ENGINE CONTROL SYSTEM

SECTION EC

MA

EM

LC

EC

FE

GL

MT

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

CONTENTS

TROUBLE DIAGNOSIS - INDEX	
Alphabetical & P No. Index for DTC	
PRECAUTIONS	14
Supplemental Restraint System (SRS) "AIR	
BAG" and "SEAT BELT PRE-TENSIONER"	14
Precautions for On Board Diagnostic (OBD)	
System of Engine and A/T	14
Engine Fuel & Emission Control System	15
Precautions	16
Wiring Diagrams and Trouble Diagnosis	17
PREPARATION	18
Special Service Tools	18
Commercial Service Tools	18
ENGINE AND EMISSION CONTROL OVERALL	
SYSTEM	20
Engine Control Component Parts Location	20
Circuit Diagram	24
System Diagram	26
Vacuum Hose Drawing	27
System Chart	28
ENGINE AND EMISSION BASIC CONTROL	
SYSTEM DESCRIPTION	29
Multiport Fuel Injection (MFI) System	29
Distributor Ignition (DI) System	31
Air Conditioning Cut Control	32
Fuel Cut Control (at no load & high engine	
speed)	33
Evaporative Emission System	33
On Board Refueling Vapor Recovery (ORVR)	39
Positive Crankcase Ventilation	48
BASIC SERVICE PROCEDURE	50
Fuel Pressure Release	50
Fuel Pressure Check	50
Fuel Pressure Regulator Check	51
Injector	51
Idle Speed/Ignition Timing/Idle Mixture Ratio	
Adjustment	53
Idle Air Volume Learning	65

ON BOARD DIAGNOSTIC SYSTEM
DESCRIPTION67
Introduction67
Two Trip Detection Logic67
Emission-related Diagnostic Information68
Malfunction Indicator Lamp (MIL)81
OBD System Operation Chart83
CONSULT-II88
Generic Scan Tool (GST)101
TROUBLE DIAGNOSIS - INTRODUCTION103
Introduction103
Work Flow105
TROUBLE DIAGNOSIS - BASIC INSPECTION107
Basic Inspection107
TROUBLE DIAGNOSIS - GENERAL
DESCRIPTION123
DTC Inspection Priority Chart123
Fail-safe Chart124
Symptom Matrix Chart125
CONSULT-II Reference Value in Data Monitor
Mode129
Major Sensor Reference Graph in Data Monitor
Mode131
ECM Terminals and Reference Value134
TROUBLE DIAGNOSIS - SPECIFICATION VALUE142
Description142
Testing Condition142
Inspection Procedure142
Diagnostic Procedure143
TROUBLE DIAGNOSIS FOR INTERMITTENT
INCIDENT146
Description146
Diagnostic Procedure146
TROUBLE DIAGNOSIS FOR POWER SUPPLY147
Main Power Supply and Ground Circuit147
DTC P0100 MASS AIR FLOW SENSOR (MAFS)154
Component Description154
CONSULT-II Reference Value in Data Monitor
Mode 154

ECM Terminals and Reference Value	154	Component Description	196
On Board Diagnosis Logic	155	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure	155	Mode	196
Overall Function Check	157	ECM Terminals and Reference Value	196
Wiring Diagram	158	On Board Diagnosis Logic	197
Diagnostic Procedure	159	DTC Confirmation Procedure	
Component Inspection		Overall Function Check	198
DTC P0105 ABSOLUTE PRESSURE SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure		DTC P0131 HEATED OXYGEN SENSOR 1	
Diagnostic Procedure		(FRONT) (LEAN SHIFT MONITORING)	204
DTC P0110 INTAKE AIR TEMPERATURE		Component Description	
SENSOR	165	CONSULT-II Reference Value in Data Monitor	207
Component Description		Mode	204
On Board Diagnosis Logic		ECM Terminals and Reference Value	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Overall Function Check	
Component Inspection		Diagnostic Procedure	
DTC P0115 ENGINE COOLANT TEMPERATURE		Component Inspection	208
SENSOR (ECTS) (CIRCUIT)		DTC P0132 HEATED OXYGEN SENSOR 1	
Component Description	171	(FRONT) (RICH SHIFT MONITORING)	
CONSULT-II Reference Value in Data Monitor		Component Description	210
Mode		CONSULT-II Reference Value in Data Monitor	
On Board Diagnosis Logic		Mode	
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Wiring Diagram	173	On Board Diagnosis Logic	
Diagnostic Procedure	174	DTC Confirmation Procedure	
Component Inspection	176	Overall Function Check	212
DTC P0120 THROTTLE POSITION SENSOR	177	Diagnostic Procedure	213
Component Description	177	Component Inspection	215
CONSULT-II Reference Value in Data Monitor		DTC P0133 HEATED OXYGEN SENSOR 1	
Mode	177	(FRONT) (RESPONSE MONITORING)	217
ECM Terminals and Reference Value	178	Component Description	217
On Board Diagnosis Logic	178	CONSULT-II Reference Value in Data Monitor	
DTC Confirmation Procedure	179	Mode	217
Wiring Diagram	183	ECM Terminals and Reference Value	
Diagnostic Procedure		On Board Diagnosis Logic	218
Component Inspection		DTC Confirmation Procedure	
DTC P0125 ENGINE COOLANT TEMPERATURE		Overall Function Check	
(ECT) SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor		Component Inspection	
Mode	190	DTC P0134 HEATED OXYGEN SENSOR 1	22 !
On Board Diagnosis Logic		(FRONT) (HIGH VOLTAGE)	226
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Monitor	∠∠0
		Mode	226
Diagnostic Procedure		ECM Terminals and Reference Value	
Component Inspection	195		
DTC P0130 HEATED OXYGEN SENSOR 1	100	On Board Diagnosis Logic	
(FRONT) (CIRCUIT)	196	DTC Confirmation Procedure	∠∠/

Wiring Diagram	228	Component Description	261	GI
Diagnostic Procedure	229	CONSULT-II Reference Value in Data Monitor		
Component Inspection	230	Mode	261	
DTC P0135 HEATED OXYGEN SENSOR 1		ECM Terminals and Reference Value	261	MA
HEATER (FRONT)	232	On Board Diagnosis Logic	261	
Description		DTC Confirmation Procedure	262	₽Ŋ/I
CONSULT-II Reference Value in Data Monitor		Overall Function Check	262	EM
Mode	232	Wiring Diagram	263	
ECM Terminals and Reference Value	232	Diagnostic Procedure		LC
On Board Diagnosis Logic	232	Component Inspection		
DTC Confirmation Procedure		DTC P0141 HEATED OXYGEN SENSOR 2		
Wiring Diagram	234	HEATER (REAR)	267	EC
Diagnostic Procedure		Description		
Component Inspection		CONSULT-II Reference Value in Data Monitor		
DTC P0137 HEATED OXYGEN SENSOR 2		Mode	267	FE
(REAR) (MIN. VOLTAGE MONITORING)	237	ECM Terminals and Reference Value		
Component Description		On Board Diagnosis Logic		GL
CONSULT-II Reference Value in Data Monitor		DTC Confirmation Procedure		\$L
Mode	237	Wiring Diagram		
ECM Terminals and Reference Value	_	Diagnostic Procedure		MT
On Board Diagnosis Logic		Component Inspection		0000
DTC Confirmation Procedure		DTC P0171 FUEL INJECTION SYSTEM		
Overall Function Check		FUNCTION (LEAN SIDE)	272	AT
Wiring Diagram		On Board Diagnosis Logic		
Diagnostic Procedure		DTC Confirmation Procedure		0.07
Component Inspection		Wiring Diagram		$\mathbb{A}\mathbb{X}$
DTC P0138 HEATED OXYGEN SENSOR 2	240	Diagnostic Procedure		
(REAR) (MAX. VOLTAGE MONITORING)	245	DTC P0172 FUEL INJECTION SYSTEM	270	SU
Component Description		FUNCTION (RICH SIDE)	279	90
CONSULT-II Reference Value in Data Monitor	240	On Board Diagnosis Logic		
Mode	245	DTC Confirmation Procedure		BR
ECM Terminals and Reference Value		Wiring Diagram		
On Board Diagnosis Logic		Diagnostic Procedure		
DTC Confirmation Procedure		DTC P0180 FUEL TANK TEMPERATURE	202	ST
Overall Function Check		SENSOR	286	
Wiring Diagram		Component Description		D @
Diagnostic Procedure		On Board Diagnosis Logic		RS
Component Inspection		DTC Confirmation Procedure		
DTC P0139 HEATED OXYGEN SENSOR 2	201	Wiring Diagram		BT
(REAR) (RESPONSE MONITORING)	253	Diagnostic Procedure		
Component Description		Component Inspection		
CONSULT-II Reference Value in Data Monitor	200	DTC P0217 COOLANT OVERTEMPERATURE	230	HA
Mode	253	ENRICHMENT PROTECTION	201	
ECM Terminals and Reference Value		System Description		88
		CONSULT-II Reference Value in Data Monitor	231	SC
On Board Diagnosis Logic DTC Confirmation Procedure			201	
Overall Function Check		Mode ECM Terminals and Reference Value		EL
				حاک
Wiring Diagram		On Board Diagnosis Logic		
Diagnostic Procedure		Possible Cause Overall Function Check		
Component Inspection DTC P0140 HEATED OXYGEN SENSOR 2	239			
	264	Wiring Diagram		
(REAR) (HIGH VOLTAGE)	∠01	Diagnostic Procedure	∠91	

Main 12 Causes of Overheating	308	Wiring Diagram	
DTC P0300 - P0304 NO. 4 - 1 CYLINDER		Diagnostic Procedure	
MISFIRE, MULTIPLE CYLINDER MISFIRE	309	DTC P0420 THREE WAY CATALYST FUNCTION	351
On Board Diagnosis Logic	309	On Board Diagnosis Logic	
DTC Confirmation Procedure	309	DTC Confirmation Procedure	351
Diagnostic Procedure	310	Overall Function Check	352
Component Inspection		Diagnostic Procedure	352
DTC P0325 KNOCK SENSOR (KS)	316	DTC P0440 EVAP CONTROL SYSTEM (SMALL	
Component Description		LEAK) (NEGATIVE PRESSURE)	
ECM Terminals and Reference Value		On Board Diagnosis Logic	
On Board Diagnosis Logic	316	Possible Cause	
DTC Confirmation Procedure	316	DTC Confirmation Procedure	
Wiring Diagram	317	Diagnostic Procedure	357
Diagnostic Procedure	318	DTC P0443 EVAP CANISTER PURGE VOLUME	
Component Inspection	319	CONTROL SOLENOID VALVE (CIRCUIT)	
DTC P0335 CRANKSHAFT POSITION SENSOR		Description	369
(CKPS) (OBD)		CONSULT-II Reference Value in Data Monitor	
Component Description		Mode	
ECM Terminals and Reference Value	320	ECM Terminals and Reference Value	370
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		Possible Cause	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
Component Inspection	325	Diagnostic Procedure	373
DTC P0340 CAMSHAFT POSITION SENSOR		DTC P0446 EVAPORATIVE EMISSION (EVAP)	
(CMPS)		CANISTER VENT CONTROL VALVE (CIRCUIT)	
Component Description		Component Description	376
ECM Terminals and Reference Value		CONSULT-II Reference Value in Data Monitor	
On Board Diagnosis Logic		Mode	
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		Possible Cause	
Component Inspection		DTC Confirmation Procedure	
DTC P0400 EGR FUNCTION (CLOSE)		Wiring Diagram	
Description	334	Diagnostic Procedure	379
CONSULT-II Reference Value in Data Monitor		DTC P0450 EVAPORATIVE EMISSION (EVAP)	
Mode		CONTROL SYSTEM PRESSURE SENSOR	
ECM Terminals and Reference Value		Component Description	383
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor	
Possible Cause		Mode	
DTC Confirmation Procedure		ECM Terminals and Reference Value	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure	339	Possible Cause	
DTC P0403 EGR VOLUME CONTROL VALVE		DTC Confirmation Procedure	
(CIRCUIT)		Wiring Diagram	
Description	344	Diagnostic Procedure	387
CONSULT-II Reference Value in Data Monitor	0:-	DTC P0455 EVAP CONTROL SYSTEM (GROSS	
Mode		,	396
ECM Terminals and Reference Value		On Board Diagnosis Logic	
On Board Diagnosis Logic		Possible Cause	
Possible Cause		DTC Confirmation Procedure	
DTC Confirmation Procedure	346	Diagnostic Procedure	398

DTC P0460 FUEL LEVEL SENSOR FUNCTION	System Description	440	GI
(SLOSH)407	ECM Terminals and Reference Value	440	
Component Description407	On Board Diagnosis Logic	440	пдσ
ECM Terminals and Reference Value407	DTC Confirmation Procedure	440	MA
On Board Diagnostic Logic407	Wiring Diagram	441	
Possible Cause407	Diagnostic Procedure	442	EM
DTC Confirmation Procedure408	DTC P0605 ECM	443	الالاكا
Wiring Diagram409	Component Description	443	
Diagnostic Procedure410	On Board Diagnosis Logic	443	LC
DTC P0461 FUEL LEVEL SENSOR FUNCTION412	DTC Confirmation Procedure	443	
Component Description412	Diagnostic Procedure		
On Board Diagnostic Logic412	DTC P1126 THERMOSTAT FUNCTION		EC
Possible Cause412	On Board Diagnosis Logic		
Overall Function Check412	Possible Cause		FE
DTC P0464 FUEL LEVEL SENSOR CIRCUIT414	DTC Confirmation Procedure		rs
Component Description414	Diagnostic Procedure		
ECM Terminals and Reference Value414	DTC P1148 CLOSED LOOP CONTROL		GL
On Board Diagnostic Logic414	On Board Diagnosis Logic		
Possible Cause414	DTC Confirmation Procedure		
DTC Confirmation Procedure415	Overall Function Check		Mī
Wiring Diagram416	Diagnostic Procedure	448	
Diagnostic Procedure417	DTC P1217 ENGINE OVER TEMPERATURE		AT
DTC P0500 VEHICLE SPEED SENSOR (VSS)419	(OVERHEAT)		<i>[</i> A] []
Component Description419	System Description	449	
ECM Terminals and Reference Value419	CONSULT-II Reference Value in Data Monitor		AX
On Board Diagnosis Logic419	Mode		
DTC Confirmation Procedure419	ECM Terminals and Reference Value		0.5.5
Overall Function Check	On Board Diagnosis Logic		SU
Wiring Diagram421	Overall Function Check		
Diagnostic Procedure422	Wiring Diagram		BR
DTC P0505 IDLE AIR CONTROL VALVE (IACV) -	Diagnostic Procedure		
AUXILIARY AIR CONTROL (AAC) VALVE423	Main 12 Causes of Overheating		
Description	Component Inspection DTC P1336 CRANKSHAFT POSITION SENSOR	405	ST
Mode424	(CKPS) (OBD) (COG)	467	
ECM Terminals and Reference Value424	Component Description		50
On Board Diagnosis Logic	ECM Terminals and Reference Value		RS
DTC Confirmation Procedure424	On Board Diagnosis Logic		
Wiring Diagram426	DTC Confirmation Procedure		BT
Diagnostic Procedure427	Wiring Diagram		ا کا
DTC P0510 CLOSED THROTTLE POSITION	Diagnostic Procedure		
SWITCH	Component Inspection		HA
Component Description432	DTC P1401 EGR TEMPERATURE SENSOR		
CONSULT-II Reference Value in Data Monitor	Component Description		@@
Mode	On Board Diagnosis Logic		SC
ECM Terminals and Reference Value432	Possible Cause		
On Board Diagnosis Logic432	DTC Confirmation Procedure		EL
DTC Confirmation Procedure	Wiring Diagram		
Overall Function Check	Diagnostic Procedure		
Wiring Diagram434	DTC P1402 EGR FUNCTION (OPEN)		\mathbb{D}
Diagnostic Procedure435	Description		
DTC P0600 A/T CONTROL440	,	-	

CONSULT-II Reference Value in Data Monitor		Possible Cause	526
Mode		DTC Confirmation Procedure	
ECM Terminals and Reference Value	482	Overall Function Check	527
On Board Diagnosis Logic		Wiring Diagram	
Possible Cause	483	Diagnostic Procedure	529
DTC Confirmation Procedure	483	DTC P1464 FUEL LEVEL SENSOR CIRCUIT	
Wiring Diagram	485	(GROUND SIGNAL)	534
Diagnostic Procedure	486	Component Description	534
DTC P1440 EVAP CONTROL SYSTEM (SMALL		ECM Terminals and Reference Value	534
LEAK) (POSITIVE PRESSURE)	491	On Board Diagnostic Logic	534
On Board Diagnosis Logic	491	Possible Cause	534
Possible Cause	491	DTC Confirmation Procedure	535
DTC Confirmation Procedure	492	Wiring Diagram	536
Diagnostic Procedure	492	Diagnostic Procedure	537
DTC P1444 EVAP CANISTER PURGE VOLUME		DTC P1490 VACUUM CUT VALVE BYPASS	
CONTROL SOLENOID VALVE	493	VALVE (CIRCUIT)	538
Description	493	Description	538
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode	493	Mode	538
ECM Terminals and Reference Value	494	ECM Terminals and Reference Value	538
On Board Diagnosis Logic	494	On Board Diagnosis Logic	539
Possible Cause	494	Possible Cause	539
DTC Confirmation Procedure	495	DTC Confirmation Procedure	539
Wiring Diagram	496	Wiring Diagram	540
Diagnostic Procedure		Diagnostic Procedure	
DTC P1446 EVAPORATIVE EMISSION (EVAP)		DTC P1491 VACUUM CUT VALVE BYPASS	
CANISTER VENT CONTROL VALVE (CLOSE)	505	VALVE	544
Component Description	505	Description	544
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode	505	Mode	544
ECM Terminals and Reference Value	505	ECM Terminals and Reference Value	544
On Board Diagnosis Logic	505	On Board Diagnosis Logic	545
Possible Cause	506	Possible Cause	
DTC Confirmation Procedure	506	DTC Confirmation Procedure	545
Wiring Diagram	507	Overall Function Check	546
Diagnostic Procedure		Wiring Diagram	547
DTC P1447 EVAPORATIVE EMISSION (EVAP)		Diagnostic Procedure	548
CONTROL SYSTEM PURGE FLOW		DTC P1605 A/T DIAGNOSIS COMMUNICATION	
MONITORING	513	LINE	556
System Description	513	System Description	556
On Board Diagnosis Logic	513	ECM Terminals and Reference Value	556
Possible Cause	513	On Board Diagnosis Logic	556
DTC Confirmation Procedure	514	DTC Confirmation Procedure	556
Overall Function Check	514	Wiring Diagram	557
Diagnostic Procedure	516	Diagnostic Procedure	558
DTC P1448 EVAPORATIVE EMISSION (EVAP)		DTC P1706 PARK/NEUTRAL POSITION (PNP)	
CANISTER VENT CONTROL VALVE (OPEN)	525	SWITCH	559
Component Description		Component Description	559
CONSULT-II Reference Value in Data Monitor		CONSULT-II Reference Value in Data Monitor	
Mode	525	Mode	559
ECM Terminals and Reference Value	525	ECM Terminals and Reference Value	559
On Board Diagnosis Logic	525	On Board Diagnosis Logic	559

DTC Confirmation Procedure	559
Overall Function Check	560
Wiring Diagram	561
Diagnostic Procedure For M/T Models	562
Diagnostic Procedure For A/T Models	564
IGNITION SIGNAL	
Component Description	566
CONSULT-II Reference Value in Data Monitor	
Mode	566
ECM Terminals and Reference Value	566
Wiring Diagram	568
Diagnostic Procedure	
Component Inspection	
INJECTOR	
Component Description	
CONSULT-II Reference Value in Data Monitor	
Mode	574
ECM Terminals and Reference Value	574
Wiring Diagram	575
Diagnostic Procedure	
START SIGNAL	
CONSULT-II Reference Value in Data Monitor	
Mode	579
ECM Terminals and Reference Value	579
Wiring Diagram	580
Diagnostic Procedure	
FUEL PUMP	
System Description	
Component Description	
CONSULT-II Reference Value in Data Monitor	
Mode	583
ECM Terminals and Reference Value	584
Wiring Diagram	585
Diagnostic Procedure	
Component Inspection	
POWER STEERING OIL PRESSURE SWITCH	
Component Description	592
CONSULT-II Reference Value in Data Monitor	
Mada	500

ECM Terminals and Reference Value	592	GI
Wiring Diagram	593	
Diagnostic Procedure	594	0.0.0
Component Inspection	596	MA
REFRIGERANT PRESSURE SENSOR		
Description		
ECM Terminals and Reference Value		EM
Wiring Diagram		
Diagnostic Procedure		LC
ELECTRICAL LOAD SIGNAL		
CONSULT-II Reference Value in Data Monitor	002	
Mode	602	EC
ECM Terminals and Reference Value		
Wiring Diagram		
Diagnostic Procedure		FE
MIL & DATA LINK CONNECTORS		
Wiring Diagram		
SERVICE DATA AND SPECIFICATIONS (SDS)		GL
Fuel Pressure Regulator		
Idle Speed and Ignition Timing		Mī
Ignition Coil		ם מעם
Mass Air Flow Sensor		
Engine Coolant Temperature Sensor		AT
EGR Volume Control Valve		
EGR Temperature Sensor		$\mathbb{A}\mathbb{X}$
Fuel Pump		
IACV-AAC Valve		@III
Injector		SU
Resistor		
Throttle Position Sensor		BR
Heated Oxygen Sensor 1 Heater (Front)		וש
Calculated Load Value		
Intake Air Temperature Sensor		ST
EVAP Canister Purge Volume Control Valve		
Heated Oxygen Sensor 2 Heater (Rear)		
Crankshaft Position Sensor (OBD)		RS
Fuel Tank Temperature Sensor	612	

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

GL

MT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

NCEC0001

Items (CONSULT-II screen terms)	DTC*1	Reference page
Unable to access ECM	_	EC-124
ABSL PRES SEN/CIRC	P0105	EC-163
AIR TEMP SEN/CIRC	P0110	EC-165
A/T 1ST GR FNCTN	P0731	AT-128
A/T 2ND GR FNCTN	P0732	AT-135
A/T 3RD GR FNCTN	P0733	AT-141
A/T 4TH GR FNCTN	P0734	AT-147
A/T COMM LINE	P0600*2	EC-440
A/T DIAG COMM LINE	P1605	EC-556
A/T TCC S/V FNCTN	P0744	AT-163
ATF TEMP SEN/CIRC	P0710	AT-113
CKP SEN/CIRCUIT	P0335	EC-320
CKP SENSOR (COG)	P1336	EC-467
CLOSED LOOP-B1	P1148	EC-447
CLOSED TP SW/CIRC	P0510	EC-432
CMP SEN/CIRC	P0340	EC-326
COOLANT T SEN/CIRC*3	P0115	EC-171
*COOLAN T SEN/CIRC	P0125	EC-190
CYL 1 MISFIRE	P0301	EC-309
CYL 2 MISFIRE	P0302	EC-309
CYL 3 MISFIRE	P0303	EC-309
CYL 4 MISFIRE	P0304	EC-309
ECM	P0605	EC-443
EGR SYSTEM	P0400	EC-334
EGR SYSTEM	P1402	EC-481
EGR TEMP SEN/CIRC	P1401	EC-473
EGR VOL CONT/V CIR	P0403	EC-344
ENGINE SPEED SIG	P0725	AT-124
ENG OVER TEMP	P0217	EC-291
ENG OVER TEMP	P1217*2	EC-449
EVAP GROSS LEAK	P0455	EC-396
EVAP PURG FLOW/MON	P1447	EC-513
EVAP SYS PRES SEN	P0450	EC-383
EVAP SMALL LEAK	P0440	EC-355
EVAP SMALL LEAK	P1440	EC-491

	Alpnabetical	& P No. Index for DTC (Cor.	it a)
Items (CONSULT-II screen terms)	DTC*1	Reference page	
FUEL LEVL SEN/CIRC	P0464	EC-414	
FUEL LEVL SEN/CIRC	P1464	EC-534	
FUEL LEVEL SENSOR	P0461	EC-412	U\
FUEL LEV SEN SLOSH	P0460	EC-407	
FUEL SYS-LEAN/BK1	P0171	EC-272	
FUEL SYS-RICH/BK1	P0172	EC-279	
FUEL TEMP SEN/CIRC	P0180	EC-286	_
HO2S1 (B1)	P0130	EC-196	
HO2S1 (B1)	P0131	EC-204	
HO2S1 (B1)	P0132	EC-210	
HO2S1 (B1)	P0133	EC-217	
HO2S1 (B1)	P0134	EC-226	
HO2S1 HTR (B1)	P0135	EC-232	
HO2S2 (B1)	P0137	EC-237	
HO2S2 (B1)	P0138	EC-245	
HO2S2 (B1)	P0139	EC-253	
HO2S2 (B1)	P0140	EC-261	
HO2S2 HTR (B1)	P0141	EC-267	
IACV/AAC VLV/CIRC	P0505	EC-423	
KNOCK SEN/CIRC-B1	P0325*2	EC-316	
L/PRES SOL/CIRC	P0745	AT-174	
MAF SEN/CIRCUIT*3	P0100	EC-154	
MULTI CYL MISFIRE	P0300	EC-309	
NATS MALFUNCTION	P1610 - P1615*2	EL-249	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	_	
O/R CLTCH SOL/CIRC	P1760	AT-202	
P-N POS SW/CIRCUIT	P1706	EC-559	[
PNP SW/CIRC	P0705	AT-107	
PURG VOLUME CONT/V	P0443	EC-369	
PURG VOLUME CONT/V	P1444	EC-493	
SFT SOL A/CIRC*3	P0750	AT-181	
SFT SOL B/CIRC*3	P0755	AT-187	
TCC SOLENOID/CIRC	P0740	AT-157	
THERMOSTAT FNCTN	P1126	EC-445	
TP SEN/CIRC A/T*3	P1705	AT-193	
TRTL POS SEN/CIRC*3	P0120	EC-177	
TW CATALYST SYS-B1	P0420	EC-351	

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	Reference page
VC CUT/V BYPASS/V	P1491	EC-544
VC/V BYPASS/V	P1490	EC-538
VEH SPEED SEN/CIRC*4	P0500	EC-419
VEH SPD SEN/CIR A/T*4	P0720	AT-119
VENT CONTROL VALVE	P0446	EC-376
VENT CONTROL VALVE	P1446	EC-505
VENT CONTROL VALVE	P1448	EC-525

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This DTC is displayed with CONSULT-II only.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC (Cont'd)

NDEX FOR		=NCEC00
DTC*1	Items (CONSULT-II screen terms)	Reference page
_	Unable to access ECM	EC-124
P0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_
P0100	MAF SEN/CIRCUIT*3	EC-154
P0105	ABSL PRES SEN/CIRC	EC-163
P0110	AIR TEMP SEN/CIRC	EC-165
P0115	COOLANT T SEN/CIRC*3	EC-171
P0120	THRTL POS SEN/CIRC*3	EC-177
P0125	*COOLAN T SEN/CIRC	EC-190
P0130	HO2S1 (B1)	EC-196
P0131	HO2S1 (B1)	EC-204
P0132	HO2S1 (B1)	EC-210
P0133	HO2S1 (B1)	EC-217
P0134	HO2S1 (B1)	EC-226
P0135	HO2S1 HTR (B1)	EC-232
P0137	HO2S2 (B1)	EC-237
P0138	HO2S2 (B1)	EC-245
P0139	HO2S2 (B1)	EC-253
P0140	HO2S2 (B1)	EC-261
P0141	HO2S2 HTR (B1)	EC-267
P0171	FUEL SYS-LEAN/BK1	EC-272
P0172	FUEL SYS-RICH/BK1	EC-279
P0180	FUEL TEMP SEN/CIRC	EC-286
P0217	ENG OVER TEMP	EC-291
P0300	MULTI CYL MISFIRE	EC-309
P0301	CYL 1 MISFIRE	EC-309
P0302	CYL 2 MISFIRE	EC-309
P0303	CYL 3 MISFIRE	EC-309
P0304	CYL 4 MISFIRE	EC-309
P0325*2	KNOCK SEN/CIRC-B1	EC-316
P0335	CKP SEN/CIRCUIT	EC-320
P0340	CMP SEN/CIRCUIT	EC-326
P0400	EGR SYSTEM	EC-334
P0403	EGR VOL CONT/V CIR	EC-344
P0420	TW CATALYST SYS-B1	EC-351
P0440	EVAP SMALL LEAK	EC-355
P0443	PURG VOLUME CONT/V	EC-369

DTC*1	Items (CONSULT-II screen terms)	Reference page
P0446	VENT CONTROL VALVE	EC-376
P0450	EVAP SYS PRES SEN	EC-383
P0455	EVAP GROSS LEAK	EC-396
P0460	FUEL LEV SEN SLOSH	EC-407
P0461	FUEL LEVEL SENSOR	EC-412
P0464	FUEL LEVL SEN/CIRC	EC-414
P0500	VEH SPEED SEN/CIRC*4	EC-419
P0505	IACV/AAC VLV/CIRC	EC-423
P0510	CLOSED TP SW/CIRC	EC-432
P0600*2	A/T COMM LINE	EC-440
P0605	ECM	EC-443
P0705	PNP SW/CIRC	AT-107
P0710	ATF TEMP SEN/CIRC	AT-113
P0720	VEH SPD SEN/CIR A/T*4	AT-119
P0725	ENGINE SPEED SIG	AT-124
P0731	A/T 1ST GR FNCTN	AT-128
P0732	A/T 2ND GR FNCTN	AT-135
P0733	A/T 3RD GR FNCTN	AT-141
P0734	A/T 4TH GR FNCTN	AT-147
P0740	TCC SOLENOID/CIRC	AT-157
P0744	A/T TCC S/V FNCTN	AT-163
P0745	L/PRESS SOL/CIRC	AT-174
P0750	SFT SOL A/CIRC*3	AT-181
P0755	SFT SOL B/CIRC*3	AT-187
P1126	THERMOSTAT FNCTN	EC-445
P1148	CLOSED LOOP-B1	EC-447
P1217*2	ENG OVER TEMP	EC-449
P1336	CKP SENSOR (COG)	EC-467
P1401	EGR TEMP SEN/CIRC	EC-473
P1402	EGR SYSTEM	EC-481
P1440	EVAP SMALL LEAK	EC-491
P1444	PURG VOLUME CONT/V	EC-493
P1446	VENT CONTROL VALVE	EC-505
P1447	EVAP PURG FLOW/MON	EC-513
P1448	VENT CONTROL VALVE	EC-525
P1464	FUEL LEVL SEN/CIRC	EC-534
P1490	VC/V BYPASS/V	EC-538

TROUBLE DIAGNOSIS — INDEX

Alphabetical & P No. Index for DTC (Cont'd)

DTC*1	Items (CONSULT-II screen terms)	Reference page
P1491	VC CUT/V BYPASS/V	EC-544
P1605	A/T DIAG COMM LINE	EC-556
P1610 - P1615*2	NATS MALFUNCTION	EL-249
P1705	TP SEN/CIRC A/T*3	AT-193
P1706	P-N POS SW/CIRCUIT	EC-559
P1760	O/R CLTCH SOL/CIRC	AT-202

^{*1: 1}st trip DTC No. is the same as DTC No.

