1

Duo: a general program for the calculation of
spectra of diatomic molecules®

USER’S MANUAL

Yurchenko, Sergey N. Lodi, Lorenzo
s.yurchenko@ucl.ac.uk 1.lodi@ucl.ac.uk
Tennyson, Jonathan Stolyarov, Andrey V.
j-tennyson@ucl.ac.uk avstol@phys.chem.msu.ru

October 31, 2018

Introduction

Duo is a computer program for the spectroscopy of diatomic molecules. Its

main functionalities belong to one of these three tasks:

1. Given a set of potential energy curves (PECs) DUO can solve the cor-

responding one-dimensional Schrédinger equation, which for '3 states is

n? d2 J(J+1
—ﬂﬁiﬂue}(r) + | Vitate(r) + Q

and find the bound-state energies and wave functions. PECs may be

2/““2 wUJ(T) = EUJ¢UJ(T) 5 (1)

coupled to one another by a variety of coupling terms, in which case the
relevant coupling curves should be also provided. Supported couplings
include spin-orbit, spin-electronic, spin-rotational, L-uncoupling and S-

uncoupling.

2. Given a set of PECs, coupling curves and dipole moment curves DUO can
compute line intensities for rotational, vibrational and electronic transi-

tions.

3. Given a set of reference energy levels or line positions (e.g., obtained from
experiment) DUO can find the PECs and coupling curves which best re-

produce the given data (empirical refinement of PECs or ‘fitting’).

*See Ref. [YLTS15]



Duo inputs can be broken down into three sections:

1. Calculation setup.

2. Specification of the Hamiltonian (PECs and couplings).

3. Calculation of spectra or fitting of PECs and couplings (optional).

This manual is organized as follows. In Section 2 we introduce the main
functionalities of DuUO and illustrate how to compute energy levels, which is
a prerequisite step to computing spectra or fitting. In Section 3 we discuss
the calculation of spectra and in Section 4 fitting. Section 5 contains a list of
the function forms implemented in DUO to represent curves. Finally, Section 7
contains technical information on how to compile and run the program under
Linux, Windows and OS X.

1.1 Getting started

Duo runs from the command line (see Section 7) and uses as input a plain text
input file; DUO is run with a command of the type

./duo.exe < input.inp > output.txt

The input file is organized in self-contained input lines (e.g., masses 1.00000
1.00000 specifies the masses of the two atoms in Daltons) or in input sections
beginning with a specific keyword (e.g., grid) and ending with the keyword
end. The input is not case sensitive, so masses, MASSES, Masses or any other
combinations of uppercase and lowercase letters work in exactly the same way.
A comma, a space or a hyphen (minus sign) can all be used as delimiters, so,
e.g., one can also write masses 1.00000, 1.00000. Sometimes keywords have
several aliases, which are all equivalent. Lines delimited by parentheses (i.e.,
round brackets) are ignored and can be used for comments. If in the input
there is a line with one of the keyword END, STOP or FINISH all lines after it are

ignored.

2 Computing energy levels

In the following we present all keywords and options relevant to the calculations

of energy levels; a commented input is reported starting from Section 2.8.

2.1 Calculation setup

In the calculation setup we specify global information about the molecule.

e atoms defines the chemical symbols of the two atoms. For example:



atoms Na-23 H-2

specifies the 23NaD diatomic. DuO includes an extensive database of
atomic properties (atomic masses, nuclear spins, isotopic abundances and
other quantities) and will use the appropriate values when required. The
database should cover all naturally-occurring nuclei as well as all radioac-
tive ones with a half-life greater than one day and is based on the AME2012
and NUBASE2012 databases [WAW 12, AKW*12]. Each atom should be
specified by its chemical symbol, a hyphen (minus sign) and the atomic
mass number, like in the example above. Atomic masses will be used,
which is generally the most appropriate choice unless one is explicitely in-
cluding non-adiabatic corrections. The hydrogen isotopes deuterium and

tritium can also be optionally specified by the symbols D and T.
The atomic mass number can be omitted, like in the following example:

atoms Li F

In this case DUO will use the most-abundant isotopes ("Li and *°F in the
example above) or, for radioactive nuclei not naturally found, the longest

lived one. For example

atoms Tc H

selects for technetium the isotope °"Tc, which is the longest-lived one. A
few nuclides in the database are nuclear metastable isomers, i.e. long-lived

excited states of nuclei; these can be specified with a notation of the kind

atoms Sb-120m H

In the example above the radioactive isotope of antimony '2°™Sb is spec-

ified (and hydrogen). Another example

atoms Sc-44m3 H

44m3 Sc (

specifies the scandium radioactive isotope and hydrogen).

masses is an optional keyword which specifies explicitely the masses of
the two atoms (in Daltons, i.e. unified atomic mass units), overriding the
values from the internal database if the keyword atoms is also specified.

For example, the masses for the CaO molecule would be:

masses 39.9625906 15.99491463

The masses may be atomic masses (the recommended choice if one does not



include adiabatic or non-adiabatic corrections), nuclear masses.! An up-
to-date reference of atomic masses is provided by the AME2012 catalogue
[WAW*12] DUO can also make use of position-dependent masses (which is
a practical way to account for non-adiabatic effects), which are described

in Section 2.5.

e nstates is the number of potential energy curves (PECs) included in the
calculation. For example, if the ground state and four excited states of a

molecule are to be included:

nstates 5

Note that if nstates is set to a number different from the actual number
of PECs included in the input file no error message is issued; if more than
nstates PECs are included in the input file then the PECs with state

> nstates will be ignored.

Note also that, consistently with the way DuoO works internally, nstates

is the number of unique PECs in absence of spin-orbit couplings.

e jrot specifies the set of total angular momentum quantum numbers to be
computed. These must be integers or half-integers, depending on whether
there is an even or odd number of electrons. One can directly specify
the values (separated by spaces or commas), specify a range of values
(a minimum and a maximum values separated by a hyphen; note than
the hyphen must be surrounded by at least by one space on each side).
The values do not have to appear in ascending order. For example, the

following line

jrot 2.5, 0.5, 10.5 - 12.5, 20.5

specifies the set J =0.5, 2.5, 10.5, 11.5, 12.5, 20.5.

The first J in the jrot list will be used to define the reference zero-point-

energy (ZPE) value for the run.

Note that in the optional sections specifying calculation of spectra (see
Section 3) or specifying fitting (section 4) is necessary to specify again a list
of J values by J and J1ist respectively, which are completely independent

from the jrot value specified for energy level calculation.

I Actual, physical nuclear masses are obtained [WAW™12] by myuciear = Matomic — ZMe +
Be(Z)/c?, i.e. by subtracting the mass of the electrons and adding the mass-equivalent of the
binding energy of the electrons; a fit of the Dirac-Hartree-Fock atomic energies Ref.[VD97]
gives, within a fitting error of £5 %, Be(Z)/c? ~ (Z/1729)%242 Da. In practice B. is a
tiny correction and can be neglected, which is also arguably a more consistent choice in a

non-relativistic context.



e symmetry (or Symgroup) is an optional keywork which specifies the molec-
ular permutation-inversion symmetry group, which is Cs (M) for heteronu-

clear diatomics and C2v(M) for homonuclear diatomics. For example:

symmetry Cs(M)

Instead of C2v(M) one can write equivalently C2h(M) or G4(M), as these
groups are isomorphic; the only difference will be in the labels used for
the energy levels. The short-hand notations Cs, C2v, C2h and G4 can also
be used and are equivalent to the ones with (M). The energy calculations
are done using Cs(M), which is also the default, while for the intensities
the C2v(M) group can be also used. Note that this keyword refers to
the symmetry of the exact total (electronic, vibrational and rotational)
Hamiltonian and not to the C., or the Dy, point groups, which are

relative to the clamped-nuclei electronic Hamiltonian.

e DO_NOT_SHIFT_PECS suppresses shifting the PEC to the minimum of po-
tential 1 (assumed to the lowest). The default is to do the shift of the
PECs to the minimum of poten 1. In order to suppress shifting energies
to ZPE, use

ZPE 0.0
see also the description of the keyword ZPE.
e SOLUTIONMETHOD defines the DVR basis set and thus the DVR solution

method for the vibrational problem. Possible methods include 5SPOINTDIFFERENCES

SOLUTIONMETHOD 5POINTDIFFERENCES

for the 5 points stencil finite differences to derive the kinetic energy op-
erator. A more efficient method is Sinc DVR (default), which is switched

on with

SOLUTIONMETHOD SINC

Since Sinc is also currently the default method, this does not have to be

specified.

2.2 Defining the grid

grid specifies an input section with the specifications of the grid of points used

for the solution of the vibrational problem. Example:

grid
npoints 501
unit angstroms
range 1.48 , 2.65



end

type 4
alpha 1.0
re 1.80

Keywords:

npoints is the number of grid points N,. Typical runs use 100 to 500

points.

units is optional and specifies the unit of measure of the grid specifica-

tions; possible values are angstroms (default) or bohrs.

range specifies the range of the grid in terms of ry;, and .y, the lower
and upper bond lengths. 7y, should be strictly greater than zero and
rmax Strictly greater than rp;,. As elsewhere in the program, the value

may be separated by a space or a comma.

type is an integer number > 0 which specifies the type of grid. Duo
support not only uniformely spaced grids (default), which correspond
to type 0, but also various kind on non-uniformely spaced ones, which
are particularly useful for near-dissociation, very weakly bound states
[MSLRO08]. Example:

type O

In the case of uniformely-spaced grids the mesh points r;, j = 0, N, — 1
are given by
. Tmax — "min
i = Fmin + AJ where A= ——r (2)
N, -1
Non-uniformely spaced grids are based on a change of variables from r to
z = f(r); it is then the transformed variable z that is uniformely sampled.

The transformed variables z are parametrised by two parameters, r. and

«, which have to be specified for the grid types > 0 (see below).

Transformed variable currently implemented are [MSLROS]:

type 1z =exp(—e (7))

type 2 z=1- (1 + e"‘(7"_re))71

type 3 z = arctan(a(r —r.))

type 4 z=(y—1)/(y+1) withy = (r/re)*

All the transformed grids have the property of decreasing the density of
points for large r, so that one does not ‘waste’ too many points in regions
where the potential is almost constant and the corresponding vibrational

wave function slowly varying, see figure 1 for an example.
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Figure 1: Example of the non-uniformly spaced grids implemented in DUO,
see Section 2.2. type 1 corresponds to a transformation to the variable
z = exp(—e 7)) type 2 to 2z = 1 — (1—|—e°‘(’”7“))_1; type 3 to
z = arctan(a(r — 1.)); type 4 to  z = (y—1)/(y + 1) with y = (r/r.)*.
All grids contain 20 points and span from r = 0.5 to r = 8.0. We set the

parameters to r. = 2.0 and « = 0.5 in all cases.

e re (alias: ref) Reference bond length used for type > 0 (see above).

e alpha Parameter « for type > 0 (see above).

