
workloads. Therefore, we chose a set of work-
loads that spanned a wide range of system activi-
ties. Toward the end of this paper, we present
actual cache performance results that largely
confirm the legitimacy of our approach.

We also examine one of the more complex
aspects of multiprocessor designs, which is
ensuring cache coherency across the entire sys-
tem. Cache coherency refers to the maintenance
of a sufficiently consistent memory state from the
perspective of all processors and 1/0 devices
within the system.

The designers also went to great lengths to
ensurc maximum system reliability. As part of
this effort, we generated a set of error-detection
and response rules. These rules ensure that the
operating system software can easily recover
from almost all transient cache or bus failures.
These rulesare discussed.

The following section is an overview of the
VAX 6200 system architecture. It provides a basis
for the subsequent discussions on the challenges
of multiprocessor design, the VAX 6200 CPU
responses to those challenges, the performance
simulation environment, cache coherency and
error handling, and finally, real performance
results.

Summary of VAX 6200 System Architecture
The basic architecture of the VAX 6200 sys-
tem shown in Figure 1 is no different from
architectures used on recent VAX systems.' The
architecture most closely resembles that of the
VAX 8800 series. Processors and memories reside
on a single, high-speed interconnect called
the XMI bus. All memory is shared and equally
accessible by all processors. Adapters to the
VAXBI bus also attach to the XMI. I/O devices,
in turn, are attached to the VAXBI buses. The
XMI supports a total of 14 slots, which can
be populated with modules to provide a wide
range of system configurations. These con-
figurations can range from small single-processor
systems with 32 megabytes (MB) of memory
and a single [/O channel to a large multipro-
cessor system with 256MB of memory and multi-
ple 1/O channels. One of the primary system
design goals was to support up to eight pro-
cessors with very good multiprocessor perfor-
mance. This goal guided the performance
decisions concerning the bus, memory, and pro-
cessor designs.

The heart of the system, the XMI bus, is largely
a hybrid of the VAX 8800 NMI and VAXBI buses.
The XMI is a synchronous bus that runs with a
64-nanosecond (ns) cycle time. The data path is
64 bits wide, and the maximum transfer rate is
100MB per second. The protocol supports
“pended reads” (as does the SBI on the
VAX-11/780 system and the NMI on the 8800).
In a pended read transaction, the CPU that wishes
to read a location requests use of the bus. When
the request is granted, the CPU transmits the
address of the desired location. The appropriate
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Figure 2 Pended versus Nonpended Protocols

memory controller latches the address into an
input qucue and begins a rcad access to the
specificd location. In the meantime, bus owner-
ship is rclinquished by the CPU, and the bus
may be uscd by other devices. When the memory
has completed the look-up and has the data. it
makes a rcquest for the bus. When granted the
bus. the memory drives the requested data on
the bus, which is latched by the CPU that
originally requested the data. Pended protocols
are contrastced with nonpended  protocols in
Figure 2.

Pended protocols are a big advantage when the
bus cycle time is significantly less than the mem-
Ory access time. AS a casc in point, a memory
read on the XMI bus requires about 500 ns
(roughly 8 XMI cycles). Withouta pended proto-
col. these 8 cycles on rcads would result in
wasteful bus stalls. Another advantage of pended
protocols is that they allow multiple memory
controllcrs to be used to advantage. In the casce of
the VAX 6200, it was not practical to build a sin-
gle memory controller that could keep up with a
saturated XMI bus. But it was relatively easy to
construct a memory controller that could com-
fortably run atabout one third the bus maximum.
With four interleaved memory controllers on the
XMI. memory controller bandwidth is grcater
than XMI bandwidth.

Challenges of Multiprocessor Design
The major challenges faced by the multiproces-
sor systcm designer result primarily from one
simple system characteristic. The intimate inter-
face between processor and memory that most
single-processor systems c¢njoy must be broken,
and main memory must be shared among a large
number of devices. This sharing has several
effects:

® Main mecmory access time is significantly
increased.

= Bandwidth to main memory becomes a pre-
cious commodity that determines overall sys-
tem performance.

s Complexity results from increased bus traffic
and parallel activities.

In the following sections. we expand on each of
thesc cftects in relation to the VAX 6200 system

Increased Main Memory Access Time

In a single-processor system, main memory is
generally closely coupled to the CPU. An exam-
ple of this closely coupled architecture is shown
in Figurc 3 Clearly, this architecture provides
the potential for low-latency and high-bandwidth
CPU-to-memory transactions.
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In the VAX 6200 multiprocessor system, mem-
ory must be shared by several devices and there-
fore cannot be closely coupled to asingle proces-
sor. The result is a significant increase in main
memory access time. Since the MicroVAX 3600
and VAX 6200 systems are both CVAX-based, a
comparison of the main memory access times for
the two systems illustrates this point. Table 1
shows the access time in processor cycles for
the two-level cache subsystem and the main
memory’.

Table 1 shows that the VAX 6200 takes three
times as many processor cycles to access the first
longword in memory as does the MicroVAX 3600
system. The main reason for this difference is that
the MicroVAX 3600 memory controller actually
resides on the CPU module. Therefore, the sys-
tem architecture is optimized to provide mini-
mum access time for processor accesses to main
memory. On the VAX 6200, system memory is a
shared resource equally accessible by all CPUs
and I/O devices. The price of this equality is
increased latency on all memory references. Note
however that although latency has increased, the
VAX 6200 can support almost ten times more
memory bandwidth (the time required per unit
of data transferred).

As will be later presented, the VAX 6200 sys-
tem uses memory bandwidth to compensate for
increased memory latency. Trading bandwidth
for latency is one of the fundamental tools of the
multiprocessor designer. Cache memory systems
essentially convert increased memory bandwidth
(manifested as a larger fill size) into lower aver-
age read latency (due to the decreased miss
rate in the cache resulting from the larger fill
size). This explanation is an oversimplification;
details of the trade-offs in cache design are pre-

sented below in the section on the multiproces-
sor cnvironment.

Table 2 reinterprets the data in Table 1 in
terms of bandwidth instead of latency. For exam-
ple, the MicroVAX 3600 system fetches 8 bytes
of data from memory on a cache miss, which
requires 8 (90 ns) processor cycles, or 720 ns.
This corresponds to 8 bytes of data every 720 ns,
or 11.1MB per second. In comparison, the
VAX 6200 system fetches 32 bytes of data on a
cache miss, which corresponds to 16.7MB per
second (32 bytes of data every 1920 ns).

Table 1 Comparison of MicrovAX 3600
and VAX 6200 Memory Latency
VAX 3600 VAX 6200
Cache 1
(CVAX internal cache) 1 (90 ns) 1 (80 ns)
Cache 2
(Second-level cache) 2 (180 ns) 2 (160 ns)
Main Memory
First longword 5 (450 ns) 14 (1120 ns)
Second longword 8 (720 ns) 15 (1200 ns)
Third longword na 19 (1520 ns)
Fourth longword na 20 (1600 ns)
Fifth longword na 21 (1680 ns)
Sixth longword na 22 (1760 ns)
Seventh longword na 23 (1840 ns)
Eighth longword na 24 (1920 ns)

Table 2 Comparison of Processor Read
Bandwidths on MicroVAX 3600 and
VAX 6200 Systems (in MB per second)
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MicroVAX 3600 VAX 6200
Cache 1
(CVAX internal cache) 40.0 50.0
Cache 2
(Second-level cache) 20.0 25.0
Main Memory
First longword 8.8 3.6
Second longword 111 6.7
Third longword na 79
Fourth longword na 10.0
Fifth longword na 1.9
Sixth longword na 13.6
Seventh longword na 15.2
Eighth longword na 16.7
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Limited Bandwidth to Main Memory

In a single-processor system such as the
MicroVAX 3600, the performance is generally
limited by the CPU itself and not by the main
memory subsystem. The opposite is generally the
case on large multiprocessor systems where a
large number of processors can create a bottle-
neck to the main memory subsystem. A major
goal of the multiprocessor designer is to mini-
mize the bandwidth required to support a given
level of CPU performance. In that way, the main
memory bus can support more processors;
therefore, the system can attain higher total
throughput. For cxample, assume a processor
requires an average of 20 percent of the total
bandwidth available to main memory to run a
given workload. Based just on bus bandwidth
considerations, the total system performance
would not ¢xcceed five times the single-processor
performance if the system is simultaneously run-
ning that workload on all processors. For a num-
ber of reasons. systems are rarely designed such
that the bus must be saturated to meet its perfor-
mance goals This same method of calculating
performance can be used to estimate perfor-
mance at some lower level of bus utilization. A
bus utilization level of 75 percent is often used,
in that casc, the system performance would be
limited to 3.75 times the singlc-processor system.

This example reveals one of the main com-
promiscs multiprocessor system designers must
make: increased bandwidth, which would reduce
the main memory access time seen by a single
processor, is traded off to reduce the total band-
width consumed by a single processor and
thereby increase total system throughput. Band-
width is really not the characteristic we are trying
to minimize; the real goal is to reduce the
number of bus and memory cycles used to sus-
tain a given level of performance. As we will
demonstrate, the efficiency of the transfer gen-
crally incrcases as the transfer size increases.
Therefore the system can fetch twice as much
data from memory without using twice as
many bus and memory cycles. This characteristic
is important when evaluating various cachc
alternatives.

Again looking at the MicroVAX 3600 dcsign,
the CPU actually starts accessing main memory
once the first-level cache has determined a miss
occurred but before the look-up in the second-
level cache has completed. This overlap means
the memory controller will start a large number

of accesses that will never result in data being
returned to the processor. (The second-level
cache will probably “hit” on more than 80 per-
cent of these references.) This behavior is desir-
able for many single-processor systems but
would be inappropriate for a multiprocessor
design in which main memory bandwidth is
precious.

In the multiprocessor system, main memory
bandwidth is shared by all processors and 1/0
devices. Table 3 compares the system bandwidth
in the MicroVAX 3600 and VAX 6200 systems.
Since the VAX 6200 uses a pended bus that sup-
ports 1 to 8 memory controllers, we present two
sets of bandwidth numbers for the VAX 6200
memory subsystem: one for a single memory con-
troller and another for a four-way interleaved,
four-memory controller subsystem.

The data makes a strong argument for large
transfer sizes to achieve high bandwidths on the
VAX 6200. A large cache fill size can be used to
assure high read bandwidth, and a write buffer
can be used to provide longer length write trans-
actions. Note that longword writes are particu-
larly inefficient in the memory controller; nine
cycles are required for a longword write com-
pared with only five cyclesfor a quadword write.
This inefficiency results from the implementation
of the crror-correcting code (ECC) across a quad-
word on the VAX 6200 memory. (VAX systems
have traditionally implemented ECC across a
longword.) This implementation improved the
memory module capacity at the cost of forcing
all longword writes to be a read-modify-write
sequence in the memory.

Increased System Bus Traffic

Another challenge to the multiprocessor designer
is the incrcased memory traffic in the system due
to the increased total system performance. For a
given workload, it is fairly accurate to assume
that the traffic to main memory increases linearly
with the total performance system. Therefore, a
VAX 6240 (a four-processor 6200 system) would
have roughly four times the main memory traffic
of the VAX 6210 (a single-processor 6200 sys-
tem). Since processors must monitor main mem-
ory traftic to maintain cache coherency, this
increase in main memory traffic has to be consid-
ercd when looking atcache invalidate implemen-
tations. Again the single-processor system has a
much less severe problem. The single processor
has to monitor only the traffic from [/O devices,
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Table 3 MicroVAX 3600 and VAX 6200 Main Memory Bandwidth (in MB per second with
corresponding number of cycles in parentheses)

MicroVAX VAX 6200 VAX 6200
3600 XMI Bus Memory
(90-ns cycles) (64-ns cycles) (64-ns cycles)
Reads 1 Memory 4 Memories
Longword (4B) 8.8(5) 31.2(2) 10.4 (6) 416
Quadword (8B) 11.1(8) 62.2(2) 20.8 (6) 83.2
Octaword (16B) na 83.3(3) 31.2(8) 124.8
Hexword (32B) na 100.0 (5) 38.5(13) 154.0
Writes
Longword (4B)
Full 11.1 (4) 31.2(2) 6.9(9) 27.6
Masked 6.3(7) 31.2(2) 6.9(9) 276
Quadword (8B)
Full na 62.2(2) 25.0(5) 100.0
Masked na 62.2(2) 13.9(9) 55.6
Octaword (16B)
Full na 83.3(3) 31.2(8) 124.8
Masked na 83.3(3) 16.7 (15) 66.8

* These numbers represent a CPU perspective. I/O devices onthe Q-bus canuse longer transfer lengths.

which typically generate about one-tenth the
traffic generated by a single CPU. Extending this
argument, it appears to indicate that a VAX 6240
system must handle invalidate look-ups at a rate
more than 30 times that of the MicroVAX 3600
system. (The VAX 6200 CPU has to handle invali-
dates from three other CPUs and for about four
timesas much /O traftic.)

The increcased system bus traffic is a symptom
of the large number of parallel activities that
characterize a multiprocessor system. The abun-
dance of queucs in a multiprocessor system
results in a more complex system. The section on
cache cohcerency in this paper discusses several
manifestations of this increased complexity.

Table 4 summarizes the major differences
betwecen the single-processor and multiprocessor
systems.

This discussion has demonstrated that the per-
formance of a multiprocessor system is very
dependent on the designers making the right
decisions about the CPU interface. In the next
section, wc discuss the basic architecture of the
VAX 6200 CPU and specific aspects of the multi-
processing environment.

VAX 6200 CPU Design Alternatives

This section presents an overview of the
VAX 6200 CPU architecture, followed by a dis-
cussion of the various implementation alterna-
tives that we considered during the design pro-
cess. We conclude with a list of specific design
alternatives and a discussion of our performance
simulation environment, which we used to exam-
ine these alternatives.

Table 4 Summary of Differences
between Single-processor
and Multiprocessor Systems

Single- Multi-

processor processor
Characteristic System System
Memory latency Low Medium
Performance CPU Memory
bottieneck bandwidth
Invalidate rate Low High
Level of parallel Low High

activity
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Figure4 VAX 6200 CPU Block Diagram

The VAX 6200 CPU is a single-board VAX pro-
cessor based on the CVAX chip set designed and
built by Digital. The 6200 CPU has a CVAX cycle
time of 80 ns (as compared to the MicroVAX
3600 90-ns CVAX cycle time); its nominal per-
formance is 2.8 times the VAX-11/780 system
(slightly more than three times the MicroVAX II).

A block diagram of the module is shown in
Figure 4. Three major buses are associated with
the module. The CVAX processor chip set com-
municates over the CVAX data and address bus
(CDAL),23 The SSC chip connects to the CDAL
bus and provides such functions as read-only
memory (ROM) address decoding, time-of-year
clock support, and console terminal interface.”
The CVAX chip contains the first-level cache. Also
connected to this bus is the second-level cache
data store and tag store logic. The path to the XMI
bus is provided entirely by the XMI interface gate
array and the XMI corner. This gate array provides
all nccessary synchronization between the CVAX
and XMI. Each CPU module has its own CVAX

clock source, and the XMI bus has a single clock
source that provides synchronous clock signals to
all XMI nodes.

The XMI corner represents a standard set of
interface components and a physical intercon-
nect that ensure all XMI devices meet the timing
and electrical characteristics required by the XMI
specification. The XMI corner components inter-
face to the rest of the logic on the module over
the XMI chip interconnect (XCI). A duplicate tag
store also attaches to the XCI bus.

As outlined in the previous section, several
specific challenges must be addressed by the
multiprocessor designer. At the CPU level the
design responses are as fol lows:

s [mplement an effective cache to reduce the
effective access time and the total traffic to
main memory

s Implement a write buffer to decouple and
reduce write traffic.
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s Implement a duplicate tag store to reduce the
overhcad and  complexity of maintaining
cache coherency.

Cache Subsystem

We will first look at the issues associated with
designing an cftective cache. The main character-
istics of a cache are size. associativity, fill size,
and block size. Size is simply the size in bytes of
the data store scction of the cache. As the size of
the cache increascs. the effectivencss of the cache
also increasces. Associativity refers to the number
of sets in the cache. A cache with a single set can
store data with a particular tag address in only a
single location. (A single-set cache is often
referred to as a direct-mapped cache.) A two-sct
cache has two locations capable of storing data
with a particular tag address. As associativity is
increased, the likelihood of cache “thrashing”
decrcases. (Thrashing occurs when two picces of
data cannot simultancously be in the cache duc
to an insufficicnt number of sets.) The likelihood
of thrashing also decrcases as the cache size
incrcases. Therefore it follows in most cascs
that as the cache size increases, the benefits of
incrcased associativity decrease. Fill size defines
the amount of data that is fetched from main
memory on a cache miss and loaded into the
cache. Over the range of cache sizes of interest,
the miss ratc decreascs as the cache fill size
increases. Block size refers to the size of the data
block covered by a single tag address. 1n a direct-
mapped cache. the block size is equal to the
cache sizc divided by the number of tags. The fill
size is equal to or less than the block size.

A major issue facing the designer of any com-
puting system is the amount of variation in per-
formance that can be accepted over a wide range
of workloads. Since we were concerned about our
ability to accuratcly model the effect of large
caches. we wanted to err on the side of conser-
vatism. This meant we would choose the largest
cache size practical. The state-of-the-art tech-
nology static random-access memories (SRAMs)
available to the VAX 6200 team were expected to
be 256-kilobit (Kb) parts with speeds down to
35 ns. We dcrermined that a pipelined cache
design with 35-ns SRAMs could support CVAX
cycle times down to 60 ns. This cycle time was
comfortably beyond our product goal, which was
to support a range of 70 ns to 100 ns, depending
on the success we had speed-binning CVAX parts.
We tentatively decided to use 6G4K-by-4 SRAMs
for the data store, largely because the 64K-by-4

configuration was cxpected to be the most read-
ily available. Since the CVAX has a 32-bit data
path, cight 64K-by-4 parts would naturally pro-
vide a 256KB direct-mapped cache (four times
the size of any previous VAX). This configuration
also provided the optimal onc-output-load per
data line. We also examined configurations with
increasced associativity to confirm our belicf that
the benefit of sct sizes greater than one is small
for caches in the range of 256KB

Having sclected a very large cache. we next
considered block size and fill size. The XMI bus
supports only 8 (quadword), 16 (octaword), and
32 (hexword) byte transfers to memory. There-
forc. the fill size would have to be onc of these
three sizes. The block size can be larger than the
fill size if the design supports what are called
subblock valid bits. 1dcally the fill size and block
siz¢ would be the same. With a very large cache,
howcver, providing suthcient tag storage can be a
rcal problem. Again in an attempt 1o be conserva-
tive, we looked into state-of-the-art, tag-inte-
gratcd circuits. The best we found in the
required 25- to 30-ns spced range was a 2K-by-9
part. With two of these parts, we could imple-
ment a 2K tag store subsystem. A 250KB data
store with 2K tags would have a 1 28-byte fill size.
Subblock valid bits would be needed to identify
which subblocks are acrually valid. We decided it
would be practical to choose a larger tag store
size in which four tag chips would be used to
implementa 4K tag store subsystem.

Choosing the ideal fill size was expected to
involve an interesting compromise between sev-
eral characteristics. As the fill size is increased,
scveral things happen.

® The cache miss rate drops. Over rcasonably
large ranges, the miss rate can be reduced by
requiring that more data be fetched on a cache
miss. This is not truc when the likelihood of
using the new data is less than the likelihood
that bringing in the additional new fill data
will force the flushing of other cache data
morc likely to be used.” This will not occur
with cache and fill sizes in the range consid-
cred for the VAX 6200.

s CPU stalls per miss increasce. In VAX 6200
CPU architecture, as the sccond-level cache is
being filled, the CVAX cannot access it. On a
sccond-level cache miss, the XML interface
does return the actual requested data item to
the CVAX first and then completes the remain-
der of the cache fill Therefore, the number of
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cycles in which the CVAX is stalled waiting for
the second-level cache to become available
again after a cache miss increases as the fill
size increases. The CVAX internal cache
recmains accessible while the second-level
cache is being filled.

s The MB per second to main memory required
to support a given level of performancc
increasces. If twice as much data is fetchedon a
cache miss, the miss rate does not drop by a
factor of two.’ Therefore, as fill size increascs,
the MB per second required to support a given
level of performance increases.

= The “available MB per second” of the bus
increases. The efficiency of buses that do not
have scparate address lines (such as the XMI)
incrcases as the transfer size increases. Basi-
cally, the required address cycle can be amor-
tized over more data cycles.

s The “available MB per second” of the memory
controller increases. The memory controllers
in the VAX 6200 can deliver more MB per scc-
ond if more data is fetched for a given fetch
address.

Based on our significant experience with VAX sys-
tems, we knew that either the 16-byte or 32-byte
fetch would be the right choice. The results from
simulation would be used to select the final
value.

Another major cache design issue was the
configuration of the CVAX 1KB internal cache.
This cache can be configured to run in a conven-
tional instruction and data stream write-through
mode. In this mode, the cache must be invali-
dated when writes occur to a stored block. Alter-
natively, the cache can be run in I-stream-only
modc in which the cache does not have to be
invalidated on writes. Instead, the cache is auto-
matically flushed on VAX Return from Exception
or Interrupt (REID) instructions. The methods we
uscd to ensurce the success of this cache
coherency mechanism are discussed in the sec-
tion Maintaining Cache Coherency and Handling
Cache Error Conditions.

Assuming all other things remain equal.
there is a performance penalty for choosing the
[-strcam-only mode. If we select I-stream-only
mode, the following occurs:

s All D-stream references will require a mini-
mum of two cycles instead of one. Generally,
for VAX CPUs an average of 0.8 D-stream

references are made per instruction® and an
average instruction on the CVAX requires
between 9 and 10 cycles. This would seem to
indicate that the performance penalty would
be about 8 percent (0.8 references divided by
9.5 cycles), assuming the D-stream miss rate
in the internal cache is 0 percent. With an
cxpected more-typical 40 percent miss rate,
the penalty would be about 5 percent.

® CVAX stalls will increase for references that
occur while the second-level cache fill for a
previous reference is still not complete. This
increase results because the CVAX will need to
access the second-level cache on all D-stream
references.

= Assuming a low frequency of REI instructions,
the [-stream miss rate should improve since
there will be no contention for cache blocks
between the I and D streams. (REIs will cause
the I-stream-only cache to flush.)

s The module space needs will be less because
there will be no need foran extra duplicate tag
to track the CVAX internal cache. Since the
CVAX internal cache has two sets, it cannot be
practically “followed” by a simple sccond-
level, direct-mapped cache.

Looked at another way, we could afford to
devote more logic to making the second-level
cachc more effective if we did not support
CVAX D-stream caching.

= The complexity lessens with one less cache to
keep coherent with hardware. We also had
more flexibil ity in implementing error-recov-
ery mechanisms and would not have to imple-
ment a complex mechanism to suppress the
generation of XMI write transactions when the
invalidate queue was at risk of overtlowing.

We planned to use the simulation environment to
quantify the performance penalty that results
from running the CVAX cache in I-stream-only
modec.

Write-Buffer Subsystem

Conventional write-through caches greatly reduce
read trattic to main memory but do not reduce
the write traffic. Therefore, although the mix of
rcad and write references from the CPU itself is
weighted heavily toward reads. the trattic down-
strcam of a write-through cache is primarily
writes. Other cache architectures offer the poten-
tial to reduce write traffic. A write-back cache
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might be considered the obvious approach. By
caching writes as well as reads, a write-back
cache offers the potential for the highest perfor-
mance multiprocessor system. Nevertheless, the
complexity is significantly higher than a write-
through design. Industry experience is that very
few write-back caches work on first-pass, and
their bugs are very ditficult to fix. Another risk
with write-back caches is in the area of error
recovery. It is much more difficult to recover
from transient cache errors with a write-back pro-
tocol. To avoid the increased complexity and
resulting schedule risk, we decided to pursue a
hybrid approach. We would implement a write-
through cache with a write buffer design very
similar to that of the VAX 8800 cache.’

A write buffer resides between a write-through
cache and the system bus. A write buffer is actu-
ally a simple, very effective form of a write-back
cache. A write buffer takes advantage of the local-
ity of write transactions to reduce the number of
write references to main memory by combining
sceveral small write references into a single larger
transaction to main memory. This behavior has
three main advantages. First, almost all buses
(including the XMI) increase in efficiency as the
transfer size is increased. This efficiency results
because cvery transfer generally requires the
transmission of an address cycle before the data.
This address cycle is basically fixed overhead that
can be more effectively amortized as the transfer
size is increased. The transfer sizes and relative
efficiencies of the XMI bus are shown in Table 3.

Second. as previously mentioned, the VAX 6200
memory does not efficiently process longword
write transactions. The write buffer converts
significant numbers of longword write transac-
tions into full quadword and octaword transac-
tions that ar¢ processed with many times greater
efficiency.

Finally, the buffer helps to reduce the fre-
quency of processor “write stalls,” that is, pro-
cessor cycle slips due to writes to main memory
that back up. The buffer largely decouples the
processor from the main memory write timing;
the processor perceives that most writes are com-
pleted in minimum time.

The VAX 6200 write buffer accumulates write
data until a memory write address falls outside
the address range of the current block. When this
occurs, an alternate octaword buffer begins
filling. The first buffer is emptied either with an
octaword XMI transaction (if the buffer contains
more than an aligned quadword) or with a quad-

word XMI transaction (if the buffer contains no
more than an aligned quadword). CVAX CPU
reads (unless interlocked or made to 1/0 space)
are allowed to bypass the write buffers after first
being checked for an address match with the
write buffer.

Either a read address comparison match or an
interlocked or I/O space transaction forces the
write buffer to be purged. There are several other
conditions under which the write-buffer must be
flushed. These conditions are discussed in the
section Maintaining Cache Coherency and Han-
dling Error Conditions.

We believed the write buffer could provide
about half the bandwidth benefit of the write-
back cache but with little more complexity than
a simple write-through design. As an added
benefit, the buffer architecture was already
implemented and running with very good perfor-
mance results in a VAX multi processor (VAX 8800
family). We planned to use performance simula-
tions to confirm that the write buffer was ade-
quate to meet our performance goals.

Duplicate Tag Store

As noted earlier, a multiprocessor environment
puts significant strain on the cache coherency
logic. The rates at which write addresses on the
system bus must be checked against the addresses
stored in the cache require that a different archi-
tecture be used for servicing invalidates.

The 2K-by-9 tag chips used to implement the
main tag store are also used to implement a
duplicate tag store. The duplicate tag store runs
synchronously with the XMI bus and permits
filtering of invalidates, so the CPU would stall
only on an XMI write hit. It is not uncommon to
have ratios of 100 to 10,000 to I between dupli-
cate tag misses and duplicate tag hits.

The operation of the duplicate tag store is dis-
cussed in the section Maintaining Cache Coher-
ency and Handling Error Conditions.

We have now defined the basic architectural
issues that needed to be resolved and have indi-
cated the alternatives we would like to pursue. In
the nextsection we present the results of our per-
formance simulations.

The following list summarizes what we exam-
ined in our simulation environment:

® Determine the loss in performance that would
result from running the CVAX internal cache
in I-stream-only mode instead of combined
I- and D-stream mode.
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= Investigate octaword (16-byte) versus hex-
word (32-byte) fill sizes for both I-stream and
D-strcam. Further, examine the relative miss
rates, MBs per unit of performance, bus cycles
per unit of performance, memory cycles per
unit of performance, and absolute perfor-
mance. Look at a large multiprocessor system’s
scnsitivity to main memory access time.

s Determine the cffectiveness of a write-through
with write-buffer cache architecture. In other
words, can the writes be reduced sufficiently
to avoid write-back in the chosen architecture.

s Examinc the benefits of a two-way, set-associa-
tive cache over a simpler direct-mapped
design.

Performance Simulation

The basis of the simulation environment was a
high-level performance model of the CVAX chip.
Written in PASCAL, this model was interfaced to a
configurable second-level cache, write buffer,
and memory subsystem. The model accepted
instruction traces for input. At the time the per-
formance modeling was done, scven standard
benchmarks were available: DIRECTORY, EDT,
FORTRAN, LINKER, MAIL, RUNOFF, and SORT.
All instruction traces were captured from a
VAX-11/780 system. Since each trace was for a
singlc process, one of the major issues was detcr-
mining how to correctly model the effect of
timesharing on cache performance.

The very nature of timesharing has a negative
cftect on cache performance as compared with
single process runs. Ideally, the cache would be
dedicated enrirely to holding instructions and
data associated only with a single process. In
timeshare systems, processes are not initiated and
then run nonstop to completion; instead the CPU
is constantly switching from process to process.
This switching requires the cache resources to be
distributed across a number of processes and
therefore reduces the effectiveness of the cache.
A VAX-11/780 study(’ indicates that the average
number of instructions between context switches
on a VAX system is about 5,000 instructions. A
traditional and very conservative approach to
simulating the cffect of context switches is t0
flush the entire cache every 5,000 instructions.
Flushing the cache every 5,000 instructions
was not a big penalty for small caches that
could quickly refill themselves after a flush;
however. the advantage of larger caches (that

we know actually exists) could not be demon-
strated when the model ran with a flush every
5,000 instructions.

To more accurately model the benefits of large
caches, internal studies of complex timeshare
loads were undertaken. Multiuser program traces
were run against a cache model. subjecting the
cache model to the context-switch behavior of a
rcal system. The cache performance results of
that run were compared with single jobs run
against a cache model that was flushed after vari-
ous numbers of instructions had been executed.

The results indicated that similar cache perfor-
mance results could be obtained in simulation by
using a single job trace and complete cache
flushing every 35.000 instructions. The number
35,000 applies only to a 256KB cache; smaller
caches would have a smaller context-switch
interval. We decided to simulate the VAX 6200
with the 256KB cache flushed every 35,000
instructions; the 1 KB CVAX internal cache would
be flushed at the more traditional 5,000 instruc-
tion rate. All simulations would represent a sin-
gle-processor system; main memory access times
would be minimum. The performance results
would generally be presented as a set of relative
numbers comparing the alternatives.

Table 5 summarizes all the cache characteris-
tics we would simulate.

CVAX Internal Cache Configuration

The first aspect examined was the CVAX cache
configuration. As shown in Table 6, the I- and
D-stream design offered an average increase in
performance of 5 percent over the [-stream-only
cache. We concluded 5 percent average perfor-
mance could be sacrificed in return for the
reduced complexity of the 1-stream-only design.

Table 5 Cache Characteristics Simulated

Second-level
CVAX Cache Cache

Associativity 2-way Direct-mapped/2-way
Configuration | & Dftonly |1&D

Size 1KB 256KB
Block size 8B 64B

Fill size 8B 16B/32B
Tags 1K 4K
Simulated 5,000 35,000
context instructions instructions

switch rate
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Table 6 CVAX I-stream and |- and D-stream
Relative Performance

|-stream |- & D-stream
Average 1.00 1.05
Minimum 1.00 1.03
Maximum 1.00 1.07

Table 7 Octaword versus Hexword Fill Size Results

Octaword versus Hexword Fill Size

Choosing an octaword or a hexword fill size was
the next and probably the most complex major

issuc. The results are shown in Table 7.

In all

cases, relative numbers are used with the charac-
teristics of the octaword machine as the refer-

¢nce.

Relative
Fill Size Performance
Octaword
All 1.00
Hexword
Average 1.01
Minimum  1.01
Maximum 1.02
Relative Miss Rates Relative MB/sec
Fill Size |I-stream D-stream All Reads I-stream D-stream All Reads
Octaword
All 1.00 1.00 1.00 1.00 1.00 1.00
Hexword
Average .56 .84 .71 1.12 1.68 1.42
Minimum .54 .81 .68 1.08 1.61 1.36
Maximum 57 .87 .76 1.14 1.74 1.52
Percent XMI Percent Memory
Fill Size |I-stream D-stream All Reads I-stream D-stream All Reads
Octaword
All 1.00 1.00 1.00 1.00 1.00 1.00
Hexword
Average 93 1.40 1.18 91 1.36 1.15
Minimum .90 1.34 1.16 .88 1.31 1.13
Maximum .96 1.45 1.27 .95 1.41 1.27
Relative Relative
Percent Percent
XMI Memory
Fill Size Utilized Utilized
Octaword
All 1.00 1.00
Hexword
Average 1.08 1.04
Minimum  1.06 1.03
Maximum 1.09 1.07
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A summary of the results in Table 7 follows:

s The fill size has a negligible effect on perfor-
mance (less than 1 percent difference). The
hexword alternative delivered an average of
1 percent better performance.

Itis important to keep in mind that the simula-
tion was performed assuming the minimum
delay from main memory. In a multiprocessor
system, the alternative with the lower miss
rate increases in performance relative to the
other alternatives as the main memory access
time increases.

» Hexword fetches dropped the overall miss rate
by almost 30 percent. (As expected, the
[-stream miss rate improvement was much
higher — almost 50 percent.)

= The megabytes per second required to main-
tain a given performance level increased by
about 40 percent overall for the hexword
fetch.

m As mentioned earlier, we were not as con-
cerned about megabytes per second as much as
the percentage of the bus and memory con-
troller cycles per second. In this light the hex-
word alternative required about 18 percent

Table 8 Write Buffer Effectiveness

Ratio With Write Buffer/
Without Write Buffer*

Write Buffer XMI Memory

Miss Rate Utilization Utilization
Average 47.1% .55 .49
Minimum 40.4% .50 42
Maximum 54.9% .64 .58

* The utilization numbers are expressed as ratios between the
utilization with a write buffer and the utilization without the write
bufter.

Table 9 XMI Bus Utilization per CPU

|I-stream D-stream
Reads Reads Writes Total*

Average .89% 1.39% 4.41% 6.27%
Minimum 24% 1.26% 3.57% 5.27%
Maximum 1.65% 2.10% 597% 7.25%

* The numbers in this column are averages of the total XMl bus
utilization across the seven workloads. These numbers are not
sums of the individual utilization percentages in each column.

more bus cycles and 16 percent more memory
cycles to support read traffic to main memory.
Eighteen percent and 16 percent may seem
like a big increase, but it is important to look
at overall bus bandwidth. On a write-through
interconnect, the writes generally dominate
the traffic.

®» The overall bus traffic (taking into account
writes) increased by only about 9 percent.
Overall memory controller cycles increased by
even less — only about 4 percent. The low
increase resulted because the ratio of write
cycles to read cycles is higher in the memory
controller than on the XMI bus.

Based on this data, we chose the hexword
fill alternative. We felt the potential for
significantly more consistent performance in
large multiprocessor configurations (due to
decreased cache miss rate) was worth the esti-
mated 9 percent increase in bus utilization.

Write Buffer Effectiveness and Overall
Bus Utilization

We were pleased to find that the write buffer was
about as effective as we had predicted. The data
in Table 8 compares the XMI write traffic gener-
ated with and without a write buffer. The data
is quite consistent. On average, the write buffer
reduced the number of write cycles on the bus by
slightly less than half (45 percent) and reduced
the memory controller cycles by slightly more
than half (51 percent).

Table 9 shows the bus utilization by the
VAX 6200 CPU running the test benchmarks.
Using the average bus utilization number of
6.27 percentstill yields only 50 percent for a full
eight-processor system; the 7.25 percent maxi-
mum value yields 58 percent utilization. These
figures are well within our 75 percent utilization
design goal, and we decided to implement the
write-buffer instead of the write-back design.

Another more conservative way to look at the
data is to assume that we may not have the worst-
case cnvironment covered in any single bench-
mark. Therefore we should look at the “sum of
maximums” to determine whether the design
goal is met. Using the sum of maximums
approach, we require 9.72 percent of the XMI
per processor, or about 78 percent for eight pro-
cessors. This figure is sufficiently close to our
design goal of 75 percent maximum utilization
to be acceptable.
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Effect of Associativity

We next explored the benefits of associativities
greater than one. Implementation of a cache
other than a direct-mapped cache was probably
not practical. However, we wanted to examine
the performance results.

The results given in Table 10 indicate that a
two-way, set-associative cache could reduce the
overall miss rate by 13 percent, whereas the per-
formance gain was negligible (1 percent). This
improvement in miss rate is fairly significant;
but we determined it was not practical from a
module real estate and electrical timing perspec-
tive to implement other than a direct-mapped
scheme. To implement a fast two-way cache, two
separate RAM arrays must be supported. This
implementation requires roughly twice the mod-
ule area of a directed-mapped approach. A two-
way cache can be implemented with a single
RAM array (cannot start the RAM look-up until
the proper set has been identified), but this
would force the access time to increase by a
cycle. Increasing the access time to the second-
level cache would be particularly undesirable to
the VAX 6200 designers since we had already
decided to configure the CVAX cache in I-stream-
only mode. (With an additional cycle, all
D-stream references would then require a mini-
mum of three cycles.) Board area constraints and
increased cache access time are the two most
common reasons for rejecting the miss reductions
of the multiway cache in favor of the simplicity
and the practical, fast access time of the direct-
mapped cache.

Maintaining Cache Coberency and
Handling Cache Error Conditions

As mentioned in the introduction, a major chal-
lenge to a multiprocessor designer is to imple-
ment a reliable scheme for cache coherency.
Coherency is a term somewhat difficult to define.
In this section, we give some insight into the

Table 10 Direct-mapped versus Two-way
Cache Performance

All Reads

Relative Relative

Miss Rates Performance

Direct- Two- Direct- Two-

mapped way mapped way
Average 1.00 .87 1.00 1.01
Minimum 1.00 74 1.00 1.00
Maximum 1.00 .95 1.00 1.02

meaning of coherency and the methods employed
by the VAX 6200 project engineers to ensure
coherency. We also describe our techniques for
supporting recovery from all single-bit transient
cache errors.

For this discussion, we divide the cache sub-
system of the VAX 6200 into three sections. Fig-
ure 5 shows the three major subsystems in the
VAX 6200 cache:

s The CVAX internal I-stream-only cache
s The 256KB [-and D-stream cache

s The 16-byte write buffer (a form of write-back
cache)

CVAX I-stream-only Cache

The first cache, contained within the CVAX chip
itself, is configured for I-stream-only operation.
In that mode, the CVAX flushes the entire con-
tents of the cache whenever a VAX REI instruc-
tion is executed. Motivated originally by the
potential problems with instruction prefetch
buffers, the VAX architecture defines rules for
software to assure that writes to I-stream data
produce predictable results.® In all cases, if the
rules are not followed, stale data may be read
from the cache and cause unpredictable results.

1KB 256KB 168
CPU I-STREAM |- AND D-STREAM WRITE —— TO MAIN MEMORY
CACHE CACHE BUFFER

Figure 5 VAX 6200 Cache Subsystems
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Second-level I- and D-stream
256KB Cache

The second-level cache is architecturally similar
to caches used on most VAX systems. With a
write-through design, the cache stores both
I- and D-stream data. Coherency is maintained by
monitoring all writes from other devices to main
memory and invalidating cached locations that
correspond to any of the monitored writes. The
processor does not generate invalidates for its
own writes to main memory since the cache is
write-through; a write by the processor itself that
hits in the cache immediately updates the appro-
priate location.

The VAX 6200 second-level cache coherency
logic is shown in Figure 6. A duplicate tag store is
located on the multiplexed XCI bus. This store
contains a duplicate copy of the 4,096 cache tag
entrics, which are in the second-level cache
located on the CDAL. The duplicate tag store
tracks the primary tag store on allocates by moni-
toring XMI read transactions. Whenever an XMI
memory space read is initiated, the CPU allocates
the cache block that corresponds to the read
address.