EC

LC

GI

MA

FE

GL

MT

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

^{*2:} This DTC is displayed with CONSULT-II only.

^{*3:} When the fail-safe operation occurs, the MIL illuminates.

^{*4:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor signal" meet the fail-safe condition at the same time.

Supplemental Restraint System (SRS) "AIR **BAG" and "SEAT BELT PRE-TENSIONER"**

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to INFINITI G20 is as follows:

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.
- For a side collision
 - The Supplemental Restraint System consists of side air bag module (located in the outer side of front seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses (except "SEAT BELT PRE-TENSIONER") covered with yellow insulation tape either just before the harness connectors or for the complete harness are related to the SRS.

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

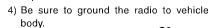
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

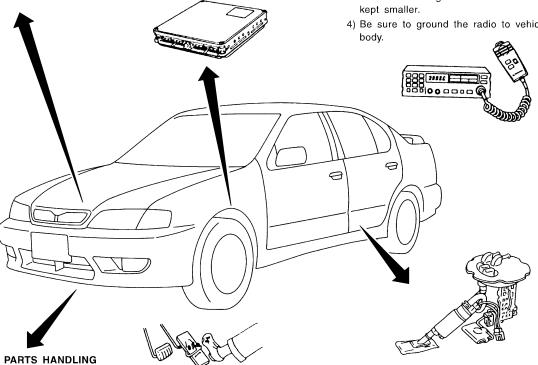
CAUTION:

- Be sure to turn the ignition switch "OFF" and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to EL section, "Description", "HARNESS CONNEC-TOR".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EGR system or fuel injection system,
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission Control Module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

NCEC0004


ECM


- Do not disassemble ECM.
- Do not turn diagnosis test mode selector
- If a battery terminal is disconnected, the memory will return to the ECM

The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem. Do not replace parts because of a slight variation.

WIRELESS EQUIPMENT

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- 1) Keep the antenna as far as possible from the electronic control units.
- 2) Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls. Do not let them run parallel for a long distance.
- 3) Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller.

ENGINE CONTROL PARTS HANDLING

BATTERY

source.

Always use a 12 volt battery as power

Do not attempt to disconnect battery

cables while engine is running.

- Handle mass air flow sensor carefully to avoid damage.
- · Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IAC valve-AAC valve. Do not rev up engine just prior to
- Even a slight leak in the air intake system can cause serious problems.
- Do not shock or jar the camshaft position sensor.

WHEN STARTING

- Do not depress accelerator pedal when
- Immediately after starting, do not rev up engine unnecessarily.
- shutdown.

FUEL PUMP

- Do not operate fuel pump when there is no fuel in lines.
- · Tighten fuel hose clamps to the specified torque.

ECM HARNESS HANDLING

- Securely connect ECM harness connectors
 - A Poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (4 in) away from adjacent harness, to prevent an ECM system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harness dry.
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

SEF331WC

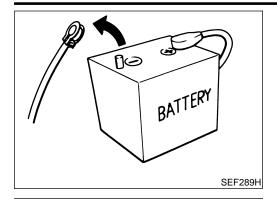
MA

EC

GL

AT

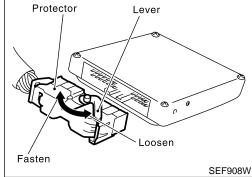
AX

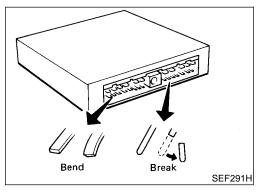

ST

BT

HA

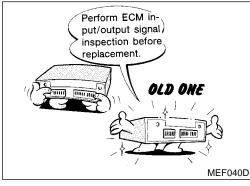
SC


EL


Precautions

NCEC0005

 Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.

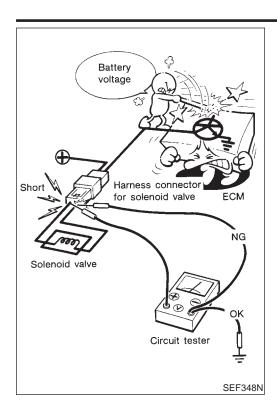


 When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown at left.



 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminals when connecting pin connectors.



 Before replacing ECM, perform Terminals and Reference Value inspection and make sure ECM functions properly. Refer to EC-134.

 After performing each TROUBLE DIAGNOSIS, perform "Overall Function Check" or "DTC Confirmation Procedure".

The DTC should not be displayed in the "DTC Confirmation Procedure" if the repair is completed. The "Overall Function Check" should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

 $\mathbb{M}\mathbb{A}$

LC

EC

SE

GL

MT

Wiring Diagrams and Trouble Diagnosis

When you read Wiring diagrams, refer to the following:

NCEC0006

- GI-11, "HOW TO READ WIRING DIAGRAMS"
- EL-9, "POWER SUPPLY ROUTING" for power distribution circuit

When you perform trouble diagnosis, refer to the following:

- GI-35, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-24, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT"

BR

ST

RS

RT

HA

SC

EL

Special Service Tools

NCEC0007

Tool number (Kent-Moore No.) Tool name	Description	
KV10117100 (J36471-A) Heated oxygen sensor wrench	NT379	Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut
KV10114400 (J-38365) Heated oxygen sensor wrench	NT636	Loosening or tightening rear heated oxygen sensor a: 22 mm (0.87 in)

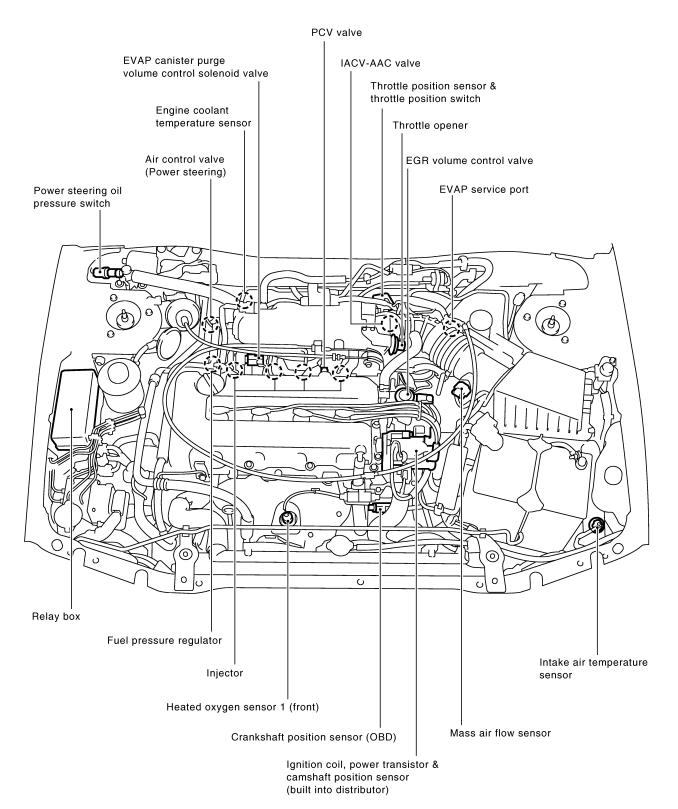
Commercial Service Tools

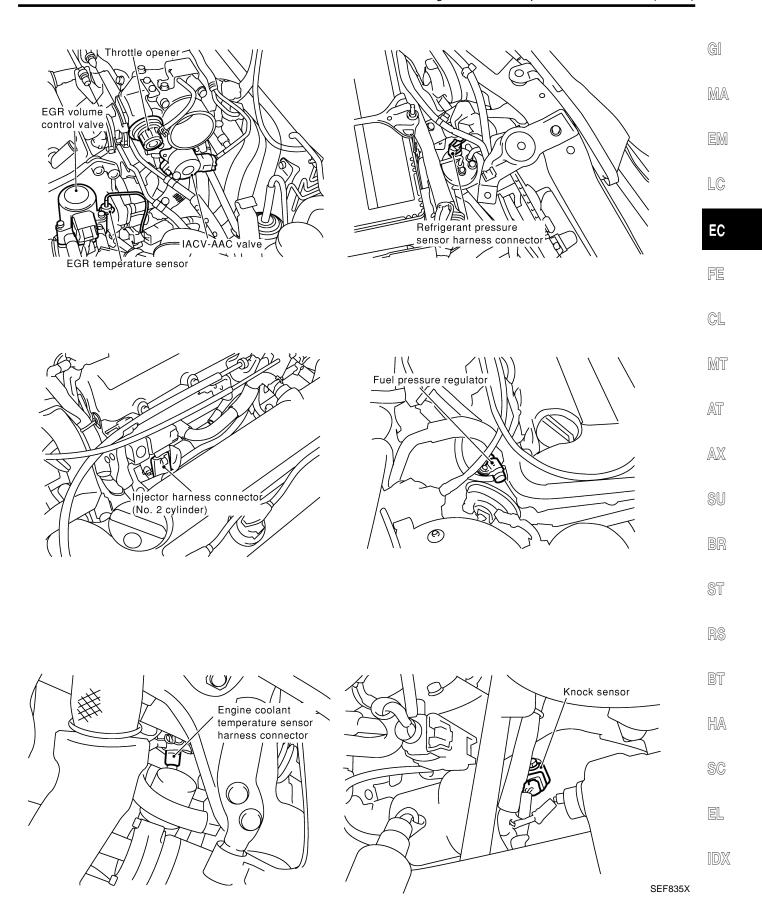
NCEC0008

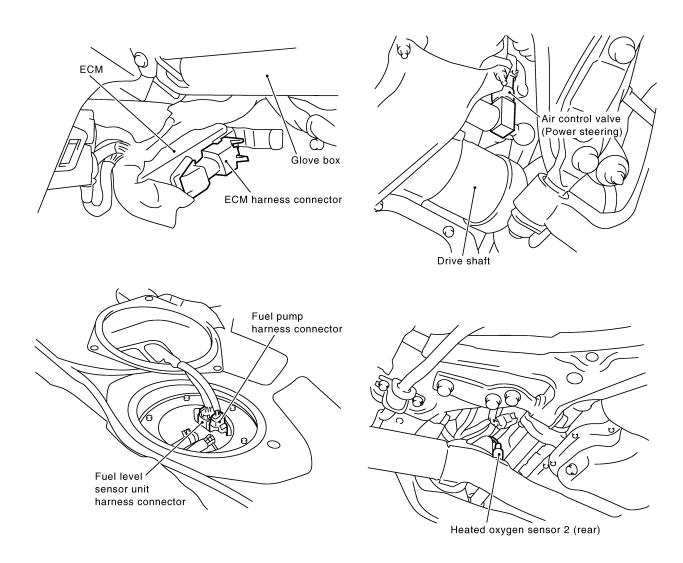
Tool name	Description	
Fuel filler cap adapter		Checking fuel tank vacuum relief valve opening pressure
	NT653	
Leak detector (J41416)		Locating the EVAP leak
	NT703	
EVAP service port adapter (J41413-OBD)		Applying positive pressure through EVAP service port
	NT704	

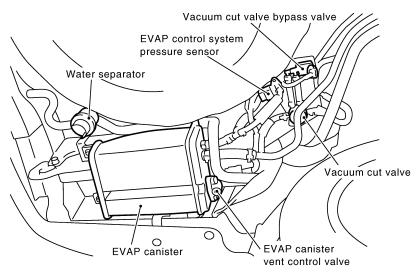
HA

SC


EL


 $\mathbb{D}\mathbb{X}$


Tool name	Description	
Hose clipper	Approx. 20 mm (0.79 in)	Clamping the EVAP purge hose between the fuel tank and EVAP canister applied to DTC P1440 [EVAP control system (Small leak — Positive pressure)]
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)	Mating b surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown below. a: J-43897-18 (18 mm diameter with pitch 1.5 mm) for Zirconia Oxygen Sensor b: J-43897-12 (12 mm diameter with pitch 1.25 mm) for Titania Oxygen Sensor
Anti-seize lubricant (Permatex TM 133AR or equivalent meeting MIL specification MIL-A-907)	NT778	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.
N	INITYS	


Engine Control Component Parts Location

NCEC000

SEF913Z

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

Engine Control Component Parts Location (Cont'd)

NOTE:

G[

MA

LC

EC

FE

GL

MT

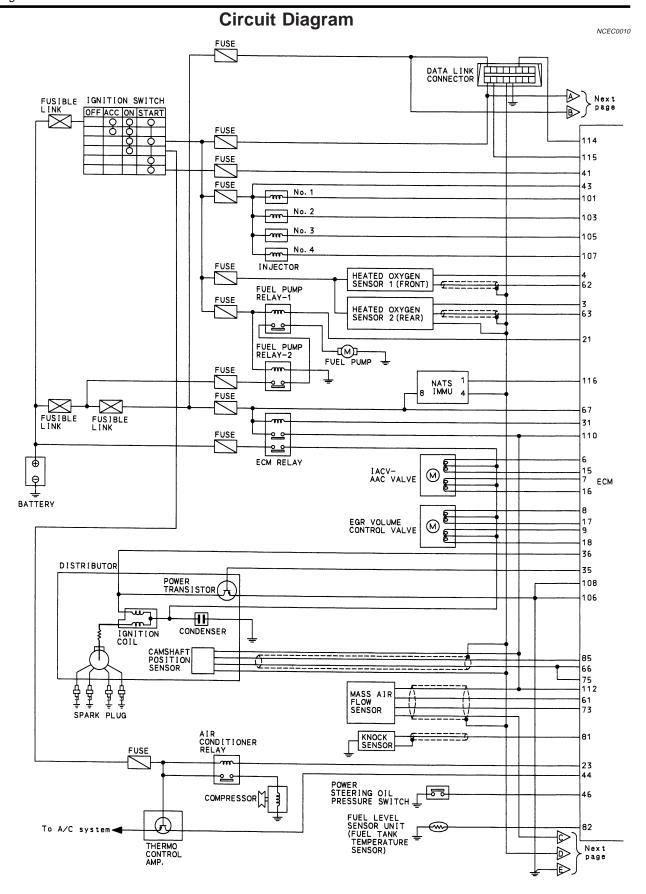
AT

 $\mathbb{A}\mathbb{X}$

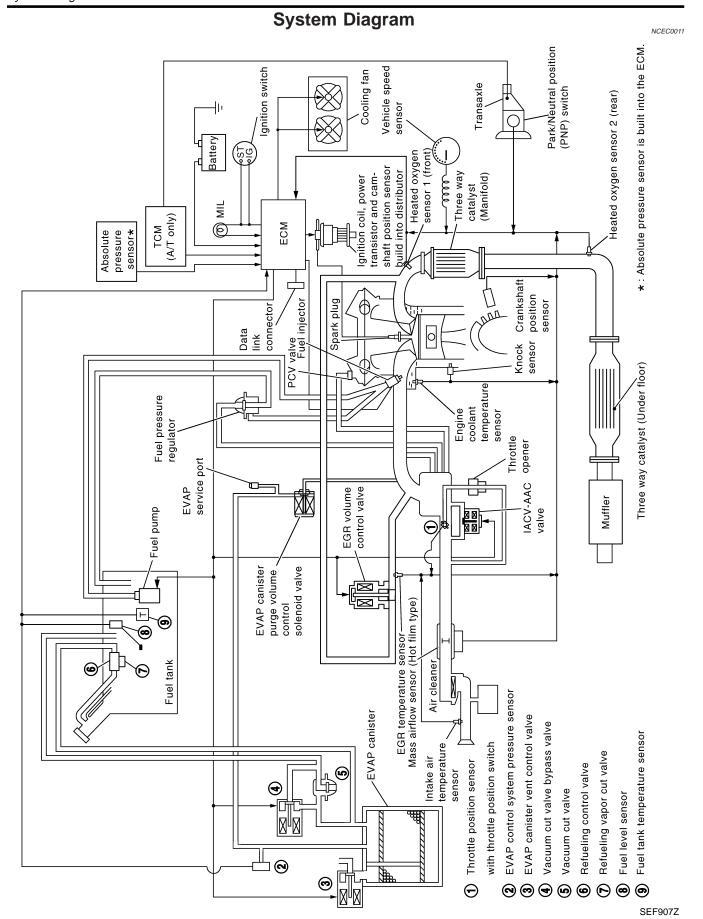
SU

BR

ST

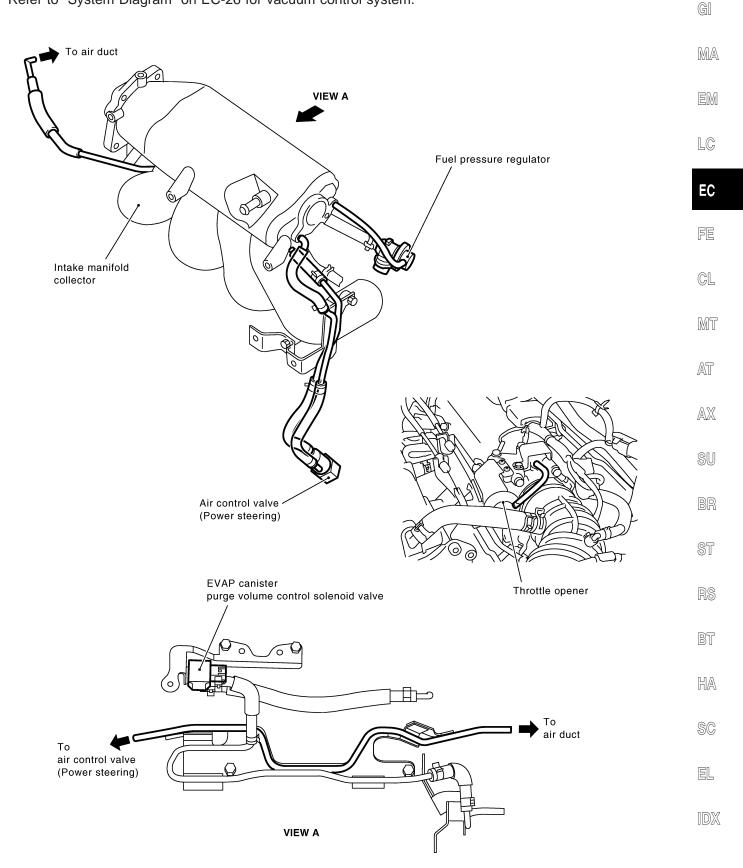

RS


BT


HA

SC

EL



Vacuum Hose Drawing

Refer to "System Diagram" on EC-26 for vacuum control system.

NCEC0012

NOTE: Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

System Chart NCEC0013 Input (Sensor) **ECM Function** Output (Actuator) · Camshaft position sensor Fuel injection & mixture ratio control Injectors Mass air flow sensor Power transistor Distributor ignition system • Engine coolant temperature sensor Heated oxygen sensor 1 (front) IACV-AAC valve Idle air control system • Ignition switch • Throttle position sensor Fuel pump relay Fuel pump control PNP switch Malfunction indicator lamp Air conditioner switch On board diagnostic system (On the instrument panel) Knock sensor • EGR temperature sensor*1 EGR control EGR volume control valve Crankshaft position sensor (OBD)*1 EVAP control system pressure sensor*1 Heated oxygen sensor 1 heater (front) Heated oxygen sensor 1 heater • Fuel tank temperature sensor*1 control (front) Battery voltage Heated oxygen sensor 2 heater Heated oxygen sensor 2 heater (rear) con-• Power steering oil pressure switch (rear) Vehicle speed sensor • Intake air temperature sensor EVAP canister purge volume con- Heated oxygen sensor 2 (rear)*3 EVAP canister purge flow control trol solenoid valve TCM (Transmission control module)*2 Closed throttle position switch*4 Cooling fan control Cooling fan relays Electrical load Air conditioning cut control Air conditioner relay • Fuel level sensor*1 Refrigerant pressure sensor EVAP canister vent control ON BOARD DIAGNOSIS for EVAP system valve Vacuum cut valve bypass valve

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.

^{*2:} The DTC related to A/T will be sent to ECM.

^{*3:} Under normal conditions, this sensor is not for engine control operation.

^{*4:} This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

Multiport Fuel Injection (MFI) System

Multiport Fuel Injection (MFI) System

DESCRIPTION **Input/Output Signal Chart**

NCEC0014

NCEC0014S01

			NCLC0014301	
Sensor	Input Signal to ECM	ECM func- tion	Actuator	MA
Camshaft position sensor	Engine speed and piston position			
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas			LC
Throttle position sensor	Throttle position Throttle valve idle position			EC
PNP switch	Gear position	Fuel injec-		
Vehicle speed sensor	Vehicle speed	tion & mix-	Injector	FE
Ignition switch	Start signal	- ture ratio control	•	© I
Air conditioner switch	Air conditioner operation			GL
Knock sensor	Engine knocking condition			0.452
Electrical load	Electrical load signal			MT
Battery	Battery voltage			AT
Power steering oil pressure switch	Power steering operation			<i>[</i> A\ I]
Heated oxygen sensor 2 (rear)*	Density of oxygen in exhaust gas			AX

^{*} Under normal conditions, this sensor is not for engine control operation.

Basic Multiport Fuel Injection System

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

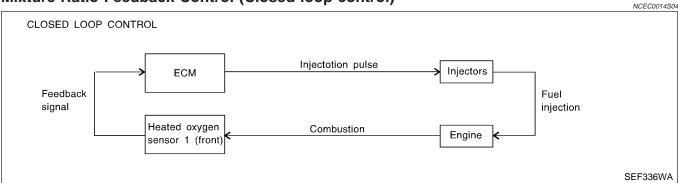
Various Fuel Injection Increase/Decrease Compensation

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- **During acceleration**
- Hot-engine operation
- When selector lever is changed from "N" to "D" (A/T models only)
- High-load, high-speed operation

<Fuel decrease>


- **During deceleration**
- During high engine speed operation
- During high vehicle speed operation (M/T models)
- Extremely high engine coolant temperature

HA SC

EL

Multiport Fuel Injection (MFI) System (Cont'd)

Mixture Ratio Feedback Control (Closed loop control)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 (front) in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1 (front), refer to EC-196. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 (rear) is located downstream of the three way catalyst. Even if the switching characteristics of the heated oxygen sensor 1 (front) shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2 (rear).

Open Loop Control

NCEC0014S05

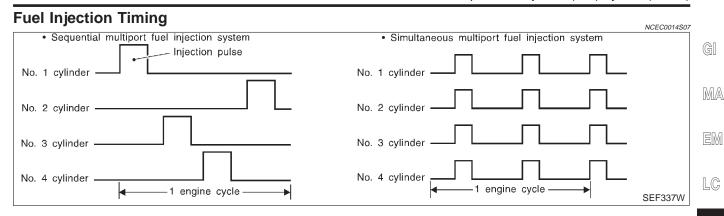
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 (front) or its circuit
- Insufficient activation of heated oxygen sensor 1 (front) at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

Mixture Ratio Self-learning Control

NCEC0014S0

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1 (front). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.


Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 (front) indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

Multiport Fuel Injection (MFI) System (Cont'd)

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

EC

GL

MT

AT

ST

HA

SC

EL

The four injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

NCEC0014508

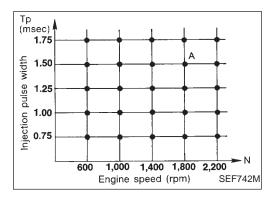
Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Distributor Ignition (DI) System

DESCRIPTION Input/Output Signal Chart

Fuel Shut-off

NCEC0015 NCEC0015S01


Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed and piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position Throttle valve idle position	Ignition tim-	
Vehicle speed sensor	Vehicle speed	ing control	Power transistor
Ignition switch	Start signal		
Knock sensor	Engine knocking		
PNP switch	Gear position	1	
Battery	Battery voltage		

EC-31

Distributor Ignition (DI) System (Cont'd)

System Description

NCFC0015S02

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown above.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec A°BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

DESCRIPTION Input/Output Signal Chart

NCEC0016

NCEC0016S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Air conditioner switch	Air conditioner "ON" signal			
PNP switch	Neutral position			
Throttle position sensor	Throttle valve opening angle	Air condi- tioner cut	Air conditioner relay	
Camshaft position sensor	Engine speed	control		
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			

System Description

NCEC0016S02

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.

Fuel Cut Control (at no load & high engine speed)

Fuel Cut Control (at no load & high engine speed)

DESCRIPTION Input/Output Signal Chart

NCEC0017 NCEC0017S01 GI

GL

MT

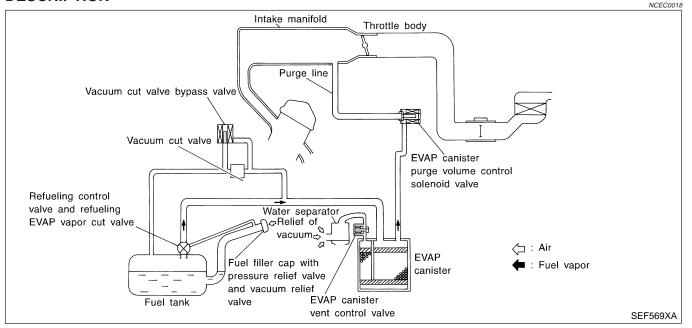
AT

AX

BT

HA

Sensor	Input Signal to ECM	ECM func- tion	Actuator	7801 MA
Vehicle speed sensor	Vehicle speed			
PNP switch	Neutral position			П. О
Throttle position sensor	Throttle position	Fuel cut control	Injectors	LC
Engine coolant temperature sensor	Engine coolant temperature			50
Camshaft position sensor	Engine speed			EC


If the engine speed is above 3,950 rpm with no load, (for example, in Neutral and engine speed over 4,000 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed. Fuel cut will operate until the engine speed reaches 1,150 rpm, then fuel cut is cancelled.

NOTE:

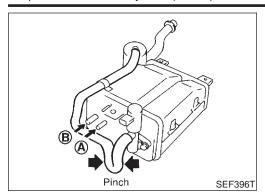
This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-29.

Evaporative Emission System

DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

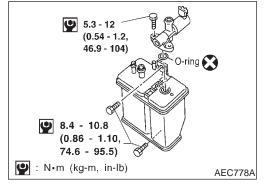

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating.

EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EC-33

Evaporative Emission System (Cont'd)

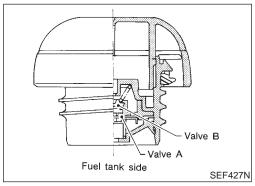

INSPECTION EVAP Canister

NCEC0019

NCEC0019S01

Check EVAP canister as follows:

- 1. Pinch the fresh air hose.
- Blow air into port A and check that air flows freely through port B.



Tightening Torque

NCEC0019S02

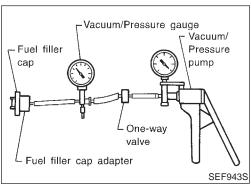
Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

Fuel Tank Vacuum Relief Valve (Built into fuel filler cap)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure:


15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi) Vacuum:

-6.0 to -3.4 kPa (-0.061 to -0.035 kg/cm², -0.87 to -0.49 psi)

3. If out of specification, replace fuel filler cap as an assembly.

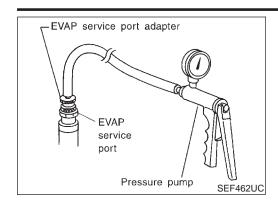
CAUTION:

Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

Vacuum Cut Valve and Vacuum Cut Valve Bypass Valve Refer to EC-544.

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

Refer to EC-369.


