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Editor’s
Introduction

This issue of the Digital Technical
Journal presents papers on a range
of computing subjects, beginning
with recent advances in storage tech-
nologies, followed by network routcr
cluster enhancements, new desktop
software for sharing 3-D applications
across platforms, and an experimental
High Performance Fortran debugger.

DIGITAL’s storage engineers have
been leadersin the definition of the
parallel small computer system inter-
face (SCSI) ANSI standards and in
related technology improvements.
Bill Ham’s paper focuses on four
advances in the physical features of
SCSI thatresulted in major increases
in SCSI capabilities and minor distur-
bances when incorporated in existing
installations. The discussion spans
developments from SCSI-2 through
UleraSCSI, including speed increases
in the synchronous data phase; longer,
more complex configurations enabled
by bus expanders; physical versatility
inherent in a decreased size of the
interconnect; and dynamic removal
and replacement of devices on an
active bus (hot plugging).

The subject of our next paper is
networks, and the emphasis of the
engineering is on customer require-
ments for reliability and availability.
Router clusters, described here by
Peter Higginson and Mike Shand,
were developed to provide fast fail-
over response in [P networks and are
defined as a group of routers on the
same local area network (LAN) pro-
viding mutual backup. New router
cluster protocols and mechanisms
restrict the loss of service that results
from a failure on the network, speci-
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fically on networks requiring high
availability, such as telecommunica-
tion and stock exchange networks.
The authors analyze failure cases and
present the solutions that reduced
service-loss ime from approximately
30 to 45 seconds to S seconds in both
LAN and WAN environments.

Collaboration software for desk-
top systems can be broadly defined
to encompass arange of capabilities,
from a simple transter of data between
users, such as e-mail sent over a net-
work, to real-time sharing of text,
graphics, and audio and video data.
Larry and Ricky Palmer have designed
asoftware product, called Shared
Desktop, for users who want to share
three-dimensional graphics applica-
tions and audio across networks.
Notably, the design differentiates
itself by supporting multiple operat-
ing systems, currently enabling real-
time interopcration among Windows
and UNIX systems. The authors dis-
cuss the decision to create a “view-
port,” which is a part of the desktop
screen, and issues they addressed dur-
ing implementation, including proto-
col splitting, screen capture and data
handling, and dissimilar frame buffers.
They conclude with ideas for possible
enhancement of the product in the
future.

In a previous issue of the Journal
teaturing technical computing topics
(vol. 7 no. 3), Jonathan Harris et al.
described DIGITAL’s Fortran 90
compiler that implements High
Performance Fortran version 1.1,

a language for writing parallel pro-
grams. An outgrowth of that work
1s an experimental debugger, code-

Vol.9 No.3 1997

named Aardvark, that “reconstructs”
for the HPF programmer a single
source-level view, even though the
program has several flows of control
and the data are distributed. David
LaFrance-Linden discusses the chal-
lenges faced in creating the debugger
and describes uscful techniques and
concepts, such as logical entities, that
can be generally applied to debugger
design.

Readers interested in past issues
of the Journalare invited to visit the
Journal Web site at http:/ /www.
digital.com/info/dtj/. Our next
issue willaddress such topics as opti-
mization of NT executables on Alpha,
a new graphics program, and VLM.
A Special Issue on programming lan-
guages and tools is being developed
for publication in the fall of 1998.

Jane C. Blake

Managing Editer



Foreword

Richard Lary
DIGITAL Sterage Technical Director

Welcome to the winter 1997-98 issuce
of the Digital Technical Journal. This
issue does not have a single theme;
it contains a potpourri of papers on
a wide range of technical topics. This
provides the foreword writer with a
small gift and a not-so-small headache.

The gift is the opportunity to tout
the continuing fecundity of DIGITAL'’s
engineering community. All the
papers in this issue of the Journal
come from product development
groupsin DIGITAL, and all the tech-
nology described herein is directly
applicable to the problems of using
computers in the real world. The
papers themselves cover a wide range
of topics: designing storage buses
and their infrastructure; building 1P
routers that reduce network delays
caused by link or router failure; sharing
3-D graphical and audio data across
networks of computers with different
windowing systems; and debugging
programs written in languages that
incorporate data parallelism.

The headache, of course, stems
from this very diversity. Any attempt
to derive some set of common under-
lying principles other than “make
better stuff” from this collection 1s
doomed to sophistry. And my techni-
cal background is too narrow to pro-
vide any significant embellishment to
any of the papers outside the domain
of storage systems. So, with apologies
to the other authors, I am forced to
restrict my comments to what [ know
—the background and impact of Bill
Ham’s work on advances in parallel
SCSI which are presented in his paper
in this journal.

Bill Ham’s paper not only describes
a significant technical achievement; it
illustrates DIGITAL’s shift from engi-
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neering proprietary storage systems
to engineering open storage systems.

The SCSI bus was developed dur-
ing the early 1980s as one of many
attempts to standardize the interface
to storage devices. It succeeded beyond
the expectations of its developers,
largely because it supported a device
model that was abstract enough to be
extensible but inexpensive enough to
be implemented in the technology of
the time. For all its advantages, how-
ever, SCSI suftered from poor engi-
neering at the physical level. This was
a direct result of the way it was devel-
oped. The diverse corporate repre-
sentatives that defined SCSI did not
have the time or money to specify and
build custem bus infrastructure com-
ponents (transceivers, cables, termi-
nators, etc. ), so they used commonly
available parts. A lack of sophistica-
tion in specifying physical interface
parameters resulted in a specification
that allowed too much component
variation. As aresult, it was difficult
to build reliable, multi-box systems
using SCSI.

DIGITAL’s attitude towards SCSI
during this period was to ignore it
and hope it would go away. We had
designed our own proprietary Digital
Storage Architecture (DSA), which
utilized an abstract and extensible
device model and also incorporated
many large system features, including
arobust physical interconnect. We
controlled the design and manufac-
ture of all DSA components and
could thus guarantee that they all
met tight architectural specifications.
Moreover, DSA was a key enabling
technology for VMS Clusters, the
individual DSA components were
competitive with their counterparts

Vol.9 No.3 1997




from the propricrary storage architec-
tures of other large systems compa-
nies, our custoniers were happy, and
the storage business was profitable.
We were feeling quite pleased with
ourselves—and we were profoundly
ignorant of the power of a successtul
open market standard, since one had
never existed in the storage world.
During the latter half of the 1980s,
SCST grew steadily in popularity until
it dominared the workstation and
small-server markets. These svstems
had at most a tew disk drives on
them,and SCSP’s signal integrity
problems were manageablein that
context. Thev were notr manageable
in the larger and more demanding
data center svstems, and so SCSI was
not used there. The SCSI standards
group was awarc of the bus’s deficien-
cies, however, and as the decade pro-
gressed, the group made amendments
to the standard to climinare many of
them. By the turn of the decade, sey -
cral independent subsystem vendors

were selling subsvstems utilizing SCSI
devices as storage for large DIGITAL
svstems. These subsvstems did not,

in general, have the features, perfor-
mance, or robustness of our subsvs-
tems, but they were significantly
cheaper and improving all the time.
By 1991, it had become obvious to
us that we would not be able to com-
pete with these systems in the long
run. They were feveraging an entire
industry’s investment and talent and
were reaping the cost benebts of
high-volume manufacturing; whereas
we had to design and manufacture (at
relatively low volumce) every component
of every DSA svstem ourselves.

Digital "Technical Journal
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Our posidon was untenable. We had
to change our suategy and embrace the
bus thatwe had so studiously ignored.

We designed a modular packaging
architecture for SCSI devices (known
commercially as StorageWorks ) and
aser of storage array conwollers that
interfaced these devices to our sys-
rems (and systems from other major
vendors as well). We also becamce
active participants in the SCSI stan-
dards process. Where DIGITAL had
previously sent one or two engineers
to SCSI standards meetings strictly to
gather mformation, we started to send
up to half-a-dozen engineers to listen,
learn, participate in debate, help
with the gruntwork of the standards
process, and make proposals to amend
or extend the standard in directions
usctul to us and our customers.

Our new modular packaging
design allowed our customers to
install and remove storage devices
themscelves and to migrare storage
devices benween svstems, cven
between svstems built by different
svstem vendors. This modularity
proved to be a very valuable feature
to our customers. However, it
required us to build a physical infra-
structure for the SCSI bus that had
the robustness needed by our large
svstems and that could accommodate
a great deal of variability in contigura-
tion, and to use a bus that was known
to have residual signal integrity prob-
lems inits phvsical interconnect. We
were understandably worried about
this, worried enough to charter a
small group of engineers asa SCSI
Bus Technical Office (SBTO) within
the storage group, and to develop
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short-term configuration guidcelines
for our packaging architecrure and
long-term technical proposals for the
SCSI phvsical bus architecture. Bill
Ham has been the head of SBTO
since its inception and has also been
our representative to the SCSIcom-
mittee on all matters relating to the
physical bus interconnect.

In the summer of 1993, Bill com-
pleted a study of the signal integrity
issues surrounding paralle) SCSI. His
conclusions were startling. The SCSI
standards committee had, over the
vears, made enough improvements in
the basic transmission line characteris-
tics of the SCSI bus that most of the
remaining signal mtegrity problems
were due to the variations in compo-
nent parameters allowed by the SCSI
specification. Excrcising tighter con-
trol over component variation—
through building selected compo-
nents or through purchase specifica-
tions with our supplicrs—would not
only produce excellent signal integriry
in our packaging but would allow the
maximum clock rate of the bus to be
doubled while maintaining excellent
signal integritv and backwards com-
patibiliov with existing SCSI devices.
Bill’s results also indicated that the
maximum clock rate could be increased
cven further, wirth more work.

This discoverv came ar a critical
rime in the evolution of the SCSI
standard. Much of the SCST standard
committee’s cftort in the carly part of
the 1990s was being spent in modifyv-
ing the SCSI standard so that scrial
buscs could carry the higher level
SCSI bus protocols. The committece
had started this work under the



assumption that parallel SCSI was
“out of gas” in pertformance, and
the new serial bus variants would
supplant it by mid-decade. However,
by 1993 not only was the definition
and implementation of the serial bus
going slower than expected, but there
were three independent and incom-
patible serial bus proposals, each with
unique usctul features and unique
drawbacks, cach with a cadre of sup-
porters among the industry represen-
tatives. The market would ultimately
choose which serial buses would
thrive; but it was highly unlikely that
all three would thrive. Storage ven-
dors that made the wrong bus choice
would sutter for it. Most galling to
the technophiles among us, the mar-
ket’s choice could not be predicted
from the technical merits of the con-
tenders. If it could, we’d all have
Betamax VCRs in our homes today.
So, DIGITAL decided to have Bill
present his results to the SCSI com-
mittee at its November 1993 meeting
and recommend that the committee
extend the SCSI specification to allow
the bus to run at up to twice its old

maximum clock rate if the components
in the physical interconnect met the
tighter specifications. Our motive in
doing this was purely selfish: we were
not ready to choose among the serial
bus proposals, yet we would soon
need more performance than parallel
SCSI could offer. A higher perfor-
mance parallel SCSI would allow us
to improve our storage subsystem
performance without having to stake
our fortunes on a potential Betamax.
Bill’s presentation at the SCSI
committee meeting was met with
enthusiastic approval. It turned out—
surprise!—that other system vendors
were feeling as uneasy as we were
about the serial SCSI buses. The pro-
posal, christened UltraSCSI, was
adopted as an extension to the parallel
SCSI standard. Bill Ham and the
SBTO then worked with component
vendors and the SCSI committee to
develop the thinner cables, smaller
connectors, and SCST expander cir-
cuits described in his paper, all with
the aim of keeping parallel SCSI as a
desirable alternative to the serial SCSI
buscs. Today, four years after its com-
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mittee debut, UltraSCSI is solidly
entrenched in the storage market. In
fact, storage market analysts are now
projecting that the combined volume
of devices on all serial SCSI buses
(yes, there are stll three, but the
market has already picked one, Fibre
Channel, as the winner) will not
exceed parallel SCSI device volumes
until early in the next century. And
the SCSI committee has finished
extending the parallel SCSI specifi-
cation to achieve a second doubling
of maximum bus clock and is in the
midst of defining a third doubling.
Without hyperbole it can be said
that the technology embodied in Bill
Ham’s paper has directly affected the
course ot the computer storage indus-
try, and it continues to aftect posi-
tively DIGITAL’s position in that
industry. Enjoy reading the paper
and those that follow it in this issue.

Vol.9 No.3 1997
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Recent Advances in Basic
Physical Technology for
Parallel SCSI: UltraSCSI,
Expanders, Interconnect,
and Hot Plugging

DIGITAL uses SCSI technology in most of its
storage products and consequently has led
major standards and industry bodies to improve
the technology in the following areas: increased
synchronous data phase speed beyond fast SCSI;
longer, more complex electrical configurations
by means of expander circuits; versatile and
more manageable connectivity through a
smaller, improved physical interconnect; and
dynamic device insertion and removal. Data
phase transmission rate extension is achieved
through understanding and controlling silicon
chip timing and transmission media parameters.
Using expander devices to confine transmission
line effects to shorter segments allows large
increases in the maximum distance between
devices and in the device population within the
same SCSI domain. Expanders enable complex,
hublike configurations to be created without
changing existing SCSI devices or software.

The use of 0.8-millimeter connector technology
and consideration of cable losses has reduced
the physical size of the external shielded inter-
connect by approximately two thirds, decreased
the number of parts required to support com-
plex configurations by a factor of 10, and
increased the interconnect density to the same
level used in serial SCSI. Finally, the mating and
demating events that occur during device inser-
tion and removal produce a spectrum of small,
undetectable, electrical disturbances on the
active bus thatappear to be limited by the
physics of the media and device capacitance.

Digital Technical Journal Vol.9 No.3 1997

William E. Ham

Introduction

Parallcl Small Computer System Interface (SCSI) is the
workhorse technology for most of the storage applica-
tions in DIGITAL products today. This device and
interconncct technology spans all system offerings
from the simplest to the most complex. SCSIwas intro-
duced to the higher-end products in the early 1990s as
the open systems follow-on to the DIGITAL propri-
etary Digital Storage System Interconnect (DSSI) and
Computer Interconnecr (CI) technologies.

As system demands have increased, SCSI has evolved
to meet the nceds. DIGITAL has made considerable
contributions to the technology and led the effort to
achieve industry standardization. This paper details the
most significant developments in the phvsical features
of parallel SCSI technology over the last several years
that have allowed it to continue to serve DIGITAL cus-
tomers in an etfective, competitive way. The discussion
targets the tollowing four important areas:

1. Speed increascs in the synchronous data phase,
which resulted in the ANSI definition of UltraSCSI
(Fast-20 SCSI) technology'

2. Development of software-invisible circuits, gener-
ally called expanders, that enable segmentation of
SCSIdomainsinto easily managed pieces

(98]

. New connector and cable technology, namely the
Very High Density Cabled Interconnect (VHDCI)
device, that decreases the interconnect size and
complexity by many fold?

4. Dynamic removal and replacement of devices on an

active bus, which is referred to as hot plugging

DIGITAL made substantial contributions in the
four areas. This work included creating the expander
and interconnect standards projects; leading the work-
ing groups that defined the Fast-20, expander, and
interconnect standards; providing data for the Fast-20
and hot-plugging projects; and proposing and gaining
approval for the hot-plugging standard.

The author has taken a phenomenological approach
throughout, because in most cases there are too many
unknowns to achieve a rigorous analytical result. This



paper focuses on developments from SCSI-2 through
UltraSCSI and specifically does not address the new
Low Voltage Difterential (LVD) technology being
introduced for the highest-specd applications.

Pedigree
SCSIis defined in several ANSI standards'** and in the
material that was developed to create these standards ™
The standards were generated over the last decade
through a cooperative cttort of approximatcly 60 major
companies in the computer and computer support
industry. As a result of this pedigree, the prime directive
for SCSI technology is intcroperability of devices
designed and manufactured by difterent companies.
The details of the phvsical designs used to implement
SCSI may not be visible to users and researchers; these
derails contain much of the marketing and technical
differentiation between the products of the participat-
ing companies and are thercfore hidden in the silicon
design. The behavior at the device connector pervades
the SCSI specitications. The basic assumption is that as
long as the propertics arc compatible at these connec-
tors, device substitution is possible. Thus, SCSI devices
may be both interoperable and of ditterent designs.

Basic Architecture

This section reviews the basic architecture of parallel
SCSI. The SCSI bus is a parallel, multidrop, wired-OR
configuration.

Signal Multiplexing and Phases The parallel signal
construction of the bus allows multiplexing of some
signals during different phascs of communication so
that the same signal lines mav have verv different func-
tions in difterent phases. The phvsical behavior of sig-
nals is usually limited by the phase during which the
shortest pulses are used and the demands for signal
integritv are the highest. The limiting SCSI phasc is
the data phase (pavioad phase) that is executed with
the highest synchronous rate. For UltraSCSI, this peak

Table 1
Terminology for Data Phase Speeds

repetition rate is 20 megahertz (MHz). Table 1 con-
tains the generally accepted terminology rclated to
data phase speeds.

Because of the wired-OR property, cach signal in
the bus must be driven to a known state cven if no
SCSI device is actually driving the signal. SCSI uses the
logical 0 state (negated state) as the undriven state and
uses the bus terminators to drive the signal to this state
in the absence of anv driving devices. The device signal
drivers must overcome this terminator-driven logic
statc of 0 in order to send a logical 1 (asscrted state)
onto the signal line.

SCSIsignals must support all frequencics, from stat-
ically driven by the terminators onlv (DC) to the third
harmonic of the fastest signal edge in the synchronous
data phase. In many cases, the same wire must support
all these frequencies at different times during the SCSI
protocol.

The highest signal edge slew rates for UltraSCSI
are approximately 500 millivolts per nanosccond
(mV/ns). A 2-volt (V) transition requires approxi-
mately 4 ns/5.4 ns/meter (m) = 0.74 m for a signal
edge (assuming 5.4 ns/m as the propagation velocitv
of the signal edge). Therefore, some reliet exists
because the connectors and cable assembly termina-
tionsare much smaller than the signal cdge length; the
connectors and terminations do not need to have care-
tully controlled characteristic impedance propertics.
This allows the use of the technology available in the
connector and cable assembly industry to optimize
the interconnect properties without the considerable
design, manufacturing, and test burden imposcd by
controlled impedance requirements.

Transmission Modes The transmission mode of a
SCSI bus is determined by the properties of the
terminators that, by definition, consttute the ends of
the bus. Terminators also supply most of the cnergy
required to operate the single-ended transmission-modc
devices and additionally provide the required matching

Maximum Transfer

Maximum Byte Maximum Byte

Rate (Million Rate (Narrow) Rate (Wide)
Data Phase Speed Name transfers/second)’ (Megabytes/second) (Megabytes/second)
Asynchronous Unspecified Typically ~ 3 Typically ~ 6
Slow (synchronous) ) 5 10
Fast (synchronous) 10 10 20
Ultra (synchronous)? 20 20 40
Ultra2 (synchronous)? 40 40 80
Ultra3 (synchronous)® 80 to 100 80 to 100 160 to 200

'Onetransferis 1 byte in narrow mode and 2 bytes in wide mode; 1 byte equals 8 data bits plus 1 parity bit.

2Ultra is synonymous with Ultra1 and Fast-20.
Ultra2 is synonymous with Fast-40.

“‘Rates not yet finalized; Ultra3 is synonymous with Fast-80 or Fast-100.

Digital Technical Jeurnal
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to the characteristic impedance of the transmission line.
In ditferential SCSI, the terminators provide a small
portion of the overall encrgy required to operate the
bus; the ditterential drivers supply the remainder of
the energy.

Drivers that want to transmit an asscrred state
must overcome the biasing provided by the termina-
tors. The drivers operate locally on the bus and alter
the state in their immediate vicininy when they switch
on and off. For single-ended SCSI, the 0 state is
approximately 2.5 Vand the | state is approximatcely
0.5 V. For high-voltage ditterencial SCSI, the 0 state
is approximatcly -1 V to -2 V, and the 1 state is
approximatcly 2 V. (The difference between a state
1 and a state 0 is higher with diffcrential—typically,
approximately 4 V.)

For single-ended transmissions, the drivers operate
on cnergy previously stored i the bus by the termina-
rors. This encrgy is mostly clectrostatic energy in the
charge stored in the capacitance of the transmission linc
for negated srates and electromagnetic cnergy in the
current flowing through the inductance of the trans-
mission line tor asscrted stares. Ultimately, the termina-
tors will set the state back to negated after the drivers
ceasc to source or sink current; however, this onlv hap-
pens after the round-trip propagation delay from the
driver to the farthest terminator it the bus does not
have matched characteristic impedance propertics.

Approximately the same cnergy transformations
occur for differential SCST, but significanr current is
supplied by the drivers for both the asserted and the
negated states.

Multidrop Requirements  The multidrop architecture
requires a continuous low-resistance path called the
bus path berween the terminators and allows deviees
to be attached to this path. The number and proper-
tics of these attached devices varv widelv because of
many factors including the speed of operation, the
overall length of the bus, and the transmission mode.
Attached deviees alwavs disturb the transmission line
propertics of the bus path; the kev to succeesstul opera-
tion is in the management of the magnitude of these
disturbances.

Generally, the more capacitance or electrical length

the device has, the more disruprive it is. Placing devices
too close together along the bus path can cause them
to appear electrically as a single super disruprive device.
Placing them too far apart can result in an overall bus
length thatis too long,.

Wired-OR Glitches During the arbitration phasc,
when the SCSI devices decide which devices will be
sending pavlioad data to or from cach other, multiple
devices mav assert the same control line (BSY) at the
same time. Each device that wishes to communicate
asserts both the BSY line and its respective device

Digital Technical Journal Vol.9 No.3 1997

identfication (1D) line. After examining the asserted
ID lines to determine which device has the highest 11,
all but the device with the highest ID release the BSY
line. This leaves only one device, the winner, asserting
the BSY linc. While the current in the BSY line is read-
justing itself from a multiple-driver asserted condition

to asingle-driver asserted condition, noise pulses (called
wired-OR glirches) propagate throughout the length of
the signal line and mav be detected collectively as an
crroncous phase. Theretore, one of the architectural
limits tor parallel SCSI is the time required tor thesce
wired-OR glitches to sertle. This bus settle time is set by
protocol ar400 ns and must be interpreted as a round-
trip propagation time when using a simple SCSI bus.
Allowing some time for propagation through driver and
receiver chips vields a maximum phvsical length for a
simple bus of 25 meters.

Areas of Improvement
Thus, the opportunities for improving SCSI derive
from appropriatelv managing the transmission linces,
taking advantage of the multidrop architecture oftered
by a parallel wircd-@R structure, using statc-of-the-art
rechnology from the interconnect and silicon industry,
and making innovative usc of the time required ter the
wired-OR glitches to settle. These techniques are the
basis of the development by DIGITAL in the teur arcas
addressed n this paper.

Speed increases in the synchronous data phase arc
based primarily on increasing the timing precision
in the silicon transceivers by using newer silicon tech-

nology. The imterconnect propertics remain largely
unchanged from those used tor fast SCSI.

Circuits that enable segmentation of SCSI domains
mero easily managed picees are based on svstematic
isolation of wansmission line propertics and use of
wired-OR noise pulse propertics. No sottware, inter-
connect, or device changes needed to usce these circuits.

New conncctor and cable technology is based on
an innovative 0.8-milhimeter (mm) ribbon-stv
nector technology that optimizes the total SCSI clec-
trical requirements with the capabilitics of cable and
connector design.

Dvnamic removal and replacement of devices on an
active bus, i.c., hot plugging, is based on the multidrop
architecture, which enables devices to be added or
replaced without affecting continuity berween other
deviees. Hot plugging depends on understanding and
managing the clectrical disturbances created during
the insertion or removal.

The remnainder ot'this paper provides details ofthese
tour arcas of improvement. The end result of these
extensions to the basic phvsical architecture of parallel

¢ con-

SCSLis a major increase in its capabilitics, accompa-
nicd by only a very minor disturbance to the installed
basc, especially the sofoware.



Increasing the Synchronous Data Phase Speed

Beginning with the SCSI-2 standard, the svnchronous
transmission mode is available tor transterring pavload
data between SCSI devices. The devices select this
mode by mutual agreement before anv synchronous
data is passed. The agreement is achieved by using the
asvnchronous transmission mode, which is slow but
usuallv reliable.