The duplicate tag store also monitors all XMI
write transactions and performs a duplicate tag
store look-up. If a hit occurs and the write was
not from this CPU, then the duplicate tag location
is invalidated. The address is then loaded into an
eight-entry invalidate queue implemented in the
XMI interface gate array. Cache invalidates are
not performed in response to an individual CPU’s
own writes since the write-through second-levcel
cache always contains the mostrecent data.

When an entry has been loaded into the invali-
date queue, the CDAL interface logic arbitrates
for the CDAL and invalidates the full 64-byte
block in which the write address was located.
The use of a duplicate tag store reduces CDAL
traffic to only necessary invalidate transactions.
After performing an invalidate, the XMI interface
gate array checks for any additional invalidates
that may have accumulated while the previous
invalidate was being serviced. If another invali-
date request exists, then it is serviced prior to
releasc of the CDAL. This procedure ensures that
invalidates are serviced as quickly as possible.
The CVAX bus interface ensures that the invali-
date logic is given an opportunity to use the
CDAL between every CVAX bus operation.

Though occurring very infrequently, the XMI
bus could issue writes quickly enough to over-

TAG DATA
STORE STORE
< CDAL BUS >
XMI INTERFACE
GATE ARRAY

DUPLICATE |11+ EIGHT-ENTRY
TAG INVALIDATE
STORE QUEUE

-

XMI CORNER

e

Figure 6 Second-level Cache Coherency Logic

flow the CPU’s invalidate queue. Instead of
adding significant complexity to the invalidate
controller to suppress the generation of XMI
write commands when the invalidate queue is at
risk of overflowing, the overflow condition is han-
dled as an exception condition. (This subject is
discussed in the section Handling Second-level
Cache Error Conditions.) For this alternative to
be practical, we had to ensure that invalidate
queue overflows would be very rare; we felt this
was ensured by the depth of the invalidate queue
(eight entries) and the optimized design of the
invalidate controller.

The Write Buffer

A write buffer design offers the designer oppor-
tunities to break cache coherency rules. The
VAX 6200 CPU follows several rules to maintain
coherency. The VAX 6200 hardware automati-
cally flushes the write buffer under the following
conditions:

= In response to a write that misses the currently
active write buffer. The current write buffer is
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flushed while the new write is accepted by
the alternate bufter, thus write ordering is
maintained.

m Before an XMI 1/O spacce read or write refer-
encce is performed. 1/0 references could result
in the initiation of an 1/O operation that may
requirc the data from the write bufter.

m Beforc an interlock read or unlock write refer-
ence is performed. Interlock sequences are
the primary means for synchronization
between processors and must always force all
outstanding writcs to main memory.

m Before an interprocessor interrupt is per-
formed. As with interlocks, interprocessor
interrupts arc used for synchronization be-
tween processors and must always force all
outstanding writes to main memory.

m Before issuing an XMI read to a location that
includes the data contained in the write
bufter. The write buffer contents are flushed to
main memory and then the XMI read is issued.
Reads that miss the write buffer do not force a
write buffer flush (“write buffer bypass™).

m Following the assertion of the CVAX clear-
write-buffer pin, the CPU flushes the write
buffer to main memory. This form of write
bufter flushing is primarily used to associate
failed writes with a given process. If no associ-
ation could bc made, then the operating sys-
tem would always have to crash the entire sys-
tem on every failed write transaction.

Handling Second-level Cache Error
Conditions

Onc of the major goals of the VAX 6200 design
was to provide improved system reliability. One
method we used was hardware-enforced soft
failover in response to many error conditions,
combined with efficient software recovery proce-
dures. This mcthod was used extensively when
dealing with all types of second-level cache
€rrors.

In general, the individual processors have the
responsibility to recover from potential cache
coherency failures. When errors occur that
may leave the sccond-level cache incoherent, the
VAX 6200 processor hardware automatically dis-
ables the cache. Disabling the cache ensures that
the system can continue to run “safely,” albeit at
reduced performance. The processor then posts a
“soft” error interrupt. The interrupt service rou-

tine responds by logging the crror and then
flushing and reenabling the cachce.

The following error conditions causc the XCP
hardware to disable the second-level cache. The
errors are of two forms. The first two are error
conditions that potentially result in a missed
cache update on a writc-through; the last three
deal with conditions under which an invalidate is
potentially missed:

s Subblock valid bit parity errors — The
VAX 6200 CPU supportsa doubly-redundant set
of subblock valid bits. On a cache look-up,
ifthetwo correspondingvalid bitsdo not match,
then the hardware reports a parity error and
forces a cache miss. If this error occurs on a
write-through thatshould have hitin the cache,
then the cache state is no longer consistent.

s Cache tag parity errors — The tag chips used
on the VAX 6200 CPU support parity on the
full tag address. As with valid bit crrors, a tag
parity error can result in a missed write-
through.

= XMI inconsistent parity error — If the CPU
detects an XMI cycle that has bad parity and
that cycle is acknowledged by another proces-
sor, then the worst-case assumption is that the
duplicate tag logic just missed a write transac-
tion that should have resulted in an invalidate.

m Duplicate tag store parity error — As with the
previous error, the processor has to assume the
parity error resulted in a missed invalidate.

= [nvalidate queue overflow — Again, this con-
dition is similar to the one above except that
this condition does not require a transient
error in the system. Instead, an invalidate
queue overflow is the result of a very rare com-
bination of XMI writes that result in a queue
backup and the potential loss of invalidates.
The system responds to this condition just as it
would for all other cache errors.

Actual System Performance Results

We were very interested in determining how well
our simulation results matched real-world opera-
tion. We decided to focus on several key aspects
of the system to bound the task of correlating sim-
ulation with the real world. Specifically, we
planned to

m Confirm that the VAX 6200 CPU performs as
expected relative to the MicroVAX 3600 sys-
tems. If the cache subsystem behaves as
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expected, then the VAX 6200 performance
should exceed that of the MicroVAX 3600
systems by the clock rate improvement minus
the penalty for running the CVAX cache in
I-stream-only mode.

s Confirm that the simulation traces adequately
“stress” the memory interface such that extra-
polation to real workload performance is
valid. The percentage of the XMI bus con-
sumed would be the basis for this comparison.
This characteristic includes all the effects of
references per instruction and miss rates and
ultimately determines the performance of a
multiprocessor machine.

s Confirm that the cache subsystem supports
very cffective utilization of multiple proces-
sors. VAX 6200 multistream throughput mea-
surements form the basis of this verification.

s Compare the results from the simulation tests
with similar workloads run on real machines.

Comparing VAX 6200 and
MicroVAX 3600 Systems

Due to the similarities between the two systems,
our first approach was to compare the perfor-
mance of the VAX 6200 to the MicroVAX 3600
systems by running a set of 100 compute-inten-
sive benchmarks. The VAX 6200 hasa 12 percent
cycle time advantage (90 ns to 80 ns), but it is
somewhat handicapped by the [-stream-only limi-
tation placed on the internal cache. Recall that
our performance simulation indicated this
penalty would average about 5 percent. (See
Table 6.) On average then, we expected the
VAX 6200 CPU to be about 7 percent faster than
the MicroVAX 3600 CPU. The compute-intensive
benchmarks basically confirmed this number;
VAX 6200 performance averaged 6 percent faster
than the MicroVAX 3600 CPU.

Multiprocessor Bus Bandwidth
Utilization — Real and Simulated
Workloads

We have run several forms of multiuser time-
sharing workloads on the VAX 6200 system.
These workloads include Digital’s standard
ALL-IN-1 workload, an order processing bench-
mark (Compu-Share), an electrical CAD work-
load, and a software development workload.” In
all cascs, the average percentage of the XMI used
per processor ranged from 3.75 to 5.0. Recall

that our simulation indicated that the percentage
XMI consumed would be 6.27 percent. (See
Table 9.)

Multistream Performance on Compute-
intensive Benchmarks

It is beyond the scope of this paper to present the
multiprocessor simulation data that was gener-
ated prior to design. That data indicated that the
VAX 6200 system performance on compute-
intensive benchmarks would be nearly linear
when running from one to eight processors.

Tests to date have confirmed our high expecta-
tions. On compute-intensive workloads, a four-
processor system consistently provides better
than 3.95 times the throughput of the single-
processor system (less than 2 percent degrada-
tion). Limited configuration testing on systems
with up to eight processors indicates that
compute-intensive workloads continue to per-
form very well. An eight-processor system per-
formed at 7.75 times the single-processor (less
than 5 percent degradation).

Fully Characterized Workloads

We also instrumented a VAX 6200 system to mea-
sure a number of processor characteristics,
including bus utilization. We wanted to deter-
mine how much the real workload runs varied
from the simulated runs. The test methodology
was quite simple.

s Command files were created that executed a
single benchmark. These individual bench-
marks were designed to correspond with the
simulation traces listed at the beginning of the
Performance Simulation section.

s The Digital Command Language (DCL) com-
mand files were of the following form:

$

$ @flushcache! initially flush the
cache

$ @starthardwaresample ! start the

measurement hardware

@getcputime ! get theinitial CPUtime

runbenchmark

@getcputime ! get the final CPU time

P OV VO

@stophardwaresample ! stop the
measurement hardware
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s The measurement hardware consisted of two
Tektronix DAS 9200 Logic Analyzers; one mon-
itored the processor bus, and the other was
attached to the XMI. The start-measurement
command file simply referenced a specific
XMI 1/0 space address on which the DAS 9200
analyzers would trigger and start taking mea-
surements. Similarly, the stop-measurement
command file would reference another XMI
1/0O space address that would cause the logic
analyzers to stop acquiring data.

This technique made the measurement process
simple and repeatable. The overhead of the com-
mand file was measured by running the command
file with the “run benchmark” line removed. This
overhead was then subtracted from the results
obtained from benchmark runs. Run-to-run con-
sistency was better than 10 percent.

The logic analyzers captured the data neces-
sary to determine the total number of XMI read
and write references that occurred during the
cxecution of the command file. This data was
used to calculate the total number of XMI cycles
used by the processor. To derive the percentage
of the XMI utilized, the total XMI cycles were
reduced by the command file overhead, and the
result was divided by the benchmark CPU time.
This method ensures that the XMI percentage is
not artificially low due to the inclusion of null
time elapsed while the processor is waiting for
1/0 activities associated with the benchmark to
complete. The results are shown in Table 11.

The data indicates that the simulation traces
required significantly more XMI read bandwidth
(on average more than double) than the similar
actual benchmarks. This result is not unexpec-
ted, since the simulation runs were designed to
simulate a worst-case timeshare workload. (This
goal influenced the choice of 35,000 instruc-
tions for the cache flush interval.) The real
workloads were run on standalone systems, and
therefore the cache performance was expected to
be higher. We are currently studying the effect of
heavy timesharing in multiprocessor systems on
cache performance. Initial results indicate that
our simulation runs are still conservative.

The results for writes, which are unaffected by
context switch rates, matched the actual bench-
marks quite closely. The actual benchmarks
required about 4 percent to 8 percent more
bandwidth than the equivalent simulation trace.
Combined read and write bandwidth require-

Table 11 Simulated versus Actual XMl Bus
Utilization
Simulated/
Simulated Actual Actual
|I-stream |-stream Ratio
Average 0.84% 0.32% 2.6
Minimum 0.24% 0.17% 1.4
Maximum 1.65% 0.52% 3.2
Simulated/
Simulated Actual Actual
D-stream D-stream Ratio
Average 1.63% 0.74% 2.2
Minimum 1.26% 0.26% 4.8
Maximum 2.10% 1.10% 19
Simulated/
Simulated Actual Actual
Writes Writes Ratio
Average 4.46% 4.86% 0.92
Minimum 3.57% 3.84% 0.93
Maximum 5.97% 5.75% 1.04
Simulated/
Simulated Actual Actual
Overall Overall Ratio
Average 6.09% 4.86% 1.25
Minimum 5.27% 3.84% 1.37
Maximum 7.25% 5.75% 1.26

ments indicated that the simulated traces used
25 percent more bandwidth than the actual
workloads.

Conclusions and Future Work

The VAX 6200 design experience has demon-
strated that trace-driven simulation is a power-
ful tool in the design of a multiprocessor bus
interface. Because the designers were able to
make informed trade-off decisions, the design
met or exceeded all performance goals; and the
reduced design complexity helped bring the
system to market on schedule. It is a tribute to
the team’s appropriate control of complexity and
to the rigorous verification process'0 that the
first-pass VAX 6200 CPU printed circuit design
and XMI interface gate array are currently ship-
ping in VAX 6200 systems. At Digital, this level
of success is unprecedented for a machine of this
complexity.
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The continuing trend toward multiprocessing
and faster processors will force increasing depen-
dence on complex cache subsystems to deliver
the desired system performance. It follows that
minimizing the complexity of the cache sub-
system will help support ever decreasing time-
to-market schedules. Accurate cache simulation
techniques will be required to select the imple-
mentation that meets the performance goals and
is minimally complex.
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Engineering in the Design of the

VAX 6200 Sy stem

The success of the VAX 6200 design is partly attributable to the development
and implementation of a total verification plan. The goal of this plan was
to shorten the total system design cycle; the approach was to perform suffi-
cient verification to ensure that first-pass parts would boot and run VMS at
speed. The team responsible for achieving the goal began implementing
the verification process on availability of the first design specification. The
team’s efforts continued concurrent with those of the module design team.
Milestones for the process reflect the verification team’s top-down func-
tional approach, proceeding from architectural-level verification through
logic, timing, and system verification, and concluding with vector genera-
tion. Review and reporting methods established for the project ensured all

Sunctionswere tested and verified.

This paper presents an overview of the computer-
aided engineering (CAE) and CAE-based design
veritication test (DVT) approach to the develop-
ment of the VAX 6200 system. Our intent is not
to give a step-by-step description; therefore, few
dctails of the implcmentation are given. The
CAE/DVT Group developers believe that project-
specific problems are gencrally best solved by
project-specific solutions. Instead, we offer a
broad overview of CAE which includes the engi-
ncering principles established for the VAX 6200
projcect and which we believe will be of use to
those planning a task of similar scope.

A Brief VAX 6200 System Overview

No discussion of CAE or DVT methodologies can
takc place without a description of the task to
which these methods are applied. For our pur-
poscs, the overall task was to engineer, proto-
typce, debug, and release for manufacture the
VAX 6200 mid-range computer system.

The VAX 6200 multiprocessor architecture
is implemented with CMOS technology.' The
system is housed in a 156 by 79 by 76 c¢m cabi-
net. which contains a system bus backplane, two
6-slot VAXBI backplanes, a TKSO0 tape drive,
space for futurc rack-mount devices, power sup-
plics, and blowers.

The heart of the system is a new interconnect
called the XMI. This interconnect was specifi-
cally designed to serve as the processor-to-
memory interconnect in the VAX 6200 system
and its derivatives. Optimizations of and trade-
offs in the design of the XMI were made with that
function foremost in mind. The kcy features of
the interconncct are as follows.

s The pended bus design allows multiplc trans-
actions to be in progress at the same time; thus
waste of bandwidth is minimized, for instance.
during memory read accesses.

s The XMI implements the concept of comman-
der nodes and responder nodes. A commander
node initiates a bus transaction to which a
responder nodc¢ must respond.

® The XML is a centralized arbitration intercon-
nect. Arbitration logic, resident on the back-
plane, grants bus mastership according to a
modified round-robin scheme. There is a
higher priority responder round-robin queue
and a lower priority commander round-robin
queue.

s Buswidth is 64 bits.
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® Cycle time is 64 ns.

s The XMI supports reads of quadword, octa-
word, and hexword length, and writes of quad-
word and octaword length.

s Raw bandwidth is 125 megabytes (MB) per
second.

The XMI supports three module types in the
VAX 6200 system: the CPU module (KAG2A), a
32MB memory array (MSG2A), and an XMI-to-
VAXBI adapter module set (DWMBA).

The CPU module is based on the CMOS VAX
(CVAX) chip set, which includes a MicroVAX
architecture microprocessor (CVAX), a floating
point accelerator (CFPA) chip, and a system sup-
port chip (SSC). The module supports full VAX
capabilities. excepting only PDP-11 compatibil-
ity mode. In addition to a two-way associative
I-stream cache in the CVAX chip, the module
contains a 256 kilobyte (KB) direct-mapped
cache. Performance is approximately 2.8 times
that of a VAX-11/780 processor.

The MSG62A is a 32MB memory array module
with an on-board controller. Modules may be
interleaved up to eight ways to decrease laten-
cies. Each module has an eight-deep command
queue. The arrays are fully error-correction code
(ECC) protected.

The DWMBA is an adapter module set which
allows the 6200 system to access 1/0O devices on
the VAXBI bus. The DWMBA/A module, which
resides in a single XMl slot, is connected by cable
to the DWMBA /B module, which resides in a sin-
gle VAXBI slot. The DWMBA can support up to
full VAXBI bandwidth of 13.3MB per second on
write transactions and approximately 5.5MB per
second on read transactions.

Figure 1 illustrates how these system elements
interconnect in a two-processor system with two
VAXBI channels.

Because the VAX 6200 system backplane has
14 slots, many system configurations are possible
with differing numbers of processors, memory
modules, and 1/0 channcls.

In the scctions following, we describe the engi-
neering process employed in the design of these
logic elements.

CAE Verification Challenges
and Organizational Structure

The overriding goal of any CAE effort is always
the same: to shorten the development time

KAB2A KAB2A MS62A

-

DWMBA

MS62A

DWMBA

< VAXBI 1 ) < VAX8I 2 >

XMI Module Connections on a
VAX 6220 System

Figure 1

needed to bring a product to market. The defini-
tion of CAE and the way engineers use CAE to
accomplish this goal differs from project to pro-
ject and even within a single project. Neverthe-
less, two principles are preeminent.

1. CAE should provide the tools, the methods,
and perhaps most importantly, the discipline
that together enhance an engineer’s productiv-
ity without unduly restricting his or her cre-
ativity.

2. CAE should provide a continual check to
ensure that the engineer’s product meets the
needs of the project in terms of both function
and quality.

The role of the CAE/DVT Group on the
VAX 6200 project was different from the tradi-
tional CAE role in one significant respect. The
group’s primary responsibility would not be the
development of CAE tools and processes. Instead,
its responsibility was the delivery of first-pass
hardware that was functional at speed. Explicitly,
our goal was to ensure that the system would
boot the operating system (VMS) and run soft-
ware the first time the system was powered up.
The only tools and processes developed were
those specifically necessary to fulfill that goal.

The project team felt that objective simula-
tion and verification of the hardware and its
performance by the CAE/DVT Group would
(1) ecnhance the chances of first-pass functional-
ity, and (2) reduce the overall design cycle by
paralleling the CAE and the design cfforts. Con-
sequently, the CAE engineers were active con-
tributors to the architecture and participated in
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choosing alternatives, effecting compromises,
and implementing details of the design. The CAE
Group was responsible for the correctness and
quality of the designs and not just for the delivery
of tools to accomplish that correctness. To
achieve this goal, tasks traditionally performed
using DVT methods would be accomplished
using CAE methodology.

CAE Tasks

Given the charter described above, the CAE/DVT
Group outlined the following tasks:

m Select atool suite
s Create a process for the CAE effort
= Maintain the databases

s Construct a CAE environment (models and
computes)

® Generate test cases to run against the environ-
ment

s Isolate and report bugs

s Verify the hardware

s Generate test vectors for outside vendors
s Generate test vectors for manufacturing
s Fault grade the test vectors

s Define exit criteria for committal of design to
hardware

s Enforce compliance with exit criteria

Though the list is long and has some interesting
tasks, two items constituted the largest portion of
the work: generation of test cases to run
against the environment, and verification of
the hardware.

The generation of test cases is the most time-
consuming, least glamorous, and most often over-
looked task; yet the test cases are the single most
important piece of a superior CAE effort. A suc-
cessful specification of the test cases (the DVT
specification) to be run against a CAE environ-
ment requires a lengthy period of development.
The development time for the KAG2A, MSG2A,
and DWMBA DVT specifications was approxi-
mately 6 man-months each. Moreover, the speci-
fication is not static and must be kept current
with the evolving design.

The DVT specification must begin as early
as specification of the hardware functionality
begins. Working the two specifications in parallel
ensures functional verification of the system. Fur-
ther, the DVT specification should be treated
with the same formality as the hardware specifi-
cation; that is, it should be reviewed, and all
reviewers must agree upon its completeness. By
formalizing the specification review, project
members are in effect establishing its value to the
project. The DVT specification defines what is to
be simulated; therefore, superior design tools
and modeling cannot substitute for the assurance
of design accuracy that the specification affords.

As to the verification of the hardware, the
responsibility of the CAE team was to ensure bug-
free and operable component, module, and sys-
tem designs. Team members ran the simulations,
isolated the bugs, and ensured designs were cor-
rected by the design team. Simulations were not
done exclusively by the CAE team, however. The
environment was available equally to all design
team members. To the extent that each team felt
was appropriate, designers initially debugged
their designs before passing them to the CAE
team for more formal debug. In this way, obvious
bugs were found more quickly. Design develop-
ers did excellent work in this regard and greatly
eased the burden on the CAE team.

Further discussion of the VAX 6200 hardware
verification is presented in the section Verifica-
tion Milestones.

Modeling Approach

Hardware verification done in software is by
nature a slow process. The major factor con-
tributing to the slowness of the verification is the
size of the design. The size is not simply the num-
ber of logic elements in the design, but the col-
lective size of the models of each of the elements
in the logic network.

We used two types of models for the VAX 6200
project, behavioral and structural (or gate level).
Behavioral models, in general, were more
abstract and efficient in terms of increasing
overall simulation performance as compared to
detailed structural models.

Behavioral models of many of the components
used in the system were generated early in the
design cycle. As the design progressed and
detailed logic schematics became available, how-
ever, the behavioral models, in most cases, gave
way to detailed structural models. The exception
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was the behavioral models of the CVAX chip set.
These detailed models were used throughout the
verification process. Given the size and complex-
ity of these components. simulation with struc-
tural models, for all practical purposes, was
impossible.

In general, our objective throughout the
verification process was to ensure accuracy and
not speed. The slow speed of the more accurate
models was addressed by applying more compute
power to the task at hand.

CAE Staffing and Resources

The CAE group was divided into small teams,
each responsible for the verification of a VAX
6200 subsystem. The size of the teams varied.
The KAG2A gate array and module team had four
CAE engineers. Four CAE engineers worked on
the DWMBA gate arrays and modules. The MS62A
gate array and module was assigned one CAE engi-
neer. As it turned out, these numbers represented
nearly a one to one ratio with the hardware
designers. As senior, experienced engineers,
team project leaders were responsible for the
ovcrall coherence of the DVT plan and its quality,
and were responsible as well for tracking and
resolving problems.

Each team included a diagnostic engineer who
was also working on design verification test. This
arrangement provided the diagnostic engineers
early training and also facilitated testing. More-
over, diagnostic engineers were in a position to
easily evolve some of the DVT tests into self-tests
and ROM-based diagnostics for the VAX 6200
product.

The educational background of the CAE team
was a mix of electrical engineers, computer engi-
neers, and software engineers. Their levels of
experience varied from new college hires to
those with 10 or 15 years of work experience.
The level of relevant hardware experience in this
group is indicative of the group’s tasks, as com-
pared with other CAE groups that are more
involved in tools generation.

Our computer resources consisted of a cluster
of eight CPUs, including one VAX 8800 system,
one VAX 8650 system, and six VAX-11/780 sys-
tems. All four modules (KAG2A, DWMBA/A,
DWMBA/B, and MSG2A) and their associated
gate arrays were verified throughout most of
the project on this cluster. During final regres-
sion testing of each module, in which the full
set of DVT tests was run against the design,

an additional cluster of eight VAX 8800 systems
was used.

Verification Milestones

Key milestones were established for the verifica-
tion team throughout the VAX 6200 design
verification process. In December 1985, we
began with the first XMI interconnect verifica-
tion; we proceeded to performance evaluation,
logic wverification, timing verification, system
verification, and vector generation.

These milestones were derived as part of
our functional top-down verification approach.
We selected this approach based on our deter-
mination that if a function works correctly, then
all of its component logic must be working
correctly.

We therefore chose to model our different
design objects in the largest reasonable forms and
then functionally test these models. Every step
naturally lead into the next task of the system
design. This approach was later extended to the
system as a whole; the system simulation com-
bined the logic and ran code to exercise the
entire system.

Architectural Verification

Atthe architectural level, the simulations focused
on the verification of the new system intercon-
nect, the XMI. As noted earlier, this interconnect,
specifically developed for the VAX 6200 system,
is a memory interconnect bus with a new arbitra-
tion scheme and a defined bus interface protocol.
Both the arbitration and the protocol are imple-
mented in CMOS semicustom technology.

Once the design for the bus protocol and arbi-
tration was established in a specification form, we
immediately transformed the specification into
high-level behavioral models: the arbiter chip
model, and an XMI commander transactor model.
The behavioral arbiter model represented a
generic, round-robin arbitration scheme; the
commander model represented a generic XMI
commander design. The commander model con-
tained a flexible user interface to allow the
specification of any desired well- or ill-formed
transaction to be generated on the bus. Further,
the commander transactor model was designed to
selectively self-check for any protocol violations.

The two models were the basis for all XMI
design verification. This first level of verification
provided feedback to the architecture team
quickly and answered questions about the inter-
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face protocol and arbitration scheme. As a result,
the arbitration was c¢nhanced and the protocol
was refined to satisfy the design goals. Specifi-
cally. a few ncw signals were added, and the arbi-
tration was changed from true round-robin to a
modified round-robin.

At the next level of architectural verification,
we modeled an XMI responder node and incorpo-
ratcd this modecl into the simulation environ-
ment. The tecam developed a behavioral XMl
memory model and completed a high-level sys-
tem model. This model was still totally behav-
ioral and represented a system with generic XMI
commanders and responders.

Two pieces of test code were generated and
verified on that model. The environment mod-
cled a fully loaded XMI interconncct. The first
picce of test code was structured in such a way
that every node on the XMI gencrated its own
traffic. Commandcrs generated all possible com-
mandcr sequences, and responders generated all
possible responder sequences. The goal of this
first test code was to ensure that the protocol was
sound. By protocol soundness, we mean that
commandecrs and responders can coexist on the
XMI and can gencerate traffic sequences without
loss of data. The results of this verification gave
the team sufficient confidence in the protocol to
allow the design of the XMI interface compo-
nents to procecd.

The sccond picce of test code was verified on
the samc cnvironment. Every commander gener-
ated the samce scquence of traffic on the XMI. The
goal of this test was to verify arbitration fairness
and to guarantcc that all XMI nodes got their fair
share of the XMI. The absence of phenomena
such as lockouts was also verified.

This architectural verification proved to be a
trcmendously valuable exercise. First, feedback
to the architecture team was accomplished
quickly. Sccond. this architectural verification
for the VAX 6200 project established design
verification tools that can be used for all future
XMl designs.

In time, the behavioral model of the arbiter was
replaced with a structural model derived from
the chip design database. We enhanced the accu-
racy of the bchavioral models of the XMI com-
mander and memory by incorporating structural
models of the XMI interface componcents once
their gate-level designs were complete. These
tools are now in usc throughout the corporation
by numerous XMI design teams.

Clearly, an architectural verification that con-
centrates on a new bus lcaves out many other
arcasof architectural interest. A severe restriction
of the scope of the VAX 6200 system’s architec-
tural verification was deemed necessary because
of the lack of schedule time and because of the
immaturity of the art. Nevertheless, architectural
verification is a key area where much work should
be done for the development of the next system.

Performance Evaluation

The next verification task was performance evalu-
ation. Again, work was concentrated into two
well-defined areas, that is, the bandwidth perfor-
mance of the XMI, and the processor perfor-
mance in the multiprocessing environment.

A model of the CVAX processor was obtained
from the Semiconductor Engineering Group
design team. We enhanced this model to include
an XMI interface with a memory port. The stimu-
lus for this model proved difticult to generate
because multiprocessing benchmark traces were
not available. The traftfic patterns had to be
deduced from single-stream benchmark traces
and extrapolated for VAX 6200 symmetric multi-
processing.

We ran several benchmarks. We then uscd the
results to make decisions about the appropriate
trade-ofts in the area of the processor cache and
write buffer algorithms. These trade-offs dealt
specifically with cache and write buffer depth
versus performance gained.

Other tools were created to decomposc XMI
traftic into histograms and to generate reports on
bus bandwidth for the different types of traffic.
Eventually, XMI memory design latency targets
were incorporated into the XMI behavioral mem-
ory model. These system performance simula-
tions were used to establish such design critcria
as the memory controller input command queue
depth and the command queue processing
algorithm.

Logic Verification
The next major task was logic verification. The
main objective of module verification was to
ensure that the implementation conformed to all
design goals documented in the system specifica-
tion. In other words. the goal was not to verify
what the design was, but what the design was
supposed to be.

Members of the CAE tcam were assigned to
cach design object; each member would work in
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a tcam with the designers. The verification teams
required complete and coherent specifications
for each design object. These specifications had
to be sufficiently complete to support both
design implementation and logic verification.
Moreover, all functions had to be documented in
a spccification. This documentation served two
purposes: (1) to ensure that the function
received the proper attention during the verifica-
tion phase. and (2) to give the responsible CAE
engineer the information needed to understand
the functions without referring to logic schemat-
ics or meeting with the designer.

With the functional specification as the founda-
tion, team members generated a verification
working document for every design object. This
DVT spccification, as mentioned earlier, guided
the verification work and constituted the primary
hardware-submittal exit criteria.

The logic verification was grouped into three
categories:

®m Basic functional verification. Basic functional
tests exercised each function as a standalone
piece of the design. This testing isolated obvi-
ous bugs.

® [nteraction sensitivities. Interaction sensitivity
exercised the design as a whole, making sure
that functions could interact with each other
and could occur in series without cumulative
fault mechanisms. Testing of function interac-
tion included any boundary conditions, margin
testing, and back-pressure on different key
points in the design.

s Error handling. Error handling verification
tested that portion of the design created speci-
fically for error detection and recovery mecha-
nisms.

Timing Verification

Timing verification was performed separately
upon all key components in the VAX 6200 sys-
tem. All of this work was performed by applying
functional patterns to timing models for each of
the module gate arrays and the XMI arbiter logic.
This work was done using AUTODLY, an internal
Digital tool.

The XMI components were tested first. Testing
consisted of applying all possible XMI bus cycles
against this logic while allowing the timing
verifier to analyze the logic for any timing paths

with problems. A number of problems were
found and resolved as a result of this testing.

The timing verification of the module gate
arrays was performed in a similar fashion. Pat-
terns of functions were extracted from logic
verification and then applied to the standalone
chip timing models. As each pattern was applied,
the timing verifier would run a complete check
of the gate array and generate a list of violations.
These violations would then be checked by the
designer. If they were valid, logic changes would
be made. The reason that just the gate arrays were
verified, and not their complete modules, was
that each module contained some logic for which
no structural model existed (for example, the
CVAX chip set on the KAG2A module). The lack
of a complete module-level timing verification
model was rectified by requiring the module
design team to thoroughly analyze its module.
This approach was possible only because of the
highly bus structured nature of our technology.

System Verification

Once every design object met its exit criteria and
satisfied the specified testing, the next milestone
was the start of system simulation. Our task was
to verify the actual design in a system environ-
ment. We constructed a model consisting of mul-
tiple processors, memories, and I/O modules.
This model contained structural representations
of the actual designs wherever possible. Where
there werc multiples of a design object in the sys-
tem simulation environment, one instantiated
copy of the model would be the detailed (and
slow to simulate) structural model; the other
instantiations were the faster yet less accurate
behavioral models.

In addition to actual design objects in this sys-
tem model, we included different types of trans-
actor and traffic generators on both the XMI and
the VAXBI buses.

The stimulus for this environment had to be
specific enough to ensure that every type of traftic
pattern was generated during simulation. The
stimulus attempted to stimulate every node and
function concurrently. In a system simulation in
which the simulation rate is so slow, as much as
possible must be achicved in every single simu-
lated clock tick.

Key to making a system simulation successful
is to start the simulation only after the constituent
pieces of the system have been very thoroughly
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verified in isolation. Given the complexity of the
system model and its slow running rate, finding
simple design bugs at this stage is a waste of
schedule time. Instead. the model should iden-
tify the system interaction problems and assure
developers that the base logic verification was
thorough.

Several logic problems were found during our
system simulation dealing with complex intcrac-
tions, some after a few microseconds of simula-
tion. If undetected. these problems would have
scriously impeded progress toward our goal of
providing functional first-pass hardware.

Vector Generation

The start of system simulation takes place. by
definition. ncar the c¢nd of the logic verification
process. At about that time. we began to prepare
for submittal of the designs for fabrication.
Therefore, in parallel with system simulation.
test pattern generation was started.

Test vectors were nceded at this time, primarily
to test chips coming off the fabrication line.
Therefore we generated test vectors for the very
large channel-less arrays contained on each of our
modules. The basic criterion for approval was
attainment of 99 percent internal node togglc
coverage of the gatce array logic. In addition to the
99 percent internal node toggle criteria, we also
included the much more stringent criteria of
95 percent stuck-at coverage as measured by a
fault grading mechanism. The methods used to
determine coverage are discussed in the scction
Problem Reporting and Resolution.

The vectors were extracted from a strategic sub-
sct of our functional DVT simulation and graded
on a hardwarc acccelerator /fault evaluator.

We set a goal that the vector count should not
exceed the chip’s gate count; that is, a chip with
25K gates should have no more than 25K vectors
to excrcisc its logic. The vectoring process,
including cxtraction, grading, and complement-
ing. took an average of one month pergate array.

As is truc of architectural verification, vector
generation is an arca wherce work remains to be
donc. If we had been able to include some testa-
bility features in these very dense chips, we
could have saved this month of schedule time.

Follow-through

Even beyond the prototyping phase. the simula-
tion database was maintained and updated 10

reflect any changes in the design as a result of
hardwarc debug. The purpose of this on-line soft
representation of the design was twofold. First,
the representation would aid in the isolation of
any problems discovered in the lab. Second, the
databasc could be used to investigate any suspi-
cious problem arcas that could not easily be trig-
gered in the hardware.

Review and Reporting Methods

Throughout the design verification process, a
mcans to cnsure coverage was established for
cach phasc. At the project outset, DVT speci-
hcation coverage of functions was assured by
scveral levels of tecam review. As the simula-
tions progressed, the project leaders were given
the responsibility of ensuring bugs were consis-
tently reported and corrected. Vector extraction
and grading of our gate arrays provided a strong
mcasure of the completeness of the verifica-
tion of these chips. Additionally, the internal
controllers to the gate arrays were measured for
complecte state and product term  coverage.
Lastly, before being released for manufac-
ture, the design was checked against our own
cxit criteria to ensure that the verification
was complcte.

This scction presents details of these methods
and tools for cnsuring all functions were tested
and verified.

Functional Coverage

The VAX 6200 project team chose the functional
verification approach to verify all VAX 6200
designs. One problem with this approach is that
therc is no method of measuring functional cover-
age. Sincce all verification is based upon the DVT
specification, functional coverage will be a
reflection of the completeness of this document.
Therefore, the DVT specification becomes the
vchicle by which the functional coverage of the
verification is to be measured. This specification
must be made as comprehensive as possible.
Thercefore, the specification underwent many lev-
cls of review by a wide audicnce, including the
cntire design team

Problem Reporting and Resolution

Another means used to ensure coverage was the
problem-resolution and bug-reporting mccha-
nism. Every design verification tecam project
lcader was responsible for tracking bugs in
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the designs and ensuring these bugs were cor-
rected and the correction was verified. Communi-
cation for this tracking was through VAX NOTES
conferences.

For each design verification team, two confer-
ences were created. The first was for bug report-
ing and bug-fix resolution. Only verification team
members could write notes in the bug confer-
ence. Every entry indicated the date, model revi-
sion levels, test case number, failure symptom,
and any assessment of the problem. Replies to
each entry were entered, either by the project
leader or the CAE team member responsible for
the failing test, to indicate when the bug was
verified as being fixed and the model revision lev-
els at the time of verification. If the problem
remained unresolved, the reply would indicate
any action taken or patches made.

The NOTES conference review ensured that
all bugs were given the proper attention and
visibility.

The second conference was informational.
Using this conference, engineers could learn
about keyaspects of the design as the verification
progressed. Fore example, they could obtain
information on undocumented features on which
certain verification tests were based.

Fault Grading

Another process, which was implemented to
measure functional coverage of the component
patterns, was the fault-grading mechanism. In
this approach, all component patterns for the
large compacted arrays were generated at the
functional level. The simulation environment for
pattern capture was the same one used for func-
tional verification. The stimulus generated was
driven by high-level functions. The test patterns
were captured at the chip’s boundaries while the
chip was being exercised on the module.
Traditionally, component patterns are gen-
erated by simulating the chip standalone and
driving hand-crafted stimulus through the chip
simulation. Due to test overlap, the approach
taken by the VAX 6200 team did not ensure the
optimum number of patterns for the maximum
stuck-at coverage. However, the approach proved
to be very beneficial. Ranging from 20K to SOK
patterns for each gate array, the patterns were
generated in the very short time of approximately
one month. In reaching our goal of 95 percent
fault coverage with these test patterns, additional

areas of logic were found that had not previously
been tested. This additional logic yielded addi-
tional bugs.

The fault grading process also provided an
additional degree of confidence in the coverage
of the functional verification test cases. The
95 percent fault coverage goal was achieved with
patterns derived from a subset of those test cases.
It should be mentioned that the hardware fault
cvaluator was used extensively during this phase
of the project and proved to be an irreplaceable
tool.

State Machine Coverage

Tools were developed that would analyze traces
generated from the internal gate-array controllers
and sequencers. Traces were collected while the
functional tests were being simulated and
verified. All traces were later analyzed, and cover-
age was ensured for every state and product term.
This mechanism was put in place and automated,
so that after each regression, coverage could be
rechecked.

After every regression run of all test cases, the
results were analyzed to ensure that no product
terms or states were missed as a result of test
modification or bug fix. Additional test cases were
generated to find specific and hard-to-activate
conditions.

Exit Criteria

Before a design is sent to manufacturing, the
design must meet the exit criteria. These criteria
are as follows:

s All the specified test cases have been gener-
ated and have run bug-free against the latest
design.

® The system simulation has run bug-free for two
continuous weeks.

In other words, if bugs still exist in the design,
the design is not yet ready for manufacture.

As judged by the nearly bug-free condition
of the implemented hardware, these design-
completion criteria and coverage metrics were
appropriate for the VAX 6200 development
effort.

The VAX 6200 project's tremendous success
has established the process for future systems
verification and for engineering quality measure-
ment.
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Results Attained

The development cycle for the VAX 6200 system
was quite short, and therefore the need to pro-
duce functional first-pass hardware was very
strong. The first XMI specification was released in
December 1985. Eight months later, all of the
XMI parts had been designed and simulated and
were being manufactured. Two months later, the
parts werc up and running.

During this time, specifications were released
for the KAG2A, MSG2A, and DWMBA, and logic
design was begun. Concurrently, test specifica-
tion and test generation also began. In the latc
summer of 19806, all logic design was completed.,
and verification began. Two to three months after
design completion, verification was completed
for each module. With a complete and verificd
design. onc month was used to generate all gate-
array test vectors and then submit the gate arrays
for manufacturc.

In February 1987 — 14 months after the first
complete XMI specification — the DWMBA was
manufactured, powered on. and run with first-
pass hardwarc. One month later, the KAG2A was
powered on and running. Two weeks later, with
functional MSG62As, the first VAX 6200 system was
powered on. Two weeks after that, on April 1, the
first VAX 6210 system booted VMS with all first-
pass functional parts.