NCEC0019S06

Fuel Tank Temperature Sensor

Refer to EC-286.

NCEC0019S08

Evaporative Emission System (Cont'd)

EVAP Service Port

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs use a leak detector to leasts the least of th occurs, use a leak detector to locate the leak.

MA

LC

EC

FE

GL

MT

AT

AX

SU

BR

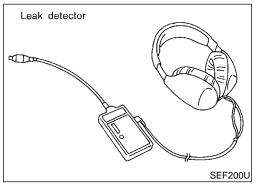
ST

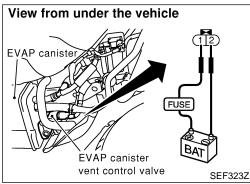
RS

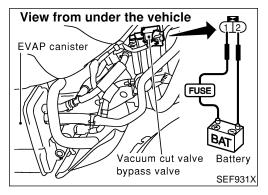
BT

HA

SC


EL


Evaporative Emission System (Cont'd)


EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

EVAP SYSTEM CLOSE

APPLY PRESSURE TO
SERVICE PORT TO RANGE
BELOW.
DO NOT EXCEED 0.6psi.

How to Detect Fuel Vapor Leakage

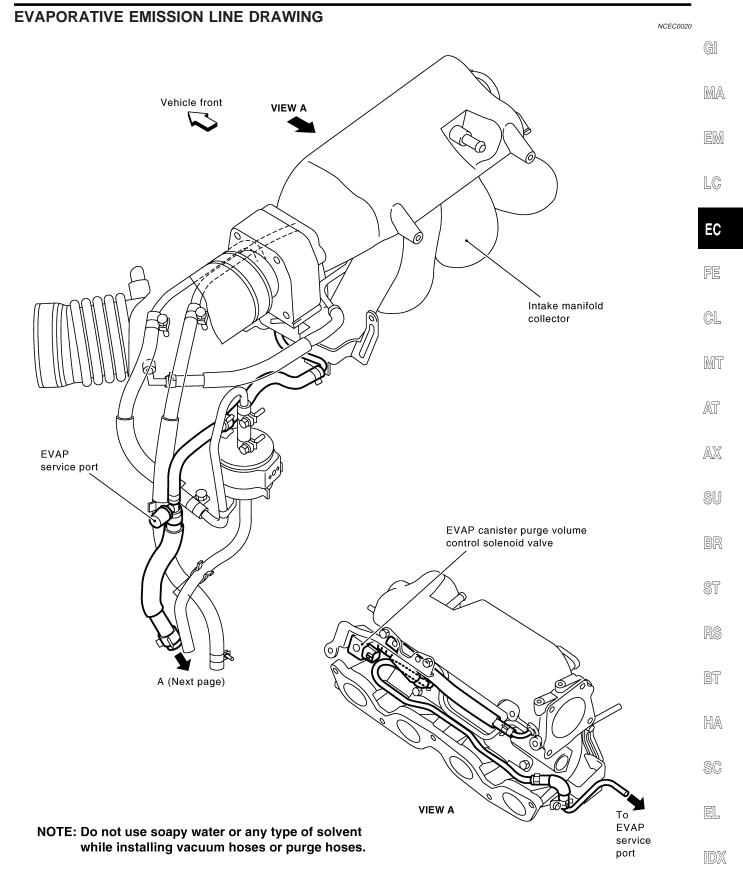
NCEC0019S10

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not start engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

NOTE:

Improper installation of adapter to the service port may cause a leak.

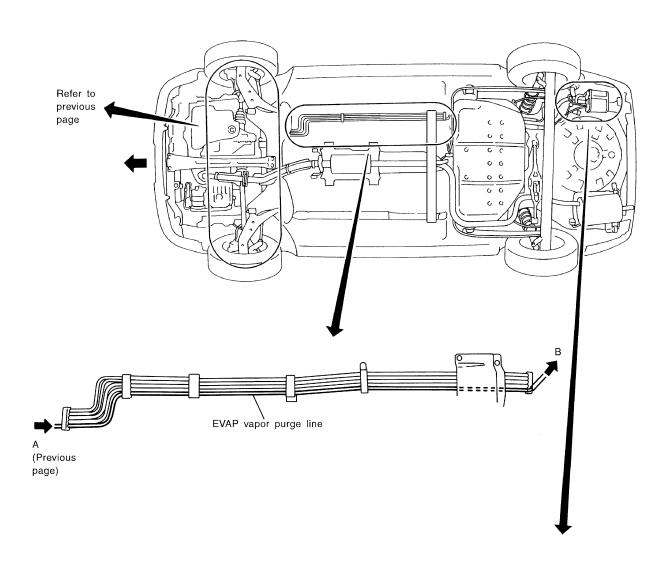

(P) With CONSULT-II

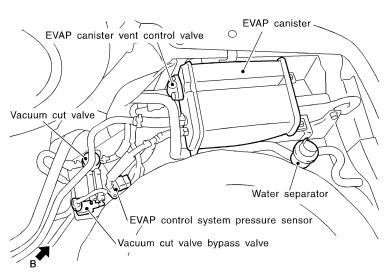
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Also attach the pressure pump and hose.
- 3) Turn ignition switch "ON".
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5) Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- 6) Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7) Remove the EVAP service port adapter and hose with pressure pump.
- 8) Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

⋈ Without CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port and pressure pump with pressure gauge to the EVAP service port.
- Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.
- To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- Remove the EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

Evaporative Emission System (Cont'd)




SEF915Z

Evaporative Emission System (Cont'd)

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

SEF832X

On Board Refueling Vapor Recovery (ORVR)

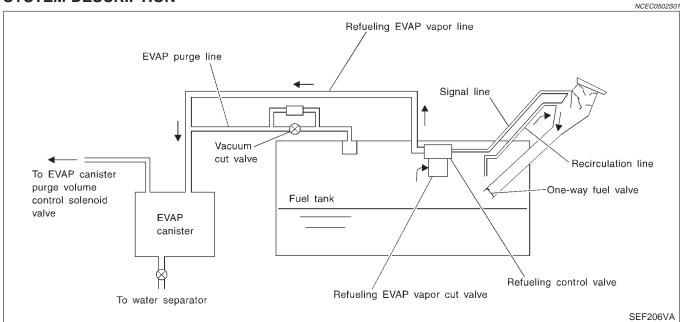
MA

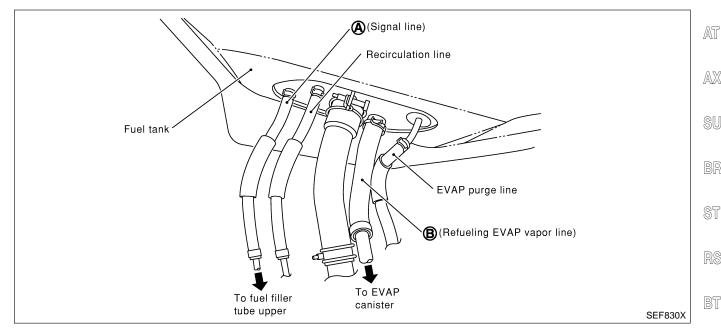
LC

EC

GL

MT


HA


SC

EL

On Board Refueling Vapor Recovery (ORVR)

SYSTEM DESCRIPTION

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING.

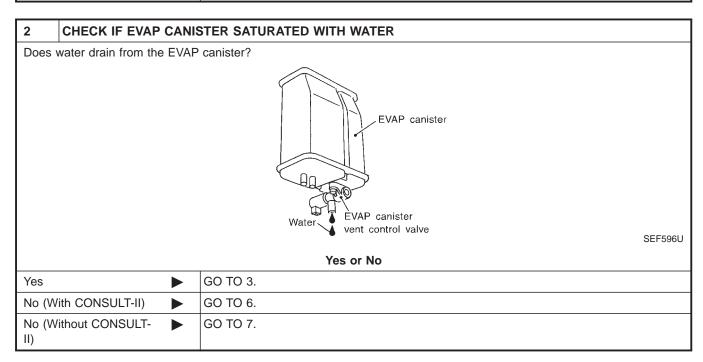
When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

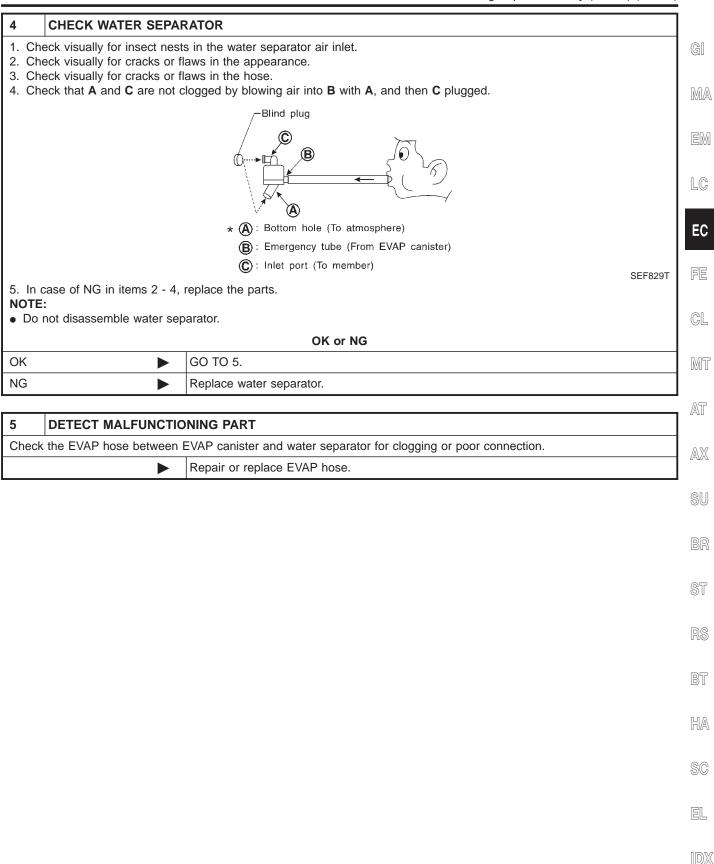
CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a) Put drained fuel in an explosion-proof container and put lid on securely.
- b) Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-50.
- c) Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.


DIAGNOSTIC PROCEDURE

Symptom: Fuel Odor from EVAP Canister Is Strong.

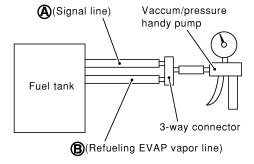
NCEC0502S02


105005000000

		NOLOGOZOZOZ	
1	CHECK EVAP CANISTE	ER	
2. We	 Remove EVAP canister with EVAP canister vent control valve attached. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb). 		
	OK or NG		
ОК	>	GO TO 2.	
NG	>	GO TO 3.	

3	REPLACE EVAP CANIS	STER	
Replac	Replace EVAP canister with a new one.		
	•	GO TO 4.	

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE

- With CONSULT-II
- 1. Remove fuel tank. Refer to FE-5, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel level sensor unit retainer.
- b. Connect a spare fuel hose, one side to fuel level sensor unit retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel level sensor unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.

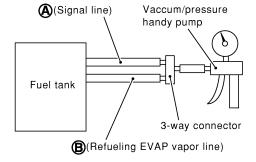
SEF968X

OK or NG

OK •	GO TO 8.
NG ►	Replace refueling EVAP vapor cut valve with fuel tank.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE

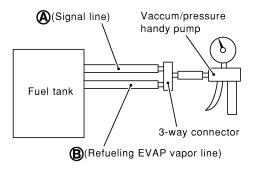

Without CONSULT-II

- 1. Remove fuel tank. Refer to FE-5, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel level sensor unit retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel level sensor unit retainer with fuel level sensor unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.


SEF968X

OK or NG

OK		GO TO 8.
NG		Replace refueling EVAP vapor cut valve with fuel tank.

8 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

SEF968X

OK	or	NG
----	----	----

OK	>	INSPECTION END
NG	>	Replace refueling control valve with fuel tank.

GI

MA

EM

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

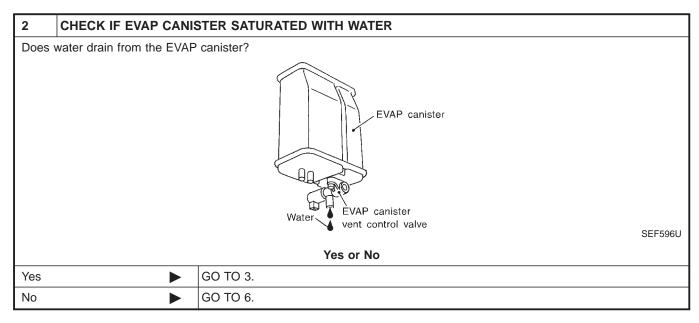
SU

ST

38

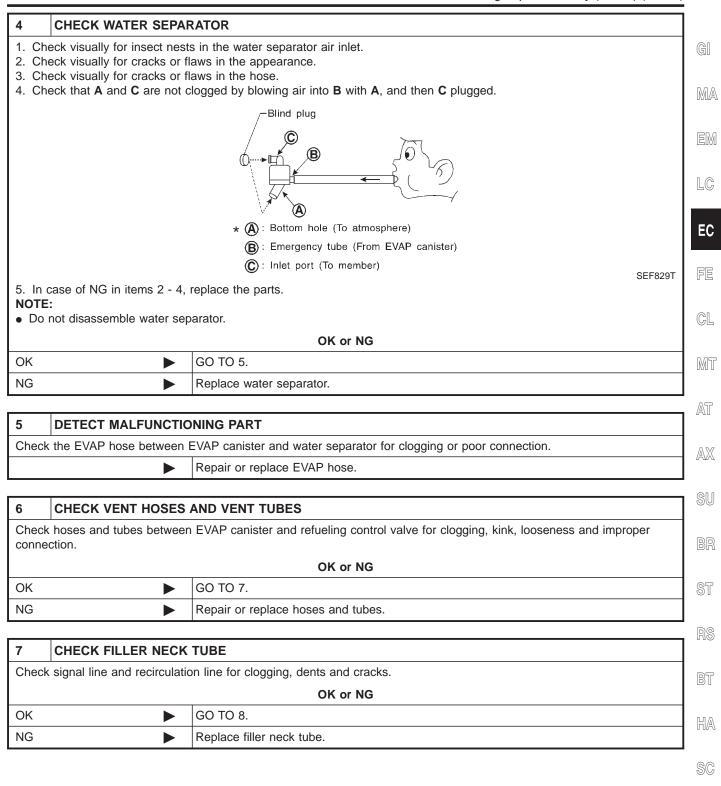
BT

HA


SC

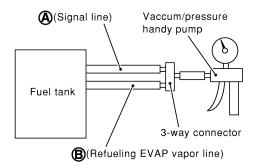
EL

[DX]


On Board Refueling Vapor Recovery (ORVR) (Cont'd)

Symptom: Cannot Refuel/Fuel Odor From The Fuel Filler Opening Is Strong While Refueling.

3	REPLACE EVAP CANIS	STER	
Replac	Replace EVAP canister with a new one.		
	>	GO TO 4.	


On Board Refueling Vapor Recovery (ORVR) (Cont'd)

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING CONTROL VALVE

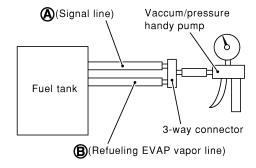
- 1. Remove fuel filler cap.
- Check air continuity between hose ends A and B.Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

SEF968X

ΟK	or	NG
----	----	----

OK (With CONSULT-II)	>	GO TO 9.
OK (Without CONSULT-II)	>	GO TO 10.
NG	>	Replace refueling control valve with fuel tank.

CHECK REFUELING EVAP VAPOR CUT VALVE


(P) With CONSULT-II

- 1. Remove fuel tank. Refer to FE-5, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel feed hose located on the fuel level sensor unit retainer.
- b. Connect a spare fuel hose, one side to fuel level sensor unit retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel level sensor unit retainer with fuel level sensor unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.

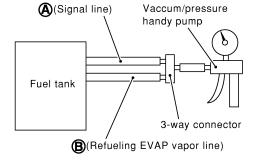
SEF968X

OK •	GO TO 11.
NG ►	Replace refueling EVAP vapor cut valve with fuel tank.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

CHECK REFUELING EVAP VAPOR CUT VALVE

⋈ Without CONSULT-II


10

- 1. Remove fuel tank. Refer to FE-5, "FUEL SYSTEM".
- 2. Drain fuel from the tank as follows:
- a. Remove fuel level sensor unit retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.

 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel level sensor unit retainer with fuel level sensor unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel level sensor unit retainer remaining open and check that the pressure is applicable.

SEF968X

OK or NG

OK •	GO TO 11.
NG ▶	Replace refueling EVAP vapor cut valve with fuel tank.

11	CHECK FUEL FILLER	ГИВЕ
Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.		
	OK or NG	
ОК	>	GO TO 12.
NG	>	Replace fuel filler tube.

12	12 CHECK ONE-WAY FUEL VALVE-I	
Check one-way valve for clogging.		
	OK or NG	
OK	>	GO TO 13.
NG	>	Repair or replace one-way fuel valve with fuel tank.

MA EM

GI

LC

EC

FE

GL

MT

AT

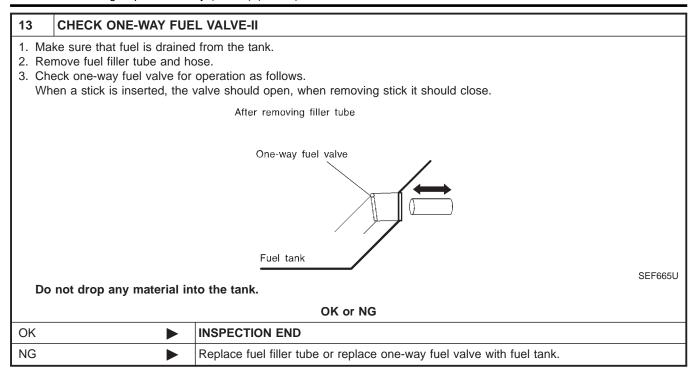
AX

SU

BR

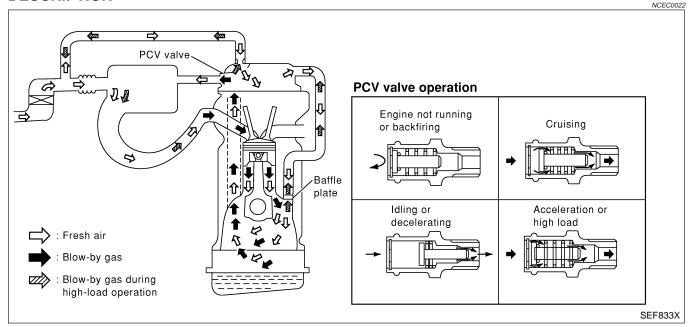
ST

RS


BT

HA

SC


EL

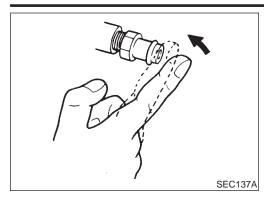
On Board Refueling Vapor Recovery (ORVR) (Cont'd)

Positive Crankcase Ventilation

DESCRIPTION

This system returns blow-by gas to the intake collector.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.


During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air duct into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

Positive Crankcase Ventilation (Cont'd)

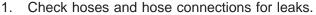
INSPECTION

PCV (Positive Crankcase Ventilation) Valve

NCEC0023

NCEC0023S01

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.


MA

EM

LG

NCEC0023S02

2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

FE

EC

CL

MT

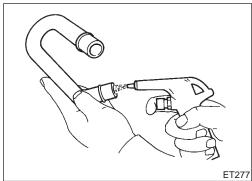
AT

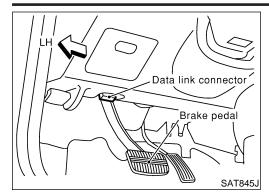
 $\mathbb{A}\mathbb{X}$

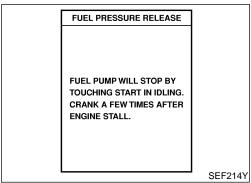
SU

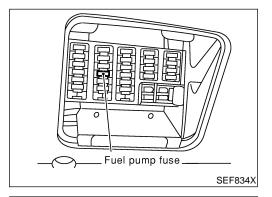
BK

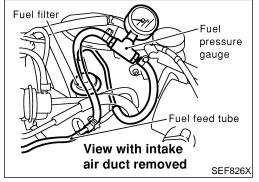
ST


29


BT


HA


SC


EL

Fuel Pressure Release

NCEC002

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

(P) WITH CONSULT-II

NCEC0024S01

- 1. Start engine.
- Perform "FUEL PRESSURE RELEASE" in "WORK SUP-PORT" mode with CONSULT-II.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.

® WITHOUT CONSULT-II

NCEC0024502

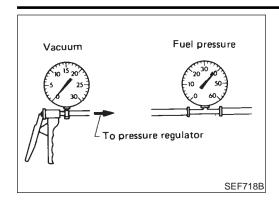
- Remove fuse for fuel pump.
- Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF and reconnect fuel pump fuse.

Fuel Pressure Check

NCEC0025

- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
- 1. Release fuel pressure to zero.
- 2. Disconnect fuel hose from fuel feed tube (engine side).
- Install pressure gauge between fuel hose and fuel feed tube.
- 4. Start engine and check for fuel leakage.
- 5. Read the indication of fuel pressure gauge.

At idle speed:


With vacuum hose connected

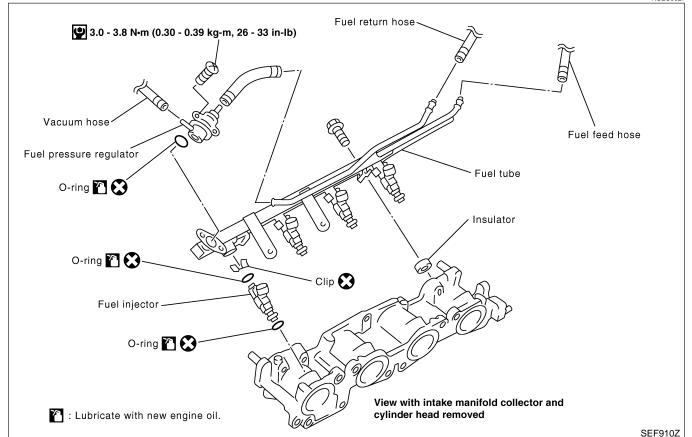
Approximately 235 kPa (2.4 kg/cm², 34 psi)

With vacuum hose disconnected

Approximately 294 kPa (3.0 kg/cm², 43 psi)

If results are unsatisfactory, perform Fuel Pressure Regulator Check, EC-51.

Fuel Pressure Regulator Check


- Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold collector.
- Plug intake manifold collector with a rubber cap.
- Connect variable vacuum source to fuel pressure regulator.
- Start engine and read indication of fuel pressure gauge as vacuum is changed.

Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

MA

LC

Injector REMOVAL AND INSTALLATION

- Release fuel pressure to zero.
- Remove accelerator wire bracket.
- Remove EVAP canister purge volume control solenoid valve and the bracket.
- Remove ventilation hose.
- Disconnect injector harness connectors.
- Disconnect fuel pressure regulator vacuum hose from intake manifold collector.
- 7. Disconnect fuel hoses from fuel tube assembly.
- Remove injectors with fuel tube assembly.

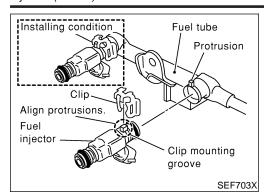
EC

FE

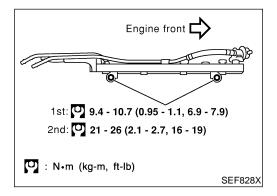
GL

MT

AT


AX

SU


ST

BT

SC

- 9. Expand and remove clips securing fuel injectors.
- 10. Extract fuel injectors straight from fuel tubes.
- Be careful not to damage injector nozzles during removal.
- Do not bump or drop fuel injectors.
- 11. Carefully install O-rings, including the one used with the pressure regulator.
- Lubricate O-rings with a smear of engine oil.
- Be careful not to damage O-rings with service tools or finger nails or clips. Do not expand or twist O-rings.
- Discard old clips; replace with new ones.
- 12. Position clips in grooves on fuel injectors.
- Make sure that protrusions of fuel injectors are aligned with cutouts of clips after installation.
- 13. Align protrusions of fuel tubes with those of fuel injectors.
- 14. After properly inserting fuel injectors, check to make sure that fuel tube protrusions are engaged with those of fuel injectors, and that flanges of fuel tubes are engaged with clips.

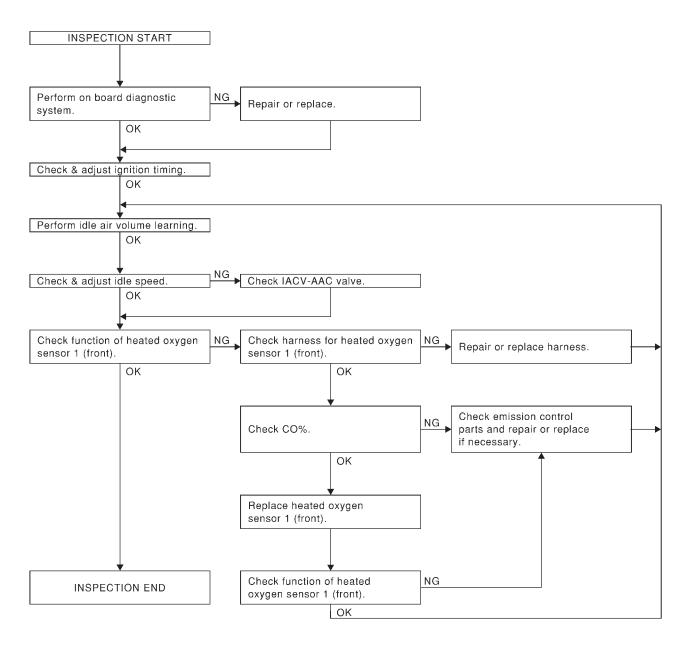
15. Tighten fuel tube assembly mounting nuts in two stages.

```
Tightening torque N-m (kg-m, ft-lb)
1st stage:
9.4 - 10.7 (0.95 - 1.1, 6.9 - 7.9)
2nd stage:
21 - 26 (2.1 - 2.7, 16 - 19)
```

16. Install all removed parts in the reverse order of removal.

CAUTION:

After properly connecting fuel tube assembly to injector and fuel hose, check connection for fuel leakage.


Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

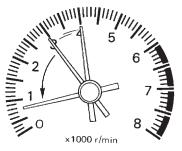
	Adjustment	GI
PR	REPARATION	GII
•	Make sure that the following parts are in good order.	
a)	Battery	MA
b)		
c)	Engine oil and coolant levels	EM
d)	Fuses	
e)	ECM harness connector	1 @
f)	Vacuum hoses	LC
g)	Air intake system (Oil filler cap, oil level gauge, etc.)	
h)	Fuel pressure	EC
i)	Engine compression	
j)	EGR valve operation	FE
k)	Throttle valve	
l)	EVAP system	Θn
•	On models equipped with air conditioner, checks should be carried out while the air conditioner is	CL
	"OFF".	
•	On models equipped with automatic transaxle, when checking idle speed, ignition timing and mix-	MT
	ture ratio, checks should be carried out while shift lever is in "P" or "N" position.	
•	When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe. Turn off headlamps, heater blower, rear window defogger.	AT
•	Keep front wheels pointed straight ahead.	<i>I</i> -7 II
	Make the check after the cooling fan has stopped.	0.0.6
	make the officer after the cooling fair has stopped.	AX
		SU
		BR
		0.
		ST
		RS
		BT
		0.00
		HA
		SC
		EL
		كاك

Overall Inspection Sequence

NCEC0028S0101

SEF906XA

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


EL

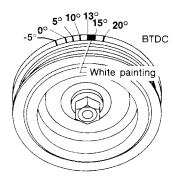
INSPECTION PROCEDURE =NCFC0028S02 **INSPECTION START** 1. Visually check the following: Air cleaner clogging MA • Hoses and ducts for leaks • EGR valve operation • Electrical connectors Gasket • Throttle valve and throttle position sensor operation 2. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. Ensure engine stays below 1,000 rpm. LC EC GL MT AEC692 3. Open engine hood and run engine at about 2,000 rpm for about 2 minutes under no-load. AT AX x1000 r/min SEF977U 4. Make sure that no DTC is displayed with CONSULT-II or GST. OK or NG OK (With CONSULT-II) GO TO 3. OK (Without CONSULT-GO TO 4. II) NG GO TO 2. REPAIR OR REPLACE Repair or replace components as necessary according to corresponding "Diagnostic Procedure". HA With CONSULT-II GO TO 3. Without CONSULT-II GO TO 4. SC

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK IGNITION TIMING

- With CONSULT-II
- 1. Run engine at about 2,000 rpm for about 2 minutes under no-load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed for about 1 minute.

SEF978U


- 3. Select "IGNITION TIMING ADJ" in WORK SUPPORT mode.
- 4. Touch "START".