2.3 Vibrational basis set

The keyword vibrationalbasis (aliases: vibrations, contraction) specifies
the size of the vibrational basis set. As explained in Ref. [YLTS15] DUO uses a
‘contraction’ scheme to construct the rovibronic basis set used for the solution
of the coupled problem. As a first step the J = 0 vibration problem is solved for
each electronic state, in which the corresponding Schrédinger equation (Eq. (1))
is solved in the grid representation of npoints. Then a certain number of the
resulted vibrational eigenfunctions |v) with 0 < v <vmax and FE < EnerMax is

selected to form the vibrational part of the basis set
| QST Av) = |JQ)|ST)|A)|v)

where |JQ) and |SX) are the rigid rotor functions and |A) are the electronic

wavefunctions implicitly taken from the ab initio calculations.



Example:

vibrationalbasis
vmax 30
enermax 25000

end

2.3.1 Keywords

e vmax (alias: vibmax) specifies the value of the maximum vibrational quan-

tum number to be computed and kept for the solution of the coupled

problem. For example

vmax 15

specifies to compute for each PEC the lowest-energy 15 vibrational levels;
it is also possibile to specify different values of vmax for each PEC, in

which case the values must be given as a list; for example

vmax 10 15 8

specifies that for the PEC identified as poten 1 (see Section 2.5) Duo
should use vyax = 10, for poten 2 vy = 15 and for poten 3 vyax = 8.
If there are more PEC (poten 4 etc.) they will use for vmax the last value

specified (vax = 8 in this example).

enermax Alternatively or complementary to vmax one can select the vibra-
tional energy levels to compute by specifying an upper energy threshold
(in cm™!). Similarly to vmax, one can specify a different value of enermax

for each PEC by writing a list of values; for example

enermax 30000.0 25000.0

selects a threshold of 30 000 cm~! for poten 1 and one of 25 000 cm™!
for poten 2 and any other potential present. Note that by default Duo
will shift the PECs so that the lowest point of the lowest-lying PEC has
zero energy, and that the energy used for the enermax threshold are ‘total’
vibrational energies including the zero point energy. One can prevent DuO
from shifting the PECs by writing in the input (anywhere but not within

an input section) the option do_not_shift_pecs.

If both enermax and vmax are specified only levels which satisfy both
criteria are kept for the solution of the coupled problem. If neither of them
is specified (or the vibrationalbasis input section is missing altogether)
then vmax is taken equal to npoints for all PECs and there is a hard-coded

limit of 10® cm~! for enermax.



2.4 Options for the coupled problem

The input section EigenSolver (aliases: FinalStates, diagonalizer, FinalStates)
specifies various options relative to the J > 0 and/or the coupled problem; it
also specifies the LAPACK routine which should be used for matrix diagonal-
ization (both for the solution of the vibrational problem and for the solution of

the coupled problem). Example:

Eigensolver
enermax 25000.0
nroots 500
ZPE 1200.0
SYEVR

END

2.4.1 Keywords

e nroots is the number of energy levels of the coupled problem to be com-

puted (for any of the specified values of jrot). Example:

nroots 500

e enermax (aliases: uplimit, enercut) is an energy threshold (cm~!) se-
lecting the energy levels of the coupled problem to be computed. For

example:

enermax 15000.

If both nroots and enermax are specified then only levels satisfying both
criteria are selected. Note that the present enermax threshold is distinct
from the homonymous one in the vibrationalbasis input section, as the
latter refers to the solution of the J = 0 uncoupled problem while the one
being discussed at present refers to the solution of the full (rotationally

excited and/or coupled) problem.

e ZPE allows to explicitly input the zero-point energy (ZPE) of the molecule
(in em™1!). This affects the value printed, as DUO always prints energy of

rovibronic levels by subtracting the ZPE. Example:

ZPE 931.418890

If ZPE is not included Duo will define the ZPE value as the lowest com-
puted energy for the first value of J listed next to the jrot keyword (jlist
in the fitting), from the positive parity block. Currently it is not possible
to take an automatic ZPE from the negative parity block (it is however
possible in the intensity and fitting parts of the output). Thus ZPE does
not necessarily have to be from the ground electronic state. This ZPE



taken from the eigensolver/diagonalizer section changes the energies

in the main, standard DuUO output.

The ZPE shift can be suppressed by setting the ZPE value to zero. This
should be done either in the Diagonalizer, Fitting or Intensity sec-

tions, depending on the current task:

ZPE 0.0

e SYEVR or SYEV This optional keywords permits to specify which routine
from the LAPACK library should be used for matrix diagonalization. At

the moment only the two options quoted are implemented. Example:

SYEVR

The SYEV routine (default) first reduces the matrix to diagonalize to tridi-
agonal form using orthogonal similarity transformations, and then the QR
algorithm is applied to the tridiagonal matrix to compute the eigenvalues
and the eigenvectors. The SYEVR routine also reduces the matrix to di-
agonalize to tridiagonal form using orthogonal similarity transformations
but then, whenever possible, computes the eigenspectrum using Multiple
Relatively Robust Representations (MR). SYEVR might give better per-
formance, although exact timings are system- and case-dependent. See
also the comments in Ref. [YLTS15]

2.5 Specification of curves and couplings

Once the main global parameters have been specified as described in the previous
sections, it is necessary to introduce the PECs and the various coupling curves
defining the Hamiltonian. Dipole moment curves (DMCs), which are necessary
for calculating spectral line intensities, are also discussed in this section, as well
as some special objects which are used for fitting. Each object specification
consists in a first part in which keywords are given and a second one (starting
from the values keyword) in which numerical values are given; the order of
the keywords is not important, except for values. Each object specification is
terminated by the end keyword.

Objects of type poten (i.e., PECs, discussed in more detail below) begin with
a line of the kind ‘poten N’ where N is an integer index number counting over
potentials and identifying them. It is recommended that PECs are numbered
progressively as 1,2, 3, . . ., although this only restriction is that the total number
Npax of PECs should be not less than the total number of states specified by
the keywork nstates (section 2.1).

10



Most other objects (e.g., spin-orbit) are assumed to be matrix elements of
some operator between electronic wave functions and after the keyword identify-
ing their type require two integer numbers specifying the two indexes of the two
electronic states involved (bra and ket). The indexes are the numbers specified
after the poten keyword.

Currently Duo supports the following types of objects:

e poten (alias: potential) Objects of type poten represent potential en-
ergy curves (PECs) and are the most fundamental objects underlying
each calculation. From the point of view of theory each PEC is the solu-
tion of the electronic Schrédinger equation with clamped nuclei, possibly
complemented with the scalar-relativistic correction and with the Born-
Oppenheimer Diagonal correction (also known as adiabatic correction).
Approximate PECs can be obtained with well-known quantum chemistry
methods such as Hartree-Fock, coupled cluster theory etc. Objects of type
poten should always appear before all other objects as they are used to
assign to each electronic states its quantum numbers. Here is an example
for a PEC showing the general structure:
poten 1

name "a 3Piu"
symmetry u

type EMO

lambda 1

mult 3

values

Vo 0.82956283449835E+03
RE 0.13544137530870E+01
DE 0.50061051451709E+05
RREF -0.10000000000000E+01
PL 0.40000000000000E+01
PR 0.40000000000000E+01
NL 0.20000000000000E+01
NR 0.20000000000000E+01
BO 0.20320375686486E+01
B1 -0.92543284427290E-02
B2 0.00000000000000E+00
end

e L2 (alias: L*x2) These objects represent matrix elements between elec-
tronic states of the molecule-fixed angular momentum operator L? =
2+ ﬁg + L2. See Section 2 of Ref. [YLTS15] for more information.

e L+ (aliases: Lplus, LxLy) and Lx represent matrix elements between elec-
tronic states of the molecule-fixed angular momentum operator f/+ =
L, + zﬁy and L, in the A- and Cartesian-representations, respectively.
See Section 2 of Ref. [YLTS15] for more information.

e spin-orbit and spin-orbit-x These objects are matrix elements of the

11



Breit-Pauli spin-orbit Hamiltonian in the A- and Cartesian-representa-
tions, respectively (see Section 2.2 of Ref. [YLTS15]).

Example:

spin-orbit 1 3

name "<0,S=0 (X1Sigma+) |LSY|+1 (a3Pi),S=1> SO01"
spin 0.0 1.0

lambda 0 -1

sigma 0.0 -1.0

type grid

factor sqrt(2) (1 or i)

units bohr cm-1

values
2.80 17.500000
2.90 15.159900
3.00 12.347700
3.10 9.050780
3.20 5.391190
3.30 1.256660
3.40 -3.304040
3.50 -8.104950
3.60 -12.848400
3.70 -17.229100
3.80 -21.049000
3.90 -24.250400
4.00 -26.876900
4.10 -29.014700
4.20 -30.756100
4.30 -32.181900
4.50 -34.335500
5.00 -37.348300
end

For the spin-orbit-x case (A-representation), the value of the matrix
elements of the L, operator nust be specified using the <x|Lz|y> key-
word. This representation is designed to work with e.g., the MOLPRO
outputs. For A # 0, the diagonal SO-matrix element (e.g. between to
II-components of A = 1) should be specified using the (II,|LSZ|IL,) com-
ponent (e.g. (1.2|LSZ|1.3)).

spin-spin-p and spin-spin-o Parametrised phenomenological spin-spin
operator (diagonal and off-diagonal. See Section 2.2 of Ref. [YLTS15]).

spin-rot Matrix elements of the spin-rotational operator (see Section 2.2
of Ref. [YLTS15]).

bob-rot (alias: bobrot) Specifies the rotational g factor (rotational Born-
Oppenheimer breakdown term), which can be interpreted as a position-de-
pendent modification to the rotational mass (see Section 2.2 of Ref. [YLTS15]).

diabatic (alias: diabat) Non-diagonal coupling of potential energy func-

tions in the diabatic representation.

12



e lambda-opq, lambda-p2q, and lambda-q These objects are three Lambda-
doubling objects which correspond to o™P + ptP + ¢tP | ptP 4 244D and
q"P couplings, see Ref. [YLTS15].