Although a few bugs were later to be found and
fixed, the goal of using simulation to generate
hardwarc that works at speed the first time was
attained. In fact. many of those original parts are
being shipped with the VAX 6200 systems today.

Opportunities for Improvement

Although our verification process proved to be
quite successful, we plan to make a few changes
in this process for future projects.

Architectural verification, in so far as that
means an cflfort to discover system-level inade-
quacies or bottlenecks. is in its infancy. We con-
sider this a widc open area where much can be
accomplished.

As modulc designs call for increases in speed,
timing verification and signal integrity verifica-
tion will make a much larger contribution to the
total verification effort. Although the XMI inter-
connect was verified to all circuit, signal. and
timing spccifications, signal integrity was not
emphasized to the same degree in the modules
themselves. Although no significant problems

arose, we became strongly aware that future
generations of hardware will be much more
dependent on the type of verification used for
the XMI. Although timing verification was
performed on all gate arrays on the VAX 6200
system, this verification. In the future, we feel it
is important to perform timing verification on the
design during early development. Thus we can
identify and solve the timing problems before
they become too entrenched in the design to be
fixed easily.

Since the wire delays for gate arrays can only be
estimated until gate layout has taken place, all
verification must be repeated once the actual tim-
ing numbers are returned. Additionally, floor
planning of the gate array can have a significant
effect on the performance and specific wire
delays. On the VAX 6200 project, the layout and
final wire delay calculations were performed by
our gate array vendor and then sent back to us for
reverification. These steps can take quite a long
time in the design cycle of a gate array. To reduce
the wait for real wire delays, we plan to perform
all floor planning and preliminary layout opera-
tions at the design site. Additionally, this will
allow us much more input to the floor plan and
layout.

Summary

The success of the VAX 6200 verification effort
can be attributed mainly to the decision to begin
verification at the same time as the design and to
continue verification and design as parallel
efforts. This decision was implemented by assem-
bling verification teams at the same time design
teams were being built.

Verification was performed during each stage
of development — from initial concept to system
integration. The architectural verification con-
firmed the XMI architecture and arbitration
algorithms. Performance verification helped
define the processor and memory architectures
and ensured that these architectures could take
full advantage of the new XMI. The logic of all
XMI modules, their gate arrays, and the XMI arbi-
tration logic was verified against their speci-
fications, not against the designs themsclves.
Lastly, the entire VAX 6200 system was simulated
in a multiprocessing environment, proving that
the differcnt component modules could function
together as a system. Verification from system
architecture to gate arrays, modules, and then
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back to a complete system again, throughout the
life of the project was the only way to assure the
main verification goal — first-pass, functional
hardware.

During logic verification, attempts were made
to perform verification using the smallest detail,
while still keeping the scope of the logic under
test large enough to allow system-level testing.
By performing all testing at these much higher
levels, a greater number of functions and more
global functions can be tested at one time. The
only drawback to testing at this level is simula-
tion speed. The trade-off of speed for accuracy is
a good one, for without accuracy the costly alter-
native is to design and manufacture multiple
passes of hardware.

In conclusion. the most important outcome of
our verification effort was a management philoso-
phy that, in the end, verification is as important as
logic design. With this understanding, verifica-
tion criteria now determine when and whether

designs are to be released for manufacture. To
make this work successfully, the necessary
resources must be allocated for the verification
effort. Furthermore, project teams must develop
and follow through with complete verification
strategies. These strategies focus on verification
as a part of the total design process rather than as
a process that takes place after designs are com-
plete. The VAX 6200 project was proof that this
philosophy canbe made to work.
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VMS Symmetric Multiprocessing

The symmetric multiprocessing features of VMS version 5.0 effectively
utilize the greater computing power of Digital’s multiple CPU systems.
Key to the SMP design is an innovative mechanism, called a spinlock, that
provides a bigh degree of parallelism for kernel-mode code. Where for-
merly VMS software used interrupt priority levels (1PLs) to synchronize
processes, VMS now uses spinlocks. Because each VMS resource can be
protected by a spinlock, this design provides more synchronization
levels than could IPLs alone. Spinlock granularity directly affects system

performance.

This paper describes the major features of sym-
metrical multiprocessing (SMP) in the VAX /VMS
opcrating systcm. These enhancements are
included in VAX/VMS version 5.0. Although it is
impossible to present details of every aspect of
the SMP design in these few pages, this paper
provides an overview of the key mechanisms
developed for VMS SMP.

Technology Developments

Ovecr the last scveral years advances in computer
technology. cspecially in VLISI. have vyielded
greater computing power in increasingly smaller
packages. VISI CPU chips have made possible
multi-CPU. single-board computers. These multi-
ple CPU systems are having an increasing impact
on the general-purpose computing environment.
The net result is that recent technology trends
have redirected the challenge of building multi-
processing systems from the hardware engineers
to the systems software enginecers. Systems soft-
warce enginceers must now design cffective ways to
utilize systems with six, eight, or even more
CPUs.

VAX Hardware Features Required by
the VMS Operating System

The VMS SMP design requires that certain fun-
damental features be implemented in VAX multi-
processing  hardware. These features are as
follows:

s The ability to sharc common memory amouog
all CPUs in the system

This sharcd memory allows all CPUs to execute
a singlc copy of the operating system and to

share state information that provides load bal-
ancing capabilities.

®= An interprocessor interrupt capability that
enables one CPU to interrupt all other CPUs or
a single CPU

s The set of interlocked instructions (BBSSI,
BBCCI, ADAWI, INSQxI, and REMQxI). which
are part of the VAX architecture and thus
present in every VAX system

s Cache coherency maintained by the hardware,
without software assistance

s One CPU, known as the primary CPU, that
must have access to all 1/0O. console sub-
system, and timekeeping hardwarc

With these hardware features. VMS can provide
symmetric multiprocessing support for any VAX
system. All code ¢xecuting in user, supervisor, or
executive mode can c¢xecutce on any CPU without
restriction. Most (if not all) kernel-mode code
can execute on any CPU without restriction. The
only restricted code is that small amount of
kernel-mode code that rcquires access to the
time-of-day internal proccssor register or to the
console terminal and the console block storage
device.

The SMP design has no requirement regarding
the system topology or intcrconnect joining the
multiple processors. It supports systems imple-
mented by means of a single bus architecture,
such as the VAXBI bus. as casily as systems that
use a cross-bar connection.

Therefore. the VMS SMP design is tlexible
enough to support current VAX systems and
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Figure 1 VAX 6200 System Block Diagram

future VAX systems that take advantage of advanc-
ing technologies and architectures.

New Multiprocessing Hardware

The design of recent VAX systems, such as the
VAX 8800 and the VAX 6200 series of computers,
offers an elegantly simple, symmetric hardwarce
configuration. Central to the design of these sys-
tems are two new bus architectures — the XMI
bus and the VAXBI bus (Figurc 1). The VAXBI
architecture provides a protocol that allows (1)
multiple processors to issue device requests, and
(2) operating system software to specify which
processors a device controller will interrupt.

The symmetry of these [/O subsystems pre-
sented a new challenge to the VMS SMP design-
crs: to provide an I/O database design that would
make possible simultaneous execution of inter-
rupt handlers, thus taking advantage of these new
hardware features.

The Development of VMS SMP

Critical to SMP was a new method, used through-
out the VMS kernel, to synchronize multiple pro-
cessors. One possible SMP design would have
been to create a single lock for kernel-mode
operations and allow any processor to acquire
that lock. However, the VMS engineers believed
that such a design would not have provided
sufficient parallelism to achicve good system
throughput for systems with more than a few pro-
cessors. This single-lock method would have

been a nonscalable solution; if more CPUs were
added to the system, system performance would
not increase due to blocking for the single lock.

A morc ambitious yet costly design was to
provide a high degree of parallelism for kernel-
modc code. With this kind of parallelism, many
processors arc  allowed to execute different
portions of the c¢xecutive at the same time. For
cxample, a process adding a system-wide logical
name should be able to execute on onc CPU
while another CPU handles a device interrupt for
completion of a disk I/O request, etc. This design
would require creation of numerous locks and
careful  design  of the interactions between
the critical regions that use thosc locks. This
design approach was the one finally chosen by
the VMS engincers. and is discussed in the follow-
ing scctions.

Synchronization in VMS:

Raising IPL, Mutexes, and Spinlocks
‘T'he original VMS version 1.0 design uscd two
types of synchronization: (1) raising interrupt
priority level (IPL) and (2) mutual exclusion
scmaphores (mutexes). The VAX architecture
provides 31 1PLs; 1 through 15 are dedicated
for usc by software, and 16 through 31 are
rescrved for hardware. (IPL O is not really an
IPL but rather the level at which user. supervisor,
and cxccutive mode programs exccute.) VMS
blocked different types of system events by
raising IPL to or above the level at which
that cvent occurred. For example, process
rescheduling was done by means of an IPL 3
softwarc interrupt. Code threads that modified a
process’s context always executed at IPL 3 (or
higher) to prevent a reschedule. Another exam-
ple is the manipulation of device controller regis-
ters. These registers were always manipulated at
the device’s hardware interrupt level; thus other
system activity of a lesser importance was
blocked out while the time-critical code path
was executed.

The sccond synchronization method, mutexes,
was used to lock purely software constructs, such
as global section descriptors. Mutexes provided a
mcchanism for defining many locks without
assigning a unique software IPL to each lock. A
mutex was acquired by the operating system on
behalf of a process and was considered “owned”
by that process. Rescheduling could occur while
a process “owned” a mutex; however, process
dcletion could not occur. Lock requests made by
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a process of higher priority for an alrcady owned
mutex were handled by placing the requesting
process into a wait state, thus avoiding dcad-
locks.

In a multiprocessing system, cach VAX CPU
has its own interrupt priority level. independent
of the others. Thus raising IPL would synchronize
on a single CPU but not across the cntire system.
IPLs, then, could not be used to synchronize all
CPUs. Ncither were mutexes a viable solution.
since they could only be used within process
contexe and at low IPLs. Therefore, the SMP ream
created a new VMS mechanism that they termed a
“spinlock.” Anywhere VMS code had previously
synchronized by raising IPL, the code would now
acquirc a spinlock; wherever VMS code had low-
ercd IPL, it would now rcleasc a spinlock. Use of
mutexes remained unchanged save that the code
to acquirc and release mutexes was protected by
aspinlock.

The design for spinlocks included a number of
critical concepts. First. a spinlock is “owned” by
a CPU, not by a process (as mutexes are). Second,
cach spinlock is acquired and relcased at a par-
ticular IPL that is associated with the spinlock.
Raising IPL when a spinlock is acquired prevents
other activities from interrupting time-critical
code. Third, CPUs “spin-wait” when blocked
from obtaining a spinlock resource held by
another CPU, since spinlocks arc only assigned to
time-critical resources that cannot be locked for
long pcriods of time. Lastly. the design of spin-
locks includes a mechanism for dcadlock preven-
tion or dectection since the debugging of “hung”
systems is too costly. Therefore, cach spinlock
is assigned a rank. Because spinlocks must be
acquirced in order of rank. deadlocks are thus pre-
vented. Further. a debugging aid was built into
the spinlock design. A part of each spinlock data
structurc is set aside to hold the last eight pro-
gram counters (PCs) that acquired or released
cach spinlock. When cnabled, these consistency
checks proved invaluable in determining interac-
tions between different components in the VMS
exccutive, such as memory management and
scheduling.

The VMS engineers implemented routines for
acquiring and relcasing spinlocks rather than
scatter in-line code through the VMS kernel. The
first step in acquiring a spinlock is to synchronizc
the local processor by raising to the IPL of the
spinlock, just as if it were a uniprocessor system.
The actual locking of a spinlock is accomplished

with an intcrlocked test-and-set memory opera-
tion, the BBSSI (Branch on Bit Set and Sct Inter-
locked) instruction. The spinlock interlock bit is
contained in a separatc byte within the spinlock
structure. Unlocking a spinlock is donc with the
inverse BBCCI (Branch on Bit Clear and Clear
Interlocked) instruction. These interlocked oper-
ations arc¢ atomic memory transactions across all
processors in a VAX multiprocessor configura-
tion. Furthermore, since memory is common to
all processors, the interlocked memory test-and-
set operations provide a sufficient mcthod of
extending synchronization to all processors
withina multiprocessor system.

The usc of multiple IPLs as a synchronization
method in VMS provides the capability to sched-
ule events in a prioritized fashion. The inclusion
of IPLs in the spinlock structure allows the SMP
synchronization mechanism to appcar as an
added dimension to IPLs. Moreover, this SMP
mechanism preserves the ability to schedule
events in a prioritized manner.

For uniprocessor systems, the SMP design also
includes the ability to optimize the routines that
acquire and release spinlocks. For example, on a
single CPU system, the spinlock acquire-and-
release routines are never called. Instead, only a
move-to-processor register (MTPR) instruction is
executed, thus raising IPL. System performance
of a single CPU has been measured as only a tiny
percentage less than VMS version 4 performance.

Mutex synchronization is still the second syn-
chronization method uscd in VMS. In the SMP
design. mutexes are uscd for locks that are held
for long pcriods of time and for situations in
which the IPL has to be lowered. Mutexces are still
owned by processes. not by CPUs. under the SMP
design.

Spinlock Granularity, Devicelocks

One aspect of the SMP design that directly affects
system pcerformance is the granularity of the spin-
locks. A coarse granularity (fewer spinlocks) is
easy to implement and dcbug; however, a coarse
granularity  provides fewer synchronization
points, and thus processors are blocked for
longer periods. A finer granularity (more spin-
locks) provides more parallelism and thus
shorter blocking times; however, a finc granular-
ity is much more complicated to design and
implement, and requires more synchronization
points. An important concept to remember is
that, while the system is in a noncontending
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situation, a synchronization point only adds un-
necessary overhead. That is, if there is never any
possibility of processors contending for the same
resource, then synchronization is not required.
Therefore, the SMP team decided that a manage-
able number of spinlocks for the initial design
was no more than 32. The SMP design provides
designers the ability to create a finer granularity
of locks in future releases of VMS as performance
measurements identify time-critical resources.

As the SMP development evolved, it became
clear that a finer granularity of spinlocks for
the 1/O subsystem would be easy to implement.
With multiple VAXBI buses, multiple CPUs could
handle different device interrupts simulta-
neously. This further improved the parallelism of
the system and resulted in a new characteristic
for spinlocks: dynamic versus static spinlocks. A
static spinlock protects those resources common
to all VAX/VMS systems. Therefore, static spin-
locks are assembled into the VMS source code.
Dynamic spinlocks synchronize device-specific
code and so are created at boot time, depending
upon the [/O configuration of the particular
VAX system. Thus the number of dynamic spin-
locks varies from system to system, whereas the
number of static spinlocks is consistent across
all systems. The dynamic spinlocks used to lock
particular devices were named “devicelocks” to
differentiate them from static spinlocks. A
devicelock is used wherever device-specific code
previously raised IPL to a device’s IPL to block
interrupts.

Identifying Resources Requiring
Spinlocks

One of the first SMP development tasks was to
identify each VMS resource that needed syn-
chronization and then determine the proper lock-
ing mechanism — spinlock, mutex, interlocked
queue, etc. Once this work was complete, the
added dimension provided by spinlocks allowed
multiple resources to be protected by a single
IPL. For example, IPL 8 (SYNCH) had protected
the following resources: memory management,
scheduling, the I/O database, the file system, and
the timer queue. By adding a new dimension,
namely spinlocks, each of these resources could
be protected by a different spinlock but share the
same IPL. Therefore, in a multiprocessor configu-
ration, it was now possible to run more than one
processor at the same IPL. However, the proces-
sors must be executing different critical regions

of code. The spinlock design, therefore, has the
advantage of providing more synchronization lev-
cls than could be provided by IPLs alone. Hence,
the granularity of spinlocks can be much finer
than that allowed by software IPLs alone. This
finer granularity in turn provides more concur-
rency of execution in the VMS kernel.

For example, IPL SYNCH had protected a large
number of resources and thus would be a good
candidate for a finer granularity of spinlocks.
Where VMS code had previously raised IPL to
SYNCH. the SMP team had to determine which
spinlocks had to be acquired and then perform
the conversion.

In summary, IPL SYNCH became the following
spinlocks:

FILSYS File system structures (such as

file control blocks)

IOLOCKS8 Fork.IPL 8 (map registers, data
paths and System Communication
Services resources)

TIMER Timer queue

MMG Memory management, page de-
scription database, swapper, and
modified page writer

JiB Portions of the job information
block

SCHED Process control blocks, schedul-

ing database, acquisition/release
of mutexes

Per-CPU Context Areas and

Interrupt Stacks

Another development task was to identify the
context that had to be maintained for each pro-
cessor — independent of the general system
structures. This “per-CPU” context area had to
include such items as identification of the current
process, a unique CPU identification field, and
CPU-specific work queues. In addition, design
requirements specified that a processor be able
to locate its private CPU contextarea with mini-
mal overhead.

The easiest solution would have been to
include an internal processor register (IPR) into
which software could load the virtual address of
the context area. Since IPRs are part of the pro-
cessor hardware, each CPU could have pointed to
its own context area without confusion. How-
ever, such a processor register did not exist in the
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VAX architecture. Therefore another solution was
nceeded in order for SMP to execute on existing
VAX systems.

A creative alternative to inventing a new IPR
was to find a method to use an existing IPR
for multiple purposes. The VAX architecture
includes an interrupt stack pointer (ISP) which
softwarce loads with the virtual address of the
interrupt stack. Since each processor must have
its own stack for handling interrupts, this area
was alrecady CPU-specific. Under the SMP design,
the interrupt stack area and the CPU context area
are treated as one virtually contiguous context
block. When the virtual address of this new con-
text area is rounded to an appropriate power of
two, a simple clearing of the low order bits of the
virtual address of the ISP yields the base address
of the private CPU contextarea.

This solution provided two similar ways to find
the private CPU contextarcea:

MFPR #PRS$_ISP,Rx
BICL #mask.Rx

or

BICL3 =mask.SP.Rx (when running on the
interrupt stack)

Both mcthods return the virtual address of the
privatc CPU context area. However, the latter
casc provides the faster mechanism.

Translation Buffer Invalidation —

A Form of Cache Coberency

As was alrcady mentioned. the VMS SMP design
required that cache coherency be maintained in
the hardwarce. However, the VAX architecture
includes onc hardware cache that is maintained
by softwarc. the translation buffer. The transla-
tion buffer caches page table entries (PTEs) to
spced up address translation from virtual to phys-
ical memory addressces.

Software monitoring of the translation buffer is
appropriate for two rcasons. Since page table
pages arc only “virtually contiguous” and not
“physically contiguous” portions of VAX main
memory, monitoring changes to the PTEs would
be difficult for hardware. Also, since modification
of page table contents is usually an infrequent
event, this cache is more suitably maintained by
the softwarec.

Thercfore, as part of its monitoring function,
the operating system software must notify the
processor whenever it changes the contents of a

PTE. in case the PTE is cached in the translation
buffer. This notification is called a translation
buffer invalidation request and is accomplished
by a write to an IPR. Since PTEs can be cached on
any processor in a multiprocessor systcm, onc
possible implementation would be for all CPUs
to perform a translation buffer invalidation
request when any PTE is changed. Since transla-
tion buffer invalidation must be carefully coordi-
nated among all CPUs, however, this simple
approach would have significantly affected sys-
tem performance if left unmodified.

Two other features of VAX/VMS memory man-
agement play significant roles in the design for
translation buffer invalidation in the SMP envi-
ronment. First, a user-process address space can-
not be executing on multiple processors simulta-
neously. Second, the cached user-process PTEs
are invalidated when a LDPCTX (load process
context) instruction is executed as part of pro-
cess rescheduling.

Using these features, engineers optimized the
design to require system-wide translation buffer
invalidation only for system address space and
not for user address space. Since system addresses
change less frequently than user space addresses,
this new design allowed for a major reduction in
the interprocessor communication traftic.

Process Affinity

Certain operations in a multiprocessor system
must execute on particular CPUs. The VMS SMP
designers termed the binding of a process to a
particular CPU as " process atfinity.” Afhinity for a
process is implemented by means of a 32-bit
mask (one bit per CPU) in the process control
block (PCB). Once a process is assigned aftinity,
the process may only execute on CPUs for which
it has affinity. Process aftinity is enforced by the
VMS scheduler during a reschedule cvent. (Note
that only for real-time priority processes does
VMS SMP guarantee to run the N-highest priority
processes on an N-processor system.)

The VMS SMP design currently implements two
levels of process aftinity: hard affinity and capa-
bilities. Hard affinity forces selection of a single
CPU in the affinity mask. This level of affinity is
used when a process must be guaranteed execu-
tion on a particular CPU, which is specihed
by the CPU identification field in the PCB.
Specifically. hard affinity is used to implement
CPU diagnostics and to halt a CPU. When hard
affinity is being enforced. the process affinity
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mask is rcduced to a single bit. which represents
thc one CPU on which the process may cxccutce.
The sclection of hard affinity is a very static opcra-
tion, The sclection of which CPU to run on is
determined prior to scheduling the process. and
the sclection remains enforced until otherwisc
requcsted

Capabilities provide a logical mapping of pro-
cesses to scervices. These services may only be
available on certain CPUs in the SMP environ-
ment; for example, primariness is a logical capa-
bility. A capability may be scrviced by onc or
morc CPUs in the SMP environment. For ¢xam-
ple. primariness is a capability that is only
oftered by at most one CPU in the SMP c¢nviron-
ment.

When a process requires capabilities, the pro-
cess indicates the desired capabilities in a 32-bit
mask in the PCB. When the process is scheduled.
a comparison is made of the current requested
capabilities and the capabilities offered by the
CPU! being rescheduled. If the CPU has the
requircd capabilities, then the process is exc-
cuted; otherwise. the process is ignored and
another process is chosen for execution. Any
active CPU offering a particular capability may
scervice any process requiring that capability
Oncce the capability is no longer required by a
process, the capability bit in the PCB is clcared
and the process can execute on any CPU in the
multiprocessing system. Thus, capabilitics offer a
much more dynamic load-leveling of processes
across the CPUs in the system than does hard
aftinity.

Device Affinity
The VMS SMP design requires that the primary
CPU have access to all 1/0 devices on the system
Duc 1o hardware asymmetry for certain devices in
some existing multiprocessing systems. the VMS
SMP design also had to include provisions for
device athnity. For example, usually both devices
in the console subsystem — the console terminal
and the console block storage device — can only
be accessed by the primary CPU. This is cspe-
cially evident on 8300 systems, where a physical
backplanc cable connection from one of the
VAXBI slots (usually slot 2, which contains the
primary CPU) limits access to the console sub-
system to the primary CPU.

Devicc aftinity models the hardware asymmetry
by allowing only a subset of the processors to
access these 1/0 devices. Only the portions of

VMS software that access the hardware itself
(such as device driver routines that alter control
and status registers) must execute on one of the
CPUs in the device affinity set for that device. For
cxample. most of the initial processing of a SQIO
request can execute onany CPU. The driver code
actually starts the I/O transfer by controlling the
device by means of the control and status regis-
ters. Only this portion of the driver code must
cxecute on a member of that device's affinity set.

Under the SMP design, all forking and postpro-
cessing occur on the same CPU that reccived
the device interrupt. The device affinity imple-
mentation uses a “trickle down” method that
rcquires no aftinity checks for any of the qucucs:
Instcad, fork threads are queued to the appropri-
atc CPU in the first place. The SMP implcmenta-
tion qucuces the fork threads by replicating the
I/O postprocessing queue and the fork queues
for cach CPU in the per-CPU context area. Thus
cach CPU can process its own fork and 1/0O post-
processing queue without acquiring the various
spinlocks that would be required for system-wide
qucucs. Further. under this design, the set of
CPUs to which a particular device is bound under
device affinity is a proper subset of the CPUs that
can scrvice interrupts for that device.

The affinity field for a device is stored as a bit
mask in the unit control block (in the field
UCBSL_AFFINITY). This bit mask recpresents
thosc CPUs that are allowed to access the
specified  device. The default value for
UCBSL_AFFINITY is — I, allowing access from
any CPU to the device. As already mentioned,
the console subsystem devices are accessible
only from the primary CPU; therefore. the
UCBSL_AFFINITY mask for these devices is ini-
tialized to the primary CPU only.

The athinity field for a device is checked on
cnrry to only two of the seven driver entry points:

= STARTIO
= ALT_STARTIO

If the affinity check fails, the 1/O request packet
(IRP) is queued as a fork block to another CPU
from which access is allowed. The fork block in
thc CDRP portion of the IRP is used to fork the
rcquest to another CPU. The fork block is queued
to @ work request queue in the selected CPU's
per-CPU context area. An interprocessor inter-
rupt is then delivered to notify the CPU that work
is now present in its work request queue.
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Al other entry points into device drivers are
serviced by the primary CPU, which must be
guarantced access to all devices. These entry
points arc normally called only during device ini-
tialization and include the following cnrtry
points:

s TIMEOUT

s UNITINIT

8 CONTROLLER INIT
s CLONED UCB

s UNIT DELIVERY

Process affinity is used to provide the device
attinity requirements for the $CANCEL system
service. When the SCANCEL request is serviced,
the UCBSL_AFFINITY ficld may not allow access
from the CPU on which the request was initiated.
If access is not allowed, then the process atfinity
is changed to force the process to execute on a
CPU compatible with the affinity requirements of
the device.

Some VMS routines arc always called when
1/O completes on the same processor that ser-
viced the device and fork level interrupt dis-
patching. Thercfore, device affinity is implicit for
these routines, and no affinity checks are made
prior to calling the routines REGISTER DUMP
and MOUNT VERIFICATION.

Future Investigations

The initial VMS SMP design is finished, but many
interesting  arcas invite further investigation.
These include

s Performance improvements, finer

granularity spinlocks

perhaps

s Enhancements for parallel processing
s Provisions for higher availability

The key to the VMS SMP design is the new syn-
chronization primitives, that is, spinlocks. The
ficxibility of the spinlock design will be impor-
tant in future enhancements to SMP, as already
proven in the cvolution from static to dvnamic
spinlocks.

Granularity is another important attribute of
spinlocks, which are synchronization points. All
synchronization points must be factored into the
design of any multiprocessor system. Each spin-
lock represents at most a single thread of execu-

tion. Therefore, cach section of code protected
by a spinlock can be execcuted by only one pro-
cessor at a time. If two processors attempt to
access the same section of code (termed a critical
region). then only one processor will proceed
while the other(s) spin-waits. To restate
Amdahl's Law: You cannot get more than one
CPU’s worth of work out of any synchronization
point.

The ability to increase the numbcr of spinlocks
should prove invaluable in future enhancements
to SMP. as performance measurements indicate
which spinlocks need to change their granularity.
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Performance Evaluation of the

VAX 6200 Systems

Performance evaluation is an essential element in the development of a
computer system. An effort was made to accurately evaluate the perfor-
mance of the VAX 6200 system under workloads that represent real
customer environments. Workloads were developed to represent three
major target markets — Engineering/Scientific, Commercial, and Gen-
eral Timesharing. These workloads were used to drive the VAX 6200 sys-
tems and thus to evaluate system performance in these environments.
Performance measurement results indicate that the VAX 6200 system is a
well-balanced multiprocessor system and that the multiprocessor perfor-
mance is fairly linear across these workloads.

Introduction

The VAX 6240 system is a tightly coupled multi-
processor system based on the CVAX micro-
processor. The system consists of four processors
sharing memory through a singlc, high-speed
bus. This paper describes the process by which
performance of the VAX 6240 systcm was cvalu-
ated under various workloads that represent
target markets. The method used to develop and
verify these workloads is discussed along with
the cvaluation of system performance. Wc use
the multiprocessor efficiency measure. defined
as the relative throughpur obtained by the addi-
tion of each processor, to characterize multi-
processor  performance. Measurement of the
VAX 6240 system indicates that the multiproces-
sor ethiciency mcasure is directly dependent on
the contention for shared resources generatcd by
a workload.

Workload Development

Onc of the major issues in evaluating the perfor-
mance of a computer system has been in the
workload arca. In the context of this paper,
workloads are software tools used to create inter-
active multiuser environments in which the
interactive throughput and responsiveness of the
system are the key performance metrics. Con-
versely, benchmurks are either single or multiple
copics of programs run in batch mode; the
amount of time to complete execution of these
programs is the performance metric. The ques-

tion continually debated is how well the bench-
marks and workloads represent current user envi-
ronments. Since there are many differcnt kinds of
computing environments and both the applica-
tions and computing styles are continually chang-
ing. it is very difficult to develop representative
workloads accurately. The approach taken here
was to first survey the current customer popula-
tion and identify a few major target markets.
Table 1 consists of three surveys obtained from
different sources, with #2 being the sample size.

Table 1 Survey of Customer Environments
Environment Survey 1 Survey 2 Survey 3
n=110 n =200 n = 55K
Engineering/ 46% 50% 31%
Scientific
Commercial 40% 23% 35%
Education 8% 15% 8%
Software 6% 12% 4%
Development
Miscellaneous == == 11%
Tabie 2 Distribution of Customer
Environments
Engineering/Scientific 40%
Commercial 40%
General Timesharing 20%
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PROCESSOR 1 PROCESSOR 2

PROCESSOR 3 PROCESSOR 4

STREAM 1 STREAM 2

STREAM 3 STREAM 4

STREAMS RUNNING SIMULTANEOUSLY ON THE PROCESSORS

THROUGHPUT = NUMBER OF JOBS COMPLETED WITH MULTIPLE PROCESSORS

AS COMPARED TO ONE

Figure 1

Clcarly, Engineering/Scientific and Commer-
cial environments dominate the market, with
Education, Software Dcvcelopment, and General
Timesharing applications accounting for the rest.
Further e¢xamination of the Software Dcvelop-
ment and thc Education cnvironments showed
much similarity in function, except that Software
Dcvelopment is slightly more compute intensive.
Thus we further simplificd the application cate-
gories, asshown in Table 2.

We identified typical environments in cach of
thesce categories by evaluating system rcsource
consumption in these cnvironments rather than
by evaluating what an ¢nd user does on thce sys-
tem. Thus we could simplify the number of
paramcters to CPU, memory. and 1/O resource
utilizations. Having identificd these typical envi-
ronments, we collected or developed bench-
marks and workloads to represent them.

Single Stream

Acquiring single stream benchmarks was not as
difficultas developing multiuser workloads. Most
of Digital’'s customers have benchmarks that
represent  their environments.  Therefore, we
acquired a collection of benchmarks to represent
Engincering/Scientific, Commercial, and General
Timesharing from various customer sites. These
benchmarks arc used to cvaluate the single-
processor speed.

Multistream Batch Jobs

A stream of well-known benchmarks was sclected
that represented cach of the above-mentioned
Engincering/Scientific, Commercial, and General
Timesharing markets.

® The cngincering strcam consists of typical
programs uscd in clectrical circuit simulation,

Execution of Multiple Programs Run in Parallel

oil reservoir simulation, flight simulation, and
lincar equation solvers.

s The scientific stream contains simulation
programs that use Monte Carlo techniques
to track particle movement, along with
commonly used routines from national labora-
torics.

s The commercial stream contains the activities
donc by a pcrsonnel department to support
salary planning,.

® The general timesharing stream represents the
activities done in a software development or
c¢ducation environment.

Multiple copies of this stream were run simulta-
ncously to take advantage of multiprocessor com-
pute resources (Figure 1). To capture the maxi-
mum throughput, we ensured that all of the
processors were 100 percent busy while the mul-
tiplce streams werc running on the system.

Multiuser Workload Development

The overall process of workload development is
shown in Figure 2. Our goal was to represent typ-
ical timesharing environments for the different
target markets. The entire strategy consisted of

s Idcentifying typical real sites

® Collecting data on resource utilization and
image usage patterns

s Derivinga packaged workload to represent the

rcal site environment

s Validating the workloads by comparing the
resource utilization of the workload against
the resource utilization at various customer
sites and modifying the workloads as required
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REAL
/ SYSTEM
RESOURCE UTILIZATION -TERMINAL ACTIVITY
DATA _USER CHARACTERISTICS
-USER MIX
VAXRTE SCRIPTS
RESOURCE UTILIZATION -USER CHARACTERISTICS
-USER MIX
y
STANDALONE
SYSTEM

Figure 2 Interactive Multiuser Workload Development

In the following sections, we describe how we
used this strategy to develop two multiuser
workloads: the engineering workload, which rep-
resents an Electronic Computer-Aided Engineer-
ing environment (ECAE); and the Software Devel-
opment Environment Workload (SDEW).

Data Collection

Two Digital sites were chosen to represent the
ECAE and SDEW environments. Internal sites
were chosen initially to facilitate the data collec-
tion process. Both sites had clustered environ-
ments that consisted of a variety of VAX systems
along with some workstations.

We collected information on these clustered
systems to capture their behavior under the load
generated by the environment over a period of
one week. VAX SPM software was used to collect
resource utilization data (CPU, I/O, and memory
utilization) on all the systems at both user level
and system level. VMS Image Accounting was
used to obtain resource utilization data on an
image basis. Using the SET HOST/LOG Digital
Command Language (DCL) command, we col-
lected log files of user sessions to study user
habits. Other user characteristics, such as think
time and type rates, were obtained through inter-
views and observations.

Data Analysis

The performance team studied the cluster-wide
resource utilization profiles in order to select the
time when the interactive activities were pre-
dominant. We compared resource utilization
profiles of individual systems against the cluster-

wide average over a week’s accumulation of data.
Based on this comparison, we selected a typical
day and a typical system. One hour was chosen
from the typical system on a typical day during
the period of peak interactive use to characterize
the system at full load.

Further, based on the user profiles, we
classified users according to computer usage,
that is, heavy or light computing (for ECAE
workload) and heavy, medium, or light comput-
ing (for SDEW workload). We then used the
image accounting data and user log files to clas-
sify users according to the type of activity they
performed.

Once several user classes were identified, the
number of users in each class, or user mix, was
determined. We defined the user mix by looking
at (1) the number of users in each class at the

Table 3 ECAE and SDEW User Mix
ECAE User Mix

Type of User No. of Users
Engineer: Heavy 3
Engineer: Light 3
SDEW User Mix
Type of User No. of Users
Heavy software development 1
Light software development 3
Secretary 1
Technical writer 1
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one-hour peak, and (2) the organization struc-
ture at the real sites. Table 3 shows the user mix
for ECAE and SDEW workloads. In addition to
interactive users, these workloads also have batch
jobs running in the background.

Developing the Workload

Having identified the user classes and activities,
we then developed an intermediate workload
using DCL command procedures. This inter-
mediate step allowed easier translation to the
final workload, which was based on VAXRTE
(VAX/VMS Remote Terminal Emulator) scripts.
Individual user scripts were developed and vali-
dated. We then packaged the entire workload by
integrating all of the user scripts and the batch
jobs. Once development was complete, the
workload was validated at both system and user
levels against the real internal site. Further vali-
dation was done at the user level against Digital’s
customer sites.

Workload Validation

This section describes the workload validation
process using the ECAE workload as an example
of the validation methodology.

Validation against “real” internal sitc — The
workload was tested using the same hardware
configuration as the real system. For the ECAE
workload, a VAX-11/780 system with 32 mega-
bytes (MB) of memory, RA81 disks, and six inter-
active users was tested. The purpose of this test
was to compare the resource utilization of the
workload in an hour-long experiment to the
resource utilization of the real system during the
typical hour. System- and process-level resource
utilization data of several different resources
were compared.

User-level validation — To validate the work-
load at the user level, we compared the average
CPU and direct [/O (DIO) utilizations computed
for 1 hour for the different user classes. The
results are shown in Table 4.

CPU utilization for all three user classes vali-
dated to within approximately 10 percent,
which was considered to be well within accept-
able limits. Validation of the DIO rate was made
somewhat difficult because (1) the DIO rate on a
per-user basis was very low (0.3 DIO per second
for the heavy user), and (2) measurement of the
DIO rate is only accurate to 0.1 DIO per second.
For all three user classes, the workload came to

Table 4 User Resource Utilization for Real
Internal System and ECAE Workload

CPU
minutes/hour DIO/second
UserClass Real ECAE Real ECAE
Heavy 1.6 1.5 0.3 0.4
Light 0.5 0.5 0.2 0.1
Batch 42.8 48.5 0.0 0.1

within 0.1 DIO per second of the values mea-
sured from the real site.

System-level validation — For system-level val-
idation, we compared the system-level usage of
CPU, disk 1/0O, and memory for the 1-hour ECAE
test experiment to the peak hour of the real
system. Figure 3 shows that the CPU was used
100 percent of the time on the real system during
the 1 hour; whereas the CPU utilization in the
workload tended to vary slightly more, but was
always between 90 percent and 100 percent sat-
urated. The average CPU utilizations of the real
system and the ECAE workload are very close at
100 percent and 93 percent, respectively.

The DIO utilization over a 1-hour period for
the two systems is compared in Figure 4. For both
systems there is significant variability in the DIO
rate over the 1 hour period. The ECAE workload
was slightly more bursty, but the average DIO
rates for the real system and the ECAE workload
were very close at 3.3 and 3.0 DIO operations per
second, respectively.

Memory utilization on the two systems did not
vary substantially over the 1-hour period. How-
ever, total average memory usage with the
workload, 23MB, was less than on the real sys-
tem, 29MB, as depicted in Figure 5.

Although the workload validated very well for
CPU and DIO resource utilization, the workload
used 20 percent less memory than was used at
the real site. This was in part due to the fact that
during the development of the workload the CPU
and disk I/O utilization of subprocesses was
added to the resource utilization of the parent
process. Although the workload represents the
work done by those subprocesses and the load
placed on CPU and disk I/O resources, the
workload does not represent the additional mem-
ory required by those subprocesses. As will be
described in subsequent sections, the lower
memory utilization of the workload did not con-
stitute a problem.
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Figure 4 DIO Utilization for Real Internal System and ECAE Workload for 1 Hour
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A summary of the comparisons of the average
resource utilizations for the real system and the
workload is presented in Table 5.

Validation against customer sites — This vali-
dation of the workload against the internal system
was followed by validation against customer
systems. The goal of this additional validation
was to determine if the workload was representa-
tive of the load placed on systems by Digital’s
customers.

Two semiconductor manufacturers in Califor-
nia were used as validation sites for the ECAE
workload. Initially, it was determined that there
were significant differences between the work
performed at these customer sites and the work
performed at the internal Digital site. The Digital
internal VAX systems were used for logic design
of gate arrays, circuit boards, and systems;
whereas at the external sites, the VAX systems
were uscd for the design of integrated circuits.
Specifically, the work differed in the following
ways:

s DECSIM is used extensively within Digital,
whereas SPICE is the predominant simulation
software used by external semiconductor
developers. DECSIM simulations require very
large amounts of memory as compared to the
SPICE simulations done by customers.

® Design rule checking is both a time-critical
and disk I/O-intensive task done by semicon-
ductor designers. Design rule checking and
the load it places on the I/O subsystem were
not executed at the internal Digital site at the
time resource utilization data was collected.

As a result, we modified the ECAE workload to
include the load placed on the system by design
rule checking and replaced the use of DECSIM
with SPICE.

System resource utilization data was collected
on VAX 8800 systems for one week at these cus-
tomer sites. In a manner very similar to the pro-
cess used for the initial development of the
workload, the data from these sites was reduced
to a typical peak period. Table 6 presents the
comparison of resource utilization on a per-user
basis in the workload and at customer sites.