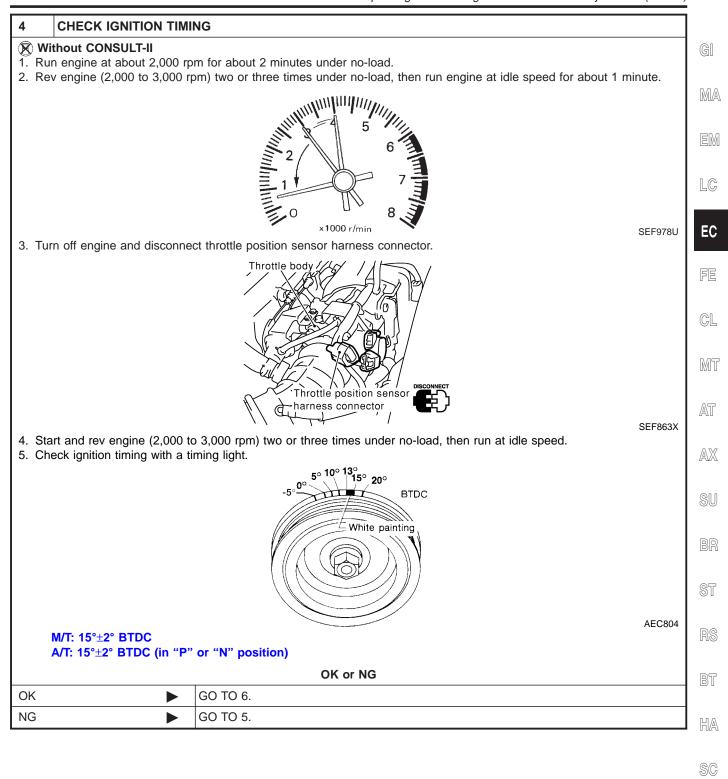
IGNITION TIMING ADJ

IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING START.
AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CAMSHAFT POSITION SENSOR.

PEF546N

- 5. Start and rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run at idle speed.
- 6. Check ignition timing with a timing light.

AEC804


M/T: 15°±2° BTDC

A/T: 15°±2° BTDC (in "P" or "N" position)

OK or NG

OK •	GO TO 6.
NG •	GO TO 5.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

ADJUST IGNITION TIMING

(E) With CONSULT-II

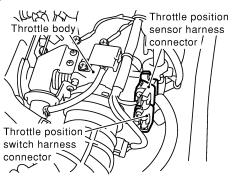
1. Adjust ignition timing to the specified value by turning distributor after loosening bolts which secure distributor.

Without CONSULT-II

- 1. Adjust ignition timing to the specified value by turning distributor after loosening bolts which secure distributor.
- 2. Turn off engine and connect throttle position sensor harness connector to throttle position sensor.

SEF837X

With CONSULT-II	>	GO TO 3.
Without CONSULT-II	•	GO TO 4.

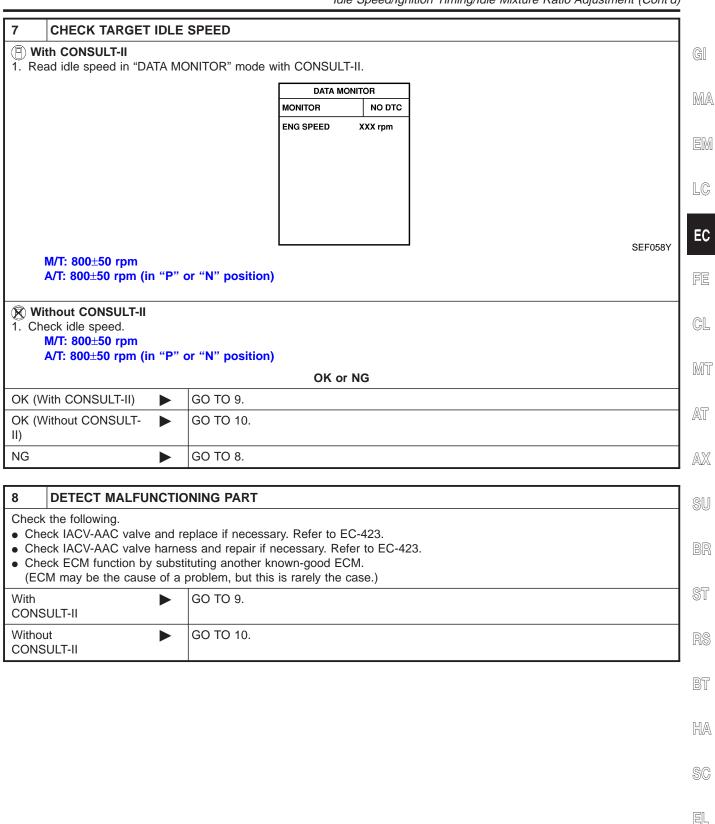

PERFORM IDLE AIR VOLUME LEARNING

(I) With CONSULT-II

- 1. Start and rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run it at idle speed.
- 2. Perform "Idle Air Volume Learning", EC-65.

Without CONSULT-II

1. Turn off engine and connect throttle position sensor harness connector.

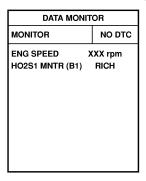


SEF837X

- 2. Start and rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run it at idle speed.
- 3. Perform "Idle Air Volume Learning", EC-65.

GO TO 7.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)



Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(I) With CONSULT-II

- 1. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 2. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

SEF820Y

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

ОК	>	INSPECTION END
NG (Monitor does not fluctuate.)	>	GO TO 13.
NG (Monitor fluctuates less than 5 times.)	>	GO TO 11.

10 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

Without CONSULT-II

- 1. Set voltmeter probe between ECM terminal 62 and ground.
- 2. Make sure that the voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

OK		INSPECTION END
NG (Voltage does not fluctuate.)	•	GO TO 13.
NG (Voltage fluctuates less than 5 times.)	•	GO TO 11.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(P) With CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 6. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 62 and ground.
- 6. Make sure that the voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

OK •	INSPECTION END
NG ►	GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- Check fuel pressure regulator. Refer to EC-51.
- Check mass air flow sensor and its circuit. Refer to EC-154.
- Check injector and its circuit. Refer to EC-574.

Clean or replace if necessary.

- Check engine coolant temperature sensor and its circuit. Refer to EC-171.
- Check ECM function by substituting another known-good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

■ GO TO 6.

13 CHECK HEATED OXYGEN SENSOR 1 (FRONT) HARNESS

- 1. Turn off engine and disconnect battery ground cable.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 1 (front) harness connector.
- 4. Check harness continuity between ECM terminal 62 and heated oxygen sensor 1 (front) harness connector terminal 2. Refer to Wiring Diagram, EC-199.

Continuity should exist.

OK or NG

OK •	GO TO 15.
NG •	GO TO 14.

14 REPAIR OR REPLACE

Repair or replace harness between ECM and heated oxygen sensor 1 (front).

► GO TO 6.

_

MA

LC

EC

MT

AT

AX

SU

BR

ST

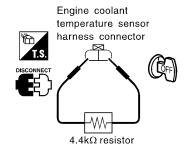
RS

HA

SC

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

PREPARATION FOR "CO" % CHECK


- With CONSULT-II
- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch "ON".
- 3. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DWN" and "Qd".

ACTIVE TEST				
ENG COOLANT TEMP	XXX °C			
MONITOR				
ENG SPEED	XXX rpm			
INJ PULSE-B1	XXX msec			
IGN TIMING	XXX BTDC			

SEF172Y

Without CONSULT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect engine coolant temperature sensor harness connector.
- 3. Connect a resistor (4.4 k Ω) between terminals of engine coolant temperature sensor harness connector.

SEF982UA

GO TO 16.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd) CHECK "CO" % 16 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. GI MA LC AEC692 EC 2. Rev engine (2,000 to 3,000 rpm) two or three times under no-load, then run engine at idle speed. FE MT ×1000 r/min SEF978U 3. Check "CO" %. Idle CO: Less than 11% 4. Without CONSULT-II

After checking CO%,

- a. Disconnect the resistor from terminals of engine coolant temperature sensor.
- b. Connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

SU

ST

BT

HA

SC

EL

OK ►	GO TO 17.
NG •	GO TO 18.

EC-63

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

7 CHECK HEATED OXYGEN SENSOR 1 (FRONT) SIGNAL

(I) With CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- 6. Maintaining engine at 2,000 rpm under no-load (engine is warmed up to normal operating temperature.), check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

(R) Without CONSULT-II

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 (front).
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine at approx. 2,000 rpm for approx. 2 minutes under no-load.
- 5. Set voltmeter probe between ECM terminal 62 and ground.
- 6. Make sure that voltage fluctuates between 0 0.3V and 0.6 1.0V more than 5 times during 10 seconds at 2,000 rpm.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

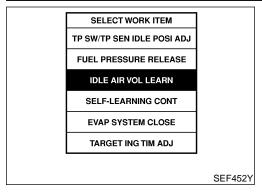
2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V

OK or NG

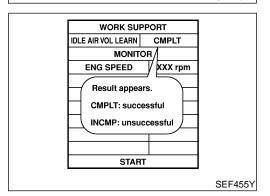
OK •	GO TO 6.
NG ►	GO TO 18.

18 DETECT MALFUNCTIONING PART

Check the following.


- Connect heated oxygen sensor 1 (front) harness connector to heated oxygen sensor 1 (front).
- Check fuel pressure regulator. Refer to EC-51.
- Check mass air flow sensor and its circuit. Refer to EC-154.
- Check injector and its circuit. Refer to EC-574.

Clean or replace if necessary.


- Check engine coolant temperature sensor and its circuit. Refer to EC-171.
- Check ECM function by substituting another known-good ECM.

(ECM may be the cause of a problem, but this is rarely the case.)

■ GO TO 6.

WORK SUF					
IDLE AIR VOL LEARN	IDLE AIR VOL LEARN				
MONITO					
ENG SPEED	XXX rpm				
STAR	Т				
		SEF454Y			

Idle Air Volume Learning DESCRIPTION

NCEC0503

"Idle Air Volume Learning" is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

G[

MA

EM

- Each time IACV-AAC valve, throttle body or ECM is replaced.
- Idle speed or ignition timing is out of specification.

PRE-CONDITIONING

0500500000

Before performing "Idle Air Volume Learning", make sure that all of the following conditions are satisfied.

LG

EC

FE

MT

AT

AX

Learning will be cancelled if any of the following conditions are missed for even a moment.

Battery voltage: More than 12.9V (At idle)

• Engine coolant temperature: 70 - 95°C (158 - 203°F)

PNP switch: ON

Electric load switch: OFF
 (Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime running light systems, if the parking brake is applied beore the engine is started, the headlamp will not be illuminated.

Cooling fan motor: Not operating

Steering wheel: Neutral (Straight-ahead position)

Vehicle speed: Stopped

Transmission: Warmed-up

For A/T models with CONSULT-II, drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.

For A/T models without CONSULT-II and M/T models, drive vehicle for 10 minutes.

SU

ST

OPERATION PROCEDURE

(A) With CONSULT-II

NCEC0503S03

NCEC0503S0301

Turn ignition switch "ON" and wait at least 1 second.

Turn ignition switch "OFF" and wait at least 10 seconds.

3. Start engine and warm it up to normal operating temperature.

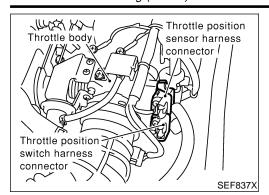
4. Check that all items listed under the topic "PRE-CONDITION-ING" (previously mentioned) are in good order.

Turn ignition switch "OFF" and wait at least 10 seconds.

6. Start the engine and let it idle for at least 15 seconds.

6. Start the engine and let it idle for at least 15 seconds.

7. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.


8. Touch "START" and wait 15 seconds.

9. Make sure that "CMPLT" is displayed on CONSULT-II screen. If "INCMP" is displayed, "Idle Air Volume Learning" will not be carried out successfully. In this case, find the cause of the problem by referring to the NOTE below.

10. Rev up the engine two or three times. Make sure that idle speed and ignition timing are within specifications.

ITEM	SPECIFICATION
	M/T: 800±50 rpm A/T: 800±50 rpm (in "P" or "N" position)
0	M/T: 15°±2° BTDC A/T: 15°±2° BTDC (in "P" or "N" position)

SC

⊗ Without CONSULT-II

=NCFC0503S030

- Turn ignition switch "ON" and wait at least 1 second.
- 2. Turn ignition switch "OFF" and wait at least 10 seconds.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic "PRE-CONDITION-ING" (previously mentioned) are in good order.
- 5. Turn ignition switch "OFF" and wait at least 10 seconds.
- 6. Start the engine and let it idle for at least 15 seconds.
- 7. Disconnect throttle position sensor harness connector (brown), then reconnect it within 5 seconds.
- 8. Wait 15 seconds.
- Make sure that idle speed is within specifications. If not, the result will be incomplete. In this case, find the cause of the problem by referring to the NOTE below.
- 10. Rev up the engine two or three times. Make sure that idle speed and ignition timing are within specifications.

ITEM	SPECIFICATION
Idle speed	M/T: 800±50 rpm A/T: 800±50 rpm (in "P" or "N" position)
Ignition timing	M/T: 15°±2° BTDC A/T: 15°±2° BTDC (in "P" or "N" position)

NOTE:

If idle air volume learning cannot be performed successfully, proceed as follows:

- 1) Check that throttle valve is fully closed.
- 2) Check that downstream of throttle valve is free from air leakage.
- 3) Adjust closed throttle position switch and reset memory. (Refer to Basic Inspection, EC-107.)
- 4) When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the problem.
- 5) If any of the following conditions occur after the engine has started, eliminate the cause of the problem and perform "Idle air volume learning" all over again:
- Engine stalls.
- Erroneous idle.
- Blown fuses related to the IACV-AAC valve system.

Introduction

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979
Freeze Frame data	Mode 2 of SAE J1979
System Readiness Test (SRT) code	Mode 1 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Mode 6 of SAE J1979

MA

LC

The above information can be checked using procedures listed in the table below.

EC

		<u> </u>			X: Applicable -	-: Not applicable
	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
CONSULT-II	Х	Х	X	X	Х	_
GST	Х	X*1	Х	_	Х	X

GL

*1: 1st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

MT

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-124.)

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL. and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

HA

SC

	MIL				DTC		1st trip DTC	
Items	1st trip		2nd trip		1 ot trip	On al tain	4 at this	0.165
	Blinking	Lighting up	Blinking	Lighting up	1st trip displaying	2nd trip displaying	1st trip displaying	2nd trip displaying
Coolant overtemperature enrichment protection — DTC: P0217	_	X	_	_	Х	_	Х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	х	_	_		_	_	X	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	Х	ı	_	Х	_	_
Closed loop control — DTC: P1148	_	X	_	_	X	_	X	_
Fail-safe items (Refer to EC-124.)	_	Х	_		X*1	_	X*1	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except "ECM"

Emission-related Diagnostic Information

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

NCEC0031 NCEC0031S01

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-77. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to EC-105. Then perform "DTC Confirmation Procedure" or "Overall Function Check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

NCEC0031S0101

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-II

With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST does not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESULTS			SELF DIAG RESU	ILTS	
	DTC RESULTS	TIME		DTC RESULTS	TIME	
DTC	MAF SEN/CIRCUIT [P0100]	0	1st trip	MAF SEN/CIRCUIT [P0100]	1t	
display			DTC display			

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

NCEC0031S0.

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data.

Emission-related Diagnostic Information (Cont'd)

The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-93.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items			
1	Freeze frame data	Misfire — DTC: P0300 - P0304 Fuel Injection System Function — DTC: P0171, P0172		
2		Except the above items (Includes A/T related items)		
3	1st trip freeze frame da	ıta		

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

MA

LG

EC

FE

W.T.

AX

2 22 .

NCEC0031S03

__

RS

RT

HA

SC

EL

 \mathbb{D}

Emission-related Diagnostic Information (Cont'd)

SRT Item

=NCEC0031S0307

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Perfor- mance Pri- ority*2	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420
EVAP SYSTEM	2	EVAP control system (small leak) (negative pressure)	P0440
	_	EVAP control system (small leak) (positive pressure)	P1440*1
	3	EVAP control system purge flow monitoring	P1447
O2 SENSOR	3	Heated oxygen sensor 1 (front) (circuit)	P0130
		Heated oxygen sensor 1 (front) (lean shift monitoring)	P0131
		Heated oxygen sensor 1 (front) (rich shift monitoring)	P0132
		Heated oxygen sensor 1 (front) (response monitoring)	P0133
		Heated oxygen sensor 1 (front) (high voltage)	P0134
		Heated oxygen sensor 2 (rear) (min. voltage monitoring)	P0137
		Heated oxygen sensor 2 (rear) (max. voltage monitoring)	P0138
		Heated oxygen sensor 2 (rear) (response monitoring)	P0139
		Heated oxygen sensor 2 (rear) (high voltage)	P0140
O2 SEN HEATER	3	Heated oxygen sensor 1 heater (front)	P0135
		Heated oxygen sensor 2 heater (rear)	P0141
EGR SYSTEM	3	EGR function (close)	P0400
	1	EGR function (open)	P1402

^{*1:} P1440 [EVAP control system (small leak) (positive pressure) diagnosis] is one type of SRT related diagnosis. This diagnosis, however, does not contribute to setting the SRT as "CMPLT", when no malfunction exists in the EVAP system. Therefore, P0440 must be used instead of P1440.

^{*2:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

HA

SC

Self-diagnosis result		Example					M
		Diagnosis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				- _ EN
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)	- 151
		P0402	OK (1)	— (1)	— (1)	OK (2)	_ _ [
		P1402	OK (1)	OK (2)	— (2)	— (2)	
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"	
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)	
		P0402	— (0)	— (0)	OK (1)	— (1)	- F
		P1402	OK (1)	OK (2)	— (2)	— (2)	_
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"	_ ©
NG exists	Case 3	P0400	OK	OK	_	_	_
		P0402	_	_	_	_	
		P1402	NG	_	NG	NG (Consecutive NG)	_
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")	
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"	_

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

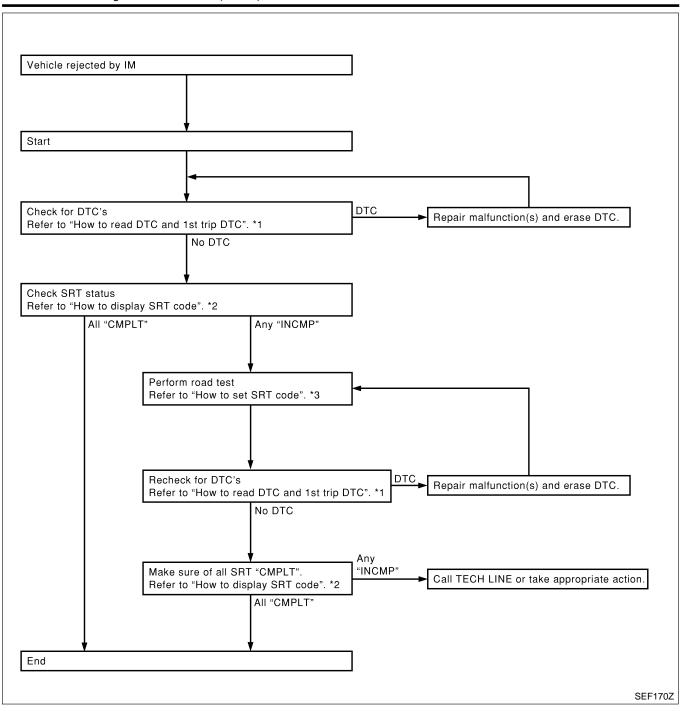
When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) for the following

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".


SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

EC-71

^{-:} Self-diagnosis is not carried out.

Emission-related Diagnostic Information (Cont'd)

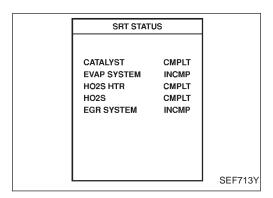
How to Display SRT Code

(A) With CONSULT-II

NCEC0031S0301

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.


With GST

Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown below.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

Emission-related Diagnostic Information (Cont'd)

GI

MA

EM

LC

How to Set SRT Code

CEC0<u>03</u>1S03

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(P) With CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-70.

Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

FE

GL

MT

EC

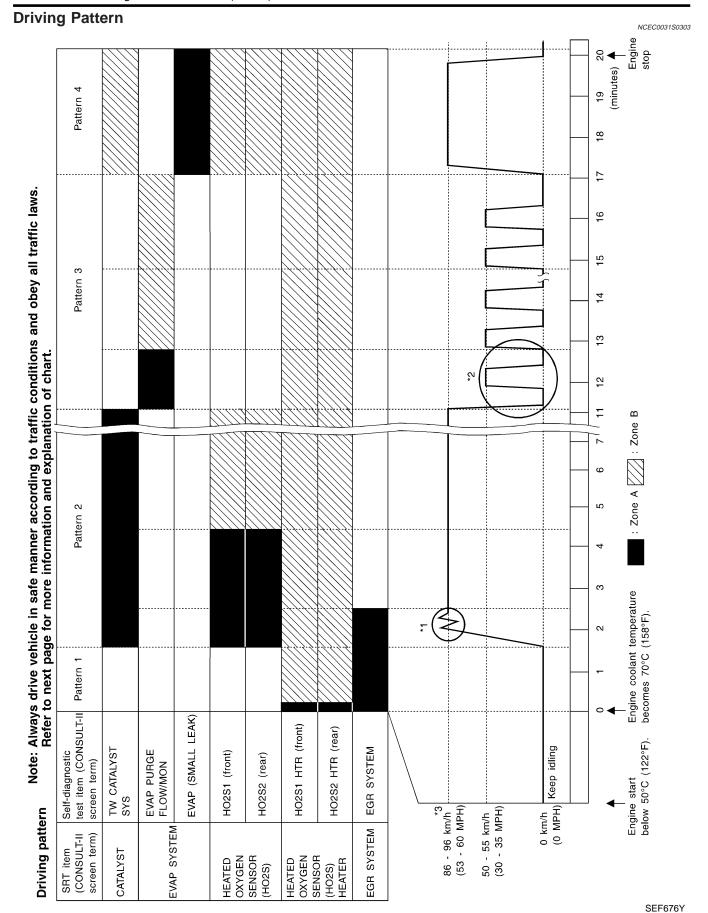
AT

 $\mathbb{A}\mathbb{X}$

SU

ווש

ST


RS

BT

HA

SC

EL

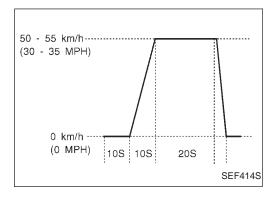
Emission-related Diagnostic Information (Cont'd)

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest.
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 70 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 70 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 82 and ground is less than 4.1V).

Pattern 2


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted.
 In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1) Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2) Repeat driving pattern shown below at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- 3) Repeat steps 1 and 2 until the EGR system SRT is set.

*3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position for A/T Models

Set the selector lever in the "D" position with the overdrive switch turned ON.

EC

LC

MA

GL

MT

AT

AX

SU

ВK

RT

HA

SC

Emission-related Diagnostic Information (Cont'd)

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

	For normal acceleration in low altitude areas [less than 1,219 m (4,000 ft)]:	For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:
Gear change	ACCEL shift point km/h (MPH)	km/h (MPH)
1st to 2nd	24 (15)	25 (15)
2nd to 3rd	40 (25)	40 (25)
3rd to 4th	65 (40)	65 (40)
4th to 5th	75 (45)	75 (45)

Suggested Maximum Speed in Each Gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate.

Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	55 (35)
2nd	95 (60)
3rd	135 (85)
4th	_
5th	_

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

NCEC0031S04

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

Items for which these data (test value and test limit) are displayed are the same as SRT code items (9 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

CDT item	Calf diagnostic test item	Test value (GST display)	Test limit	Application
SRT item	Self-diagnostic test item	TID	CID		
CATALYST	Three way catalyst function	01H	01H	Max.	X
CATALIST		02H	81H	Min.	Х
EVAD SVSTEM	EVAP control system (Small leak)	05H	03H	Max.	Х
EVAP SYSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	Х

Emission-related Diagnostic Information (Cont'd)

SRT item	Calf diagnostic test item	Test value (GST display)	To at limit	Application
SKI item	Self-diagnostic test item	TID	CID	Test limit	Application
		09H	04H	Max.	Х
		0AH	84H	Min.	Х
	Heated oxygen sensor 1 (front)	0BH	04H	Max.	Х
	(1.51.1)	0CH	04H	Max.	Х
O2 SENSOR		0DH	04H	Max.	X
		19H	86H	Min.	Х
	Heated oxygen sensor 2 (rear)	1AH	86H	Min.	Х
		1BH	06H	Max.	Х
		1CH	06H	Max.	Х
	Heated oxygen sensor 1 heater (front)	29H	08H	Max.	X
00.0511005.1154755		2AH	88H	Min.	Х
D2 SENSOR HEATER	Heated oxygen sensor 2	2DH	0AH	Max.	Х
	heater (rear)	2EH	8AH	Min.	Х
		31H	8CH	Min.	Х
		32H	8CH	Min.	Х
EGR SYSTEM	EGR function	33H	8CH	Min.	Х
		34H	8CH	Min.	Х
		35H	0CH	Max.	X

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable —: Not applicable

SU

BR

ST

RS

BT

HA

SC

EL

				A. Applicable	—. Not applicable	
Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page	[
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	_	_	_	_	
MAF SEN/CIRCUIT	P0100	_	_	×	EC-154	
ABSL PRES SEN/CIRC	P0105	_	_	×	EC-163	
AIR TEMP SEN/CIRC	P0110	_	_	X	EC-165	
COOLANT T SEN/CIRC	P0115	_	_	X	EC-171	
THRTL POS SEN/CIRC	P0120	_	_	X	EC-177	
*COOLAN T SEN/CIRC	P0125	_	_	X	EC-190	
HO2S1 (B1)	P0130	Х	Х	X*2	EC-196	
HO2S1 (B1)	P0131	Х	Х	X*2	EC-204	
HO2S1 (B1)	P0132	Х	Х	X*2	EC-210	
HO2S1 (B1)	P0133	Х	X	X*2	EC-217	
HO2S1 (B1)	P0134	Х	X	X*2	EC-226	
HO2S1 HTR (B1)	P0135	Х	Х	X*2	EC-232	

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page
HO2S2 (B1)	P0137	Х	Х	X*2	EC-237
HO2S2 (B1)	P0138	Х	Х	X*2	EC-245
HO2S2 (B1)	P0139	Х	Х	X*2	EC-253
HO2S2 (B1)	P0140	Х	Х	X*2	EC-261
HO2S2 HTR (B1)	P0141	Х	Х	X*2	EC-267
FUEL SYS-LEAN/BK1	P0171	_	_	Х	EC-272
FUEL SYS-RICH/BK1	P0172	_	_	Х	EC-279
FUEL TEMP SEN/CIRC	P0180	_	_	Х	EC-286
ENG OVER TEMP	P0217	_	_	Х	EC-291
MULTI CYL MISFIRE	P0300	_	_	Х	EC-309
CYL 1 MISFIRE	P0301	_	_	Х	EC-309
CYL 2 MISFIRE	P0302	_	_	Х	EC-309
CYL 3 MISFIRE	P0303	_	_	Х	EC-309
CYL 4 MISFIRE	P0304	_	_	Х	EC-309
KNOCK SEN/CIRC-B1	P0325	_	_	_	EC-316
CKP SEN/CIRCUIT	P0335	_	_	Х	EC-320
CMP SEN/CIRC	P0340	_	_	Х	EC-326
EGR SYSTEM	P0400	Х	Х	X*2	EC-334
EGR VOL CONT/V CIR	P0403	_	_	Х	EC-344
TW CATALYST SYS-B1	P0420	Х	Х	X*2	EC-351
EVAP SMALL LEAK	P0440	Х	Х	X*2	EC-355
PURG VOLUME CONT/V	P0443	_	_	Х	EC-369
VENT CONTROL VALVE	P0446	_	_	Х	EC-376
EVAPO SYS PRES SEN	P0450	_	_	Х	EC-383
EVAP GROSS LEAK	P0455	_	Х	X*2	EC-396
FUEL LEV SE SLOSH	P0460	_	_	Х	EC-407
FUEL LEVEL SENSOR	P0461	_	_	Х	EC-412
FUEL LEVL SEN/CIRC	P0464	_	_	Х	EC-414
VEH SPEED SEN/CIRC	P0500	_	_	Х	EC-419
IACV/AAC VLV/CIRC	P0505	_	_	Х	EC-423
CLOSED TP SW/CIRC	P0510	_	_	Х	EC-432
A/T COMM LINE	P0600	_	_	_	EC-440
ECM	P0605	_	_	Х	EC-443
PNP SW/CIRC	P0705	_	_	Х	AT-107
ATF TEMP SEN/CIRC	P0710	_	_	Х	AT-113
VEH SPD SEN/CIR AT	P0720	_	_	Х	AT-119
ENGINE SPEED SIG	P0725	_	_	Х	AT-124

Emission-related Diagnostic Information (Cont'd)

Items (CONSULT-II screen terms)	DTC*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*1	Reference page
A/T 1ST GR FNCTN	P0731	_	_	Х	AT-128
A/T 2ND GR FNCTN	P0732	_	_	X	AT-135
A/T 3RD GR FNCTN	P0733	_	_	X	AT-141
A/T 4TH GR FNCTN	P0734	_	_	Х	AT-147
TCC SOLENOID/CIRC	P0740	_	_	Х	AT-157
A/T TCC S/V FNCTN	P0744	_	_	Х	AT-163
L/PRESS SOL/CIRC	P0745	_	_	Х	AT-174
SFT SOL A/CIRC	P0750	_	_	Х	AT-181
SFT SOL B/CIRC	P0755	_	_	Х	AT-187
THERMOSTAT FNCTN	P1126	_	_	Х	EC-445
CLOSED LOOP-B1	P1148	_	_	Х	EC-447
ENG OVER TEMP	P1217	_	_	Х	EC-449
CKP SENSOR COG	P1336	_	_	Х	EC-467
EGR TEMP SEN/CIRC	P1401	_	_	Х	EC-473
EGR SYSTEM	P1402	Х	Х	X*2	EC-481
EVAP SMALL LEAK	P1440	Х	Х	X*2	EC-491
PURG VOLUME CONT/V	P1444	_	_	Х	EC-493
VENT CONTROL VALVE	P1446	_	_	Х	EC-505
EVAP PURG FLOW/MON	P1447	Х	Х	X*2	EC-513
VENT CONTROL VALVE	P1448	_	_	Х	EC-525
FUEL LEVL SEN/CIRC	P1464	_	_	Х	EC-534
VC/V BYPASS/V	P1490	_	_	Х	EC-538
VC CUT/V BYPASS/V	P1491	_	_	Х	EC-544
A/T DIAG COMM LINE	P1605	_	_	Х	EC-556
TP SEN/CIRC A/T	P1705	_	_	Х	AT-193
P-N POS SW/CIRCUIT	P1706	_	_	Х	EC-559
O/R CLTCH SOL/CIRC	P1760	_	_	Х	AT-202

^{*1: 1}st trip DTC No. is the same as DTC No.