The svnchronous data phase uses the DATA and
PARITY bit lines for the data and cither the REQ or
the ACK control line as a signal that the receiver uses
tor capturing the data. The term synchronous derives
from a specified timing relationship berween the bit
linc signal edges and the REQ or ACK signal edges.
(The falling edge of the ACK signal is used when the
data phase transmission originates from the SCSI ini-
tiator, and the falling edge of the REQ signal is used
when the transmission originates from the target.)
There is no synchronous relationship between the
internal timing reterences on different SCSI devices, so
the receiver must bufter the reccived data before intro-
ducing the data into its internal data management
structure. This buffering is usually accomplished by
means of a first in first out (FIFQ) circuit that uses the
REQ or the ACK signal as the latching signal for the
incoming data. For convenience, in this paper we only
refer to the ACK signal, with the understanding that
the same discussion applies to the REQ signal when it
is uscd as the data-latching signal.

Since only the falling edge of the ACK signal is used
in the presently specitied SCSI versions and an ACK sig-
nal is required for every data transter, it follows that the
ACK signal cvcles at least twice as fast as the data bits.
When a continuous stream of transfers is transmitted,
the ACK signal is a regularly repeating signal, nomi-
nallv, a square wave. An alternating 1,/0 pattern pro-
duces the highest fundamental frequency for the data
bits at half the frequency of the ACK signal. Therefore,
the ACK signal requires careful attention since it is the
most demanding on the transmission process.

The focus of this section is to examine how the
spced of the synchronous data phase was increased by
a factor of two to achieve the Fast-20 (UltraSCSI)
specification.

Status before UltraSCS!

In 1993, the SCSI-2 standard® had been in place
for two vears, and a follow-on standard called SCSI-3
Parallel Interface (SPI)* was technically stable. SPI had
been created largely because the specifications in the
SCSI-2 standard were not effective in implementing
the single-ended version of the svnchronous transmis-
sion (10 megatransfers per second). The difterential
version specified in SCSI-2 worked well but was much
more expensive in cost, power, and space than the

single-ended version. Therefore, most of the interest
was in making the fast single-ended version work
adequately.

Taking single-ended SCSI from asynchronous and
slow synchronous (5 megatransters per second) to the
tast synchronous technology was difficult. The prevail-
ing opinion was that the SPI standard represented
the tinal improvement to parallel SCSI. This view
set the stage for a number of alternate physical techno-
logies based on the serial point-to-point transmission
schemes used in communications technologies, e.g.,
Fiber Distributed Data Interface (FDDI)and Ethernet,
to be used for higher-performance storage applications.

DIGITAL’s Storage Bus Technical Otfice had seen
many instances of difficult implementations that were
the result of less-than-optimal understanding and
management of the specification margins. No credible
study had been presented on the margins available in
SCSI, so the thrust was to create baseline characteris-
tics of multidrop parallel SCSI to determine where
unused margin might exist.

Little data was available on the precise rcasons why
specific implementations of fast svnchronous SCSI did
not work. The svstem would hang or report various
error messages with almost no indication of the basic
causes. A method that could report margin to failure
and mechanism of failure was needed to unravel this
situation. Theretore, the approach DIGITAL took was
to step back from full SCSI implementations and to
examine the pieces without the encumbrance of the
SCSI protocol.

One of the most mysterious areas was the behavior
of SCSI receivers. The SCSI-2 and SPI specifications
used bipolar transistor-transistor logic (TTL) levels as
the basicreceiver input levels. Almost all SCSI devices
were being designed with complementary metal-oxide
semiconductor (CMOS) technology, so the difter-
ences berween the receiver properties presented a key
opportunity tor hidden margin. Other unknown areas
were jitter, cross tallk, skew, ground offset, eftects of
stubs, and worst-case configurations.

DIGITAL built a special test environment to sys-
tematically examine each piece of parallel SCSI. The
environment was named the PBDIT, an acronvm for
parallel bus data integrity tester. This test environment
made it possible to systematically examine the real
margins to failure for the kev pieces and to develop the
confidence that SCSI could be used at clevated speeds
and be made highly robust at the slower speeds.

Special Test Environment

The test environment was built to allow known data
patterns to be transmitted across a SCSI device, into
SCSI transmission media, and then into another SCSI
device. The same data pattern is loaded into both sides
so the receiver knows exactly what data it is supposed
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to receive. The transmitting side is called the exciter,
and the receiving side s called the comparator.
Received data is committed to the comparator by
using one bit line as the latching ACK signal in a man-
ner exactly like that specified in svinchronous SCSI
transmissions. The test environment allows the posi-
tion of the ACK signal to be adjusted with respect to
the data signal edges.

Smce the comparator knows the data pattern that is
transmitted, it is possible to isolate the precise data bit
that caused the transmission error. This kind of error-
directed methodology has found widespread use in
thentegrated circuit industry.

Other features of this test environment include
detachable load boards that contain the SCSI drivers,
terminators, receivers, connectors, or any other phvsi-
cal media-dependent components. The mmimum
requirements for a load board arc that the exarer con-
tain the SCSI driver and a connector and that the com-
parator contain the SCSI recciver and a connector.
Orther components mayv be placed between the load
boards tor ditferent test conditions. The SCSI driver
must have accessible points for the exciter logic, and
similarly, the SCSI receiver must have output points to
drive the comparator. These requirements climinate
drivers and receivers that are imbedded within chips
with other functions. Fortunately, separate SCSI dri-
vers are available for both single-ended and difterential
versions. (The differential versions normally use sepa-
rate chips, but only a tew choices are presently avail-
able for the separate single-ended versions.)

The rest environment is usctul for developing the
understanding of operating, mechanisms and for mea-

suring the margins for specific hardware configurations.
This environment is not useful for deriving specifica-
tions, since the performance at the specified intertaces,

i.c., the device connectors, is not directly obscrvable.

Oscilloscope measurements provide the basis for setting
complance specifications, since these measurements
can be pertormed at the connectors. The basic question
that needed an answer was, Can parallel SCSI' be oper-
ated at clevated speeds with reasonable margin to fail-
ure? DIGITAL optimized the special test environment
to answer this question. Other specifications that would
be necessary to ensure interoperable operation benween
UltraSCSI devices could be derived if it appeared possi-
ble to achicve the end result.

The data pattern loading and digital control of the
exciter and the comparator were achieved through opti-
calty coupled means. This allowed the ground offset volt-
age to be adjusted berween the dnver and the receiver
without compromising the operation of the logic.

The dara tows onlv from the exciter to the
comparator. If bidirectional information is desired,
the phvsical connections between the exciter and
comparator have to be reversed. This scheme leaves
untested the cross-talk cftects on the REQ signal that
is traveling in the opposite direction to the ACK signal
(1if ACK is svnchronized with the data as in a write
operation). Separate measurements are necessary to
examine thisissuc. Cross talk into other control lines is
addressed by holding these lines constant in the dara
pattern transmitted.

The SCST standard deals with the REQ cross-talk
issue by requiring thar the dara lines be phvsically sep-
arated from the REQ and ACK lines in the transmis-
sion media. Measurements not reported in this paper
have confirmed negligible speed-related cross talk into
the REQ line.

Up to 27 pairs of 3-bvre-wide lines (wide SCSI uses
only 18 pairs for high-speed transmissions) can be
tested with the special test environment. Figure 1is a
functional dragram of the test environment. The SCSI
terminators are shown as separate from the load
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LOAD \[LoaD COMPARATOR
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Figure 1
Special Test Environment
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boards in this casc. A key feature ot this kind of testing
is that the test does not necessarily stop when an error
is detected. In fact, the environment may detect errors
100 percent of the time. This acceptable behavior
allows mapping of the complete bit-crror response of
the svstem.

Sample Data from the Special Test Environment The
test environment allows a multitude of tests to be per-
formed. The test scheme described in this section is
the one that was used to establish the basic timing
margins available tfrom normal SCSI silicon, cables,
connectors, and terminators.

A random repeating data pattern with 16 thousand
different bit combinations was used as the basic data
pattern. This pattern was transmitted over a period of
time, and the number of errors detected was recorded.
In this test, an error is defined as one or more bits in the
received data transfer that do not match the transmitted
bit. To acquire a new error rate data point, the transmis-
sion testis repeated by using exactly the same number of
transfers in the same time period with the same data pat-
tern but with somie test parameter changed.

Virtually any parameter can be varied for different
tests. For a given phvsical configuration, the most use-
ful parameter for determining the timing margin is the
position of the ACK pulse with respect to the data
edges. The basic dara then becomes the number of
crrors detected and the position of the ACK pulse edge.

There are two basic random variables operating in
this scheme: the data pattern and the jitter induced by
non-data-dependent sources. Itis easv to separate these
two variables by using extremes in the data pattern:
very few transitions and the maximum number of tran-
sitions (every data cdge hasa transition, i.e., alternating
[ /0 pattern). Although this Jevel of precision is avail-
able, we will see that we really do not need to bother
for parallel SCSI at the maximum UltraSCSI rate.

Figure 2 shows a tvpical error rate plot from a sim-
ple single-ended configuration made trom ordinary
SCSI interconnect hardware and transceivers being
tested at the maximum UltraSCSI rate. Each data
point represents a 3-second sample (60 million trans-
fers) at each ACK position. The ACK position is incre-
mented in 0.1-ns steps for a total of 240 independent
tests in the plot. To minimize the testing time, we
tested only the time ranges from -3 to 9 nsand 44 to
56 ns. The individual data points are not distinguish-
ablein this presentation, and there is verv Jittle scatter
between neighboring points. In Figure 2, the error rate
of 1 1s used to indicate that no errors were detected,
since the log of 0 is not easy to plot.

Examination of the raw data reveals that the plot is
monotonic in detected errorrate to the fourth decimal
place. Thisindicates an extremelv predictable situation
as far as behavior of the same set of hardware is con-
cerned. Thatis, there is virtually no Gaussian jitter pre-
sent, and a SCSI svstem could be designed to be quite
reliable and stable at the maximum UltraSCSI rate.

Extending the sample period to 5 minutes made no
difference in the position of the key teatures. Using the
3-second sampling time, the entire darta set could be
acquired automatically in approximately 12 minutes.

The onset of errors is extremely sharp as the ACK
position approaches the critical position. One hundred
picoseconds changes the observation trom 0 to 864
errors near the 8-ns position. On the other end, the
50.1-ns time produced 7 errors, and the 50.2-ns time
produced 425 errors. No errors were detected at anv
of the times between 50.1 ns and 7.9 ns. This data
shows that there are no strange ettects that prevent
SCSI from operating at the maximum UltraSCSI rate.

As the ACK position proceeds into the region of
more errors, a condition is finally reached in which a//
the transters have errors. On the one hand, the proba-
bility that one transfer has the same data content as its
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Figure 2
Tvpical UlraSCSI Error Rate Plot
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neighbor’sisvery small with this random data pattern.
On the other hand, since a random data partern is
being used, there is a reasonable chance that a bit will
actuallv match that transmitted in once state but notin
the other state. The random data pattern tends to
spread out the time benween the first error and the last
good transfer. In the limit, tor perfectlv random data,
this time is a measure of the total tming imprecision in
the system.

This imprecision includes skew in the exciter and
comparator boards, in the SCSI drivers and reccivers,
and in the cable transmission media (including loads, it
any),and all torms ot jitter. For the test conditions shown
in Figure 2, the total difterence is 3.6 ns near the 5-ns
point and 5.4 ns near the 52-ns point. This shows that
the skew specifications in the SCSI standard arc over-
specified as compared to actual hardware performance.

The data shown in Figure 2 is representative of a
large variety of configurations up to approximatcly 3
meters long and loaded or up to much longer point-
to-point lengths (20 meters or more [sce Figure 61).
The error-free window can be made to collapse by
adding too many loads or by using the wrong imped-
ance cable, improper terminators, receivers with the
wrong threshold voltages, or other bus component
and configuration parameters. However, the details of
the actual hardware and configuration do not atfect
the basic conclusion derived trom Figure 2, namely,
that a great deal of timing margin 1s available ar the
maximum UltraSCSI rate when ordinary SCSI hard-
ware is used.

To put this nto perspective, basic gigabit-per-second
serial transmissions with approximately rwice the basic
bandwidth of UltraSCSI have bit tmes of about 1 ns
and timing margins of a tew hundred picoseconds.
UltraSCSI has an eftective margin window ofa tew tens
of nanoseconds. This represents two orders of magni-
tude more margin for the parallel SCSI application.
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The inal errors usually originate from the same
bit. This bit is the one with the most unfavorable tim-
g skew with respect to the ACK signal. The cliftis
not perfectly sharp because there is a 50 percent
chance that the data transmitted is the same as that
expected even under the error case and, more impor-
tantly, because there is some level of jitter present. It is
this jitter that softens the chtt. Thus, the first errors
detected happen when the skew of the weakest bit
adds to the tail of the jitter distribution. Only a few
crrors are present because only a small part of the jitter
population extends far enough to trigger the error.
SCST systems  will experience virtually no errors
because of these mechanisms in service if one operates
1 ns or more awav from an crror cliff.

Note that these results from the special test environ-
ment almost alwavs vield margins higher than thosce
calculated from a set of interoperability specifications.
This 1s because the interoperability specifications must
allow margin for cach piece, and the special test envi-
ronment reports the integrated result from manv
picces in the complete SCSI connection.

Higher Speeds The main cttect of further increasing
the transter rate above the maximum UltraSCSI rate
n the same set of hardware is to change the time posi-
tion of the onset of nonzero crror rates and to parrow
the error-tree region. Figure 3 shows an example of
data from Fast-40 transmissions using separate high-
voltage differenrial transceivers on each bit. (This data
was acquired by DIGITAL’s Storage Bus Technical
Office in 1994 )

The ervor-free zone has narrowed to approximatelv
15 ns, and the time benween first error and 100 per-
cent crrors has widened on both sides, but still no
uncontrolled regions exist. This strongly suggests
that at lcast Fast-40 transfer is possible with no major
technology changes in the interconnect.
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Fast-40 Error Rarte Plot
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Additional Tests  Other tests that are useful with the
special test environment are ground offset eftects, ter-
minator power effects, correlation of time domain
plots on the signals with error rate distributions, hot-
plugging testing (which results in good error detec-
tion), and comparison of the impact of different cables
and transceivers. Test results of this nature are not
included in this paper because the impact of these vari-
ations depends on many parameters and the results
may not be generally applicable.

Timing Specification Methodology

With the increased emphasis on tming precision for
UleraSCSI technology, it was necessary to introduce
better specifications for the measurement of timing
parameters than those in the SCSI-2 and SPI stan-
dards. Figure 4 shows the precise measurement points
and features used for the specification of single-ended
UltraSCSI signals.

The eftects of the hinite slew rate on the signal edges
are accounted for largely by specifying the voltage levels
that coincide with the receiver input levels. Thus, the
setup time ends when the receiver is able to detect an
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asserted state at 1.3 V, and the asserted period begins
when the asserted state has been detected. On the nega-
tion side, the signal must nse to at least 1.6 V before the
receiver can detect a negated state, and a negated state
must be detected if the input signal reaches 1.9 V. In the
SCSI-2 and SPI standards, any point between 0.8 V and
2.0V could be used as the timing measurement.

Sample UltraSCSI Signals

Numerous variations on the details of the signals can
be produced in UltraSCSI contigurations. This section
shows two types of signals as representative examples
that validate UltraSCSI as viable under certain condi-
tions. The first case explores a configuration that actu-
ally exceeds the recommended specifications. This is a
complex cabled environment with a cluster of loads on
one end and some distributed loads on the other end.
The second case shows the signals over a 25-meter,
single-ended point-to-point bus.

Complex Loads Figure 5 specifies a complex con-
figuration and the single-ended SCSI signals that
result at various positions along the bus. The logic

SHALL BE
DETECTED

MAY BE
DETECTED

Vs

MAY BE
DETECTED /% N
SHALL BE

DETECTED

Il Sl e

'
'
|
I

DATA
BUS

DATA BUS VALID

|
)
1
t
'
I
|
'
'
1
I
'
|
|
|
|
'
-
I
]
I
1
I

i i o

Figure 4
Single-ended UleraSCST Timing Measurements
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signal that is driving the SCSI driver chip is the
tirst trace at the top; it provides a common timing
reference for all the signals. The weakest signal is at
device position 4, just after a relativelyv Jong run svith
noloads. This signal is below the -V level but has a
very slow assertion slew rate that causes considerable
loss of asserted state pulse width. This complex con-
figuration works with the receivers used but docs
not have the timing margin required by the Fast-20
standard.

By varving the position of the loads so that there are
no loads benwveen the driver and the first load (not
shown), the signal at the first load device s degraded
cven more than at position 4 in Figure 5. This is
one reason that the overall length of single-ended
UltraSCSI with many loads is restricted to 1.5 meters

and that the rotal number of loads 1s imited to 8.
UltraSCSI deviees connected to backplanes may be
especiallv sensitive to attached cables thar extend the
total bus length more than 6 to 8 centimeters (cm)
bevond the backplane. This reduced bus length is
rather severe when compared to that allowed at the
maximum tast SCSI transter rate (a rotal of 3 meters).!
Inthe section Small, Improved Interconnect, we show
how to overcome this 1.5-meter, 8-device limit by
using an active SCSI inrerconnect.

Applving the timing measurement methods shown
mn Figure 4 to the wavetorms in Figure 5 illustrates
that morc carctul timing specification methods do
mndeed help signiticantly to keep the tming margin
high ¢nough to usc.
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Point-to-point Configuration If loads arc present
only at the cnds ot the bus, the transmission linc
between SCSI devices improves  clectrically. This
occurs simply becausce the loads signiticantly disrupt
the characteristic impedance and causc reflections and
attenuation. The point-to-point signal at 25 meters
has better amplitude and timing margins than signals
i much shorter buses with closcly spaced loads.
Figure 6 shows a typical examplc of a point-to-point
UltraSCSI signal. The tormat used in Figure 6 is the
same format used in Figure 5.

Differential UltraSCS!

Difterential UltraSCSI uses the same configuration rules
as fast SCSI (25-mcter total lengrh, 20-cm [8-inch]
stubs, 16-device load)' and uses the same timing values
as single-ended UltraSCSI. The larger signal amplitudes
and the common mode rejection property of differen-
tal transmissions help overcome the transmission line
weaknesses in heavilv loaded and long buses. As with
any high-voltage differential system the costs—in terms
of money, power, and space—are higher.

Other Requirements for UltraSCS!

The Fast-20 standard' contains a number of detailed
rcquirements on the components used in UltraSCSI
configurations. Included are slight modifications to
the cable impedance, active negation requirements for
drivers, special length limits tor certain loading condi-
tions, restrictions regarding the kinds of single-ended
ternunators to usc, and timing budgets.

Summary of Developments in the Area of Increased
Synchronous Data Phase Speed

The UltraSCSI (Fast-20) speed increase can be attrib-
uted toa systematic examination of the margins present
in actual SCSI hardware and to the climination of the
cxcess margins. Advances in the integrated circuit indus-
trv enabled silicon designs to be specified with tighter
controls on the driver and receiver timing and threshold
properties than were possible when the SCSI-2 or SPI
standards were developed. All the important changes
nceded for SCSI devices are contained in the silicon
designs for the drivers and reccivers. As a result, the uscr
sees no dlitference benween the appearance of UltraSCSI
and that of ordinary SCSI.

The system integrator must usc a more restrictive
set of contiguration rules than required for fast and
slow SCSI. Also, the only impact on software is the
addition of'a new speed agreement code for the rates
uniquely supported by UltraSCSI. This negotiation
is done preciscly the same wayv tor UltraSCSI as for
anv other form of SCSI. Finally, UltraSCSI devices
are 100 percent backward compatible with fast and
slow devices. Although a device mav be capable of
the maximum UlraSCSI rare, it may be needed in a
configuration that does not support UltraSCSI. In
such a casc, the UltraSCSI device would be used in
the fast or slow mode and would have more margin
at those slower speeds than it would if it werc not
UltraSCSI capable.
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Bus Expanders

As noted previously in the discussion of complex loads,
there arc rathersevere limits on the configurations that
can be achieved with single-ended UltraSCSI when
implemented in asingle bus. The extension to paraliel
SCSI architecture that overcomes this  constraint
involves using active circuits that connect SCSI buscs
elecrrically but isolating them from cach other u1 a
transmission line sense. These circunts have the general
name expanders, since thev expand the configuration
capabilitics of paralle] SCSI.

Each individual bus has two terminators and its own
transmission mode (single ended or ditferentiat) and
obeys transmission line=based configuration rules as if
it werce the only bus in the svstem. When used with
expanders, these mdividual buses are called bus seg-
ments. The collection of SCSI devices in all the bus
segments that are clectrically connected together is
called the SCSI domain. Onc example of a SCSI
domain using expanders is shown 1 Figure 7. Note
that when using expanders, it is possible to have bus
segments that do not have any SCSI initiators or tar-
gets but only serve to torm an clectrical mrerconnect
between other bus segments.

Expander Properties

Expanders are available in nwo basic tvpes: simple and

bridging. Bridging cxpanders behave as a SCSI initia-

tor or target, whercas simple expanders have a sct of

propertics that make them look like a picce of wire

with delav to the protocol. Simple expanders

= Cannot initiate SCST IDs and arbitrations and can-
notoriginate messages, although the expanders can
read messages sent from initiators and targets

= Allow minimal arbitration propagation delav

= Yicld a retransmutted signal timing skew (both
delav and high/low) noworse than tfrom valid SCSI
INITIATOr'S Or targcts

= Do not interfere with the REQ/ACK oftset count

= Allow min/max pulse widrhs to be maintained

= Require the filtering of the SCST RESET line

= Allow arbitrary placement of the mitiator and the
rargets

BUS SEGMENT 1

BUS SEGMENT

= Require that terminator power not be connected
between the segments being coupled

= Do not need to know the negotiated data phase
speed orany other vartable propertv ot a transaction

= Require that there be no clectrical or logical connec-
ton of the DIFFSENS line (a single-ended signal
that indicates the transmission mode being used on
the bus segment) between segments being coupled

= Issuc a SCSI bus RESET signal on one scgment on
detecring transmission mode (single-ended /LVD,
cte.) changes on the other segment

Simple expanders are becoming available from several
sources in the industry toruse with UlaaSCSIL

Domain Rules Using Simple Expanders

When using only simple cxpanders in a domain, six
rules must be obscrved:

1. All bus segments - the domain must comply with

their mdividual bus segmentlength limits and other
segment-related requirements,

8}

- Anv segment berween two other segments must
support the highest pertormance level that can be
negotiated benween the two other segments. For
example, tvo wide UleraSCSI segments must not
be separated by a segment that does not support
both wide SCSI and UltraSCSI.

3. The masimum propagation delav benween any
two deviees in the domain cannot exceed 400 ns.
A special case exists for devices that use extremely
long times for responding to BUS FREE (the
so-called BUS SET DELAY )—thc onc-way propa-
gation limit is 300 nsinstcad of 400 ns.

4. The number of addressable devices cannot exceed
16 unless the domain contains bridging expanders.

o

. A branch/leatarchitecture must be observed; loops
are not allowed.
6. The REQ/ACK offset negotiated between any
two devices must be large enough to ensure that
adequate oftset and buftering is available to accom-
modate the round-trip tme berween the deviees.
For the maximum UlwraSCSI rate with a 400 ns
maximum onc-wav domain propagation time, the

1 BUS SEGMENT

TWO-PORT
EXPANDER

TWO-PORT
EXPANDER

Figure 7
SCSI Domain Built Using Expanders
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minimum offset is 18. (This oftset level is derived
bv considering a maximum round-trip time of 800
ns at 50 ns per transter [800,/50 = 16] and some-
what arbitrarily adding two transfers to account for
some additional delay due to the processing time in
the silicon.)

Achieving the 400-ns one-way domain delay
requires expanders that will not pass the wired-OR
glitch (noted earlier in the introduction) between bus
segments. This filtering of the glitch allows the bus
segments to settle individually.

The propagation delay through an expander
directly subtracts from the physical distance between
devices. It is therefore desirable to use expanders
with small delays. For a single-ended—to-single-ended
application, the delay can be as low as 10 ns. For a
single-ended-to—difterential application, the delay is
typically around 100 ns, which is another significant
penaltv to using difterential bus segments.

More detail concerning these rules and other prop-
erties is available in the draft ANSI document: SCS7
Enhanced Parallel Interface,® which was edited by the
author of this paper.

Summary of Improvements Related to Bus Expanders
The use of simple expanders dramatically extends the
utility of single-ended UltraSCSI. The most obvious
example is the ability to introduce point-to-point
segments where additional length is needed. A less obvi-
ous example is the ability to create star or hub configu-
rations by clustering simple expanders into a local
physical area. An example of a three-port SCSI hub
is shown in Figure 7. Note the three simple expander
circuits internally connected within the hub. Simple
expanders also make it possible to mux single-ended and
differential SCSI devices in the same domain, to achieve
the full 16-device count, to add and remove bus seg-
ments without shutting down the entire domain, and to
achieve difterential performance without incurring the
extra cost of differential. Bridging expanders offer the
same transmission isolation as simple expanders and
may allow increasing the number of devices in the
domain to as high as 946,° but bridging expanders are
not as well developed as simple expanders and will not
be explored in depth in this paper.