The ECAE workload falls within the range of
utilizations observed at these customer sites for
both disk and memory utilizations. The workload
is slightly (approximately 10 percent) more CPU
intensive on a per-user basis than was observed at

CVAX-based
Systems

Table 5 System-Level Resource Utilization
for Real Internal System and

ECAE Workload
Resource ECAE Real System
CPU busy 93% 100%
DIO/second 3.0 3.3
Memory 23MB 29MB

Table 6 Comparison of Resource Utilization
on Customer System and
in ECAE Workload

Resource Utilization Customer ECAE
per Hour Sites Workload
CPU (minutes/hour) 3.8-45 5.0

DIO operations/second 1.4-2.3 1.8
Memory (MB) 0.7-0.8 0.8

customer sites. This workload will puta 10 per-
cent heavier load on the system, making the per-
formance numbers slightly conservative for the
computer-aided electrical engineering market.

Performance Measurement and
Analysis

This section discusses the performance of the sys-
tems in three major applications: Engineering/
Scientific, Commercial, and General Time-
sharing. In each of the environments, single
stream, multistream, batch, and multiuser work-
loads were tested.

Single-Stream Performance

The first step in evaluating the performance of a
multiprocessor system is to establish the base-
level performance of the uniprocessor relative to
a well-known system such as the VAX-11/780. A
large number of single-user benchmarks were
used to establish this base level.

Single-User Performance

Single-user performance was evaluated by using
traditional synthetic benchmarks, well-known
industry standards, and real application programs
from engineering, scientific, commercial, and
general timesharing environments. Most of the
synthetic benchmarks are in FORTRAN; industry
standards are Whetstones, Dhrystones, Linpack,
and others. The real applications, as mentioned,
represent four environments.
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Figure 6 Frequency Distribution of the VAX 6210 Performance
on the Single-User Benchmark Set

These benchmarks were used to  cvaluate
uniprocessor speed compared te a VAX-11/780
system. A frequency distribution of the spcedup
factors on all these benchmarks was plotted. and
the central tendency was examined. (Sce Fig-
urc 6.) A high percentage of the benchmarks fell
between 2.2 and 2.8.

Table 7 summarizes the performance of the
VAX 6210 in the single-user environment relative
to a VAX-11/780 system. The performance aver-
age of the VAX 6210 system, across all these
benchmarks, is 2.8 times the performance of a
VAX-11/780 system

Decomposed Single-user Performance

VAX 6200 performance on decomposcd pro-
grams was evaluated through the use of manual
and directed decomposition techniques. To
begin with, a program is cvaluated to see if some

Table 7 Performance of the VAX 6210 in the
Single-User Environment

Synthetic Benchmark Set:

segments can be separated into parallel threads
that can be run independently. Then the program
is decomposed and run. either manually or
through directives. The program is initiated as a
singlc job; then the segments of the program that
lend themselves to decomposition arc divided
into subprocesses and executed in parallel on
different processors. In the manual decomposi-
tion method. the optimal number of subpro-
cesscs for various levels of multiprocessor sys-
tems is evaluated by varying the number of
subprocesses and calculating the speedup fac-
tors. In the directive decomposition method, the
compiler takes care of various optimization fac-
tors. These programs were run standalone with
no interference from any other programs on the
system. Figure 7 illustrates the decomposition
process.

The benchmark description is as follows. To
cvaluate the maximum speedup factors that can
be achieved through decomposition, code seg-
ments were sclected. Such scgments as matrix
multiplication and convolution are widely used
in cngineering/scientific applications. Different
array sizes (from 100 to 1000) were used with
various arithmetic data types such as integer, and
single and double precision.

An image processing program and the Lin-
packl 000D program were used to represent real
application programs, where only certain seg-
ments can be decomposed.

The performance results are as follows. The
multiprocessor efficiency measure, defined as the
relative speedup obtained by the addition of each
processor, is the key metric used here to evaluate

Single-user set 2.5
Industry-standard Benchmarks:

Whet-s & -d 23
Linpack-s 27
Linpack-d 3.2
Dhrystone 2.8
Real Application Benchmark Set:

Engineering set 2.8
Scientific set 2.6
72 -
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ONE PROGRAM DECOMPOSED INTO PARALLEL CODE

SPEED = TIME TAKEN TO
COMPLETE THE JOB

MAIN
PROCESS
(END)

MAIN
PROCESS
RUNNING ON: (OBJECT)
PROCESSOR | PROCESSOR 2 PROCESSOR 3 PROCESSOR 4
-
SUBPROCESS 1 SUBPROCESS 2 SUBPROCESS 3 SUBPROCESS 4
Y

Figure 7 Program Decomposition Process

performancc. As seen in Figure 8, the multipro-
cessor efficicncy measure on the program kernels
is fairly lincar. Multiprocessor synchronization is
minimal in this computing cnvironment. The
performance was very close to the theoretical
maximum. A spcedup of 3.9 times the uniproces-
sor performance was achieved on the four-
processor 6240 system. The performance on the
image processing program is slightly lower than
what was obscrved on the program kernels. Thus
performance gained by decomposition depends
directly on the amount of code that can be run in
parallel. (Note: On the Linpack 1000D program,
directed dccomposition was uscd; whereas on
the other programs, manual decomposition was
used.)

Multistream Batch Performance
Measurement and Analysis

The multistrcam jobs were used to measurc the
system-level batch performance on the multipro-
cessor systems. As shown in Figure 1, these multi-
ple streams were run in parallel to allow concur-
rency in the cxecution of these streams.
Maximum concurrency is achieved since each of
these streams is identical. No single stream runs
any faster; however, the number of jobs com-
pleted increases almost linearly with the addition
of processors. Adequate memory was allocated to
the jobs to avoid unnecessary paging and swap-
ping. In addition, sufficient 1/0 resources werc
present on the system to preclude [/O bottle-
necks. The clapsed time to complete these jobs

was recorded and used to evaluate the multipro-
cessor batch throughput performance. It is
important that all the streams run simultaneously
and share resources equally. Large differences in
the completion times of streams would imply that
maximum concurrency was not achieved becausc
of some bottleneck in the system.

Multiprocessor performance on multistrcam
batch jobs was very close to linear across all envi-
ronments. Results for the commercial stream,
representing personnel administration, were only

450 ¢
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S 350 F
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A MATRIX MULTIPLICATION
O CONVOLUTION
X LINPACK

Figure 8 Multiprocessor Efficiency through
Parallel Processing
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slightly lower — probably because of the higher
amount of I/O on this stream. (See Figure 9.)

Interactive Multiuser Performance
Measurement and Analysis

In the interactive multiuser environment, the
system must support the activities of a substan-
tially higher number of users and their frequent
interaction with the system. The number of users
on the system increases the amount of context
switching, and the contention for shared
resources is also much higher in this environ-
ment.

The test methodology included the use of a
remote terminal emulator, VAXRTE, to create the
interactive multiuser environment. The VAXRTE
generated the input for the system under test and
received consequent output. The VAXRTE also
logged and time-stamped all interactions and
maintained the job mix throughout the experi-
ment. Torun a multiuser experiment, the system
under test and the VAXRTE system were booted
and running. Using scripts, every few seconds the
VAXRTE logged a user on to the system under
test. After all logins were completed, sufficient
time was allowed for the system to reach a steady
state. The experiment was then run long enough
to execute the longest script cycle for the
specific workload. While the experiment was
running, VMS monitor and other monitoring tools
were used to capture the resource utilization
data. When the experiment was completed, data
was reduced and analyzed.

Workload description — Three interactive
multiuser workloads were used to evaluate the
multiprocessor performance in the threec major
environments: Engineering, Commercial, and
General Timesharing.

The Engineering environment was represented
by an ECAE workload. This workload consists of
the types of tasks done by design engineers devel-
oping electronic circuits: circuit simulation,
design rule checking, schematic file transfers
from workstations, and tasks supported by VMS
utilities.

The multiuser Commercial (Compu-Share)
workload is based on the Compu-Share Order
Processing software package. This workload con-
sists of three major types of transactions: order
entry, order inquiry, and accounts receivable
reporting.

The General Timesharing SDEW represents the
types of tasks done by software engineers. The

major tasks executed in this workload are com-
pile-link-execute-debug cycle using FORTRAN,
BLISS, and MACRO; utilities used include CMS,
RUNOFF, and text editors.

Hardware/software setup — Table 8 summa-
rizes the hardware and software configurations.

450
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O GENERAL TIMESHARE
&6 COMMERCIAL
O SCIENTIFIC
X ENGINEERING

Figure 9 Multistream Efficiency Measures

Table8 Summary of Hardware and Software
Configurations

Hardware Configuration

Processor VAX 6240

Memory 128MB

Disk controller 2 HSC70

Disks (Disk configurations differed for

each workload; see below.)

Number of RA82 Disks per Workload

Dedicated Compu-

Use ECAE Share SDEW
System 1 1 1
Page/swap 1 1 1
Library - - 1
Interactive 2 2 4
Batch 3 - 2
Database - 6 -

Note: Where necessary, software was distributed
over multiple disks to avoid disk bottlenecks.

Software Configuration

VMS V5.0 - FT2.1 (A single-processor system was
run with multiprocessing turned off.)

74
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Performance metric — The multiprocessor effi-
ciency measure is defined to be the relative multi-
processor interactive throughput compared to
the uniprocessor throughput.

Also considered in this metric is system respon-
siveness. based on acceptable service criteria for
light, medium, and heavy tasks. This metric is
uscd to evaluate the number of users supported
at peak throughput while the system maintains
the service time criteria. System resources
required to support each application are also
identified.

Performance results — The multiprocessor
efficiency measure is very close to linear in both
the ECAE and SDEW environments (Figure 10).
This result shows that even in the multiuser inter-
active environments near-linear performance can
be cxpected if the system is well balanced in
terms of processor speed and the memory-to-pro-
cessor bus speed. It also indicates the efficiency
of the VMS SMP software. In the Compu-Share
cnvironment, the performance was slightly lower
because of the high amount of disk and terminal
I/0O generated by this workload. The perfor-
mance of the multiprocessor systems under sym-
metric multiprocessing (SMP) depends directly
on the amount of [/O. It is important to note that
even with high amounts of 1/O, the multiproces-
sor cfficiency measure is well over three for the
four-processor system.

CVAX-based
Systems

EFFICIENCY MEASURE
N
T

0 1 1 = ]
0 VAX 6210 VAX 6220  VAX 6230 VAX 6240
KEY:
O ECAE
O COMPU-SHARE
& SDEW

Figure 10  Multiprocessor Efficiency Measure
Sfor All Multiuser Workloads

At the peak throughput levels, response time
criteria were maintained in each workload.
Table 9 compares users supported and resources
used by each of these workloads. The maximum
number of users supported on the VAX 6240 are
38, 120, and 126 users for ECAE, Compu-Share,
and SDEW, respectively.

In terms of resource utilization, it should be
noted that the multiprocessor synchronization

Table 9 Summary of Workload Resource Utilizations

Multiuser ECAE Compu-Share SDEW
Number of users supported at the peak 10, 20, 28, 38 30, 60, -, 120 36, 66, 90, 126
Resource utilization

Number of users 38 120 126
CPU - 6240

Percent utilized 100% 100% 100%
Interrupt 2% 6% 4%
Kernel 12% 29% 20%
Executive 3% 7% 7%
MP synch 1% 7% 2%
User 82% 51% 67%
1/0

Disk 1/O profile Bursty Uniform Bursty
Average disk |/O per second 24 113 68
Average buffered I/O per second 82 112 76
Memory

Maximum used (MB) 32 60 57
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under SMP is handled by spinlocks. A spinlock is
a bit in sharcd memory that is accessible by
means of interlocked instructions by all pro-
cesses through mutual agreement. Mutual agree-
ment implies that a process can set the bit and
gain access to the scheduler databasce if no other
process has access to it. If a process tries to set
the bit and the bit is already set, then the process
continues to “spin” using a sequence of instruc-
tions to continue checking to see if the bit is
clear. MP synch is the amount of CPU time spent
waiting to change the bit or acquire the spinlock
and thus gain access to the scheduler database.
MP synch is I percent for ECAE. 7 percent for the
Compu-Sharc workload. and 2 percent for the
SDEW workload. Since MP synch is the CPU time
spent waiting to acquire spinlocks and indicates
the amount of spinlock collisions, it shows the
level of contention for shared resources experi-
cnced by SMP under each workload. For the
Compu-Share workload, this level is significantly
higher. The Compu-Share workload generates the
most disk 1/0O compared to the other workloads,
which may be the reason for a higher amount of
time spent by this workload in MP synch.

The following three graphs, Figures 11, 12,
13, present the CPU modes usage profiles. The
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Compu-Sharc workload shows higher but more
uniform intcrrupt and kernel mode activities.
Compu-Sharc’s use of databases, which generates
hcavy 1/0 and local locking, is manifested in the
heavy kerncel and interrupt modc activity. SDEW
does a fair amount of file manipulation. ECAE has
much lower 1/0 activity than both Compu-Share
and SDEW.

The next three graphs in Figures 14, 15, and
16 compare the 1/O profiles. The disk [/O on
ECAE and SDEW is very bursty, and it is interest-
ing to notc that their relative CPU mode profiles
correlate well, showing a relationship betwcen
the two. The 1/0 on Compu-Sharce is high but not
as bursty.

Comparing the disk 1/O generated by the
workloads and the effect it has on CPU utiliza-
tion. Compu-Sharc puts the hcaviest load on the
multiprocessor system. However, even with all
the synchronization necessary on this workload,
the multiprocessor efficiency measure is fairly
high (3.3). The ECAE and SDEW workloads show
high multiprocessor efficicncy measures of 3.8
and 3.9. respectively. This level of gain in the
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multiuser cnvironment on the multiprocessor
systems shows that VMS SMP is working cffi-
ciently and that the VAX 6240 system is a well-
balanced system in terms of the processor and
bus speeds.

Application Characteristics Affecting
Multiprocessor Performance

This section discusses some of the characteristics
in applications thatdirectly affect multiprocessor
performance.

Memory-to- Processor Traffic

Since thesec multiprocessor systems share mem-
ory, contention to access mcmory could be a
factor that affects multiprocessor efficiency.
Therefore applications that generate lower mem-
ory-to-proccessor traffic do perform better, assum-
ing there are no other bottlenecks in the system.
One way to reduce this traftic is to organize the
data to improve locality of reference. Data that is
accessed together should be placed together.

Disk 1/0 Operations

With the symmetric multiprocessing software,
I/0 opcrations can be handled by each of the
processors. As a result, the I/O-intensive appli-
cations perform much better on the symmetric
multiprocessor systems as compared to the asym-
metric multiprocessing systems. However, the
1/0 device interrupts are still handled by the pri-
mary processor, even under SMP. By reducing the
rate at which device interrupts are made, any
contention for the primary processor can be
reduced. To reduce the number of 1I/O inter-
rupts, larger block transfers may bebetterin 1/0-
intensive applications. Thus, an application that
will lend itsclf to making larger block transfers
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No. 7 August 1988

77

CVAX-based
Systems




Overview of the MicroVAX 3500/3600 Processor Module

With minimum bus cycle time down by more
than a factor of two and dynamic random-access
memory (RAM) access time remaining relatively
constant, the opportunity arose to increase per-
formance by using static RAM to add a cache.
Static RAMs with 35-ns access times and 64-kilo-
bit (Kb) densities could be used for this purpose
at reasonable cost.

Design Partitioning and
Functionality

To facilitate implementation of the processor
module using custom VLSI, the design was parti-
tioned into seven major parts: the central process-
ing unit with first-level cache, the floating point
unit, the second-level cache, the memory con-
troller, the Q22-bus interface, the system sup-
port functions, and the clock circuitry. Each of
these partitions was implemented by a single
chip, with the exception of the second-level
cache. This cache was implemented by pro-
grammable array logic (PAL) and static RAMs.
Five of the parts are connected directly to a
32-bit multiplexed address/data (CDAL) bus:
the central processing unit with first-level cache
(CVAX), floating point unit (CFPA), second-
level cache, memory controller (CMCTL), and
Q22-bus interface (CQBIC). To reduce loading,
the chip containing the system support functions
(SSC) connects to a buffered version of this bus,
the BCDAL. The clock circuitry (CCLK) was sepa-
rated from the processor chip to conserve pins as
well as to allow designers more flexibility in
choosing a clock rate.

To maximize performance, the CVAX, CFPA,
second-level cache, and CMCTL operate synchro-
nously from a four-phase clock generated by the
CCLK. The SSCand CQBIC operate asynchronously
on a 40-MHz oscillator. The processor module
was designed to allow the CCLK to be fed either
from the 40-MHz oscillator or from a separate
oscillator. The separate oscillator allowed the
central processor and memory subsystems to be
sped up when it was determined that the CVAX,
CFPA, and CMCTL chips were capable of running
ten percent faster than originally projected.

Each of the major parts of the processor
module is described in following sections.

The Central Processing Unit and
First-level Cache

The CVAX chip is a microcoded 32-bit VAX CPU.
To implement the entire VAX architecture using a

single chip, the CVAX designers selected a subset
of the full VAX instruction set and data types.
The implementation includes 175 instructions
and six data types (also implemented by the
MicroVAX II system), plus 6 additional string
instructions: CMPC3, CMPC5, LOCC, SCANC,
SPANC and SKPC. The CVAX also provides micro-
code support for emulation of 53 additional
instructions (six less than the MicroVAX II) and
five data types. When any of these instructions is
decoded, an emulated instruction exception is
generated. This exception causes a set of instruc-
tion-specific parameters to be pushed on the
stack and control to be passed to operating sys-
tem emulation routines by the emulated instruc-
tion vector in the system control block. As in the
MicroVAX II, the remaining 70 instructions and
three data types are handled by the CFPA chip.
The CVAX implements the following registers:

s Sixteen, 32-bit, general-purpose registers

s Twelve VAX standard internal processor regis-
ters to support memory management, process
control, interrupts and system identification
(SBR, SLR, MAPEN, TBIA, TBIS, TBCHK, PCBB,
SCBB, IPL, SIRR, SISR, and SID) '

s Five internal processor registers specific to the
CVAX to support the interval clock, first level
cache, error reporting and console emulation
(ICCS, CADR, MSER, SAVPC, and SAVPSL)2

The CVAX also provides a means for accessing six
additional VAX standard internal processor regis-
ters to support the time-of-year clock, console
serial line, and I/O bus (TODR, RXCS, RXDB,
TXCS, TXDB, and IORESET).' These registers are
implemented in the SSC.

The registers in the SSC are referred to as
“external” internal processor registers and are
accessed by software in the same manner as other
internal processor registers, that is, by means of
MTPR and MFPR instructions. However, the CVAX
chip generates a special cycle on the CDAL bus
with the register number as an address. The SSC
responds to these cycles by either supplying the
CVAX with the register contents (MFPR) or per-
forming the register update (MTPR). Accesses to
other unimplemented VAX internal processor
registers will also cause these cycles to be gener-
ated, but the cycles will terminate with an error
condition. (The cycles are timed out after four
microscconds by a CDAL bus timer in the SSC.)
When a register write is made to an unimple-
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mented internal processor register, the CVAX
ignores the error signal; the result is a long
no-operation. When a registcr read of an unimple-
mented internal processor register is attempted.
the results are undefined.

Also like the MicroVAX II system, the CVAX
processor implements a memory management
unit. The unit supports full VAX demand-paged
virtual memory, with single-level page tables for
system space addresses and double-level page
tables for process space addresses. In addition,
four levels of access protection are supported by
the memory management unit. A 28-entry, fully
associative address translation buffer is provided
for storing recent virtual-to-physical address
translation (as opposed to an 8-entry translation
buffer in the MicroVAX I1).

Unlike the MicroVAX II system, the CVAX in-
cludes an on-chip (first-level), physical instruc-
tion and data cache. Because chip area was at a
premium, a 1 KB, two-way set associative organi-
zation was chosen. In contrast to the second-level
cache, this organization achieves a high hit rate
for the available chip area through increased con-
trol logic complexity instead of increased storage
array sizc. The extra control logic complexity of
the first-level cache is more efficiently imple-
mented in custom VLSI, whereas the large storage
arrays of the second-level cache are more cthi-
ciently implemcented with off-the-shelf parts.
Since the first-level cache organization yields a
set size cqual to the memory page size, cache
look-up and virtual-to-physical address transla-
tion can be overlapped. Thus a cache cycle time
cqual to the processor microcycle time is
achieved.

The first-level cache is look-through; that is,
cache hits on rcad cycles result in no activity on
the CDAL bus, thus preserving its bandwidth for
DMA transfers. The block size is one quadword so
that cache misses on cacheable read cycles cause
the CVAX to gencrate a quadword transfer on the
CDAL bus. This transfer results in two longwords
of data becing rcturned in response to a single
address. The minimum transfer time is two
microcycles for the first longword and one for the
sccond, which increases the effective CDAL bus
bandwidth. Further, the first-level cache is write-
through. However, to improve performance, the
CVAX also contains a longword write buffer
which allows the CPU cxccute out of the first-
level cache while the write operation is being
complctcd,“

The Floating Point Accelerator

The CFPA chip works in conjunction with the
CVAX chip to process floating point instructions
and to accelerate the execution of some integer
instructions (MULL, DIVL, and EMUL) . The CVAX
decodes the instructions and sends the CFPA
control and opcode information by means of a
dedicated eight-line control bus. The CFPA gets
its operands from the CDAL bus. Unlike the
MicroVAX II, all operands do not have to come
from the CPU. Operands come from the CVAX
only if they reside in the general-purpose regis-
ters or first-level cache. If the operands reside
in the second-level cache or main memory, the
CFPA takes them directly off the CDAL bus. When
the CFPA has completed the operation, it returns
condition codes and exception status by means of
the control bus, and the unaligned result by the
CDAL bus. One, two, or three longword transfers
may be required to transfer the result, depending
on the type of operation. The CVAX aligns and
sends the result to its ultimate destination. To
improve DMA latency, the CVAX will grant the
CDAL bus requests while waiting for the CFPA to
return the result.”

The Second-level Cache

The second-level cache sits directly on the CDAL
bus and bridges the 4-microcycle gap in access
time between the first-level cache and main
memory. The project goal for the second-level
cache was to maximize system performance
without placing the schedule at risk. Conse-
quently, designers chose to use large storage
arrays to achieve the desired level of performance
(hit rate) rather than complex control logic. By
keeping the control logic simple, the cache
could be implemented in PALs rather than cus-
tom VLSI. Thus the chance of design errors was
reduced as well as the time needed to correct any
errors found during design qualification.

The large storage arrays were easily imple-
mented using off-the-shelf static RAMs. The
resulting design was a 64KB, direct-mapped,
physical instruction and data cache with write-
through. The implementation called for six PALs
for control logic, eight 16K-by-4 static RAMs and
four 16K-by-1 static RAMs for the data store, and
three 10K-by-4 static RAMs for the tag store.

In keeping with the philosophy of simple con-
trol logic, the second-level cache is look-aside;
that is, address decoding occurs in parallel in
the cache controller and the memory controller.
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Thercfore, the cache does not have to regencrate
CDAL bus cycles in the event of a cache miss. The
second-level cache control logic simply

s Watches the CDAL bus cycles

s Returns data to the CVAX on cacheable read
cycles that miss the first-level cache bue hit the
sccond-level cache

s Allocates a block on cacheable quadword
CVAX rcad cycles that miss both caches

s Updatces an entry on CVAX write cycles that hit
the second-level cache

s Invalidates a block on DMA write cycles that
hit the second-level cache

= Ignorcs DMAread cycles

Becausce the second-level cache stores ithe same
types of references as the first-level cache, very
little control logic is required to determine
which CVAX references are cacheable. The CVAX
will only generate quadword CDAL bus cycles on
cacheable CPU references that miss the first-level
cache. Thercfore, the second-level cache control
logic only considers quadword reacl cycles
cacheablc.

To respond within the minimum CVAX bus
cycle time (one microcycle for the second long-
word of a quadword cycle), the second-level
cache control logic uses an overlap scheme. The
second-level cache overlaps the address gencra-
tion and the tag look-up for the second longword
portion of the cycle with the data access for the
first longword portion of the cyclc.S

The Memory Controller

The CMCTL chip is the interface between the
CDAL bus and the memory array. The chip is a
full 32-bit. single-ported, synchronous memory
controller  with  7-bit error-correcting code
(ECC) and supports up to four memory array
modules (two more than the MicroVAX I1).

The CMCTL longword write buffer minimizes
the effect of write operations on CPU perfor-
mancc. (Both caches are write-through.) The
CMCTL also supports multiword transfers on the
CDAL bus. On these transfers, the CMCTL utilizes
page mode in the dynamic RAMs to achicve the
performance of an eight-way interleaved memory
subsystem without the usc of additional banks or
interconnect complexity. The size of the transfer
is encoded in bits 31 through 30 of the physical
address (up to four longwords). Thus with only a
single address, the memory controller can fetch

sequential longwords in less time. Both the CVAX
and the CQBIC utilize this feature to improve
performance. The CVAX generates quadword
transfers to fill cache blocks on a cache miss; and
the CQBIC generates quadword, hexaword, or
octaword transfers on block-mode DMA by
devices on the Q22-bus. The combination of mul-
tiword transfers and the look-through first-level
cache made the added complexity of dual ports
(as usced in the MicroVAX II) unnecessary. To
work effectively with the look-aside second-level
cache, the CMCTL must monitor the CDAL bus
after starting a memory operation. If the second-
level cache responds with the data first, the
CMCTL aborts its operation before completion.

To support a range of CVAX microcycle times
and also maintain the performance advantage of
synchronous operation, the CMCTL includes a
programmable wait-state bit. This bit controls the
number of CPU microcycles used to access the
RAM array. Moreover this bit allows the same
array modules to be uscd for processors with
different microcycle times.°

The memory controller was not designed to
support battery back-up because of the added
design complexity and cost. For those applica-
tions that require support during power outages,
standby uninterruptable power supplics are a
better solution and are available for small systems
at low cost.

The Q22-bus Interface

The CQBIC interfaces the CDAL bus to the
Q22-bus. This chip provides address transla-
tion between the 26-bit CDAL bus and 22-bit
Q22-bus. In addition, CQBIC handles data
buffering between the 32-bit synchronous/asyn-
chronous CDAL bus and the 16-bit asynchronous
Q22-bus. Q22-bus addresses are translated to
CDAL bus addresses by a programmable mapping
function (scatter-gather map), which is software
compatible with the MicroVAX II system. This
function gives the CPU the capability to map any
page of the 4 megabyte (MB) Q22-bus address
space to any page of the main memory address
space. Thus Q22-bus DMA devices can transfer
directly to or from discontiguous pages of main
memory. CDAL bus addresses are translated into
Q22-bus addresses by a direct mapping function.
This function maps the 4MB Q22-bus memory
space and the 8KB Q22-bus I/O space into the
VAX 1/0 space. Thus the CPU can directly access
Q22-bus memory or device registers by means of
two rangces of 1/0 page addresses.
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DMA write references are buffered in two natu-
rally aligned octaword buffers and transferred
to main memory by the most efficient combina-
tion of multiword transfers. The two octaword
buffers allow an entire block-mode transfer (up
to 16 words) to be buffered by the CQBIC. After
the first buffer has been filled by the Q22-bus
device, it is emptied into main memory while the
Q22-bus device fills the second buffer. Since the
CDAL bus is faster than the Q22-bus, the first
buffer is empticd and ready for input from the
Q22-bus device before the second buffer has been
Alled. This arrangement allows the interface to
provide sustained throughput at maximum
Q22-bus transfer rates with no additional latency.

Q22-bus block-mode DMA read references are
translated into quadword transfers on the CDAL
bus. The four words are bufferedin a single quad-
word buffer and supplicd to the DMA device on
demand. Before the buffer is emptied, the next
quadword is prefetched. This prefetch elimi-
nates additional latency on all but the first trans-
fer. To keep the latency of the first transfer at a
minimum, the CQBIC responds to the DMA
device after receiving the first longword of a
quadword CDAL bus cycle, rather than waiting
for the entire quadword transfer to complete.

To fit the entire Q22-bus interface in a single
chip, some changes had to be made to the bus
interfacc architecture of the MicroVAX II system.
On the MicroVAX 11, the scatter-gather map was
stored in a dedicated 32KB static RAM array
within the bus interface. On the CQBIC, not
enough space was available to implement this
storage array internal to the chip. Moreover, not
enough pins were available to provide a dedi-
cated bus to an external static RAM array. The
solution was to storc the scatter-gather map in a
32KB block of main memory and to implement a
16-entry fully associative cache for map entries
in the CQBIC. The cache functions in the same
manner as an address translation buffer. When
translating a Q22-bus address, the cache is
checked for the appropriate map entry. If the
entry is found, the translation takes place at maxi-
mum spced. If the entry is not found, then therc
is a dclay while the entry is fetched from main
memory. The translation is then performed. This
delay is eliminated on DMA transfers that cross a
page boundary, because the entry that maps the
next page is prefetched when the DMA operation
reaches a page boundary. On most DMA transfers,
this delay is negligible because it is amortized
over a large number of Q22-bus transfers. The

design ensures that the operating system does
not attempt to use the block of memory where
the scatter-gather map resides. The on-board
firmware does not include these pages in a list of
good memory pages that is passed to the operat-
ing system at boot time. An interesting side effect
of putting the scatter-gather map in main memory
was that the relatively long latency on some
Q22-bus DMA cycles uncovered latent design
bugs in several Q22-bus DMA devices. The
designs of these devices had been verified by
empirical testing with existing processors rather
than by testing to the Q2 2-bus specification.

To maintain software compatibility with the
MicroVAX II system, the scatter-gather map is ref-
erenced through a 32KB block of I/O space
addresses. The CQBIC responds to writes in this
address range by buffering the data so the CVAX
cycle can complete, updating the cache if there
is a hit, requesting the CDAL bus, and updating
the entry in main memory. If any DMA operations
are pending, they are completed before CQBIC
gives up the CDAL bus. This prevents multiple
successive map updates by the CPU from locking
out DMA activity long enough to cause Q22-bus
devices to timeout (in 10 microseconds).

On reads to this address range that miss the
cache, the CQBIC has to latch the address and
force the CVAX to retry the cycle. In this way,
CQBIC can acquire the CDAL bus to fetch the
entry from main memory. When the CQBIC relin-
quishes the CDAL bus, the CVAX retries the cycle,
and the CQBIC provides the processor with the
requested map entry. This retry mechanism is
also used to implement the interlocked instruc-
tions in the VAX instruction set.

On all interlocked instructions, the CVAX gen-
erates onc or more sequences of a read-lock cycle
followed immediately by a write unlock cycle.
The CVAX identifies these special locked cycles
by placing a unique code on the parity lines at
address time. The CQBIC recognizes the read-
lock code and forces the CVAX to retry until the
CQBIC can become master of the Q22-bus. Once
the CQBIC has mastership of the Q22-bus, mem-
ory is effectively locked and the cycle proceeds.
The CQBIC releases the Q22-bus (unlocking
memory) on the next CVAX bus transaction even
if it is not a write unlock cycle. This release pre-
vents memory from staying locked if the CVAX
has to abort the instruction due to an error en-
countered on the read-lock cycle.

Like the MicroVAX Il Q22-bus interface, the
CQBIC gives the CPU the highest rather than the
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lowest priority when arbitrating the Q22-bus.
This priority assignment reduces interrupt
latency, since the processor is delayed for a maxi-
mum of one DMA transaction before being
granted the bus to acknowledge the interrupt.
Because the CPU accesses memory over a dedi-
cated interconnect rather than through the
Q22-bus, CPU references to the Q22-bus are very
infrcquent. Therefore this priority scheme does
not have a negative impact on DMA performance.

To support a range of CVAX microcycle times
and fixed Q22-bus timing, the CQBIC was
designed to run at a fixed clock rate, asynchro-
nously to the CPU/memorysubsystem. Thisdesign
made it easier for engineers to optimize perfor-
mance of the slower asynchronous Q22-bus
(where bandwidth is ata premium). These opti-
mizations are made at the expense of lower per-
formance on the faster CDAL bus (where there is
extra bandwidth) due to synchronization dc:lays,7

System Support Functions

The SSC contains all those functions required to
support the on-board firmware, the time-of-year
clock. and the console scrial line. The chip pro-
vides the logic necessary to interface the two
64KB rcad-only memories (ROMs) containing the
firmware with the BCDAL bus. Since the ROMs are
organized as a 64K by 16-bit array, the SSC must
generatc two ROM cycles to satisfy each 32-bit
CDAL bus cycle. This ROM unpacking function
saves board space as well as the costs related to a
32-bit-wide ROM array.

The SSC assists in the firmware emulation of a
VAX console processor by providing two address
spaces through which the ROM may be
accessed — the halt-mode ROM space, and the
run-modc ROM space. Any I-stream read from the
halt-mode ROM space protects the processor
from external halt conditions and cxtinguishes
the front panel run light. Any I-stream rcad out-
side the halt-mode ROM space. including reads
from the run-mode ROM space, enables external
halt conditions. Under this condition, the front
panel run light is illuminated. The firmwarc is
organized so that console emulation code is exe-
cuted from the halt-mode ROM space, and diag-
nostics and boot code are executed out of the
run-mode ROM space. The SSC also provides the
firmware with 1 KB of battery-backed up RAM for
storage of data structures and stack space, and a
register for controlling four diagnostic LEDs.

The SSC also contains a VAX standard console
serial linc and a VAX standard battery backed up

time-of-year clock. (The VAX standard serial line
replaces the serial line chip used as the console
on the MicroVAX II. The clock replaces the
off-the-shelf clock chip.) Since the console con-
trol/status registers (RXCS and TXCS), console
data buffers (RXDB and TXDB), and the time-of-
year clock (TODR) are VAX internal processor
registers, they are accessed by means of special
CDAL bus cycles as described in the section The
Central Processing Unit and First-Level Cache.'

To save board space and cost, the SSC provides
two programmable address strobes for decoding
additional board-level registers. These address
strobes decode the second-level cache control
register (CACR) and the MicroVAX Il-compatible
boot and diagnostic register (BDR) ?

To prevent the processor from “hanging” on
unanswered CDAL bus cycles the SSC provides a
programmable watchdog timer for the CDAL
bus. The timer starts at the beginning of a
CDAL bus cycle. If the timer expires before the
cycle completes, the SSC asserts the error line,
causing the CQBIC or CVAX to abort the cycle.
This timer could not be used for all CDAL bus
cycles. To do so, the timer would have to be set to
a value greater than the Q22-bus timeout value
(10 microseconds) so that CPU accesses to the
Q22-bus would not be timed out prematurely.
Moreover, the timer would have to be set to a
value much less than the Q22-bus timeout value
so that unanswered CDAL bus cycles would not
cause Q22-bus timeouts during DMA. Since
the CQBIC contains a 10-microsecond Q22-bus
watchdog timer, the CDAL bus timer was set to
2 microseconds (greater than the longest CDAL
bus cycle) and disabled on all Q22-bus refer-
cnces.

To support a range of CVAX microcycle times,
the SSC was designed to run at a fixed clock rate,
asynchronously to the CPU/memory subsystem.
Since the performance of the functions in the SSC
was not critical, the performance impact was not
a concern.”

Hardware Interrupts

The interrupt logic is spread among three chips:
CVAX, SSC, and CQBIC. The CVAX provides four
interrupt request pins that correspond to stan-
dard VAX hardware interrupt request levels
14 through 17. The CVAX does not provide an
interrupt-acknowledge pin. The CVAX acknowl-
edges interrupts when the processor’s priority
level is below the interrupt level by generating
an interrupt acknowledge cycle on the CDAL bus.
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The “address” used is the level of the interrupt
request being serviced. The data read is the offset
of the vector within the system control block.

The SSC contains the interrupt-acknowledge
pin. The SSC responds to interrupt-acknowledge
cycles whenever it has an interrupt pending at
the level being acknowledged. If the SSC does not
have an interrupt pending at that level, it asserts
the interrupt-acknowledge signal. The CQBIC
passes interrupt-acknowledge cycles on to the
Q22-bus only when the SSC asserts the interrupt-
acknowledge signal. This interrupt-acknowledge
scheme saves a CVAX pin, at the expense of
requiring the devices in the SSC to have the
highest interrupt priority at their level (IRQ 14).

The CQBIC uses all four CVAX interrupt
request lines to support the four Q22-bus inter-
rupt request levels. (BR4 through BR7 are con-
nected to the pins corresponding to IRQ levels
14 through 17.) Since the Q22-bus has only
onc interrupt-acknowledge line, it is possible
for a level 7 (17) device to steal an interrupt-
acknowledge cycle intended for a level 4 (14)
device. (This “steal” can occur if the level 7
device is closer to the processor and posts an
interrupt after the level 4 interrupt was acknow!-
edged but before the acknowledgment reached
it.) To prevent this situation from causing a level
7 (17) device driver from running ata lower IPL,
the CQBIC sets a bit that is returned along with
the vector offset. This bit causes the CVAX to set
the processor IPL to 17 before passing control to
the driver. If the bitis not set, the processor IPL is
sct to the level at which the interrupt request
was received. The CQBIC also adds an oftset of
200 (hex) to the vector returned by the Q22-bus
device so there is no conflict with existing VAX
system control block entries.

Performance Relative to the
MicroVAX II Processor Module

The reduction in gate delays due to the new chip
technology allowed the processor microcycle
time to be reduced to Y0 ns (versus 200 ns for
MicroVAX I1) and the minimum bus cycle time
to be reduced to 180 ns (versus 400 ns for
MicroVAX II). The increase in the number of tran-
sistors made available by the new technology
allowed the following architectural mechanisms
to be used to increase performance:

= A larger prefetch buffer (12 versus 8 bytes)

= Alarger translation buffer (28 versus 8 entries)

m A 1KB, 90-ns. first-level cache

= A G4KB, 180-ns, second-level cache (instead
of 1 MB of memory)

® Multiword transfers (longword, quadword,
hexaword, and octaword versus longword)

8 CPU write buffers (one longword) in the CPU,
memory controller and Q22-bus interface

m Larger DMA buffers (16 words versus 2 words
for writes, 4 words versus 2 words for reads)

® A 16-cntry scatter-gather map cache

The combination of reduced cycle times and
architectural mechanisms produced a CPU per-
formance 3.2 times that of the MicroVAX II (as
measured by the mean of the distribution of
results from over 150 CPU benchmarks). Addi-
tionally, a slight increase in maximum [/O band-
width was achieved (as measured by simulation
with an ideal Q-bus master).

Reliability

Both the MicroVAX II design and the MicroVAX
3500/3600 design were subjected to extensive
thermal analysis. This analysis contributed to a
board layout and chip packaging scheme that
would minimize junction temperatures, thereby
improving reliability. Both designs also ensure a
high level of reliability by using preconditioned
components that have passed a rigorous quali-
fication program.

Because of its increased complexity, the
MicroVAX 3500/3600 was designed to be more
tolerant of intermittent and transient failure
mechanisms. ECC rather than parity is used to
protect main memory, and the data path between
the CPU and main memory (including both
caches) is protected by byte parity. There are
also four timers (three for the Q22-bus and one
for the CDAL bus) to detect unanswered bus
cycles. The CVAX can detect four types of CFPA
errors, four types of memory management unit
errors, one type of interrupt error and one type of
microcode error. Errors that are detected syn-
chronous to CPU execution are reported by
means of a machine check on the same cycle on
which the errors are detected. (Comparatively,
the MicroVAX II reports the errors on the subse-
quent cycle.) Unique machine check frames or
hardware error flags are provided so that the
proper error recovery routine can be invoked.
The recovery routines typically log the error,
clear the error condition, retry the operation a
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spcecificd number of times. and continue if suc-
cesstul. If the routine is unsuccessful and the
faulty hardwarc can be disabled. the system runs
in a dcgraded modc until repaired. Otherwisc,
the system will crash. Errors dctected asyn-
chronously to CPU c¢xecution ar¢ reported by a
high priority interrupt and arc logged, but in
most cases ar¢ nonrccoverable. Errors that arc
corrected by hardwarce are reported via a lower
priority interrupt, so they can be logged.