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC (With CONSULT-II)

NOTE:

If the DTC is not for A/T related items (see EC-8), skip steps 2 through 4.

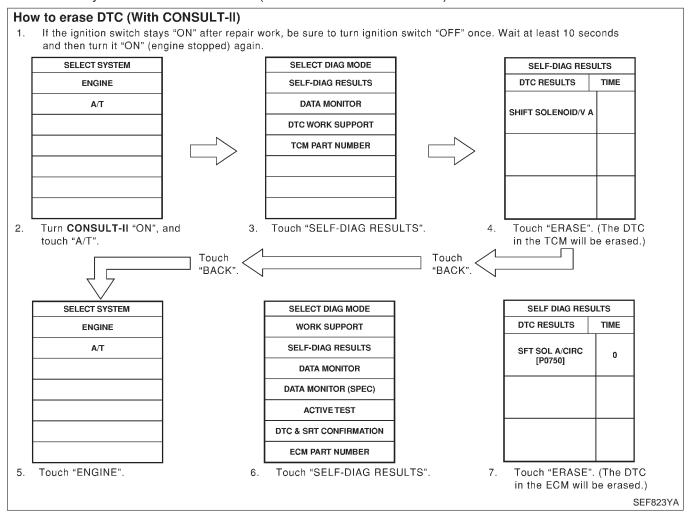
- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".

GI

MA

NCEC0031S06

NCEC0031S0601



^{*2:} These are not displayed with GST.

Emission-related Diagnostic Information (Cont'd)

- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

How to Erase DTC (With GST) NOTE:

NCEC0031S0602

If the DTC is not for A/T related items (see EC-8), skip step 2.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 10 seconds and then turn it "ON" (engine stopped) again.
- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx.
 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes

Emission-related Diagnostic Information (Cont'd)

- 6) Test values
- 7) Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

. ...

MA

IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM — NATS)

NCEC0031S07

SELF DIAG RESU		
DTC RESULTS	TIME	
NATS MALFUNCTION [P1610]	0	
		SEF515Y

EM

LC

EC

LU

FE

- If the security indicator lights up with the ignition switch in the "ON" position or "NATS MALFUNC-TION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to EL-249, "IVIS (INFINITI Vehicle Immobilizer System NATS)".
 - ___ MT
- Confirm no self-diagnostic results of IVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.
 - Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of IVIS (NATS) initialization and IVIS (NATS) ignition key ID registration, refer to CONSULT-II operation manual, IVIS/NVIS.

SU

Malfunction Indicator Lamp (MIL)

NCEC0032

D@

BT

HA

The MIL is located on the instrument panel.

- 1. The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the MIL does not light up, refer to EL-98, "WARNING LAMPS" or see EC-609.
- 2. When the engine is started, the MIL should go off.

 If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

SC

Malfunction Indicator Lamp (MIL) (Cont'd)

On Board Diagnostic System Function

The on board diagnostic system has the following two functions.

=NCFC0032S01

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in "ON" position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. Coolant overtemperature enrichment protection "Misfire (Possible three way catalyst damage)" "Closed loop control" Fail-safe mode

Diagnostic Test Mode I — Bulb Check

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to EL-98, "WARNING LAMPS" or see EC-609.

Diagnostic Test Mode I — Malfunction Warning

NCEC0032S0103

MIL	Condition
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.
OFF	No malfunction.

OBD System Operation Chart

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

=NCEC0033

When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.

(il

 When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-67.

MA

 The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset. M

• The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.

LC

EC

GL

MT

AT

• The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

.....

SUMMARY CHART

			NCEC0033S02
Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-85.

For details about patterns "A" and "B" under "Other", see EC-87.

@11

AX

BR

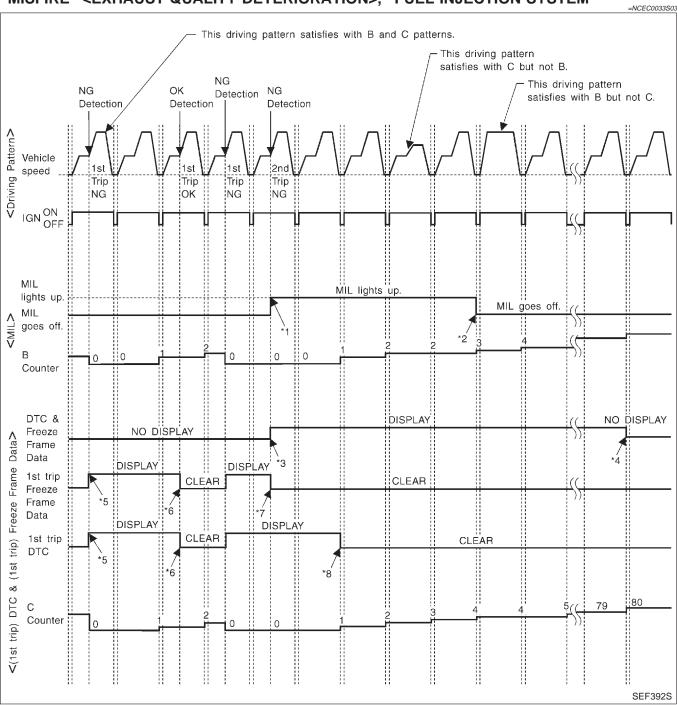
ST

29

BT

HA

SC


El

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame

- data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction.
- (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip

- freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

Driving Pattern B

=NCEC0033S04

NCEC0033S0401

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

MA

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

LC

Driving Pattern C

Driving pattern C means the vehicle operation as follows:

NCEC0033S0402

 The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) × (1±0.1) [%] Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

AT

GL

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.

 The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

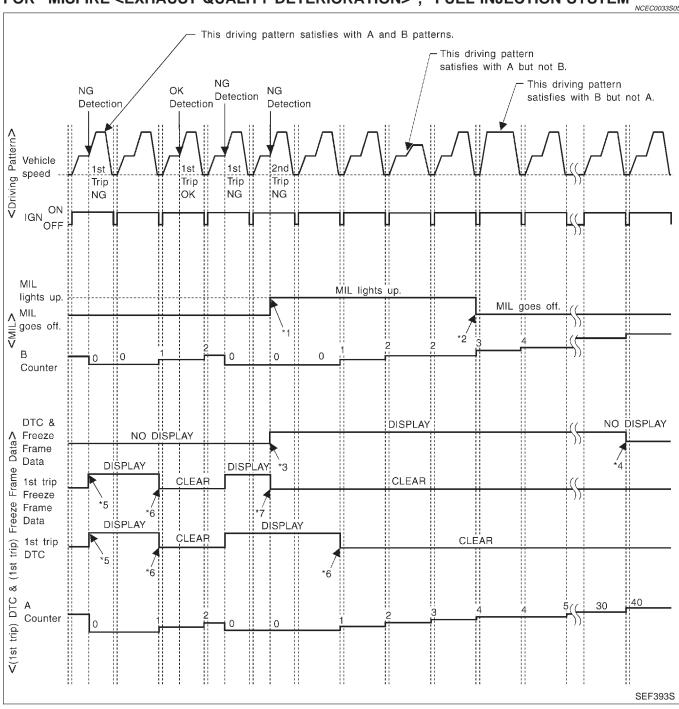
SU

BK

51

RS

BT

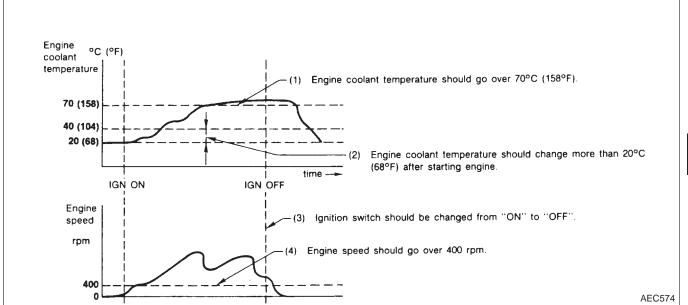

HA

SC

EL

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"



- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame
- data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC
- and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

Driving Pattern B

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

MA

LC

EC

FE

GL

MT

AT

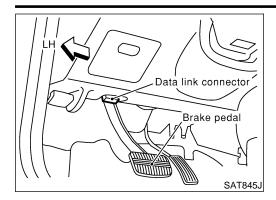
AX

NCEC0033S0602

90

BR

ST

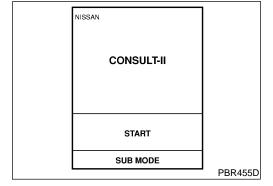

RS

DT.

HA

SC

EL


CONSULT-II

CONSULT-II INSPECTION PROCEDURE

=NCEC0504

NCEC0504S01

- 1. Turn ignition switch OFF.
- 2. Connect CONSULT-II to data link connector, which is located under LH dash panel near the fuse box cover.

3. Turn ignition switch ON.

4. Touch "START".

SELECT SYSTEM	
ENGINE	
	SEF995X

5. Touch "ENGINE".

SELECT DIAG MODE

WORK SUPPORT

SELF-DIAG RESULTS

DATA MONITOR

DATA MONITOR (SPEC)

ACTIVE TEST

DTC & SRT CONFIRMATION

SEF949Y

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

DIAGNOSTIC TEST MODE SELF-DIAGNOSTIC DTC & SRT MA **RESULTS CONFIRMATION DATA WORK DATA** Item MONI-**ACTIVE** DTC SUP-MONI-**FREEZE TEST TOR** SRT WORK **PORT** TOR DTC*1 **FRAME** (SPEC) **STATUS** SUP-DATA*2 **PORT** LC Camshaft position sensor Χ Χ Χ Χ Crankshaft position sensor Χ (OBD) EC Mass air flow sensor Χ Χ Χ FE Engine coolant temperature sen-Χ Χ Χ Χ Χ Heated oxygen sensor 1 (front) Χ Χ Χ Χ Χ GL Heated oxygen sensor 2 (rear) Χ Χ Χ Χ Χ Vehicle speed sensor Χ Χ Χ Χ MT Χ Throttle position sensor Χ Χ Χ **ENGINE CONTROL COMPONENT PARTS** Χ Χ Χ Χ Fuel tank temperature sensor AT EVAP control system pressure Χ Χ Χ sensor AX Absolute pressure sensor (Built Χ Χ Χ into ECM) EGR temperature sensor Χ Χ Χ Χ Χ Χ Χ Intake air temperature sensor Χ Knock sensor Ignition switch (start signal) Χ Χ Χ Χ Closed throttle position switch Χ Closed throttle position switch Χ Χ (throttle position sensor signal) Χ Air conditioner switch Χ Park/neutral position (PNP) Χ Χ Χ switch Power steering oil pressure HA Χ Χ switch Battery voltage Χ Χ SC Load signal Χ Χ Fuel level sensor Χ Χ Χ EL

				DIA	AGNOSTIC	TEST MO	DE		
	ltem		1 -	AGNOSTIC ULTS	DATA	DATA		DTC 8	-
			DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Injectors				Х	Х	Х		
	Power transistor (Ignition timing)	Х			Х	Х	Х		
S	IACV-AAC valve		Х		Х	Х	Х		
ENGINE CONTROL COMPONENT PARTS OUTPUT	EVAP canister purge volume control solenoid valve		Х		Х	Х	Х		Х
	Air conditioner relay				Χ	Х			
	Fuel pump relay	Х			Х	Х	Х		
OL COM	Cooling fan		Х		Х	Х	Х		
질	EGR volume control valve		Х		Х	Х	Х		
CONTE	Heated oxygen sensor 1 heater (front)		Х		Х	Х		х	
NGINE	Heated oxygen sensor 2 heater (rear)		х		Х	Х		х	
Ш	EVAP canister vent control valve		Х		Χ	Х	Х		
	Vacuum cut valve bypass valve		Х		Χ	Х	Х		Х
	Calculated load value			Х	Х	Х			

X: Applicable

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-68.

CONSULT-II (Cont'd)

	FUNCTION =NCEC0504S03	
Diagnostic test mode	Function	GI
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.	MA
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1	
Data monitor	Input/Output data in the ECM can be read.	EM
Data monitor (SPEC)	Input/Output specification of the Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.	LG
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.	EC
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.	LU
ECM part number	ECM part number can be read.	FE

^{*1} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- 1) Diagnostic trouble codes
- 2) 1st trip diagnostic trouble codes
- 3) Freeze frame data
- 4) 1st trip freeze frame data
- 5) System readiness test (SRT) codes
- 6) Test values
- 7) Others

WORK SUPPORT MODE

NCEC0504S04

GL

MT

AT

WORK ITEM	CONDITION	USAGE	
TP SW/TP SEN IDLE POSI ADJ	FOLLOW THE BASIC INSPECTION IN THE SERVICE MANUAL.	When adjusting the idle throttle position.	9
IGNITION TIMING ADJ	IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING "START". AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CAMSHAFT POSITION SENSOR.	When adjusting initial ignition timing	0
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line	0
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume	
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When clearing the coefficient of self-learning control value	[

SC

EL

CONSULT-II (Cont'd)

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. IGN SW "ON" ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM TANK FUEL TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed

^{*:} This function is not necessary in the usual service procedure.

CONSULT-II (Cont'd)

SELF-DIAGNOSTIC MODE DTC and 1st Trip DTC

=NCEC0504S05

Regarding items of "DTC and 1st trip DTC", refer to "TROUBLE DIAGNOSIS — INDEX" (See EC-8.)

MA

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*1	Description	
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to "TROUBLE DIAGNOSIS — INDEX", EC-8.)	
FUEL SYS-B1	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction "MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop 	E
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.	_ @[
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.	– Cl
S-FUEL TRIM-B1 [%]	 "Short-term fuel trim" at the moment a malfunction is detected is displayed. The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule. 	_ M;
L-FUEL TRIM-B1 [%]	 "Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim. 	– Aī _ A
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.	
VHCL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.	– Sl
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.	B
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.	- \$1
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.	- 0: - R9

^{*1:} The items are the same as those of 1st trip freeze frame data.

BT

HA

SC

EL

DATA MONITOR MODE =NCEC0504S06 **ECM** Main Monitored item [Unit] Description Remarks input signals signals • Indicates the engine speed computed ENG SPEED [rpm] from the REF signal (180° signal) of the \bigcirc \bigcirc camshaft position sensor. The signal voltage of the mass air flow • When the engine is stopped, a certain MAS A/F SE-B1 [V] \bigcirc 0 sensor is displayed. value is indicated. • "Base fuel schedule" indicates the fuel B/FUEL SCHDL injection pulse width programmed into ECM, prior to any learned on board [msec] correction. • When the engine is stopped, a certain The mean value of the air-fuel ratio value is indicated. A/F ALPHA-B1 [%] \bigcirc feedback correction factor per cycle is • This data also includes the data for the indicated. air-fuel ratio learning control. • When the engine coolant temperature • The engine coolant temperature (detersensor is open or short-circuited, ECM **COOLAN TEMP/S** mined by the signal voltage of the \bigcirc \bigcirc enters fail-safe mode. The engine coolengine coolant temperature sensor) is [°C] or [°F] ant temperature determined by the displayed. ECM is displayed. The signal voltage of the heated oxy-HO2S1 (B1) [V] \bigcirc \bigcirc gen sensor 1 (front) is displayed. • The signal voltage of the heated oxy- \bigcirc HO2S2 (B1) [V] \bigcirc gen sensor 2 (rear) is displayed. Display of heated oxygen sensor 1 (front) signal during air-fuel ratio feed- After turning ON the ignition switch. back control: "RICH" is displayed until air-fuel mixture RICH ... means the mixture became HO2S1 MNTR (B1) ratio feedback control begins. \bigcirc "rich", and control is being affected [RICH/LEAN] • When the air-fuel ratio feedback is toward a leaner mixture. clamped, the value just before the LEAN ... means the mixture became clamping is displayed continuously. "lean", and control is being affected toward a rich mixture. • Display of heated oxygen sensor 2 (rear) signal: RICH ... means the amount of oxygen HO2S2 MNTR (B1) after three way catalyst is relatively • When the engine is stopped, a certain \bigcirc [RICH/LEAN] value is indicated. LEAN ... means the amount of oxygen after three way catalyst is relatively large. • The vehicle speed computed from the VHCL SPEED SE vehicle speed sensor signal is dis- \bigcirc \bigcirc [km/h] or [mph] played. • The power supply voltage of ECM is BATTERY VOLT [V] \bigcirc \bigcirc displayed. • The throttle position sensor signal volt-THRTL POS SEN [V] 0 \bigcirc age is displayed. The fuel temperature judged from the FUEL T/TMP SE \bigcirc tank fuel temperature sensor signal [°C] or [°F] voltage is displayed.

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
INT/A TEMP SE [°C] or [°F]	0	0	The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated.	
EGR TEMP SEN [V]	0	0	The signal voltage of the EGR temperature sensor is displayed.	
EVAP SYS PRES [V]	0		The signal voltage of EVAP control system pressure sensor is displayed.	
ABSOL PRES/SE [V]	0		The signal voltage of the absolute pressure sensor is displayed.	
FUEL LEVEL SE [V]	0		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the starter signal.	After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	0	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 	
CLSD THL/P SW [ON/OFF]	0		Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch.	
AIR COND SIG [ON/OFF]	0	0	Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal.	
P/N POSI SW [ON/OFF]	0	0	Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal.	
PW/ST SIGNAL [ON/OFF]	0	0	[ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure signal is indicated.	
LOAD SIGNAL [ON/OFF]	0	0	Indicates [ON/OFF] condition from the electrical load signal and/or lighting switch. ON rear defogger is operating and/or lighting switch is on. OFF rear defogger is not operating and lighting switch is not on.	
IGNITION SW [ON/OFF]	0		Indicates [ON/OFF] condition from ignition switch.	
INJ PULSE-B1 [msec]		0	Indicates the actual fuel injection pulse width compensated by ECM according to the input signals.	When the engine is stopped, a certain computed value is indicated.
IGN TIMING [BTDC]		0	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	
ABSOL TH·P/S [%]			"Absolute throttle position sensor" indicates the throttle valve opening angle computed by ECM according to the signal voltage of the throttle position sensor.	

CONSULT-II (COIII a)				
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
MASS AIRFLOW [g·m/s]			 Indicates the mass airflow computed by ECM according to the signal voltage of the mass airflow sensor. 	
IACV-AAC/V [step]		0	 Indicates the IACV-AAC valve control value computed by ECM according to the input signals. 	
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
EGR VOL CON/V [step]		0	 Indicates the EGR volume control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
AIR COND RLY [ON/OFF]		0	 The air conditioner relay control condi- tion (determined by ECM according to the input signal) is indicated. 	
FUEL PUMP RLY [ON/OFF]		0	 Indicates the fuel pump relay control condition determined by ECM accord- ing to the input signals. 	
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
COOLING FAN [HIGH/LOW/OFF]			 Indicates the control condition of the cooling fan (determined by ECM according to the input signal). HIGH High speed operation LOW Low speed operation OFF Stop 	
HO2S1 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 1 heater (front) deter- mined by ECM according to the input signals. 	
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 2 heater (rear) deter- mined by ECM according to the input signals. 	

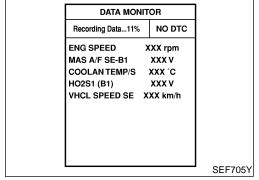
						CONSULT-II (Cont'd)
Monitored item [Uni	it] ECM input signals	Main signals		Description		Remarks
IDL A/V LEAN			Display the condition of idle air volume learning YET Idle air volume learning has not been performed yet. CMPLT Idle air volume learning has already been performed successfully. INCMP Idle air volume learning has not been performed successfully.			
TRVL AFTER MIL [km] or [Mile]			Distance t	raveled while MIL is activated		
Voltage [V]			 Voltage m probe. 	easured by the voltage		
Frequenty [msec] or [Hz] or [%]			be measured. Pulse width, frequency or duty cycle measured by the pulse probe. be measured. Figures with "#"s are temporary of the pulse probe. They are the same figures as an piece of data which was just pre-		
OTE: Any monitored ite	em that does	s not match		Deing diagnosed is deleted from		
Monitored item [Uni	it] ECM input signals	Main signals		Description Remarks		Remarks
MAS A/F SE-B1 [V]	0	0		I voltage of the mass air flow ecification is displayed.	j .	
B/FUEL SCHDL [msec]			injection p	I schedule" indicates the fuel bulse width programmed into ir to any learned on board .		en engine is running specification ge is indicated.
A/F ALPHA-B1 [%]		0		value of the air-fuel ratio correction factor per cycle is	ran • Thi	en engine is running specification ge is indicated. s data also includes the data for the fuel ratio learning control.
IOTE: Any monitored ite	em that does	s not match		peing diagnosed is deleted fron	n the d	isplay automatically.
TEST ITEM		CONDITIO	N	JUDGEMENT		CHECK ITEM (REMEDY)
FUEL IN JECTION		ondition	of fuel injec-	If trouble symptom disappear CHECK ITEM.	s, see	 Harness and connector Fuel injectors Heated oxygen sensor 1 (front)
IGNITION TIMING	 Engine: F trouble co Timing lig Retard th CONSUL 	ondition ht: Set e ignition ti	ne original	If trouble symptom disappear CHECK ITEM.	s, see	Adjust initial ignition timing

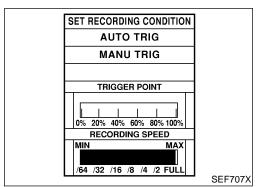
CONSULT-II (Cont'd)

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
IACV-AAC/V OPENING	 Engine: After warming up, idle the engine. Change the IACV-AAC valve opening percent using CON- SULT-II. 	Engine speed changes according to the opening percent.	Harness and connectorIACV-AAC valve
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch "OFF" Shift lever "N" Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coil Ignition wires
COOLING FAN	 Ignition switch: ON Turn the cooling fan "HIGH", "LOW" and "OFF" using CON- SULT-II. 	Cooling fan moves high speed, low speed and stops.	Harness and connectorCooling fan motorsCooling fan relays
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	 Harness and connector Engine coolant temperature sensor Fuel injectors
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connector Fuel pump relay
EGR VOL CONT/V	Ignition switch: ON (Engine stopped) Change EGR volume control valve opening step using CON- SULT-II.	EGR volume control valve makes an operating sound.	Harness and connector EGR volume control valve
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CON-SULT-II. 	Engine speed changes according to the opening percent.	Harness and connector Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CONTROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connector Solenoid valve

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

NCEC0504S08


For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-69.


SRT Work Support Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

CONSULT-II (Cont'd)

	DTC Work Su	pport Mode	NCEC0504S0	803	
Test mode	Test item	Condition	Reference page	- GI	
	EVAP SML LEAK P0440		EC-355	_	
	EVAP SML LEAK P1440		EC-491	— MA	
EVAPORATIVE SYSTEM	PURG VOL CN/V P1444		EC-493	_	
	PURGE FLOW P1447		EC-513	EM	
	VC CUT/V BP/V P1491		EC-544	_	
	HO2S1 (B1) P0130		EC-196	_ LC	
HEATED OXYGEN SEN-	HO2S1 (B1) P0131	Refer to corresponding	EC-204		
SOR 1 (FRONT)	HO2S1 (B1) P0132	trouble diagnosis for DTC.	EC-210	EC	
	HO2S1 (B1) P0133		EC-217	_	
	HO2S2 (B1) P0137		EC-237	- FE	
HEATED OXYGEN SEN- SOR 2 (REAR)	HO2S2 (B1) P0138		EC-245	_	
OOK 2 (KE/IK)	HO2S2 (B1) P0139		EC-253	- CL	
	EGR SYSTEM P0400		EC-334	– – MT	
EGR SYSTEM	EGR SYSTEM P1402		EC-481	— UVU U	

(RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

- "AUTO TRIG" (Automatic trigger):
- The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

- "MANU TRIG" (Manual trigger): 2)
- DTC/1st trip DTC and malfunction item will not be displayed

REAL TIME DIAGNOSIS IN DATA MONITOR MODE

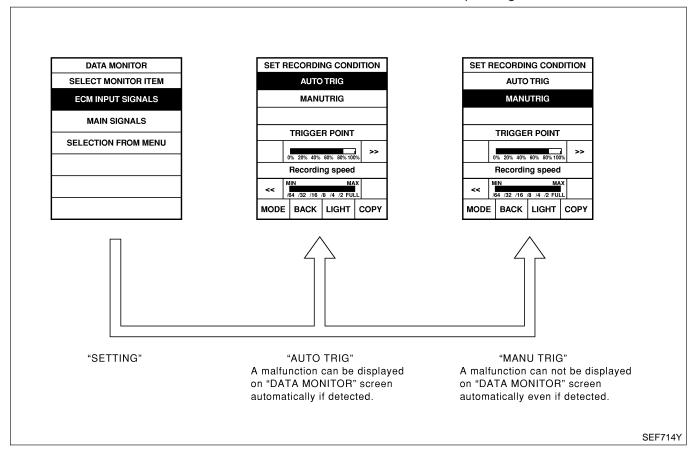
ST

AT

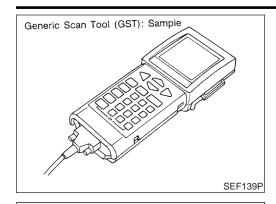
AX

SU

BT


HA

automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.

Use these triggers as follows:

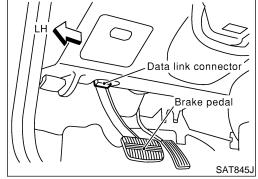
- 1) "AUTO TRIG"
- While trying to detect the DTC/1st trip DTC by performing the "DTC Confirmation Procedure", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
- While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent. When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI-25, "Incident Simulation Tests".)
- 2) "MANU TRIG"
- If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

Generic Scan Tool (GST)

Generic Scan Tool (GST) DESCRIPTION

=NCEC0035

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 7 different functions explained on the next page. ISO9141 is used as the protocol.


G[

The name "GST" or "Generic Scan Tool" is used in this service manual.

MA

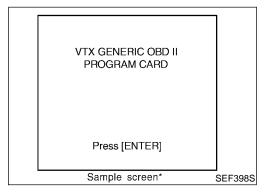
EM

LC

GST INSPECTION PROCEDURE

NCEC0035S02

1. Turn ignition switch OFF.


EC EC

Connect "GST" to data link connector for GST. (Data link connector for GST is located under LH dash panel near the fuse box cover.)

FE

CL

MT

Turn ignition switch ON.

4. Enter the program according to instruction on the screen or in the operation manual.

7~7.11

AX

(*: Regarding GST screens in this section, sample screens are shown.)

ை

SU

5. Perform each diagnostic mode according to each service procedure.

ST

For further information, see the GST Operation Manual of the tool maker.

28

BT

HA

SC

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

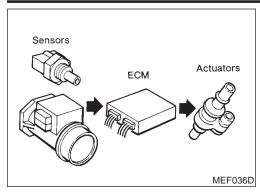
F3: SNAPSHOT

F4: CLEAR DIAG INFO F5: O2 TEST RESULTS

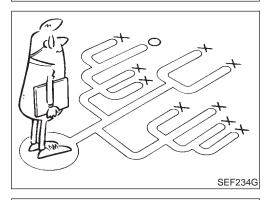
F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT


F9: UNIT CONVERSION

Sample screen*


SEF416S

Generic Scan Tool (GST) (Cont'd)

		FUNCTION
Di	iagnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-93).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, following parts can be opened or closed. • EVAP canister vent control valve open • Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. • Low ambient temperature • Low battery voltage • Engine running • Ignition switch "OFF" • Low fuel temperature • Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE..... Road conditions

/ Operating conditions,Weather conditions,

Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-105.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used.

Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

DIAGNOSTIC WORKSHEET

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere [for the models with EVAP (SMALL LEAK) diagnosis].