Example:

lambda-p2q 1 1
name "<X,2Pi|lambda—p2q|X,2Pi>"
lambda 11
spin 0.5 0.5
type BOBLEROY

factor 1.0

N 8

values

RE 0.16200000000000E+01
RREF -0.10000000000000E+01
P 0.10000000000000E+01
NT 0.20000000000000E+01
BO 0.98500969657331E-01
B1 0.00000000000000E+00
B2 0.00000000000000E+00
BINF 0.00000000000000E+00
end

e abinitio Objects of type abinitio (aliases: reference, anchor) are
reference, ‘abinitio’ curves which may be specified during fitting. When
they are used they constrain the fit so that the fitted function differs as
little as possible from the ab initio (reference) one (see Ref. [YLTS15]).
The reference curve is typically obtained by ab initio methods. For any
Duo object one can specify a corresponding reference curve as in the
following example:
abinitio spin-orbit 1 2

name "<3.1,8=0,0 (BipSigma)|LSX|+1 (d3Pig),S=1,1>"
spin 0.0 1.0

type grid

units bohr cm-1

values
2.3 -3.207178925 13.0
2.4 -3.668814404 24.0
2.5 -4.010985122 35.0
2.6 -4.271163495 46.0
2.7 -4.445721312 47.0
2.8 -4.468083270 48.0

end

e dipole (aliases: dipole-moment, TM) and dipole-x Diagonal or transition
dipole moment curves (DMCs), necessary for computing (dipole-allowed)
transition line intensities and related quantities (Einstein A coefficients

etc.). dipole-x is related to the Cartesian-representation.

At the moment DUO cannot compute electric-quadrupole or magnetic

dipole transition line intensities.

13



In the following we give information on the keywords used during the object

characterisation.

2.6 Keywords used in the specification of objects

This is a list of keywords used to specify various parameters of DUO objects.

e name is a text label which can be assigned to any object for reference in

the output. The string must appear within quotation marks. Examples:

name "X 1Sigma+"
name "<X1Sigma\ |HSO\|A3Pi>"

e lambda specifies the quantum number(s) A, i.e. projections of the elec-
tronic angular momentum onto the molecular axis, either for one (PECs)
or two states (couplings). It must be an integral number and is allowed
to be either positive or negative. Examples:
lambda 1
lambda 0 -1

The last example is relative to a coupling-type object and the two numbers

refer to the bra and ket states.

e sigma specifies the quantum number(s) X, i.e. the projections of the
total spin onto the molecular axis, either for one (diagonal) or two states
(couplings). These values should be real (=S < ¥ < S) and can be half-
integral, where S is the total spin. sigma is currently required for the

spin-orbit couplings only. Example:

sigma 0.5 1.5
where two numbers refer to the bra and ket states.

e mult (alias: multiplicity) specifies the multiplicity of the electronic
state(s), given by (2S5 + 1), where S is the total spin. It must be an

integer number and is an alternative to the spin keyword. Examples:

mult 3
mult 1 3

The last example is relative to a coupling-type object and the two numbers

refer to the bra and ket states.

e spin The total spin of the electronic state(s), an integer or half-integer

number. Example:

spin 1.0
spin 0.5 1.5

14



The last example is relative to a coupling-type object and the two numbers

refer to the bra and ket states.

symmetry This keyword tells DUO if the electronic state has gerade g or
ungerade u symmetry (only for homonuclear diatomics) and whether it
has positive (+) or negative - parity (only for X states, i.e. states with
A =0, for which it is mandatory). Examples:

symmetry +
symmetry + u
symmetry g

The g/u or +/- can appear in any order.

type selects the parametrised analytical function used for representing the
objects or selects the interpolation type to be used. The function types

supported by DUO are listed in Section 5. Examples:

type grid

type polynomial

type morse

In the examples above grid selects numerical interpolation of values given
on a grid, polynomial selects a polynomial expansion and morse selects

a polynomial expansion in the Morse variable. See Section 5 for details.

Interpolationtype is used only for type grid and specifies the method
used for the numerical interpolation of the numerical values. The currently
implemented interpolation methods are Cubicsplines and Quinticsplines

(default). Example:

Interpolationtype Cubicsplines

Interpolationtype Quinticsplines

factor This optional keyword permits to rescale any object by an arbi-
trary multiplication factor. At the moment the accepted values are any
real number, the imaginary unit ¢, the square root of two, written as
sqrt (2), or products of these quantities. To write a product simply leave
a space between the factors, but do not use the * sign. All factor can have
a + sign. The default value for factor is 1. This keyword is useful, for
example, to temporarily zero a certain object without removing it from
the input file. Examples:

factor 1.5

factor -sqrt(2)

factor -2 sqrt(2) i

In the last example the factor is read in as —2v/2i. Note that imagi-
nary factors make sense only in some cases for some coupling terms (in

particular, spin-orbit) in the Cartesian-representation, see Section 2.7.
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e units This keyword selects the units of measure used for the the object
in question. Supported units are: angstroms (default) and bohr for the
bond lengths; cm-1 (default), hartree (aliases are au, a.u., and Eh), and
eV (electronvolts) for energies; debye (default) and ea0 (i.e., atomic units)

for dipoles; units can appear in any order. Example:

units angstrom cm-1 (default for poten, spin-orbit, lambda-doubling etc)
units bohr cm-1

units debye (default)

units ae0 bohr

e ASSIGN_V_BY_COUNT The vibrational quantum number v is assigned by
counting the rovibronic states of the same ‘State’, A, ¥ arranged by in-
creasing energy. The corresponding ‘State’, A, X labels are defined using
the largest-contribution approach (the quantum labels corresponding to
the basis set contribution with the largest expansion coefficient). The key-
word should appear anywhere in the body of the input file. The default
is to use the largest-contribution approach also to assign the vibrational
quantum number (no ASSIGN_V_BY_COUNT).

e values This keyword starts the subsection containing the numerical values
defining the object. For one of the type’s corresponding to an analytical
function (Section 5), the input between values and end contains the values
of the parameters of the function. The input consists in two columns
separated by spaces containing (i) a string label identifying the parameter

and (7)) the value of the parameter (a real number).

In case of fitting (see Section 4) a third column should also be provided;
the parameters which are permitted to vary during fitting must have in the
third column the string fit or, alternatively, the letter £ or the number 1.
Any other string or number (for example, the string nofit or the number
0) implies the parameter should be kept at its initial value. In the case of
fitting, the keyword link can be also appear at the end of each the line;
this keyword permits to cross-reference values from different objects and

is explained below in this section.

In the case of objects of type grid only two columns are normally needed,
a first containing the bond length r; and a second with the value of the
object. Only in the case of object of the abinitio (reference) type and
specified as grid a third column should be present specifying the fitting
weights (see Section 4).

o <x|Lz|y>, <z|Lz|xy> (aliases <alLz|b> and <1|Lz|2>) This keyword
is sometimes needed when specifying coupling curves between electronic

states with |A| > 0 in order to resolve ambiguities in the definition of

16



the degenerate components of each electronic state, see Section 2.7. This
keyword specifies the matrix element of the L, operator between the de-
generate components of the electronic wave function. Quantum chemistry
programs such as Molpro choose the degenerate components so that they
transform like the x or y functions (for states with odd |A], i.e. I, &, - -,
corresponding to symmetry species by and by in the Cg, point group) or
like z and xy (for states with even |A[, i.e. A, T, ---, corresponding to
symmetry species a; and ag in the Cy, point group). In this keyword we
specify matrix elements of the type (IL,|L.[IL,) or (A,|L.|A,,) for the
bra and ket states. Examples:

<x|Lzly> i -i
<z|Lz|xy> -2i i

These matrix elements are pure imaginary number in the form £|Ali. It is
the overall £ sign which DUO needs and cannot be otherwise guessed. As
shown in the examples above, each factor should be written in the form

+|A|i without any space or * sign.

link This special keyword is used in fitting to force a set of parameters
(which may be relative to a different object) to have the same value.
For example, in a typical situation one may want to fit a set of PECs
and to constrain their dissociation (asymptotic) energy to the same value
(because they are expected from theory to share the same dissociation
channel). After the keyword 1ink one should provide three numbers i1,
i9, i3 defining the parameter ID, where 4; identifies the object type (e.g.
poten, spin-orbit, spin-rot etc.), iy is the object number within the
type i1 and i3 is the parameter number as it appears after values. The ID
numbers 41,i, i3 are specified in the fitting outputs in the form [i,j,k].

Example of the input:

DE 0.50960000000000E+05  fit link 1 1 3

Example of the corresponding output

DE 0.50960000000000E+05 [1 1 3]

morphing This keyword is used for fitting and switches on the morphing
method, see Ref. [YLTS15].

ZPE allows to explicitly input the zero-point energy (ZPE) of the molecule
(in cm™1!). This affects the value printed, as by default DUO prints energy
of rovibronic levels by subtracting the ZPE. if not specified, the lowest
energy of the first J-block (independent of parity) will be used as appear

on the line J1list.
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e fit_factor This factor (dy) is used as a part of the reference ab initio
curves of the abinitio type which (when given) is applied to the corre-
sponding weights assigned to the corresponding values of this object, (see
Section 4.3 of [YLTS15]). It is different from fit_factor defined within
the Fitting section.

Example:

abinitio poten 1
name "A 1Pi"

type grid
lambda 1
mult 1

units bohr cm-1
fit_factor 1el
values

.00 32841.37010 0.01
.20 17837.88960 0.10
.40 8785.33147 0.70
.60 3648.35520 1.00
.70 2107.10737 1.00
.80 1073.95670 1.00
.90 442.52180 1.00
.00 114.94960 1.00
.10 0.00000 1.00
.20 48.46120 1.00
.30 213.34240 1.00
.40 455.16980 1.00
.50 739.61170 1.00
.60 1038.82620 1.00
.70 1332.46170 1.00
.00 2059.31119 1.00
.50 2619.19233 0.30
.00 2682.84741 0.30
.00 2554.34992 0.30
8.00 2524.31106 0.30
10.00 2561.48269 1.00
12.00 2575.09861 1.00
end

DO D WWWWWWWWNNNNDNDNDN

O OO O P =

2.7 Representations of the electronic wave functions

As mentioned in the discussion of the <1|Lz|2> keyword above, quantum chem-
istry programs generally use real-valued electronic wave functions which trans-
form according to the irreducible representations of the Cs, point group (for
heteronuclear diatomics) or of Dgy, (for homonuclear diatomics). On the other
hand Duo internally assumes the electronic wave functions are eigenfunctions
of the L, operator, which implies they must be complex valued for |A] > 0.
Converting from one representation to the other is simple, as

| £ A) = —=[FI1) —i[2)]. 3)

1
V2
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2.8 Example: computing energy levels (one PEC).

Here below there is a commented, minimalistic DUO input file for a single Morse
potential; note that the input is case-insensitive. In this particular example we
compute the J = 0 energy levels of a Morse oscillator V (r) = D, (1 —e~(r=7))?2
with D, = 40000 cm™*, r, =1 A and @ =1 A~'; the masses of both atoms are
both set to 1 Dalton, so that this example is very approximately corresponds
to the hydrogen molecule Ho. The exact energy levels are given by E,, = w(n +
1/2)[1 = ze(n+1/2)], n =0,...,33, with w = a\/2D./p = 2322.593667 cm ™!
and z. = w/(4D.) = 0.01451621.