Data from rcliability qualitication testing
verified that the predominant failure mode was
intcrmittent, suggesting that the crror recovery
capabil itics built into the system would signifi-
cantly increase the uptime of the system.

Testability

Most of the architectural mcchanisms uscd
to increase the speed of computer systems (such
as caches and special purposc buffers) present
testability  problems. These mechanisms  arce
almost always dcsigned to be software transpar-
c¢nt, which makes them invisible to diagnostic
software. To solve this problem, special diagnos-
tic modes are provided for the both the first- and
second-level caches. The first-level cache diag-
nostic mode provides a way for the CPU to explic-
itly write the tag store and clear the valid bits by
using selected instructions. The second-levcl
cache diagnostic modce provides explicit access
to both the rtag and data stores through two
blocks of I/O addresses (the cache diagnostic
spacc and the cache tag diagnostic spacc).
Through the cache diagnostic space, the data
storc can be read or written, the tag store can
be written and the valid bits can be clearced.
When not in diagnostic mode, cache appears in
this space as high speed RAM. During power-up
sclf-test. diagnostic code is transterred from ROM
to this RAM to allow fast execution of the code
without requiring that main memory be func-
tional. Through the cache tag diagnostic space.
the state of the cache tag bits, parity bits. valid
bits, and several points within the cache control
logic can be read.

The MicroVAX 3500/3600 processor modulc
design also provides a diagnostic mode for main
memory and a means of writing to main memory
through the Q22-bus interfacc. The main mem-
ory diagnostic mode allows memory test times to
besignificantly reduced. Further, writing to main
mcmory through the Q22-bus interface allows
the scatter-gather map functionality to be tested

without the assistancce of another device on the
D
Q22-bus.”

Summary

Having met performance goals, MicroVAX 3500/
3600 systems were shipping in volume within
three years of the first shipments of MicroVAX 1.
At that time, two system packages, over twenty
mass storage and communications options, threc
opcrating systems, and over 200 software prod-
ucts (for VMS alone) had been qualitied and were
available from Digital. Scores of hardware and
softwarc products were also available from third-
party vendors. This offering would never have
been possible without the level of compatibility
that results from strict adherence to existing CPU
(VAX) and 1/O bus (Q22-bus) specifications.
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Design of the MicroVAX 3500/3600

Second-level Cache

The MicroVAX 3500/3600 processor module, the KA650, is a CVAX-based
uniprocessor that incorporates an unusual cache architecture: a two-level
cache. The first level is a small fast cache on the CPU chip, and the second
level is a large, somewbat slower cache on the processor module. Along
with bigh quality and bigh performance, time-to-market was a crucial goal
Sfor this third-generation MicroVAX system product. Consequently, project
engineers adbered to a philosophy of design simplicity for the second-level
cache. Cache performance measurements support their design decisions.

The MicroVAX 3500,/3600 Project

The primary goal of the MicroVAX 3500/3600
projcct was simple. The chip designers in the
Semiconductor Engineering Group (SEG) were
working on a ncw single-chip VAX, CVAX.' The
chip would have its own on-chip cache and was
projected to achiceve a performance level three
times the original MicroVAX chip used in the
MicroVAX II system. The MicroVAX Development
Group would work in concert with the SEG cftort.
Our goal was to ship a high-quality, high-perfor-
mance CVAX-bascd uniprocessor, which would
be upward compatible with MicroVAX 11 systems.
This ncw product must be available as soon as
CVAX chips could be produced in volume.

Given the objectives of high quality and
MicroVAX II system compatibility, the remaining
design goals were carefully prioritized as listed
below:

1. Time to market
2. Raw computational performance
5. Mcmory expansion

4. Dircct-memory access (DMA) /real-time per-
formancce

5. System cost and price
6. Additional functionality

The importance of quickly delivering the
MicroVAX 3500/3600 to markct led to a close
working relationship between the enginecrs in
SEG and MicroVAX Development. We designed
and built the MicrovAX CPU and memory mod-
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ules in parallel with the CVAX project. a process
that relied heavily on simulation. In turn, the
MicroVAX project team provided the initial
debug testbed for CVAX: CVAX first booted VMS
in a MicroVAX 3500/3600 system.

Overview of the

KAG650 Processor Module

The system functional partition (Figure 1) shows
how the KAGS(O processor module fits into the
cntire computer system. The processor module
communicates to mass storage, communication,
and other 1/O devices over the Q22-bus. Main
memory connects to the processor on a private
memory bus which uses both the backplane and
“over-the-top” ribbon cable. A console pancl car-
rics bit rate and configuration switches, a single-
digit hexadecimal display, a connector for the
console serial line. and a NiCd battery for the
processor’s time-of-year (TOY) clock.

The module functional partition in Figure 2
shows the basic parts of the KAG50 processor
modulc. All memory traftic tlows over the CDAL
bus (CVAX data/address lines). Only 1/0O space
rcegisters reside on the BCDAL bus (buftered
CVAX data/address lines).

The memory controller subsystem and the
Q22-bus interface subsystem are cach single
chips: the CMCTL (CVAX mcemory controller)
and CQBIC (CVAX Q22-bus interface chip).“
Most of the system support functions are con-
tainced in another chip, the SSC (system support
chip).' Each of these was designed in parallel
with CVAX. as part of a complcte CVAX chip set.
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The primary problem left to the KAGS0 mod-
ulc designers was to balance two key goals: to
design the board-level cache for the highest per-
formance possible and to do so without endan-
gering the project’s time-to-market goal.

Two-level Cache Architecture
Description

The KAGSO is Digital’s first commercially avail-
able processor to incorporate a two-lcevel cache.
The first level is a small cache on the CPU
chip with a cycle time of one microcycle, or
90 nanoscconds (ns). The second level is a large
cache on the processor module with a cycle time
of two microcycles, or 180 ns. In comparison,
the cycle time of main memory system is five
microcycles, or 450 ns.

The goal of each level of cache is to reduce
effective memory access time on processor read
cycles. At the chip level, the CVAX processor
would prefer to use just one microcycle to access
memory. However, the CVAX bus interface unit
(BIU) requires two microcycles to access mem-
ory oft the chip. To compensate for this gap, the

10 S

MicroVAX 3500/3600 System Functional Partition

CVAX designers included an on-chip cache that
could be accessed in one microcycle, and made
the cache as large as practical. From the module
perspective, CVAX canrun a bus cycle as quickly
as two microcycles. However, the memory system
requires five microcycles to access main memory.
To compensate for this second gap, the module
designers included a module level cache that
could be accessed in two microcycles, and made
the cache as large as practical

First-level Cache

The first-level cache is a 1 kilobyte (KB), two-way
sct associative cache with a quadword block size.
The cache is organized as 64 rows, each row con-
taining two scts, and each set containing 8 bytes.

Two bits in the cache disable register (CADR)
select whether the first-level cache stores
[-stream only, D-stream only (ordinarily used
only for diagnostics), or both I-stream and
D-stream references. The cache allocates a block
whenever a cacheable read reference misses the
cache. The CVAX BIU then generates a quadword
read cycle to fill the allocated block.
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Figure 2 MicroVAX 3500/3600 Module Functional Partition

The CVAX BIU waits to determine whether a
rcad reference hits in the cache before starting
the bus cycle to access memory. This wait helps
free the processor bus for use by DMA devices, but
requires faster RAMsin the second-level cache.

The processor writes directly through the
cache to memory. Therefore, when a cache block
is allocated, the block being replaced need not
be written back to memory. The CVAX BIU also
incorporates a write buffer to support dump-
and-run writes by the processor. If the CDAL bus
is busy when CVAX needs to write, the BIU will
buffer one write cycle. The buffering allows the
processor to continue execution, reading from
the first-level cache. Thus, some write cycles
require only one microcycle.

When DMA devices write to main memory, the
cache must be updated to reflect the change in
main memory. Cache data that is no longer con-
sistent with the contents of main memory is
called stale data. To prevent stale data from accu-
mulating in the cache when DMA devices write to
memory, the cache will check and invalidate one
or two blocks as necessary. Invalidation ties up

the first-level cache for three microcycles per
quadword block and six microcycles for an octa-
word. However, these delays stall CPU execution
only if the CPU requires access to the cache dur-
ing those microcycles.

Second-level Cache

The second-level cache is a 64KB direct-mapped
cache, which like the first level, also has a quad-
word block size. This cache is organized as
8K rows, each row containing one set of 8 bytes.

The second-level cache allocates a quadword
block whenever CVAX reads a quadword that
misses the second-level cache. (Quadword reads
are ordinarily the result of allocation in the first-
level cache. Unusual bit settings in the CADR,
however, can cause the CVAX BIU to generate
quadword cycles on reads without actually
enabling the first-level cache.) Thus, the second-
level cache will include the same kind of data as
the first-level cache: I-stream only, D-stream
only, or I- and D-stream references.

Instead of waiting to determine whether a read
reference hits in the cache, the memory con-
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troller begins accessing memory in parallel with
the tag look-up in the sccond-level cache. If the
reference hits in the cache, the memory con-
troller will abort its response to CVAX (although
the control cycle to the memory modules com-
pletes normally).

Like the first-level cache, the second-level
cache also writes directly through to memory.
The memory controller will perform a dump-and-
run write if the write is an unmasked longword.
Therefore many write cycles can complete in two
microcycles. This completion time assumes the
mcmory modules are not busy completing a pre-
vious dump-and-run write, aborted read cycle, or
refresh cycle

During DMA the sccond-level cache will also
check and invalidate one or two blocks as neces-
sary. These checks prevent stale data from accu-
mulating during DMA write cycles to memory.

Design of the

KAG650 Second-level Cache

The importance of minimizing time taken to
deliver the product to market made simplicity a
high priority. For most major design dccisions,
we chose the simplest implementation.

Cache Speed

The cache spced was determined by the fastest
CVAX bus cycle. CVAX can read or write a single
longword in two microcycles (180 ns) and read a
naturally aligned quadword in three microcycles
(270 ns). Each added wait state costs another
microcycle (90 ns). For example, a typical quad-
word read from main memory requircs five
microcycles for the first longword and threc
microcycles for the sccond longword — a total of
720 ns. Therefore the goal of the sccond-level
cachc was to allow CVAX to exccute from mem-
ory with no wait states. Preliminary timing dia-
grams determined that to keep up with a 100-ns
CVAX the cache would require 45-ns static RAMs.
When later in the project KA650 module design-
ers changed the clock speed from 100 ns to
90 ns, they also replaced the 45-ns cache RAMs
with 35-ns RAMs.

Cache Size

Increasing a cache’s size always improves its
performance. Since high performance was a
major priority, choosing the cache size was sim-
ply a matter of finding the largest RAM that would
run fast enough, fit on the board, and not risk the

schedule. At the beginning of the project, we
doubted that 256-kilobit (Kb) static RAMs with
45-ns access time would be available soon
enough. However, we cxpected 64Kb RAMs to be
maturc when Manufacturing would need produc-
tion volumes of the parts for the MicroVAX 3500/
3600 system.

The 64Kb RAMs were available in three organi-
zations: 64K by 1, 10K by 4, and 8K by 8. We
could have arranged these to form a 256KB cache
(using 32 64K-by-1 RAMS), a 64KB cache (using
8 16K-by-4 RAMs) or a 32KB cache (using 4 8K-
by-8 RAMs). The 256KB cache would not have
even fit on the module. and so was not consid-
ercd. The 64KB cache would fit (requiring only
slightly more module spacc than the 32KB
cache) and was actually cheaper than the 32KB
cache. So naturally we chose the 64KB cache. We
then added four 16K-by-1 RAMs for byte parity.

Cache Organization
We quickly ruled out organizing the cache with
morc than onc set. More than one sct would
cither require too much logic or run too slowly.
To get data fast enough from the correct set on
a rcad hit would require a multiplexer and a
separate sct of RAMs for each sct. This additional
logic would take more space than we had avail-
able Another possibility was to use a “sclect set”
signal generated from the tag-store match signals
as an address bit into the data store RAMs. This
organization, however, would run too slowly.
The cache performance simulation data avail-
ablc to us assumed the cache was flushed on
cvery context switch. We felt this assumption
might be overly pessimistic for caches as large as
64KB. Furthcrmore, we expected that more real-
istic data would not show a large performance
advantage for a two-way set associative cache
over a direct-mapped cache. We therefore chose
the simpler direct-mapped organization.

Block Size

When choosing the block size for the second-
level cache, we again decided in favor of simplic-
ity. We chosc to make the second-level cache use
the same size block as the first-level, which was
alrcady set at a quadword. At quadword block
size, the second-level cache can allocate a block
simultaneously with the first-level cache. The
second-level cache simply captures the data from
the quadword read as it comes from memory over
the CDAL bus.
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We had several additional reasons for not
choosing cither a longword block size or a sizc
larger than a quadword. Use of a longword block
size in the second-level cache complicates the
control logic and potcentially degrades perfor-
mance. To respond to a CVAX quadword read, the
cache would require two separate tag look-ups. If
the first look-up hit but the second look-up
misscd, the cache would have to retry the bus
cycle. The retry would invalidate the block in the
first-level cache and waste bus bandwidth. On the
other hand, use of a block size larger than a quad-
word would require e¢xtra data path and control
to performblock fill operations.

Tag Store Organization

Once we knew the data store size (64KB), orga-
nization (direct-mapped), and block size (quad-
word), we could determine the organization of
the tag storc.

The tag store requirces one row for each of the
8.192 quadword blocks of the data store. Of the
CVAX 30 bit physical address. 13 address bits
(bits 15 through 3) arc used to select the quad-
word block and associated tag store row. Each tag
row must store a parity bit, a valid bit, and
enough of the memory address to specify where
in main memory the quadword block of data
came from. Since the KAGS50 would architec-
turally support no morc than 64MB, address
bits 29 through 26 would always be zero to
access main memory. This left 10 address bits
(bits 25 through 16) to be stored in the tag
row. Therefore the tag store would require
8,192 words of RAM, each word consisting of
10 tag bits plus a valid bit and a parity bit.

To makce this 8K-by-12 array, we used three of
the same 16K-by-4 RAMs used in the data store.

We did examine the special 2K-by-9 tag-store
RAMs being developed by some memory vendors.
We concluded that these RAMs were too small
and their availability too risky for the KAG50.

Look-aside Architecture

The design of the first-level cache keeps most
of the processor memory traffic off the CDAL
bus. Instcad of this “look-through” design, the
sccond-level cache uses a “look-aside” architec-
ture which simplifics the bus data path and con-
trol and improves performance on cache misses.
In the look-aside architecture, both the
second-level cache and the memory controller
reside on the same bus. When CVAX starts a read

cycle, the memory controller begins accessing
main memory in parallel with the tag check in
the second-level cache. If the cycle misses the
cache, then main memory is prepared to respond
as quickly as possible. If the cycle hits the cache,
the memory controller scnses the hit and aborts
its response to the bus cycle. A drawback of this
scheme is that the memory controller must still
complete the control cycle to the dynamic RAMs
of main memory. Consequently, the controller
cannot respond as quickly as it had initially
if the cache hit is immediately followed by a
cache miss. We expected this penalty to be
insignificant.

The alternative to a look-aside architecture
would be to place the memory controller on a
separatc bus. The bus cycle would pass to the
controller only after the cycle missed the second-
level cache. This design would have improved
the efficiency of main memory usage. However,
this design requires additional data path and con-
trol to crecate the separate memory bus, and
reduces processor performance by adding at least
one additional microcycle to the pcenalty for a
cache miss.

Handling of Write Cycles

We chosc a simple write-through design for the
sccond-level cache instead of a more complex
write-back design. The penalty of not using
write-back is reduced by the CMCTL dump-
and-run write feature. When CVAX writes an
unmasked longword to main memory, the CMCTL
latches the address and data and terminates the
bus cycle before the write to main memory is
actually completed. If write cycles occur back to
back (which is common for VAX processors),
then the second write will be dclayed while
the first one completes. However, many write
cycles can still complete in the minimum two
microcycles.

DMA Access to the Cache

To maintain design simplicity, we decided not to
allow DMA to read or write the sccond-level
cache. This scction discusses several of the
possibilitics we considered and rejected. These
include DMA reads, DMA write-through. and a
cache without valid bits.

First, we considered allowing the CQBIC
(which is the only DMA device on the CDAL bus)
to read from the second-level cachc. However,
the cachc control logic is synchronous with the
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CVAX clocks. The control logic design would
have been significantly complicated if that logic
had to respond to the CQBIC, which runs asyn-
chronous to the CVAX clocks.

Second. the cache must recognize DMA writes
to memory to prevent stale data from accumulat-
ing in the cache. We considered letting DMA
write cycles write through the cache, but again
concluded the timing was too complex to be
practical. (Bus parity was also a concern, which
is discussed in the section Cache Parity.) Instead,
the second-level cache latches the address and
simply invalidates one or two blocks if the
address hits in the cache.

Finally, while considering DMA write-through,
we thought about designing the cache without
any valid bits. Power-up routines in the read-only
memory (ROM) code could initialize the cache
to match main memory. The cache would then
recmain consistent with memory unless an uncor-
rectable ECC (error correcting code) error was
cncountered in main memory. When that error
occurred, the cache would simply disable read
hits until the operating system could restore con-
sistency with main memory by writing the quad-
word block containing the error. Of course once
we decided against DMA write-through, we had
to include valid bits.

Cacbhe Parity
To improve the integrity of the second-level
cache, both the data store and the tag store of the
sccond-level cacheare protected by parity.

Data Store Parity — Data store parity was sim-
plified by taking advantage of the CDAL bus par-
ity supported by CVAX and CMCTL. The data
store simply stores and returns parity captured
off the bus, and asserts CDPE (CVAX data parity
cnable) to have CVAX check the parity.

This parity checking scheme was another rea-
son we rejected DMA write-through, since CQBIC
ncither generates nor checks CDAL bus parity.

One drawback to this simple scheme is that the
processor cannot easily determine the source of a
CDAL bus parity error. A CDAL bus parity error
can be caused by a cache failure, a CMCTL fail-
ure, or an actual bus fault (such as open etch).
This lack of isolation makes error diagnosis
difficult or impossible when CVAX detects a
CDAL bus parity error.

One useful feature we did not think to include
was a control register bit to disable the assertion
of CDPE and the subsequent parity checking by

CVAX. Such a bit would allow a machine check
handler to isolate a failing bit in the data store.
Without this control register bit, software can at
best determine in which byte the error resides; if
multiple bytes have errors, only one byte can be
identified.

Tag Store Parity — The tag store parity must be
generated and checked by the tag store itself.
Two separate parity trees arc used:

s The predictive parity tree
s The error-checking tree

The predictive parity tree generates the parity
of the tag field of the address. This tree predicts
what the parity stored in the RAM must be for the
bus cycle to hit in the cache. Predictive parity is
fast because the parity is calculated while the tag
RAMs are looking up the tag. This scheme does
not delay the tag comparison and is sufficient to
guarantce that bad parity stored in the tag RAMs
will force a cache miss. However, it is not
sufticient to determine whether the parity in the
RAMs is actually bad. Thus, a second parity tree,
the error-checking tree, is needed.

The error-checking tree identifies bad parity in
the cache tag RAMs. The output of this second
tree is checked after the hit/miss decision is
made, to determine whether a miss was caused
by bad parity. If bad parity is detected, the cache
control register error bit is set, the cache-enable
bit is cleared, and an interrupt is posted to the
processor. Since the bad parity forced a miss, no
state is corrupted, and a process or system crash
is averted.

Second-level cache tag parity covers both the
10 tag bits and the valid bit to protect against
erroncously setvalid bits.

Cache Diagnostic Space
Early in the project we recognized the value
of being able to directly access the cache as
64KB of fast RAM. Thus we created “cache diag-
nostic space” in the 64MB address range from
1000 0000 to 13FF FFFF. In cache diagnostic
space, the cache RAM appears as 1,024 copies of
the 64KB of cache. The cache responds to all
CVAX read and write cycles in this address range,
effectively forcing a cache hit. For simplicity,
DMA access to cache diagnostic space is not per-
mitted.

During power-up self-test, some diagnostics
are relocated from the boot/diagnostic ROM
to cache diagnostic space for faster execution.
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Cache diagnostic space was also useful at initial
debug of the CVAX chip set. We were able to
downline-load diagnostic programs through the
console serial line and execute them from the
cache diagnostic space. With the diagnostic pro-
grams in this cache space, we could continue
debug work on the module without relying on
cither main memory or the Q-bus interface.

Writing to cache diagnostic space could cor-
rupt normal cache operation by creating stale
data in the cache. To prevent this, write cycles to
cache diagnostic space normally invalidate the
tag for that address. This invalidation also pro-
vides a simple means for flushing all or part of the
cache. To simplify diagnosis of cache faults, a
diagnostic mode bit in the cache control register
can be set to cause writes to cache diagnostic
space to set the valid bit instead of clearing it.
Setting the diagnostic mode bit also clears the
cache enable bit. Thus normal allocation and
DMA invalidation are prevented from acciden-
tally upsetting a diagnostic pattern being written
into the cache. These features simplify the task of
putting the cache in a specific state for diagnostic
purposes.

Performance Measurements

Mcasurements of sccond-level cache perfor-
mance bear out that the fundamental architec-
tural decisions were sound.

The measurcments were performed on a small
system consisting of a KAGS0 CPU with 16MB of
main memory, an RQDX3 disk controller with an
RD54 hard disk, and a DEQNA Ethernet interface.
The CPU module was modified with additional
circuitry to detect various kinds of cacheable bus
cycles. The system ran VMS version 4.7A. To heav-
ily load the system with reasonably realistic
workloads, wc¢ uscd varying combinations of
three basic tasks:

s Asscmbling and linking a large program writ-
ten in VAX MACRO

s Running a CAD program that compares the
topology of two large net lists

s Copying large files (greater
blocks) across the network

than 8,000

Four 16-bit counters and a logic analyzer were
uscd to log the occurrence of particular bus
cycles. For each measurcment, the cache perfor-
mance was monitored continuously for 5 to 30
minutes (depending on the workload and type of

bus cycle) to collect a total of 268 million
sequential bus cycles of interest. For example, to
study the read hit rate, the four counters simulta-
neously collected:

® The total number of cacheable quadword read
cycles

s The number of cacheable quadword read
cycles that hit in the second-level cache

s The number of cacheable quadword read
cycles that missed the second-level cache
(Counting both the cache hits and misses pro-
vides a useful error check.)

s The number of cacheable quadword read
cycles that hit in the cache, or that would have
hit if the valid bit had been set

Since CVAX gives no external indication when
a memory read is satisfied by the internal cache,
only reads that miss the first-level cache (and
therefore generate a bus cycle) can be directly
measured. Thus, it is very important to note that
the read hit rate of the second-level cache alone is
not the same as the read hit rate of both caches
taken together as a single whole (which is beyond
the scope of this paper). This is not a problem for
write cycles because the first-level cache is write
through.

Test Results

For the workloads tested, the read hit rate was
typically 85 percent and ranged between 82 per-
cent and 91 percent. This is what we intuitively
expected: the large size of the cache would kecp
the hit rate high, even though the first-level cache
tends to strip off much of the memory access
locality.

We measurcd the read hit rate of the second-
level cache with the first-level cache turned off,
just to get an idea of how well a simple but large
cache can perform. The memory read hit rate
ranged between 96 percent and 99 percent when
the first-level cache was turned off. This demon-
strates that even a simple direct-mapped cache
performs well if it is large enough. However, note
that turning on the first-level cache tends to radi-
cally alter the bus traffic seen by the second-level
cache. Therefore a direct comparison between
hit rates with and without the first-level cache
can be misleading.

The “would have” hit rate is a measure of what
the read hit rate would have been if DMA write
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cycles wrote through the cache instead of invali-
dating the cache. The modifications to the CPU
module included an c¢xtra tag comparator that
ignores the valid bit. Oncc the cache has initially
filled. valid bits are clcared only by DMA invali-
dates. If the tag matches but the valid bit is
cleared, then the cache miss was caused by a
DMA invalidate and would have been a hit if the
DNMA cycle had written through.

The “would have” hit rate showed the benefit
of DMA write through would have been ncgligi-
ble. The incremental improvement in hit rate was
typically 0.1 percent, though in one case it rose
to about |.3 percent (copying large files over the
network, with no other computational tasks).
This improvement is lost in the noise when com-
parcd to the normal task-to-task variation in hit
ratce. Again, this is what we intuitively expected:
DMA tends not to write into memory currently in
use by the processor. Clearly we made the right
dccision to avoid the added complexity of DMA
writc through.

Mcemory write cycles were also measured for
the same tasks as memory reads. However, instead
of mecasuring thce “would have” hit rate, we
counted the number of cycles that took longer
than two microcycles to complete. This gives us
some measure of the effcctiveness of the CMCTL
dump-and-run write buffer.

The memory write hit rate ranged bcetween
77 percent and 89 percent. Of all memory write
cycles, 46 percent to 63 percent took longer than
two microcycles (the minimum write cycle
time): and 37 percent to 44 percent took longer
than two microcycles and hit in the cache.

We had hoped more cycles could take advan-
tage of the dump and run write buffer in the
CMCTL. However, this performance is still good
for the relative simplicity of the CMCTL write
buffer. Also remember that the CVAX internal
writc bufter helps shield CPU performance from
the delays of many write cycles. The complexity
and schedule risk of adding another write buffer
or designing the cache for write-back operation
would not have been justifiable.

‘To examine the relative impact of the two-level
cachce on processor performance, we ran bench-
marks with both caches cnabled, each cache
alone, and both caches turned oft. Table 1 shows
some typical results normalized to the perfor-
mance of the KAGS0 with both caches turned on.
Performance of the MicroVAX I is shown for
comparison.

Table 1 Comparison of Benchmark Results

for First- and Second-level Caches

Second- First-
level level

Bench- Neither Cache Cache Both MicroVAX Il
mark Cache Only Only Caches

HANOI 0.45 0.70 1.00 1.00 0.42
PRIME 0.68 0.81 097 1.00 0.24
FFT45 052 0.69 0.91 1.00 0.28
JACOBI 0.47 0.65 0.93 1.00 0.27
CAE2 0.51 0.69 095 1.00 0.31

Each cache provides a significant performance
boost, but performance with the first-level cache
alone is better than performance with the second-
level cache alone. The faster cycle time and
two-way associativity of the first-level cache out-
weighs the large size of the second-level cache.
An cxtreme example of this is the Towers of
Hanoi benchmark, where the performance of
both caches together is no better than that of the
first-lecvel cache alone.

Conclusions

At the project close, we had met our fundamental
goals. The MicroVAX 3500/3600 CPU is compat-
ible with the MicroVAX II but delivers threce
times the performance — performance attribut-
able in part to the two-level cache. And becausc
we adhered to a simple design approach, the new
system was ready to ship as soon as CVAX chip
sets were available in production volumes.
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The CVAX 78034 Chip,
a 32-bit Second-generation
VAX Microprocessor

The MicroVAX 78034 chip — also known as CVAX — is a second-genera-
tion single-chip VAX microprocessor. A primary project goal was to
develop a chip with three times the performance of the first single-chip VAX
processor, the MicroVAX 78032. Therefore, architecture and circuit design
efforts were directed toward decreasing ticks per instruction (TPI) and
machine cycle time. The designers reduced the TPI by 27 percent and
achieved a 90-nanosecond (ns) cycle — a significant improvement
over the 200-ns cycle time of the first-generation chip. Implemented in a
2-micron CMOS process, the chip comprises six major functional units.
These include the instruction queue, execution unit, memory management
unit, bus interface unit, microsequencer and control store, and a unique
on-chip cacbhe.

The CVAX 78034 CPU chip is a second-gencera-
tion, single-chip VAX microprocessor. This chip
is the CPU of the MicrovVAX 3500 and 3600 com-
puter systems, which have approximartcly three
times the performance of the MicroVAX 11 com-
puter system ' The VAX 6200 family of systems
uscs slightly faster 80-ns (speed-binncd) CVAX
CPU chips in a multiprocessor configuration. In
this paper. we describe the CVAX chip and
cexplain how the increase in performance was
achicved.

Project Goals

‘I'he primary project goal was to develop a single-
chip CPU that implementcd the VAX architecture
and dclivered three times the performance of the
MicroVAX 78032 CPU chip used in the MicroVAX
Il computer systems. Of the several elements in
this goal. performance presented the greatest
design challenge.

The performance of a CPU is inversely propor-
tional to the product of ticks per instruction
(IP1y”* and the machine cycle time. TPl depends
on the performance of the system architecturc.
The minimum machine cycle time depends on
circuit speed and on how the architecture is

Digital Technical Journal
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implemented. In the CVAX chip, both the TPI
and the machine cycle time were improved to
meet the performance goal.

Much cffort went into reducing the TPI. By
way of comparison, the MicroVAX I system,
which is based upon the MicroVAX 78032 chip,
performs at approximately [1.5 TPIl, whereas
the MicroVAX 3600 system, which uses the
CVAX 78034 chip, performs at approximately
8.4 TPI. The TPl was lowered mainly by reducing
the average number of cycles required to access
memory. This reduction in the number of cycles
was achicved by the inclusion of the foliowing
architectural features in the system:

s A [-kilobyte (KB), on-chip instruction and
data strcam cache, which is capable of a long-
word read each cycle

= A (4KB. second-level cache on the board,
which is capable of a longword read or writc
in two cycles and a quadword read in thrce
cycles

= A 28-cntry translation bufter (TB)., which
achicves a high hit rate for virtual-to-physical
address translation
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Table 1 CVAX Instruction Set Architecture

Instruction Type Number
Implemented Fully by CPU
Integer/logical 89
Address 8
Bit field 7
Control 39
Procedure call 3
Miscellaneous 10
Queue 6
System support 11
Character string 8
Subtotal 181

Implemented by Floating Point Chip

F floating 24
D floating 23
G floating 23

Subtotal 70

Implemented Partially by CPU

Character string 3
Decimal 16
Edit 1
CRC 1

Subtotal 21

Implemented Fully in Macrocode

H floating 28
Octaword 4

Subtotal 32
Total 304

Other factors influencing the lower TPI are as
follows:

s More efficient microcode was implemented for
some instructions. In general, most complex
instructions, such as CALLx, RET, PUSHR,
POPR, and INSV, were coded for speed rather
thanfor space.

s Six additional instructions were i mplemented
in microcode. These instructions are CMPC3,
CMPC5, LOCC, SKPC, SCANC, and SPANC.

m The instruction decode section decodes all
specifiers instead of relying on the microcode
to decode some specifiers.

The machine cycle time reduction was deter-
mined in part by the technology chosen for fabri-

cation. The first-generation chip, the MicroVAX
78032 CPU, has a 200-ns cycle time and was
implemented in a 3-micron NMOS process. In
comparison, the CVAX 78034 CPU chip had a
goal of a 90-ns cycle time and was implemented
in a 2-micron CMOS process. However, only
60 percent of the improvement in the CVAX
cycle time results from the fabrication process.
The remainder results from architectural and cir-
cuit innovations, which are described in the sec-
tion Internal Organization.

The section following presents an overview of
the CVAX architecture.

CVAX Architecture

The CVAX 78034 CPU chip implements the VAX
architecture, which has 16 general-purpose reg-
isters, the processor status longword, and 18 mis-
cellancous privileged registers. All 304 VAX
instructions are supported by the system.4 The
chip fully executes 181 instructions and pro-
vides microcode operand parsing for 21 instruc-
tions that are emulated with macrocode. The
chip passes 70 F, D, and G floating point instruc-
tions to a companion floating point chip. The
remaining 32 instructions are fully emulated in
macrocode. Table 1 summarizes the instruction
setarchitecture.

The chip memory management hardware and
microcode provide a demand-paged virtual mem-
ory environment. The virtual memory size is
4 gigabytes, and the physical address space is
1 gigabyte.

External Interface

The CVAX bus provides a flexible interconnect
protocol between all CVAX family members. The
primary data bus is 32 bits wide and is time mul-
tiplexed to share addresses and data. Up to four
longwords can be transferred with each address.
Strobes provide timing information for syn-
chronous and asynchronous devices. Direct mem-
ory access (DMA) request and grant signals are
used to control arbitration of the data and address
line (DAL) bus between the CPU and peripheral
chips.

Shown in Figure 1, the CVAX 78034 CPU chip
is a synchronous device on the CVAX bus. In addi-
tion to supporting the CVAX bus protocol, eight
dedicated pins support a floating point coproces-
sor interface. These pins are time multiplexed
between the CPU chip and the coprocessor chip
to transfer control and status information.
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A clock chip generates pairs of 180-degree
phase-shifted clock signals that are distributed to
all synchronous MOS components in the system.
The clock also generates auxiliary pairs of clocks
that can be used by any non-MOS components in
the external interface. Separation of the clocking
for MOS and non-MOS eclements provides better
skew control for the critical MOS clock signals.

Microarchitecture

The CVAX 78034 CPU chip has some pipelining
and is microprogrammed. The chip comprises six
major functional units:”
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= Memory management unit (M-Box)
= Bus interface unit (BIU)

= Cache

a Microsequencer and control store

The photomicrograph in Figure 2 and the block
diagram in Figure 3 illustrate all functional units
on the chip.

Internal Organization

This scction describes the six major functional
units of the chip. As noted earlier, the emphasis
here is on those aspects of the design that en-
hanced the machine’s performance. In addition,
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Figure 2 Photomicrograph of the CVAX CPU Chip
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The CVAX 78034 Chip, a 32-bit Second-generation VAX Microprocessor

at the end of this section we discuss the design
approach taken to build in chip testability.

The flow of information between all functional
units on the chip is synchronized by four on-chip
clock phases of nominally equal duration. All cir-
cuits werc designed to function with the partial
phase overlap or underlap that can result from
external clock skew and variations in the fabrica-
tion process.

Instruction Decode and
Prefetch Queue

The instruction decode and prefetch queuc, the
1-Box, controls macroinstruction sequencing and
instruction stream prefetching.8 During a micro-
cycle, the I-Box determines what the next micro-
code dispatch will be, based on the instruction
stream data and the current processor state.

The CVAX I-Box is designed to generate the
microcode dispatch address for every spccifier
tlow. This design differs from the MicroVAX CPU
78032 chip design; there, the I-Box provides the
dispatch address for just the first two specifiers of
a macroinstruction and relies upon the micro-
code to generate the dispatch address for addi-
tional specifier flows at a performance cost of one
microcycle per specifier.

Primary subsections of the CVAX 78032 1-Box
include the instruction decode read-only memory
(ROM), the dispatch programmable logic array
(PLA), and the prefetch queue.

The instruction decode ROM (IROM) contains
the information about VAX macroinstructions
that is required to parse the instruction stream.
The IROM determines the number of specifiers
for an instruction, the sizes of its operands, and a
partial microaddress for the execution micro-
code of the instruction.

The dispatch PLA examines I-Box state, instruc-
tion stream data, and other microprocessor states
to predict the next hardware-supplied microad-
dress for the microscquencer. This PLA is sclf-
timed and evaluates in slightly under one clock
phase.

The I-Box instruction prefetch queue operates
in parallel with the instruction execution hard-
ware on the chip. Whenever a longword in the
instruction prefetch queue is empty, the 1-Box
issues a rcquest to the M-Box to read the next
aligned longword in the instruction stream. If the
M-Box and BIU are not doing some other read or
write operation, they will fetch the requested

longword and send it to the instruction prefetch
queue.

When a microinstruction that loads the pro-
gram counter register is detected, for example,
during a branch instruction, the prefetch queue
is flushed. A new instruction must then be
fetched before the processor can proceed.

Up to three prefetched longwords of instruc-
tion stream data can be queued by the prefetch
queue. In addition, the prefetch queue rotates
the instructions to bring the opcode to the front
and extracts in-line instruction stream data for
use by the E-Box.

Execution Unit (E-Box)

The main functional blocks in the execution unit,
the E-Box, are the register file, program counter
(PC), constant generator, shifter, and arithmetic
and logical unit (ALU). The data path has two
precharged 32-bit read buses, called the A and B
buses, and a static write bus, called the W bus.
The functions performed by the E-Box during a
cycle are determined by the current microin-
struction and internal state. Following are
descriptions of each of the main functional
blocks.

The register file contains 31 single-read-port/
single-write-port registers and 8 dual-read-port/
single-writc-port registers. The register file is
used in the data path where compact layout is
especially important. Therefore, to save chip area
the register file cell was designed using an NMOS
pass gate rather than a full transmission gate.

The 32-bit PC is located in the data path along
with the program counter adder. This adder is
used to increment the PC as macroinstructions
are parsed.

Literals can be introduced into the data path by
conditionally discharging the precharged A or B
bus lines.

The shifter function is implemented as a data
extractor rather than a full shifter, which would
require more hardware. The extractor can extract
32 contiguous bits from a 64-bit field. When the
values on the input buses are identical, the high-
order bits appear to wrap around to the low-order
positions, thus mimicking a fullshifter.

The shifter has the two 32-bit precharged read
buses (the A and B buses) as inputs and a 32-bit
output. The shifter is implemented using NMOS
transistors. The control diagonals are run in
polysilicon strapped by metal at both ends.
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Because the RC delay in asserting the control
lines is long, the control lines are driven before
the input data is valid. The inputs are then condi-
tionally pulled low, discharging the outputs.

The ALU in the data path is capable of addition,
subtraction, and a variety of logic operations. The
ALU also includes a 1-bit left/right shifter and
additional logic to support multiply and divide
operations. The ALU is implemented using a
carry-lookahead scheme with propagate and gen-
erate logic.

The ability to read the register file, do an ALU
or shift operation, and write the result back into
the register file all in one cycle is important to
the machine’s performance. This critical path
was alleviated by partially overlapping the regis-
ter file write with the next register file read. The
partial overlap introduces a race between the
write and the read, but the circuit delay in assert-
ing the read select line is sufficient to ensure that
the race is always won without extending the
cycle time.

Memory Management Unit

When memory management is enabled, the M-Box
uses a fully associative translation look-aside
buffer (TB) to translate virtual addresses to physi-
cal memory addresscs. The major design goal for
the M-Box was to achieve a TB miss rate that was
one third that of the MicroVAX 78032 CPU chip.
Consequently, we increased the size of the TB
from 8 to 28 page table entries (PTEs). Further-
more, we used a more efficient microcode routine
to reduce the number of cycles required to fetch
a PTE on a TB miss. A PTE is composed of the
higher order bits of the physical address, the
access protection field, and other memory man-
agement information. In the MicroVAX 78032
CPU chip. a least-recently-used algorithm was
employed to replace the PTE on a TB miss. How-
ever, the implementation of this algorithm
requires complex circuits and a large amount of
chip area as the TB size is increased. For this rea-
son, we implemented a simpler but almost
equally efficient not-last-used algorithm in the
CVAX 78034 CPU chip.

To realize a single-cycle cache read operation,
both a virtual-to-physical address translation and
a check of the access protection field of the
PTE must occur in just two clock phases. How-
ever, there is not enough time to check the
access protection field after the translation has

occurred. Therefore, all access protection fields
in the TB are simultaneously compared to the
current access type while the translation is in
progress. This scheme requires that the access
protection field be fully decoded before it is
stored in the TB.