Note that the improvement in signal integrity is dra-
matic when using expanders with backplane applica-
tions. Therefore, it is good practice to use an expander
whenever connecting a SCSI cable to a backplane that
contains SCSI devices.

Smaller, Improved Interconnect

Another recent development in parallel SCSI technol-
ogy is the introduction of much smaller external phys-
ical interconnects and more capable internal device
interconnects. The SCSI connectors and shielded

cables have historically been large, bulky, and generally
difficult to manage.

Spearheaded by activities that began in 1995 in the
SFF (formerly Small Form Factor) industry group,
standardization is under way of two new connector
families that ofter unprecedented levels of tunctionality
and true mulusourcing of complete connectors for
parallel SCSI. These families are the Very High Density
Cabled Interconnect (VHDCI)? shielded connectors
that reduce the overall size of an external connector by
two thirds and the Single Connector Attachment-2
(SCA-2)" unshielded connectors that integrate into
a single connector all the functions needed to run a
peripheral. The VHDCI family revolutionizes the
external SCSI interconnect and the controller parts of
the internal SCSI interconnect; the SCA-2 family does
the same for the internal device interface.

For the first time, complete connectors—not just
the mating interface—are being standardized. This
feature is essential to achieving interchangeability and
second sourcing for connectors with the same style of
termination-side contact. The VHDCI family is speci-
fied in 26 difterent forms, all with exactly the same
mating interface, so that virtually anv kind of device
or cable assembly design can be accommodated.
Interestingly, this array of choices for the connectors
does not increase the complexity of the interconnect
but rather opens up new wavs for product developers
to design products while maintaining a simple and
physically interoperable separable connector interface.
In fact, this ability to accommodate a variety of prod-
uct design requirements without changing the separa-
ble interface is one reason that SCSI is becoming fess
complicated.

Similarly, the family of SCA-2 connectors tor SCSI
internal devices and cables is following the VHDCI
standardization model, with a significant number of
intermatable forms being standardized. These connec-
tors offer the ability to bring all the SCSI signals, all the
power and ground connections, and all the optional
signals, such as IDs, spindle sync, and power fail, out of
the device through a single unshielded connector. This
feature dramatically shrinks the cost and complexity of
interconnecting an array of SCSI devices.

Using an SCA-2 connector, the device mav be
inserted into a backplane without using cables. If the
SCA-2 and backplane combinationis not used, a SCSI
cable (50-pin or 68-pin conductor), a four-lead power
cable for ground and power (5-V and 12-V), and one
or more smaller cables for the IDs etc., are required for
every device in the system. Each of these cables is
routed differently, has difterent current carrying and
other electrical requirements, and has very different
connectors. Although this cabled option is flexible and
offers significant advantages in some systems, it is usu-
ally not the best solution in the device array and mod-
ular packaging applications that are required for the
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higher-end applications. Theretore, the SCA-2 isa sig-
nificant factor in the dramatic reduction in complexity
ot higher-end SCSI device applications.

VHDCI Connectors
The physical size of the VHDCI connectors is much
smaller than the earlier versions, as scen in Figure 8.
Because ofits low protile, the VHDCI 68-pin tamily is
approximately half the height and twice the width of the
latest Fibre Channel external connecror, the High-
Speed Serial Data Connector (HSSDC). Figure 9 shows
a comparison of the VHDCI and HSSDC conncctors.
The same panel space is required tor either technology.
The VHDCI connectors shown in Figure 9 are
closely spaced, but the orientation of the polarizing
shield connection is 180 degrees difterent benween the
upper and lower connectors. This arrangement allows
an oftset cable assembly to be used where one side is flat.
This same cable assembly mav be used on both the

SCSI-1 LOW-DENSITY
NARROW (50 PINS)

SCSI-3 HIGH-DENSITY
WIDE OR NARROW (68 PINS)

VHDCIWIDE OR
NARROW (68 PINS)

VHDCI NARROW
(36-40 PINS) MICRO SCSI

Figure 8
External SCSI Connccrors

upper and lower connectors without interterence. The
specifications ot the VHDCI interface ensure that
neighboring PC option slots will not have interference
even ifall the SCSI ports have cable assemblies attached.

The VHDCI connector is useful for multiport appli-
cations such as RAID (redundant array ot inexpensive
disks) controllers. Figure 10 shows examples i which
the wide version ot the connector family has allowed at
lcast a doubling of the number of ports possible in a
single controller torm tacror. As illustrated in Figure
10, the device design enables up to four wide SCSI
ports on a single PC option card cutout.

The VHDCI retenton scheme is also significantly
simplified by introducing a threc-way retention post
tor the bulkhead connector. This post accepts (1) the
conventional jackscrews, (2) a squceze-to-release clip
for positive retention with rapid release, or (3) a detent
ring retention that requires a stronger pull than that
required with no retention but no action other than

WG NSE NG ESE LGRS

TR RS AR S AR ERERRRRRRRRE Y

Figure 9

Comparison of the 68-Pin VHDCI and Fibre Channel HSSDC Conncecrors
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Figure 10
Four Wide SCSI Ports on a Single PC Oprion Card

pulling or pushing. The choice of retention type is
made in the cable assemblv. All 68-pin VHDCI cable
assemblics that comply with the SFF specitications
work on all 68-pin VHDCI mating connectors.

Figure 11 shows the details of the 68-pin VHDCI
system. The lip in the jack post provides the securing
point for squeeze-to-release clips and for split-ring
detent retenton. The center of the jack post is threaded
for use with jackscrews,

Although smaller than the high-density connector,
the VHDCI connector is durable. It has no pins that
can bend; its retention scheme uses the same-size
jackscrew thread as the high-density wide connector;

CABLE/BOARD SID

and its contacts are imbedded in the housing where
they cannot move or become distorted.

SCA-2 Connectors

The SCA family uses an 80-position, leaf-style contact
to interface all active SCSI lines, three power voltages,
and device control signals. This connector is consider-
ably smaller than the collection of the three different
connectors used for power, options, and SCSI bus in a
cabled system. There are two basic versions of SCA
connectors: SCA-1 and SCA-2. Both versions are
unshielded and useful only within shielded enclosures.
The SCA-] has 80 positions with all contacts designed

DEVICE SIDE

THREE-WAY
RETENTION

Figure 11
Overall View of the 68-pin VHDCI System
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to be the same length. The SCA-2 can be mated to the
SCA-1 but has advanced grounding contacts and
sequenced signal and power contacts for supporting
hot plugging and blind mating (no visual fteedback
during mating). Both versions are available in many
styles, which differ by the termination-side structure
and overall orientations.

The SCA-1 is not a documented standard and is
being replaced by the SCA-2. The SCA-2 conncector
was introduced to SFF in 19957 as the first step roward
formal standardization.

Two special teatures exist in the SCA-2 connector.
First, nwo contacts, one on each side of the conncector,
provide the first make /last break for the ground con-
nection. This design ensures that a common e¢lecrrical
ground is established between the device and the sys-
tem before any power or signal connections arc madc
on device insertion. Upon removal, these contacts
ensure that the ground sravs intact throughout the
disengagement of the signal and power pins.

The second feature allows the special long power
contacts to precharge bypass capacitors betore the
main power contacts make. This reduces the distur-
bance to the power distribution system and eliminates
anv arcing on the service power pins. Twao pins at the
extreme ends of the connecror indicate that the con-
nector is tully mated. The overall view ot the SCA-2
system is shown in Figure 12.

The size of the connectors in the SCA family has not
decreased dramatically. The connectors need to main-
tain enough size to achieve blind mating alignment,
and, for backplane applications, there is little advan-
tage in having a connector that is smaller than the
device. With 89-mm (3.5-inch [in]) or the newly pro-
posed 76-mm (3-in) form factor devices, the SCA con-
nector comfortably fits withm the device boundaries.

DEVICE SIDE

ADVANCED e
GROUNDING <
CONTACTS

The use of backplanes tor direct device attachment
is possible because all the electrical connections for the
device are available in one connector on the device.
This design climinates the cables used to attach the
device and the space required for the connecrors, thus
significantly shrinking the size required to package
multiple devices.

External SCSI Cable

The external cable for SCSI is shrinking also, through
the use of smaller-gauge wire, better dielectrics, and
Jess jackering material, as illustrated n Figure 13.
Formerly, wide SCSI required a cable of approximatelv
12.70 mm (0.50 in) in diameter (a 126.677-mm?
[0.196-in*| cross section) with 28-gauge wirc. Today,
wide SCSI cables with 30-gauge wire are shipping
with diameters of 9.40 mm (0.37 in) (69.398-mm?*
[0.107-in*] cross sections). Cables with 7.62-mm
(0.30-in) diameters (45.61-mm? [0.07-in*| cross
sections) are possible with 32-gauge wire and inexpen-
sive diclectrics tor wide SCSI. Cables with 6.35-mm
(0.25-in) diameters (4.987-mm? [0.049-in?] cross sec-
tions) for narrow SCSI (45.61-mm? [0.07-in?] cross
sections) are flexible and manageable—similar in size
and flexibility to a desktop computer power cord and
smaller than many serial cables. When used wirh active
single-ended, LVD, or HVD terminators, the 32-gauge
wire is adequate for distributing terminator power and
SCSI signals in most applications. Long cables should
not be used tor terminator power distribution.

Further reductions in the connector and cable sizes
need to be weighed against the ease ot handling, the
need for sutticient strength to survive normal service
stresses, and the costincreases at very small sizes. The
combination of the VHDCI connector and 30/32-
gauge wire sizes is a good oprimization.

ADVANCED
GROUNDING
CONTACTS

Figure 12
Overall View of the SCA-2 Conncctor Svstem
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12.70 MM

(68 CONDUCTOR)

28-GAUGE WIDE

7.62 MM

(50 CONDUCTOR)

30/32-GAUGE NARROW

9.40 MM

(68 CONDUCTOR)

30-GAUGE WIDE WITH
IMPROVED DIELECTRIC

6.35 MM

(40 CONDUCTOR)

32-GAUGE NARROW
(MICRO SCSI)

Figure 13
External SCSI Cable Diameters

Summary of the Benefits Derived from a Smaller,
Improved Interconnect

The VHDCI connector and smaller cables combine
to offer a robust vet user-friendlv revolution in SCSI
interconnect. The leaf-style contact of the SCA con-
nector climinates problems with bent pins that fre-
quently bedevil the older wide SCSI connector.
The ability to usc up to four wide UltraSCSI ports in
a single PCI option slot increases the SCSI connec-
tivity per PCI slot to 60 devices (from 15 devices).
By using multiple PCI slots, hundreds of SCSI devices
can bc connected to a single PC or workstation.
In addition, the SCA-2 connector implements the
essential contact sequencing required to pertorm SCSI
device hot plugging.

Device Insertion and Removal Bus Transients

The multidrop feature of the SCSI bus allows device
removal and replacement without disturbing the commu-
nications between other SCSI devices, if the electrical dis-
turbances caused by the device being added or removed
are not dctected by any other SCSI devices. Thus, it is
architecturally possible to dynamically reconfigure the
device population without interrupting existing data
transmission processes between operational devices.

The transients involved with device insertion and
removal include mechanical vibrations, power distrib-
ution instabilities, SCSI terminator power noisc, clec-
trostatic discharge (radiation and induced current),
and SCSI signal line noise. All except the SCSI signal
line noise and the terminator power noise are handled
by the storage system design and therefore are not

dircetly part of the advancements in parallel SCSI.
The SCSI terminator power noise is determined by
the size of the decoupling used on the SCSI termina-
tors and the size of the capacitance on the device
being inserted. This noisc is easily controlled by
ensuring that thesc sizes meet the values specified in
the SPI standard.

The delicate case is when the SCSI signal lines arc
involved, which is the subject of this section. To deter-
mine the nature and magnitude of these signal line dis-
turbances, one must understand the following three
mechanisms: (1) the overall sequence of events, (2)
the electrical dynamics of connector contacts when
used in the SCSI application, and (3) the elcctrical
consequences on the bus when the device makes/
breaks contact with the SCSI signal line.

There are two sequences of interest: insertion and
removal. The removal process is easv to grasp after the
insertion process is understood.

Single-ended Device Insertion

The initial conditons considered for SCSI device
insertion assume a SCSI device with its ground solidly
and continuously connected to the ground of the
SCSI bus. This connection is easily accomplished, for
example, by using sequenced contacts where the
device ground makes connection well before any
signal connection. In this state, the SCSI device pins
present a maximum fully discharged capacitance of
approximately 25 picofarads (pF). After the device
signal pin contacts the bus, this capacitance becomes
charged (by extracting charge from the bus) to the
voltage on the signal line at the time of the insertion.
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These values range trom approximately 3 V. for
negated lines to nearly 0 V tor asserted lines.

Since the SCSI device being inserted is logically oft
(1.c., there is no driver current), the only current that
needs to tlow is that required to charge the 25-pF
capacitance. This is sharplv different from many con-
nections N clectronics in which current  tlows
through the contact after an clectrical contact has
been established.

In the case where no bus voltage changes occur
except as a result of the deviee insertion, the insertion
contactand ends when

transtent begins with the initia
there is no further bus voltage change with time (the
steady state volrage). @nce the device pin voltage
reaches the steady state bus voltage, no further current
flows through the contact.

Theretore, once the device capacitance becomes
charged to the steady stare signal line voltage, no turther
disturbances to the signal line voltage will occur even if
the contact opens momentarily during a chattering

event. The voltage on the device capacitance changes
during the transient from a discharged state (zero volt-
age) to the steady state signal line voltage, with the cur-
rent alwavs flowing into the device capacitance.

It the signal line voltage changes atter the isertion
transient is completed (because of events such as being
driven by other devices, by noise, or by the inscerting
device beginning to usc its own driver), then current
will again begin to tlow through the contact. Thisisa
normal SCSI condition for contacts in service. If the
signal line voltage changes during the insertion tran-
sient because of events other than the connector con-
ract cffects (c.g.,
driven by other devices, other noisc), then it 1s more
difficult to determine exactly where the insertion tran-
sient ends. The beginning of the insertion transient
will sull be marked by a charging of the device capaci-
rance. Examples presented later in this paper show
both insertion events and driving cvents from other
devices occurring at the same time.

The time required for complete contact mating on
all SCSI signals in the bus is up to six orders of magni-
tude greater thanthe time required tor a SCSI signal to
change state. Therefore, signal level changes are likelv
during the insertion process. The electrical behavior of
the contact as it continues wiping (shding after mitial
contact is made) from its initial contact point to its
final resting position becomes a critical part of the
process. The following subscctions explore this behav-
1or in detail.

signals changing because of being

Connector Insertion Dynamics  The datapresented in
this section were derived from a DIGITAL DSSI bus in
1990. The DSSI bus is nearly identical to the SCSI bus,
and many of the results apply without modification
to SCSIL. Similar data have been observed on the SCSI
bus, but the complete set of data presented in this
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paper is not presently available from actual SCSI hard-
ware. The disturbances in the DSSI bus are larger than
those scen in the SCSI bus, because the DSSI voltages
are slightly higher (3.5 V tor DSSI compared to 2.8 V
for sigle-ended SCSI), and the instrumentation
capacitance (~10 pF) adds signmificantly to the device
capacitance because of the state of the art tor scope
probing m 1990. Numecrous tests with modern scope
probes (0.6 pE or less) of SCSI hardware have shown
that the SCST disturbances are indeed qualitatively the
same but significantly less i size than those shown
here from the DSST hardware.

The mechanisms described apply to any svstem in
which the msertion transient is caused by the charging
of a small capacitance. Figure 14 shows the basic test

sctup. A device 1s inserted into a connector with scope
probes attached on cither side of the mating intertace
and with an additional probe attached to the bus some
distance from the connector. The voltage on the
device side of the connector is used as the trigger
signal into a digital storage scope so that the events
betore, during, and after the mating event can be
examined. This is clearlv a single-event tvpe of mea-
¢s

surement, so a high sampling rate (1 billion samp

to capture the waveforms. The scope probes used have
a l-megohm input resistance.

The connector used tor the tests in this section has
multiple parallel pins that all mate and demate in the

same general time period. There is no intentiona
difterence m the pm lengths. The time relationship
berween the mating cvents on two neighboring pins
was explored first. By choosing neighboring pins, the
ditterences berween the pins is kept to a minimum
so the time difterences observed should represent the
best pin-to-pin synchronization in a mating cvent.

For this test, a probe was attached to cach of owo
pins, and the connector alone (not part of a device)
was mated to the bus segment connector. Figure 15
shows the results.

Both pinsappear to show instantaneous transitions
between the charged and discharged states on the time
scale that was required ro caprure both events on the
same plot. The mating events are separated by approx-
imatcly 19 milliscconds, and there is no evidence of
any discharging after the initial charging has occurred.
Since the scope probes have a 1-megohm input resis-
rance, any lack of contact during the wipe portion of
the mating will allow the capacitance to discharge
through the probe with a rime constant of approxi-
matelv #C where K is the scope probe resistance and
C1s the sum of the connector pin and probe capaci-
rances. Assuming a total of 10 pF, this gives a decay
time constant ot 10 microscconds.

Figure 16 shows another mating cvent on pin 1 at
a 500 times more sensitive time scale. In this casc,
some evidence of momentary opens is seen with the
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Figure 14
Test Scrup tor Insertion/Removal Transients
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Figure 16
Conrtact Bounce Events

cxpected decay dynamics. The actual time constant is a
bit longer than 10 microseconds because of some
capacitancc in the connector pin. This bounce behav-
ior may or may not be present during the initial stages
of the event shown in Figure 15, but clearly the behav-
ior is not visible in the figure. To observe the suite of
transicnts that exist in the mating process, one must
examine the transients at several different time scales.
In genceral, this requires repeating the mating events,
since the dynamic range of the scopes usced was insuffi-
cientto capture all the detail in a single event.

The inital mating event on pin 1 still appears to be
instantancous on the time scale used in Figure 16, but
somg slope is visible in the second bounce event. Also,
during the second decay period, a shelf in the decay
indicates that a partial, high-resistance contact was
briefly experienced. Pin 2 is not close to making a con-
tact at the time range shown in Figure 16. The figure
shows a small amount of cross talk in the pin 2 voltage
waveform caused by the pin 1 transients.

This dara clearly shows that the derails of the mat-
ing process are highly complicated and intrinsically
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unpredictable. Therefore, the bestwe can hope for is
to establish some limiting cases tor the important
parameters. The limiting teatures shown in Figure 16
arc the extremely rapid initial mating cvent and the
dccay times. We examine these rapid transients in
derail later in this section. The decay times are deter-
mincd by the actual contact resistance and the resis-
tancc of the leakage path to local ground. For normal
SCSI devices, there is very little leakage to ground on
the device pin so the opens produced by the bounce
have no cttect.

Some cases observed indicate much more complex
bounce structures. Figure 17 shows a case n which the
mating connection is not established until morce than
700 microseconds have passed.

The data in Figures 15 through 17 were all acquired
from the same connector contact during scparate mating
processes. Tvpically, the details of the maung event are
very different even under nominally identical condirions.

Another type ot mating event is shown in Figure 18.
This event requires approximately 10 microseconds to
make the transition from uncharged to charged, and
there is no bounce. This particular cvent produces

PIN VOLTAGE (VOLTS)

PIN 1
N

almost no cross talk into pin 2. Events with these char-
acteristics are somewhat rare and are called gradual
transients i this paper.

Figure 19 shows a closcr look at the rapid transient
rvpe of maung cvent. In this igure, we have added a
device capacitance of approximately 20 pF to the scope
probe for a total of approximately 30 pE. Notice that
the transient requires 2 to 3 ns to substantially com-
plete its charging. There is aratioof nearly 107 between
the mating cvents on difterent pins in the same connec-
tor and the rapid transient of a single contact.

Limiting Parameters for the Rapid Transient Thc
question of whether the rapid transient shown in
Figure 19 is the worst case needs to be explored
becausce the duration of the transient attects the distur-
bance on the bus. Some bounding teatures and some
implications of the observed behavior of the rapid
transient arc nercd in this subsection.

Assuming that the transient event occurs in 2 ns and
that the velocity of impingement just prior to the first
mating event is 1 meter per sccond, then the distance
traveled by the conract would be 2 nanometers (nm).

1 2 2 1 s

100 MICROSECONDS PER DIVISION

Figure 17
Exrended Mating Bounce Events

PIN 1
N

PIN VOLTAGE (VOLTS)

PIN 2

10 MICROSECONDS PER DIVISION

Figure 18
Gradual Mating Event, No Bounce
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Figure 19
Derailed Structure of the Rapid Transient

This distance is equivalent to a tew atomic distances.
The distance traveled during the gradual transient
shown in Figure 18 would be approximatcly 10
microns, and during the extended bouncy case shown
in Figure 17, approximately 1T mm. The velocity tor the
latter two cases would likely be somewhat reduced
of the
the pins, and the actual distance traveled is probably
significantly less. There is little opportunity, however,
for the velocity to be reduced tor the rapid transient,
and this distance of 2 nm is probably at lcast the
correct order of magnitude.

The tollowing calculation shows the total current
levels required to charge the capacitance in 2 ns.

because mechanical interference between

Q=Cl'=30x10"pFx35V
=10.5x 10" coulombs,

where © represents the toral charge, € is the capaci-
rance, and V' is the voltage. Since this charge is trans-
ferred in a time £ of 2 ns, the average current is

O/t=10.5x 10" coulombs /(2 x 10" ns)
= 52.5 milllamperes (mA).

For a gradual transient that takes 10 microscconds,
the average current is approximately 10 microamps.
These caleulations show that the most severe ampli-
tude disruprion to the signal on the bus occurs with
the rapid transients, since relatively large current must
be supplied in a short time to charge the capacitor.

The nexritem to be examined is the current density
that must exist during the transient. Since the contacts
move only 2 nm and the surtace finish ot actual con-
racts is not nearly this smooth, it is rcasonable to
assume a square 2-nm contact. Clearly, this assump-
tion is not rigorously defensible and could be the sub-
jeet of an entire study area in its own right; however,
there is no basis for assuming that the lateral contact
region would be anv difterent than the contact area in
the mating direction. The basic conclusions would not
be atfecred even if we assumed a hundredfold lateral

increase i contact arca. Attempts to use scanning
electron microscopy to examine the actual contact
area were not fruitful in establishing the actual initial
physical contactarca because ot the severe physical dis-
ruption that occurs on the microscopic level and
because of the small sizes involved.

Under these assumptions, the physical contact area
is assumed to be (2 nm)* or 4 x 107" cm? in the follow-
ing calculations. The current density to support the
50-mA rapid transient current is therefore approxi-
mately 102 A /em?. Typical current densities in copper
and other metals are less than 10° A/cm?. The electro-
migration onset current is of this same order. The cur-
rent density in the rapid SCSI transient is a million
times greater than that which metal can support.

To support the massive current density, the actual
contactarea must be much larger than the initial phys-
ical contact area assumed in the above calculations.
The author believes that this can be explained by a
micromolten metal-to-metal joint that is formed upon
initial contact and that the tront of the melt propagates
(probably through phonon interaction) at approxi-
matelv the speed of sound in the metal. This process
would create crudely a thousandfold increase in the
effective insertion velocity and would result in a mil-
lionfold increase in contact area, since the melt would
propagate in all directions.

This mechanism would produce reasonable current
densities and would torm an intimate metal-to-metal
intertace with both contacts that would aid in reduc-
ing the contact resistance. The micromelt size becomes
rapidly selt-limiting, with the expanding contact area
causing decreased current density, whichin turn, causes
decreased melt temperature.

As discussed in the next section, the actual contact
resistance during the rapid transient cannot be large.
It this resistance is large, as in the case of the gradual
transient, the mating event is much less disruptive.

Many variations on the mating transients can be
observed, but we do not attempt to show ail of them
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in this paper. One special variation, however, is worth
noting—the combination of rapid and gradual tran-
sients in the same mating process. Sometimes the mat-
ing process starts with a gradual transient and then
shifts to a rapid transient. Figure 20 shows a complex
mating process in which (1) a gradual transient initi-
ates, (2) arapid transient starts but does not complete,
(3) the rapid transient ends, (4) another gradual tran-
sient process starts, and (5) another rapid transient
finishes the charging process.

This observation is consistent with several possible
microprocesses during which the initial rapid transient
extinguishes betore completion.

= The micromelt becomes physicallyv torn apart by
the advancing motion of the contacts. (This process
is unlikely because of the excessivelv slow phvsical
motion.)

= The micromelt explodes. (This process is likely.)

= The micromelt becomes resistive through the cont-
amination of the melt with insulating material.

= The micromelt front reaches a thin region and
opens because of the lack ot material.