(DUO test input) comment line
masses 1.00000 1.000000 masses of the two atoms, in Daltons

nstates 1
jrot 0 10

grid

npoints 250
range 0.30, 6.50
end

EigenSolver
enermax 35000.0
nroots 10
SYEV

end

VibrationalBasis
vmax 10
END

poten 1

name "Morse"
type Morse
lambda O
mult 1
symmetry +
units cm-1
units angstroms
values

v0 0.000000
r0 1.000000
a0 1.000000
De 40000.
end

number of PECs in the input
total angular momentum J

specification of the grid
number of grid points

Tmin and rmax, in Angstroms
end of grid specification

options for the Eigensolver

print only levels up to enermax cm™
print only nroots lowest-energy levels
use SYEV diagonalizer from LAPACK
end of input section EigenSolver

1

options for the vibrational uncoupled problem
compute vmax+1 vibrational states
end of vibrational specifications

PEC number 1 specification

label

functional form: (extended) Morse function
quantum number A

multiplicity, 25 + 1

only for ¥ terms: 4+ symmetry

unit for energies

unit for distances and inverse distances
beginning of specification of the parameters
specification of global shift

specification of 7.

specification of a

specification of D,

end of PEC number 1 specification

The output has this structure:

e DuO will by default echo the whole of the input file in the output be-
tween the lines (Transcript of the input --->) and (<--- End of
the input.) This is useful so that the ouput file will also contain the
corresponding input. To avoid echoing the input just add the keyword
do_not_echo_input anywhere in the input file (but not within an input

section).
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e Duo will then print its logo, the values of the physical constants (used
by the program for such things as conversions between different units)
and print some of the global input parameters such as the number of grid

points, extent of the grid etc.

e Duo will then print the values of all objects (PECs, dipole moment curves,
couplings) on the internal grid. For PECs Duo will also compute and print
quantities such as the value of the first few derivatives at the minimum, the
corresponding equilibrium spectroscopic constants (harmonic frequency,

rigid-rotor rotational constant etc.).

e DuO will solve the J = 0 one-dimensional Schrodinger equation for each of

the PECs and print the corresponding ‘vibrational (contracted)’ energies.

e DuoO will then solve the full problem (with J > 0 and/or all coupling terms
activated). In the example above we specified two values of J, namely
J =0 and J = 10. The J = 0 energies will be exactly the same as the
‘vibrational (contracted)’ ones, as in our example there are no couplings
at all.

2.9 Writing the wave functions to disk

Both the vibrational (J = 0, uncoupled) basis functions and the coefficients of
the expansion of the final (J > 0 and coupled) wave functions can be written to
disk by including in the DUO input a section with the following structure (see
Section 2.2 of the DUO paper [YLTS15]):

checkpoint
eigenfunc save
filename CO
end

Two files will be produced, called in our example CO_vib.chk and CO_vectors. chk.
The file CO_vib. chk contains the values of the vibrational basis functions at the

grid points and has the following structure:

1 0.000000 1 0 A_1Sigma+
0.417251193034E-06
0.913182486541E-06
0.140429031525E-05
0.191466765349E-05
0.243955552609E-05
0.298913870277E-05
0.356440215967E-05
0.417282770822E-05
0.481737299860E-05
0.550475969611E-05
0.623909577848E-05
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The first line describes the assignment of the vibrational basis function; the
first number is a counter over all vibrational wave functions; the second is the
energy in cm~!; the third is the ‘state’ quantum number indicating the electronic
state; the fourth is the v vibrational quantum number; finally, the label of the
electronic state is reported. What follows is the value of the vibrational wave

function at the grid points. The file ends with the line

End of contracted basis

The file CO_vectors.chk contains the values of the expansion coefficients of

the final wave functions. The structure is as follows:

Molecule = C-12 0-16

masses = 12.000000000000 15.994914504752

Nroots = 3

Nbasis = 0

Nestates = 1

Npoints = 100

range = 0.6500000 3.0000000

Morse_ <- States

I #1 J |l pl Coeff. | St vib Lambda Sigma Omegal

1 0.0 1 0.100000000000E+01 1 1 0 0.0 0.0
1 0.0 1 0.000000000000E+00 1 2 0 0.0 0.0
1 0.0 1 0.000000000000E+00 1 3 0 0.0 0.0
2 0.0 1 0.000000000000E+00 1 1 0 0.0 0.0
2 0.0 1 0.100000000000E+01 1 2 0 0.0 0.0
2 0.0 1 0.000000000000E+00 1 3 0 0.0 0.0
3 0.0 1 0.000000000000E+00 1 1 0 0.0 0.0
3 0.0 1 0.000000000000E+00 1 2 0 0.0 0.0
3 0.0 1 0.100000000000E+01 1 3 0 0.0 0.0

End of eigenvector

The first seven lines are a header containing the names of the atoms, the atomic
masses, the number of wave functions computed, the total dimension of the
J > 0 or coupled Hamiltonian matrix, the number of electronic states in the
calculations, the number of grid points and range of the grid (in A). The numbers
following are: # is a counter over the rovibronic wave functions; J is the total?
angular momentum; p is the total £ parity (0 for + and 1 for —); Coeff. is the
value of the coefficient in the expansion; following are the quantum number of

the basis function (electronic, vibrational, A, ¥ and ).

3 Computing spectra

Absorption or emission spectra as well as line lists, partition functions and other
related quantities can be computed by adding in the input file an intensity

section. Here is an example of its general structure:

2Stricly speaking, J = R + L + S is the sum of the rotational and total electronic angular
momenta; it is the total angular momentum only if the nuclear angular momentum I is zero
(or is neglected).
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intensity
absorption
thresh_intens 1e-15
thresh_coeff le-15
temperature 300.0
gstat 10.0

gns

1.0 1.0

ZPE 931.418890
selection (rules) 1 1

J,

0.5, 1.5

freq-window -0.001, 25000.0
energy low -0.001, 6000.00, upper -0.00, 30000.0

end

If the keyword intensity is followed by none or off then the calculation of

intensities is disabled and the section is ignored. This is useful to temporarily

avoid the intensity calculation without removing or commenting out the relative

input section from the input file. The meaning of the keywords is explained in

the following.

3.1

Keywords

absorption, emission, partfunc These keywords define the type of the
spectra (absorption or emission) or whether DUO should only compute
the partition function. This keyword should appear immediately after

intensity. Example:

absorption
emission
partfunc

J (aliases Jrot, Jlist) defines the range of rotational angular momentum
quantum numbers for which line transitions should be computed. Note
that this parameter is independent from jrot specified in the general setup

(Section 2.1). Example:

J 0,10

Using the J keyword the intensity production can be split into independent
J Jmin, Jmax ranges. In order to prevent overlaps, the range Jmin, Jmax
does not include transitions Jyin <> Jmin, except for Jyni, = 0.5, where

the transitions 0.5 <+ 0.5 are included3.

energy low and upper These keywords to restrict the calculation to tran-
sitions between levels satisfying the specified lower and upper energy
thresholds (in em™!): In the following we select transitions for which the
lower state is between 0 and 6000 cm~! and the upper state is between
10000 and 30000 cm™~*:

3Transitions 0 <> 0 are forbidden
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energy low 0.0, 6000.00, upper 10000., 30000.0

Note that in this context level energies are measured by setting the energy
of the lowest energy level to zero, i.e. they do not include the zero-point
energy, in contrast with the threshold enermax specified in the general

setup (Section 2.1).

freq-window specifies a frequency window for line positions (in em™!).

Example:

freq-window 0.001, 25000.0

gns specifies the nuclear statistical weight, which for heteronuclear di-
atomics is given by g,s = (211 +1)(2I2 + 1), where I; and I are the spins
of the two nuclei. In the case of homonuclear diatomics four numbers
are expected, one for each symmetry species of the Cy,(M) or Cap(M)
symmetry groups (see Ref.[YLTS15]). Example:

GNS 3.0

For the C3,(M) or Ca;,(M) symmetries associated with the homonuclear
molecules the g, values must be specified for all of the four irreducible
representation in the order Ay, Ay, By, By and Ay, Ay, By, By, respec-
tively.

GNS 1.0 1.0 0.0 0.0

overlap allows for printing vibrational overlap integral, aka Franck-Condon
factors. The default is not to print (off). One can also explicitly switch
the overlaps off by adding off next to overlap:

overlap off

The format is

<i, vl i’, v’> = value

where i and i’ are the electronic state numbers, v and v’ are the vibra-

tional labels and value is the overlap:
(i,v|i’,v").

vib-dipole prints out vibrational transition moments (i, v|u(r)|i’,v"). By
default these values are print out whenever the intensity is invoked. In

order to switch this option off write off next to vib-dipole:

vib-dipole! off

The format is
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<i, v| <State | mu | State’> i’, v’> = value

where i and i’ are the electronic state numbers, v and v’ are the vibra-
tional labels, State is the electronic state label and value is the transition

dipole moment.

Temperature specifies the temperature (in Kelvin) to be used for the cal-
culation of line intensities. It can be considered as a reference temperature
since the Einstein coefficients as the main computational product and are
temperature independent. The partition function associated with this

Temperature should be also specified. Example:

temperature 298.0

gstat (aliases: part-func and Q). This keyword is to specify the value of
the partition function @ for the reference temperature defined by Temperature.
If not given, @ is computed by DUO.

Example:

gstat 10.0

ZPE This keyword defines the zero point energy (cm~!) used for the cal-
culation of line intensities, overriding the value specified by the same key-
word in the EigenSolver input section (see Section 2.4). It is important
to explicitly specify ZPE when the ground rovibronic state (whose energy
defined the ZPE) is not included in the calculation. Omitting this keyword
corresponds to using as ZPE the energy of the lowest-lying level used in

the calculation. Example:

ZPE 931.418890

Thresh-intes specifies a minimum intensity threshold (in cm/molecule)
for printing the transition into the output file as well as into the line list.

Example

Thresh-intes 1e-35

Thresh-Einstein specifies a threshold for the Einstein coefficient (in 1/s)
for printing out the transition into the output file as well as into the line

list. Example:

Thresh-Einstein 1e-50

linelist specifies a file name for writing a line list in the ExoMol format.

Example:

linelist ScH
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4

In the example above two files will be written, ScH.states, containing a
list of energy levels, and ScH.trans, containing the line transition data
(line positions and Einstein A coefficients). See Refs.[THY13, YLTS157 |
for the description of the ExoMol format.