In addition to interacting with the cache, the
M-Box interfaces with the BIU and the I-Box.
The M-Box contains three registers: the virtual
address (VA) register, the virtual address prime
(VAP) register, and the virtual instruction buffer
address (VIBA) register. After a data read or
write using VA or VAP, VAP is loaded with the
most recently used address plus four. In this way,
VAP can quickly generate sequential longword
addresses. During a memory operation, the
M-Box sends the address to the cache and BIU.
The M-Box will forward data from the E-Box
during the next cycle if the operation is a write,
or capture data for the E-Box if the operation is
aread.

Whenever there is space available for a long-
word in the [-Box prefetch queue, the I-Box
requests instruction stream data. If the M-Box
does not decode a memory read or write request
from the current microinstruction, it services the
instruction stream read request using the virtual
address stored in the VIBA register. After a
prefetch reference succeeds, the VIBA register is
incremented by four in preparation for the next
prefetch.

Bus Interface Unit

The bus interface unit, the BIU, controls external
chip operations, internal cache access and
refresh, and arbitration for the internal data and
address bus. The BIU contains two state
machines.

» The internal state machine controls the arbi-
tration for the internal data and address bus
(IDALs).

m The external state machine, controls the arbi-
tration for the external pins and DALs.

The design goal was to achieve a single-cycle
read operation for hits to the internal cacheand a
two-cycle write operation for an ideal memory
subsystem. In addition, better system reliability
is achieved by providing parity protection on all
the external data transfers and internal cache
rcad/write operations.
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To accomplish a single-cycle read operation,
the two state machines were implemented as self-
timed PLAs that require just one phase to evalu-
ate. The separation of control operations between
the two state machines allowed the PLAs to oper-
ate in different phases. Read/write-related, inter-
nal time-critical signals are generated by the
internal state machine. This state machine evalu-
ates first, stalls the CPU if necessary, controls the
cache, and sets states for the external state
machine. Time-critical external strobes are con-
trolled by the external state machine. The exter-
nal state machine operates next, controls the ter-
mination of external operations, clears the
internal state machine flags, and grants control of
external buses and strobes to external devices.
On a cache miss, the external state machine
unconditionally drives the external read data to
the M-Box or the I-Box, and a phase later the state
machine validates the data. This scheme made it
possible to service the next microinstruction
while the previous one was completing.

The BIU also controls all memory transactions.
A memory read operation is performed in one
cycle if there is a hit in the internal cache and no
cache parity error is detected. However, when a
cache miss occurs during a read operation, a two-
longword block in the cache is allocated to store
the data, which must now be read from memory.
The BIU stalls the CPU until the first longword of
data is received. The BIU initiates the external
read cycle, sending the address of the first long-
word to the external memory system. When the
first longword of data is received, the BIU sends it
to the cache and E-Box or [-Box, and unstalls the
CPU. The fetch of the second longword is over-
lapped with other chip activity to minimize the
eftective memory access time. The second long-
word of data is written into the alternate long-
word in the allocated quadword (two longword)
cache block. The cache block is validated only if
both longwords in the block are fetched success-
fully.

The BIU contains a longword write buffer
which supports a dump-and-run write mecha-
nism. Chip activity, including cache reads, can
proceed in parallel while the BIU is waiting for
the completion of a write operation. The BIU may
have up to three different operations in progress
at once: a write to memory, a read from memory,
and an internal cache entry invalidation. Descrip-
tions of these operations in the BIU follow.

While a write to memory is awaiting comple-
tion, the internal state machine can service read

requests. If the read reference misses the cache,
it is queued and serviced only after the write
operation completes. This overlapping of read
and write operations reduces the number of
memory stall cycles, resulting in a lower TPI.

To facilitate support for multiprocessor appli-
cations and DMA activity, the BIU provides a pro-
tocol for internal cache coherency. To activate
this function, an external device first gains own-
ership of the external address and data bus by
means of the DMA request and grant protocols.
The device then presents an address, qualified by
certain strobes, to the processor. The processor
latches the address and then performs a cache
look-up. If a cache hit occurs, the matching
cache entry will be invalidated.

Eight pins are dedicated to the floating point
interface. To optimize the operand transfer rate
between the CVAX 78034 CPU and its floating
point processor, both chips read the floating
point operands from memory simultaneously.

Cache

The goals for the design of the internal cache
were twofold: to reduce the memory access time
to one microcycle for data that is resident in the
cache; and to minimize the number of cache ref-
erences that miss the cache.

To achieve the one-microcycle access time, the
internal cache is designed to perform the cache
look-up in parallel with the translation buffer
look-up. This scheme uses the 9 virtual address
bits that do not change during the address transla-
tion process to index into the array. Because the
cache look-up and translation buffer look-up are
performed in parallel, the data for the selected
cache entry is ready when the translated address
is being latched into the tag comparator. The
cache tag is then compared to the translated
address. If a match occurs, the data is driven onto
the IDAL before the end of the cycle.

To achieve our second goal — minimization of
the number of cache misses — we used a two-
way set associative cache with a block size of
8 bytes. This two-way set associative cache was
designed to meet both performance and chip size
requirements. First, a random replacement algo-
rithm was selected to reduce circuit complexity
with a minimal impact on cache performance.
With reference to chip size, we determined that
a cache size of 1KB was the largest that could be
used. In addition, the cache is designed so that
it can be configured by software to act as an
instruction-only cache or as an instruction and
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data cache. The instruction-only option was pro-
vided to simplify hardware in multiprocessor
systems where the designers do not want to deal
with DMA invalidates.

The cell chosen to implement the cache array
is a one-transistor (1T) dynamic RAM. The 1T
cell, illustrated in Figure 4, was chosen because
of its small area. A comparable array design with
cither a four-transistor dynamic RAM or a six-tran-
sistor static RAM cell would have required 2.4 to
3 times as much area. The storage capacitance of
the IT cell is 110 femtofarads, resulting in a bit-
linc to cell-capacitance ratio of 8 to 1. With a
folded bit-line structure and the use of a dummy
ccell (which stores half the charge of the storage
cell), a voltage differential of 200 millivolts was
rcalized at the sense amplifiers. Because of the
dynamic nature of the 1T ccll, a refresh counter,
composed of lincar feedback shift registers, was
designed to control which row is refreshed dur-
ing idlc cache cycles.

We  designed byte parity into the cache to
detect data corruption resulting from either soft
or hard errors. A study was done to determine the
soft crror rate of the cell. The soft error rate for
the cache array was found to be 10 FITs, wherc
I FIT is equal to | failurc in one trillion operat-
ing hours. To protcct against data corruption due
to minority carrier injection, the array is sur-
rounded by a deep N-type implant ring.

The CVAX CPU chip is the first microprocessor
in the industry to include an on-chip dynamic
1T cell cache.

Control Store and Microsequencer

The operations and interactions of the five func-
tional blocks described so far are all controlled
by microcodc in the control store. The micro-
scquencer  supplics the microaddress to the
control storc. The control store contains
1.600 words of rcad-only memory. Each 4 1-bit
word is divided into a 28-bit field, which controls
the cxccution scctions of the chip, and a 13-bit
ficld, which controls the microsequencer. Con-
trol store access is achicved in less than three
clock phases.

The control storc is organized into 200 rows of
8 words each. H-shaped cclls, 7 by 8 microns in
sizc, arc used toimplementthe array.

A microaddress is supplied to the control storc
by the microscquencer by means of the 11-bit
microaddress bus (bits 10 through 0). Eight of
these bits, 10 through 4 and 0, select onc of the

200 rows. Sclection of a row causes all eight
words to be driven onto the precharged bit lines
which form the inputs of an 8 to | multiplexer.
The thrce remaining microaddress bits, 3
through 1, choose one of these eight microwords
to be driven onto the microinstruction bus. The
final value of bits 3 through 1 can be modified by
values on the microtest bus. This 3-bit bus con-
veys statc information from other sections of the
chip to the microsequencer. In this way, various
processor states may be polled to enable up to an
eight-way microcode branch.

The primary function of the microsequencer is
to supply microaddresses to the control store.
The microsequencer selects a microaddress
based on microcode control and external control
from the testability logic. In addition to generat-
ing microaddresses, the microsequencer receives
exception request lines from other sections, pri-
oritizes these requests, and generates base
addresses for microcode exception service rou-
tines. These base addresses can be modified by
the section signaling the exception by means of
the microtest bus.

The microsequencer contains a last-in-first-out
(LIFO) queue of eight microaddress entries
called thce microstack. A latched copy of the
microaddress bus is stored on the microstack
when a microcode exception occurs. Once the
exception has been serviced, this latched copy
allows recxecution of the microinstruction that
caused the exception. In the case of a microcode
subroutine call, the current microaddress is
incremented and stored on the microstack. This
forms the address when returning from the sub-
routine.

Testability Issues

As a complex microprocessor chip, the CVAX
78034 CPU chip has some difficult testability
issues. A large number of internal state bits and
buses arc not normally visible at the pins of the
chip. Early in the design process, techniques
such as lcevel-sensitive scan design (LSSD) and
built-in sclf-test were eliminated as possible
testability strategies. Both of these strategies
would have had a significant impact on chip area
and performance. Instead, an ad hoc method of
design for testability was developed.9

The design for testability strategy has two main
themes: (1) make maximum use of existing hard-
ware for test obscrvability and controllability,
and (2) add special test hardwarce to those arcas
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of the chip where observability or controllability
would not otherwise be possible.

The chip already had some important features
that could be exploited.

s The chip is controlled by the microcode con-
tained in the control store. Thus, it is an obvi-
ous candidate for controlling the chip whenin
test mode.

® Many of the internal registers are readable and
writable from the internal buses. By transfer-
ring this read and write data to the main bus
that connects to the pins (the DALs), much of
the internal state can be observed and
modified.

s The interface for the floating point coproces-
sor chip contains a mode that broadcasts a
value from the internal cache or register file to
the pins. This mode is also used during test for
cache and register file observability.

These features alone were not enough, however,
and some specialized test hardware had to be
added.

s To make use of the chip microcode in test
mode, it is necessary to be able to externally
choose the addresses of the microword to be
executed. Thus, a test mode was added to the
microsequencer. In this mode, the micro-
sequencer ignores its normal choice for the
microaddress and uses the value from a group
of pins.

s The cache is difficult to test in its normal oper-
ating mode. To overcome this, a special cache
diagnostics mode was developed.

m Some special test microcode was added to
allow more efficient testing of some areas.

= A few major internal buses were not observ-
able. Dual mode linear feedback shift registers
(LFSRs) were added to these buses: the output
of the I-Box instruction decode ROM, the
microinstruction bus, and the microtest bus.

The cache refresh address counter is also

implemented as an LFSR.

The dual mode LFSRs allow the data bus to be
captured and scanned out serially. Alternatively,
the data can be compressed every cycle using the
linear feedback technique. The outputs of the
LFSRs are inputs to another LFSR that combines

the data to a single-bit output stream. In this
manner, all of the LFSRs may be observed at once.
In addition, all of the LFSR outputs are fed into a
multiplexer that allows any one of the registers to
be observed.

The test logic requires only one dedicated test
pin to select test mode and uses less than 2 per-
cent of the chip arca. Moreover, inclusion of this
logic does not affect chip performance. When in
test mode, 3 to 15 other pins are redefined for
test functions. A 4-bit test-mode configuration
register selects which of the LFSRs is to be
observed, whether the LFSRs will be in scan or
compress mode, and whether or not test broad-
cast mode is enabled.

The Role of Simulation and Modeling

Complexity was managed and detailed circuit
behavior was predicted through the use of mod-
els and simulation. During the design, the chip
was modeled at five levels of abstraction. As the
design progressed from concepts to implementa-
tion, the level of abstraction was refined to reflect
the increasing detail of the design.

Choosing the Microarchitecture

The performance model was the earliest and he
most abstract of all the models. The performance
model was used to predict the machine’s perfor-
mance and to quantify the speed advantage of the
various microarchitectural options under consid-
eration. Written in PL/I, the performance model
was driven by trace files. These files consisted of
streams of opcodes and operand specifiers
derived by running typical VAX applications pro-
grams. The psuedo-microcode contained in the
model approximately modeled memory request
patterns and microinstruction counts for each
type of VAX instruction. As we had planned, the
performance model did indeed help predict the
machine’s TPI. Moreover, the model also helped
identify performance bottlenecks in the micro-
architecture.

As noted in the section Project Goals, perfor-
mance is inversely proportional to the product of
the TPI and cycle time. Specifically, the cycle
time depends on the delay through the critical
speed circuits. Therefore, to identify the critical
circuits and determine the propagation delays
through the circuits, we carried out cycle time
feasibility studies. SPICE, a circuit-level simula-
tor, was used in these studies. With the chip die
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size as a given requirement, we determined the
microarchitecture of the machince by selecting
those features that minimize the product of TPI
and the cycle time.

Verification of the Microarchitecture
Once the microarchitecture was defined, a
detailed specification was written for each sec-
tion of the chip. Next, an abstract behavioral
model was written to verify that the specification
described a VAX CPU. Much more detailed than
the performance model, this model was con-
trolled by microcode, ran real VAX code, and
closely modeled the major chip buses, global
signals, and clocks. The model was written in
Digital’s DECSIM behavioral modeling language.
Many microcode and microarchitecture bugs
were identified and fixed as a result of this behav-
ioral model testing.

Logic and Circuit Design

The detailed logic and circuit design began while
the abstract behavioral model was being written.
During this phase of the design, SPICE simula-
tions were uscd extensively to predict circuit
behavior. Because SPICE simulates transistor
behavior in detail, it requires a large amount of
computer resources. Consequently only critical
circuits were simulated and these were often sim-
plified to contain only the essential elements.
Circuit simulations typically involve tens of tran-
sistors rather than hundreds or thousands.

Verification of Logic — Gate Level

The abstract behavioral model had been used to
verify the specification. Now it was necessary to
verify the implementation of the specification. To
make this verification, we wrote a schematic-level
behavioral model that captured the logical and
timing characteristics of every schematic. Almost
every node was modeled explicitly. This essen-
tially gate-level model was also written in the
DECSIM language. The model identified many
logic and timing bugs, especially between sche-
matics designed by different engineers.

The schematic-level behavioral model was sub-
jected to intensive verification because it offered
a good compromise between implementation
detail and simulation efticiency. This model of
the CVAX 78034 CPU chip was used by the sys-
tem designers in other design teams to model the
interaction of the CPU with other chips in board
designs.

Verification of Logic — Transistor
Level

The DECSIM simulation tool also supports MOS
transistor-level modeling. We used this tool as a
switch-level simulator, that is, we modeled tran-
sistors as open or closed switches. The model was
automatically generated from the schematic data-
base.

This level of modeling reflected the true behav-
ior of the schematics with greater subtlety than
the schematic-level behavior model. However,
this model was not nearly as computationally
efficient as the behavioral model.

DECSIM MOS modeling identified sequencing
errors, charge sharing problems, sneak paths, and
race conditions that the more abstract models had
failed to detect.

Physical Technology

The CVAX 78034 CPU chip is implemented in a
P-EPI, N-well CMOS (complementary metal-
oxide-semiconductor) process developed in-
house. The process has two layers of aluminum
interconnect and a single layer of polysilicon.
The critical process dimensions and chip charac-
teristics are summarized in Table 2.

The chip contains 180,000 transistor sites
with 134,000 actual transistors, and measures
9.7 mm by 9.4 mm on a side. (See Figure 2.) It
is packaged in an 84-pin surface-mountable
ceramic chip carrier with 50-mil leads, uses a
single +5 volt supply, and has a worst-case
power dissipation of 1.5 watts.

Table2 CVAX Chip Process

Fabrication Process

Fabrication process CMOS

Gate oxide 300 A

Substrate N-well in P-EPI

Device types N-channel enhancement
MOSFET;
P-channel enhancement
MOSFET

Interconnect Pitches (Line/space Drawn)

Polysilicon 2 micron/2 micron
Metal 1 4 micron/2 micron
Metal 2 5 micron/2 micron
Contacts 2 micron/2 micron
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Summary

The CVAX 78034 CPU chip met the project
design goals. Depending on the benchmark or
application program being run, the performance
of the MicroVAX 3500/3600 systems is 2.6 to
4.1 times that of the MicroVAX Il computer.
(Refer to Figure 5.) This performance increase
was achieved by reducing both the TPI and the
machine cycle time.

The main factors influencing TPI are the
1KB, on-chip cache; the 64KB on-board cache;
and the 28-entry virtual-to-physical address trans-
lation buffer. The cycle time was reduced as a
result of the advanced process technology chosen
and the architectural and circuit innovations
made by the design team.
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Development of the
CVAX Floating Point Chip

The CVAX floating point accelerator (CFPA) chip is a CMOS floating point
coprocessor for the CVAX system. The purpose of the CFPA project was to
provide gains in floating point performance equal to those of the CVAX
CPU for integer performance. Combined with an aggressive schedule, the
primary goals required the CFPA chip to perform at three times the level of
the previous generation MicroVAX floating point unit (FPU) and to be
complete two years after delivery of the MicroVAX II system. Designers
obtained a performance gain of only 25 percent through base technology
improvements. Consequently, most gains are achieved through the use of a
multiplier array, improved arithmetic algoritbms, and a fast and efficient

interface with the CPU.

Functional Overview

The CFPA VLSI chip is the companion floating
point processor for the CVAX CPU. The chip’s
hardware structures and algorithms provide high
overall system performance. In all, the chip exe-
cutes 706 instructions.

The CFPA supports

m Three VAX floating point data
F_floating, D_floating, and G_floating

types:

s Floating point calculations, which include a
polynomial evaluation instruction

= Integer multiply and divide instructions

= Conversion between integer and floating point
data types

m Complete detection of all exception condi-
tions

The CFPA operates synchronously with the
CPU at speeds of 80 and 90 nanoseconds (ns) per
cycle. Opcode, control, and status information is
communicated between the coprocessor and the
CVAX by means of a dedicated 8-bit bidirectional
coprocessor bus.

Table 1 lists the CFPA physical characteristics.

CFPA Project Goals

The two main goals of the CFPA chip design pro-
ject were (1) to provide the CVAX system with an
improvement in floating point performance to

Table 1 CFPA Physical Characteristics

Number of transistors 65,000

Package 68-pin surface-mountable
chip carrier with 50-mil lead
spacing and heat sink

Die size 7.3 mm x 9.1 mm

Power dissipation 1W

Fabrication process 2 micron drawn, N-well,

dual aluminum CMOS

equal the central processor chip's expected per-
formance level for integer operations, and (2) to
adhere to the same development schedule set for
the CVAX CPU chip. Specifically, these goals
required instruction execution times to be three
times faster than the MicroVAX FPU on average.
Further, the schedule allowed little time to
achieve these significant performance gains; the
design would have to be completed only two
years after the MicroVAX 11 system design.

In order to improve computer performance,
the clock frequency and/or the amount of work
completed in a cycle must be increased. The
CVAX CPU uses the improved speed characteris-
tics and greater density of the CMOS process to
reduce the clock cycle time from 200 ns in the
MicroVAX II design to 80 or 90 ns. A pipelined
architectural approach was necessary to achieve
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this reduction. In particular, while the arithmetic
and logic unit (ALU) operates on one microin-
struction, the register file is free to access data
for the next microinstruction. This improvement
allows more work to be completed in each micro-
cycle and offers a reduction in the cycle time as
well.

The previous generation floating point design,
used in the J-11 FPA as well as the MicroVAX 11
and VAX 8200/8300 systems, already pipelined
register file access with ALU operations. This
pipelining was necessary to allow a 100-ns cycle
time — twice the frequency of the companion
CPUs — in the ZMOS process technology. Since
the pipelined register/ALU operation was already
achieved, the improvement in cycle time for
the CFPA is limited by the speed of the ALU and
does not benefit from additional pipelining. The
improved technology allowed for an ALU imple-
mentation that provides a 20 percent decrease
in cycle time, matching the CVAX microcycle.
Therefore, the necessary performance increases
for the CFPA would not be created by scaling the
cycle time. Instead, CFPA designers would make
improvements in the amount of work done per
microcycle and in the interface between the pro-
cessor and the floating point chip. This interface
is described in the following section.

An overview of the chip’s overall performance
is presented in the section CFPA Performance at
the end of this paper.

Processor-to-bus Interface

In addition to the CVAX system bus used to trans-
fer floating point data, a dedicated 8-bit bidirec-
tional coprocessor bus is used to communicate
between the CVAXand the CFPA. Anexample ofthe
CFPA system configuration is shown in Figure 1.
The CFPA normally monitors the coprocessor bus
for opcode and operand information until it is
ready to drive a result back to the CVAX. After
decoding an opcode, the CFPA monitors control
signals on the bus that indicate the presence of an
operand. Operands may come from a CPU general
register, internal cache location, or from the
memory system. When operands are transferred
from CPU general registers or intcrnal cache
locations, the data is transmitted directly
between the CVAX and the CFPA. Operands from
external memory or cache locations are indicated
on the coprocessor bus at the start of the external
memory access. The CFPA then monitors the
CVAX system bus and latches the returning data
without CVAX intervention.

CPU > FPU

CVAX BUS

SECOND-LEVEL
CACHE RAM
64KB

MEMORY

Figure I CFPA Example System
Configuration

After supplying operands to the CFPA, the
CVAX relinquishes control of the coprocessor bus
to receive the result status of the floating point
operation. Control of the coprocessor bus, how-
ever, does not imply control of the CVAX system
bus. The CFPA ensures availability of the CVAX
system bus by monitoring the direct memory
access (DMA) grant signal from the CVAX. If a
DMA has been granted, the floating point result
status will be retransmitted until the DMA opera-
tion is complete. Receipt of the floating point
status while the DMA grant signal is deasserted
guarantees availability of the CVAX system bus
for the next cycle. Control of the coprocessor bus
is returned to the CVAX after successfully driving
floating point status. The CFPA drives the result
data on the CVAX system bus one cycle later,
completing the operation.

Floating point instruction latency comprises
overhead devoted to opcode, operand and result
transfer, and actual computation, or execution
time. Due solcly to improvement in CVAX cycle
time — from 200 ns in MicroVAX systems to
80 or 90 ns in CVAX systems — overhead times
are improved by factors of 2.5 or 2.2, respec-
tively. Designers achicved additional improve-
ments in the interface by reducing the actual
number of cycles required for these overhead
transfers. As compared to the MicroVAX 1II sys-
tem, the CVAX system requires fewer cycles to
access and transmit register and internal cache
opcrands located on the chip. Moreover, external
cache and memory operands are input directly
from the CVAX system bus as opposed to being
fetched by the CPU and later retransmitted to the
FPU as in the MicroVAX Il system. The resulting
interface improves performance by a factor of
approximately 2.5 (90-ns cycle) to 2.8 (80-ns
cycle) over the MicroVAX Il system.
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Despite these improvements, more than half
the cycles required to execute a floating point
instruction in the CVAX system can still be
attributed to overhead costs. The possibility of
pipelining macroinstructions — overlapping the
operand fetches of the next instruction with exe-
cution of the current instruction — as well as
operand forwarding was studied. In such a system
the effective instruction time is determined by
the longer of the operand transfers or the actual
floating point execution time. Instruction time is
notdetermined by the additive effect of the inter-
face and execution. The one-instruction macro
pipeline interface was rejected due to the risk
and complexity of the design. Moreover, perfor-
mance goals had already been met and develop-
ment time wasata premium.

Algoritbms

Although the interface figures prominently in the
achievement of overall performance targets, most
of our design efforts were focused on the actual
cxecution unit. To maintain and even increase
the benefits gained by the interface design
improvements, we needed an equal or greater
improvement in execution times. Since the most
important instructions for a floating point unit
are addition/subtraction, multiplication, and to a
lesser extent division, designers set about opti-
mizing these instructions. The remainder of
instructions implemented by the CFPA also
benefit from the shift, multiply, and divide opti-
mizations and demonstrate performance gains
relative to the MicroVAX Il FPU as well. Finally,
all instructions gain from microcode improve-
ments in atypical case handling and from faster
code entry and exit techniques.

Multiplication

Floating point multiplication consists of multipli-
cation of the fractional, or mantissa, portions of
the operands and the summation of the corre-
sponding exponents. Many multiplication tech-
niques have been developed and implemented to
increasc the spced of this frequently executed
instruction. Perhaps the best technique for VLSI
implementation at this time is the multiplier
array. The array is particularly well suited for
VLSI implementation due to the array’s regularity
of circuit conncctions which allow for a very
compact and repeatable cell design.

The process of multiplication involves a series
of additions. It is possible to delay the carry prop-
agation nccessary to complete these additions

until the final sum is formed through the use of
carry save adders. Multiplier arrays consist of
rows of carry save adders which add in a new mul-
tiple of the multiplicand at each row. The carry
save adders produce a result, or partial product,
consisting of two outputs, the carry and the sum,;
if added, the two outputs represent a single num-
ber equivalent to the partial product at that
step obtained using full propagation addition. By
deferring the final summation of the sum and
carry words, the comparatively time-consuming
carry propagation addition need be performed
only once to produce the result.

The only drawback to the multiplier array is
the large percentage of chip area devoted to this
one operation. Nevertheless, the magnitude of
performance gain warrants the use of an array in
any high-performance computation unit.

Another common method used to improve the
processing of multiplications involves multiple-
bit Booth encoding. This method, which requires
significantly less hardware, is aimed at reducing
the number of partial products needed to be
formed. The multiplier operand is encoded — or
recoded — as a control pattern used to deter-
mine a scquence of shift and add or subtract oper-
ations on the multiplicand. Multiple bits of the
multiplier can then be retired in a single opera-
tion. This method of reducing the number of
multiplication steps can be employed either with
or without an array structure.

The previous generation MicroVAX FPU exe-
cutes multiplication using a fixed, 3-bit-per-cycle
Booth algorithm without the use of a multiplier
array. Single-precision multiplication requires 8
cycles to compute 25 product bits; D_floating
and G_floating double-precision formats require
19 and 18 cycles to produce the necessary 57 or
54 product bits. Additional cycles are needed to
set up the multiply loop, calculate the initial par-
tial product based upon the multiplier least-
significant bit (LSB), and round and normalize
the final product.

The CFPA multiply algorithm takes advantage
of the greater density and transistor count
afforded by the CMOS process. The CFPA imple-
ments a multiplier array, which consists of four
rows of 65 carry save adders. The multiplicand
select logic associated with each row of the array
as well as the interconnect between the rows is
configured to implement a 2-bit Booth encoding.
As a result of this configuration, 8 product bits
are completed per pass through the array. Single-
precision multiplication requires three passes
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through the array, and double-precision requires
seven passes to complete.

The array can be evaluated twice per cycle.
Therefore, single-precision multiplication re-
quires one and one-half cycles, and double-preci-
sion D_floating and G_floating formats require
three and one-half cycles of processing in the
array. Before running the array, one-half cycle is
needed for set up and initial product calculation.
After the multiplier array completes, a cycle is
used to complete the full carry propagate add,
which combines the final carry and sum outputs
of the array. This cycle is followed by a normal-
ization cycle during which wvalid status is
returned to the CVAX.

When we compare the MicroVAX Il system to
the CFPA, the number of cycles required to com-
plete a MULF instruction has becn reduced from
14104 (aratioof 3.9to 1 at 90 ns, 4.4 to 1 at 8O
ns); to complete MULD or MULG instructions,
the reduction is from 26 to 6 (4.8 to 1 at 90 ns,
5.4 to 1 at 80 ns). If we include operand transfers
and count each interface cycle of the MicroVAX I1
system as equivalent to two CVAX cycles, how-
ever, the reduction in the total number of cycles
for MULF is from 27 t0 9 (3.3to 1 at 90 ns, 3.8 to
1 at 80 ns); and for MULD, from 43 to 14 (3.4 to
1 at 90 ns, 3.8 to 1 at 80 ns) for register-mode
instructions. When operands are read from or
written to memory, the overhcad support per-
centage becomes an even greater factor; and the
impact of the actual CFPA multiplication speed is
reduccd.

To further increase performance, we consid-
eredan array of sufficient size to complete single-
precision multiplication in a single pass and
double-precision multiplication in two passcs.
However, such an array would requirc three
times the chip area for a 2-bit algorithm. A 3-bit-
per-row multiply would require 8 rows to com-
plete single-precision multiplication in one pass
and 9 or 10 rows to complete double-precision
multiplication in two passes, as well as an adder
to calculate the multiplicand factor of 3. Either of
these alternatives, if feasible, would save only
one cycle in single-precision (a reduction from 9
to 8, or 11 percent) and two cycles in double-
precision multiplication (14 to 12, or 14 per-
cent). [n addition to the area requirements, the
circuit design difficulty and risk involved to
implement a larger array were deemed much too
great for the limited gains. We therefore chose to
trade off these smaller gains in favor of a partial

array of 4 rows of 2-bit-per-row retirement re-
quiring only 1.3 mm of chip height. The result is
a thrce and one-half to four times gain in the over-
all performance of multiplication.

Addition /Subtraction
Floating pointaddition involves a series of steps.

1. The exponents are subtracted to determine
the shift amount necessary to align the frac-
tions.

2. The fraction operand with the smaller
exponent is shifted into alignment and
added or subtracted.

3. The resultis shifted back to the normalized
form (= result < 1.0). Normalization
shifting is accompanied by exponent adjust-
ment.

4. The result is rounded and checked for
overflow or underflow conditions.

Typically, the shifting operations and their con-
trol consume large amounts of chip area and
potentially a large portion of the total calculation
time. An analysis of these operations was used to
guide trade-offs in the design of the CFPA.' It was
noted that although large shifts are sometimes
necessary to compute the final result, their fre-
quency of occurrence is very small. Furthermore,
a small shifter, capable of covering the vast
majority of cases in a single operation provides
the benefit of a small control circuit that can be
more casily optimized for speed. It was decided
that the speed and area advantages gained by
designing for the most frequently occurring cases
provided the best solution under project con-
straints.

Specifically, a small shifter that is capable of
left-four to right-seven bit shifts proved to have
adequate range for most alignment and normal-
ization shifts. In up to 80 percent of the cases,
additional cycles arc not needed for alignment
shifting. Larger alignment shifting utilizes the
multiplier array for a shift capability of 16 bits
per cycle. The array minimizes the worst-case
shift time without requiring a large shifter.
Although it rarely requires additional cycles, nor-
malization shifting may cause a longer latency.
Additional cycles, however, are not necessary for
normalization in 93 percent of the cases.

To reduce the shifter control complexity, a
modified ALU calculates the absolute value of the
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cxponent diffcrence. The modified ALU doces not
rcquire additional calculation time to accom-
plish this calculation. The absolute value result
simplifies control logic to enable the alignment
shifter to complete in the next clock phase. Only
one additional generate term is needed to enable
two carry chains executing simultaneously; onc
calculates A minus B, the other B minus A. The
most significant bit (MSB) of the first carry chain
dctermines the sign of the operation. To producce
the absolute value or positive result, the MSB of
the first carry chain is used to select the final out-
put from the two carry chains. In addition, the
MSB is used to select the fraction requiring
alignment.

The CFPA completes addition or subtraction
opcrations in thrce cycles for most cases. This
minimum cxccution time is excceded for only
25 percent of all addition or subtraction opcra-
tions, almost all of which require only one addi-
tional cycle.

The major improvement over the MicroVAX 11
FPU in the addition/subtraction algorithm is the
climination of no-operation cycles necessary for
control evaluation preceding the alignment and
normalization steps. The resultant reduction as
compared to the MicroVAX II FPU is from eight
cycles to three for both single- and double-preci-
sion additions/subtractions in the actual floating
point unit calculations (3 to 1 at 90 ns, 3.3 to
1 at 80 ns).

The overall performance gain in equivalent
cycles is 20 to 8 for single-precision (2.8 to 1 at
90 ns, 3.1 to 1 at 80 ns) and 26 to 11 for doublc-
precision addition/subtraction (2.6 to 1 at 90 ns,
3.0to 1 at 80 ns).

Division

Floating point division consists of division of
the fraction or mantissa and subtraction of the
cxponents. Division presents a more intractable
problem than multiplication when designing for
high-speed pcrformance. The difficulty arises
duc to the fact that the partial remainder at each
step must be examined before the next operation
can be determined. Various algorithms have been
proposed to rcduce the number of arithmctic
steps. but no single solution seems to optimize
both performance and sizc constraints.

The CFPA uses a method of division that ofters
an improvemcent over single-bit division algo-
rithms, which perform an arithmetic operation
to produce a single quoticnt bit per step. The

mcthod calls for shifting over, or normalizing,
multiple leading bits when the partial remainder
is small. A partial remainder with multiple lead-
ing ones indicates a small negative remainder,
whereas leading zeros indicate a small positive
remainder. Multiple quotient bits can be deter-
mined for cycles in which the magnitude of the
partial remainder is small. Shift operations
replace arithmetic operations on unnormalized
remainders, reducing the number of ALU cycles
needed to develop the final quotient. This
method of division is called normalizing, non-
restoring division and is also used in the
MicroVAX FPU. The differcnce between the two
implementations is in the normalization shift
rangce provided for partial remainder and quo-
ticnt development.

Of coursc, this algorithm is quite data sensi-
tive. A division that results in a partial remain-
der of all ones or all zeros can be completed
in a minimum amount of time; whereas, if a
string of alternating ones and zeros is produced
at each ALU operation, the process degener-
ates to a one-bit-per-cycle pace. The observed
average rate for an algorithm that allows
unlimited shift range is 2.66 bits per cycle.
Unfortunately, the shift range chosen implies a
control structure directly between the shift
and ALU operations. The time bctween these
operations is critically important to the over-
all cycle of the chip. We chose 4 bits as the
left shift range for the CFPA to reap the maxi-
mum benefit from the technique without intro-
ducing inordinately difficult control paths
between the shift and ALU operations. This
amounts to an increase of 2 bits of shift range
over the MicroVAX FPU. Correspondingly, the
average number of quotient bits developed
cach cycle increased from 1.5 to 2.4. Expand-
ing the shifter beyond a range of 4 for this
method provides a diminishing improvement, as
shown in Tablc 2.

Table 2 Average Quotient Bits per Cycle

Shifter Range Average Speed

2 1.5

4 2.39
6 2.54
8 2.64
Unlimited 2.66
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[ncreasing the number of quotient bits devel-
oped per cycle from 1.5 to 2.4 results in
increasced speeds in the CFPA divide loop relative
to the MicroVAX FPU: 1.8 times greater for
90-ns cycles, and 2.0 times grcater for 80-ns
cycles. The overhcad cycles involved in sctting
up the divide sequence and normalizing the quo-
tient arc reduced from 7 to 2. As a result, the
CFPA rcalizes a performance greater than the
MicroVAX II FPU in terms of number of cycles
reducced for division. Including the processor-to-
FPU interface cycles, the number of cycles for
single-precision division is reduced from 37 to
18 cycles (2.3 at 90 ns, 2.6 at 80 ns); for
D_floating double-precision division, 61 to 35
(1.94at90ns, 2.2at80 ns).

Comparatively, this method of division is very
cfficient, especially when we consider the small
amount of control circuitry and data path area
required. Designers can incrcasc performance
additionally by using algorithms that c¢mploy
multiples of the divisor, or by implementing a
divider array structurc. The use of multiples of
the divisor requires both additional registers to
hold the multiples (3/4, 1, 3/2) and further
cxpansion of the left shift capability to take
advantage of the longer normalizations created by
this approach (3.6 bits per cycle with left shift
range expanded to 6). In addition, the control
logic required to support the selection of the
proper multiple is more complex and would be
much more difficult to implement in the con-
strained cycle time. The other alternative of exe-
cuting the divide step in an array structure for
performance capable of 3 to 4 quotient bits per
cycle involves an even greater cost in hardware
and is not consistent with the project goals.

Integer division docs not automatically benc-
fit from hardware devoted to floating point divi-
sion. Since floating point division rclics on
the normalization of the opcrands, integer divi-
sion must cither convert operands to the normal-
ized form or accept a slower onc-bit-per-cycle
algorithm. The CFPA design for integer division
normalizes both the divisor and dividend in
order to use the 2.4-bit-per-cycle divide algo-
rithm. Normalization of the divisor and dividend
proceeds at 5 bits per cycle. The number
of quoticnt bits needed to complete the integer
division opcration is determined by the differ-
ence betwcen the normalization shift amounts
of the divisor and dividend. Consequcntly,
integer divides arc typically executed at

2.5 bits per cycle as compared to 1 bit per cycle
on the MicroVAX FPU.

Microcode Control Structure

The control structure for the CFPA is influenced
by two opposing constraints. The complicated
requirements of instructions such as extended
multiply and integerize (EMOD) and polynomial
cvaluation (POLY) require the flexibility offered
by a microcoded approach. Performance goals,
however, require the speed of hardwired control
structures to avoid costly delays incurred during
microcode branch handling. The final imple-
mentation combines a small control PLA (pro-
grammable logic array) to provide the flexibility
of microcode control with hardware control
structures for speed critical paths. These control
structures are enabled through the microcode to
cmulate complete hardwired control for impor-
tant instructions. The structures provide support
for alignment, normalization, multiplication and
division steps. Standard microcode control sup-
ports the less critical instructions.

Functions are performed under more straight-
forward microcode control when the code does
not penalize the instruction performance. This
trade-off simplifies critical circuitry in some
instances. The only exception to this rule is in
the handling of exception conditions. If an
exception condition can be isolated from the nor-
mal instruction flow, it is also processed in
microcode rather than through the more expen-
sive hardware control.

The use of hardware structures reduces
the total number of microcode terms needed
to implement the instruction set. This reduc-
tion is important to ensure that the microcode
PIA can be implemented with an access time
of one half cycle. Instructions generally use
one code flow for all data types. In addition,
similar instructions merge sections of flows to
further minimize terms. For example, the add-
compare-and-branch (ACB) instruction, which is
one of the more complicated instructions imple-
mented by the chip, required only three addi-
tional terms beyond the addition and compare
instruction flows. Despite this effort, almost
one third of the code was devoted exclusively
to two instruction types, EMOD and POLY.
By splitting, or “folding,” the PIA into two
half-height interleaved arrays, the target speed
was met with a penalty of only a few dupli-
cated terms. In total, 76 VAX floating point

114

Digital Tecbnical Journal
No. 7 August 1988



as well as integer multiply and divide instruc-
tions are implemented in the CFPA. In compari-
son to the MicroVAX FPU, the total number of
microcode states was reduced by 20 percent, to
only 159,

Microprogramming

As mentioned  carlier, the use of hardware
support contributes to improved performance
for most instructions. However, since the CFPA
cycle time during execution is very similar to
that of the MicroVAX FPU (80 or 90 ns versus
100 ns), we nceded further improvement to meet
the project goals. Algorithmic improvement in
the  convert-floating-to-integer  (CVTFI)  and
EMOD instructions provides between three and
four times the performance of the MicroVAX FPU
for the same instructions. But these gains would
hardly translate to improved overall performance
when  considering the frequency of use for
these instructions. Therefore, to reduce cycles
for all instructions, we examined transitions
during code entry and exit with internal proces-
sing. Since the CFPA always receives the opcode
in advance of the operands, it is possible to
rcduce the cxccution time for all instructions
by performing the first step of each operation
repeatedly in anticipation of receiving the last
opcrand. In this way, as soon as the interface
rccognize that the operand is valid and the
control sequencer is able to act on that informa-
tion, the first stcp of the instruction is already
complcte.