= The micromelt front reaches an insulating region.

On further movement of the contacts, a new rapid
transient condition is encountered between difterent
metallic peaks of the contacts, and a new rapid tran-
sient begins. Figure 21 shows a conceprua
tion of this process.

Gradual transients appear to be associated with nor-
mal current densities (i.e., 10° A/cm?) and much
higher contact resistance than rapid transients. In cases
where a micromelt is not initiated, the low contact
resistance associated with the liquid metal-to—solid
metal interface and the expanded contact areaare not
present. Therefore, one way to eliminate the mating
disturbance caused bv therapid transients is to cnsurc
that a micromelting process is not possible.

representa-

In the processshown in Figure 20, itis probable that
a gradual-type contact is being maintained somewhere
clse in the contact, since no voltage decav is evident
when the rapid transient ends. Indeed, it is to be
expected that the rapid transient mechanism would
not operate after the capacitance is charged to a certain
level, since there would not be enough energy ditter-
ence to initiate and sustain a rapid transient. Therctore,
the gradual transient is the behavior derived from an
extrapolation of the normal mechanisms that produce
contact resistance. This detailed discussion is pursued
because we must understand the basic phvsical mecha-
nisms to gain confidence that we are considering the
worst-case disturbances.

Single-ended Device Removal
During the process ot removal, the device pin separates
from the bus. Since both the bus and the device are at
the same voltage just before the separation, no current
is flowing unless the bus voltage changes when the con-
tact is in the process of separating. Therefore, in most
cases the separation process causes no disturbance.
Bounce can occasionally be observed during the
demating process when there is a leakage-to-ground
path present on the device side. Of course, if a voltage
decav occurs and the contacts re-connect, the mecha-
nisms are essentially the same as for the insertion tran-
sient. The kev point is that no additional mechanisms
have been noted for device removal that could be
more disruptive than those operating during the inser-
tion process. In the limit, the removal process could
produce as much disruption as the insertion process.
Figure 22 shows two examples of demating. The
demating events shown in Figure 22a have only approxi-
mately a 60-microsecond separation. This separation is
exceptionally small; and it is theoretically possible to have
coincidental contact-to-contact events (within the preci-
sion of the instrumentation). The demating event with
bounce shown in Figure 22b was acquired on exactly the
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Architecture of Combination Gradual /Rapid Mating Event

same pins in exactly the same connector used for the
events in the top of the figure, and there is no evidence of
any activity on pin 2. Pin 2 demated long before any
activity was seen on pin 1. Again, this underscores the
unpredictability of the details of any given event.

Impact of Device Insertion and Removal on Bus Signals
This section contains several examples of the noise
produced on the bus side of the connector. Actual
devices with approximately 25 pF of capacitance were
used to obtain the data. This capacitance value is
increased by the probe capacitance. On the bus side,
there is also some increased capacitance caused by the
probe used to acquire the bus side signal. Figure 23
shows the basic impact of a rapid transient on the bus
side of the connector and the time relationship of the

bus disturbance to the voltage on the device side. The
bus voltage is reduced while it supplies the necessary
charge to the device pin. After the device capacitance is
charged, the bus resumes its voltage level before the
insertion transient (more or less).

In this test, the bus pulse is approximately 3-nswide
at its midpoint; its peak amplitude is approximately
1.25 V. This pulse is significantly larger in ampltude
than that produced from a device alone.

One of the more interesting features of the signals
in Figure 23 is the lack of commonality or tracking in
the signals after the rapid transient has passed. In the
simplest interpretation, one would expect both sides
of the connector to have nearly the same voltage
(at the least to be within the accuracy of the 0.1-ns
propagation time between the probes). The following
discussion addresses the author’s current thinking on
the reasons for this lack of tracking.

Instrumentation effects, such as resonance or difter-
ences in probe properties, were ruled out by using
both probes on the same signal and noting that there
was little difference in the signals reported from each
channel. Later, typically atter a few microseconds, the
voltages do become effectively the same.

Because asignificant voltage difterence is present for
relatively long times, there must be a significant voltage
source between the contacts to support this observed
difference. In the initial stages, the difference between
the pin voltages is approximately 3 V. If the current is
the one calculated in the section Limiting Parameters
for the Rapid Transient, that is, approximately 50 mA,
then the current-limiting impedance must be at least
3/0.05 = 60 ohms. This impedance, coupled with the
parasitic capacitances and inductances, serves to blunt
the instantaneous electrical energy transfers that would
be implied by a very low source impedance. If the
source impedance were very low, then both sides
would have to track shortly after theinitial contact.

Part of this limiting impedance is the loaded or local
transimission line impedance of the bus. The characteris-
tic impedance is nominally approximately 100 ohms for
an unloaded bus. Since the bus connector is attached to
the middle of the line, both sides are available to supply
charge and the effective charging impedance would
be approximately 50 ohms. A 30-pF capacitance would
have a charging time constant of 1.5 ns. This time con-
stant fits the observations well during the rapid transient
itself but does not fit the timing parameters of the volt-
age differences observed well after the rapid transient.

Elevated local temperatures are almost certainly pre-
sent during the rapid transient (near the melting point
of the metals!), so it seems plausible that the mvstery
voltage source is basically thermal electromotive force
(EMF) benween the pins. Allowing a few microseconds
to achieve thermal equilibrium and subsequent loss
of the thermal EMF also seems quite plausible. These
details are invitung further dertailed investigation but
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do not aftect the practical conclusions as applied to
parallel SCSI.

As added evidence for thermal effects, experiments
with early LVD SCSI devices that use a 1.2-V bus level
instead of the 3.5-V bus level shown in Figure 23
transfer much less energy and have a much shorter
setthing time before both sides of the contact track.
These LVD results will be reported separately.
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The point extracted from these charging-impedance
and scttling-time obscrvations is simply that the over-
all energy transfer rate is limited by the microphysics
of the process. This means that Figure 23 almost cer-
tainlv illustrates the worst-case disturbances.

Ithasbeen noted thatthe bus pulse is similar to that pro-
duced by a stub on the bus and a signal with a fast rise /fall
ame. Ina sense, we really are charging a stub in either case,



and in both cases the loaded or local characteristic imped-
ance of the bus limits the extent of the disturbancc.

To more accuratch' measure the noise pulse pro-
duced when a device isadded to the bus, measurements
were performed without a scope probe attached to the
device pin. To do so required triggering the scope from
the noisc pulse on the bus side. Consequently, it was
not possiblc to scc the device-side charging dynamics.
Figurc 24 shows the measured pulse near the device
conncctor and at a point 2 meters away.

The pulse measured in Figure 24 has approximately
half the amplitude of the pulsc in Figure 23. This is
morc reduction in amplitude than one would expect
from the removal of 10 pF from the effective device
capacitance, and this difference, while not completely
explained, is in the favorable direction. The noise pulse
that rcached the next device (where it could be
detected as an error) would be even smaller, because of
the dispersion and attenuation in the bus and because
the neighboring device would need to have its 25-pF
capacitance charged also. The signal at the measure-
ment point 2 mcters away in Figure 24 indicates
the intensity of the attenuation and dispersion to be
expected in the rapid transient bus pulses. The details

of the attenuation and dispersion depend somewhat
on the bus media used.

The rapid transient bus pulses arc shown on actual
data pulses in Figure 25. The top trace in the hgure
shows a rapid transient pulse on a negated part of a
single-cnded SCSI signal. There is a scope probe on this
device, but the device capacitance is onlv approximatcly
15 pF so the total with the probe is approximatcly 25 pF.
Note that the noise pulse is approximately 0.8 Vand
does not rake the signal into the receiver detection
range below 2 V. This ncgated state is a bit higher than
usually found, so the bus pulse is starting from a higher
point. If the pulse had started from a lower point, for
example about 2.5 V, the pulse amplitude would not
have been as large. Further discussion of the recciver
detection range appears later in this section.

The signals in Figurc 25 werc purposcly chosen
to have broad falling cdges of approximately 15 ns.
Normal SCST signals arc 5 ns or faster. The broad cdges
maximize the chance that the bus pulse will producc a
signal slope reversal of the tvpe that can produce mul-
tiple edges. The bottom trace in Figure 25 shows a bus
pulse in the mostsensitive part of the falling edge. This
pulse produces almost no slope reversal because by the
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time it is ready to become positive-going, the data sig-
nal has fallen so much that there is no voltage source
to drive the signal more positive. At the beginning of
the falling cdge, the slew ratc is increased by the bus
pulse; in the middle, the edge is extended and consc-
quently the overall time required tor the falling cdge is
almost exactly the same as for the talling edge that has
no bus pulse (see the top trace).

Therefore, the main eftect of rapid transient pulscs
occurs when they intersect the signal edges (where a
state change is expected anvwav), and the cffect is
movement of the position of the edge by no more
than 2 ns from the normal position. This movement is
already accounted for in the SCSI standard as pulse
distertion skew, so there is no important eftect.

It the mating cvent happens while the bus signal is
in the asserted state, there is little effect since little
charge is transterred. If the event happens in the rising
edge, there may not be enough voltage difterence to
start a rapid transient—again, there is little ettect. Ita
rapid transient is initiated on a rising edge, the impact
is still a small shift in the position of the cdge. In
any arbitrary combination of signal level and type of
transient, the bus disturbance will not be greater than
those shown in Figure 24 and Figure 25.

Differential

For differential SCSI systems, essentally the same
behavior occurs as for the single-cnded case except that
the relationship between two contacts instead of just
one must be considered. If inscrtion transients on the
positive signal differenaal line are occurringat the same
time as transicnts on the negative signal line, we must
examine the difference between these transients to
see what impact they have on the ditterential signals.
Based on the time required between mating cvents on
neighboring connector pins presented in the section
Connector I[nsertion Dynamics and in Figure 15, it 1s
evident that the differental casc is almost alwavs nwvo
independent and isolated single-ended cases. This is
because the difference in the ime required for difterent
pins in the same connector to begin the mating process
vastly exceeds the actual transient time on either signal.

In SCSI difterential svstems, both the positive and
the negative signals are normally positive with respect
to the local grounds. This means that the transicnrs
will be the same polatity on both signals.

In the very rare cases in which some overlap cxists
between the transient times on both signals, the rapid
transient disturbances would usually be scen as com-
mon modec cvents that reduce the eftective differential
transient signal. These events are not seen it common
mode noise cxists where the signals have opposite
polarity with respect to local grounds during the
transients. In this case, it is theoretically possible to
produce anticommon mode ditterential transients.
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However, the anticommon mode case will always have
the positive and negative signal lines within a ditferen-
ual logical voltage level of ground, and the transients
will therefore be small. Even in the anticommon mode
case, the ctfectis at most a shght shift in the time when
the difterential state change is observed, since the tran-
sient disturbances are so small.

In the pathological difterential case, large common
modec levels exist on both the positive and the negative
signals. The insertion transient will be larger because
the bus voltage is larger. This case iseven more rarc since
it requires both coincidental pin mating and coinci-
denrtal large common mode.

The other case considered that can have a unique
effect on differential systems is that ot extended bounce.
This casc extends the effective mating time to the point
when some overlap between the transient activity on the
pinsis morc likely. Recall that the extended bounce case
was onh visible when a leakage mechanism was available
to discharge the incoming device capacitance. In actual
devices, no significant leakage occurs so a bounce cvent
does not produce disturbances atter this tirst contact.

The difterential signal scen by the incoming device
may be seriously affected by extended bounce if there
is bus acuiviey during this bounce. Consider, for cxam-
ple, acase in which the positive signal contact opened
because ot 'a bounce eventatter achieving a tull charge,
While it 1s still open, the negative signal changes state.
Now both the positive and negative signals are at the
same nominal potental, which is an indeterminare dit-
ferential condition. Fortunately, this condition is not a
problem because the only device that sces this condi-
tion is the device being inscerted or removed and it is
not in an opcrational state.

Summary of the Handling of Device Insertion and
Removal Transients

After a complex, vet self-consistent, set of experimental
data and interpretations, the concluding results arce that
the worst-case SCSI bus transicents resulting from proper
nsertion and removal processes should not causc crrors
in the SCSI bus as presently specified in the SPI and
Fast-20 (UltraSCSI) standards. The proper processes
include pregrounding prior to insertion, avoiding
excessive device capacitance, and using SCSI drivers and
receivers that meet all of the SCSI requirements.?

As of this writing, all reports of device inscrtion/
removal crrors have been traced back to failure to usce
proper procedures or designs. The most common errors
are lack of pregrounding, devices that do not maintain
the high-impedance input state during power cveling,
and power distribution or mechanical transient cttects
unrclated to SCSI proper.

The mechanisms that operate span a time spectrum
from picoscconds in rapid transients to seconds in con-
ract wipce and other macro connector operations.



The worst-case difterential transients occur when
one treats the differential system as two independent
single-ended SCSI buses—one for the positive signal
and one for the negative signal.

The rapid transient becomes more and more
detectable as bus speeds increase and the receivers and
timing margins become more sensitive. Schemes to
encourage the gradual transient are the best protec-
tion against the ultimate problems caused by rapid
transients. The best-known mcthod for producing
reliable gradual transients is to avoid a metal-to-metal
contact during the initial contact and until the device
capacitancc is charged. At this time, no such connector
system exists for SCSI applications.

Overall Summary

Evolution in four significant hardware technologies
in the recent past has enabled parallel SCSI to break
through the barriers that were preventing it from
delivering excellent value, flexibility, and growth to the
computer data storage industry. Application of morc
scientific methods, use of the latest silicon technology,
and developments in the interconnect technology pro-
vided the foundation for these improvements. DIGITAL
provided most of the basic data and led important stan-
dardsand industry bodies to accomplish this.
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Development of Router
Clusters to Provide Fast
Failover in IP Networks

IP networks do not normally provide fast
failover mechanisms when IP routers fail or
when links between hosts and routers break.
In response to a customer request, a DIGITAL
engineering team developed new protocols
and mechanisms, as well as improvements to
the DECNIS implementation, to provide a fast
failover feature. The project achieved loss-of-
service times below five seconds in response
to any single failure while still allowing traffic
to be shared between routers when there are
no failures.

'l Techineal Tournal Vol 9 No 3 1997

Peter L. Higginson
Michael C. Shand

A DIGITAL router engineering team has refined and
extended routing protocols to guarantec a five-sccond
maximum loss-of-scrvice time during a single failure in
an Internct Protocol (IP) network. We use the term
rointer cluster to describe our improved implementa-
tion. A router cluster is defined as a group of routers
on the same local arca nctwork (LAN), providing
mutual backup. Router clusters have been in scrvice
since mid-1995.

Background

The Digital Equipment Corporation Network Integradon
Server (DECNIS) bridge/router 1s a midrange to
high-end product designed and built by a DIGITAL
Nerworks Product Business Group in Reading, UK
The DECNIS performs high-speed routing of 1P,
DECnet, and OSI (open system interconnection) pro-
tocols and can have the following nenwork interfaces:
Ethernet, FDDI (fiber distributed data interface),
AIM (asvnchronous transter modc), HSSI (High-
Speed Serial Interface), T1/E1 (digital transmission
schemes), and lower-speed WAN (wide area network)
interfaces. The DECNIS bridge/router is designed
around a Futurcbus backplanc, with a number of
semi-autonomous line cards, a hardware based address
lookup engine, and a central control processor respon-
sible for the control protocols and route calculation.
Data packets arc normally handled completely by the
linc cards and go to the central processor only in
exception cascs.

The DECNIS routers run a number ot high-protfile,
high-availability, wide-area data networks for tele-
phonc service providers, stock exchanges, and chemi-
cal companics, as well as forming the backbonce of
DIGITAL’s internal network.

Tvpicallv, the DECNIS routers are deploved in
redundant groups with diverse interconnections, to
provide very high availability. A common requirement
1s never to take the network down (i.e., durnng mainte-
nance periods, conncctivity is preserved but redun-
dancyvisreduced).



Overview

[P 1s the most widcly used protocol tor communication
benween hosts. Routers (or gateways) arc used to link
hosts that are not dircctly connected. When 1P was
originallv designed, duplication of WAN links was com-
mon but duplication of gatewavs for hosts was rare, and
no mechanisms for avoiding failed routers or broken
links between hosts and routers were developed.

In 1994 wc began a project to restrict loss-of-
service times to below five seconds in responsc to any
single failure; for example, failure of a router or its
electrical supply, tailure ot a link between routers, or
failurc of the conncection berween the router and the
LAN on which the host resides. In contrast, existing
routing protocols have recovery times in the 30- to
45-sccond range, and bridging protocols arc no bet-
ter. Providing tast failover in 1P nerworks required
enhancements to many areas of the router’s design to
cover all the possible failure casces. Tt also required the
invention of new protocols to support the host-router
interaction under 1P, This was achieved without
requiring anv changes to the host 1P code.

In this paper, we start by discussing our targets and
the behavior of existing routing or bridging protocols
and follow this with a detailed analysis of the different
failure cases. We then show how we have modified the
behavior of the routing control protocols to achieve
the desired failover times on links between routers or
in response to the failure of intermediate routers.
Finallv, we describe the new IP Standby Protocol and
the mechanisms we developed to achieve fast recovery
from failures on the LANs local to the end hosts. This
part of the problem is the most challenging because
the hosts are of many types and have I implementa-
tions that cannot realistically be changed. Thus all
changes have to be made in the routers.

Our sccondary aims were to allow the usc of router
clusters in any existing network configuration, not to
constrain failover to simple pairs of routers, to be able
to sharc tratfic between available routers, and to con-
tinuc to use the Internet Control Message Protocol

(JCMP) redirect mechanism ftor optimum choice of

router by hosts on a per destination basis. A common
problem of hosts is that they do not time out redirects.
This problem is avoided by the adoption mechanism
within the router cluster. Having met these aims, as
well as fast failover, we can justifiably call the result
routcr clusters.

The Customer Challenge

A particular customer; a telccommunications service
provider, has an Intelligent Services Network applica-
tion by which voice calls can be transterred to another
operator at a difterent location. The data netowork

manages the transferral and passes information about
the call. The application uses User Datagram Protocol
(UDP) packers in 1P with retransmission from the
application itself.

Becausc this application requires a high level ot data
network availability, nenwork designers phnned a
duplicatc nerwork with manv paired links and some
mesh connections. Particular problems arise when the
human initiator becomes impatient it there are delavs;
however, the more critical requirement was onc over
which the nerwork designers had no control. The
source of the calls is another svstem that makes a single
high-level retransmission after five scconds. It that
retransmission does not reccive a response, the whole
svstem at the site is assumed to have failed. This leads
to new calls being routed to otherservice sites or sup-
pliers, and manual intervention is required.

To resolve this issuc, the customer requested a
networking svstem that would recover from a single
farlure in anv link, interface, or router within a tive-
second period. The standard test (which both the cus-
tomer and wc use) Js to start a once-per-second ping,
and to expect to drop no more than four consccutive
ping packets (or their responses) upon anv event. The
five-sccond maximum break also has to apply to anv
disruption when the failed componentrecovers.

To mect the customer challenge, the router group
in Reading developed the router cluster implementa-
tion on the DECNIS. In the next two scctions, we dis-
cuss the bridging and routing protocols in usc at the
stact of our project and relate our analysis of the cus-
tomer’s nctwork problems.

Bridging and Routing Default Recovery Times

In alarge network, arouting control protocol is essen-

tial in order to dvnamically determine the topology of

the network and to detect failing links. Bridging con-
trol protocols mayv be used similarly in smaller net-
works or may be uscd in combination with routing.
Bridging and routing control protocols often have
failure recovery times in the order ot minute or more.
A tvpical recovery consists of a detect time during
which adjacent routers lcarn about the failure; a distrib-
ution time during which the knowledge is shared, pos-
siblv throughout the whole nenwork; and a route
recalculation time during which a new set of routcs is
calculated and passed to the forwarding enginc.
Detection timesarc in the order of tens of scconds;
for example, 30 seconds is a common default. The rwo
most popular link-state routing control protocols
in large 1P neeworks are Open Shortest Path First
(OSPF)* and Integrated Intermediate Svstem-to-
Intermediate Svstem (Integrated 1S-1S).* These proto-
cols have distribution “hold downs” (to limit the
impact ot route flaps) to prevent the generation of a
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new control message within some interval (typically 5
or 30 seconds) of a previous one. The distribution of
the new information is rapid (tvpicallv less than one
second), depending primarily on link speeds and
network diameter; however, the distribution mav be
adversely aftected by transmission errors which require
retransmission. The default retransmission times atter
packert loss vary between 2 and 10 scconds. The route
recalculation typically takes less than one second.
These values result in total recovery times after failures
(for routing protocols with default scttings) in the
45- to 90-sccond range.

Distance vector routing protocols, such as the
Routing Information Protocol (RIP),* tvpically take
cven longer to recover, partly becausce the route coni-
putation proccss is inherentlv distributed and requirces
multiple protocol exchanges to reach convergence,
and partly because their timer scttings tend to be fixed
at rclatively long settings. Conscquently, their use is
not further considered in this paper.

Similarly, bridging protocols, as standard, use a 15-
sccond timer; once of the worst-case recovery situations
requires three timeouts, making 45 scconds in all.
Another bridging recovery case requires an unsolicited
dara packet from a host and this results in an indeter-
minate time, although a timcout will cause flooding
after a period.

In IP protocols, there is no simple wav for a host to
detect the failure of its gateway; nor is it simple for a
router to derect the failure to communicate with a
host. In the former case, scveral minutes may pass
betore an Address Resolution Protocol (ARD) entry
times out and an alternative gatewayv is chosen; tor
some implementations, recovery may be impossible
without manual intervention. Failure to communicate
with a host mav be the result of failure of the host
itsclf, which is outside the scope of this project.
Alternatively, it may be duc to failure of the LAN, or
the router’s LAN interface. In this casc, there exists an
alternative route to the LAN through another router,
but the routing protocols will not make usc of it unless
the subnet(s) on the LAN arc declared unrcachable.
This requires cither manual intervention or timely
detection of the LAN failure by the router.

Analysis of the Failure Cases

The first task in meeting the customer’s challenge was
to analyze the various failure and recoverv modes and
determine which existing management parameters
could be tuned to improve recovery times. After that,
new protocols and mechanisms could be designed to
fill the remaining shortcomings.

A tvpical nenwork configuration is shown n Figure 1.
The target nenwork is similar but has more sites and
many more hosts on each LAN. Manv of the site
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Tvpical Contiguration for Router Cluster Use

routers are DECNIS 500 routers with once or two
WAN links and owo Ethernets. The second Etheruoet is
used as a management rail and as a redundant local
path between routers onc and two (RI-R2) and
between routers three and four (R3-R4).

In the oniginal plans for the customer network, the
router cloud consisted of groups of routers at two or
three central sites and pairs of links to the host sites. In
designing our solution, however, we tried to allow any
number of routers on each LAN, interconnected by a
general mesh nenwork. For test purposes, both we and
the customer used this set-up with dircct R1-R3 and
R2-R4 T1 links as the network cloud.

We have to consider what happens to packets travel-
ing in cach direction during a failure: there is little gain
in delivering the data and losing the acknowledg-
ments. Since the dircction of data flow does not give
risc to additional complications in the network cloud,
there are just two failure cases:

1. Failure of arouter in the network cloud

2. Failure of a link in the network cloud

We keep these cases distinet because the failure and
recovery mechanisms are slightly difterent.

We also need to consider a failure local to one of the
LANs on which the hosts are attached. A failure here
has two conscquences: (1) The packets originated by
the host must be sent to a different router, and (2) The
responsc packets from the other host through the net-
worle cloud must also be sent to a difterent router, so



thatit can send them to the host. We break down this
type of failure into the following three cases:

3. Packcets from the host to a failed or disconnected
router

4. Packets to the host when the router fails

5. Packets to the host when the router interface fails

Note that we are using the term reuter interface
Sailure to include cases in which the connector falls
out or some failure occurs in the LAN local to the
routcer (such that the router can detect it). In practice,
failurc of an interface is rare. (Removing the plug is
not particularly common in rcal networks but is easy
to test.) Figure 2 shows these failure cases; this con-
figuration was also used for some of the testing,.

Recovery of a link that previously failed causes no
problems because the routers will not attempt to use it
until afterit has been detected as being available. Prior
to that, they have alternate paths available. Recovery
of a failed router can causc problems because the
router may reccive traffic before it has acquired suffi-
cient nenwork topology to forward the traffic cor-
rectlv. Recovery of a router is discussed more fully in
the section on Interface Delay.

Can Existing Bridging or Routing Protocols Achieve
5-Second Failover in a Network Cloud?

In this section, we discuss the tailure of a router and the
failurc of a link in the network cloud (cases 1 and 2).