Fitting

Duo allows the user to modify (‘refine’) the potential energy curves and other

coupling curves by least-squares-fit to ‘experimental’ energy term values or

wavenumbers.

Fitting is, by far, the trickiest part of DuO, both on the part of the program

itself and on the part of the user. While the calculation of energy levels and

spectra from given PECs, couplings and dipole curves is relatively straighfor-

ward (the most critical point being the consistency of the phases specified for the

various coupling terms), fitting is often more difficult and may require a trial-

and-error approach. Fitting is also the part of DUO where most improvements

are to be expected in future new versions.

Example of a fitting section:

FITTING

JLIST 2.5,0.5, 1.5 - 11.5, 22.5 - 112.5
itmax 30

fit_factor 1e6

output alo_01

fit_type dgelss

lock 5.0

robust 0.001

energies  (J parity NN energy ) (e-state v ilambda isigma omega weight)
0.5 + 1 0.0000 1 0 O 0.5 0.5 100.000
0.5 + 2 965.4519 1 1 O 0.5 0.5 7.071
0.5 + 3 1916.8596 1 2 0 0.5 0.5 5.774
0.5 + 4 2854.2366 1 3 0 0.5 0.5 5.000
0.5 + 5 3777.5016 1 4 O 0.5 0.5 4.472
0.5 + 6 4686.7136 1 5 0 0.5 0.5 4.082
0.5 + 7 b346.1146 2 0 1 -0.5 0.5 100.000
end

4.1 Keywords

e FITTING This keyword marks the beginning of the fitting input section.

The whole section can be deactivated by putting none or off next to the
keyword FITTING. This is useful to disable the fitting without removing
the input block from the input file.

jlist (aliases are jrot and J) This keyword allows the user to specify the
values of the J quantum number to be used in the fit. It superseedes the
corresponding jrot keyword specified in the general setup (Section 2.1).

Individual values of J can be separated by spaces or commas, while ranges
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are specified by two values separated by a hyphen (hyphens should be
surrounded by spaces). The first J value is used to determine ZPE. For

example

JLIST 1.5, 5.5, 15.5 - 25.5, 112.5
selects the values 1.5, 5.5, all values from 15.5 to 25.5 and the value 112.5.

itmax (alias itermax) An integer defining the maximum number of fit-
ting iterations. Setting itmax to zero implies that no fit will be performed
(straight-through calculation); however, the differences between the com-
puted energy levels (or frequences) and the reference (experimental) ones

will be printed. Example:

itmax 15

fit_factor This factor is used when reference curves of the abinitio
type are included in the fit and used to define the importance of the
energy/frequency data relative to the reference abinitio data. This factor

en

is applied to all energy (frequencies) weight factors ws" (see Section 4.3 of

[YLTS15]).

When the factor is very large (e.g. 10°, like in the example above) the
penalty for differing for the reference curve is very small, so that only the
‘obs. - calc.” for energy levels matter. Vice versa, if the factor is very small
(e.g. 1079) the fit is constrained so that the fitted curves stay very close
to the reference (abinitio) ones. When this number is extremely small
(smaller than 10716) the experimental data are completely ignored and
the fit is performed to the ab initio values only. Thus this feature also al-
lows one to use the FITTING section for building analytical representations
(see type-s currently available) of different objects by fitting to the corre-
sponding ab initio or reference data provided in the abinitio-sections of

the input.
Example:

fit_factor 1le2

lock denotes the threshold (cm~!) for which the quantum numbers are
locked. The quantum numbers defining ’state’, v, |A|, |o] and || will be
used to identify and lock the energy value in place of the row number
within the J/parity block. When negative, the match is reconstructed
based solely on the closest value within the lock-threshold given. If the
match within the lock-region is not found, the row J/parity number is

used to match the theoretical and experimental energies. For example to
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match and lock to the calculated energy to the ‘experimental’ one based

on the quantum numbers within 20 cm ™! use:

lock 20.0

thresh_obs-calc This keywords triggers switching off states from the fit
if the obs.-calc. residuals become larger than the threshold specified. This
feature is useful in case of multiple swapping of the states during the fits
and even the lock option does not help. The default value is zero (the

feature is off).

robust This keyword allows the user to switch on Watson’s robust fitting
procedure [Wat03]: 707 is ‘off”, any other positive value is ‘on’ and defines
the target accuracy of the fit as given by the weighted root-mean-square
error. The robust-value is the targeted accuracy (obs.-calc.) of the fit.

Example:

robust 0.01

target_rms is to define the convergence threshold (cm~!) for the total,

not-weighted root-mean-squares (rms) fitting error. Example:

target_rms 0.1

output is the filename for the files name.en, name.freq and name.pot, con-
taining detailed information on the fitting, including the fitting residuals

for each iteration. See Section 4.1.2 below for more details. Example:
output NaH_fit
energies This keyword starts the section with the energy levels to be

fit to (e.g., obtained from an analysis of the experimental line positions).

Energy levels are written as in the following example:

energies
0.5 + 1 0.00001 00 0.5 0.5 1.00
0.5 + 2 965.4519 1 10 0.5 0.5 0.90
0.5 + 3 1916.8596 1 2 0 0.5 0.5 0.80

end

where the meaning of the various quantities is as follows; col.1 is the
total angular momentum quantum number J; col. 2 either the total parity
7 = =+ or the e/f parity; col. 3 is a running number N couting levels in
ascending order of the energy within a (J, 7) symmetry block; col. 4 is the
energy term value E,in cm™!; col. 5 is the electronic state index ‘state’, as
numbered in the poten sections; col. 6 is the vibrational quantum number
v; col. 7 is the projection of the electronic angular momentum A for the

state in question (an integer); col. 8 is the projection of the total electronic
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spin ¥ (integer of half integer); col. 9 is the projection of the total angular
momentum 2 (integer of half integer); col. 10 is the weight W of the
experimental energy in question (a real and positive number usually given

by 072, where ¢ is the uncertainty of the energy level).

e frequency (aliases are frequencies and wavenumbers) This keyword
works similarly to the energies keyword above but starts the section
specifying the wavenumbers (i.e., line positions) to be fitted to. Example:

frequencie;
1 720.0000
2 5638.1376
2 5627.5270
2

5616.7976

[ 0.0

-1 -1.0 -
-1 -1.0 -
-1 -1.0 -

1.00
1.00
1.00

s
2
7
7
8 1.00

[

+ o+ o+
ENNINY
ocooo
coor
[CICICIN
ocooo
[NICININCY
ocooo

T
0.0 0.0
2.0 17 3.0
4.0 17 5.0
4.0 18 7.0
n

d

o

The meaning of the quantities in each line are the following (see the key-
word energies above for an explanation of the symbols. The prime/double
prime symbol correspond to upper/lower level): J', 7/, N’ J" 7" N";
frequency (cm™1); state’, o', A’, X/, Q/; state”, v, A", X", Q"; weight.

e off none is used to switch off Fitting, Intensity or Overlap, when put

next to these keywords.

4.1.1 Structure of the fitting output

During fitting Duo will print for each iterations the fitting residuals using the
following structure (the first line with numbers 1 to 20 is not part of the output
but serves as a legend):

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
11 0.5 + 0.0000 0.0000 0.0000 0.60E-02 1 0 1 -0.5 0.5 0.5 1 0 1 -0.5 0.5 0.5
2 2 0.5 + 1970.2743 1970.3983 -0.1240 0.59E-02 1 1 1 -0.5 0.5 0.5 1 1 1 -0.5 0.5 0.5
3 3 0.5 + 3869.6639 3869.7934 -0.1295 0.30E-02 1 2 1 -0.5 0.5 0.5 1 2 1 -0.5 0.5 0.5
4 4 0.5 + 5698.7392 5699.2951 -0.5559 0.20E-02 1 3 1 -0.5 0.5 0.5 1 3 1 -0.5 0.5 0.5
5 1 0.5 - 0.1001 0.0000 0.1001 0.60E-02 1 0 -1 0.5 -0.5 0.5 1 [ -1 0.5 -0.5 0.5
6 2 0.5 - 1970.4156 1970.3983 0.0173 0.59E-02 1 1 -1 0.5 -0.5 0.5 1 1 -1 0.5 -0.5 0.5

The meaning of the quantities in the various columns is as follows; col.1 is a
simple line counter ¢ counting over all lines; col.2 is a counter N counting lines
within each J,7 symmetry block; col. 3 is J; col. 4 is the parity 7; col.5,6
are, respetively, the reference (‘Observed’) and the calculated value of the line
position; col.7 is the difference between observed and computed line positions;
col. 8 is the weight assigned to the transition in the fit; col. 9 to 14 are the
quantum numbers of the lower state: ‘state’, v, A, 3, Q and S; col. 15 to 20
are the quantum numbers for the upper state (same definition as for columns 9
to 14).

4.1.2 The auxiliary files .en, .freq, .pot

The files name.en contains all computed term values together with the theoret-
ical quantum numbers, compared to the experimental values, when available,

along with the ‘experimental’ quantum numbers as specified in the fitting
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section, for all iterations of the least-squares fit. Here name is the file name as
speficied by the output keyword. The output is in the same format as in the
standard output file (see above) with the difference that it contains all calcu-
lated values (subject of the nroots keyword, see Section 2.4). An asterisk ‘*’
at the end of the line indicates that either the theoretical and ‘experimental’
assignments don’t agree or a residuals obs.-calc. is too large (large than the
lock parameter).

The frequency file name.freq with the keyword frequencies. It has a similar
structure as the standard output, with the difference that for each transition
from the frequency section the program will estimate additional transition
frequencies involving energies (both lower and upper) which are within lock
cm ™! of the corresponding input values. This is done to facilitate the search for
possible miss-assignment, which is typical for transitions. This is printed out
for all iterations.

The file name.pot (‘potential’) contains the residuals between the fitted and
the reference curve (if specified by an abinitio object). The file is overwritten

at each iteration.

5 Analytical functions

This section shows examples of the definitions of the analytical functions sup-
ported in DuO as described in Ref. [YLTS15].

1. EMO The Extended Morse Oscillator (EMO) which is as also used by
LEVEL.

V() =Tet+ (A = To) (1 — exp{~Bemo(r)(r —ra)})*,  (4)
which has the form of a Morse potential with a exponential tail and the

distance-dependent exponent coefficient
Bemo(r) = Zaiygw)f, (5)
i=0

expressed as a simple power series in the reduced variable [vRB84]:

rP — P
hir) = S (6)

with p as a parameter. This form guarantees the correct dissociation limit
and allows for extra flexibility in the degree of the polynomial on the
left or on the right sides of a reference position Rt which we take at
Ryet = ro. This is specified by the parameters N = N; (N,.) and p = p;
(pr), respectively.