In the CVAX system, as in the MicroVAX II sys-
tem, floating point status must be returned before
data can bc received. One reason for this return
of status is that it prepares the write path back to
the genceral-purpose register file located on the
CPU chip. Status conditions must be checked
betore the result register is written; the register
update can thus be inhibited in the case of an
crror or exception condition. Latency was
rcduced on almost all instructions by transmit-
ting the result status back to the CVAX CPU in the
samc cycle as the last step of execution. This is
accomplished by checking the result prior to the
last normalization or round operation in order to
determine if the possibility of an exception con-
dition exists. Since F_floating and D_floating
formats usc an ¢xponent with a range of 256 val-
ucs. and G_floating format increases that range
to 2,048 possible values, the exponcnt is in
rangc for most results, and a no exception status

can be returned prior to determination of the
final result.

CFPA Implementation

After deciding on a set of basic algorithms that
appeared to meet the project goals, the develop-
ment effort proceeded to actual implementation.
Individual algorithms can sometimes result in a
proposed hardware solution that requires modifi-
cations to either the hardware or to the algorithm
in order to be implemented within design con-
straints. Merging the requirements of several
algorithms can create implementation conflicts
throughout the physical design. Care must be
taken to consider the opposing requirements
while incorporating the necessary features in a
single design. The algorithms for the CFPA were
chosen with a single hardware microarchitecture
in mind. That architecture evolved as the design
progressed, but the architecture maintained the
basic structure that was used as a framework for
early circuit design and feasibility study. The fol-
lowing section outlines the overall hardware
microarchitecture for the CFPA. This section is
followed by explanations of the more interesting
circuit design issues.

Microarchitecture
The CFPA contains two main functional units:

s The execution unit, which performs all arith-
metic calculations

®s The bus interface unit (BIU), which controls
all 1/0 operations

A block diagram of these units is shown in
Figure 2.

The exccution unit consists of two main data
paths and their associated control logic. The
65-bit fraction data path contains an integral
multiplicr array and also processes integer data.
Also included in the fraction data path are a small
4-bit leftto 7-bit right shifter, a general-purpose
ALU, scratch register, ROM constants, and quo-
tient register and shifter. The second data path,
the exponent data path, is 13 bits wide and con-
tains a modified ALU design used to calculate
absolutc values needed in floating point addition.
The exponent data path operates in parallel with
the fraction data path and may be controlled inde-
pendently or conditionally based upon results
from the fraction data path. A 160-term PLA,

Digital Technical Journal
No. 7 August 1988

115

CVAX-based
Systems



Development of the CVAX Floating Point Chip

CPSTAT-10.. «—»]
CPDAT-5:0+ «——»
58 BIU BIU SEQUENCER MULTIPLIER MULTIPLIER
’;% > CONTROL - > 80 x 22 DECODE REGISTERS
DMG ——— -
TST-2:1~ /—\>
32-BIT INPUT BUS >
e INPUT MUX
DATA PATH
MULTIPLY ARRAY [
EXPONENT |
controL <71 | |00 e ]
DAL~ 31:00= SIGN FRACTION
” PROCESSOR CONTROLS
STATUS LOGIC
FRACTION ALU
EXECUTION UNIT [*— CLKA
SEQUENCER PR CLOCK  fp==— CLKB
160 x 44 ———
— RESET
32-BIT O BUS
KEY:

BIU — BUS INTERFACE UNIT
DAL — DATA/ADDRESS LINES

ligure 2 CFPA Block Diagram

which accesses a single 44-bit microword cach
cvcle. controls the execution unit.

The BIU controls the interface between the
CPU and memory system. A 70-term PLA in the
unit controls all 1/0 rtransactions bctween the
CVAX and CFPA. The BIU also controls the test-
modc logic to allow visibility to the data paths
and execution unit PLA during operation.

Figurc 3 illustrates the physical layout of these
structurces on the CFPA dic.

Circuit Design

Clocking

The CFPA chip employs a four-phase overlapping
clocking scheme which provides timing resolu-
tion. Much of the control circuitry design calls
for combinational circuits that opcrate between

latches clocked on nonconsecutive phases, which
are nonovcerlapping.

Multiplier
As noted in the section Multiplication, it was rec-
ognized early in the chip design that the multi-
plier array would be key to meeting the desired
performance The CFPA implements multiplica-
tion by using an array of carry save adders with
partial product wraparound. The wraparound
enables the array to be cycled as many times as
necessary. The final carry and sum addition is
cxecuted in the fraction ALU. A static implemen-
tation of the carry save adders is necessary since
data propagates through multiple rows of the
array.

To build the carry save adders, we used a four-
transistor XOR. This approach allowed for mini-
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Figure 3 CFPA Physical Layout

mum dclay and required the least amount of chip
arca. As a result of SPICE simulation, we found
that doubling the minimum size of the transistors
in the multiplier array could provide a 20 per-
cent speed increase. Since the cell arca was con-
straincd by rthe nccessary interconnect in the
mctal layers. the device sizes were increased
without affccting the cell size. Further device
size increasces, however, would have forced us to
incrcasce the cell size and would not have
improved speed appreciably duce to increased
sclf-loading With the approach we chose. SPICE
simulation showed a worst-case delay of 6.5 ns
perrow and a typical delay of 4.5 ns.

To obtain the desired multiplication perfor-
mancce and minimize the arca necessary for the
multiplicr array. we used a technique in which
the array is cycled twice per microcycle. For

worst-casc devices, a half cycle takes 45 ns. An
array sizc of four rows takes 26 ns to propagate
through the array, allowing 19 ns for latching,
rceturn of partial products, and control switching.
For typical devices four rows complete in 18 ns,
allowing 22 ns in an 80-ns cycle for the
wraparound path.

Control PLA

We also recognized the fraction shift control PLA
as a possible spced limitation. The shift control
PLA was the largest PLA in the control section and
had to cvaluate in a single clock phase. Because
no clock signals were available to control evalua-
tion of the PLA, we used a “dummy” AND array
term to start cvaluation of the OR array. A
“dummy” OR linc controls output clocking, mak-
ing the PLA self-timed. Because this PLA could be
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evaluated in a single clock phase, both alignment
and normalization opcrations were able to elimi-
nate an unnccessary wait cycle present on the
MicroVAX FPU. We wecre also able to expand the
divide algorithm to 4 bit shifts per cycle.

As we had suspected, the limiting factor in the
final chip cycle time was the multiplicr array.
The ALUs and the large control PLAs in both the
microcode control section and the BIU easily met
specd requirements in the CMOS I process.

Design Methodology

As VLSI technology improves, both chip area and
density increasc, allowing much larger and more
complicated designs to be attempted. Critical to
any large project, the ability to predict and adjust
the design according to the most current infor-
mation plays an importantrole in achieving a suc-
cessful project outcome in a minimum of time.
This section describes the various phases and
feedback paths of the design process for the CFPA
and some of the unique aspects of VLSI design.

In the first phase of design, we defincd the
major sections and the necessary global signals
communicating betwecen them. The major out-
puts of this phase were hand-drawn sets of notes
on the necessary functions of each section and
preliminary sketches of possible implementa-
tions. Early in the design, we recognized that cer-
tain subsections would be critical to meeting the
desired performance goals. These particularly
critical sections were

s The multiplier array
® The exponent input path
s The fraction shifter controls

We therefore generated more detailed prelimi-
nary designs for all of these sections. Moreover
we tested their feasibility with SPICE circuit sim-
ulations. The MSB and LSB logic in the multiplier
was also verified with an APL language simulation
of the multiplier array.

Onc of the hazards in the early stages of a pro-
ject is the tendency to spend too much effort per-
fecting one small piece of the design. If the origi-
nal requirements are modified at a later darte,
much time is wasted. The design team, therefore,
made a conscious effort to keep all parts of the
design at similar levels of detail at all times
throughout the project.

For purposes of design checking and chip
implementation, we divided the CFPA into seven
major sections: fraction data path, fraction data

path controls, exponent data path, exponent data
path controls, microsequencer, bus interface
unit, and clock generator. Consistent divisions
and global signals between these major sections
werc maintained in both the behavioral and tran-
sistor modeling levels as well as in the final mask
artwork. This approach allows maximum possi-
ble checking to be carried out on each section,
independent of the state of other sections of
the chip.

Upon completion of the initial design concep-
tion, a behavioral model was written in the
DECSIM simulation language. This model helped
us to refine the algorithms and further define the
data path and control structures. We rewrote the
model several times to improve detail and incor-
porate design changes. From early in the develop-
ment, the behavioral model was merged with
the CVAX CPU chip model and asmall system envi-
ronment to provide a platform for more extensive
testing. Existing diagnostic programs were there-
fore able to be run on the model to provide early
checks on the design integrity. Additional tests
were written to verify specific features of the
CFPA implcmentation before we began the
dctailed circuit design for critical sections.
Throughout the development phase, we used the
VAX Architectural Exerciser (AXE) extensively
to test instruction compatibility with existing
VAX implementations. Despite a degradation of
approximately 1M : | while using the simulator
to run test code, well over 500,000 test cases
werce run on the behavioral model before the
design was considered ready for fabrication.

Using the DECSIM MOS device simulation sys-
tem, we created a transistor-level model from
final schematics as they were completed. By col-
lecting test patterns from the appropriate signals
in the behavioral model, the team could begin to
debug the schematic in complete sections as
other sections were still being designed. To do
this efficiently, the DECSIM group modified their
simulator to allow designers to write a binary
state file and reload the file for examination. This
facility gave logic designers a very efficient means
to debug the transistor-level logic. Designers
could run their simulations in batch mode over
night, examine the resulting patterns for mis-
matches with the behavioral model results, and
then “back up” to the area before the failure test
point to find the underlying cause. They could
perform all these steps without rerunning the
entirc simulation each time they wanted to go
back in time to look at another signal .
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As cach scction of the transistor-level sche-
matic was dcveloped to a satisfactory level of
accuracy, the third phase of the design —
crcation of the physical layout artwork — began
on that section. To crcate the artwork, a Calma
GDS interactive editing system was used. Over
the course of the project, three layout designers
were employed full time. Toward the end of the
layout phase, up to four additional designers
were working on various parts of the chip. Each
scction was checked with the interconncct
verification (IV) wirelist extraction tool and a
design rule checker (DRC) program.

As all the sections were drawn and global inter-
conncct wiring was added to the chip layout, the
fourth phasc of the design — the back end
checks — began. The IV program was used to
cxtract actual capacitance values for all nodces on
the chip. We used these capacitance values in
two ways to check the design. First, they were
compiled into the DECSIM MOS transistor-lcvel
simulator. The timing feature of this tool was
usced to quickly check for gross timing problems
ovcer the entire chip operating as a whole. Once
wc identified an area as having a possible timing
problem and for those arcas where we believed
the DECSIM MOS simulation was inaccurate. we
crcated and ran SPICE circuit simulations. In a
sccond usce of the extracted capacitance values, a
program called PATH was written in the SCAN
compiler generator language. PATH allowed the
circuit designers to easily and accurately create
wirelists representing critical paths for submis-
sion to SPICE. The program extracts a circuit
path description from the much larger wirelists
generated from either the IV tool or the chip-
wide schematics. Wirelists created by the IV pro-
gram include interconncct and capacitance infor-
mation directly from layout artwork.

Although the chip design process appears in
this discussion to be a neat progression, the
various aspccts of the actual project quickly over-
lapped once another. Almost all phases were tak-
ing place simultancously on the various sections
of the chip. To keep track of all these activitics
and continually update the project completion
date, we used a spread-sheet program as a track-
ing tool.

The design tcam of 1| people completed the
project in 21 months, including 6 months for
product conception and [5 months for imple-
mentation. Duce to the extensive modeling and
simulation prior to device fabrication, initial
parts werc functional at spced.

Test Features

To aid the debugging process and provide more
complete test coverage, the BIU contains test
logic. This logic allows visibility to both data
paths or to the main PLA. A simple test load
sequence allows one of 16 possible test modes to
be selected. Various groups of internal data path
and control bits and two test-drive timing options
arc allowed. The test mode can be enabled or dis-
abled at any time by asserting a single test pin.
Ccrtain test modes are available while operating
at full speed in a system configuration.

CFPA Performance

Although there is no absolute measure of perfor-
mance in computer system design, the floating
point performance of the CVAX system is com-
pared at approximately three times the perfor-
mance of the MicroVAX Il system. Using some of
the more widely publicized benchmarks of
floating point system performance, the CVAX sys-
tem with CFPA running at 25 MHz shows better
than three times the speed of the MicroVAX II
with FPU. The system calculates 3,105K single-
precision Whetstone instructions per second and
1,996K double-precision Whetstone instructions
per second. Linpack performance of 0.68 Mflops
single-precision and 0.45 Mtflops double-preci-
sion demonstrate over four times the perfor-
mance of the previous generation MicroVAX
implementation.

Table 3 lists the typical cycle counts for regis-
ter-to-register execution of floating point addi-
tion, subtraction, multiplication, and division.

Table 3 CFPA Cycle Counts for Optimized
Instructions

Opcode/

CFPA Operand Total

Instruction Cycles Transfers Cycles
ADDF/SUBF 3 5 8
MULF 4 5 9
DIVF 13 5 18
ADDD/SUBD 4 7 11
MULD 6 7 13
DIVD 27 7 34
ADDG/SUBG 4 8 12
MULG 6 8 14
DIVG 26 8 34
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Jeff Winston

The System Support Chip,
a Multifunction Chip for

CVAX Systems

Developed as a general-purpose companion to the new CMOS VAX VLSI
chips, the System Support Chip (SSC) contains a common core of periph-
eral system functions which are required to support a MicroVAX system
environment. These functions include timers, VAX console support, and
standby RAM. In addition, the SSC provides system designers with “books”
to otber system functions. With these peripberal functions integrated on a
single chip, system designers can substantially reduce the number of com-
ponents on a module and add features previously not considered cost
effective. Primarily used with the CVAX CPU chip, the $5C is also compat-

ible with the NMOS MicroVAX CPU chip.

Background and Goals

In 1984, as the VAX 8200 and MicroVAX II chip
scts entered production, Digital’s Semiconductor
Engineering Group (SEG) directed its attention
toward defining the next generation of MicroVAX
systcms.l This paper describes the project
history and functionality of one of this new gener-
ation’s peripheral chips, the MicroVAX System
Support Chip (SSC). Developed over a period of
18 months beginning in late 1984, the SSC was
designed as a general-purpose companion to the
CVAX CPU. As such, the chip is used in the VAX
6200 family and in the MicroVAX 3000 family,“

As part of the definition of the new CMOS VAX
family of VLSI chips, SEG looked at the periph-
cral functions that surrounded the existing
MicroVAX Il CPU. We observed that, to build a
marketable product, each system group had
added a collection of timers, decoders, and other
low- and mid-complexity functions to their
respective modules. A high level of similarity
from module to module was apparent in the
makcup of thesc functions.

In addition to examining these existing mod-
ules, we talked with the system designers to learn
what additional functions should be included on
the next generation of systems. Again, we found
that the various systems under development
would have a significant number of overlapping
functional requirements.

We decided a chip that provided the common
core of these peripheral functions would be a
strategic component for Digital products. This
single chip would integrate many of the periph-
eral functions usually required on MicroVAX CPU
modules. Consequently, a system designer could
substantially reduce the number of components
on a CPU module and add features that previ-
ously would not have been cost effective. More-
over, the chip would allow him to add features
without lengthening the project schedule or
requiring extra resources. As a result, the system
designer could produce a more competitive
Digital product at little additional cost.

From the system designer’s viewpoint, the chip
would

s Fully implement many functions used identi-
cally across different MicroVAX systems, such
as timers, ROM support, and standby RAM

s Provide the “hooks” to support other func-
tions that would be implemented differently in
the diffcrent system environments

Thus each system group would no longer need to
design, implement, and debug these important
peripheral functions from scratch. Instead, they
could use a readily available part that had been
debugged and qualified. Further, since the SSC
would usc custom CMOS VLSI, this chip would
contain some additional useful functions, such as
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general-purpose timers, that are expensive to
implement in off-the-shelf or gate array tech-
nology.

With these goals outlined, we began develop-
ment of the SSC. The following section presents
an overview of the chip. In the balance of the
paper, we describe the chip functions in detail
and discuss the trade-offs made and problems
encountered during development.

SSC Overview

The SSC incorporates onto a single chip a com-
mon core of functions required to support the
VAX system environment. Table 1 lists the essen-
tial physical characteristics of the chip. Figure 1,
a photograph of the chip, shows the major sec-
tions. Grouped into three main categories, these
sections are

= Support for power-up booting and the VAX
console

s Clock and timing functions

® Features required by the VMS operating system
and those commonly required on a VAX CPU
module.

We begin our detailed discussions of the chip
functions with the SSC console and boot code
support.

Console and Boot Code Support

The peripheral support described in this section
includes ROM packing, halt-protection, the
UARTS, and standby RAM.

ROM Packing

When a MicroVAX CPU is powered up, it begins
executing code from read-only memory (ROM).
To properly communicate with an off-the-
shelf ROM, the microprocessor requires addi-
tional interfacing logic. The SSC provides this
logic by generating the signals needed for the
ROM-to-microprocessor interface. The SSC also
provides the packing support for data-width
compatibility between the ROM and the micro-
processor.

At project outset, SSC designers assumed the
module designers would use four ROMs in paral-
lel to provide a 32-bit-wide ROM word to the
CPU. However, with ROMs becoming denser
every year, it is now possible to put all boot, con-
sole, and diagnostic code in one or two 8-bit-wide
ROMs. System designers therefore chose to use
fewer ROMs, decreasing the number of compo-

Table 1 SSC Physical Characteristics

Total device count 84,000 (approx.)

Die size 8.0 mm x 7.5 mm
Power dissipation Less than 1.0 W, worst case
Packaging 84-pin surface mount

Clock 40 MHz external; 20 MHz
internal; 25.6kHzfor time-
of-year clock

nents on the module and thus the product cost.
The MicroVAX 3000 uses two 64 kilobit (Kb)
ROMs in parallel, forming a 16-bit ROM word.
The VAX 6200 system uses two 64Kb ROMs in
series.

To provide data-width compatibility between
the 32-bit-wide CVAX bus and the narrower ROMs,
the SSC includes packing support for 16-bit
word-wide or 8-bit byte-wide external ROM.
With packing support, the SSC performs multiple
reads of the narrow ROM word, assembles a
32-bit longword, and sends the longword back to
the microprocessor. The SSC performs this func-
tion by directly driving the output enable and
address lines 1 and O of the ROM. (See Figure 2.)
The ROM’s other address pins are driven by an
external address latch, and the data lines of the
ROM drive the CVAX bus directly.

To pack a ROM, the SSC asserts output enable,
drives the appropriate combinations of ROM
address pins 1 and O, and receives the narrow
data across the CVAX bus in consecutive ROM
acess cycles (unbeknownst to the microproces-
sor). The SSC then deasserts output enable, puts
the packed longword on the CVAX bus, and com-
pletes the read transaction.

CPU Halt-request Protection

System designers requested that the SSC help
prevent an undesired condition in the halt logic.
When the halt pin is asserted on the micro-
processor, it ecxecutes a special trap to console
code stored in the ROM. A second assertion of
the CPU’s halt pin (typically generated when
someone repeatedly presses the halt button on
the system front panel) causes a second such
trap, overwriting the pointer needed to return
to program code upon leaving console mode.
Without this pointer, normal operation of the
machine cannot be resumed without booting.
Obviously system designers wanted to prevent
this condition.
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Figure 1 SSC Photograph Showing Major Sections
The SSC prevents the second call by monitoring
CPU CVAX BUS the addresses of all instruction reads and by inter-
‘ i cepting all external halt requests made to the
DATA=15:0> CPU. During normal CPU operation, the SSC
cec A<10> o fom | A<152> | ADDRESS passes an initial halt request to the microproces-
ST LATCH sor. The microprocessor immediately begins to
. ENABLE ) execute from halt-protected space, which is a
special address space programmed into the SSC
CONTROL > by the user at boot time.
When the CPU reads the first instruction from
Figure 2 SSC ROM Packing Connection console code, the SSC detects this console code

Diagram

address and masks further halt requests. These
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requests are masked as long as the microproces-
sor is executing ROM console code. The console
code can then run uninterrupted by halts.
During console code execution, the SSC con-
tinues to monitor all instruction addresses. When
an address outside halt-protected space is
detected, the SSC re-enables halt requests to
the CPU.

Before deciding on the design described above,
we considered implementing a software-con-
trolled bit that would enable and disable halts.
This scheme would require the software to set
the bit upon entering halt-protected space and to
clear the bit upon re-entering normal operation.
Although apparently simpler, this scheme proved
to be flawed because two conditions might occur
that would prevent the user from halting the sys-
tem: (1) the bit could be accidentally set by non-
boot code, or (2) a software error in the boot
code could cause the microprocessor to start exe-
cuting nonsystem code.

With the plan we chose, control is automati-
cally returned to the user as soon as the software
complctes execution of the assumably bugfree
halt-protected boot code. The system designer
can, however. provide software control of the
halt-enable function by aliasing the boot ROM
into two adjacent spaces, where only one copy is
halt protected. The software can then control
halts by jumping between copies of the code.
(This method is used on the MicroVAX II and
MicroVAX 3500/3600 systems.)

UARTs
Although it was clear from the beginning that the
SSC should provide UARTSs, the best choice for
number and design was not immediately clear.
We had two choices at the time the chip was
defined:

s Double-buffered DEC DLARTs (DC-319),
which were in wide use, although a few
problems with this design had recently
surfaced

s Silo designs, which were becoming popular,
though large insize

To conserve chip area, the SSC team settled on
a design very similar to the DEC DLART design,
making a few improvements in response to user
requests. To keep from unduly complicating the
design, we also decided to limit the number of
UARTS to two (the number supported as console

ports within the VAX architf:(:tur(:).4 As a further
simplification, we limited the number of baud
rates to eight power-of-two choices (300 to
38,400 baud).

Our most significant improvement to the
DLART design was the addition of hardware
control-P break-detection. Control-P entered on a
VAX console is interpreted as a halt request.
Thus, the UART must pick out this special
keystroke from the normal character stream and
then signal the CPU to take appropriate action.
Formerly, this function was performed by cum-
bersome firmware. However, the SSC hardware
continuously watches for this character and,
when it senses control-P, automatically signals
the microprocessor.

The console code may configure the SSC
such that a break is defined as a control-P or as
20 spaces; the latter is a definition still used in
some console applications. At one point, we had
planned to use the chip timebase to define a
break as a space lasting a fixed number of mil-
liseconds instead of 20 spaces. However, users
advised us that this new idea, although more
elegant, would make the UART more confusing
to use.

Other improvements include better notifica-
tion of overrun and framing errors, and secure
console support. Console security is effected by a
pin. When grounded, the pin prevents a break
from halting the CPU. This pin is typically con-
nected to a key switch on the computer’s front
panel. Using the switch, the user can lock out
console-induced halts.

Further, the SSC allows the CPU to directly
access the UARTs, time-of-year clock, and bus
reset register by means of the VAX external pro-
cessor register protocol. Using this protocol, the
microprocessor can address system registers
located outside the microprocessor by register
number rather than by complete address. The
SSC understands this protocol and is capable of
decoding the register number and generating
the desired response. Previously, VAX module
designers using off-the-shelf UARTs had to imple-
ment a substantial amount of external logic to
decode the register addresses and enable the
UARTS to respond to this protocol.

Finally, the UARTSs support break transmit and
loopback, and properly respond to VAX inter-
rupts. In products containing the SSC, one UART
is used as the system console; the other is used
for auxiliary functions, such as remote diagnos-
tics. or is disabled.
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Standby RAM

When a VAX system is powered off, the operating
systcm must storc some information in non-
volatile memory until the system is powered up
again. This stored information describes the sys-
tem configuration and contains pointers to restart
data stored on the disk. On the MicroVAX Il CPU
module, a watch chip provided 50 bytes of stor-
agce for this purpose. System designers indicated
this amount was inadequate; 500 to 1000 bytes
was desirable.

To meet this standby storage need, the SSC pro-
vides 1 kilobyte (KB) of battery backed-up ran-
dom-access memory (RAM), organized as 256 by
32 bits. This RAM is also used as a system
“scratch pad” during power-up test.

Additional standby support featurcs are de-
scribed in the section Standby Features.

Timers

The SSC timers serve to improve system reliabil-
ity. meet architecture requirements, and save
module space. These timers include the pro-
grammable bus timeout, the interval timer, gen-
eral-purpose timers, and thc time-of-year clock
discussed in this scction.

Bus Timeout

Since the CVAX bus is a handshake bus, incom-
plcte bus transactions can hang the system. Some
older VAX systems permit this condition; when
thosc systems were designed, the high cost of
implementing a timeout in external logic could
not be justified in relation to the rarity of this
cvent. However, the SSC improves system reli-
ability by providing a programmablc bus timeout
at no additional system cost.

If a transaction lasts longer than a user-
programmed intcrval, the chip

s Signals the microprocessor that a bus crror has
occurred

® Terminates the transaction

s Scts certain internal status flags based on the
typc of transaction that timed out

The status flags differentiate the two types of
timcouts: (1) uncxpected timeouts of read or
write transactions. and (2) permissible timeouts
caused by somec unimplemented external proces-
sor registers or by certain interrupt-acknowledge
transactions. After the timed-out transaction is

terminated, error-handling code reads the SSC
internal status flags and takes the appropriate
action.

The timeout interval may be programmed in
[-microsccond increments up to 16 seconds.
The larger values are used to time out system
self-test.

Interval Timer

The VAX architecture specifies a complete inter-
val clock which the operating system uses to
schedule time-critical system functions at regular
intervals. On MicroVAX CPUs, logic for the clock
is simplified to reduce the amount of circuitry on
the microprocessor chip. On these microproces-
sors, only an interrupt-enable bit is imple-
mented. The timer source is generated externally
and is driven onto an input pin of the micropro-
cessor chip. When the interrupt-enable bit is set,
an interrupt request is generated on the falling
cdge of the timer source, which is a 100-Hz sig-
nal on MicroVAX systems.

The SSC eliminates the need for the module
designer to place another oscillator on the CPU
module by providing a 100-Hz output suitable
for driving the interval timer input to the
microprocessor chip.

General-purpose Timers

Early in the SSC development, many potential
users voiced a need for general-purpose timers on
future MicroVAX modules. However, no one had
specific recommendations on how such function-
ality should be implemented. Some users
requested four timers; whereas others reasoned
that onc timer supported with software could do
the work of four or eight timers.

After some design attempts, we decided to
copy, bit for bit, the VAX standard interval
clock. We reasoned that it was prudent to select
a design that was already well thought out and
in gencral use. We did add onc control bit to
provide a one-shot capability. Our decision to
include two timers was based on the amount
of available chip area and a desire for some
redundancy.

Each timer provides scheduled interrupts
with l-microsecond resolution. The maximum
interval between interrupts is 1.2 hours. In one-
shot mode, the timer stops upon generating
its first interrupt. In single-step mode, a count
can be caused only by writing to a specific
control bit. The interrupt vector is user-pro-
grammable.
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These timers are not used by the CPU module,
butare available to the end user. We expect them
to be very helpful to users designing embeddcd,
time-sensitive applications.

Time-of-year Clock

The VAX architecture requires a battery-backed-
up time-of-year clock with a resolution of
10 milliseconds (ms). When the MicroVAX Il
CPU module was designed, the best method for
providing this feature involved the use of a BCD
watch chip, approximately one-half gate array of
logic to interface the chip to the MicroVAX bus,
and some specially written operating system
code. Even then the clock provided a resolution
of only 1 second in standby mode.

The SSC provides a much more desirable solu-
tion. Its 32-bit VAX-standard time-of-year clock,
driven by an external 25.6 kilohertz (KHz) oscil-
lator, increments every 10 ms. As with all SSC-
internal registers, the microprocessor can access
the time-of-year clock without using any external
logic.

To further minimize cost and module space
usage in systems where battery-backed-up clock
operation is not required, thc user may simply
ground the 25.6 KHz input pin on the SSC.
During normal operation, the time-of-year clock
will automatically derive its timebase from the
chip’s UART timebase, removing the need for the
25.6 KHz oscillator on the module.

Other Support Features

Programmable Address Strobes

As noted in the section Background and Gouls,
the SSC is designed to provide system designers
with “hooks” to other system functions. Onc of
these hooks is the SSC programmable address
decode strobe function, which adds user
flexibility and also saves modulc space.

Virtually every CPU module needs logic that
watches the bus for particular addresses and
asserts signals when these addresses are sensed
This function is typically embedded in gate array
logic or in dedicated programmable array logic
(PAL) chips.

The SSC has two programmable address decode
strobes. The user may program each strobe for a
particular address of 1s, Os, or “don’t cares.” The
user can also program selectively for read or
write transactions. When a strobe channel is
enabled, the corresponding output pin will assert
during any bus transaction for which the pro-

grammed address and transaction type are
matched.

The strobes can be programmed either to
provide a hook for external logic or to complete a
transaction after a delay. When the SSC is pro-
grammed to provide a hook, the strobe might
be used to drive an external address decoder or to
enable another chip. After asserting the output
strobe, the SSC takes no further action, permit-
ting another device to complete the bus trans-
action.

Alternatively, a strobe can be programmed to
complete the transaction after a delay that per-
mits an external device several hundred nanosec-
onds to respond. When configured in this way,
the strobe is usually programmed to respond to
reads of a single longword address. The strobe is
then wired to enable three-state drivers which
drive module data onto the CVAX bus. This data is
often made up of external registers, or of dual in-
line package switches that indicate baud rate
selection and other module-specific information.

Output Port

Four pins on the chip function as an output port.
The port is written as a register and is capable of
driving simple output devices. This output port
is another general-purpose feature that system
designers need to implement various module-
specific functions. Some designers use the port
pins to drive LEDs, which are then flashed in a
particular sequence to indicate progress of self-
test. In other applications, system designers have
used these signals to control external multiplex-
ersand to provide simple modem control.

Bus Reset

The VAX architecture requires a reset of the I/0
system when the CPU issues a write to a particu-
lar external processor register. This specification
requires support from both decoding logic and
I/0 system reset logic. In the past, each module
designer had to implement both logic blocks in
external hardware. SSC designers saw another
opportunity to simplify the CPU module by plac-
ing somc of the consistently required logic on
the SSC.

Although the I/O system reset logic varies
among systems, the decoding logic is the same in
each MicroVAX system. The SSC provides this
core logic, taking three actions. First, the chip
decodes the external processor register number.
Then it asserts an output pin in response to the
external processor register write. Finally, it
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delays the completion of the write transaction for
several hundred nanoseconds, so that module-
specific logic, triggered by the pin assertion, may
proceed to take the proper action to complete
the I/O system reset.

Standby Mode: Power-sensing Features

When powered down, VAX systems are required
to maintain a running real-time clock for at least
100 hours. Retention of some memory is also
desirable. As noted in the section Standby RAM,
the SSC satisfies these requirements by providing
a standby operating mode. In this mode, the
power supply to the module and to the chip pad
drivers is turned off and most internal logic is dis-
abled. However, the SSC RAM and time-of-year
clock are powered by three NiCad batteries sup-
plying between +3.1 V and +4.5 V at approxi-
mately 150 microamperes. The batteries also
power the 25.6-kHz external low-power CMOS
oscillator, which provides the time-of-year clock
timebase. Within the SSC, special logic guaran-
tees smooth transitions from normal operation to
standby mode.

As part of providing standby operation, the SSC
must reliably report at boot time whether standby
power was continuously maintained during the
standby period. The task of determining whether
battery power had remained stable during the
standby period was a difficult challenge for the
SSC designers. There are two ways power can be
lost during standby: The batteries may run down,
or somcone may replace the batteries. In either
casc, the SSC detects loss of power and reports
such loss to the CPU during the next boot.
Except for external logic used for voltage mea-
surcment, this entire function is implemented
within the SSCas follows.

When the batteries run down, the unaccept-
ably low voltage can be detected during boot.
However, our CMOS process is not optimized for
the design of logic that can accurately measure
intermediate voltages. Thus, external circuits
are used to detect whether battery voltage is
currently below a minimum level. If voltage is
below minimum, these circuits assert an SSC
input pin dedicated to this function. However,
these external circuits cannot detect temporary
power losses that occur during standby mode, for
example, when the batteries are replaced. To
provide for these cases, a special latch on the
chip, which powers up in a preferred state,
detects the interruption of battery power during
standby or initial power-up. This power-up

detector latch will operate for arbitrarily slow
supply transitions. In addition, the latch’s reset
input includes internal filtering for protection
against fast supply transitions or power-up noise.

If either the external circuits assert the SSC
input pin or the special power-up latch indicates
a loss of power, the SSC sets an internal flag bit at
boot time. The bit, which indicates that the clock
and RAM are not valid, is read by the micropro-
cessor during boot.

System reliability is improved by the SSC’s abil-
ity to determine the integrity of its standby logic
and to notify the CPU in a software-accessible
fashion. Moreover, this feature saves design time,
since designers need not individually create this
tricky but necessary logic.

Flexible Addressing

The designers of the SSC determined that the chip
should fit into any VAX system environment with
a minimum of external address decoding or sys-
tem incompatibility. As a result, the SSC control
and status registers and internal RAM are all situ-
ated within a relocatable 2KB address space. This
arrangement eliminates the need for an external
chip-enable pin and the external decoding logic
that would be needed to properly assert such a
pin. The power-up boot code programs the base
address of the registers by writing a 2KB-aligned
value to the SSC base address register.

The SSC base address register is located at a sin-
gle fixed address, chosen in cooperation with our
major users. The SSC RAM and registers can then
be addressed by adding their specified offsets to
the value in the base address register. A system
designer can therefore situate the SSC registers
and RAM (together) anywhere in a system’s 1/O
space map.

Initialization

To make the SSC especially easy to usc, most of
the SSC configuration bits are grouped in a single
register. These bits include setup for the UARTS,
programmable address strobes, ROM packing,
and halt-protection features. Thus, during system
initialization, most SSC features can be config-
ured with a single write.

MicroVAX and Multi-speed
Compatibility
Although targeted primarily as a companion to

the CMOS VAX CPU, the SSC is also compatible
with the older NMOS MicroVAX CPU used in the

Digital Technical Journal
No. 7 August 1988

127

CVAX-based
| Systems




The System Support Chip, a Multifunction Chip for CVAX Systems

MicroVAX I1. Thus, new low cost or low perfor-
mance designs using the older microprocessor
chip can also take advantage of the high integra-
tion and extra functionality provided by the SSC.

The SSC is also compatible with modules that
have either high or low cycle times. Originally
designed for a 100-ns microcycle, the CVAX
microprocessor runs at 90 ns in the MicroVAX
3000 system and at 80 ns in the VAX 6200
system. Early in the development of the CVAX
chip set, we dccided that chips that were not
performance-critical, like the SSC, would run at
just one speed (100 ns), but would be capable of
interfacing to a faster-running microprocessor.
Speed conformability would simplify develop-
ment, manufacturing, and field support because
one SSC could be used across all MicroVAX
systems.

Accordingly, the SSC bus interface, running at a
100-ns microcycle, accommodates microproces-
sors running at microcycles from 100 ns to 60 ns.

Summary

The SSC project yielded a CVAX microprocessor
companion chip that provides a high degree of
functionality, flexibility, and integration. Com-
prising console support, timers, decoders, and
other programmable features on a single chip,
the SSC permits system designers to develop
smaller, more integrated modules at lower cost.
Moreover, improvements made to the generalized
features, such as halt protection and brcak detec-
tion, contribute to increased system reliability
without reducing system design flexibility.

The utility of the SSC is evidenced by plans to
include the chip in over a dozen different Digital
products, such as the MicroVAX 3000 systems,
the VAX 6200 systems, many XMI adapter
boards, and various controller products.
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Barry A. Maskas |

Development of the
CVAX Q22-bus Interface Chip

The CVAX Q22-bus interface chip (CQBIC) is a bighly integrated, single
chip that serves as the interface between the CVAX microprocessor and the
Q22-bus 1/0 subsystem. The CQBIC VLSI design is the first produced by
Digital’s Japan Research and Development Center in coordination with
teams in the U.S. Before implementing the interface design, team members
built a test chip to ensure the feasibility of a CMOS Q22-bus transceiver and
to test various design alternatives. Also as part of their research effort,
they examined alternative designs for several functions, including the
scatter-gather map cache and the data buffering functions. Project
designers then implemented the CQBIC using a mix of full custom and
semicustom design databases. A description of the five major functional

sections is presented in this paper.

The CVAX Q22-bus Interface Chip (CQBIC) is an
evolutionary step in functionality and integration
from the MicroVAX Il CPU module’'s Q22-bus
interface design. The MicroVAX Il CPU module’s
Q22-bus interface comprises 18 discrete chips
and a gate array; the module design employs
linked sequential controllers.' The advanced
CQBIC design integrates these controllers and all
other interface functionality in a single chip and
retains the linked controller design.

Spccifically, the CQBIC provides the electrical
and functional interface between the 32-bit CVAX
microprocessor and the 16-bit Q22-bus I/0 sub-
system. Integrated on the chip are the complete
Q22-bus interface, data buffering, the CVAX
bus,” direct memory access (DMA) interface, a
scatter-gather (S/G) map cache, and complex
control logic. Table 1 lists the chip’s physical
characteristics.

Begun in February 1985, the two-year CQBIC
project was a joint venture for three of Digital’'s
groups: Japan Research and Development Center,
Large Scale [Integration (JRDC/LSI); Semi-
conductor Engineering Advanced Peripherals
Development (SEG/APD); and Micro Systems
Development (MSD)AS

Project Goals and Organization

A highly integrated, single-chip, CVAX bus to
Q22-bus adapter was a desirable product for sev-

Table 1 CQBIC Physical Characteristics

2-micron drawn, N-well,
dual aluminum CMOS

Number of transistors 40,900 (approx.)

Process

Die size 9.2mm X 9.4 mm

Power consumption 15W

Packaging 132-pin surface-mountable
chip carrier with 25-mil
lead spacing and heat sink

Power supply +5V

cral reasons. Primarily, such a chip would reduce
component costs and system module size, and
increase system reliability as compared with the
MicroVAX [[ CPU module’s Q22-bus interface.
Therefore, the primary goal of the CQBIC pro-
ject was to develop a highly integrated chip as an
interface between the CVAX microprocessor and
the Q22-bus. This chip would ease the task of
Digital’s system designers by standardizing the
interfacing to the Q22-bus and by providing the
same or improved [/O bandwidth performance as
the MicroVAX I I CPU module Q22-bus interface.
Achievement of this performance goal was
complicated by the single-port memory architec-
ture of the first planned CPU module and its two-
level instruction and data, direct-mapped cache
scheme. In comparison, the MicroVAX [I CPU
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module has a dual-ported memory architecture
with no caching. However, the DMA single-port
architecture was required for the new two-level
cache architecture; with a single-port organiza-
tion, DMA addresses can be viewed by the caches
so that the caches can invalidate valid entries dur-
ing I/O-to-memory write transactions. Consc-
quently, to both accommodate this architecture
and mcct its performance goals, CQBIC had to
be designed to consume little CVAX bus band-
width while performing DMA transactions. Such
a design would not greatly degrade CVAX
microprocessor performance.

A sccond important project goal was to pre-
serve 1/0 performance and operating system
softwarce compatibility.*/ Therefore, CQBIC
would provide the same Q22-bus virtual to CPU
physical memory address translation as contained
on the MicroVAX [1 CPU.

In addition to meeting these goals, the CQBIC
project would also serve to demonstrate the feasi-
bility of a remotc VLSI design center for the SEG
organization. Moreover, through this project the
JRDC/LSI Group would have an opportunity to
demonstrate its VLSI design capabilitics.