The customer requested enhanced routing, and the
existing nenwork was a large routed WAN; so enhanc-
ing bridging wasnever seriously considered. Our expe-
rience has shown that the 15-second bridge timers can
be reduced only in small; tightly controlled nctworks
and not in large WANs. Consequently, bridging is
unsuitable for fast failover in large networks.

For link-state routing control protocols such as
OSPF and Integrated IS-IS, once a failure has been
detected recovery takes place in two overlapping
phases: a flood phase in which information about the
failure is distributed to all routers, and a route calcula-
tion phasc in which each router works out the new
routes. The protocols have been designed so that only
local failures have to be detected and manageable para-
meters control the speed of detection.

Detection of failure is achieved by exchanging Hello
messages on a regular basis with neighboring routers.
Since the connectons are usually AN or Point-to-
Point Protocol (PPP) (i.e., with no link-laver acknow]-
edgments), a number of messages must be missed
before the adjacency to the neighbor is lost. The mes-
sages uscd to maintain the adjacency are independent
of other tratfic (and in a design like the DECNIS may
be the only traffic that the control processor sces).
Typical default values are messages at three-sccond
intervals and 10 lost for a failure, but it is possible to
reduce these.

HOST A
|
FAILURE T
CASES ™| | ROUTERT f------o--- ROUTER 2
FAILURE
N //-""~ CASE 1
ROUTER 5 RO>€ 6
FAILURE
FAILURE Z 1N SARES
CASE4 ™~ _ % —
R% ) RN 1 routeras
Ak |
N
FAILURE CASE 3 HOST B

FAILURE CASES
1. Failure of a router in the network cloud
2. Failure of a link in the network cloud

3. Packets from the host to a failed or disconnected router

4. Packets to the host when the router fails

5. Packets to the host when the router interface fails

Figure 2
Diagram of Failure Cases Targeted tor Recovery
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Decreasing the Routing Timers

The default timer values are chosen to reduce over-
heads, to cover short outages, and to cnsure that it is
not possible for long packets to causc the adjacency to
expire accidentally by blocking Hello transmission.
(Note transmission of a 4,500-bvtc packet on a 64
kilobit-per-sccond link takes half'a second, and qucu-
ing would normally require morc than a packet time.)
However, with high-quality T1 or higher link spceds
in the target network and priority queuing ot Hellos 1
the DECNIS, it is acceptable to send the Hellos at one-
second intervals and count three missed as a failurc.
(Although we have successfully tested counts of two,
we do not recommend that value for customers on
WAN links because a single link error combined with a
delay due to a long data packet would causc a spurious
failure to be detected.) The settings of onc sccond and
three repcats were within the cxisting permitted
ranges for the routing protocols.

When these shorter timers arc uscd, it is important
that any LANs in the network should not be over-
loaded to the cxtent that transmissions arc delaved.
The network managers should monitor WAN links
and disable any links that have high crror rates. Given
the duplication of routes, it is better to disable and ini-
tiate repairs to a bad link than to continuc a poor ser-
vice. Many customers, with less controlled nctworks
and lcss aggressive recovery targets, have adopted the
router cluster system but kept to morc conscrvative
timers (such as 1 second and 10 repcats).

Implementation and Testing Issues

In some cascs, a tailed link mav be detected at a lower
level (e.g., modem signals or FDDDI station managce-
ment) well before the routing protocol realizes that it
has stopped getting Hcllos and declarces the adjacency
lost. (This can lead to good results during testing, but
itis essential also to test link-failure modes thatare not
detected by lower levels.) In the worst casc, however,
both the detection of a failed router or the detection of
a failed link rely on the adjacency loss and so have the
same timings.

Loss of an adjacency causes a router to issuc a
revised (set of) link-state messagces reflecting its new
view of the local topology. Thesc link-state messages
arc flooded throughout the network and causc cvery
router in the nerwork to recalculate its routc tables.
However, because the two or more routers will nor-
mally time out the adjacency at difterent times, onc
message arrives first and causes a prematurc recaleula-
tion of the tables. Thercfore it may require a subsc-
quent recalculation of the route tables before a new
two-way path can be utilized. We had to tunc the
router implementation to make sure that subsequent
recalculations werc done in a speedv manner.

During initial testing of these parameters, we discov-
ered that failure of certain routers represented a more
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serious case. However discussion of this is deferred to
the later scction The Designated Router Problem.

Qur target five scconds is made up of three seconds
for the failure to be detected, leaving two seconds ftor
the informarion about the failure to be flooded to all
routers and for them to recalculate their routes.
Within the segment of the network where the recov-
crvis required, thishas beenachieved (with some tun-
ing of'the software ).

Recovery from Failures on the LANs Local to the
End Hosts

The previous scection shows that we can deal with router
tatlurc and link failure in the network cloud (cases 1 and
2). Here we consider cases 3, 4, and 5, those that deal
with failures on the LANs local to the end hosts.

From the point of view of other routers, a failed
routcr on a LAN (case 4) is identical to a failed router in
the network cloud (case 1): a router has died, and the
other routers nced to routc around it. Failure case 4
therefore is remedied by the timer adjustments
described in the previous section. Note that these timer
adjustments arc an integral part of the LAN solution,
because thevallow the rerurning tratfic to be re-routed.
These timer adjustments cannot work properly it the
LLAN parts of router clusters arc using an inappropriate
routing control protocol such as RIPY, which takes up
to 90 scconds to recover from failures.

Detecting LAN Failure at the Router

A solution to case 5—packets to the host when the
router interface fails—tor IP requires that the router
can detect a failurc of its interface (for example, that
the plug has been removed). It the LAN is an FDDI,
this is trivial and virtually instantaneous because con-
tinvous signals on the ring indicate that it is working
and the intertace directly signals failure. For Ethernet,
we faced a number of problems, partly due to our imple-
mentation and partly due to the nature of Ethernet itself.
We formed a small team to work on this problem alone.

Because of the vauiety ot Ethernet interfaces that might
be arrached, there is no direct indication ot tailure: only an
indirect one by failure to successfully transmit a packet
within a one-second interval. For maximum speed, the
DECNIS implementation queues a ring ot eight butters
on the transmit interface and docs not check tor errors
until aringslot is about to be reuscd. This means that an
erroris onlv detected some time after it has occurred, con-
suming much of our five-sccond budget.

The control sottware in the DECNIS management
processor has no direct knowledge of data traffic
becausc it passes directly between the line cards.
Theretore it sends test packets at regular intervals to
find outit the interface has failed. By sending large test
packets occupving many bufters, it ensures that the
ring circulates and errors are detected. Ininally, we



reduced the timers and increased the frequency of test
packets to be able to detect interface failure within
three seconds. (The test packets have the sender as
destination so that no one receives them and, as usual,
more than one failure to transmit is required betore
the interface is declared unusable. )

This initial solution caused several problems when it
was deploved to a wider customer group;we had more
complaints than previously about the bandwidth con-
sumed bv the rest messages and, more seriously, a
number of mnstances of previously working networks
being reported as unusable. These problem nenworks
were either exceptionally busy or had some otherwise
undetected hardware problem. Over time, the net-
works with hardware problems were fixed, and we
modified the tmers to avoid false triggering on very
busv networks. Clearlv, the three-second rarget
required more thought.

Several enhancements have since been made. First,
the timers are user configurable so that the network
managers can trade off between aggressive recovery
times, bandwidth used, and false detection. Second,
the test packet generator takes into account other
packets sent by the control processor such that thev
are onJv sent to the size and extent required for the
total traftic to cause the ring to circulate. This is a sig-
nificant improvement because the aggressive routing
timers discussed previously cause Hello packets to be
sent at one-sccond intervals, which is often sufficient
not to require extra test packets. Third, the line card
provides extra fcedback to the control program about
packets received and the transmission ot packets not
originated by the control processor. This feedback
gives an indication of successtul operation even it some
transmits are failing,

Re-routing Host Traffic When a Router or Router
Connection Fails
Case 3 was bv far the most difficult problem to solve.
IP does not provide a standard mechanism to re-route
host traftic when a router fails, and the only merhod
in common usc (snooping RIP messages in the
hosts) is both “deprecared” by the RFCs and has fixed
45-seccond timers that exceed our recoverv target.
Customers have a wide range of 11 implementations
on their hosts, and reliance on nonstandard featurcs is
ditficult. The particular target application for this work
ran on personal computer systems with a third-party
IP stack, and we obtained a copy for testing. Such 1P
stacks sometimes do not have sophisticated recovery
schemes and discussion with various experts led us to
believe that we should not rely on anv co-operation
trom the hosts.

Among other objectives, we wanted to be inde-
pendent of the routing control protocol in use (it anv),
to permit both a mesh stvle of nerworking and more

than two routers m a cluster, and to continue to routc
traffic by reasonably optimal routes. In addition, we
wished to not contuse network management protocols
about the truce identity of the routers involved and,
if possible, to share traffic over the WAN links where
appropriate.

Electing a Primary Router

In our solution, the first requirement is tor other
routers on the LAN to detect that a router has failed or
become disconnected, and to have a primary router
clected to organize recovery. This is achieved by all
routers broadcasting packers (called 1P Srandbv
Hellos) to other routers on the 1.AN everv second.
The highest priority (with the highest P address
breaking ties) router becomes the primary router, and
failure to receive IP Standby Hellos from another
router for 12 seconds (three is the default) causes it to
be regarded as disconnected. This condition mav
cause the sclection of a new primary router, which

would theninitiate recovery to take traftic on behalf of

the disconnected router.

The IP Standby Hellos are sent as “all routers multi-
casts” and therefore do not add additional load to
hosts. Thev arc UDP datagrams® to a port we regis-
tered for this purpose (digital-vre; see the Internct
Assigned Numbers Authority | IANA] on-line list).
The routers are manually configured with a list of all
routers in the cluster. To make configuration casicr
and less error prone, the list on cach router includes
itself, and hence an identical set of configuration para-
meters can be used for all the routers in a cluster.
Automatic contiguration was rejected because of the
problem of knowing which other routers should exist.

Function of the Primary Router in ARP Mode

Our first attempt (called ARP Mode) uses a fake 1P
address (one per subnet for a LAN with multiple sub-
nets), which the current primary router adopts and the
hosts have configured as their default router. The pri-
mary router returns its own media access control
(MAC) address when the host broadcasts an ARP
request (using rhe standard ARP protocol®) for the
fake TP address and thus takes the traffic from the host.
After a failure, a newly elected primary router broad-
casts an ARD request containing the information that
the take I[P address is now associated with the new pri-
marv router’s MAC address. This causes the host to
update its tables and to forward all traftic to the new
primary routcr.

The sending of TCMP redirects” by the routers has to
be disabled in ARP mode. Redirects sent by a router
would cause hosts to send trattic to an I address other
than the fake I address controlled by the cluster, and
recovery from failure of that router would then be
impossible. Disabling redirects causes an additional
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problem. If the primary router’s WAN link fails, all the
packets have to be inefticienty forwarded back over the
LAN to other routers. To avoid this problem, we intro-
duced the concept of monitored circuits, whereby the
priority of a router to become the primary depends on
the state of the WAN link. Thus, the primary router
changes when the WAN link fails (or all the links fail if
there are several), and the hosts send the packetsto the
new primary (whose WAN [k is stll intact).

ARP mode has a number of disadvantages. It does
not necessarily use an optimum route when the WAN
links form a mesh rather than the simple pair case,
because redirects have to be disabled. The monitored
circuit concept works only on the first hop from the
router; morce distant failures cannor change the IP
Standby prionty and mav result in inefhicient routing.
Most seriously, the rules for hosts acting on information
in ARD requests have only a “suggested implementa-
tion” status in the RFCs, and we found several hosts that
did not change when requested or were very slow in
doing so. (Note that we did consider broadcasting an
ARP response, but there is no allowance in the specifica-
tions for this message to be a broadcast packet, whereas
an ARP requestis normally a broadcast packet.)

MAC Mode IP Standby (to Re-route Host Traffic)

To solve these problems, we looked for a mechanism
that did not relv on any host participation. The result
was what we termed MAC mode. Here, cach router
uses its own IP address (or addresses for multiple sub-
nets) but answers ARD requests with onc ofa group ot
special MAC addresses, configured tor each router as
part ofthe router cluster configuration. When a router
fails or becomes disconnected, the primary (or the
newly elected primary) router adopts the failed router.
By adopt, we mean it responds to ARP requests for the
failed router’s IP address with the failed router’s spe-
cial MAC address, and it receives and forwards all
packets sent to the failed router’s special MAC address
(in addition to traffic sent to the primary router’s own
special MAC address and those of any other failed
routers it has adopted).

The immediate advantages of MAC mode are that
ICMP redirects can continue to be used, and, provid-
ing the redirects are to routers n the cluster, the fast
failover will continue to protect against further fail-
ures. The mechanism is completely transparent to the
host. In a cluster with more than two routers, the pri-
mary router will use redirects to cause traffic (resulting
from failure) to use other routers in the cluster it thev
have better routes to specific destinations. Thus mulu-
ple routers in a cluster and mesh nctworks are sup-
ported. This also solves the problem of hosts not
timing out redirects (an omission common to many I
implementations derived from BSD ), because the redi-
rected address has been adopted.
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In MAC mode, the hosts are contigured with the IP
address of any router in the cluster as the default gate-
way. (The concept that it does not matter which router
is chosen 1s one of the hardest for users to accept.)
Some load sharing can be achieved by setting difterent
addresses in ditferent hosts.

Since the DECNIS is a bridge router, it has the capa-
bility to receive all packets on Ethernet and many MAC
addresses on FDDI; thus all packets on all the special
MAC addresses are scen by all routers n the cluster,
and its own and those of any adopted routers are for-
warded. The special MAC addresses used are those
associated with the unused DECnet area 0. Thev are
ideal because they are part of the locally administered
group and have implementation efficiencies in the
DECNIS because the DECnet hi-ord (AA-00-04-00) 1s
alrcady decoded, and thev are 16 addresses diftering in
onc nibble only (i.c., AA-00-04-00-0x-00, where x is
the hexadecimal index of the router in the cluster).
Note that ARP requests sent by the router must also
contain the special MAC address in the source hard-
ware address field of the ARDP packet, otherwise the
hosts” ARP tables mav be updated to contain the wrong
MAC address.

MAC mode has minor disadvantages. Initially, it is
casy to spread the load over a number of routers; how-
ever, this can be lost alter redirects. In addition, a small
chance of packet duplication exists during recovery
because there mav be a short period when both
routers are receiving on the same special MAC address
(which does not happen i ARP modce because the
host changes the MAC address it is using). This is
preferable to a period when no router is receiving on
rhat address.

Interface Delay

Recently, we added an interface delav option to ame-
liorate a situation more likelv to occur in large net-
works. In this situation, a router, rebooting after a
power loss, a reboot, or a crash, reacquires its special
MAC address before it has received all of the routing
updates from neighboring routers and thus drops
packets sent to it (and worse, returns “unrcachable” to
the host). Typically, the main LAN initialization would
be defaved for 30 seconds while routing table updates
were received over the WAN interfaces and anv other
LAN interfaces. The backup continues to operate dur-
ing this 30 seconds. (Note that with Integrated IS-IS,
we could have delaved IP on the whole router, but we
did not do this because 1t would not have worked for
QSPFE, which requires 1P to do the updates.) We use a
fixed configurable time rather than attempting to
detect the end of updating, because determining com-
pletion is difficult if the network is in a state of flux or
the router’s WAN links are down.



Redirects and Hosts That Ignore Them

When a router issues an [CMP redirect, the RFCs state
that it must include its own [P address in the redirect
packet. A host is required to ignore a redirect received
from a router whose IP address is not the host’s next
hop address for the particular destination address.
Therefore, it is necessary to ensure that the address of
the failed router is correctly included when issuing a
redirect on its behalf. In the DECNIS implementation,
because the destination MAC address of a received
packet is not available to the control processor, the pri-
mary router cannot tell whether a redirect has to be
issued on behalf ofitself or one of the adopted routers.
The primary router therefore issues multiple redi-
rects—one for each adopted router (in addition to its
own). Since redirects are rare, this is not a problem,
but they could be avoided by passing the MAC desti-
nation address ofthe original packet (or just five bits to
flag a special MAC address and say which it is) to the
control processor.

It is contrary to the basic IP rules for hosts to ignore
redirects® Despite the rules, some hosts do ignore
redirects and continue sending traffic which has to be
sent back over the same LAN. These cause problems in
all networks because of the load, and, in the DECNIS
implementation, because everv time the line card rec-
ognizes a redirect opportunity, it signals the control
processor to consider sending a redirect. This may
happen at data packet rates and is a severe load on the
control processor, which slows down processing of
routing updates and might then cause our five-second
recovery target to be exceeded.

To reduce the problems caused by hosts ignoring
redirects, we improved the implementation to rate-
limit the generation of redirect opportunity messages
by the hne cards. We also recommend in the docu-
mentation that, where it is known that hosts ignore
redirects (or their generation is not desired), the
routers be connected by a lower-cost LAN than the
main service LAN (such as the management LANs
shown in Figure 1). Normally, this would mean link-
ing (just) the routers by a second Ethernet and setting
its routing metric so that it is preferred to the main
LAN for packets thatwould otherwise traverse back on
the main LAN to the other router. This has two advan-
tages. Such packets do not consume double band-
width and cause congestion on the main LAN, and
they pass only through the fast-path parts of the
router, which are well able to handle full Ethernet
bandwidth.

In MAC mode, it is also possible to define a router
that does not actually exist (but has an [P address and
a special MAC address) and is adopted by another
router, depending on the state of monitored WAN cir-
cuits. Setting this as the default gateway is another way
of coping with hosts that ignore redirects.

Special Considerations for Bridges

We do not recommend putting a bridge or layer 2
switch between members of a router cluster, because
during failover, action would be required from the
bridge in order for the primarv router to receive pack-
ets that previouslv were not present on its side of the
bridge. We cannot rely on this being the case, so we
must have a way ot allowing bridges to learn where the
special MAC addresses currently are. More impor-
tantly, if bridges do not know where the special MAC
addresses are, they often use much less efficient (flood-
ing) mechanisms.

For greater traceability (and simpler implementa-
tion), we use the router’s real MAC address as the
source address in data packets that it sources or for-
wards. We use the special MAC address as the source
address in the I Standby Hellos. Since the Hello is
sent out as an 1P multicast, it is secn by all bridges or
switches in the local bridged network and causes them
to learn the location of the address (whereas data pack-
ets might not be seen by non-local bridges). Since we
are sending the Hellos every one second anyway, there
is no extra overhead.

When a primary router has adopted routers, it cycles
the source MAC address used for sending its Hello
between its own special MAC address and those of the
adopted routers. We also send out an additional Hello
immediately when we adopt a router to speed up
recognition of the change.

Since the same set of special MAC addresses is used
by all router clusters, we were concerned that a bridge
that was set up to bridge a non-IP protocol (e.g., local
area transport [ LAT]) but not to bridge IP, might be
confused to see the same special MAC address on
more than one port. (This has been observed to hap-
pen accidentally, and the resultant meltdown has led
us to avoid any risk, however slight, of this happen-
ing.) Hence we make 16 special MAC addresses avail-
able and recommend to users that they allocate them
uniquely within a bridged domain, or at least use dis-
joint sets on either side of a bridge.

The Designated Router Problem

While testing router failures, we discovered additional
delays during recovery due to the way in which link-
state protocols operated on LANs. In these cases, the
failure of routers not handling the data packets can
also result in interruption of service due to the control
mechanisms used.

For efficiency reasons in link-state routing proto-
cols, when several routers are connected to a LAN,
they elect a designated router and the routing proto-
cols treat the LAN as having a single point-to-point
connection between each real router and a pseudo
router maintained by the designated router (rather
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than connections between all the routers). The desig-
nated router issucs link-stare packets on behalt of the
pscudo router, showing it as having connections to
cach real router on the local LAN, and each router
issucs a link-state packet showing connection to the
pseudo router. This mechanism operates in a broadly
similar way in borh Integrated IS-1S and OSPE; the
primary difterence being rhar the OSPF clection
exhibits hysteresis, thus minimizing unnecessary des-
1ignated router changes.

Forrouting table calculations, a transit path over the
LAN is taken from a router to the pscudo router and
then to another router on the LAN. Hence any change
n pseudo router status distupts calculation of the net-
work map.

When a designated router fails, a slew of updates
occeurs; cach router on the LAN loses the adjacency ro
the old designated router and issucs a new link-state
packet. Next, the new designated router is clected
(or in the case of OSPFE, the backup designated router
takes over), and cach router issues a link-state packet
showing a link to it. In parallel, the new designated
router issues a set of link-state packets showing irs
connections. This 1s a new rourer on the network as
far as the other routers arce concerned; the old desig-
nated router stavs, disconnected, in the rables for as
long as 20 minures to an hour. This happensarlevel 1
and at level 2 m Integrated 1S-IS, resulting in twice
as manv updates. The interactions ave complex; in
generaly they result in the sending of muluple, new
link-stare messages.

Apart from the pure distribunion and processing
problem of these updates and new link-state packets,
there are dehiberare delays added. A minor onc s thae
updates in Integrated 1S-1S arc rate-himited on LANSs
(to minimize the possibilin of message loss). A major
one is that a particular fink-state packet cannor be
updated within a holding time from a previous update
(to himit the number of messages actually generared).
The default holding time is 30 scconds in Integrated
[S-1S; it can be reduced to 1 second in the evenr we
found that the best solution was to allow as many as 10
updates in a 10-sccond period. The reason for this is
that the first update usually contains information
about the disconnection and 1t is highly desirable to
get the update with the connection out as fast as possi-
ble. In addition, m the wider network, an update can
overtake and replace a previous one.

With OSPE, the protocol defines a munimum hold-
ing time oftive scconds, which limits the recovery time
when the designated router fails. The rarger cus-
romer’s network was using Integrated 1S-1S, and so we
were able to achieve the five-sccond recovery even
when the designated router failed. (Note that with
two routers, one must be the designated router so it is

Vol © Ny 20 1947

EYieriral T lsivresal Tt izl

not a rare casc.) We have not, so far, felt that it is
worthwhile to break the rules by allowing a shorter
holding time for OSPF.

Conclusions

We succeessfully designed and implemented router
clusters tor the DECNIS rourer with shared workload
and interruptions after talures ot less than five seconds
in both LAN and WAN cnvironments. This capability
has been deploved in the product since the middle of
1995. An Internet Engineering Task Force (IETF)
group is currcntly attempring to produce a standard
protocol to meet this need.”
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Shared Desktop: A
Collaborative Tool for
Sharing 3-D Applications
among Different
Window Systems

The DIGITAL Workstations Group has designed a
software application that supports the sharing
of three-dimensional graphics and audio across
the network. The Shared Desktop application
enables the collaborative use of any application
over local and long-distance networks, as well
as interoperation among Windows- and UNIX-
based computers. Its simple user interface
employs screen capture and data compression
techniques and a high-level protocol to transmit
packets using TCP/IP over the Internet.
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An advanced product development cftorr undertaken
by graphics engineers in the DIGITAL Workstations
Group led o the creation ofa new software application
called Shared Deskrop. One project goal was to cnable
collaboration among users of three-dimensional (3-D)
graphics workstations that run cither the UNIX or the
Windows N'1" operating, svstem. Another goal was to
allow these users to access the high-performance 3-D
capabilitics of their oftice workstations from  their
laptop computers or home-based personal computers
(PCs) that run the Windows 95 svstem and do not
have 3-D graphics hardware. This goal necessitated
a cross—operating-system application that could effi-
cientlv and cffectively handle 3-D graphics in real time
and share these graphics with machines such as laprop
computers and PCs.

In this paper, we begin with a discussion of the software
currently available tor compurer collaboration. We then
discuss the development of the Shared Deskrop applica-
rion, focusing on the user inertace, prorocol splitang,
screen capture and data handling, and dissimilar frame
bufters. We conclude with secuons on additional uses and
future directions ofthe Shared Desktop product.

Current Collaboration Software

Compurer collaboration may be defined as the interac-
tion berween computers and their human users over a
local or long-distance nenwork. In general itinvolves a
transfer of textual, graphical, audible, and visual infor-
mation from one collaborator to another. The parti-
cipants share control information cither by means
of computer generated svnchronization cvents or by
human voice and visual movement.'