Example:
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poten 2
name "a 3Piu"
symmetry u

type EMO

lambda 1

mult 3

values

Te 0.81769829519421E+03
Re 0.13115676812526E+01
Ae 0.50960000000000E+05
RREF -0.10000000000000E+01
PL 4

PR 4

NL 2

NR 3

a0 0.21868146887665E+01
al 0.88875855351916E-01
a2 0.84932592800179E-01
a3 0.23343175838290E+00
end

Taylor expansion around rg:

V(r) =T+ (A — To)a2(r — 1) + (Ae — Tb) (paoal - ag) (r—ro)3+--

€

. MLR Morse Long-Range (MLR) function [LHJ06, LHO7, Le 07, LHTL11]:
uLr(r) ’

Vir) =T Ac—To) |1 - — eq 7

(r) e+ (Ae c) < uLr(re) exp{ ﬂMLR(T)yp (”}) , (1)

where the radial variable y79 in the exponent is given by Eq. (6), the
long-range potential upr(r) by

Cn
V(r) = urr(r) = — (8)
” T
while the exponent coefficient function
Burr(r) =y, (r) B+ [1—y5(r)] ailyy™ (r)]' (9)
i=0

is defined in terms of two radial variables which are similar to y;4, but are

defined with respect to a different expansion center r.f, and involve two
different powers, p and ¢q. The above definition of the function Syvpr(r)

means that:
BuLR(r = 00) = P = In[2D./urr(re)]- (10)

Example:
poten 6

name "d 3Pig"
symmetry g
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lambda 1

mult 3

units bohr cm-1

type MLR

values

Te 0.20151357236994E+05
RE 0.12398935933004E+01
AE 0.50960000000000E+05 link 1 1 3
RREF -0.10000000000000E+01
P 0.40000000000000E+01
NL 0.20000000000000E+01
NR 0.80000000000000E+01
b0 0.30652655627150E+01
bl -0.93393246763924E+00
b2 0.45686541184906E+01
b3 -0.37637923145046E+01
b4 -0.41028177891391E+01
b5 0.00000000000000E+00
b6 0.00000000000000E+00
b7 0.00000000000000E+00
b8 0.00000000000000E+00
Binf 1.000000000000000000
al 0.00000000000000E+00
a2 0.00000000000000E+00
a3 0.00000000000000E+00
a4 0.00000000000000E+00
ab 0.00000000000000E+00
a6 192774.

a7 0.00000000000000E+00
a8 0.00000000000000E+00
end

. Surkus (alias BobLeroy) Surkus-polynomial expansion [vRB84]:

V() =Te+ (1= 95 Y ailys] + y5tains, (11)
i>0

where yzq is the Surkus variable (6) and ain¢ is the asymptote of the

potential at r — oo.
Example:

spin-orbit 2 2

name "<Lambda=+1,8=1 (a2Pi)|LSZ|+1 (a2Pi),S=1>"
spin 0.5 0.5

lambda 1 1

sigma 0.5 0.5

type BOBLEROY

units cm-1

factor 1.0 (0, 1 or i)

N 9

values

re 0.17700000000000E+01
rref -0.10000000000000E+01
P 0.20000000000000E+01
NT 0.30000000000000E+01
a0 -0.63452015232176E+02
al -0.20566444179565E+01
a2 -0.13784613913938E+02
a3 0.00000000000000E+00
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ainf -0.56030500000000E+02
end

. Surkus-damp (alias BobLeroy_damp) Surkus-polynomial expansion with a

damping function [vRB84]:

V(r)=To+ |(L=yp") > ailyp) + gplain | f9P + 1970 (1 — foome),
i>0
(12)
where the damping function is defined by

fAamP = 1 — tanh[a(r — )],

and t9™P 7o and « are parameters.
Example:

spin-orbit 2 2

name "<Lambda=+1,S=1 (a2Pi)|LSZ|+1 (a2Pi),S=1>"
spin 0.5 0.5

lambda 1 1

sigma 0.5 0.5

type BOBLEROY

units cm-1

factor 1.0 (0, 1 or i)

N9

values

re 0.17700000000000E+01
rref -0.10000000000000E+01
P 0.20000000000000E+01
NT 0.30000000000000E+01
a0 -0.63452015232176E+02
al -0.20566444179565E+01
a2 -0.13784613913938E+02
a3 0.00000000000000E+00
ainf -0.56030500000000E+02
tdamp 0.00000000000000E+00
r0 0.10000000000000E+01
alpha 0.30000000000000E+01
end

. Morse A polynomial expansion in the Morse variable gy = 1 — e~4("—70)

is used N
V(r)="Te+ (Ae — Te)yl%/[ + Z a; yf\/TZ‘ (13)
i=1
Example
poten 1

name "X 1Sigmag+"
symmetry g +
type  MORSE
lambda O

mult 1

units bohr cm-1
values
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TE 0.00000000000000E+00
RE 0.12423216077595E+01
a 0.20372796052933E+01
AE 0.73955889175514E+05
Al -0.62744302960091E+04
A2 -0.57683579529693E+04
end

. Morse_damp

i+2
— _ 2 —d am (7'_ 5)4 . r— Te
‘/(’I") - Te + (Ae Te)yM ey ' Zzzl " (7’ + 7e . (14)

Example:

poten 6

name "d 3Pig"
symmetry g
lambda 1

mult 3

units bohr cm-1
type Morse_damp

values

Te 20121.09769

re 0.12545760270976E+01
Ae 0.50937907750000E+05 link 1 1 3
a0 0.30398932686950E+01
DAMP 0.10000000000000E-02
al 0.11437702960146E+05
a2 -0.36585731834570E+03
a3 -0.20920472718062E+05
ad 0.90487097982036E-03
ab 0.00000000000000E+00
a6 0.00000000000000E+00
a7 0.00000000000000E+00
a8 0.00000000000000E+00
end

. Modified-Morse (alias MMorse )

[1—exp (= X0 aifiﬂ)]z
[1—exp (=i ai)]2

Vir) =To + (Ao — To) , (15)

where £ = (r — 7o) /(7 + 7¢).
Example:

poten 8

name "Bp 1Sigmag+"

symmetry g +

lambda O

mult 1

type MMorse

values

Te 1.5408840263E+04

rE 1.3778208709E+00

Ae 5.0937907750E+04 link 1 1 3
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a0 6.2733066935E+00

al 1.4954972843E+01
a2 4.5160872659E+01
end

where the value A, is ‘linked’ to the corresponding value of poten 1.

. Polynomial selects a polynomial expansion in the variable y = (r — rg)

V(r)=Te+ a1y + agy® + - - (16)

Example:

spin-orbit 2 2

name "<+1,5=1 (a3Pi)|LSZ|+1 (a3Pi),S=1>"
spin 1.0 1.0

sigma 1.0 1.0

lambda 1 1

type polynom

factor 1

values

a0 14.97
re 1.3
al 0.0
end

Taylor expansion around rg:
V(r)=Ts+ai(r —ro)* + az(r —19)> + az(r —ro)®> + -+~

. Dunham selects a polynomial expansion in the Dunham variable y = (r —

70)/To

V(r) =Te +aoy® (1 + a1y +asy® +---) (17)
Example:
poten 1
name "X 2 Delta"
lambda 2
mult 2 type Dunham values
Te 0.00000
Re 1.4399282269779912
a0 123727.20496894409 (= omega**2 / 4 B)
a2 -2.31
a3 3.80
a4 -6.00
ab 5.00
end

Comments As a function form Dunham is equivalent to a Polynomial
object with the linear term absent and a redefinition of the expansion

coefficients; the comments given for Polynomial also apply to Dunham.
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10.

Taylor expansion around rg:

Q, apa
V(r) = To + 2 (r —10)* + “2g(r —10)* + -
TO TO

SPF selects a polynomial expansion in the the so-called Simons, Parr and

Finlan variable y = (r — rq)/r

V(r)=T.+aoy® (L + a1y +asy® + ) (18)
Example:
poten 1
name "X 2Sigma+"
symmetry +
type SPF
lambda O
mult 2
values
Te 0.00000000000000E+00
RE 0.16292698613903E+01
al 0.37922070444743E+06
a2 0.00000000000000E+00
a3 -0.53314483965665E+01
ad 0.00000000000000E+00
ab 0.19407192336518E+02
ad 0.00000000000000E+00
ab -0.17800496953835E+03
end

Taylor expansion around rg:

a apa1 — 2a
V(r) =To+ —(r—ro)’ + =——5—(r =70’ +---
g T3

Behaviour for » — +o0:

N
V(r) =Te + ao (1 + Z ai>

i=1
aop”r N
——OTO <2+Z(i+2)ai> +oe
i=1

where N is the maximum exponent included in the expansion. For long r

(19)

the potential goes to a constant value; convergence to the constant is of

the 1/r type (correct for ions but too slow for neutral molecules).

Behaviour for » — 0:

o ) N+2 (20)

V(r) =apan (?

The coefficient aq is definitely positive, but ay can be positive and nega-

tive, so that V(r) can go to +oo for short r.
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11.

12.

M-S (Murrell-Sorbie) [MS74]

V(?“) = A — (Ac - Tc) (1 +aip+ a2p2 + (13,03 —+ .. ) e P,

where p =1 — 1.

Example:

poten 4

name "B 2Sigma"

symmetry -

type M-S (Murrell-Sorbie)
lambda O

mult 2

values

Vo 21000.0

RE 1.6

DE 25653.27131
al 2.81468

a2 1.68719

a3 0.757787

a4 -0.5963168
ab -0.54596343
a6 0.20611664
end

Taylor expansion around r.:

A. — T,
V(r) =T, + 5 (a3 — 2a2)(r —70)?
A, — T,
+ %(CL% — 3aya9 + 3a3)(r — ’/‘0)3 =+

Behaviour for » — +oo:

V(r) =Ae — an(Ae = To) (r — re)Ne @ 7re) o

(21)

(22)

(23)

where N is the maximum exponent included in the expansion. For long r

the potential goes to the constant value Ae, and the aymptotic behavior

is determined by the coefficients of the term with the highest exponent.

Chebyshev selects an expansion in Chebyshev polynomials in the variable
y=[r—(b+a)/2]/[(b—a)/2]. The scaled variable y ranges from —1 to 1

for 7 in [a, b]. The expansion is
V(r) = a0+ a1 Ti(y) + axTa(y) + - -

Example:
spin-orbit 2 2

name "<+1,S=1 (a3Pi)|LSZ|+1 (a3Pi),S=1>"
spin 1.0 1.0
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13.