Further complicating the challenges presented
by the design goals, the distance between the
working groups, the cultural and work style
differences, and the language barricr was the
newness of the JRDC team. Many of the JRDC
team members could read and write English, but
had some difficulty speaking and listening to
English. Also. the Japanese language was com-
pletcly foreign to MSD and SEG. Written English
served as the primary form of communication
throughout the project. Further, the JRDC team
members had to learn not only about Digital’s
products and architectures, butalso the Q22-bus,
the other five chip specifications under develop-
ment, the SEG scmicustom and custom chip
design tool suites, and Digital’s CMOS technol-
ogy. To hclp with this stcep learning curve,
experts from each of thesc areas facilitated the
training and information flow. These cxperts
provided answers to specific questions and
helped to solve specific problems as follow-up to
formal training scssions.

Bascd on the MicroVAX I1 CPU design expcri-
ence in SEG and MSD, SEG provided Icadership for
both the chip specification development and the
project. This role involved conveying to the JRDC
team the chip functional definition and detailed
behavior specifications. This information had to

be presented in the context of the five other VLSI
chips being designed by the SEG groups with a
focus on the CPU module product. The U.S.-
bascd project lcadership had to provide budgert,
schedule, and task coordination for JRDC, MSD,
and for other organizations within SEG.

As the initial customer, MSD performed three
major specification reviews. This group continu-
ally provided direction concerning design
tradc-ofts, and requested specific functionality
revisions to tailor CQBIC more to their CPU
application.

Digital’s Engincering Nctwork was the primary
mecans of transferring written communications
betwcen groups. We also exchanged information
by sending facsimile copy and by mailing mag-
netic tapes and documents. At times telephone
discussions and personal visits were necessary.

Spccification development began with a two-
wecek visit to the JRDC facility in Tokyo. At that
time, we wrote the first draft with key members
of the JRDC tcam. This draft specification laid
the foundation for subsequent architecture and
functionality research, and served as a communi-
cation medium. The draft specification was then
maintained by the JRDC tcam and SEG and was
frequently revised and rcviewed.

The following section presents the project
rescarch conducted to ensure the fecasibility of
project goals and to resolve major questions
raised by the draft specification.

Project Research

Project research focused on two arcas. First, we
wanted to evaluate the risks involved in the
implementation of a CMOS Q22-bus transcciver.
For this purpose, SEG tecam members implemen-
ted a test chip. Second, we wanted to determine
the best means to achieve our stated performance
goals. The tests and studies which we conducted
and their results are described below.

022-bus Transceiver Test Chip

To determine whether or not a CMOS Q22-bus
transceciver could be implemented, several stud-
ics were performed by SEG circuit designers
responsible for the cell library. These studies
showed feasibility, with two major implementa-
tion risks:

s The proposed differential comparator to be
used as the receiver required a stable voltage
reference.
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s The 33 100-milliampere (mA) peak, 70-mA
stcady-state sink current Q22-bus transceivers
werc to be on the same substrate as complex
control circuitry. Three problems could
result:

— CMOSlatch-updueto chargeinjection from
input signal overshoot

— Excessive noise due to substrate current
transients

- Excessive localized power dissipation

With scveral design alternatives available to us,
we needed more experimental data to determine
the better alternatives. To obtain this data, a
Q22-bus octal transceiver test chip was designed,
fabricated, and packaged by SEG circuit design-
ers. Available after seven months, this packaged
octal transceiver test chip was tested in a
MicroVAX II CPU module and performed well
under system conditions.

The test chip experiments showed that CMOS
latch-up due to worst-case overshoots below
ground did not occur. These results matched our
expectations. We were not concerned with over-
shoots above the +5 volts (V) bias because of the
Q22-bus termination voltage of 3.4 V. Tests also
showed that special care would be required in
the allocation of dedicated ground pins for the
Q22-bus transccivers to avoid noise coupling
from substrate bounce and package power-lead
inductance. Also, in the chip layout, we would
have to use many parallel traces of metal inter-
connect to prevent metal migration when sinking
100 mA of pcak current. Finally, due to low
channcl resistance of the Q22-bus driver output
pull-down device, the power dissipation of the
test chip was shown to be within reliable opera-
tion limits. Therefore, CQBIC power dissipation
was not a concern in terms of thermal characteris-
tics of the planned packaging.

The test chip results did lead to a compromise
concerning the stable voltage reference. Because
of large variations in CMOS process materials, a
precision off-chip or external resistor would bet-
ter serve to establish the required voltage than
would some risky process-desensitized structure
in CMOS.

Prior to these tests, we designed CQBIC to
facilitate the usc of either integral transceivers or
oft-chip transceivers. Fortunately, the test data
demonstrated the feasibility of a single chip with
integral Q22-bus transceivers, and the project

procceded under a plan that included integral
transceivers.

Architecture and Performance Studies

As the octal transceiver test chip was being devel-
oped, MSD, JRDC and SEG conducted architec-
ture and performance studies. These studies
would answer questions about the organization of
the S/G mapping function, the data buffering
required to meet the performance goals, and the
sequcential controllers partitioning and clocking
to manage the two asynchronous buses and the
internal functions.

S/G Mapping

A RAM structure was first proposed to implement
the S/G mapping functionality. The MicroVAX 11
CPU design had used such a structure, with two
8K-by-8 static RAMs. This proposal, however, was
rejected since not all of the RAM would fit on a
single chip with all the other required circuitry.
Increasing the chip size was not an option. The
chip size was limited for cost reasons as well as
packaging cavity size reasons. The chip’s cost is
directly proportionate to its size, and the design
of a ncw package was outside the scope of the
project. Moreover, implementation of a portion
of the RAM would have introduced a system soft-
ware incompatibility with MicroVAX II and
would have reduced the planned performance.

As the problem of S/G mapping functionality
was studied, it became clear that system memory
was adequate. Further, CQBIC could not imple-
ment the full 8192-entry RAM on a chip size that
could be fabricated with reasonable yield. Also, a
capability to prefetch S/G map entries based on
expectation was considered necessary to sustain
peak, as opposed to average, performance. We
looked to the Q22-bus DMA devices which per-
form transactions with incrementing addresses.
In particular, Q22-bus devices are designed to
utilize the Q22-bus block-mode data transfer
protocol. This protocol transfers data packets of
eight-word blocks. With this protocol available,
we could design the CQBIC to cache the S/G map
entries from system memory on demand and on
expectation.

The next two problems were how to imple-
ment the cache and how many entries to include
in the cache. A 16-entry cache provided the bal-
ance we sought between several factors: appro-
priate chip area, implementation complexity,
design risk, and DMA1/O performance impact.

Digital Technical Journal
No. 7 August 1988

131

CVAX-based
Systems



Development of the CVAX Q22-bus Interfuce Chip

Data Buffering

CVAX bus cycle times were targcted to be four or
more times greater than typical Q22-bus cycle
times. Also. the CVAX bus was being designed to
support DMA multidata transters. This design was
consistent with the Q22-bus block-mode data
transfer protocol. To bridge the bandwidth gap
between the two buses and to minimize the use
of CVAX bus bandwidth, data buffering tech-
niques werc investigated to optimize for Q22-bus
block-mode throughput for read and writc trans-
actions. These investigations resulted not only in
the determination of buffer sizes but also in a
decision on how to control the buffers to opti-
mize sustaincd throughput and minimize initial
latency.

The MicroVAX Il CPU is capable of supplying
read data to the Q22-bus with a very consistent
access time becausc memory arbitration is not
required. To achieve MicroVAX I average read
performance, read data prefetching was consid-
cred necessary to compensate for the memory
arbitration time. For CQBIC. the first read of a
Q22-bus transaction would be time delayed by
thc DMA request and grant time, to obtain master-
ship of the CVAX bus. and by the subsequent sys-
tem memory access time The delay would always
be longer than MicroVAX II read latency. which
had only memory access time read latency to
consider. We determined that two quadword read
buffers would be sufficient to sustain the
required throughput becausc read data is
prefetched based on expectations of the Q22-bus
block-mode protocol. Low latency was achicved
by providing a response to the Q22-bus as the
first longword of the quadword read data was
obtained from system memory.

Pipelining the buffered writc data could be
achieved with two buffers. cach eight words
deep. An octaword block is the packet size of the
Q22-bus block-mode protocol and is thc¢ maxi-
mum multitransfer block size of the CVAX bus.
The control logic would be designed to allow one
buffer to be unloaded to system memory while
the other was being hlled. The latency would be
better than that of the MicroVAX 11 CPU module,
since the CQBIC data was packed into fast octa-
word buffers. The average throughput would be
sustained by the four times or greater bandwidth
of the CVAX bus, as compared to the Q22-bus, by
the use of pipelined data buffers.

The CQBIC buffering and transaction optimiza-
tions in conjunction with the CVAX CPU intcrnal

cache hit rate result in an insignificant DMA 1/0
impact on CVAX CPU performance. Given the
buffering and control organization and optimiza-
tions described above, performance difference
between the single-port and the dual-port mem-
ory designs cannot be detected by a Q22-bus
device. The result is improvement in Q22-bus
rcad and write throughput over the MicroVAX 11
CPU. The CQBIC maximizes Q22-bus perfor-
mance and minimizes CVAX bus usage. Moreover,
CQBIC can sustain Q22-bus block-mode transfer
write data rates of 3.3 megabytes (MB) per sec-
ond and rcad data rates of 2.5 MB per second.

Finally, to optimize the CVAX /O write perfor-
mance. a dump-and-run buffer was to be imple-
mented in CQBIC. This buffer is used to avoid
tying up the CVAX bus while the slower Q22-bus
transaction completes and whilce deadlock situa-
tions are rcsolved.

Controller Partition

Given these buffering functions, the control of
the data path and of the two major bus interfaces
was naturally partitioned into five linked con-
trollers and a prioritization function. Each bus
interfacc was partitioned into a master and a slave
controller. The S/G map cache also required a
controllcer. Then to assist in coordination of con-
trol flow decisions, a priority resolver function
was necded.

This partition allows the Q22-bus and the
CVAX bus to operatc in parallel while all dead-
lock conditions are resolved. Fortunately the
CVAX chip team implemented a bus transaction
rctry capability. This retry capability proved
cssential to our partition and implementation of
CQBIC control functionality.

Clocking

Two primary factors led us to select a S0-nano-
sccond (ns) two-phasc nonoverlapped internal
clock scheme. First, the MicroVAX 11 CPU mod-
ule’s 50-ns single-phase clocking scheme was
a proven approach and mapped well to the fixed
Q22-bus minimum asynchronous timing specifi-
cations. Sccond, we expected synchronous CVAX
bus cycle timing to vary with CMOS technology
improvements. The variable CVAX cycle time and
tour-phase overlappced clocking scheme could
not be uscd to gencrate the fixed Q22-bus tim-
ing. Also. having two clocking schemes in one
chip was dctermined to be a design too complex
10 managc.
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The implication of the selected CQBIC clock-
ing scheme was that. with reference to all inter-
nal controllers, the CVAX bus and the Q22-bus
werce asynchronous.

Resecrch Results Summetry

The result of the research was a single chip
design that would achieve the stated project goals
by providing

= Integral Q22-bus transceivers
® A 16-entry map cache. with preferching
= ‘I'wo octaword Q2 2-bus writc bufters

m Two quadword Q22-bus rcad buffers. with
prefetching

= Alongword CVAX write bufter

= Transaction partitioned sequential controllcers.
which are optimized for look-ahead data
buffcring control and for utilization of multi-
ple-transfer transactions to minimize CVAX
bus and Q22-bus usage

The research results were documented in the
torm of a revised chip specilication and a behav-
ioral model. The chip was implemented from the
revised specification with a process which was
uniquc and unproven

Implementation Process

CQBIC was implemented using a mix of standard
library cells. custom library cells, and full cus-
tom layout sections. At the time. SEG could not
offer a formal design tool suite to deal with such
a mix of full custom and semicustom design clata-
bascs. So the JRDC tcam standardized by select-
ing the methods of the semicustom tool suite for
logic and circuit design. The semicustom sche-
matic cditor and wire lister were used to design
all the logic. This wire lister facilitated interfac-
ing to SPICE and other checking tools and most
importantly to the layout tools. For layout, no
automation of floor planning and cell placement
and routing could he employcd. This layout was
all done by hand, as werc the full custom designs.
Interconnect verification and design rule check-
ing were completed using the tools from the cus-
tom design suitc.

A full custom layout section was required to
implement the S/G map cache because of the
chip-size and latency constraints. A part of the
latency is due to the Q22-bus address look-up in
the cache. TheS/G latency had to be small to com-

pensate for the long latency that could occur, for
cxample, when the look-up misses the cache and
rcquires an S/G map memory read access.

The standard cell library was rejected because
it did not offer a content addressable memory
(CAM). which is the structure required to facili-
tatc fast address look-ups. In addition, the use of
standard library cell latches and exclusive OR
gates was estimated to almost double the desired
look-up time on the 16 cached entries.

Again to contain chip size and also to meet con-
trol performance, custom programmable logic
array (PLA) scctions were required. The PLA
structures offercd by the standard cell library
wcere too slow and required a clocking scheme
difterent from the CQBIC two-phase clocking
scheme. This decision to implement custom PLA
structures is credited as the reason performance
goals were achieved. In fact, performance goals
could not have been achieved without custom
PLA structures.

At the time logic and circuit design began, the
standard library cells available for this design
were found to be inadequate. Many necessary
functions were missing or were not tailored for
the specific application. Also, in many cases the
performance of library cells did not match the
performance required by the two-phase clocking
scheme. Hence the JRDC team developed its own
cxtensions to the standard cell library. The com-
mon logic structures such as NAND, NOR, flip-
flop, and latch were used from the standard cell
library as much as possible. since these struc-
tures reduced the risk of circuit problems. Cus-
tom structures, such as counters, multiplexers,
latched pad transceivers, synchronizers, PLLA AND
plane drivers, and PLA OR plane receivers, were
designed and made available to the library.

The JRDC team accurately modeled the chip
based on the specification at the behavioral and
the MOS levels of abstraction using Digital’s
DECSIM simulator.

Initially. the JRDC team developed a behav-
joral system environment model based on their
understanding of the CVAX bus and the Q22-bus
specification.  This environment model was
layered around the CQBIC behavioral model to
verify the design. As the design progressed, a
more accurate behavioral chip model replaced
the initial model after correlation.

Further, as other CVAX behavioral, structural,
or MOS chip models matured, MSD incorporated
them into the CPU system model. This model was
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then used to test the CQBIC further in the con-
text of the application system. System simulation
proved that all CVAX bus specifications which
were communicated were understood and imple-
mented correctly. The system simulation served
as an independent test of the CQBIC design.
Although no CQBIC problems were found by
MSD during system simulation, the testing did
prove that the system would operate. We later
learned that several bugs could have been found
had more time-varied events been scheduled
with the system simulation test cases.

When completed, the CQBIC MOS model was
correlated to the behavioral chip model. The
MOS chip model was then placed in the MSD sys-
tem model for regression testing.

When we were confident that the CQBIC
design was complete, that is, when no new bugs
were found after thorough testing, the chip
was released to SEG for a final design review and
submittal for fabrication. The database was
copied over the Enginceering Network from the
JRDC facility in Tokyo to the Hudson, Massachu-
setts, plant. After completing a final design
review and subsequent problem fixes, the chip
was submitted for fabrication. Eight weeks later
first-pass parts were probed and found to be func-
tional. Packaged parts were run in the MSD CPU
module. This testing revealed several timing bugs
related to events from both buses occurring at
the same time. After extensive testing, the bugs
were fixed, and a second revision was released for
fabrication. When the second pass part was tested
in the CPU module, another timing problem
related to coincident transactions from both
interfaces surfaced. This particular bug was
obfuscated by a pass 2 bug. A third revision was
prepared and fabricated. This third pass was
available in time for the first customer shipments.
The final chip functionality is briefly described
below.

The CQBIC Functional Organization

CQBIC is an asynchronous CVAX bus device and
rcquires a fixed 40-megahertz oscillator input to
dcrive Q22-bus timing. The oscillator input is
used to gcnerate a two-phase, nonoverlapped
clock which is distributed to all chip sections.
The CVAX bus interface was designed to accom-
modate transaction cycle times from 100 ns to
60 ns. This design anticipated a CVAX CPU tech-
nology change and subsequent performance
improvement.

CQBIC provides the power-up, initialization,
power-fail, and power-down protocols to the
system and performs Q22-bus and CVAX bus
address decoding. Further, the chip performs
the page address S/G mapping function for DMA
devices by using its 16-entry S/G address map
cache.

This cache contains a copy of the most recently
used S/G pointers, which are located in system
memory. The cached pointers are used to map
22-bit Q22-bus virtual to 29-bit CVAX bus physi-
cal addresses. CVAX bus and Q22-bus transac-
tions are optimized by using a CPU dump-and-run
write buffer, two pipelined Q22-bus octaword
write buffers, and two pipelined Q22-bus quad-
word read buffers. The chip performs transparent
address and data alignments, and packing and
unpacking of internal buffers.

CQBIC is composed of five global control sec-
tions. A block diagram of the chip control sec-
tions is shown in Figure 1.

Each section contains an independent sequen-
tial controller:

s The Q22-bus arbiter

® TheS/G map

The Q22-bus master

The Q22-bus slave and CVAX bus master

The Q22-bus electrical interface.

A photomicrograph showing the floor plan of
the control sections is shown in Figure 2.

Each section shown in the Figure 1 block
diagram is described next.

Q22-bus Arbiter Section

As a Q22-bus arbiter, the CQBIC is the default
Q22-bus master and the highest priority
requester. The arbiter accepts requests from
Q22-bus DMA devices and from the master sec-
tion, and grants mastership with first priority to
the master section. In response to a master
request, the arbiter exercises a demand master-
ship protocol to Q22-bus devices to ensure
low-latency interrupt vector or data reads. In
response to interrupt requests from the
Q22-bus, the arbiter receives the requests and
passes them to the CPU. When the CPU acknowl-
edges the request, CQBIC reads a vector from
the Q22-bus device and supplies an acknowledge
signal.
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When multiple CQBIC chips are connected to
the Q22-bus, they take on different functions.
The first chip operates as Q22-bus arbiter; the
others operate in auxiliary mode. As an auxiliary
mode device, a CQBIC chip does not perform
Q22-bus arbitration. Instead, the chip behaves as
a typical Q22-bus DMA device that is a default
Q22-bussslave. Therefore, when the CPU initiates
aQ22-bustransaction,itsCQBICrequestsQ22-bus
mastership. The arbiter CQBIC serves as Q22-bus
arbiter and grants the bus accordingly to auxil-
iary mode CQBICs and other DMA devices.

Control Section Block Diagram

Either as arbiter or as an auxiliary device, the
arbiter function performs the system power-
up, initialization, power-fail, and power-down
sequences.

S/G Map Section

The S/G map consists of 8,192 longwords allo-
cated from system memory. Each map entry con-
sists of a 20-bit page pointer, a 3-bit descriptor
which CQBIC ignores, and a valid bit. The low
9 bits of a Q22-bus address pass through as an
interpage offset; the upper 13 bits select the con-
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Figure 2 Photomicrograph of CQBIC

tents of one of the 8,192 S/G map locations. The
CPU informs the CQBIC of the S/G map location
by writing a base address into the CQBIC map
base register. This write flushes the valid bits of
the cached map entries.

To avoid map cache coherency problems, the
CPU accesses the S/G map through a VAX /O
address range decoded by the CQBIC master sec-
tion. The slave section then performs the S/G
map memory transaction. This indirect approach
prevents the CPU from directly modifying the
S/G map memory independent of the 16 cached
pointers. A CPU to S/G map write invalidates the
cached map entry as the slave section performs
the memory write. CPU to S/G map reads return
the cached copy if it was cached or return the
S/G pointer from system memory.

As noted in the section Project Research, we
selected a map cache size of 16 entries. The re-
scarch of Q22-bus DMA device transfer sizes and
the number of devices active in a dynamic system
showed that 16 entries were sufficient to avoid
thrashing on entries. The effects of the Q22-bus
fair arbitration scheme were used to show that
the simple first-in-first-out (FIFO) replacement
algorithm selected did not waste performance
and was consistent with incrementing DMA
device addresses. As a DMA device transfer
address incremented to a page boundary, the next
map entry would be prefetched, and the previous
map entry was not used unless the current 1/0
request completed and another was requested.
We found that the operating system’s allocated
map entries for /O requests to Q22-bus DMA
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devices from a free pool list maintained in a last-
deallocated, first-allocated manner. The overhead
of one extra read for a map entry per page was
found to be insignificant.

Q22-bus Master Section

The master section contains two configuration
registers and three status-and-error reporting reg-
isters in addition to all the control circuitry.

The master section’s function is to decode all
the CVAX bus addresses and cycle status codes.
This decoding determines which of two types of
actions is rcquired:

= A transaction to an internal register, the S/G
map, or the Q22-bus

s Q22-bus mastership prior to completion of the
transaction

Each of these actions is described in the text
below.

If a decoded address requires no CQBIC
response, a signal pin is asserted to external logic
for control of buffers and timeout counters.

Transaction to an I'nternal Register

When the master section detects a CVAX bus
address for one of the two control or three
address registers in CQBIC, it returns or writes
the data. The master section also facilitates a
memory lock for the CPU to perform a read-lock
and write-unlock operation. First, the master
detects a CVAX bus interlocked transaction and
then performs a retry until Q22-bus mastership is
obtained. Q22-bus mastership is held until an
unlock transaction or an exccption occurs. As
long as other Q22-bus devices follow this proto-
col, memory that is mapped to the Q22-bus can
be shared.

Transaction to S /G Map

As noted in the S/G Map section, S/G map trans-
actions arc controlled by the master section. The
master requests the slave and map cache sections
to complete the memory and cache transactions.
To construct the memory address for the slave and
map cache, the master uses the significant low
13 bits of S/G map 1/0 address as an oftset from
the map base register.

Transaction to Q22-bus

To avoid deadlocks, the master utilizes the CVAX
CPU retry transaction. (CVAX CPU relinquishes
CVAX bus control to the CQBIC slave section. The

CPU then retries the same transaction when bus
control is returned.) S/G map transactions have a
higher priority than Q22-bus slave transactions
The slave section therefore performs S/G map
transactions in parallel with Q22-bus slave trans-
actions. When the master tries to access the
Q22-bus and it is busy. the arbiter attempts 0
gain mastership. Until mastership is obtained.
the slave can perform a retry to satisfy the
Q22-bus transactions.

Q22-bus Mastership
When the master acquires Q22-bus mastership. it
sequences the transaction. A special case of the
sequence occurs when the 1/0 memory segment
address maps back to system memory through the
slave and map cache. In this case a retry is used.
and the slave gives the data to the master.

The CPU writes to the Q22-bus arc¢ accepted
by the master in a dump-and-run manner to
improve performance.

Q22-bus Slave Section

The slave section design implemented the two
quadword read buffers and the two octaword
write buffers. This section was the key to realiz-
ing the performance goals established for the
chip. The slave has to respond to all Q22-bus
transactions by checking the address in the S/G
map and then sequencing the CVAX bus to put or
get data. The slave must coordinate its intentions
with all other chip sections to avoid deadlock
conditions. This coordination is realized in a pri-
oritization circuit which receives state inputs
from all sections of the chip and outputs status
codes to the slave and master sections to trigger
actions.

The slave watches for master or Q22-bus trans-
action requests. When the slave receives Q22-bus
addresses, it passes these to the map cache for
validation. If the S/G entry is not cached, the map
cache signals the slave to acquire ancw S/G map
pointer from system memory. The map cache
will cache this new entry if the valid bit is set. If
the valid bit is cleared, then an exception is
taken. When the address is validated, the slave
proceeds to sequence the transaction to or from a
buffer and system memory. During slave writes to
the system memory, the CVAX is signaled to
invalidate its internal cache.

The slave maintains two octaword write buffers
to optimize Q22-bus octaword block-mode trans-
actions. By using a CVAX bus multitransfer burst,
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the slave can unload one buffer to memory while
filling the other octaword buffer.

For each new Q22-bus read request, the slave
prefetches four words from memory. This pre-
fetch is done in anticipation of block-mode trans-
actions. These four words are buffered and sent to
the Q22-bus master. As the third word is
unloaded, the slave prefetches four more words.

As either a Q22-bus block-mode read or write
transaction nears a page address boundary, the
slave performs an S/G map entry prefetch of the
ncxt entry. The slave then passes the prefetched
entry to the map cache.

An additional function of the slave section is a
Q22-bus addressable interprocessor doorbell
register. This register accommodates arbiter and
auxiliary mode operation by supplying to the
CPU a memory access semaphore, an interrupt
request, and a vector address.

Q22-bus Electrical Interface Section

The Q22-bus is a 120-ohm transmission line
with near- and far-end parallel termination. The
length of the Q22-bus canvary from 25 to 60 cen-
timcters and is subject to reflection and crosstalk
noise. CQBIC contains 33 transceivers and
9 receivers which connect directly to the
Q22-bus.

The open-drain outputs and filtered inputs
were designed to operate reliably in the
Q22-bus environment.

The input filter rejects crosstalk and reflection
noise by staging a low pass RC filter. The filter is
constructed with an n-diffusion resistor and
p-type field effect transistor (PFET) capacitor
with a differential amplifier receiver which main-
tains a narrow noise immunity region.

The open-drain output driver controls the edge
ratcs. This control minimizes transmission-line
reflections and crosstalk for ac load variation
from 30 to 330 picofarads, and dc termination
variation of 240 to 60 ohms at 3.6 volts. To satisfy
the 100 mA sink current possible on each of
33 outputs without excessive heating, low inter-
nal power dissipation was achieved by low
steady-state “on” resistance.

A disable control allows the output to power
down withourt affecting the Q22-bus.

Conclusion
A single chip Q22-bus interface was realized and

is being shipped in Digital’s systems as the result
of the successful venture for JRDC, SEG, and MSD.

We learned how to manage efforts from a distance
and to coordinate and communicate complex
technical information around the globe.
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David K. Morgan |

The CVAX CMCTL —
A CMOS Memory Controller Chip

The CMCTL — part of the CVAX family of chips — is a bigh-performance
ECC memory controller for single-processor systems. Implemented in
Digital’s CMOS technology, the CMCTL is optimized to satisfy Q-bus-based
system requirements. The CMCTL operates as either a synchronous or an
asynchronous interface between the CVAX bus at cycles from 60 to 100
nanoseconds and the private memory interconnect. For memory read or
write operations, the CMCTL supports the CVAX multiple-transfer proto-
col. Data parity and memory error checking is implemented for all data
transfers. The chip’s bigh performance is achieved in part by a bigh-speed,

page-mode access protocol.

The decision to designa CVAX memory controller
(CMCTL) was made in July 1984. The primary
goal of the CVAX CMCTL project was to design a
high-performance, single-chip, error-correcting
code (ECC) memory controller for a single-
processor system. This chip would be part of a
CVAX family of core peripheral functions.

Several systems being developed at that time
utilized the MicroVAX I1 CPU chip, the predeces-
sor to thc CVAX CPU chip. Because company rev-
cnue for Q-bus-based systems such as the
MicroVAX I1 is significant and a performance
benefit could be gained from a custom chip
design, the memory controller design goals were
focused to satisfy the requirements of a Q-bus-
based system. The initial system requirements for
the CMCTL were determined by studying the
memory controller specifications and by dis-
cussing rcquirements with key members of the
project tcam for the existing MicroVAX Il system.
In addition, the Electronic Storage Development
(ESD) Group was consulted on the requirements
of a memory controller.

Let us now examine the key aspects of the
CVAX CPU chip that influenced the system
requircments for the CMCTL. First, the CMCTL

A shorter version of this paper first appeared in the Proceed-
ings of the 1987 1CCD: VLSI Computers and Processors,
October 1987 entitled “The CVAX CMCTL, A CMOS Memory
Controller Chip” by D. Morgan, K. Chui, J. Clouser,
S. Nadkarni, and R. Strouble. Copyright 1987, The Institute
of Llectricaland Etectronic Engineering, Inc.

had to interface directly to the CVAX bus and
handle the memory transactions originating from
the CVAX CPU chip. Located in the CVAX CPU
chip is an integral primary write-through 1-kilo-
byte (KB) cache. The size of this cache can be
optionally expanded with a second-level cache
function on the CVAX bus. Consequently, the
CMCTL-to-CVAX bus interface had to work with
or without the optional second-level cache. Fur-
thermore, the primary cache and the optional
sccond-level cache use byte parity for memory
error detection. Therefore, the CMCTL bus inter-
face was required both to generate and to check
byte parity. For CVAX-based systems operating at
100-nanosecond (ns) and 60-ns CVAX bus cycles
and implementing a second-level cache, the per-
formance goals were respectively 2.5 and
4.0 times the performance of the MicroVAX II sys-
tem. These goals governed the CMCTL bus mem-
ory performance, or memory cycle time, require-
ments described later in this paper. Since
memory size requirements are proportional to
CPU chip performance, the CMCTL had to sup-
port a memory size larger than that of the
MicroVAX II. The MicroVAX Il CPU memory sys-
tems have a byte-parity, memory error-detection
scheme. To meet the reliability requirements for
larger memory systems, the CMCTL was designed
primarily as an ECC memory controller.

Since a direct memory access (DMA) function
can also become the bus master on the CVAX bus,
the system requirements for the CMCTL were
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influenced by these functions also. Because the
CVAX CPU chip performs only synchronous trans-
actions and a DMA function could be either syn-
chronous or asynchronous. the CMCTL is designed
to run as a synchronous or asynchronous slave on
the CVAX bus. Further. the CVAX CPU chip can
handle only two of the possible four types of data
transfer lengths on the CVAX bus. Howcever, a
Q-bus DMA function (CQBIC) nceded to gener-
atc all four possible data transfer lengths in order
to cfficiently handle data transfers between the
Q-bus and the CVAX bus which have data widths
of 16 bits and 32 bits, respectively. The require:
ment to work with the Q-bus DMA function meant
that the CMCTL needed to handle all four data
transfer lengths. In addition, since a DMA func-
tion could optionally generate and check parity,
the CMCTL had to be flexible in this regard as
well. Finally. the CVAX CPU chip executes inter-
locked instructions which must have the cftect of
“locking™ or “unlocking” the memory from
DMA read-modify-write transactions. Interlocked
memory transactions are not defined in the Q-bus
protocol. Therefore, interlocked memory trans-
actions arc handled with a bus interlock scheme.
In this scheme, the CQBIC stalls, i.e.. RETRY,
the CVAX CPU chip memory read lock bus trans-
action on the CVAX bus until it becomes the
Q-bus master first — locking out [/O to mem-
ory — before the CVAX can perform interlocked
instructions. RETRY is a slave response to a bus
master on the CVAX bus that tells it to retry the
bus cvcle because it cannot complete the
requested operation. The CQBIC relcases the
Q-bus after it sees a CVAX CPU chip memory

o The CVAX CMCTL — A CMOS Memory Controller Chip

write transaction on the CVAX bus that signals the
termination of the interlock instruction.

Certain base technology constraints influcnced
the CMCTL specification. First, the high perfor-
mance requirements for memory in a system that
docs not implement a second-level cache deter-
mined that the CMCTL be implemented in a sin-
gle custom chip. At the time, it was not possible
to implement a memory controller with the
required speed in a commercially available gate
array that would run synchronous with the CVAX
CPU chip. Furthermore. in a Q-bus-based system,
memory cxpansion occurs in the Q-bus back-
planc. Thercfore, a single memory controller that
resides on the CPU module and controls the
memory by means of signals on the backplanc is
the simplest and most quickly implemented sys-
tem solution. Another factor that influenced the
single-chip alternative solution was the limited
spacc available on the CPU module that imple-
mentsa second-level cache. Taken together, these
factors ruled out the possibility of designing a
slower memory controller using commercially
available memory controller components for sys-
tems that implement a second-level cache. The
availability of CMOS-1 technology in Digital’s
Hudson, Massachusctts. facility in 1984 drove
the design technology choice.

System Overview

The CVAX CMCTL is the core control function of
a single CVAX CPU memory system. This chip
serves as the interface between devices on the
CVAX bus and a CMOS private memory intercon-
nect (PMI) . Figure 1 shows the major interfaces

MEMORY MEMORY MEMORY MEMORY
CPU CMCTL
PMI
CVAX BUS
CACHE DMA
/O BUS

Figure 1 Mujor [nterface Connections of the CMCTL Chip
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Figure 2 Photomicrograph of CMCTL Showing Major Sections

of the CMCTL in a CVAX system, and Figure 2
shows the major sections of the chip. Table 1 lists
the physical characteristics of the chip.

This section presents a brief overview of
the CMCTL chip’s two major interfaces, data
transfer support, and error-checking and notifica-
tion features.

CMCTL Major Interfaces

As interface to the CVAX bus, the CMCTL responds
as either a synchronous or an asynchronous slave
device. When the CVAX CPU chip is bus master,
the CMCTL responses are synchronous. When a
DMA device is bus master, a bus-mode signal
determines whether the chip responds as a syn-
chronous or asynchronous device.

The CMCTL connects directly to its other major
interface, the PMI. The PMI consists of control,
address, and data signals which interconnect the
CMCTL and the memory array modules. Through

Table1 CMCTL Summary Characteristics

Process 2-micron drawn, N-well, dual
aluminum CMOS process

Number of 20,000

transistors

Die size 7.6 mm x 8.0 mm

Power dissipation 1.5 W worst case

Packaging 132-pin surface-mountable chip

carrier with 25-mil lead spacing

Power supply +5V

Digital Technical Journal
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The CVAX CMCTL — A CMOS Memory Controller Chip

these interconnections, the chip controls up to
four memory modules, each containing one, two,
or four banks of dynamic random-access memory
(DRAM). Each memory module is required to
buffer all the PMI signals.

Data Transfer

The CMCTL fully supports the CVAX bus multi-
ple-transfer protocol and can perform one to four
data transfers on a memory read or write opera-
tion. Each data transfer can have up to four bytes
of data. Since ECC is generated across four bytes,
write data with less than four valid bytes will
cause the CMCTL to do the actual memory write
on the PMI as a read-modify-write cycle. Other-
wise, the write data goes directly to memory.

Error Checks and Notification

The CMCTL performs two error-checking func-
tions:

s CVAX bus data parity error checks
® Memory error checks

To assist with the error checking of data transfers
on the CVAX bus, the CMCTL checks data parity
on memory writes. The chip generates parity
with the data on memory reads.

For data transfers on the PMI, the CMCTL has
two memory error-checking modes: 7-bit ECC,
and single-bit parity. In ECC memory error mode,
the CMCTL detects double-bit uncorrectable
memory errors and detects and corrects single-bit
memory errors. In parity memory error mode, the
CMCTL can detect single-bit memory errors.

The CMCTL uses four outputs to notify the
CVAX bus master of four error conditions. These
error-condition notices are as follows:

® The bus transaction was successful and com-
pleted with no errors.

= The memory data transfer resulted in an uncor-
rectable ECC or parity error.

® The memory data transfer resulted in a cor-
rectable memory error.

s The CVAX CPU chip-initiated memory write
had a parity error.

In addition to these four outputs, the CMCTL pro-
vides an output that indicates when the CMCTL is
not going to respond to either a memory or an
1/0 operation. This output reduces the number
of external components required to detect
addresses not implemented in a system.

CMCTL Performance

The CMCTL achieves its performance in part by
using a high-speed, page-mode RAM access pro-
tocol on the PMI. DRAMs that run in page mode
can perform data transfers in approximately one-
half the cycle time of those run in nonpage mode.

The CMCTL responds to CVAX single-transfer
memory write or read operations within two or
four CVAX bus cycles, respectively. During a
memory read operation, the CMCTL starts a mem-
ory read access in parallel with an optional cache
to increase memory read performance. If the
memory read address hits in the external cache,
the CMCTL aborts the read operation. The
CMCTL performs memory write transactions as
dump-and-run.

Table 2 lists the memory operations and the
corresponding performance for synchronous data
transfers with 4 bytes of data. Two numbers are
shown for multiple-transfer memory operations.
The first is the time in CVAX CPU bus cycles to
complete the first transfer; the second, the time
to complete subsequent transfers. In order to
tune the memory performance across different
CVAX bus speeds, the CMCTL provides a pro-
grammable mechanism for varying PMI transac-
tion timing. For CVAX bus cycle times less than
100 ns, the CMCTL can be programmed to add
slip cycles to memory read operations in incre-
ments of the CVAX bus cycle time. The asyn-
chronous performance of the CMCTL can be
estimated by adding one bus cycle to the syn-
chronous data transfer numbers in Table 2.

The CMCTL memory read access time is very
important for systems that do not have a second-
level cache. For example, a 90-ns CVAX bus cycle
with a 5/3 CMCTL memory read access with a
second-level cache results in CPU performance
3.0 times that of the MicroVAX II. Without the
second-level cache, the CPU performance is

Table2 CVAXCMCTL Read and Write Perfor-
mance (in Numbers of Bus Cycles)

Memory Operation CVAX Bus Cycles

ELGLOU O 100ns 90ns 60ns
Single read 4 5 6
Multiple read 4/2 5/3 6/3
CPU single write 2 2 2
DMA single write 3 3 3
Multiple write 3/2 3/2 3/2
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reduced by 15 percent, or to 2.5 times the
MicroVAX II. If the CMCTL memory read access
was fixed at 6/3 without the second-level cache,
the CPU performance would be reduced another
10 percent, or to 2.0 times the MicroVAX I, at a
90-ns CVAX bus cycle. Therefore, the ability to
program the CMCTL memory read access time as
an integral multiple of the CPU bus cycle is a very
important feature that helps maximize the CPU
performance.

CMCTL Functions

The CMCTL was designed to integrate both the
control and data path functions required to con-
trol the data flow to and from memory.

Registers
The CMCTL contains two registers:

® A status register
= A control register

How each functions within the CMCTL and the
system is described below.

The status register is loaded with important
information when the CMCTL detects an error.
The system error-handling software uses this
information to log the error. The CMCTL has a
memory error status register that captures the
failed memory address along with the type of
memory error (bus parity error or memory error)
and error syndrome.

In ECC mode, the error syndrome is a 7-bit
encoded number. For correctable errors, this
number indicates which data bit was corrected.
In parity mode, the error syndrome has no useful
meaning.

The chip’s control register serves several func-
tions. First, the control register regulates a diag-
nostic test mode. Second, this register controls
the PMI cycle tuning. Third, memory error detec-
tion and correction can be turned on or off to
facilitate the testing of the CMCTL error-check-
ing functions and memory module RAMs by mem-
ory diagnostic software. Finally, a refresh opera-
tion can be forcedfor high-speed refresh testing.

Data Path

In ECC error detection mode, the data path uses a
modified Hamming code to detect double-bit
errors and to detect and correct single-bit errors.
The PMI interface has 39 signals; 32 are used for
the memory data, and 7 are the memory check
bits. In parity error detection mode, the data path

uses single-bit parity to detect memory errors.
The data path transport delay for a memory read
or write is one-half the cycle time of the CVAX
bus. This performance measure includes module-
level interconnect delay.

Memory Control

The PMI interface provides 20 signals. These sig-
nals comprise all the control strobes and memory
address signals needed to control DRAMs. A fast
memory access time is achieved by detecting a
valid memory address and starting a memory
access within 25 percent of a CVAX bus cycle
time.

The CMCTL has an integral refresh counter for
refreshing memory.

Summary

The CVAX CMCTL is the core control function of a
complete memory subsystem. The chip provides
the control for a flexible memory subsystem that
functions at CVAX bus cycles from 60 to 100 ns.
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