Specifically, computer collaboration involves com-
municating and sharing data among participants who
can be located anvwhere ina building, a city, a country,
or the world. Fach participant has cither a PC, a work-
station, or a laprop computer. Some machines contain
3-D graphics adapters with hardware acceleration.
(Computer-aided  design/computer-assisted  manu-
facturing | CAD/CAM] applications like Parametric
Technology Corporation’s [PTC] Pro/ENGINEER
usc  hardware accclerators  through  OpenGL* or



Direct3D? programming protocols.) Other computers
do not contain 3-D accelerator boards and provide 3-D
capabilitics through software-only routines on two-
dimensional (2-D)hardware. In a tvpical collaboration,
a person wanting to share a specific 3-1 graphical dis-
plav of a part or model telephones others to discuss the
design in progress. After the initial contact, the collab-
orators may continuc the telephone call or switch to
the audio function of the application. The graphics part
appcars on cach participant’s screen along with associ-
ated kevboard and mousce events. As the collaborators
discuss the work, they mav cach interact with the dis-
plav to highlight, rotate, and change the look or design
of the 3-1 part. In this way, even though the partici-
pants are separated by some distance, thev may interact
as it they were all sitting around a table working, con-
versing, and designing the 3-D part.

Current software that facilitates computer-based
collaboration runs through a range of capabilities from
the carlicst forms of clectronic mail to the most recent
offerings of complete collaborative sharing ot the
computer. Examples include WinFrame technology
from Citrix Svstems, Inc., NetMeeting from Microsott
Corporation, Netscape Communicator from Netscape
Communications Corporation, and other products
from Sun Microsvstems, Hewlett-Packard, and Silicon
Graphics Inc. These packages offer levels ot computer
sharing and collaboration trom videoconterencing and
file sharing ro tull application sharing. Each implemen-
tation runs on specific operating svstems. Although
thev use various underlving communication protocols,
most recent designs work over local arca and wide arca
nenworks (LANs/WANs), including the Internet. For
example, the NetMeceting product provides confer-
encing tools like chat, whitcboard, file transter, audio
and videoconferencing, and non-real-time, sclected-
window 2-D application sharing aver T120 protocols
lavered on the Transmission Control Protocol/
Internet Protocol (TCP/IP).* NetMecting runs only
on Microsoft plattorms (Windows 95 and Windows
NT operaring svstems). The current products are deti-
cient, however, in that thev do not support multiple
operaring svstems, do not operate in real time, and do
not share 3-D graphics.

User Interface

In this scetion, we describe our choice of a simple user
intertace for the sharing arca of a desktop and our
design of the Shared Desktop Manager for client-
server computing.

Manv collaboration tools tor sharing computer
information (graphical desktop, kevboard, mouse, and
audio ota given computer) were complete systems and
required too much cffort on the part ot the users just
to learn how to share information. A tocus on learning
collaboration tools often requires users to become

experts in the collaboration sottware rather than in the
applications that they mav share. Since the various 3-D
graphics packages that needed to be shared were com-
plicated in themselves, we decided to implement a
simple user interface in the Shared Desktop applica-
tion that nearl all audiences could easily learn and use.

In the Shared Desktop design, we designated part
of the desktop screen as a sharing arca. Graphics
objects such as icons and applications located within
the sharing arca can be accessed by all contference
participants. To share a new application, a participant
moves the application into the sharing arca. To
removc an application, a participant moyves it outside
the sharing arca. It the sharing arca encompasscs the
entire desktop of the initiating participant, all applica-
tions are shared. We used standard pull-down menus
and widgets provided by either the UNIX X Mouf
toolkit or the Microsoft Windows librarics. We named
the sharing arca the “viewport”; it 1s vicwed on the
desktop as a user-defined arca of rectangular size and
location. Anv graphical object placed mro the view-
port is marked as shareable with client users in a col-
laboration. We designed the viewport so that it is
always on the bottom ot a given stack ot windows on a
desktop. Thus, when Shared Desktop is minimized, so
is its viewport. The objects that had been within the
vievwportare returned to the ininator’s desktop and arce
no longer shared. With a quick mimmization, the
server collaborator can pause anv sharing that was in
progress without disconnecting from the client users.

Figurc 1 illustrates a UNIX server with a Shared
Deskrop viewport connected to several client svstems.
The scrver’s viewport contains no shared objects
within its confines, and cach client screen shows a
viewport received from the server.

The viewport can be sct to represent the entire visi-
ble desktop, or it can be sct to cqual onlv the size ofa
given application on the screen. Accordingly, a uscr
who is acting as the server can determine how much of
a given deskrop to sharc among the client collabora-
tors. The concept of a viewport is valuable because the
principal collaborator (at the server) can quickly glance
at the screen and determine what to capture and send
to other participants. (The objects and applications
sent from the server arc designated by solid lines in
Figure 1.) The Shared Deskrop application requires no
furcher action to set up an application tor sharing.

Each client sends kevboard and mousc events to the
server to control anv application present in the view-
port (remotc control is shown as dashed lines
Figure 1). Server and clients svnchronize cursor move-
ments so thar anv confcrence member can watch
as others make changes to a shared application. This
allows the cursor to become a pointer during a session.
Shared Deskrop implements an “anarchyv™ torm of’
remote control, with all mice and kevboards active
simultancously.
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CLIENT 3
WINDOWS NT MACHINE

Figure 1
Server Desktop with Viewport and Clients

When a user initiates a collaboration, the audio is oft

by default but remains integral to a session as a conve-
nience (as opposed to using the telephone). Through
a pull-down menu operation, the server enables audio
for all participants in one operation. The usual audio
management tools used to set microphone recording
levels and speaker/headset play-back levels are avail-
able. As Figure 1 indicates, the UNIX machinc collects
audio and distributes it to the three client collabora-
tors. Likewise, the three clients collect audio and send
it back to the server for mixing. In this way, all partici-
pants can hear one another and interact with whatever
objects appear in the viewport on the server’s screen.
Figure 2 shows the Shared Desktop Manager from the
initiator’s viewport running on the UNIX server. A par-
ticipantmay usc a Session pull-down menu to control the
viewport and to connect and disconnect other confer-
ence members. The Opuons menu allows for audio,
remote cursor, and call-back control. The application’s
Help pull-down menu provides the usual help informa-
tion similar to a Windows help tacility or a Web browser’s
help. The window lists the status of attached clients.

Session Options Help

client] ('JJ l] 5103 - Connected
client? ( 0.10.11) - Connected
client3 (99.0.5.11) - Connected
Figure 2 B

Shared Desktop Manager
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Upon connection, participants can hear and interact
with the server. The resultant audio dialogue combined
with the graphics, keyboard, and mouse interactions
facilirate a collaboration environment in which partici-
pants share an application. Since each user can operate
a separate mouse and kevboard, the auchio channel acts
as a synchronization mechanism to indicate which col-
laborator controls the shared applications at any given
moment. The participants communicate their actions
verbally, interacting in much the same way as people
whoare sitting around a tableand working.

Design Features

For our implementation, we concentrated on three
principal areas: protocol splitting, screen capture and
data handling, and dissimilar frame bufters. In this sec-
tion, we discuss our investigation into using a protocol
splitter and our decision to rcly on screen capture and
data handling. We also discuss dissimilar frame bufters.

Protocol Splitting

We looked for a way to distribute 3-D graphics among
workstations and PCs that would be independent of
the application, graphics protocol, architecture, operat-
ing system, and windowing system. On UNIX, we
found application sharing provided by distributed win-
dows protocols. For example, the X Protocol® allows a
user to send an application to a nonlocal display and to
send X applications protocol messages to several
screens simultaneously. A protocol splitter, however,
has disadvantages due to its requirements for band-
width, programming, and latency.



Protocol splitters require distribution of graphics
commands and display lists by means of a network.
Three-dimensional models often contain megabytes of
graphical information that describe specific screen
operations. When displaying a model locally, these
graphics operatons move quickly and easily over sys-
tem buses that are capable of handling hundreds of
megabytes per second. However, when these same
graphics objects are copied over computer networks,
the amount of information can overload even the
highest-speed networks. For example, using a 100-
megabvte (MB) Pro/ENGINEER truck assembly, a
current generation 3-D workstation can load, display,
and rotate the truck once in approximately 2 minutes.
The same operation between two identical 3-D work-
stations takes 20 minutes when performed by a distrib-
uted protocol, and the rotation of the truck does not
appear fluid to the user. If the same data or application
is duplicated on every machine, only updates with syn-
chronizing eventsare distributed, but this requires that
all machines have the same graphics hardware.

The programming software needed for interopera-
tion among dissimilar operating and windowing
systems using protocol splitting is quite involved.
The ability to support X11 desktops, Windows 95
deskrops, and Windows NT desktops while using mui-
tiple 3-D protocols like OpenGL and Direct3D would
require that these protocols exist on all platforms.

Latency requirements tor 3-D are very stringent.
Thus, any network jitter makes even the best network
link create breakup (visual distortions) when rotating
3-D objects. Network jitter also causes delays in send-
ing window protocol messages; as a delay increases,
the window events may no longer be useful. For exam-
ple, when rotating a 3-D object, the delayed events
must propagate as the network permits although this
may once again congest the nerwork since the events
may no longer be needed. The object has now rotated
to a new view. The ability to drop some protocol mes-
sages in a time-critical wav is a requirement for collab-
orating with 3-D objects, and the protocol splitter
approach to sharing has no solution tor this problem.

Screen Capture and Data Handling

To overcome these issues, we investigated capturing the
screen display, the final bitmap result of the interaction
of graphics hardware and software that the viewer sees.
Capturing the screen is in itself nothing news it bas been
used for some time to include screen visuals in docu-
ment preparation. Initally, we were skeptical that cap-
turing the screen display could be a useful mechanism
since the amount of data on a screen can be prodigious.
Screen graphics depth and resolution can make the
amount of data in any given graphics object very large.
For example, for a 24-plane frame bufter with a 1,280
by 1,024 resolution, the total amount of datato caprure
would be (24 x 1,280 x 1,024)/8 orabout4 MB. Using

the computational power of the Alpha microprocessor
for reducing the data, we continued our investigation.
We found that this approach requires the windowing
system to perform screen capture by means of a non-
CPU-intensive routine (direct memory access [ DMVA |
as opposed to programmed 1/0). Based on our tests,
we concluded that screen capture technology would be
easier to umplement than a protocol splitter, would
have better latency for 3-D operations than a protocol
splitter, and would be easily adaptable to the various
windowing systems and 3-D protocols we wished to
have interoperate.

Graphics Compression The screen capture approach
requires a number of steps to cfficiently prepare the
data tor transmission. First, the contents of a viewport
are captured, and the sample is saved for comparison
with successive samples. Second, the captured viewport
samples are differenced to find screen pixels that have
not been changed and delta values tor those that have
been changed. Third, the resultant array of values is
compressed by a fast, run-length encoding (RLE) of
the array of difterence samples. A more CPU-intensive
compression may now be applied. The fourth step is to
apply LZ77 compression that reduces the remaining
RLE data toits smallest form. In step four, the original
data has been reduced while retaining its characteristics
so that it can be restored (uncompressed) without loss
on a receiving computer. This final lossless stage of
compression occurs only if it reduces the amount of
data and if the network was busv during a previous
transmission. Lossless compression is important for the
nondestructive transfer of data from the server’s screen
to the clients’ screens and has application in industry.
As an example, consider a doctor who is sharing an
x-ray with an out-of-town collcague. If the graphics
were compromised by a lossv compressor, the collabo-
rators could not be guaranteed that the transmitted
x-ray was identical to the one sent. With the Shared
Desktop application, the doctor who is sending the
x-ray 1s guaranteed that the original graphics are
restored on the colleague’s display. In some torms of
compression, data is thrown out by the algorithm and
never restored, so that the final screen data may not
accuratelv reflect the original graphics. Figure 3 shows
the steps in the caprure and compression sequence.

On the Alpha architecture, these compression steps
are performed as 64-bit operations, both in the data
manipulation and the compression algorithms. The
Alpha architecture lends itself to a fast and efficient
implementation of the algorithms, so that the capture
of the viewport and the multistage compression of the
data can be accomplished in real time. Approximately
half of the number of instructions is used on a proces-
sor thatis twice as fast as a 32-bit architecture. In addi-
tion to its 64-bit routine, the RLE is implemented as a
32-bit routine and as a comparison routine.

Digital Technical Journal Vol.9 No.3 1997
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Figure 3
Graphics and Audio Compression Data Flow Diagram

Audio Compression
sion described, the audio compression i Shared
Deskrop mvolves several steps. First, the audio samples
are captured through a microphone and sound card
combmartion. These samples are compared with the

Similar to the graphics compres-

background noise level (derermined prior to begimning,
a conference) to see 1f the samples are uscetul. Samples
below the background noise level are not transferred.
This implements a silence derection method whereby
onlv usctul samples will advance to the nexte level
of compression. Second, the next compression uscs
G.711 or other similar audio compression standards
and converts adaptive differential pulse code modula

ton (ADPCM) samples at 64 kilobits per second into
16 kilobits per sccond (4:1 lossv compression).* Third,
this data is then ready tor transter to a receiving, com

puter so that it mav be decompressed and ourput ro a
speaker or a headset. The audio stream resulting from
these steps generares at most 16 kilobits per sccond
when someone is speaking, and no outpur when it is
silent. Figure 3 also shows the audio compression steps.,

Data Transmission  After the graphics and audio data
are collecred and compressed, they are combined and
rransmitred across the nenvork by a patented, higher-
level protocol that ensures timelv dehvery ot cach
packer.” All packets are sent using TCP /1P over the
Internet. Although the higher-level protocol does not
guarantee truc real-time characteristics, the patented
protocol allows for coherent audio, synchronization

of graphics and cursor cvents, and near real-time
graphics anmimation.

As an example, the screen caprure shown in Figure 4
displavs a 100-MB Pro/ENGINEER assembly being
shared through the Shared Desktop application. The
Shared Desktop Manager svstem (svstem where the
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assemblv database resides) is an AlphaStation 500
workstation running the DIGITAL UNIX operating
svstem with a PowerStorm 4160 graphics controller.
Inthis example, an 800- by 600-pixel by 24-bir Shared
Deskiop viewport is bemg caprured, compressed, and
transnutted to the Shared Deskrop client system at
about five updates per sccond. The update rare is

determimed by the caprure viewport size, the extent of
detail changes between captures, the amount of pro

cessing power needed by the application to make
e madel, and the speed of the nenwork.
In this example, when rorating the truck assembly, a
compressed stream of 400 to 500 kilobvres per second

15 generated and represents the five updates per second

changes to t

mentioned. A simple assembly might be able to do a
rotation with Shared Deskrop capturing and transmit-
ting 15 updates per sccond, and a more complicated
model ke the truck assembly shown) would receive

fewer updates per second.

Dissimilar Frame Buffers

To complete the requirements of our implementation,
we needed to share graphics information across dis-
similar hardware, 1.e., machines with difterent graphic
trame bufter deprhs. The frame butter depeh reters to
the amount of storage the graphics adaprer gives to
aved pixel on the sereen. A 16-bit-deep dis-

cach disp
play assiens cach pixel a 16-bit value to represent the
pixcl. This representation is usually the color informa-
tion for the pixel, i.e., what color the user sces for a
given pixel® The frame butter deprhs are a necessary
reality: since different graphics devices have widelv
varving, sareen depths, rangmg from 4 planes (4 bits
per pixel) to 32 planes (32 bits per pixel). Tyvpically,
higher end graphics devices have higher-deprh graph-
ics outputs, especially for 3-1 graphics, and the lower-
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Screen Caprure of the Windows Shared Deskrop Client Sharing Pro /ENGINEER with a UNIX Shared Deskrop Server

depth displavs are usually found on less-capable, 2-1)
graphics plattorms. Most laptop computers have low
bit depth (8 to 16) displavs and no 3-1) capabilites.
Commodity PCs also typically have 8- or 16-plane
depths. Graphics devices that support 3-1) graphics
provide deeper display tvpes such as 24-bit or 32-bit.
Some devices support a mix of several or all the bit
depths listed in the matrix (below) either concurrently
or for the entire screen at one rime.

We defined a matrix of screen depths and proceeded
to fill in the various combinations so that the applica-
tion would work effectively across ditterent plartorms
and graphics hardware capabilities. The martrix enables
computers without 3-1) capability to display the out-
put from 3-D-capable graphics devices. The matrix of
screen-depth combinations follows.

Output
Bitmap Input Screen or Visual Type Depth
Depth q 8 12 15 16 24 32
4 X md md d d d d
8 e mx md d d d d
12 n n n n n n n
15 e me me X d d d
16 e me me e X d d
24 e me me e e X d
32 e me me e e e X

The matrix shows input screen or visual tvpe depth
across the top row and delincates output bitmap depth
on the left column. Bitmap depths of 4, 8, 15, 16, 24,
and 32 are used in Windows systems, and depths of 4,
8, 12,24, and 32 are usedin X11. The .v in the matrix
requires no conversion and is captured and displaved
without the need for additional conversion. The ¢
shows bitmap depths that can be expanded to the out-
put format by using a colormap or by shifting pixels
into the correct format. The ¢/ shows that information
must be dithered to match the output. Dirhering can
result in a minimal loss of information, but we have
developed a very good and cfficient method of doing
this conversion. The i (mix mode) marks those visual
types on X11 that can exist on the screen when the
root depth is 24 or 32; 1.c., an 8-bir window can be
present on a 24-bit displav. The mix mode requires a
different interpretation of the 24-bit pixcels prior to
compression and transmission. Since no 12-bit output
displays cxist, 77 marks inapplicable transformations.
Alternate formats of 24 pixcls (3 bvtes per pixel and
blue/green/red [BGR| triples) are supported as well
as 8-bit pscudocolor and 8-bit true color.

Sample Uses

Like other collaboration sottware, the Shared Desktop
application can be used i remote situations to help
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people communicate and share data. These uses include
telecommuting, debugging/support, and education.

Telecommuting

One teature we built into Shared Desktop is the ability
to originate a sharing scession from a remote location.,
Ourintent was to allow an individual to work outside
the of fice environment on a home PC or a laptop com-
puter. In the telecommuting scenario, a workstation
with high-end graphics hunctions and applications
located in the office would call back the home user’s
low-end system and present the user with his work
environment. For example, consider a user ot PTC’s
Pro/ENGINEER who is working on a 3-D assembly
with a 100-MB database and must make a change to
the part from home. Prior to the Shared Desktop
application, the only options were either to mimic the
work environment at home or drive to the ofhee to
make the change. To mimic a work environment, the
equipment at home must support Pro/ENGINEER
software and might require 3-D hardware. In addi-
tion, the user would have to retricve arecentversion of
the 100-MB darabase over the telephonce lines, which
would take many hours to copy. With the Shared
Desktop application, the user can access the 100-MB
part using the low-end computer over standard tele-
phone lines. The changes to the assembly then occur
on the system and to the large database at the office.

Remote Debugging/Support

Another use of the Shared Deskrop application s for
customer support or remote debugging. Consider the
user of a 3-D design application who discovers a bug
in a new version of the software. A complex model
often causes a bug that requires software support to
obtain the database to re-create the problem. Using
Shared Desktop, a user could show a support repre-
sentative the problem on the running application, as
opposcd to filing a problem report.

Off-site Training

A remotc training scenario provides a final example of
collaboration using computers. The Shared Deskrop
application facilitates remote training by connecting
students in a sharing session. Each student’s deskrop
displays a lesson composed of the course material
installed on the instructor’s desktop. Students interact
with the teacher by audio, mouse, and kevboard
actions on objects in the screen viewport. In essence,
the tcacher uses the synchronized cursors to highlight
or point to objects on the screen.

Conclusion and Future Directions
The Shared Desktop collaboration software employvs

a simple user interface that emphasizes ease of 3-D
application sharing and audio conterencing. Compared
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to application sharing based on a protocol splitter, the
Shared Deskrop application ofters casier interoper-
ability and better latency dunng 3-D operatons. With
a protocol splitter approach, it is difficult to decide
which, ifanv, graphics events to drop when network
jitter or ncrwork bandwidth delavs occur. Our
approach is synchronized to the last screen capture.
When the network is no longer congested, the current
screen caprure can be sent, thus minimizing the per-
ceived cftect of the network delay. The only disadvan-
rage to bitmap sharmng is its requirement that the
windowing svstem and displav driver implement a
DMA screen capture function and not programmed
1/0. DMA screen capture requests have a minimal
load onthe windowing svstem.

We are planning a number of improvements to the
advanced development version of Shared Desktop.
In our initial work, we made no changes to the win-
dowing systems. Ideally, the product version might
have a mechanism that notities an application when
and where another application has made changes to
the scrcen. With the added ability to capture only
those areas of the screen that have changed since the
last notification, the windowing svstem could perform
the first two steps in the caprure process.

Although the compression scheme we implemented
works for most cases, some graphics may not compress
well using the combination of RLLE and LZ77. Instead,
content-specific compression or adaptive compression
techniques might be better applied. This is an area of
studv we hope to pursue.

The current graphical user interface (GUI) lacks
some conferencing features. The product version will
be packaged with other applications to provide video,
chat, whiteboard, file transter; and user locator/
directory services.

Finally, the sharing model we implemented for the
Shared Deskrop application is casily ported to other
svstems. Thus the application could be available for
widespread usc.
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Challenges in Designing
an HPF Debugger

High Performance Fortran (HPF) provides
directive-based data-parallel extensions to
Fortran 90. To achieve parallelism, DIGITAL's HPF
compiler transforms a user’s program to run as
several intercommunicating processes. The ulti-
mate goal of an HPF debugger is to present the
user with a single source-level view of the pro-
gram at the control flow and data levels. Since
pieces of the program are running in several dif-
ferent processes, the task is to reconstruct the
single control and data views. This paper pre-
sents several of the challenges involved and
how an experimental debugging technology,
code-named Aardvark, successfully addresses
many of them.
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Aswe learn better wavs to express our thoughts in the
form of computer programs and to take betrer advan-
tage of hardware resources, we incorporate these ideas
and paradigms into the programming languages we
usc. Fortran 90" provides mechanisms to operate
directly on arravs, ¢.g., A=2*A to double each clement
of A independent of rank, rather than requiring the
programmicr to operate on individual elements within
nested 0o loops. Many of these mechanisms are natu-
rallv data parallel. High Pertormance Fortran (HPE)*
extends Fortran 90 with data distribution directives to
facilitate computations done i parallel. Debuggers, in
turn, need to be enhanced to keep pace with new fea-
tures of the languages. The fundamental user require-
ment, however, remains the same: Present the control
flow of the program and its data n terms of the original
source, mdependent of what the compiler has done or
what is happening in the run-time support. Since HPF
compilers auromatically distribute dara and computa-
tion, thereby widening the gap between actual execu-
non and original source, mecting this requirement is
both morce important and more ditticult.

This paper describes several of the challenges HPF
creates for a debugger and how an experimental debug-
gmg technology, meermally code-named Aardvark, suc-
cesstully addresses many ot them using techniques that
havc applicabiliny bevond HPE. For example, program-
ming paradigms common to cxplicit message-passing
svstems such as the Message Passing Intertace (MPI)*
can benetit from Aardvark’s merhods.

The HPF compiler and run time used is DIGITAL’s
HPF compiler,® which produces an exccutable that
uses the run-time support ot DIGITAL’s Parallel
Software Environment.” DIGITAL’s HPF compiler
transforms a program ro run as several intercommuni-
cating processes. Uhe fundamental requirement, then,
i to give the appearance of a single control tlow and a
single dara space, even though there are several indi-
vidual control flows and the data has been distributed.
In the paper, Iintroduce the concept oflogical entities
and show how thev address many of the control flow
challenges. A discussion of a rich and flexible dara
modecl that casilv handles distributed data follows. |
then point out ditficulties imposed on user intertaces,
espectally when the program is not in a completely



consistent state, and indicate how they can be over-
come. Sections on related work and the applicability of
logical entities to other arcas conclude the paper.

Logical Entities

From the programmer’s perspective, an HPF program
is a single process/thread with a single control flow
represented by a single call stack consisting of single
stack trames. A debugger should strive to present the
program in terms of these single cnttics. A kev
cnabling concept in the Aardvark debugger is the dehi-
nition of logical entities in addition to traditional phys-
ical entitics. Generally, a logical entity collects several
phvsical entitics into a single entity. Many parts ot
Aardvark arc unaware of whether or not an entity is
logical or physical, and a debugger’s user intertace uses
logical entitics to present program state.

A physical entity is something that cxists some-
where outside the debugger. A phvsical process exists
within the operating svstem and has memory that can
be read and written. A phvsical thread has registers
and (through registers and process memory) a call
stack. A phvsical stack frame has a program counter, a
caller stack frame, and a callcc stack trame. Each of
these has a representation within the debugger, but
the actual entity exists outside the debugger.

A logical entity is an abstraction that exists within the
debugger. Logical cntitics generallv group together
scveral related physical entitics and svnthesize a single
behavior from them. In C++ terms, a process is an
abstract basce class; physical and logical processes are
derived classcs. A logical process contains as data mem-
bers a sct of other (probablv phvsical) processes. The
methods of a logical process, ¢.g., to sct a breakpoint,
bring about the desired operations using logical algo-
rithms rather than physical algorithms. The logical
algorithms often work by invoking the same operation
on the phvsical entities and constructing a logical entity
from the physical picces. This implies that some opera-
tions on plhvsical entitics can be done in isolation from
their logical containers. Aardvark makes a stronger
statement: Physical entities are the building blocks tor
logical enritics and are first-class objects in their own
right. This allows physical entities to be used for tradi-
tional debugging withour any additional structure.