14.

type chebyshev
factor 1

values

a 0.80000000000000E+00
b 0.26500000000000E+01
AO -0.25881057805341E+02
Al 0.82258425882627E+01
A2 0.52391700137878E+00
A3 0.28483394288286E+01
A4 -0.15136422837793E+00
A5 0.97553692867070E-01
A6 -0.25825811071417E+00
A7 -0.69105144347567E-01
A8 -0.44700771508442E-01
A9 0.11793957297111E-01
A10 0.16403055376257E-01
A1l 0.92509900186428E-02
A12 0.50789943150707E-02
A13 -0.39439903216016E-03
end

COSH-POLY This function can be used as a coupling for a diabatic repre-

sentation of potentials characterised by an avoiding crossing and is given

[Var09]:
Zi\io ai (T — Tref)i-
F(r)=Fy+ == . (25)
cosh B(r — ryet)
Example
diabatic 1 8
name "<X1Sigmag+|D|Bp 1Sigmag+>"
spin 0.0 0.0
lambda 0 O
type COSH-poly
units cm-1
factor i (0, 1 or i)
values
vO0 0.0000
beta 5.62133
RE 1.610505
BO -0.307997
B1 0.0000000000E+00
B2 0.0000000000E+00
BINF 0.0000000000E+00
end
POLYNOM_DECAY_24 This function is similar to Surkus expansion
N
k
F(r)=> Bpz*(1-&)+& B, (26)
k=0
where z is either taken as the damped-coordinate given by:
2 4
Z=(F — Tret) e P2(r—Tret)” —Ba(r—rret) , (27)
see also 7 | and ? ]. Here ref is a reference position equal to r. by

default and B2 and 54 are damping factors. When used for morphing, the

parameter B, is usually fixed to 1.
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6 Eigenfunctions

The computed eigenfunctions can be printed out into a sperate file (checkpoint).

This option can be enabled via the section Checkpoint:

Checkpoint
eigenvectors save
Filename xxxxx

End

The keywords eigenvectors save are to stitch the corresponding checkpoint-
ing on.

The eigenfunction-checkpoints consist of two files, eigen_vectors.chk and
eigen_vib.chk. The file eigen_vib.chk contains the vibrational part of the

basis set in the grid representation in the following format (example):

1 0.000000 1 0 AlSigma+
0.124132175316E-13
-0.952336606315E-14
0.982508543282E-14

where the each basis function is given in a block. The first line specifies the sate
(number, energy, electronic state and vibrational quantum number) followed by
the grid values.

The file eigen_vectors.chk contains the expansion coefficients of the eigen-
function in terms of the DUO ro-vibronic basis set functions using the following

format (example):

Molecule = Ca-40 0-16
masses = 39.962590600000 15.994914630000
Nroots = 10
Nbasis = 50
Nestates = 5
Npoints = 501
range = 1.0000000 4.0000000
X1Sigma+, AplPi, a3Pi, b3Sigma+, AlSigma+, <- States
| # | J1lpl Coeff. | St vib Lambda Sigma Omega ivibl|
1 0.0 0 0.999999782551E+00 1 1 0 0.0 0.0 0

Here the first eight lines represent a ‘signature’ of the spectroscopic model
(atoms, masses, specification of the basis), the line 9 is a header followed by
the records with the eigen-coefficients and corresponding quantum numbers and
labels using the following format: running number within the J,parity(p)-block
i, J, p, the coefficient le]’p, State, v, A, ¥ and vibrational basis set number
(a combined number representing the contracted vibrational basis set function
from for all electronic states combined).

The optional keyword Filename (alias Vector-Filename) is to change the

checkpoint-prefix eigen to filename. The default name is eigen_vectors. chk.
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7 Running and compiling Duo

Duo is provided both as source code and as compiled executables for Linux
and Microsoft Windows. Using the executables is the easiest way to run DuoO.
Duo works from the command line (also known as the ‘terminal’ or ‘command
prompt’). A DUO input is a plain text input file which is fed into the program
with a command of the kind
./duo.exe < ./inputs/my_input.inp > my_output.txt
If you accidentally start DUO without specifying any input nothing will happen
and you will be temporarely ‘stuck’; to terminate DUO press ‘C’ while holding
down the Ctrl key.

Please note that DUO is still in active development and new versions with bug
fixes and new functionalities are expected to appear regularly. If you have found
a bug or you would like to make a comment please do not hesitate to contact

the authors (contact details are reported in the first page of this manual).

7.1 Compilation

You may need to re-compile DUO if the provided executables do not work on
your system or, for example, if you want to make modifications to the program.
Duo makes use of some Fortran 2003 features and therefore requires a compiler
with (at least partial) support for Fortran 2003. At the time of writing (July
2015) there are two freely-available Fortran compilers (for Windows, Linux and
OS X) which can be used for compiling Duo, namely gfortran and g95. If
you are a university student* or if you use the compiler to develop open-source
products® you may qualify for a free version of Intel Parallel Studio XE, which
includes the Intel Fortran compiler (Windows, Linux and OS X), or for Oracle
Solaris Studio® for Linux. Other compilers may be available to you through
your institution. Lists of Fortran compilers can be found on the Internet”8.
The Fortran 95 Windows compiler Silverfrost FTN95 v.7.20 is also available for
free for personal use® but its support for Fortran 2003 is very incomplete and
Duo will not work with this compiler at this time.

Duo has been tested with the Intel Fortran Compiler v. 12.1 under Linux
and Windows 8, with the Portland Group Fortran compiler v. 13.1, with the
NAG Fortran compiler v 5.2 under Linux and Windows 8, with g95 v. 0.94
under Windows 8 and with gfortran v.4.9.2 under Windows 8, Linux and OS X.

4https://software.intel.com/en-us/qualify-for-free-software/student

Shttps:/ /software.intel.com/en-us/qualify-for-free-software/opensourcecontributor
6www.oracle.com /technetwork /server-storage/solarisstudio/downloads/index.html
"See http://fortranwiki.org/fortran/show/compilers
8https://en.wikipedia.org/wiki/List_of_compilers# Fortran_compilers
Yhttp://www.silverfrost.com/32/ftn95/ftn95_personal_edition.aspx
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7.2 Compilation under Windows with gfortran

For compiling Duo under Windows using gfortran four steps are typically

needed:
1. Installation of a Linux-like enviroment such as MinGW or Cygwin.
2. Installation of the compiler.
3. Installation of the BLAS/LAPACK libraries.
4. Compilation of Duo.

Step 1 will make available under Windows a terminal window in which one
can use standard Linux command such as 1s or grep; in particular, it will make
available the command make which will be used to compile Duo. In the following
we describe how to use MinGW and gfortran. If you need a Windows text editor
for editing DUO input files or the source code we recommend Notepad™*, which

is freel?,

7.2.1 Installing MinGW and gfortran

Go to the MinGW section on SourceForge'!, click on ‘Download mingw-get-
setup.exe’ (see fig. 2) and download, install and run the MinGW Installation
manager. In the ‘Basic Setup’ section select 'mingw32-gcc-fortran’, as shown
in fig. 3, if you want to use gfortran for compiling DUO and go on with the
installation. We will assume in the following that MinGW is installed in the
default directory C:\MinGW\.

Once the installation has finished MinGW and the gfortran compiler should
be installed. To check if gfortran is correctly installed open a Command Prompt
window!? and type
gfortran -dumpversion
You should see an output similar to the one shown in fig.4. If instead of the
output of fig. 4 you get an error message then try the following. Type
cd c:\MinGW\bin and try again to type gfortran -dumpversion. If gfortran
now works then you have to manually add the directory c:\MinGW\bin in your
PATH environment variable. How exactly this is done depends on the Windows

version in use; we describe here how this is done with Windows 8.1, for other

LOhttps://notepad-plus-plus.org/

Mhttp://sourceforge.net/projects/mingw /files/

2Depending on the Window language in use the Command Prompt will have different
names such as ‘Simbolo del sistema’ (Spanish), ‘Invite de commandes’ (French), ‘Prompt dei
comandi’ (Italian), ‘Eingabeaufforderung’ (German), ‘Wiersz polecenia’ (Polish) and so on.
Independently from the language in use it can be executed by writing in the Windows ‘Run’
box cmd.exe. In version of Windows prior to Windows XP the Command Prompt was called
‘MS-DOS prompt’.
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€ € # [ sourceforgenet/project e

sourcefsarge Browse Enterprise Blog Help [KTY Login o Join

SOLUTION CENTERS ~ Go Parallel | Resources Newsletters

Home / Browse / Development / Bk Tools / MinGW - Minimalist GNU for Windows / Fies

MinGW - Minimalist GNU For Windows

A native Windows port of the GNU Compiler Collection (GCC)
Broughtto you by: csirauss, cwilso1 1, eamie, keithmarshall
Summary  Files Reviews Support News Wiki Mailinglists Tickets+  Git~
the latest version? Download mingw-get.setup.exe
Recommended Projects
Modified  Size Downloads / Week
€y PDFCreator
GW 20131026 4 a
nverts every print
= Installer 201310-04 e PDF, JPG, PNG, TIF
m Other 20111113 f2dlE bl
nvironment
- MsYS 20114113
README 2111113 896 Bytes
Totals: 5 ltems 896 Bytes 165

project file distribu

ning T

Figure 2: Installation of MinGW.

& MinGW Installation Manager - °IEl
Installation Package Settings Help
Package Class  Installed Version Repository Version  Description

All Packages
mingw-developer-toolkit bin 2013072300 2013072300 An M5YS Installation for MinGW Developers (meta)
[ mingw32-base bin 2013072200 A Basic MinGW Installation
[ mingw32-gcc-ada bin 4. The GNU Ada Compiler
mingw32-gcc-fortran bin 4.8.1-4 The GNU FORTRAN Compiler
[ mingw32-goc-g++ bin The GNU C++ Compiler
[ mingw32-gec-obic bin 48.1-4 The GNU Objective-C Compiler
msys-base bin 2013072300 2013072300 A Basic MSYS Installation (meta)
< >

General | Description | Dependendies | Installed Files | Versions

No package selected.

Please selact a package from the list above, to view related data.

Figure 3: Installation of MinGW.