MA

LC

EC

FE

GL

MT

AT

SU

ğK

R.S.

BT

HA

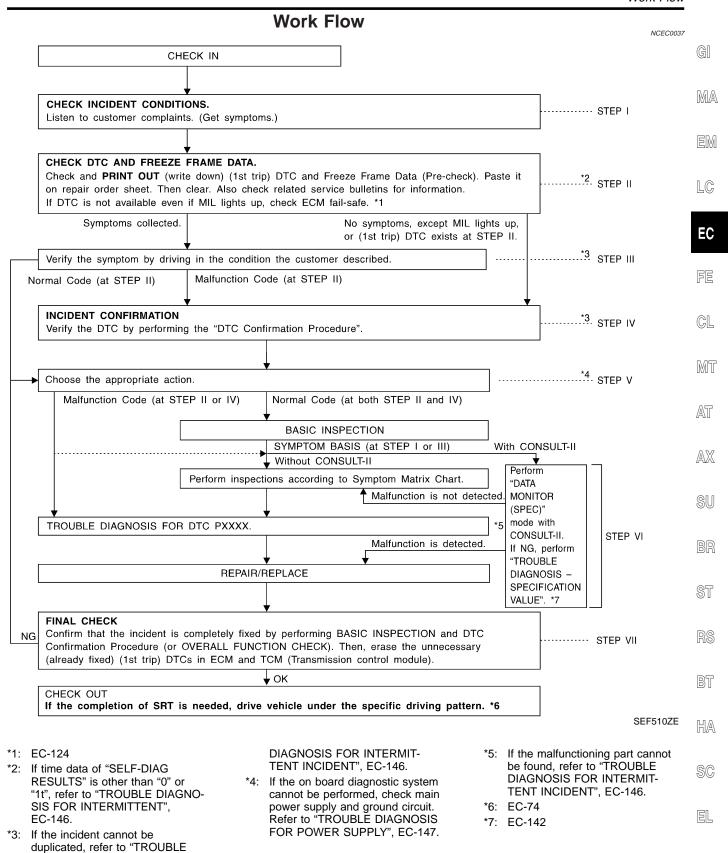
<u>@@</u>

SG

EL

DX.

TROUBLE DIAGNOSIS — INTRODUCTION


Introduction (Cont'd)

Worksheet Sample

NCEC0036S0101

Customer nar	ne MR/MS	Model & Year	VIN			
Engine #		Trans.	Mileage			
Incident Date		Manuf. Date	In Service Date			
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly	/ screwed on.			
	☐ Startability	☐ Impossible to start ☐ No combust ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position I by throttle position			
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ F☐ Others [High idle ☐ Low idle			
	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others [☐ Lack of power re]			
☐ Engine stall		☐ At the time of start ☐ While idling ☐ While accelerating ☐ While decelerating ☐ Just after stopping ☐ While loading				
Incident occur	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime				
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes				
Weather cond	litions	☐ Not affected				
	Weather	☐ Fine ☐ Raining ☐ Snowing ☐ Others []				
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐ Cold ☐ Humid °F				
		☐ Cold ☐ During warm-up ☐ /	After warm-up			
Engine conditions		Engine speed0 2,000	4,000 6,000 8,000 rpm			
Road conditions		☐ In town ☐ In suburbs ☐ Hig	hway 🔲 Off road (up/down)			
Driving conditions		□ Not affected □ At starting □ While idling □ While accelerating □ While cruising □ While decelerating □ While turning (RH/LH) Vehicle speed □ 10 20 30 40 50 60 MPH				
Malfunction in	dicator lamp	0 10 20 30 40 50 60 MPH ☐ Turned on ☐ Not turned on				

MTBL0017

DESCRIPTION FOR WORK FLOW NCEC0037.		
STEP	DESCRIPTION	
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-104.	
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or Generic Scan Tool) the (trip) Diagnostic Trouble Code (DTC) and the (1st trip) freeze frame data, then erase the code and the data. (Refer to EC-79.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-125.) Also check related service bulletins for information.	
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON-SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI-25.) If the malfunction code is detected, skip STEP IV and perform STEP V.	
STEP IV	Try to detect the (1st trip) Diagnostic Trouble Code by driving in (or performing) the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or Generic Scan Tool. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI-25.) In case the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the (1st trip) DTC detection.	
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-107.) If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS — SPECIFICATION VALUE". (Refer to EC-142.) (If malfunction is detected, proceed to "REPAIR/REPLACE".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-125.)	
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-134. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to GI section ("HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection"). Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DTC CONFIRMATION PROCEDURE" and confirm the normal code [DTC No. P0000 or 0505] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-79.)	

Basic Inspection

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

ical G

NCEC0038

- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

EυV

LC

EC

FE

CL

MT

AT

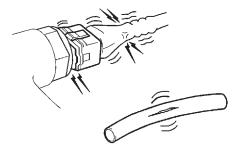
AX

SU

ST

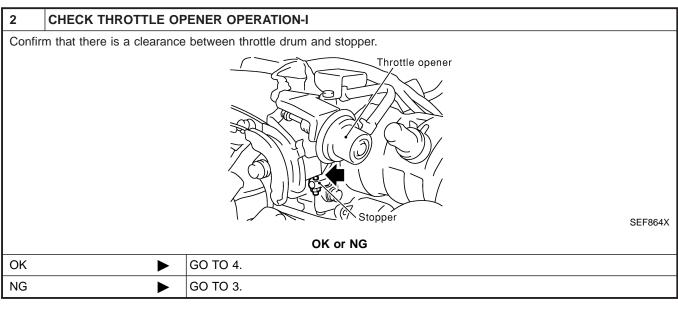
BT

HA


SC

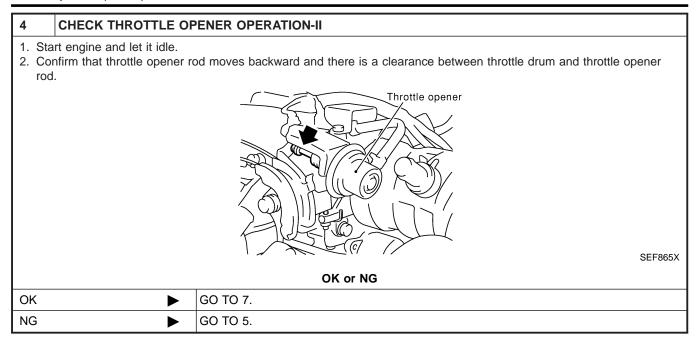
EL

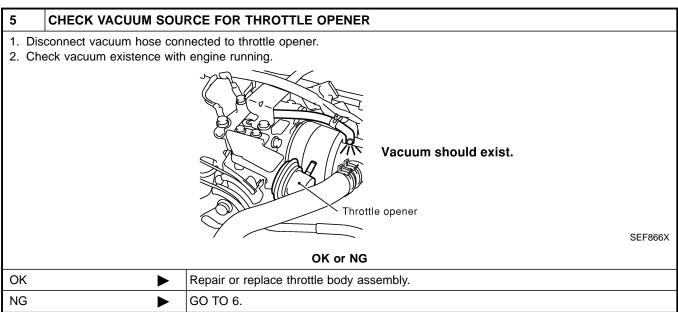
MA


1 INSPECTION START

- 1. Check service records for any recent repairs that may indicate a related problem, or a current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks and improper connections
- Wiring for improper connections, pinches and cuts
- Air cleaner clogging
- Hoses and ducts for leaks

SEF983U


■ GO TO 2.



3	CHECK THROTTLE OPENER FIXING BOLTS		
Check throttle opener fixing bolts for loosening.			
OK or NG			
OK	>	Repair or replace throttle body assembly.	
NG	>	Retighten the fixing bolts.	

TROUBLE DIAGNOSIS — BASIC INSPECTION

Basic Inspection (Cont'd)

Basic Inspection (Cont'd)

MT

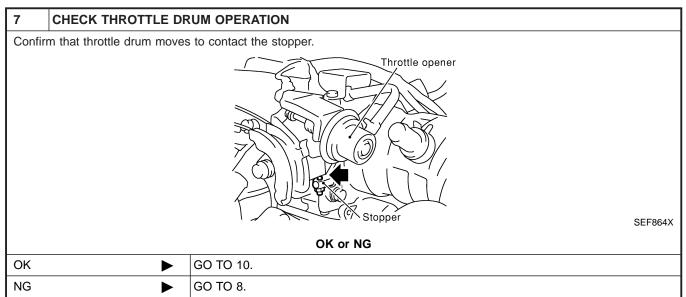
AT

AX

SU

BR


ST


BT

HA

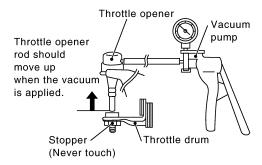
SC

EL

8	CHECK ACCELERATOR WIRE INSTALLATION		
Stop engine. Check accelerator wire for slack.			
OK or NG			
ОК	OK ▶ GO TO 9.		
NG	>	Adjust accelerator wire. Refer to FE-3, "Adjusting Accelerator Wire".	

9	CHECK THROTTLE VALVE OPERATION		
	Remove intake air ducts. Check throttle valve operation when moving throttle drum by hand.		
	OK or NG		
OK	OK Retighten the throttle drum fixing nuts.		
NG	>	Clean the throttle body and throttle valve.	

Basic Inspection (Cont'd)


CHECK THROTTLE POSITION SWITCH CLOSED POSITION-I

NOTE:

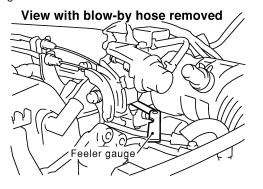
10

Always check ignition timing before performing the following.

- 1. Warm up engine to normal operating temperature.
- 2. Stop engine.
- 3. Remove the vacuum hose connected to the throttle opener.
- 4. Connect suitable vacuum hose to vacuum pump as shown below.

SEF793WA

5. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum is free from the throttle opener rod.


With CONSULT-II	>	GO TO 11.
Without CONSULT-II	•	GO TO 17.

Basic Inspection (Cont'd)

CHECK THROTTLE POSITION SWITCH CLOSED POSITION-II

With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "TP SW/TP SEN IDLE POSI ADJ" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Read "CLSD THL/P SW" signal under the following conditions.
- Insert a 0.05 mm (0.0020 in) and 0.15 mm (0.0059 in) feeler gauge alternately between stopper and throttle drum as shown in the figure and check the signal.

TP SW/TP SEN IDLE POSI ADJ

MONITOR

COOLAN TEMP/S 91 °C

CLSD THL POS ON

CLSD THL/P SW ON

SEF715Y

SEF862X

"CLSD THL/P SW" signal should remain "ON" while inserting 0.05 mm (0.0020 in) feeler gauge. "CLSD THL/P SW" signal should remain "OFF" while inserting 0.15 mm (0.0059 in) feeler gauge.

OK or NG

OK ▶	GO TO 14.
NG ►	GO TO 12.

G[

MA

LC

EC

FE

GL

MT

AT

AX

SU

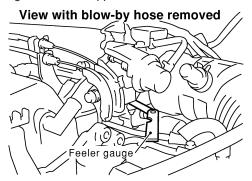
BF

ST

28

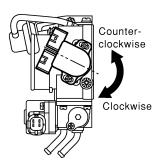
BT

HA


SC

EL

Basic Inspection (Cont'd)


12 ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-I

- With CONSULT-II
- 1. Loosen throttle position sensor fixing bolts.
- 2. Confirm that proper vacuum is applied. Refer to test No. 10. During adjustment, vacuum should be applied.
- 3. Insert 0.05 mm (0.0020 in) feeler gauge between stopper and throttle drum as shown in the figure.

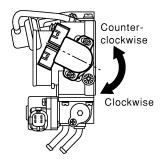
SEF862X

4. Turn throttle position sensor body counterclockwise until "CLSD THL/P SW" signal switches to "OFF".

SEF867X

TP SW/TP SEN IDLE POSI ADJ		
MONITOR		
COOLAN TEMP/S	91 °C	
CLSD THL POS	ON	
CLSD THL/P SW	ON	

SEF715Y


GO TO 13.

Basic Inspection (Cont'd)

13 ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-II

With CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON", then temporarily tighten sensor body fixing bolts.

SEF867X

- 2. Make sure two or three times that the signal is "ON" when the throttle valve is closed and "OFF" when it is opened.
- 3. Remove 0.05 mm (0.0020 in) feeler gauge then insert 0.15 mm (0.0059 in) feeler gauge.
- 4. Make sure two or three times that the signal remains "OFF" when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check the "CLSD THL/P SW" signal again.

The signal remains "OFF" while closing throttle valve.

OK or NG

OK •	GO TO 14.
NG •	GO TO 12.

GI

MA

LC

EC

FE

GL

MT

AT

AX

SU

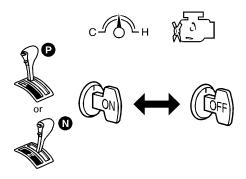
ST

BT

HA

SC

Basic Inspection (Cont'd)


14 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

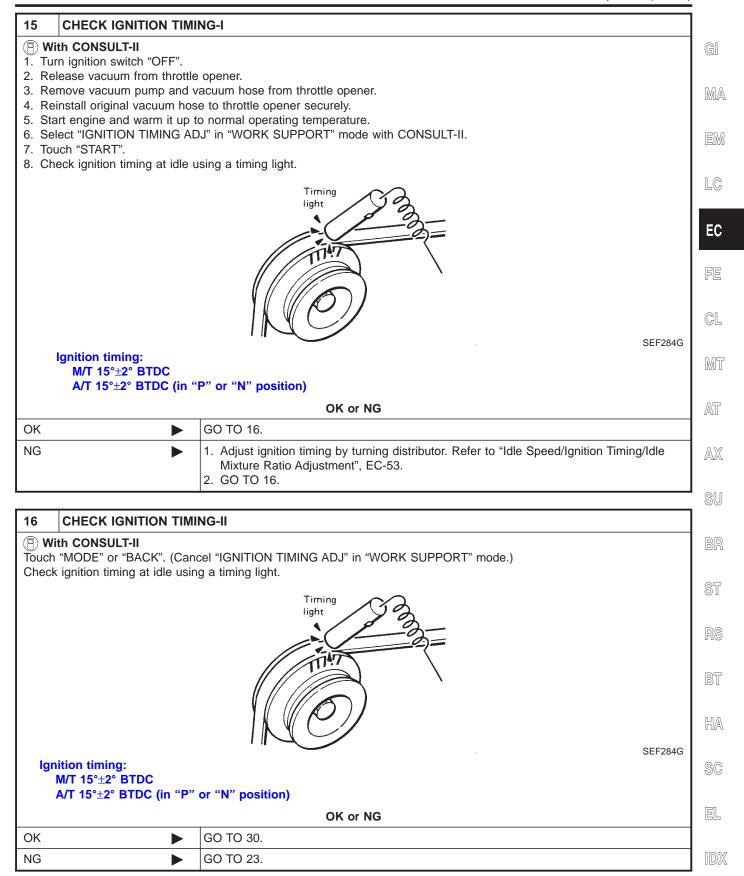
(P) With CONSULT-II

NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Confirm that proper vacuum is applied. Refer to Test No. 10.
- 2. Attach blind cap to vacuum port from which vacuum hose to throttle opener was disconnected.
- 3. Start engine.
- 4. Warm up engine to normal operating temperature.
- 5. Select "TP SW/TP SEN IDLE POSI ADJ" in "WORK SUPPORT" mode.
- 6. Stop engine. (Turn ignition switch "OFF".)
- 7. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

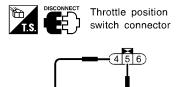

- 8. Turn ignition switch "OFF" and wait at least 10 seconds.
- 9. Repeat steps 7 and 8 until "CLSD THL POS" signal changes to "ON".

TP SW/TP SEN IDLE POSI ADJ		
MONITOR		
COOLAN TEMP/S	91 °C	
CLSD THL POS	ON	
CLSD THL/P SW	ON	

SEF715Y

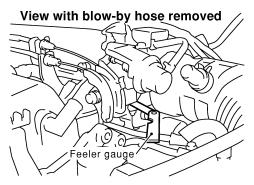
GO TO 15.

Basic Inspection (Cont'd)



Basic Inspection (Cont'd)

17 CHECK THROTTLE POSITION SWITCH CLOSED POSITION-II


Without CONSULT-II

- 1. Disconnect closed throttle position switch harness connector.
- 2. Check continuity between closed throttle position switch terminals 4 and 5 under the following conditions.

SEF711X

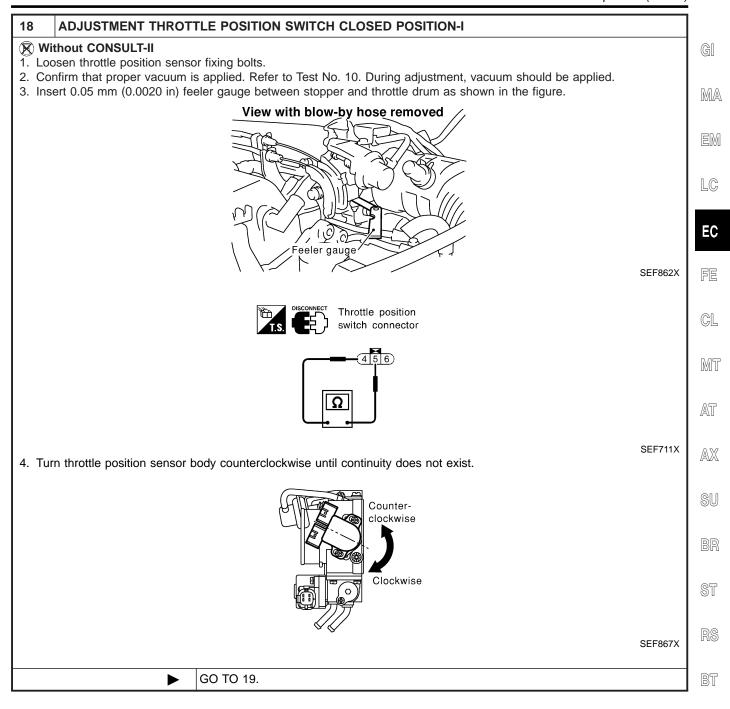
• Insert the 0.05 mm (0.0020 in) and 0.15 mm (0.0059 in) feeler gauge alternately between the stopper and throttle drum as shown in the figure.

SEF862X

OK or NG

OK ►	GO TO 20.
NG ►	GO TO 18.

[&]quot;Continuity should exist" while inserting 0.05 mm (0.0020 in) feeler gauge.

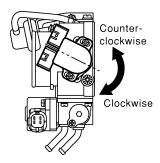

[&]quot;Continuity should not exist" while inserting 0.15 mm (0.0059 in) feeler gauge.

Basic Inspection (Cont'd)

HA

SC

EL


EC-117

Basic Inspection (Cont'd)

19 ADJUSTMENT THROTTLE POSITION SWITCH CLOSED POSITION-II

Without CONSULT-II

- 1. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then temporarily tighten sensor body fixing bolts.

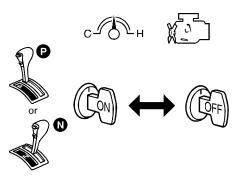
SEF867X

- 2. Make sure two or three times that the continuity exists when the throttle valve is closed and continuity does not exist when it is opened.
- 3. Remove 0.05 mm (0.0020 in) feeler gauge then insert 0.15 mm (0.0059 in) feeler gauge.
- 4. Make sure two or three times that the continuity does not exist when the throttle valve is closed.
- 5. Tighten throttle position sensor.
- 6. Check the continuity again.

Continuity does not exist while closing the throttle valve.

OK or NG

OK •	GO TO 20.
NG ►	GO TO 18.


20 RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY

Without CONSULT-II

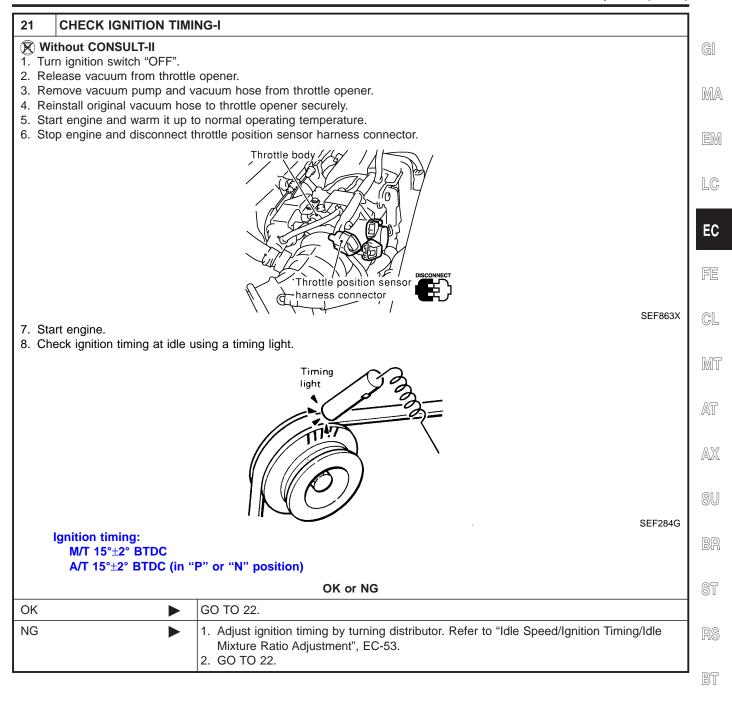
NOTE:

Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Confirm that proper vacuum is applied. Refer to Test No. 10.
- 2. Attach blind cap to vacuum port from which vacuum hose to throttle opener was disconnected.
- 3. Start engine.
- 4. Warm up engine to normal operating temperature.
- 5. Stop engine. (Turn ignition switch "OFF".)
- 6. Turn ignition switch "ON" and wait at least 5 seconds.

SEF864V

- 7. Turn ignition switch "OFF" and wait at least 10 seconds.
- 8. Repeat steps 6 and 7, 20 times.

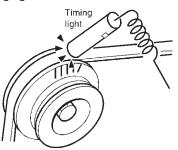

▶ GO TO 21.

Basic Inspection (Cont'd)

HA

SC

EL



EC-119

Basic Inspection (Cont'd)

22 CHECK IGNITION TIMING-II1. Stop engine.

- 2. Reconnect throttle position sensor harness connector.
- 3. Start engine and let it idle.
- 4. Check ignition timing at idle using a timing light.

SEF984U

Ignition timing:

M/T 15°±2° BTDC

A/T 15°±2° BTDC (in "P" or "N" position)

OK or NG

OK		GO TO 33.
NG	•	GO TO 23.

23	PERFORM IDLE AIR VOLUME LEARNING		
	Refer to "Idle Air Volume Learning", EC-65. Is the result CMPLT or INCMP?		
CMPLT or INCMP			
CMPLT			
INCM	P •	Follow the construction of "Idle Air Volume Learning".	

24	CHECK IGNITION	I TIMII	NG AGAIN
Check	Check ignition timing again. Refer to Test No. 16 (With CONSULT-II) or 22 (Without CONSULT-II).		
	OK or NG		
OK (W	/ith CONSULT-II)	•	GO TO 30.
OK (W	OK (Without CONSULT-		
NG		>	GO TO 25.

25	5 CHECK FOR INTAKE AIR LEAK									
	 Start engine and let it idle. Listen for an air leak from PCV hose and after IACV-AAC valve. 									
		OK or NG								
OK	•	GO TO 27.								
NG	•	GO TO 26.								

26	REPAIR MALFUNCTION	CTION							
	op engine. pair or replace malfunctioni	ing part.							
	•	GO TO 23.							

Basic Inspection (Cont'd)

		Basic inspection (Cont	<i>u</i>)
27 DETECT	MALFUNCTIO	DNING PART	
Check the IACV	-AAC valve circu	uit and function. Refer to EC-423.	GI
		OK or NG	
OK	•	GO TO 29.	MA
NG	•	GO TO 28.	
28 REPAIR	MALFUNCTIO	N	
Repair or replace	e malfunction pa	art following the "Diagnostic Procedure" corresponding the detected malfunction.	_ LC
	•	GO TO 23.	
			EC
l l	ECM FUNCTIO		
		od ECM to check ECM function. problem, but this is rarely the case.)	FE
2. Perform initia	lization of IVIS (NATS) system and registration of IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI	
Vehicle Immo	bilizer System -	– NATS)", EC-81.	
	<u> </u>	GO TO 23.	GL
			–
	TARGET IDLE	SPEED	
With CONSI		o normal operating temperature.	
		TA MONITOR" mode.	AT
3. Check idle sp M/T: 800±			
		or "N" position)	
		OK or NG	
ОК	•	GO TO 36.	SU
NG	•	GO TO 31.	
			BR
31 PERFOR	RM IDLE AIR V	OLUME LEARNING	
Refer to "Idle Ai			ST
Is the result CN	IPLT or INCMP		
		CMPLT or INCMP	– RS
CMPLT	•	GO TO 32.	
INCMP	<u> </u>	Follow the construction of "Idle Air Volume Learning".	┛ BT
			7
		SPEED AGAIN	HA
		o normal operating temperature. FA MONITOR" mode with CONSULT-II.	U 11/A\
3. Check idle sp	peed.	TAMONTON MODE WALL CONCOLL II.	
M/T: 800±		or "N" position)	SC
A/1. 000±	ovipiii (iii F	OK or NG	
OK		GO TO 36.	
NG		GO TO 36.	\dashv
110		00 10 20.	

Basic Inspection (Cont'd)

33	CHECK TARGET IDLE	SPEED						
1. Sta 2. Ch	Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 800±50 rpm A/T: 800±50 rpm (in "P" or "N" position)							
		OK or NG						
OK	>	GO TO 36.						
NG	>	GO TO 34.						

34	PERFORM IDLE AIR VOLUME LEARNING									
	Refer to "Idle Air Volume Learning", EC-65. Is the result CMPLT or INCMP?									
		CMPLT or INCMP								
CMPL	T >	GO TO 35.								
INCMP Follow the construction of "Idle Air Volume Learning".										

35	CHECK TARGET IDLE	SPEED AGAIN						
2. Ch	1. Start engine and warm it up to normal operating temperature. 2. Check idle speed. M/T: 800±50 rpm A/T: 800±50 rpm (in "P" or "N" position)							
		OK or NG						
ОК	>	GO TO 36.						
NG	>	GO TO 25.						

36	ERASE UNNECESSARY DTC										
Erase	the stored memory in ECN to "HOW TO ERASE EMIS	y DTC No. might be displayed. M and TCM (Transmission control module). SSION-RELATED DIAGNOSTIC INFORMATION", EC-79 and "HOW TO ERASE DTC",									
	•	INSPECTION END									

DTC Inspection Priority Chart

BT

HA

SC

EL

DTC Inspection Priority Chart

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)	5.0.0
1	P0100 Mass air flow sensor P0110 Intake air temperature sensor	——— MA
	 P0115, P0125 Engine coolant temperature sensor P0120 Throttle position sensor P0180 Fuel tank temperature sensor 	EM
	 P0325 Knock sensor P0340 Camshaft position sensor P0403 EGR volume control valve 	LC
	 P0460, P0461, P0464, P1464 Fuel level sensor P0500 Vehicle speed sensor P0605 ECM 	EC
	 P1126 Thermostat function P1605 A/T diagnosis communication line P1706 Park/Neutral position (PNP) switch 	FE
2	 P0105 Absolute pressure sensor P0130-P0134 Heated oxygen sensor 1 (front) P0135 Heated oxygen sensor 1 heater (front) 	
	 P0137-P0140 Heated oxygen sensor 2 (rear) P0141 Heated oxygen sensor 2 heater (rear) P0217 Coolant overtemperature enrichment protection 	MT
	 P0335, P1336 Crankshaft position sensor (OBD) P0443, P1444 EVAP canister purge volume control solenoid valve P0446, P1446, P1448 EVAP canister vent control valve 	AT
	 P0450 EVAP control system pressure sensor P0510 Closed throttle position switch P0705-P0725, P0740-P1760 A/T related sensors, solenoid valves and switches P1401 EGR temperature sensor 	AX
	P1447 EVAP control system purge flow monitoring P1490, P1491 Vacuum cut valve bypass valve	SU
3	 P0171, P0172 Fuel injection system function P0300-P0304 Misfire P0400, P1402 EGR function 	BR
	 P0420 Three way catalyst function P0440, P1440 EVAP control system (SMALL LEAK) P0455 EVAP control system (GROSS LEAK) P0505 IACV-AAC valve 	ST
	 P0600 A/T communication line P0731-P0734, P0744 A/T function P1148 Closed loop control 	RS

Fail-safe Chart

The ECM enters fail-safe mode if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MIL illuminates.