A positive consequence of this object-oriented design
is that a uscr interface can often be unawarc of the physi-
cal or logical nature of the entities it ts managing. For
example, it can set a breakpoint in a process or navigate a
thread’s stack by calling virtual methods declared on the
base classcs.

Somie interesting design questions arise: What 1s a
process? What is a thread? What is a stack frame? What
operatons arc expected to work on all kinds of processcs
bur actually only work on phvsical processes? Experience
to date is inconclusive. Aardvark currently defines the

base classes and methods for logical entitics to include
many things that are probably specitic to physical enti-
ties. This design was done largely tor convenicnce.

Sometimes a logical entitv is little morce than a con-
tainer of phyvsical enuitics. A logical stack frame for
threads that are in unrclated functions simply collects
the unrelated physical stack trames. Nevertheless, logi-
cal stack frames provide a consistent mechanism for
collecting phvsical stack trames, and variants of logical
stack frames can discriminate how coordinated the
physical threads are. The concept of logical entities
does not apply to all cases, though. Variables have val-
ues, and there does not seem to be anything logical or
physical about values. Yert, it a replicated variable’s val-
ues on ditterent processors arc ditterent, there is no
single valuc and some mechanism is nceded. Rather
than define logical values, Aardvark provides a differ-
ing values mechanism, which is discussed in a later sec-
tion of the same name.

Controlling an HPF Process

Users want to be able to start and stop HPF programs,
set breakpoints, and single step. From a user interface
and the higher levels of Aardvark, these tasks are sim-
ple to accomplish—ask the process or thread, which
happens to be logical, to perform the operation.
Within the logical process or thread, however, the
complexity varies, depending on the opcration.

Starting and Stopping

Starting and stopping a logical thread is straighttor-
ward: Start or stop each component physical thread.
Some race conditions require care in coding, though.
Forexample, starting a logical thread theorcetically starts
all the corresponding plhivsical threads simultancously.
In practice, Aardvark serializes the physical threads. In
Figure 1, when all the physical threads stop, the logical
thread is declared to be stopped. Aardvark then starts
the logical thread at time “+™ and proceceds to start each
phvsical thread. Supposc the first phvsical thread (thread
0) stops immediately, at time “*.” It might appear that
the logical thread is now stopped because cach physical
thread is stopped. This scenario does not take into
account that the other phvsical threads have not vet
been started. Timestamping execution state transitions,
1.c., orderng the events as obscrved by Aardvark, works
well; a logical thread becomes stopped only when all its
physical threads have stopped after the time that the
logical thread was started. An added complexity is that
some rcasons for stopping a phvsical thread should stop
the other physical threads and the logical thread. In this
case, pending starts should be cancelled.

Breakpoints
Setting a breakpoint in a logical process scts a break-
point in each phvsical process and collects the physical
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EXECUTION STATES:

STOPPED — 1——3—2-0—L—

LOGICAL RUNNING ———— T ——— ~
PHYSICAL RUNNING Y—fY—\—\ \ / /_\ /,/ /, \\_\ \
2-0 L L 0—0—1-2-3——213

KEY:

+ LOGICALTHREAD L STARTS.
+ PHYSICAL THREAD 0 STOPPED.

Figure 1
Determiing When a Logical "Thread Stops

breakpoint representations into a logical breakpoint.
For HPEF, any action or conditional cxpression is
assoctated with the logical breakpoint, not with the
phvsical =~ breakpoints.  Consider  the  expression
ARRAY (3,4).LT.5. Evenitche clementis stored in
oy onc process, the entire HPF process needs to stop
betore the expression is evaluated; otherwisce, there is
the potential for incorrect data to be read or tor
processes to continue running when thev should nor.
This requires cach phvsical process to reach its phvsical
breakpoint betore the expression can be evaluated.
Once evaluared, the process remains stopped or con-
tinues, depending on the result. For HPF, a break-
point in a logical process implies a global barrier of the
phvsical processes.

Recognizing and processing a thread reaching a
logical breakpoint is somewhat invohed. Aardvark’s
general mechanism tor breakpoint determination is to
ask the thread’s operating svstem model if the initial
stop reason could be a breakpoint. If this is the case,
the opcerating svstem model provides a comparison kev
tor further processing,.

For physical DIGITAL UNIX rthreads, a SIGTRAP
signal could be a breakpoint, with the comparison key
being the program counter address of the potentia
breakpoiut instruction. This comparison kev is then
used to scarch the breakpoines installed 1 the physical
process to determine which (if anv) breakpoint was
reached. Ifa breakpointwas reached, the stop reason is
updated to be “stopped at breakpoint.” All this phvsi-
cal processing happens betore the logical algorithms
have a chance to notice that the physical thread has
stopped. Therefore, by the time Aardvark determines
that a logical thread has stopped, anv phvsical threads
that are stopped at a breakpoint have had their stop
rcasons updated.

For alogical thread, the mitial (logical) stop reason
could be a breakpoint if each of the phvsical threads is
stopped at a breakpoint, as shown in Figure 2. The
comparison kev in this case is the logical stop reason
itself. The breakpomts of the component stop reasons

are then compared to the component breakpoints of

the installed logical breakpoints to determine ifa logi-
cal breakpoint was reached. If there is a match, the
logical thread’s stop reason is updated.
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Aardvark achieves the flexibility of vastly different
rvpes of comparison kevs (machine addresses and logi-
cal stop reasons) by having the comparison kev tvpe be
the most basic Aardvark base class, which is the cquiv-
alent of Java’s ob ject class, and by using run-time
TVPINg as necessary.

Single Stepping
Single stepping a logical thread s accomplished by
single stepping the phvsical threads. Itis not sufficient
to single step the first thread, wait for it to stop, and
then proceed with the other threads. If the program
statement requires communication, then the entire
HPF program needs to be running to bring about the
communication. This implies that single stepping is a
two-part process—initiate and wait—and that the ini-
tiation mechanism must be part of the exposed inter-
face of threads.

As background, running a rthread in Aardvark
jnvolves continuing the thread with a s ieason. The

PHYSICAL PROCESSES

INITIAL LOGICAL STOP REASON AND THEIR BREAKPOINTS

STOPPED AT COLLECTION
PO: STOPPED AT e >
P1: STOPPED AT =
P2: STOPPED AT

PROCESSED STOP REASON

STOPPED AT

LOGICAL
PROCESS'
LOGICAL
BREAKPOINTS

000

Figure 2
[Logical Breakpoint Derermination



run rcason is empowered to take the actions (¢.g., set-
ting or enabling temporarv breakpoints) necessary to
carry out its task. In this paper, the word enmpouwered
means that the reason has a method that will be called
to do reason-specific actions to accomplish the rea-
son’s semantics. This relieves user interfaces and other
clients from figuring out how to accomplish tasks. Asa
result, Aardvark defines a “get single-stepping run rea-
son” method for threads. Clients use the resulting run
reason to continue the thread, thereby initiating the
single-step operation.

Therctore, single stepping a logical thread in
Aardvark involves calling the (logical) thread’s “get
single-stepping run rcason” method, continuing the
thread with the result, and waiting for the thread to
stop. The “get single-stepping run reason” method for
a logical thread in turn calls the “gert single-stepping
run rcason” method of the component (physical)
threads and collects the (physical) results into a logical
single-stepping run reason. When invoked, the logical
reason continues ¢ach physical thread with its corre-
sponding phvsical rcason.

Single stepping dramatically demonstrates the
autonomv of the phvsical entitics. When continuing
a (logical) thread with a (logical) single-stepping run
reason, the physical threads can start, stop, and be
continucd asvnchronously to each other and without
any intervention from a user intertace, the logical enti-
ties, orother clients. Thisis especially true if the thread
was stopped at a breakpoint. In this case, continuing
a physical thread involves replacing the original
instruction, machine single stepping, putting back the
breakpoint instruction, and then continuing with the
original run reason. Empowering run reasons (and
stop rcasons) to eftect the necessary state transitions
enables physical entities to be autonomous, thus
relieving the logical algorithms from enormous poten-
ttal complexity.

Coordinating Physical Entities

The previous discussion describes some logical algo-
rithms. The section “Starting and Stopping™ describes
using timestamps to determine when a logical thread
becomes stopped (see Figure 1), and the section
“Breakpoints” describes a logical thread possibly
reaching a breakpoint (see Figure 2). The physical
entitics need to be coordinated so that the logical
algonthms can be run. In Aardvark, thisis done with a
process change handler. A process change handler is a
set of callbacks that a client registers with a process and
its threads, allowing the client to be notitied of state
changes. For example, if'a user interface is notified that
a thread has stopped and that the reason is a UNIX
signal, the user interface can look up the signal in a
table to determine it it should continue the thread
(possibly discarding the actual signal) or if it should
keep the thread stopped.

In the context of HPF, a user interface registers its
process change handler with the logical HPF process.
During construction of the logical process, Aardvark
registers a physical-to-logical process change bandler
with the physical processes. It is this physical-to-logical
handler that coordinates the physical entities. When the
first phvsical thread stops, as at dme “*” in Figure 1, the
handler is notified but notices that the timestamps do
not indicate that the logical thread should be considered
to have stopped. When the last physical thread stops,
the handler then synthesizes a “stopped at collection”
logical stop reason, as in Figure 2, and informs the
(logical) thread that it has stopped.

Aardvark defines some callbacks in process change
handlers that are for HPF and other logical paradigms.
These callbacks allow a user interface to implement
policies when a thread or process goes into an interme-
diate state. For example, at time “*” in Figurc 1 a
physical thread has stopped but the logical thread s
not vet stopped. Whenever a physical thread stops, the
handler’s “component thread stopped” callback is
invoked. A possible uscr interface policy is'

= If the component thread stopped tor a sty rea-
son, such as an arithmetic error, try to stop all the
other component threads immediately in order to
minimize divergence among the physical entitics.

= It chisis the first component thread that stopped tor
a nice reason, such as reaching a breakpoint, start a
timer to wait for the other component threads to
stop. If the timer goes oft betore all the other com-
ponent threads have stopped, trv to stop them
because it looks like they are not going to stop on
their own.

= frhisis the last component thread, cancel anv nmers.

The user interface can provide the means for the user
to define the timer interval, as well as other attributes
of policics. These policies and their control mecha-
nisms are not the responsibility of the debug engine.

Examining an HPF Call Stack

When an HPF program stops, the user wants to scc a
call stack that appears to be a single thread of control.
Sometimes thisis not possible, but even in those cases, a
debugger can offer a fairamount ofassistance. The HPF
language provides some mechanisms that also nced to
be considered. The EXTRINSIC(HPF_LOCAL) proce-
dure tvpe allows procedures written in Fortran 90 to
operate on the local portion of distributed data. This
tvpe is usctul for computational kerncls that cannort be
expressed in a data-parallel fashion and do not require
communication. The EXTRINSIC(HPF_SERIAL)
procedure tvpe allows data to be mapped to a single
process that runs the procedure. This type is uscful for
calling inherently serial code, including user intertaces,
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which mav not be written in Fortran. DIGITAL’s HPF
compiler also supports zeeinning. which allows serial
code to call parallel HPF code. All these mechanisms
atfect the call stack or how a user navigates the call
stack. They require underlving support from the
debugger aswell as user interface support.

Logical Stack Frames

Aardvark’s logical entity model applies to stack frames:

logical stack frames collect several physical stack frames

and present a svnthesized view of the (logical) call

stack. Currently, Aardvark defines four tvpes ot logical

stack frames to represent ditferent scenarios that can

be encountered:

1. Scalar,in which onlv one phvsical thread is semanti-
cally actuive

2. Svnchronized, in which all the threads are at the
same place in the same function

Unsyinchronized, in which all the threads are in the
same funcrion but at ditferent places

<

4. Multi, in which no discernible relationship exists
berween the corresponding phvsical threads

Aardvark’s task is to discover the proper alignment
of the phvsical frames of the physical threads, deter-
mine which variant offogical trame to use in cach case,
and link them rogether into a call stack. Ideallv, all log.-
ical frames arc svnchronized, which mcans that the
program is i a well-defined state, This is true most of
the rume with HPF; the Single Program Multiple Data
(SPM D) naturc of HPF causes all threads to make the
same procedure calls from the same place, and break-
points are barriers causing the threads ro stop at the
same place.

Aardvark’s alignment process starts at the outer-
most stack frames of the phvsical threads (the ones
near the Fortran PROGRAM unit) and then progres-
sively examines the callees (roward where the program
stopped). Starting from the imnermost frames is an
crror-prone approach. If the innermost frames are in
different functions, Aardvark might construct a mulri-
frame when the frames are actually misaligned becausce
the physical stacks have difterent depths. As discussed
m the section on twinning, depth 1s not a reliable
alignment mechanism cither. Starting at the outer-
most frames follows the temporal order of calls and
also correctly handles recursive procedures. The dis-
advantage of starting at the outermost frames is that
cach phvsical thread’s entire stack must be determined
before the logical stack can be constructed. Usually
the programmer only wants the innermost few frames,
so time delavs in the construction process can reduce
the case of usc of the debugger.”

Much of the time, the phvsical stack frames are at
the same place because the SPMD nature of HIE
causes the phvsical threads to have the same control
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flow. When a procedure is called, cach thread executes
the call and exccutes it from the same place. A logical
breakpomnt is reached when the phvsical threads are
stopped at the same place at the corresponding phvsi-
cal breakpoines. These cases lead to synchronized
frames. The most common cause of an unsynchronized
frame is interrupting the program during a computa-
tion. Exenin this case, the divergence is usually not very
large. One reason tor a multframe is the interruption of
the program while it is communicating data benveen
processes. In this case, the code paths can casily diverge,
depending on which threads are sending, which are
receiving, and how much data needs to be moved.
Scalar frames are created because of the semantic flow of”
the program: the main program unit is written n either
a serial language or an HPF procedure called an
EXTRINSIC(HPF_SERIAL) procedure tvpe.

The result of the alignment algorithm is a set of
frames collected mto a call stack. The normal naviga-
rion operations (¢.g., up and down) applv. Variable
lookup and expression evaluation work as expected,
also. Vartable lookup works best for synchronized
frames and, for HPE, works tor unsvnchronized frames
aswell For multiframes, vartable lookup gencerallv fails
because a variable name VAR mav resolve to different
program varables i the corresponding physica
frames or mav not resolve to anvthing at all n some
frames. This failure 1s not because ota lack of informa-
tion from the compiler but rather because multitrames
are generally not a context in which a string VAR has a
well-dehned semantic.

Experience to date suggests thatmultframes are of
oping the run-time
support for data motion. Nevertheless, the point of
transition from synchronized to unsvnchronized to
mult tells the user where control tlows diverged, and
this information can be very valuable.

interest largely to the people deve

Narrowing Focus

Using the previously mentioned techniques sometimes
results in a cluttered view of the state of the entre pro-
gram and difficulty in finding relevant informaton.
Aardvark provides two wavs to help. The first aid 1s a
Boolcan focis mask that selects a subset of the processes
and rthen re-apphies the logical algorithms. For properly
chosen subsets, this can turn a stack trace with many mul-
tframes into a stack trace with svnchronized frames.
A narrowed focus can also loolc behind the seenes of the
nwinning mechanism described 1in the next paragraph.
The sccond aid 15 to view a single phvsical process in
isolanion, effecavely turning oft the parallel debugging
algorithms. This technique is useful for debugging
EXTRINSICCHPF_LOCAL) and EXTRINSIC(HPF_SERIAL)
procedures. The ability to retrieve the phyvsical processes
from a logical process is the major item that enables view-
g a process N isolation; as mentioned betore, physical
entitics ave first-class objects.



Twinning

DIGITAL’s HPF provides a feature called twinning
in which a scalar procedure can call a parallel HPF
procedure. This allows, for example, the main pro-
gram consisting of a user interface and associated
graphics to be written in C and have Fortran/HPF
do the numerical computations. The feature is called
mwinning because cach Fortran procedure is com-
piled twice. The scadar twin is called from scalar code
on a designated process. Its duties include instruct-
ing the other processes to call the scalar twin, distrib-
uting its scalar arguments according to the HPF
directives, calling the J7PF fiein from all processes,
distributing the parallel data back onto the desig-
nated process after the HPF twin returns, and tinally
returning to its caller. The HPF owin is called on all
processes with distributed dara and cxecutes the
user-supplicd bodv ofthe procedure.

Atthe run-time level, the program’s entry point is
normallyv called on a designated process (process 0),
and the other processes enter a dispatch loop waiting
for instructions. Conceptually, such a program starts
i scalar mode and at some point transitions into paral-
lel mode. An HPF debugger should represent this
transition.  Aardvark accomplishes this by having
knowledge of the HPF twinning mechanism. When it
notices physical threads entering the dispatch loop,
Aardvark creates a scalar logical trame corresponding
to the phvsical frame on process 0. It then processes
procedure calls on process 0 only, creating more scalar
frames, until it notices that the program transitions
from scalar to parallel. This transition happens when
all processes call the same (scalar nwin) procedure:
process 0 docs soas a result of normal procedure calls;
processesother than 0 do so from their dispatch loops.
At this point, a logical frame is constructed that will
likelv be svnchronized, and the frame processing
described previously applies. The result 1s the one
desired: a scalar program transitions to a parallel one.

DIGITAL’s HPF goes a step further: it allows
EXTRINSIC(HPF_SERIAL) procedures to call HPF
code by means of the twinning mechanism. When an
EXTRINSIC(HPF_SERIAL) procedurc is called,
processes other than 0 call the dispatch loop. When
the scalar code on process 0 calls the scalar twin, the
other processes are in the nccessary dispatch loop.
Aardvark tracks these calls in the same way as in the
previous paragraph, noticing that processes other than
0 have called the dispatch loop and eventually call a
scalar twin.

User Interface Implications

User intertaces and other clients must be keenly aware
of the concept of logical trames and the difterent types
of logical frames. Depending on the tvpe of frame,
some operations, such as obtaining the tunction name

or the linc number, mav not be valid. Neverthceless, a
user interface can provide useful information about
the state of the program. The program used for the
following discussion has a serial user interface written
in C and uses nwinning to calla parallel HPF procedure
named HPF_FILL_IN_DATA (see Figure 3). The
HPF procedure uscs a function named MANDEL_VAL
as a non-data-parallel computational kernel. The pro-
gram was run on five processes. (Twinning isa DIGITAL
extension. Most HPF programs are wwritten enrirely in
HPF. This example, which uses twinning, was chosen
to demonstrate the broader problem.)

Figure 4 shows the program interrupted during
computation. Line 2 of the figure contains a single
function name, MANDEL_VAL. Linc 3 contains the
function’s source file name but lists five line numbers,
implying that this is an unsynchronized frame. In fact,
the user interface discovered that Aardvark created an
unsynchronized logical frame. Instead of trying to get
a single line number, the uscr interface retrieved the
set of ine numbers and presented them. In lines 4
through 10, the user interface also presented the range
of source lines encompassing the lines of all the com-
ponent processes. This uscr interface’s up command
(line 21) navigates to the calling trame. In this exam-
ple, the trame is svnchronized, causing the user inter-
face to present the function’s source file and single line
number (line 26), followed by the single source file
line (Jine 27).

Figure 5 shows a summary of the program’s call stack
when it was interrupted during computation. The sum-
mary is a mix of unsynchronized, svnchronized, and
scalar frames. Frame #0 (Jine 2) is unsvnchronized, and
the various line numbers are presented. Its caller, trame
#1 (line 3), is synchronized with a single line number.
All this is consistent with the previous discussion. Frame
#1 is the HPF nwin of the scalar twin in frame #2. The
scalar twin of frame #2 is expected to be called by scalar
code, confirmed by trames #3 and #4. Frame #5 is part
of the rwinning mechanism; process 0 1s at line 499,
while the other processors are all at line 506.

Narrowing the focus to exclude process 0 shows a
different call stack summary (lines 9 through 16 of
Figure 5). The new frame #0 (line 11) continues to be
unsynchronized, but all the other frames are synchro-
nized. The twinning dispatch loop (Jine 14) replaces
the scalar frames of the global tocus (lines 5 and 6).
This replacement causes the new call stack, corre-
sponding more closclv to the physical threads, to have
fewer frames than the global call stack.

Interrupting the program while idle within the user
interface shows more about twinning and also showsa
multiframe (see Figure 6). Most of the frames are
scalar except for the nvinning mechanism (frame #7,
linc 9) and the initial run-time frame (frame #8, line
10). Narrowing the focus to exclude process 0 shows
the twinning mechanism while waiting. The twinning
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subroutine hpf_fill_in_data(target, w, h, ccr, cci, cstep, nmin, nmax)
integer, intent(in) :: w, h
byte, intent(out) :: target(w,h)
real*8, intent(in) ccr, cci, cstep
integer, intent(in) t: onmin, nmax

'hpf$ distribute target(*, cyclic)
integer :: cx, cy
cx = w/2
cy = h/2

i forallCix = 1T:w, iy = 1:h)
target(ix,iy) = mandel_val(CMPLX(ccr + ((ix-cx)*cstep),

contains
pure byte function mandel_val(x,
integer, intent(in)
integer

real(kind=KIND(O0.0D0))
logical

n = -1

xorgr = REAL(x)
xorgi = AIMAG(x)
Xr = xorgr

xi = xorgi

do
n = + 1
xr2 xr*xr
xi2 = xi*xi
xi = 2*(xr*xi) + xorgi
keepgoing = n < nmax
rad2 = xr2 + xi?2
xr = xr2 - xi2 + xorgr
if (keepgoing .AND.
exit

end do

3

if (n >= nmax) then
mandel_val = nmax-nmin
else

end if
end function mandel_val

end subroutine hpf_fill_in_data

nmin,

nmin, nmax)
complex (KIND=KIND(O0.0DO)), intent(in) :: x

xorgr, xorgi, xr, xi, xr2, xi2, rad?

keepgoing

(rad2 <= 4.0)) cycle

mandel_val = MOD(n, nmax-nmin)

cci + ((iy-cx)*cstep),
KIND=KIND(O.0DO)),
nmax)

20 0 0 0

nmin, nmax

n

Figure 3

HPF_FILL_IN_DATA Proccdure (Source Code tor Figures 4+ and 5)

mechanism at tframes #5 and #6 (lines 23 and 24) is
similar to the mechanism at frames #3 and #4 (lines 14
and 15) of Figure 5. In Figure 6, thev do nor call a
scalar twin but rather call the messaging library to
receive nstructions from process 0. The messaging
library, however, is often not synchronized among the
peers, and frame #2 (line 15) shows a multiframe. This
user intertace shows a multiframe as a collection of
onc-line summaries of the phvsical frames (lines 16
through 20).
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Examining HPF Data

Examining data generallv involves determining where
the darais stored, fetching the data, and then present-
ing it. HPF presents difficulties in all three areas
Determining where dara is stored requires rich and
flexible dara-location representations and associated
operations. Ferching small amounts of data can be
done naively, one element at a time, but tor large
amounts of data, ¢.g., data used tor visualization, faster

o



1 Thread is interrupted.
2 H0: MANDEL_VAL(X = <<differing COMPLEX(KIND=8) values>>, NMIN = 255, NMAX = 510)
3 at mb.hpf.f90:45,44,45,40,39
4 39 xr2 = xr*xr
5 40 xi2 = xi*xi
6 41 xi = 2*¥(xr*xi) + xorgi
7 42 keepgoing = n < nmax
8 43 rad2 = xr2 + xi2
9 44 Xr = xr2 - xi2 + xorgr
10 45 if (keepgoing .AND. (rad2 <= 4.0)) cycle
1
12 debugger> print x
13 $1 = H<DIFFERING-VALUES
14 H0O: (~0.66200000000000003,-0.114)
15 H1: (-0.59599999999999997,-0.113)
16 He: (-0.65300000000000002,-0.112)
17 H3: (-0.93799999999999994 ,-0.10600000000000001)>
18 He: (-0.56600000000000006,-0.11)
19 >
20
21 debugger> up
22 H1: hpfShpf_fill_in_data_(TARGET = <<non-atomic= INTEGER(KIND=1), DIMENSION(1:400, 1:400)>>,
23 W = 400, H = 400,
24 CCR = -0.760000000000000017, CcCI = -0.02, CSTEP = 0.001,
25 NMIN = 255, NMAX = 510)
26 at mb.hpf.f90:14
27 14 forall(ix = 1:w, iy = 1:h) &
28
29 debugger> info address target
30 H<locative_to_hpf_section 5 peers of type INTEGER(KIND=1), DIMENSION(1:400,1:400) >
31 type INTEGERC(KIND=1), DIMENSION(1:400,1:400)
32 phys_count 5
33 addresses
34 0: 0x11fff71f0
35 : 0x11fff7000
36 2 0x11fff7000
37 3 0x11fff7000
38 4: 0x11fff7000
39 arank 2
40 trank 2
41 diminfos dlower dupper plower pupper dist_k
42 0 1 400 1 400 collap
43 | 1 400 1 80 ... cyclic
44
45 debugger> info address target(100,100)
46 H<locative_in_peer in peer 4 ... >
47 type INTEGER(KIND=1)
48 peernum 4
49 locative H<locative_to_memory at dmem address Ox11fff8e13 of type INTEGER(KIND=1) >
= i
Figure 4

Program Interrupted during Computation

methods are necded. Displaying data can usually use
the techniques inherited from the underlving Fortran
90 support, but some mechanism and corresponding
uscrinrertace handling is needed when replicated data
has different values.