Prompt dei comandi - o IEN

icrosoft Windows [Uersione 6.3.%760801
{c»> 2813 Microsoft Corporation. Tutti i diritti riservati.

ssUserssLuisa>gfortran —dumpuersion

UserssLuisa>

Figure 4: Checking gfortran version.
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Proprieta del sistema

Protezione sistema Connessione remota
Mome computer Hardware Avanzate
PEF metmr mmmaies = s amiar met s Aalls rma A ARA ;A A A mm s sA
acy Variabili d'ambiente
P
E Variabili dell'utente per Luisa
Wi
Variabile Valore
PATH C:\Program Files (x86)\g95'bin;C: \MinG...
=) TEMP %USERPROFILE%:\AppDatalLocal \Temp
| TMP %USERPROFILE%:\AppDatalLocal \Temp
n
Nuova... Modifica. .. Elimina
A Yariabil - .
A Maodifica vanabile utente
Variak
Com5|  Mome variabile: PATH
config
Fp no | Valore variabile: Irogram Files (x86)g35%bin;C:\MinGWbinY, |
595 1

T

oK Annulla

Figure 5: Setting the PATH enviroment variable.

versions it works similarly and guides can found on the Internet!'3. Press at the
same time the Windows key and the ‘Pause/Break’ key to bring up the ‘Sys-
tem’ window (alternatively open the Control Panel and then click on ‘System
and Security’ and the ‘System’); in the left column click on ‘Advanced System
Settings’ and then in the System Properties window click the Environment Vari-
ables button near the bottom of the window. Select ‘PATH’ in the upper part of
the window and then click on ‘Modify’ (see fig. 5). In the second line add at the
end of whatever is present a semicolon (NB: not a colon as one would in Linux!)
and the directory where gfortran resides, c¢:\MinGW\bin in our case. Open a
new Command Prompt window and try again to type gfortran -dumpversion,

it should now work.

13For example, see http://www.computerhope.com /issues/ch000549.htm
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& LAPACK for Windaws x
€« > C i 2 htipsy/icl.csutkedu/lapack-for-wind,

Dependencies’, just put “liblapack.Iib,ibblas.lio”
« Once your application compiled correctly, do not forget to copy the liblapack.dil and libblas.dll where your executable
is or the make sure that the il are on your system path or put them in the WINDOWS\system32 folder, else binary
wonit un
« Your application will alse require the GNU runtime DLLs ( both libgfortran-3.dll and libgee_s_dw2-1.dll are needed.)
from MinGWY to be available. Just put the GNU runtime directory (for example, for 32 bits C:\MinGWibin) in your
PATH, you should be good to go

Instructions for LAPACKE

+ Download the BLAS, LAPACK and LAPACKE dll. At the moment only Win32 Release available (but you can build
your awn flavor with CMAKE) See table below

« Link your C application built with MSVC with the BLAS, LAPACK and LAPACKE libraries (the lib files) you just
downloaded. In your project properties, change the properties "Linker > General > Additional Library Directony” to tell
Visual Studio where the libraries are, and also add the name of your BLAS, LAPACK and LAPACKE libraries in
“Linker > Input > Additional Dependencies”, just put “liblapacke. lib:liblapack lib;libblas. lib*

+ Specifically for LAPACKE. you need to add
ADD_HAVE_LAPACK_CONFIG_H;LAPACK_COMPLEX_STRUCTURE: in *C/C++ > Preprocessor > Preprocessor
Defirftions"

+ Once your application compiled correctly, do not forget to copy the liblapacke. i liblapack dil and libblas dil where
your executable is or the make sure that the di are on your system path or put them in the WINDOWS\system32
folder, else binary won't un

« Your application will alse require the GNU runtime DLLs ( both libgfortran-3.dll and libgee_s_dw2-1.dll are needed.)
from MinGW to be available. Just put the GNU runtime directory (for example, for 32 bits C:\MinGWibin) in your
PATH, you should be good to go

+ Do ot forget to consult also the

Ref BLAS LAPACK LAPACKE

Release

Prebuilt static libraries using INTEL Compilers

Requirement: Intel Compiler for Windows
Information: Those libraries were built with CMAKE for Visual Studie 2010 and INTEL compilers and correspond to
LAPACK 3.5.0 g

Figure 6: Downloading pre-compiled BLAS/LAPACK libraries for Windows.

7.2.2 Installing the BLAS and LAPACK libraries

The easiest way to use BLAS/LAPACK under Windows is to use pre-build
dlls, which at the time of writing can be downloaded from the Internet'*. In
the section ‘Prebuilt dynamic libraries using Mingw’ download two files: the
reference BLAS win32 dll file 1ibblas.d1ll and the LAPACK win32 dll file
liblapack.dll, see fig. 6. Be sure to download the 32 bit versions (not the
ones under the link ‘x64 dlI’). The easiest way to use these two files is to copy
them in the same directory where the DUO source files are; they will also be
needed to run DUO, and should be copied along with the DUO executable.

7.2.3 Compiling Duo

After having installed the Fortran compiler and the libraries we are now almost
ready to compile DUO; however, we need the make command and for this reason
we need to open a MinGW terminal window instead of the standard Command
Prompt.

Open File Explorer (in versions of Windows prior to Windows 8 it was known
as Windows Explorer; it can be opened by pressing simultaneously the windows
key and the ‘E’ key), navigate to c:\MinGW\msys\1.0\ and double click on the
file msys.bat. This will open a MinGW terminal window. Unpack the Duo
package in ¢:\MinGW\msys\1.0\home\ ; this will create several directories,
including one called duo. Go to the duo directory by typing cd duo and copy

Mhttps://icl.cs.utk.edu/lapack-for-windows/lapack/
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MINGW32:~/duo S

inputs
_info.£98 lapack.f98
o0 1libblas.dll mal

Figure 7: Compilation output with gfortran.

in this directory (e.g., using File Explorer) the dll files download previously.
We are now finally ready for the actual compilation. Duo is provided with
separate makefiles for the compilers it has been tested with. To compile DUO
using gfortran type

make --file=makefile_gfortran You should get an output similar to the one
shown in fig.7. Compilation should only take a couple of minute or so. At the
end you should have a DUO executable file you can run (either from the MinGW
terminal window or from the standard Command Prompt; just remember to

copy the BLAS / LAPACK dll along with the executable.)

7.2.4 Installing the g95 compiler

Instead of gfortran you can also use the g95 compiler. You may want to do
this if, for example, you could not get gfortran to work correctly. To install g95
under Windows go to the page!® and download the file g95-MinGW-41.exe. At
the time of writing the ftp server pointed to by the links in the page above does
not work; however, there are many places on the Internet were the file above
can be found!®. The latest version is version v. 0.94 dated 18 May 2013.

Run it and install g95 in a directory of your choice. Accept to ”Install
MinGW Utilities and libs?” and also accept the suggestions of setting up the
PATH for all users.

Once this is done g95 should be automatically available at the command
line. Open a new command prompt window and type g95 -dumpversion. You
should get a short message whose first line is
G95 (GCC 4.1.2 (g95 0.94) May 18 2013)!

Bhttp://www.g95.0rg/downloads.shtml#Win
16for example, we downloaded it from http://tcc.customer.sentex.ca/g95/4.1/g95-MinGW-
41.exe
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Once the g95 compiler is installed, install MinGW and download the BLAS/LAPACK
dlls exactly as described in the sections above. At the point of compilation type

make --file=makefile_g95

8 Duo-script

The cshell script do-duo-input.csh can be used to replace the varied param-
eters (marked with Fit) in the Duo-input by the corresponding refined values
from the Duo-output

do-duo-input.csh duo_1.out > duo_2.inp

9 Programmer’s guide to Duo

In this section we describe the structure of the source code. This can be useful
to people who plan to modify DUO, e.g. to implement new features.

At present DUO’s source code consists in 13 files for a total of 18 951 lines of
code in total (including comments). The three files containing the bulk of the

program are:

1. diatom.£90 (7 506 lines) contains the code relative to the calculation of

energy levels and wave functions and is the core portion of DUO.

2. dipole.£90 (1 790 lines) contains the code relative to the calculation of

line intensities and related quantities.

3. refinement.£90 (2 095 lines) contains the part of DuO dealing with fit-
ting.

These other files contains various other parts of the codes:

4. duo.f90 (99 lines) is a small front-end which calls the subroutines for

energy, line intensities or fitting calculations.

5. accuracy.f90 (88 lines) contains values of physical constants, variable

kind parameters and other data to be shared.

6. atomic_and nuclear_data.f90 (2 788 lines) contains the internal database
of atomic and nuclear properties, and various functions and subroutines

to access the data.

7. functions.f90 (809 lines) contains the definitions of the analytical func-

tion forms used in DuoO.
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Figure 8: This diagrams show how the various DuUO source files refer to one
another.

8. grids.£90 (513 lines) contains the code used for the calculation of the
grid points (for uniform and non-uniform grids) as well as the routines

used for spline interpolation.

9. symmetry.£90 ( 330 lines) contains subroutines dealing with permutation

symmetry of the molecule, calculation of degeneracy factors etc.

10. header_info.£90 ( 30 lines) contains a simple subroutine which prints

the initial DuO logo and information such as version number.

11. timer.£90 ( 800 lines) contains utility subroutines which monitor the time

spent on various parts of the code as well as memory usage.

12. input.£90 (1 020 lines) is an input parsing module written by Anthony
J. Stone, see [Sto05]. Is is used by DUO to read the input file.

13. lapack.£90 (1 083 lines) is set of explicit interfaces to lapack routines. It
is not the lapack library itself!

Here below we give some comments on the structure of the code.

The source file diatom.£90 contains a module called diatom module which
provides the bulk of subroutines necessary for computing wave functions and
energy levels. In lines 13 to 404 we define thresholds, variables and derived data
types (classes) used throughout the module. In particular, the derived data type
fieldT is used for all for all curves used in DUO (potential energy and dipole
curves as well as coupling curves). For example, if my_curve is an object of type
fieldT then my_curvejclass returns a text string which is poten for potential

energy curves, spinorbit for a spin-orbit coupling curves etc. A Fortran 2003
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feature in the data type £ieldT is the use of abstract interfaces and of procedure
pointers. This is done in line nr. 187

procedure (analytical fieldT),pointer, nopass :: analytical field => null()

This line defines the procedure point analytical_field (initially nullified and
with the ‘nopass’ attribute) which has the same interface as the procedure
analytical fieldT; in turn, analytical fieldT is an abstract interface (i.e.,
a template) for all curves and is defined in the file functions.£90.

From line 407 to 3361 there is the subroutine ReadInput, which deals with
reading the inputs file, perfoming initial consistency checks etc. From lines 3367
to 3612 there are the subroutines define_quanta bookkeeping and
check_and_set_atomic_data; the first defined the quantum numbers used for
the calculations and allocates some relevant arrays while the second reads from
the internal database values for the atomic masses.

From lines 3614 to 5074 the subroutine map_fields_onto_grid evaluates
all the curves at the grid points, performing interpolation and extrapolation if
necessary and prints the sampled curves. For potential energy curves it will
also find the minimum and compute and print quantities such as the value of
the derivative at the minimum, the harmonic vibrational frequency etc. The
subroutines also perfoms a variety of checks.

From lines 5078 to 7321 the subroutine duo_jO builds and diagonalizes the
J = 0 vibrational matrices for each electronic state.

Finally, from lines 7324 to 7503 there are a few service subroutine whose

purpuse should be clear from the source code.
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