DTC No.	Detected items	Engine operat	ing condition in fail-safe mode										
P0100	Mass air flow sensor circuit	ngine speed will not rise more than 2,400 rpm due to the fuel cut.											
P0115	Engine coolant temperature sensor circuit	ignition switch "ON" or "START".	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.										
		Condition	Engine coolant temperature decided (CONSULT-I display)										
		Just as ignition switch is turned ON or Start	40°C (104°F)										
		More than approx. 4 minutes after ignition ON or Start	80°C (176°F)										
	P0120 Throttle position sensor circuit Wher	xcept as shown above 40 - 80°C (104 - 176°F) (Depends on the time)											
-	1	Throttle position will be determined speed. Therefore, acceleration will be	based on the injected fuel amount and the engine poor.										
		Condition	Driving condition										
	When engine is idling	Normal											
		When accelerating	Poor acceleration										
P0403	EGR volume control valve circuit	Engine speed will not rise more tha	n 2,800 rpm due to the fuel cut.										
Unable to access ECM	ECM	the CPU of ECM), the MIL on the ir However it is not possible to access Engine control with fail-safe	was judged to be malfunctioning. (i.e., if the ECM detects a malfunction condition in astrument panel lights to warn the driver. ECM and DTC cannot be confirmed. el injection, ignition timing, fuel pump operation										
			ECM fail-safe operation										
		Engine speed	Engine speed will not rise more than 3,000 rpm										
		Fuel injection	Simultaneous multiport fuel injection system										
		Ignition timing	Ignition timing is fixed at the preset valve										
		Fuel pump	Fuel pump relay is "ON" when engine is running and "OFF" when engine stalls										
		IACV-AAC valve Full open											
		IACV-AAC valve	Full open										

Symptom Matrix Chart

HA

SC

EL

			Symptom Matrix Chart SYSTEM — ENGINE CONTROL SYSTEM NCEC0041501													
							SY	MPT	OM							. •
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty symptom code		AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		_
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-583	
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-51	_
	Injector circuit	1	1	2	3	2		2	2			2			EC-574	_
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-33	_
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-48	_
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-107	- @
	IACV-AAC valve circuit	1	1	2	3	3	2	2	2	2		2		2	EC-423	-
Ignition	Incorrect ignition timing adjust- ment	3	3	1	1	1		1	1			1			EC-107	
	Ignition circuit	1	1	2	2	2		2	2			2			EC-566	- - @
EGR	EGR volume control valve circuit		2	2	3	3						3			EC-344	- 6
	EGR system	2	1	2	3	3	3	2	2	3		3			EC-334, EC-481	_
Main pow	ver supply and ground circuit	2	2	3	3	3		3	3		2	3		2	EC-147	
Air condi	tioner circuit	2	2	3	3	3	3	3	3	3		3		2	HA section	- [

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

						SY	MPT	MC						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Camshaft position sensor circuit	2	2	3	3	3		3	3			3			EC-326
Mass air flow sensor circuit	1	1	2	2	2		2	2			2			EC-154
Heated oxygen sensor 1 (front) circuit		1	2	3	2		2	2			2			EC-196
Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-171, 190
Throttle position sensor circuit		1	2		2	2	2	2	2		2			EC-177
Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-107
Vehicle speed sensor circuit		2	3		3						3			EC-419
Knock sensor circuit			2								3			EC-316
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-443, 124
Start signal circuit	2													EC-579
PNP switch circuit			3		3		3	3			3			EC-559
Power steering oil pressure switch circuit		2					3	3						EC-592
Electrical load signal circuit							3	3						EC-602

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

Symptom Matrix Chart (Cont'd)

			SYS	STEI	VI —	- EN	GIN	E M	ECI	HAN	IICA	L &	ОТ	HER	NCEC0041S03	
							SY	MPT	MC							G[
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	
Warranty s	symptom code	AA	АВ	AC	AD	AE	AF	AG	AH	AJ	AK	AL	АМ	НА	_	GL
Fuel	Fuel tank														FE section	
	Fuel piping	5		5	5	5		5	5			5				M
-	Vapor lock		5												-	
	Valve deposit															AT
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_	AX
Air	Air duct															
	Air cleaner							5								SU
	Air leakage from air duct (Mass air flow sensor — throttle body)		5	5		5			5			5				BF
	Throttle body, Throttle wire	5			5		5			5					FE section	
	Air leakage from intake manifold/ Collector/Gasket														_	ST
Cranking	Battery	1	1	1		1		1	1					1		RS
- H	Alternator circuit	ı	ľ	1		'			1					'	EL section	
	Starter circuit	3								=		1				BT
	Flywheel/Drive plate	6													EM section	
	PNP switch	4													AT section	HA

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

SC

EL

							SY	MPT	OM						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty	symptom code	АА	АВ	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Engine	Cylinder head Cylinder head gasket	- 5	5	5	5	5		5	5		4	5	3		
	Cylinder block Piston Piston ring Connecting rod Bearing Crankshaft	6	6	6	6	6		6	6			6	4		EM section
Valve mecha- nism	Timing chain Camshaft Intake valve Exhaust valve	5	5	5	5	5		5	5			5	3		EM section
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket Three way catalyst	5	5	5	5	5		5	5			5			FE section
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery Oil level (Low)/Filthy oil	5	5	5	5	5		5	5			5			MA, EM and LC sections
Cooling	Radiator/Hose/Radiator filler cap Thermostat Water pump Water gallery Cooling fan Coolant level (low)/ Contaminated coolant	5	5	5	5	5		5	5	5	4	5			LC section EC-449 MA section

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

MA

CONSULT-II Reference Value in Data Monitor Mode

Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.

(i.e., Adjust ignition timing with a timing light before monitoring IGN TIMING. Specification data might be displayed even when ignition timing is not adjusted to specification. This IGN TIMING monitors the data calculated by the ECM according to the input signals from the camshaft position sensor and other ignition timing related sensors.)

• If the real-time diagnosis results are NG, and the on board diagnostic system results are OK, when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

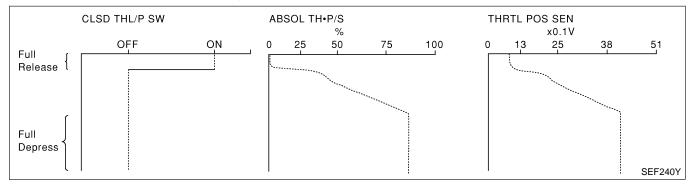
MONITOR ITEM	CON	SPECIFICATION	LC -	
ENG SPEED	 Tachometer: Connect Run engine and compare tac CONSULT-II value. 	Run engine and compare tachometer indication with the		
MAG A /F OF D4	Engine: After warming up Air conditioner switch: OFF	Idle	1.3 - 1.7V	FE
MAS A/F SE-B1	Shift lever: "N"No-load	2,500 rpm	1.8 - 2.4V	- GL
D/FHEL COURT	Engine: After warming up Air conditioner switch: OFF	Idle	1.0 - 1.6 msec	_
B/FUEL SCHDL	Shift lever: "N"No-load	2,000 rpm	0.7 - 1.3 msec	MT
A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	53 - 155%	AT
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)	-
HO2S1 (B1)			0 - 0.3V ←→ 0.6 - 1.0V	- AX
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	- SU
HO2S2 (B1)	- · · · ·	Revving engine from idle to	0 - 0.3V ←→ 0.6 - 1.0V	- BR
HO2S2 MNTR (B1)	Engine: After warming up	3,000 rpm quickly	LEAN ←→ RICH	
VHCL SPEED SE	Turn drive wheels and comp the CONSULT-II value	are speedometer indication with	Almost the same speed as the CONSULT-II value	ST
BATTERY VOLT	Ignition switch: ON (Engine s	stopped)	11 - 14V	- - RS
	Engine: After warming up, idle the engine	Throttle valve: fully closed	0.15 - 0.85V	- M9
THRTL POS SEN	Engine: After warming upIgnition switch: ON (Engine stopped)	Throttle valve: fully opened	3.5 - 4.7V	BT - HA
EGR TEMP SEN	Engine: After warming up		Less than 4.5V	
EVAP SYS PRES	Ignition switch: ON		Approx. 3.4V	- - SC
ABSOL PRES/SE	Ignition switch: ON		Approx. 4.4V	- 00
START SIGNAL	Ignition switch: ON → STAR	$T \rightarrow ON$	$OFF \to ON \to OFF$	- . El
CLSD THL/P SW	Engine: After warming up Ignition awitch: ON	Throttle valve: Idle position	ON	
CLSD THL POS	 Ignition switch: ON (Engine stopped) 	Throttle valve: Slightly open	OFF	
		A/C switch "OFF"	OFF	-
AIR COND SIG	Engine: After warming up, idle the engine	A/C switch "ON" (Compressor operates)	ON	-

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	DITION	SPECIFICATION	
- A		Shift lever "P" or "N"	ON	
P/N POSI SW	Ignition switch: ON	Except above	OFF	
PW/ST SIGNAL	 Engine: After warming up, idle the engine 	Steering wheel in neutral position (forward direction)	OFF	
		The steering wheel is turned	ON	
LOAD SIGNAL	 Ignition switch: ON 	Rear window defogger switch "ON" and/or lighting switch "2ND"	ON	
		Rear window defogger switch and lighting switch "OFF"	OFF	
IGNITION SW	 Ignition switch: ON → OFF 		$ON \to OFF$	
INJ PULSE-B1	Engine: After warming upAir conditioner switch: OFF	Idle	2.4 - 3.2 msec	
ING FOLSE-BT	Shift lever: "N"No-load	2,000 rpm	1.9 - 2.8 msec	
IGN TIMING	Engine: After warming upAir conditioner switch: OFF	Idle	15°±2° BTDC	
IGN TIWIING	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC	
CAL/LD VALUE	Engine: After warming upAir conditioner switch: OFF	Idle	20.0 - 35.5%	
CADED VALUE	Shift lever: "N"No-load	2,500 rpm	17.0 - 30.0%	
	• Engine: After warming up, idle the engine	Throttle valve: fully closed	0.0%	
ABSOL TH-P/S	Engine: After warming upIgnition switch: ON (Engine stopped)	Throttle valve: fully opened	Approx. 88.0%	
MASS AIRFLOW	Engine: After warming upAir conditioner switch: OFF	Idle	2.5 - 5.0 g·m/s	
WASS AIN LOW	Shift lever: NNo-load	2,500 rpm	7.1 - 12.5 g·m/s	
IACV-AAC/V	Engine: After warming upAir conditioner switch: OFF	Idle	5 - 20 steps	
IACV-AAC/V	Shift lever: "N"No-load	2,000 rpm	_	
PURG VOL C/V	Engine: After warming upAir conditioner switch: "OFF"	Idle	0 %	
I ONG VOL O/V	Shift lever: "N"No-load	2,000 rpm	_	
	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	0 step	
EGR VOL CON/V	All conditioner switch: OFFShift lever: "N"No-load	Engine speed: Revving from idle up to 3,000 rpm quickly	10 - 55 step	
AIR COND RLY	Air conditioner switch: OFF —	Air conditioner switch: OFF → ON		
FUEL PUMP RLY	 Ignition switch is turned to Of Engine running and cranking When engine is stopped (stop 		ON	
	Except as shown above		OFF	

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CON	DITION	SPECIFICATION	
VC/V BYPASS/V	Ignition switch: ON		OFF	- Gl
VENT CONT/V	Ignition switch: ON		OFF	_
		Engine coolant temperature is 94°C (201°F) or less	OFF	- MA
COOLING FAN	After warming up engine, idle the engine.Air conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW	= EM
		Engine coolant temperature is 105°C (221°F) or more	HIGH	LG
LIOSCA LITD (DA)	Engine speed: Below 3,200 ii	ON	EC	
HO2S1 HTR (B1)	• Engine speed: Above 3,200	rpm	OFF	
LICOSCO LITTO (D4)	Ignition switch: ON (Engine sEngine speed: Above 3,600	• • • •	OFF	FE
HO2S2 HTR (B1)	Engine speed: Below 3,600 at a speed of 70 km/h (43 M	ON	- GL	


Major Sensor Reference Graph in Data Monitor

The following are the major sensor reference graphs in "DATA MONITOR" mode.

THRTL POS SEN, ABSOL TH-P/S, CLSD THL/P SW

Below is the data for "THRTL POS SEN", "ABSOL TH-P/S" and "CLSD THL/P SW" when depressing the accelerator pedal with the ignition switch "ON".

The signal of "THRTL POS SEN" and "ABSOL TH-P/S" should rise gradually without any intermittent drop or rise after "CLSD THL/P SW" is changed from "ON" to "OFF".

ENG SPEED, MAS A/F SE-B1, THRTL POS SEN, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL POS SEN", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.

Each value is for reference, the exact value may vary.

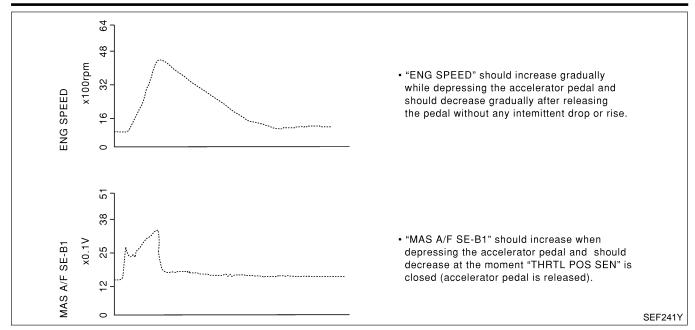
IDX

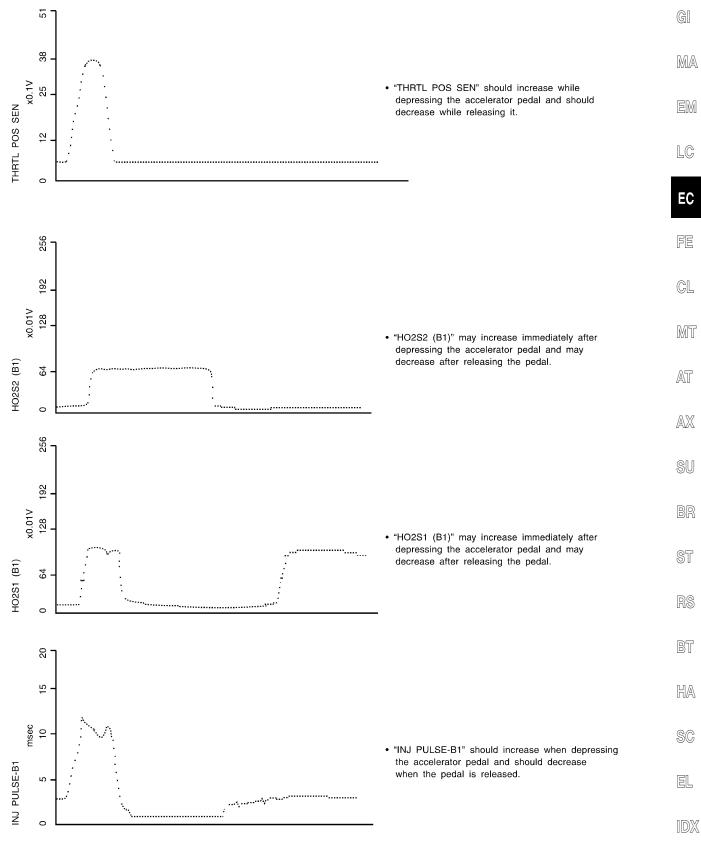
BT

HA

SC

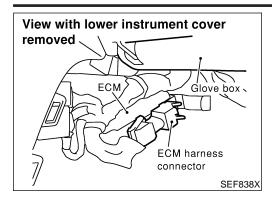
EL


MT

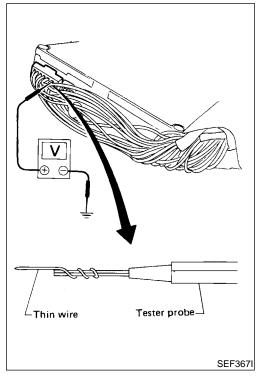

AT

AX

NCEC0043


Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

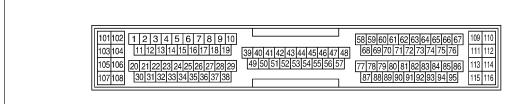
SEF242YA


ECM Terminals and Reference Value

ECM Terminals and Reference Value PREPARATION

NCEC0044

- NCEC0044S01 ECM is located behind the center console. For this inspection:
- Remove the front passenger center console panel.
- Remove ECM harness protector.



- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
- Open harness securing clip to make testing easier.
- Use extreme care not to touch 2 pins at one time.
- Data is for comparison and may not be exact.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ECM HARNESS CONNECTOR TERMINAL LAYOUT

SFF970W

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	PU/R	Vacuum cut valve bypass valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
3	R/Y	Heated oxygen sensor	 [Engine is running] Engine speed is below 3,600 rpm. After driving for 2 minutes at a speed of 70 km/h (43 MPH) or more. 	0 - 1.0V
3	N/I	2 heater (rear)	[Ignition switch "ON"] ■ Engine stopped [Engine is running] ■ Engine speed is above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)
4	OP	Heated oxygen sensor	[Engine is running] • Engine speed is below 3,200 rpm.	0 - 1.0V
4	OR	1 heater (front)	[Engine is running] • Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)
6 7 15 16	BR L R G	IACV-AAC valve	[Engine is running] ● Idle speed	0.1 - 14V
8 9 17 18	SB W/B R/W G/R	EGR volume control valve	[Engine is running] • Idle speed	0.1 - 14V
10	Y/B	A/T signal No. 3	[Engine is running] ● Idle speed	0 - 1.0V
		Cooling fan relay	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
12	LG	(High)	[Engine is running] ■ Cooling fan (High) is operating	0 - 0.6V
40	1.07	Cooling for solar (Lov)	[Engine is running] ■ Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
13	L/Y	Cooling fan relay (Low)	[Engine is running] ■ Cooling fan is operating	0 - 0.6V
			[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0
14	14 P	EVAP canister purge volume control sole-		50 ms SEF994U
14 F	r	noid valve	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	BATTERY VOLTAGE (11 - 14V)
			2.2.2.1.20 3.1.3. 3.1.3.1.3 3.1.3.1.0).	50 ms SEF995U

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
19	BR/W	A/T signal No. 5	[Engine is running] • Idle speed	Approximately 8V
0.4	D/D	5 1	[Ignition switch "ON"] ● For 5 seconds after turning ignition switch "ON" [Engine is running]	0 - 1V
21	B/P	Fuel pump relay	[Ignition switch "ON"] ■ More than 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
		Malfunction indicator	[Ignition switch "ON"]	0 - 1.0V
22	OR/L	Malfunction indicator lamp	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
23	23 L/W Air conditioner relay		 [Engine is running] Both A/C switch and blower switch are "ON" (Compressor operates) 	0 - 0.6V
			[Engine is running] • A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
24	N/O	ECM relay (Self shut-off)	[Engine is running] [Ignition switch "OFF"] • For 5 seconds after turning ignition switch "OFF"	0 - 1.0V
31	W/G		[Ignition switch "OFF"] ■ 5 seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
		Tochemates	[Engine is running] • Warm-up condition • Idle speed	Approximately 8.2V (V) 20 10 0 20 ms SEF928X
32	L	Tachometer	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 8.2V (V) 20 10 0 1. V

		ECIVI Terrillilais and Reference value (Cont.u)				
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI	
			[Engine is running] • Warm-up condition • Idle speed	Approximately 0.3V (V) 4 2 0 20 ms SEF996V	MA EM	
35	W/B	Ignition signal	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 0.5V (V) 4 2 0 20 ms SEF997V	EC	
			[Engine is running] • Warm-up condition • Idle speed	Approximately 13V (V) 40 20 0 20 ms SEF998V	MT AT	
36	G	G Ignition check	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 13V (V) 40 20 0 20 ms SEF999V	SU BR	
40	Υ	Throttle position switch (Closed position)	[Engine is running] • Warm-up condition • Accelerator pedal fully released	BATTERY VOLTAGE (11 - 14V)	RS	
			[Engine is running]Accelerator pedal depressed	Approximately 0V	BT	
41	B/Y	Start signal	[Ignition switch "ON"]	Approximately 0V	HA	
			[Ignition switch "START"]	9 - 14V	n nv-7	
42	G/OR	PNP switch	[Ignition switch "ON"] • Gear position is "Neutral position" (M/T models) • Gear position is "P" or "N" (A/T models)	Approximately 0V	SC	
			[Ignition switch "ON"] • Except the above gear position	BATTERY VOLTAGE (11 - 14V)	EL	
			[Ignition switch "OFF"]	OV	[[<i>\operatornal</i>]	
43	B/R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)	[D]	

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	1./5		[Engine is running] • Both A/C switch and blower switch are "ON"	Approximately 0V
44	L/B	Air conditioner switch	[Engine is running] • A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
40	ep.	Power steering oil	[Engine is running] • Steering wheel is being turned.	Approximately 0V
46	SB	pressure switch	[Engine is running] • Steering wheel is not being turned.	Approximately 5V
48	В	ECM ground	[Engine is running] • Idle speed	Engine ground
50	R	Electrical load signal	[Ignition switch "ON"] ■ Lighting switch "2ND" and/or rear window defogger switch "ON"	BATTERY VOLTAGE (11 - 14V)
50	K	Electrical load signal	[Ignition switch "ON"] ■ Lighting switch and rear window defogger switch "OFF"	ov
54	Y/R	A/T signal No. 1	[Engine is running] • Idle speed	Approximately 0 - 1.0V
55	Y/G	A/T signal No. 2	[Engine is running] • Idle speed	Approximately 0 - 1.0V
56	G/Y	A/T signal No. 4	[Engine is running] • Idle speed	Approximately 0 - 1.0V
57	В	ECM ground	[Engine is running] • Idle speed	Engine ground
58	В	Sensor's ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
		Mass six flow some	[Engine is running] • Warm-up condition • Idle speed	1.3 - 1.7V
61	L	Mass air flow sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm	1.8 - 2.4V
62	W	Heated oxygen sensor 1 (front)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	0 - Approximately 1.0V (Periodically change) (V) 1 0.5 0 1 s SEF059V
63	W	Heated oxygen sensor 2 (rear)	[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	0 - Approximately 1.0V
64	R/Y	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.

	ECIVI Terminais and Reference value (Contu)				
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
0.5	W	Crankshaft position sensor (OBD)	[Engine is running] • Warm-up condition • Idle speed	3 - 5V (AC range) (V) 20 10 0.2 ms SEF721W	
65	W		[Engine is running] • Engine speed is 2,000 rpm	6 - 9V (AC range) (V) 20 10 0.2 ms SEF722W	EO
66	L	Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	0.1 - 0.4V (V) 10 5 0 10 ms SEF006W	CL M1
75	Ĺ	Camshaft position sensor (Reference signal)	[Engine is running] • Engine speed is 2,000 rpm	0.1 - 0.4V (V) 10 5 0 10 ms SEF007W	ax si bf
67	W/L	Power supply for ECM (Back-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)	Sī
70	BR/Y	Engine coolant tem- perature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.	R
71	GY	Throttle position sensor	[Engine is running] • Warm-up condition • Accelerator pedal fully released	Approximately 0.4V	Bī
	signal output	[Ignition switch "ON"] ■ Accelerator pedal fully depressed	Approximately 4V	HA	
72	72 R/B EGR temperature sensor	В	Warm-up condition	Less than 4.5V	SC
12			Warm-up condition	0 - 1.5V	
73	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	

		Treference value (een	/		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
74	R/L	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON" (Compressor operates) 	0.36 - 3.88V	
81	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V	
82	LG/R	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.	
83	G/R	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.	
84	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 3.4V	
85	B/W	Camshaft position sen-	[Engine is running] • Warm-up condition • Idle speed	Approximately 2.6V (V) 10 5 0 0.2 ms SEF004W	
65	B/W	sor (Position signal)	sor (Position signal)	[Engine is running] • Engine speed is 2,000 rpm	Approximately 2.5V (V) 10 5 0 0.2 ms SEF005W
86	Y/G	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 2nd gear position Vehicle speed is 40 km/h (25 MPH) 	0 - Approximately 4.2V (V) 10 5 0 50 ms SEF003W	
90	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	
91	PU	A/T check signal	[Ignition switch "ON"]	0 - Approximately 5V	
92	Υ	Throttle position sensor	[Engine is running]Warm-up conditionAccelerator pedal fully released	0.15 - 0.85V	
			[Ignition switch "ON"] • Accelerator pedal fully depressed	3.5 - 4.7V	

ECM Terminals and Reference Value (Cont'd)

ST

RS

BT

HA

SC

EL

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 103	R/B Y/B	Injector No. 1 Injector No. 2	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 20 ms SEF011W
105 107	G/B L/B	Injector No. 3 Injector No. 4	[Engine is running] • Warm-up condition • Engine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF012W
102	PU/W	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
106 108	B B	ECM ground	[Engine is running] • Idle speed	Engine ground
110 112	W	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
111	P/L	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V
115	L/B	DATA link connector	[Ignition switch "ON"] CONSULT-II or GST is disconnected.	Approximately 8V

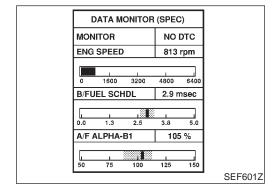
Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

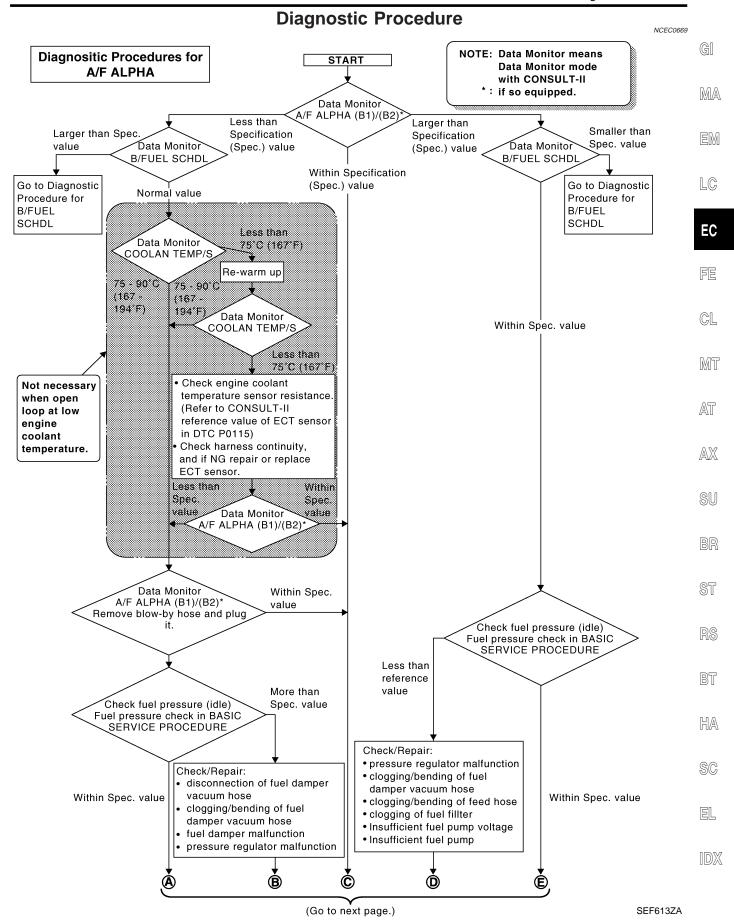

Testing Condition

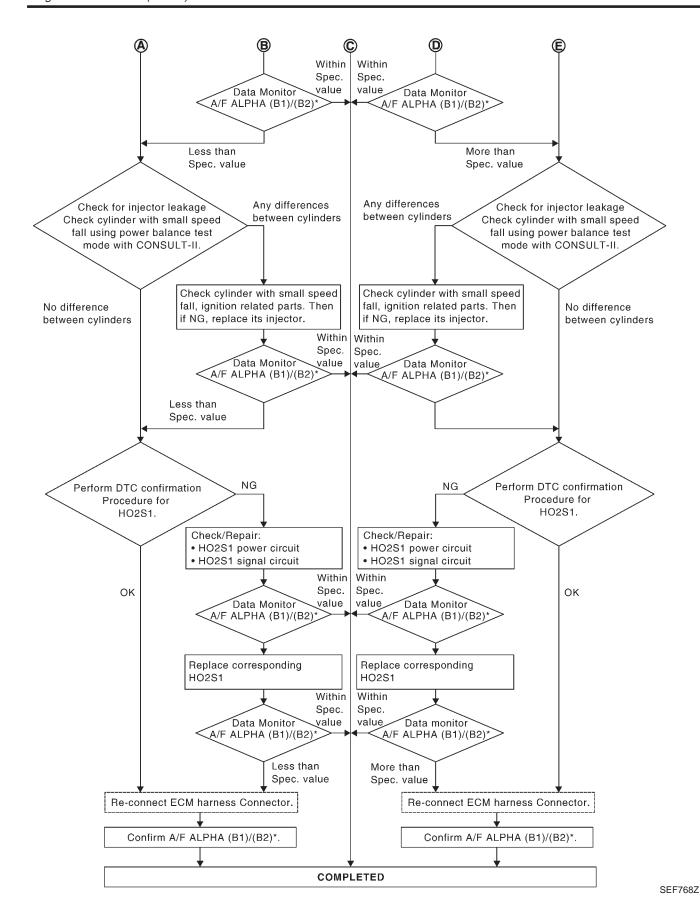
NCEC0667

- Vehicle driven distance: More than 5,000 km (3,107 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1Electrical load: Not applied*2
- Engine speed: Idle

*1: For A/T models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates less than 0.9V. For M/T models, drive vehicle for 5 minutes after the engine is warmed up to normal operating temperature.