Data-Location Representations

Representing where data is stored is relatively casy
to do in languages such as C and Fortran 77: the data
is in a register or in a contiguous block of memory.
Fortran 90 introduced assumed-shape and deferred-
shape arravs,'* where successive arrav clements are not
necessarily adjacent in memory. HPF allows the arrav

to be distributed so that successive arrav clements are
not necessarily stored in a single process or address
space. These lead to data that can be stored discon-
tiguously in memory as well as in different memories.

Fortran 90 also introduced arrav scctions, vector-
valued subscripts, and  ficld-of-arrav  operations,™
which further complicate the notion of where data is
stored. Although evaluating an expression involving
an array can be accomplished by rcading the entire
arrav and performing the operations in the debugger,
this approach is inethcient, especially tor a result that is
sparse compared to the entire arrav. A standard tech-
nique is to perferm address arithmetic and tetch only
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1 debugger> where
2 > HO(unsync) MANDEL_VAL at mb.hpf.f90:45,44,45,40,39
3 H1(synchr) hpf$hpf_fill_in_data_ at mb.hpf.f90:14
4 H2(synchr) hpf_fill_in_data_ at mb.hpf.f90:1
5 H3(scalar) mb_fill_in_data at mb.hpf.c:45
6 H4(scalar) main at mb.c:421
7 H#5Cunsync) _hpf_twinning_main_usurper at [...]/libhpf/hpf_twin.c:499,506,506,506,506
8 H6(synchr) __start at [...]/alpha/crtQ0.s:361
9 debugger> focus 1-4
10 debugger> where
11 > H#0Cunsync) MANDEL_VAL at mb.hpf.f90:<none>,44,45,40,39
12 H1(synchr) hpf$hpf_fill_in_data_ at mb.hpf.f90:14
13 H2(synchr) hpf_fill_in_data_ at mb.hpf.f90:1
14 H#3(synchr) _hpf_non_peer_0_to_dispatch_Lloop at [...1/libhpf/hpf_twin.c:575
15 H4(synchr) _hpf_twinning_main_usurper at C...]1/libhpf/hpf_twin.c:506
16 HS5(synchr) __start at [...]/alpha/crt0.s:361
Figure 5

Control Flow of a Twinned Program Interrupted during Compurtation

1 debugger> where
2 > H0(scalar) __poll at <<unknown name>>:41
3 H1(scalar) <<disembodied>> at <<unknown>>:459
4 H2(scalar) _XRead at <<unknown name>>:1110
5 H3(scalar) _XReadEvents at <<unknown name>>:950
6 H4(scalar) XNextEvent at <<unknown name>>:37
7 H5(scalar) HandleXInput at mb.c:58
8 Hé(scalar) main at mb.c:452
9 H7(unsync) _hpf_twinning_main_usurper at C...J1/libhpf/hpf_twin.c:499,506,506,506,506
10 H8(synchr) __start at [...J1/alpha/crt0.s:361
11 debugger> focus 1-4
12 debugger> where
13 > H#0Cunsync) __select at <<unknown name>>:<none>,41,<none>, 41,41
14 #1(Cunsync) TCP_MsgRead at [...]1/libhpf/msgtcp.c:<none>,1057,<none>,1057,1057
15 H2(multi)
16 <none>
17 _TCP_RecvAvail at [...J1/libhpf/msgtcp.c:1400
18 swtch_pri at <<unknown name>>:118
19 _TCP_RecvAvail at [...]1/libhpf/msgtcp.c:1400
20 _TCP_RecvAvail at [...1/libhpf/msgtcp.c:1400
21 #3(unsync) _hpf_Recv at [...]1/libhpf/msgmsg.c:<none>,434,488,434,434
22 H4(synchr) _hpf_RecvDir at C[...J1/Llibhpf/msgmsg.c:509
23 #5(synchr) _hpf_non_peer_0_to_dispatch_Lloop at [...1/libhpf/hpf_twin.c:563
24 H6(synchr) _hpf_twinning_main_usurper at [...]1/libhpf/hpf_twin.c:506
25 H7(synchr) __start at [...]/alpha/crt0.s:361
Figure 6

Control Flow of'a Twinned Program Interrupred While Idle in Scalar Mode

the actual data resule at the end of the operation. The

usual notion ot an address, however, is thatit describes tations needed.

derived classes implement the data-location represen-

the start ofa contiguous block ot memory.

Richer data-location representations are necessary.
These representations can include registers and con-
tiguous memory, but thev also need to include discon-
tiguous memoryv and data distributed among multiple
processes. The representations should also include the
results of expressions involving arrav sections, vector-
valued  subscripts, and  ficld-of-arrav  opcrations,
thereby extending address arithmetic to data-location
arithmetic. Aardvark defines a locative base class that

has a virtual method to ftetch the data. A varieny of
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DIGITAL’s Fortran 90 implements assumed-shape
and deferred-shape arrays using descriptors that con-
tain run-time information about the memory address
of the first clement, the bounds, and per-dimension
mter-clement spacing.'™ Aardvark modcls these tvpes
of arrays almost dircctly with a derivation of the loca-
tive class that holds the same information as the
deseripror. Pertorming expression operations is rela-
tively easv. An array scction cxpression adjusts the
bounds and the inter-clement spacing. A ficld-of-array
opcration oftsets the address to point to the compo-



nent tield and changes the element type to that of the
ficld. A vector-valued subscript expression requires
additional support; the representation for each dimen-

sion can be a vector of memory oftscts instcad of

bounds and inter-clement spacing.

All arrays in HPF arc qualified, explicitly or implic-
itly, with ALIGN, TEMPLATE , and DISTRIBUTE dircc-
tives.'* DIGITAL’s HPF uses a superset of the Fortran
90 descriptors to encode this information. Aardvark
modecls HPF arravs with another derivation of the
locative class that holds information similar to the HPF
descriprors. The most pronounced difference is that
Aardvark uscs a single locative to encodce the descrip-
tors from the set of processes. Aardvark knows that the
local memory addresses arc potentially ditterent on
cach process and maintains them as a vector, but cur-
rently assumes that processor-independent informa-
tion is the same on all processes and onlv encodes that
information once.

Referring again to Figure 4, line 22 shows that the
argument TARGET 1s an array, and line 29 1s a request
tor information about the location ofits data. (Scc also
Figure 3 tor the full source, including the declaration
and distribution of TARGET.) Figure 4, line 32 shows
that there are five processes, and lines 34 through 38
show the base address within each process. The
addresses tor processes 1 through 4 happen to be the
same, but the address for process 0 is different. Linces
39 and 40 show that the rank of the arrav (arank) and
the rank of the template (trank) are both 2. Lines 42
and 43 show the dimension information for the array.
The declared bounds are 1:400,1: 400, but the local
phvsical bounds arc 1:400,1:80 and the distribu-
tionis ¢(*,cycLIc). Thisisall accurate; distributing
the second dimension on five processes causes the
local phvsical size tor that dimension (80) to be one-
fitth the declared bound (400).

Performing expression operations on HPF-based
locatives 1s more involved than for Fortran 90.
Processing a scalar subscript not only oftsets the base
memory address but also restricts the sct of processors
determined by the dimension’s distribution information.
Processing a subscript triplet, ¢.g., from:to:stride,
mvolves adjusung the declared bounds and the align-
ment; it does not adjust the template or the physical lay-
out. As i Forwan 90, processing a vector-valued
subscript in HPF requires the locative to represent the
cffect of the vector. For HPF, the representation is pairs
of memory oftsets and processor sct restrictions.
Processing a ticld-ot-arrav operation adjusts the element
tvpe and offsets each memory address.

When sclecting a single array clement by providing
scalar subscripts, another tvpe of locative is useful. This
locative describes on which process the data is stored
and a locative relative to that selected process. For
example, line 45 of Figure 4 requests the location
information of a single arrav element. The result

shows that it is on process 4 at the memory address
indicated by the contained locative.

Fetching HPF Data

As just mentioned, locatives provide a method to tetch
the data described by the locative. For a locative that
describes a single distributed arrav clement (c.g.,
Figure 4, lines 45 through 49), the method extracts
the appropriate physical thread from the logical thread
and uses the contained locative to tetch the darta rela-
tive to the extracted phvsical thread. Fora locative that
describes an HPF array, Aardvark currently iterates
over the valid subscript space, determinces the physical
process number and memory otfsct tor each element,
and tetches the clement from the sclected physical
process. For small numbers of clements, on the order
of" a few dozen, this technique has acceprable per-
formance. For large numbers of elements, ¢.g., for
visualization or reduction opcerations, the cumulative
processing and communication delav to retricve cach
individual element is unacceptable. This performance
1ssue also exists for locatives that describe discontigu-
ous Fortran 90 arrays. The threshold is higher because
there is no computation to determine the process tor
an element, and the process is usually local rather than
remote, climinating communication dclavs.

The primary bottleneck is issuing many small data
retrieval requests to each (remote) process. This
involves many communication delavs and manv dclavs
rclated to retrieving each element. What is necded is to
issue a smaller number of larger requests. The smaller
number reduces the number of communication trans-
actions and associated delavs. Larger requests allow
analvsis of a request to make morce cthicient use of
the operating system’s mechanisms to access process
memory. For example, a sufticiently dense request can
read the cncompassing memory in a single call to the
operating system and then extract the desired cle-
mentsonce the dataiswithin the debugger.

Although not implemented, the best solution, in
my opinion, is to provide a “read (multidimensional)
memory section” mecthod on a process in addition to
the common “read (contiguous) memory” method. If
the process is remote, as it usually is with HPF, the
method would be forwarded to aremotc debug server
controlling the remote process. The implementation
of the method that interacts with the operating svstem
would know the tradc-ofts to determine how to ana-
Ivze the request for maximum efficiency.

Converting a locative describing a Fortran 90 arrav
scction to a “read memory section” method should be
casv: thev represent nearly the same thing. For a loca-
tive that describes a distributed HPF arrav, Aardvark
would nced to build (physical) memory scction
descriptions for each phvsical process. This can be
done by iterating over the phvsical processes and
building the memory section tor cach process. It is
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also possible to build the memory scctions tor all the
processes during asingle pass through the locative, bur
the pertormance gains mav not be large enough to
warrant the added complexity.

Differing Values
Using HPF to distribute an arrav often partitions its
clements among the processes. Scalars, however, are
generally replicated and mav be expected to have the
same value i cach process. There are cases, though,
where seemingly replicated scalars mav ner have the
same value. po loops that do not require data to be
communicated between processes do not have svo-
chronization points and can become out of phase,
resulting in their indexes and other privatized variables
having different values. Functions called within a
FORALL construct often run mdependenthy of each
other, causing the arguments and local varnables in
one process to be different trom those in another.
A debugger should be aware that values might difter
and adjust the presentation of such values accordingly.
Aardvark’s approach is to detine a new kind of value
object called differing caluesto represent a value from
a semantically single source that docs not have the
same valuce from all its actual sources. A user interface
can detect this kind of value and display it in ditferent

wavs, tor example, based on context and/or the size of

the data.

Referring again to Figure 4, the program was inter-
rupted while each process was exceuting the function
MANDEL_VAL called within a FORALL. Linc 2 shows
that the argument x was determined to have dittering
values. This user intertace does not show all the values
ar this point; a large number of values could distract
the user from the current objective of discovering
where the process stopped. Instead, it shows an mdica-
tion that the values are difterent along with the tvpe of
the variable. Notice thar the other two arguments,
NMIN and NMAX, arc presented as integers; they have
the same value nall processes. Line 12 requests to see
the value of x. Linc 13 again shows that the values wre
difterent; and lines 14 through 18 show the process
number and the valuce from the process.

To build a differing values object, Aardvark reads

the values for a replicated scalar from cach process. 1F

all the values are bit-wise cqual, thev are considered to
be the same and a standard (single) value object 1s
rerurned. Otherwise, a ditfering values object is con-
structed from the several valuces. For numeric dara, this
approach scems reasonable. Ifthe value of a scalar inte-
gervariable INTVAR is 4 on aJl the processes, then 4 s

a rcasonable (single) value for INTVAR. If the value of

INTVAR is 4 on some processors and 5 on others, no
single value is reasonable. For nonnumeric data and
pointers, there 1s the possibility of talse positives and
false negatives. The ideal for user-detined tvpes is to
compare the ficlds recursivelv, Pornters thatare seman-
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rically the same can point to targets located at ditterent
memory addresses for unrelated reasons, leading to
different memory address values and therctore a false
positive. To correctly dareterence the pointers, though,
Aardvark needs the different memory address values.
In short, it is rcasonable to test numeric data and cre-
are a single value object or a differing values object,
and 1t appears reasonable to do the same for nonnu-
meric data, despite the possibility of a technically false
kind ofvalue object.

Currently, diftering values do not participate in atith-
metic. That is, the expression INTVAR LT .S is valid if
INTVAR is asingle value but causes an error to be sig-
naled if INTVAR is a differing value, Many cases could
be made to work, but some cases defv resolution. In the
INTVAR.LT.S casc, ifall valuesof INTVAR areless than
S orall are greater than or equal to 5, then it s reason-
able o collapse the result into asingle value, . TRUE. eor
SFALSE., respectively. I some values are less than S
and some are not, it also scems rcasonable to create a
differing values object that holds the dittering results.
What if INTVAR.LT.5 is uscd as the condition of a
breakpoint and some values of INTVAR are less than 5
and some are not? The breakpoint should probably
processcs) to

cause the process (and all the physica
remain stopped. Te s unclear whether arithmetic on
diffening values would be usctul to users or it it would
lead to more confusion than it would clear up.

Unmet Challenges

HPF presents a variery of challenges that Aardvark
does not vetaddress. Some ot these challenges are not
n common practice, giving them low priority. Some
arc recent with HPE Version 2.0 and are being used
with increasing frequency. Some of the challenges, for
example, a debugger-ininated call of an HPF proce-
dure, are tedious to address correctly.

Mapped Scalars

It is possible to distribute a scalar so that the scalar is not
futlv replicated.” The compiler would need to emit suth-
cient debugging intformation, which would probably be
avirtual array descriptor with an array rank ot 0 and a
nonzero templace rank. Aardvark would probably model
it using its existing locative for HPF arravs, also with an
arrav rank of 0 and appropriate template information.

Replicated Arrays

Unless otherwise specificd, DIGITAL’s HPF compiler
replicates arravs. Tois possible to replicate arravs explic-
it and to align arravs (and scalars) so that thev arce
parttally replicated. Currently, Aardvark doces not
detect a replicated array, despite the svmbol table or
run-time descripror indicating thar it is replicated. Asa
result, Aardvark determines a single process from
which to fereh each arrav clement. For fullv replicated



arravs, Aardvark should read the array from cach
process and process them with the diftering values
algorithms. Correctly processing arravs that are par-
tially replicated is not as easv as processing unrepli-
cated or fully replicated arravs. It the odd columns are
on processes 0 and 1, while the even columns are on
processes 2 and 3, no single process contains the entire
arrav. The differing values object would need to be
extended to index the values by a processor sct rather
than a single process.

Update of Distributed and Replicated Objects

Aardvark currently supports limited modification of
dara. It supports updating a scalar object (scalar vari-
able or single array element) with a scalar value, even if
the objectis distributed or replicated. Even this can be
mncorrect at times. Assigning a scalar value to a repli-
cated object sets cach copy, which is undesirable it the
object has diftering values. Assigning a value thatis a
differing values object is not supported. More impor-
tantly (and more subtlv); Aardvark is not aware of
shadow or halo copies of data that are stored in multi-
ple processes, so updating a distributed object updates
only the primary location.

Distributed Array Pointers
HPF Version 2.0 allows arrav pointers in user-defined
tvpes to be distributed and allows fully replicated
arravs of such tvpes. For example, in
type utype
integer, pointer compptr(:)

'hpf$ distribute compptr(block)
end type

type C(utype) scalar, array(20)

the component tield compp te is a distributed arrav
pomter. Aardvark does not currently process the array
deseriptor(s) for scatarZcomppt r at the right place
and as a result does not recognize the expression as
an arrav. As mentioned carlier; Aardvark reads a repli-
cated arrav element from a single process. To process
array (1) %compp tr, all the descriptors are needed,
e.g., tor the base memory addresses in the phvsical
processes. The use of this relatively new construct is
growing rapidly, clevating the importance of being
supported by debuggers.

Ensuring a Consistent View

A program can have its physical threads stop ar the
same place bur be in difterent iterations of a loop.
Aardvark  nustakenly  presents  this  state as svn-
chronized and presents data as if it were consistent.
This 1s what is happening in Figures 4 and 5
hpfshpf_fill_in_data (framc #1)isin different
iterations of the FORALL. With compiler assistance, it
1s possible to annotate cach thread’s location with iter-
ation counts in addition to traditional line numbers.'

The resulting set of locations can be compared to a
location in the conceptually serial program to deter-
nine which threads have already reached (and perhaps
passed) the serial location and which have not vet
reached it. A debugger could automatically, or under
user control, advance each thread to a consistent serial
location. For now, Aardvark’s diftering values mecha-
nism is the clue to the user that program state might
not be consistent.

Calling an HPF Procedure

Having a debugger mitiate a call to a Fortran 90 pro-
cedure is ditticult in the gencral case. One ditticuley is
that copv-in/copv-out (making a temporary copy of
arrav arguments and copving the temporary back toits
origin after the call returns) mav be necessarv. HPF
adds two more difhiculties. First, the data mav need to
be redistributed, which amounts to a distributed copy-
in/copv-out and entails a lot of tedious (but hopetully
straighttorward) bookkeeping.  Second, an HPF
thread’s state is much more complex than a collection
of physical thread states. When a debugger initiates a
uniprocessor procedure call; it generallv saves the reg-
isters, sets up the registers and stack according to the
calling convention, lets the process run until the call
returns, extracts the result, and fnally restores the
registers. The registers are generally the state that is
preserved across a debugger-titiated procedure call.
For HPE, and in general for other paradigms that use
message passing, it may be nccessary to prescrve the
run-ume state of the messaging subsvstem in each
process. This prescrvation probably amounts to mak-
ing uniprocessor calls to messaging-supplied save/
restore entry points, allowing the messaging sub-
svstem to define what its state 1s and how it should
be saved and restored. Although logical entities would
be used to coordinate the physical derails, thisis a lot
of work and has not been prototvped.

Related Work

DIGITAL’s representative to the first mecting of’

the HPF User Group reported a general lamene
among users about the lack of debugger support.'”
Browsing the World Wide Web reveals little on the
topic of HPF debugging, although some efforts have
provided various degrees of sophistication.

Multiple Serial Debuggers

A simplistic approach to debugging support is to start
a traditional serial debugger on each component pro-
cess, perhaps providing a separate window for each
and providing some command broadcast capability.
Although this approach provides basic debugging, it
docs not address anv of the interesting challenges of
HPF debugging.
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Prism

The Prism debugger (versions dating trom 1992), tor-
merly from Thinking Machines Corporation, provides
debugging support for CM Fortran.”** The run-time
model of CM Fortran is essentially single instruction,
multiple data (SIMD), which considerably simplifies
managing the program. The program gets compiled
into an executable that broadcasts macroinstructions
to the paralle] machine, even on the CM-5 synchro-
nized multple mnstruction, multple data (MIMD)
machine. Prism primarily debugs the single program
doing the broadcasting. Thercfore, operarions such as
starting, stopping, and scrting breakpoints can usce the
traditional uniprocessor debugging rechniques. Prism
1s aware of distributed data. When visualizing a distrib-
uted arrav, however, it presents cach process’s local
portion and conceprually augments the rank of the
arrav to include a process axis. For example, a rwo-
dimensional 400 x 400 array distributed (*,cycLIC)
on five processes is presented asa 400 x 80 x 5 arrav.
For explicit message sending programs, Prism controls
the targer processes and provides a “shere graph,”
which has some of the visual cues that Aardvark’s logi-
cal frames provide.

TotalView

Recent (1997) versions of the ToralView debugger,
from Dolphin Interconnect Solutons, Inc., provide
some support tor the HPE compiler trom “T'he Portland
Group, Inc.?** Tora]View provides “process groups,”
which are treated morce like scts for set-wide operations
than like a svnthesis mro a single logical entine. As a
result, no unified view of'the call stacks exists. Total View
can “dive” nto a distributed HPF arrav and present it as
asingle array in rerms ot the original source, Distributed
data 1s not currently integrated inro the expression
system, however, so a conditional breakpomt such as
AC3,4).LT.5 does not work. TotalView 1s being
actively developed; furure versions will likely provide
more complete support tor HPF,

Applicability to Other Areas

Many of the techniques that Aardvark incorporates can
apply to other areas, mcluding the single program,
multiple data (SPM D) paradigm, debugging optimized
code, and interpreted languages.

Single Program, Multiple Data

Logical enrtities can be used to manage and examine
programs that usc the SPMD paradigm. Thisis true for
process-level SPMD, which 1s commonly used with
explicit message sending such as MPI and for
thread-level SPMD  such as directed  decomposi-
tion.*# Aardvark’s twinning algorithms can be used
i both cases. Process-level SPMD 1s similar to
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DIGITAL’s HPF; the cquivalent of twinning requires a
stvhistic way of coding and declaring a dispatch loop.
Thread-level SPMD usually bas a pool of threads wait-
ing in a dispatch loop, requiring Aardvark to know
some mechanics of the run-time support.

The differing values mechanism can apply to data in
SPMD paradigms. DIGITAL’s recent introduction of
Thread Tocal Storage (TLS),™ modeled on the Thread
Local Storage facility of Microsoft Visual C++7 with
similaritics to TASKCoMM ON ot Crav Fortran,™ provides
another source of the same variable having potentially
diftering values in ditferent thread contexts,

Debugging Optimized Code

Aardvark’s flexible locative subsystem and its aware-
ness of nonsingular values (i.c., diftering values) can be
the basis for “split-lifetime variables.™ In optimized
code, a variable can have several simultancous litetimes
(¢.g., the result of loop unrolling) or no active htetime
(c.g., berween a usage and the next assignment). New
derivations of the locative class can describe the multi-
ple homes or the nonexistent home ot a variable.
Ferching by means of such aJocative creates new kinds
ofvalues that hold all the values or an indication that
there 1s no value. User interfaces become aware of
these new kinds ot values i ways similar to their
awarencss of diftering valucs.

Aardvark’s method of asking a thread for a single-
stepping run reason and empowering the reason to
accomplish its mission can be the basis for single step-
ping optumized code. Optimized code generallv inter-
lcaves instructions from different source lines, rendering
the standard “execute instructions until the source line
number changes™ method of single stepping useless.
If mstead the compiler emits intormation about the
secmantic events of a source line, Aardvark can construct
a single-stepping run reason based on scmantic events
rather than ine numbers. Single stepping an optimized
HPF program immediately reaps the benetits since logi-
cal stepping is built on phvsical stepping.

Interpreted Languages

[Logical entities can be used to support debugging
mterpreted languages such as Java™ and Tel. In this
case, the phvsical process is the operating svstem’s
process (the Java Virtual Machine or the Tel inter-
preter), and the logical process is the user-level view
of the program. A logical stack frame encodes a pro-
cedure call of the source language. This 1s accom-
plished by examiming virrual stack information in
phvsical memeory and/or by examining physical
stack frames, depending on how the interpreter is
implemented. Variable lookup within the context of
alogical frame would usce the interpreter-managed
svmbol tables rather than the svmbol tables of the
physical process.




Summary

HPF presents a variety of challenges to a debugger,
including controlling the program, examining its call
stack, and examining its data, and user interface impli-
cations in cacharea. The concept of logical entities can
be used to manage much of the control complexity,
and a rich data-location model can manage HPF arravs
and expressions involving arrays. Many of these ideas
can apply to other debugging situations. On the sur-
face, debugging HPF can appcar to be a daunting task.
Aardvark breaks down the task into pieces and attacks
them using powertul extensions to familiar ideas.
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