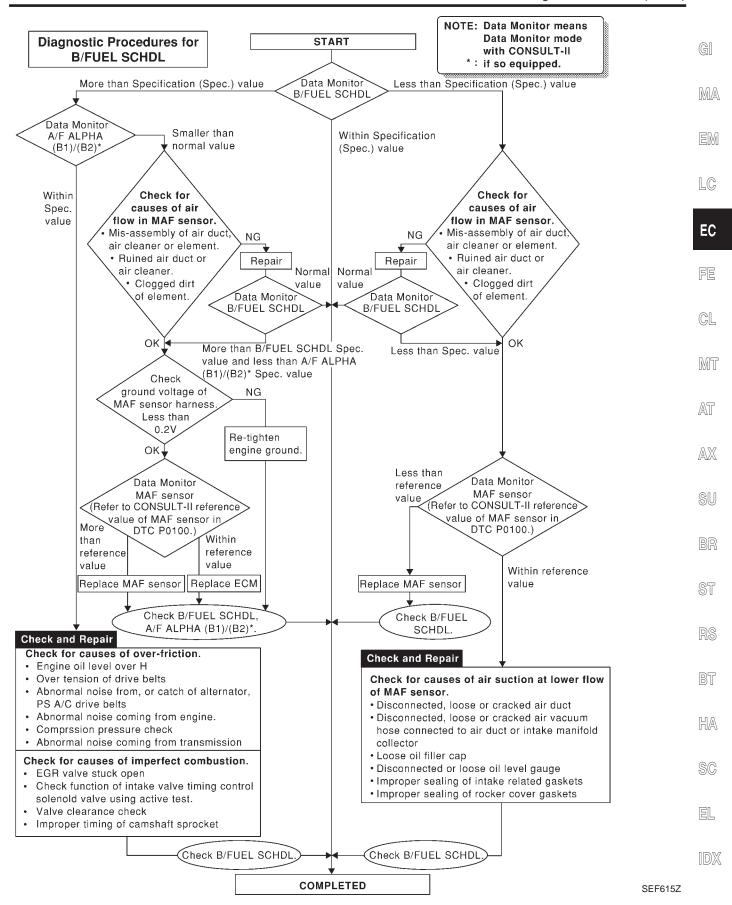
*2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Cooling fans are not operating. Steering wheel is straight ahead.


Inspection Procedure


NOTE:

NCEC0668

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.


- 1. Perform "Basic Inspection", EC-107.
- 2. Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to "Diagnostic Procedure", EC-143.

TROUBLE DIAGNOSIS — SPECIFICATION VALUE

Diagnostic Procedure (Cont'd)

Description

NCECOOA

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

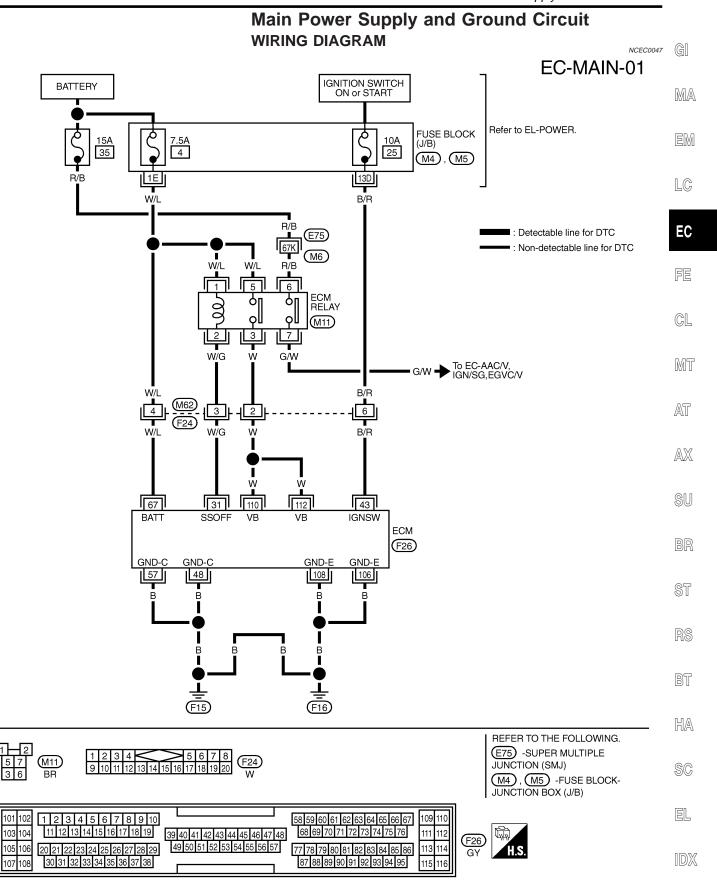
COMMON I/I REPORT SITUATIONS

NCEC0045S01

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.
VI	The TROUBLE DIAGNOSIS for PXXXX does not indicate the problem area.

Diagnostic Procedure

NCEC0046


1	INSPECTION START		
Erase	Erase (1st trip) DTCs. Refer to "HOW TO ERASE EMISSION-RELATED INFORMATION", EC-79.		
	•	GO TO 2.	

2	CHECK GROUND TERMINALS				
Check	Check ground terminals for corroding or loose connection. Refer to GI-30, "GROUND INSPECTION".				
	OK or NG				
OK	OK ▶ GO TO 3.				
NG	•	Repair or replace.			

3	SEARCH FOR ELECTRICAL INCIDENT		
Refer	Refer to GI-25, "Incident Simulation Tests".		
OK or NG			
OK	•	GO TO 4.	

4	CHECK CONNECTOR TERMINALS		
Refer	Refer to GI-22, "How to Check Enlarged Contact Spring of Terminal".		
	OK or NG		
OK	OK INSPECTION END		
NG	NG Repair or replace connector.		

Main Power Supply and Ground Circuit

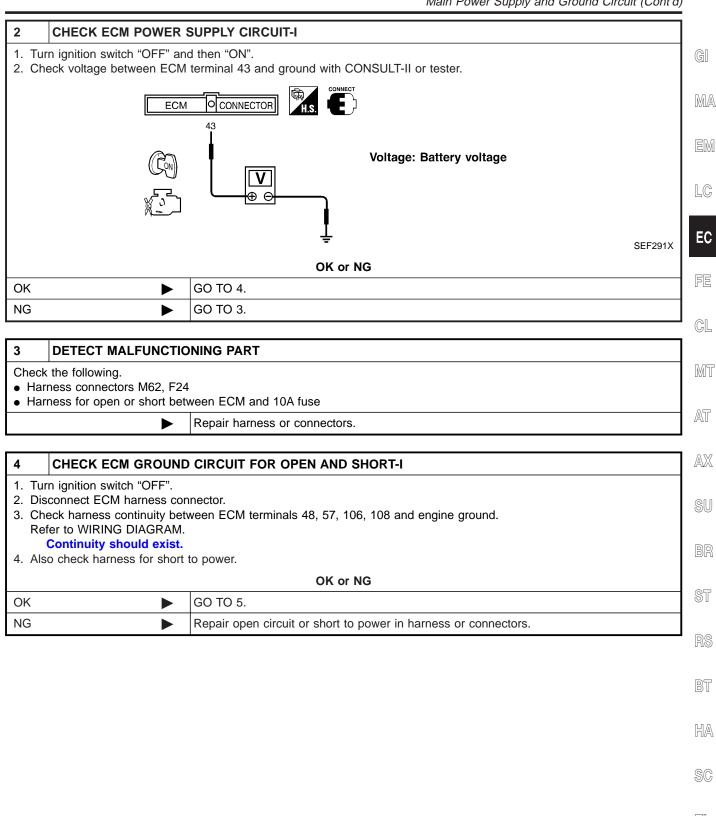
Main Power Supply and Ground Circuit (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

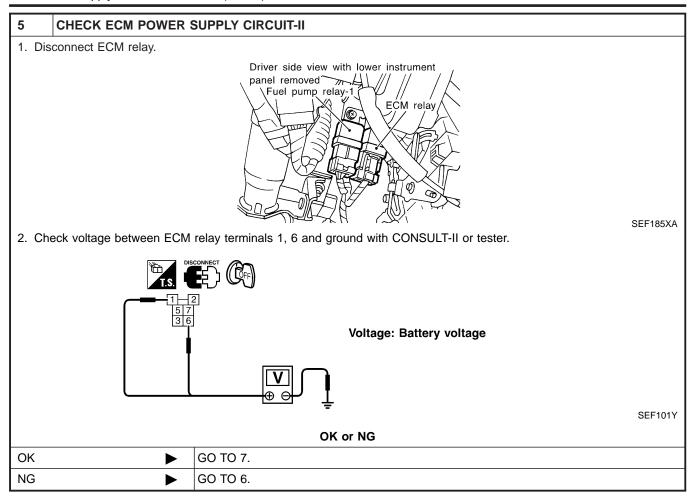
NCEC0048

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

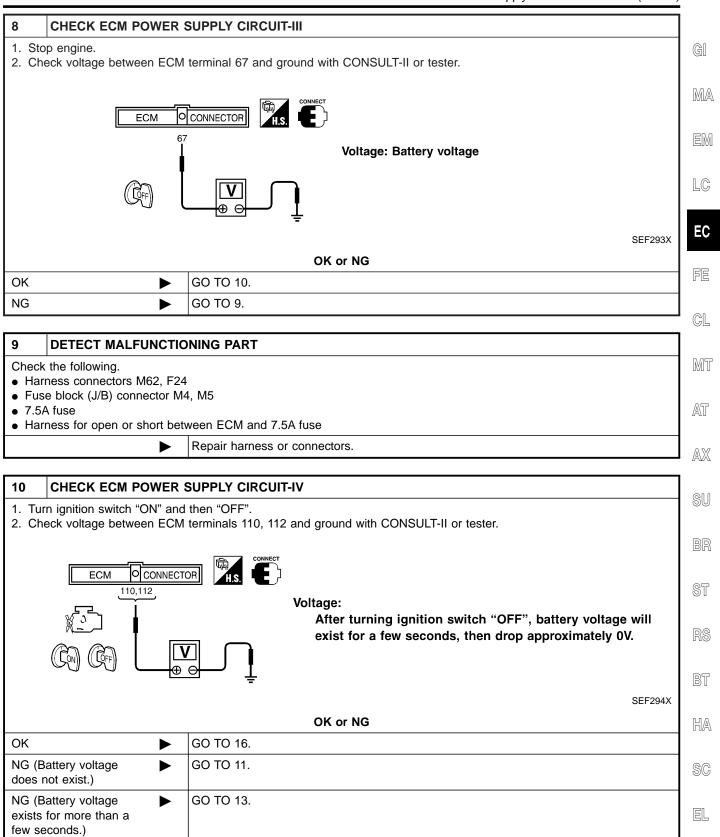
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24		COM valou (Calf abut aff)	[Engine is running] [Ignition switch "OFF"] • For 5 seconds after turning ignition switch "OFF"	0 - 1V
31	W/G	ECM relay (Self shut-off)	[Ignition switch "OFF"] ■ 5 seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "OFF"]	OV
43	B/R	Ignition switch	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
48	В	ECM ground	[Engine is running] • Idle speed	Engine ground
57	В	ECM ground	[Engine is running] • Idle speed	Engine ground
67	W/L	Power supply for ECM (Back-up)	[Ignition switch "OFF"]	BATTERY VOLTAGE (11 - 14V)
106	В	ECM ground	[Engine is running] • Idle speed	Engine ground
108	В	ECM ground	[Engine is running] ■ Idle speed	Engine ground
110 112	W W	Power supply for ECM	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)


DIAGNOSTIC PROCEDURE

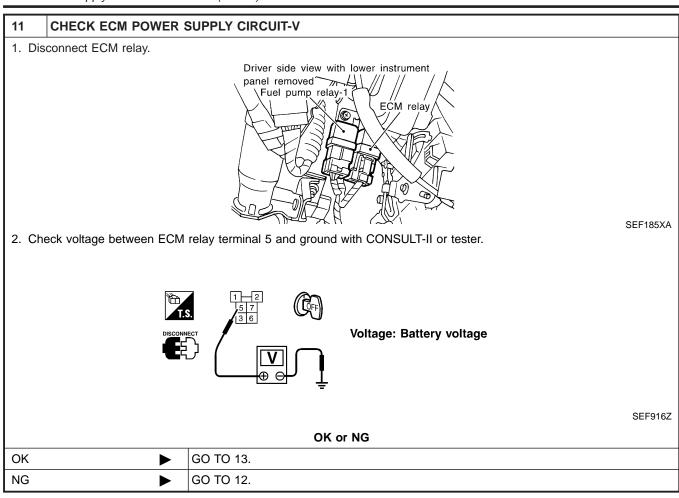
		NCEC0049		
1	INSPECTION START			
Start of	engine. jine running?	Yes or No		
	TES OF NO			
Yes	Yes ▶ GO TO 8.			
No	•	O TO 2.		

Main Power Supply and Ground Circuit (Cont'd)

Main Power Supply and Ground Circuit (Cont'd)



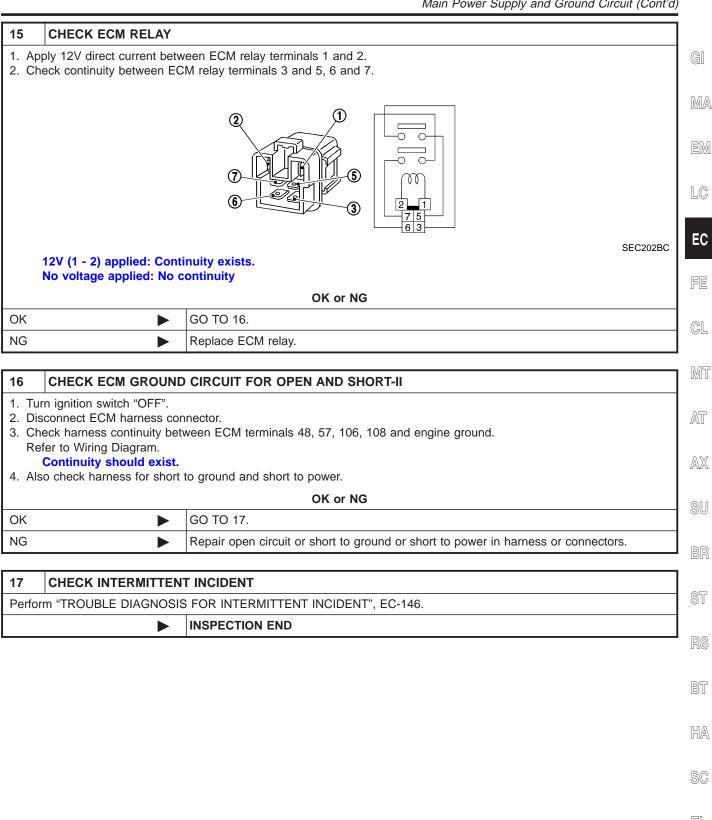
6	DETECT MALFUNCTIONING PART		
Check	Check the following.		
• 15A	15A fuse and 7.5A fuse		
	Harness connectors E75, M6		
• Har	Harness for open or short between ECM relay and battery		
	•	Repair open circuit or short to ground or short to power in harness or connectors.	


7	7 CHECK OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT		
	 Check harness continuity between ECM terminal 31 and ECM relay terminal 2. Continuity should exist. Also check harness for short to ground and short to power. 		
	OK or NG		
OK	OK Go to "IGNITION SIGNAL", EC-566.		
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.	

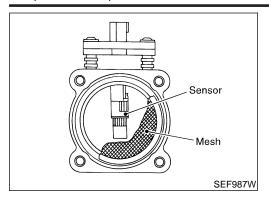
Main Power Supply and Ground Circuit (Cont'd)

[DX

Main Power Supply and Ground Circuit (Cont'd)



12	DETECT MALFUNCTIONING PART		
Check	Check harness for open or short between ECM relay and 7.5A fuse.		
	Repair open circuit or short to ground or short to power in harness or connectors.		


13	CHECK HARNESS CO	NTINUITY BETWEEN ECM RELAY AND ECM FOR OPEN AND SHORT	
Check harness continuity between ECM terminals 110, 112 and ECM relay terminal 3. Refer to WIRING DIAGRAM. Continuity should exist. Also check harness for short to ground and short to power.			
	OK or NG		
OK	OK GO TO 15.		
NG	•	GO TO 14.	

14	DETECT MALFUNCTIONING PART		
• Har	Check the following. • Harness connectors M62, F24 • Harness for open or short between ECM and ECM relay		
	Repair open circuit or short to ground or short to power in harness or connectors.		

Main Power Supply and Ground Circuit (Cont'd)

Component Description

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot wire that is supplied with electric current from the ECM. The temperature of the hot wire is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0051

MONITOR ITEM	CONDIT	CONDITION	
MAS A/F SE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.3 - 1.7V
WAG AT GE-BT	Shift lever: "N"No-load	2,500 rpm	1.8 - 2.4V
CAL /I D VALUE	Engine: After warming up Air conditioner switch: "OFF"	Idle	20.0 - 35.5%
CAL/LD VALUE • Shift lever: "N" • No-load		2,500 rpm	17.0 - 30.0%
MASS AIRELOW	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" No-load 	Idle	2.5 - 5.0 g·m/s
MASS AIRFLOW		2,500 rpm	7.1 - 12.5 g·m/s

ECM Terminals and Reference Value

NCEC0052

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
61		[Engine is running] • Warm-up condition • Idle speed	1.3 - 1.7V	
61 L Mass air flow s	Mass air now sensor	[Engine is running]Warm-up conditionEngine speed is 2,500 rpm	1.8 - 2.4V	
73	G	Mass air flow sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

MT

BT

HA

SC

EL

NCFC0054S01

				On Board Diagnosis Log	ic
		On Boar	d Diagr	nosis Logic	053
DTC No.		Malfunction is detected when		Check Items (Possible Cause)	_ (
P0100	A)	An excessively high voltage from the set to ECM when engine is not running.	nsor is sent	(The sensor circuit is open or shorted.)	— D
	C)	A high voltage from the sensor is sent to under light load driving condition.	ECM	Mass air flow sensor	
	В)	An excessively low voltage from the sen to ECM* when engine is running.	sor is sent	Harness or connectors (The sensor circuit is open or shorted.)	
	D)	A low voltage from the sensor is sent to heavy load driving condition.	ECM under	Intake air leaks Mass air flow sensor	_[
	E) A voltage from the sensor exists constantly approx. 1.0V when engine is running.				
When this ma	alfunctio	n is detected, the ECM enters fail-safe mod	e and the M	IL lights up.	
		Detected items	Е	ngine operating condition in fail-safe mode	
Mass air flow	sensor (circuit	Engine spe	ed will not rise more than 2,400 rpm due to the fuel	_ (

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B and E". If there is no problem on "PROCE-**DURE FOR MALFUNCTION B and E", perform "PROCEDURE** FOR MALFUNCTION C". If there is no problem on "PROCE-DURE FOR MALFUNCTION C", perform "PROCEDURE FOR MALFUNCTION D".

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

MONITOR NO DTC **ENG SPEED** XXX rpm

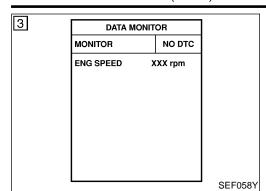
DATA MONITOR

3

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

1) Turn ignition switch "ON".


- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", DX EC-159.

(a) With GST

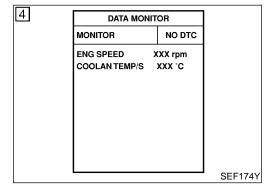
Follow the procedure "With CONSULT-II" above.

SEF058Y

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION B AND E

(P) With CONSULT-II


- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait 5 seconds at most.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-159.

With GST

Follow the procedure "With CONSULT-II" above.

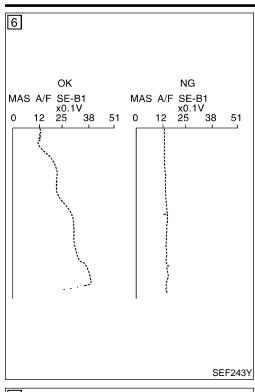
NOTE:

If 1st trip DTC is confirmed after more than 5 seconds, there may be malfunction C.

PROCEDURE FOR MALFUNCTION C

NCEC0054S03

NCEC0054S02


NOTE:

If engine will not start or stops soon wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.

- (II) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and warm it up to normal operating temperature.
- 4) Run engine for at least 10 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-159.
- **With GST**

Follow the procedure "With CONSULT-II" above.

DTC Confirmation Procedure (Cont'd)

7	DATA MOI	NIT	OR	
	MONITOR		NO DTC	
	ENG SPEED VHCL SPEED SE THRTL POS SEN	X	XX rpm XX km/h XXX V	
				SEF175Y

CALC LOAD COOLANT TEMP SHORT FT #1 LONG FT #1 SHORT FT #2 LONG FT #2 ENGINE SPD VEHICLE SPD IGN ADVANCE INTAKE AIR MAF THROTTLE POS	2% 0% 4% 0% 2637RPM 0MPH 41.0° 41°C	
<u> </u>		SEF534F

PROCEDURE FOR MALFUNCTION D

(P) With CONSULT-II

1) Turn ignition switch "ON".

 Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to "Diagnostic Procedure", EC-159.

Select "DATA MONITOR" mode with CONSULT-II.

- 4) Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5) Increases engine speed to about 4,000 rpm.
- 6) Monitor the linear voltage rise in response to engine speed increases.

If NG, go to "Diagnostic Procedure", EC-159. If OK, go to following step.

 Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL POS SEN	More than 3V
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

8) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-159.

Overall Function Check

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

PROCEDURE FOR MALFUNCTION D

With GST

- 1) Turn ignition switch "ON".
- 2) Start engine and warm it up to normal operating temperature.
- 3) Select "MODE 1" with GST.
- 4) Check the mass air flow sensor signal with "MODE 1".
- 5) Check for linear mass air flow rise in response to increases to about 4,000 rpm in engine speed.
- 6) If NG, go to "Diagnostic Procedure", EC-159.

MA

GI

NCEC0054S04

LC

EC

CC.

FE

CL

MT

AX

SU

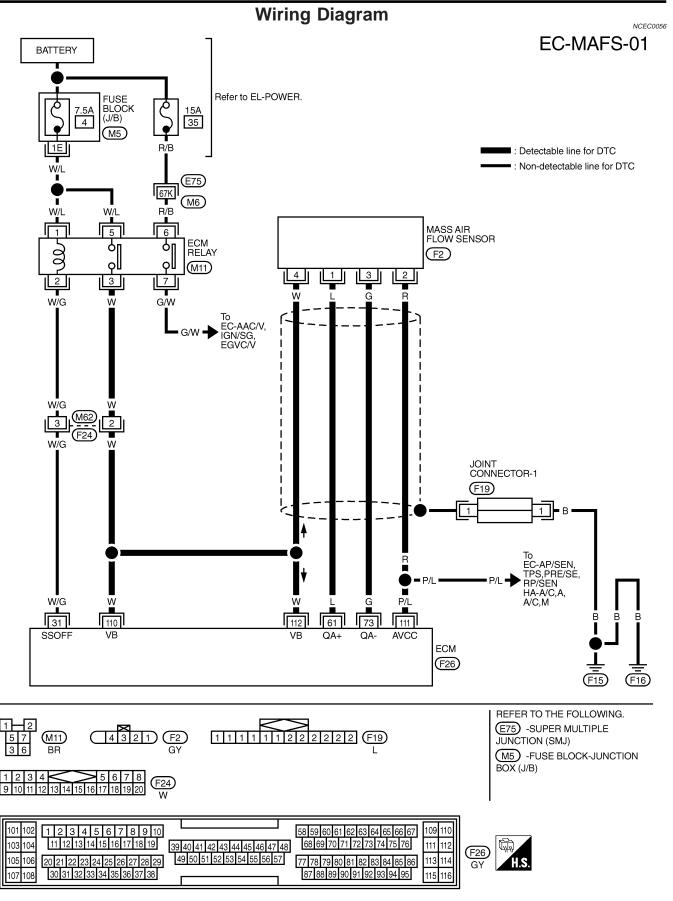
BR

B@

ST

110

NCEC0055S01


BT

HA

SC

EL

G[

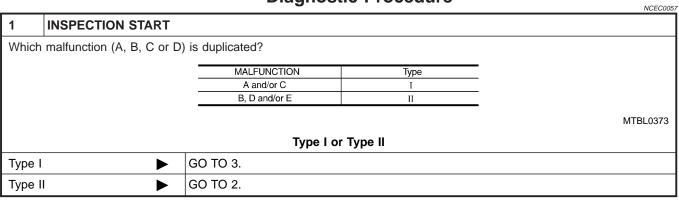
MA

LC

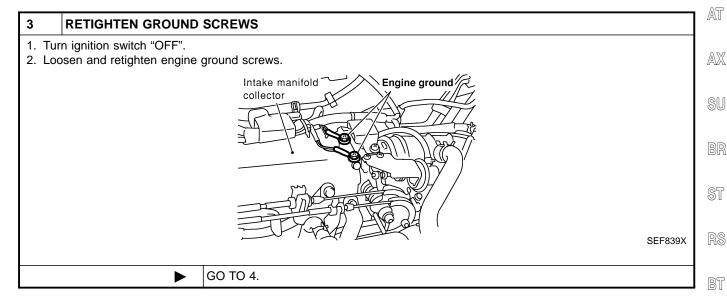
EC

FE

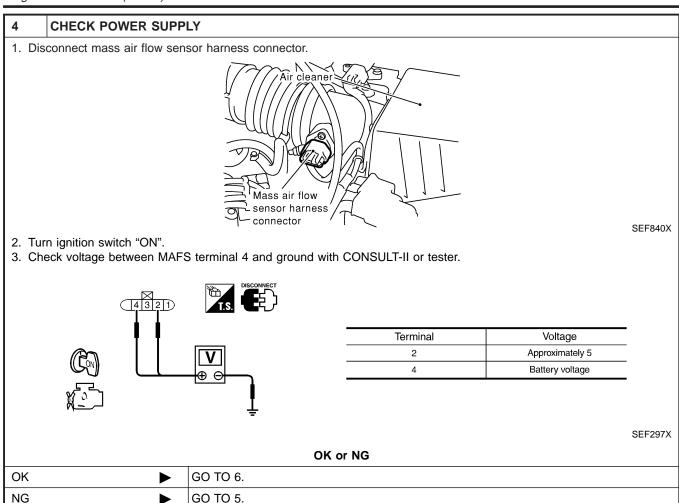
GL


MT

HA


SC

EL



2	CHECK INTAKE SYST	EM
AiVa	ck the followings for connectir duct acuum hoses take air passage between a	air duct to collector
		OK or NG
OK	•	GO TO 3.
UK		

EC-159

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART

Check the following.

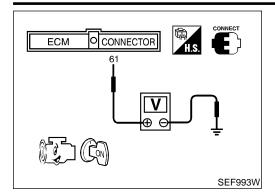
- Harness connectors M62, F24
- Harness for open or short between ECM relay and mass air flow sensor
- Harness for open or short between mass air flow sensor and ECM
 - Repair harness or connectors.

6 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAFS terminal 3 and ECM terminal 73. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.


OK	or	NG
----	----	----

OK		GO TO 7.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

 $\mathbb{D}\mathbb{X}$

7 CHECK I	NPUT SIGNAL CIRCUIT	
1. Check harnes	s continuity between MAFS terminal 1 and ECM terminal 61.	
Refer to Wirin		
	should exist. Irness for short to ground and short to power.	
	OK or NG	
)K	▶ GO TO 8.	
IG	Repair open circuit or short to ground or short to power in harness or connectors.	
CHECK I	MASS AIR FLOW SENSOR	
Refer to "Compo	nent Inspection", EC-162.	
	OK or NG	
OK	▶ GO TO 9.	
IG	Replace mass air flow sensor.	
CHECK S	SHIELD CIRCUIT	
. Turn ignition s	switch "OFF".	
. Disconnect joi	int connector-1.	
 Disconnect joins Check the foll 	int connector-1. owing.	
 Disconnect join Check the foll Continuity between Joint connector 	int connector-1. owing. veen joint connector-1 terminal 1 and ground r-1	
 Disconnect join Check the foll Continuity between Joint connector (Refer to EL-3) 	int connector-1. owing. veen joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".)	
 Disconnect joi Check the foll Continuity betw Joint connector (Refer to EL-3) Continuity Also check has 	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. urness for short to power.	
 Disconnect joi Check the foll Continuity bets Joint connector (Refer to EL-3) Continuity Also check has 	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. urness for short to power. ct joint connector-1.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connector (Refer to EL-3 Continuity 4. Also check ha 5. Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. urness for short to power. ct joint connector-1. OK or NG	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connecto (Refer to EL-3 Continuity 4. Also check ha 5. Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. urness for short to power. ct joint connector-1. OK or NG GO TO 10.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connecto (Refer to EL-3 Continuity 4. Also check ha 5. Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. urness for short to power. ct joint connector-1. OK or NG	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connector (Refer to EL-3 Continuity 4. Also check ha 5. Then reconne OK NG	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG Repair open circuit or short to power in harness or connectors.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connector (Refer to EL-3 Continuity 4. Also check ha 5. Then reconne OK NG CHECK I	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. irness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connector (Refer to EL-3 Continuity 4. Also check ha 5. Then reconne DK NG CHECK I	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connecto (Refer to EL-3 Continuity 6. Also check ha 6. Then reconne DK NG CHECK I	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. irness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connecto 6. (Refer to EL-3 6. Continuity 6. Also check ha 6. Then reconne 6. CHECK I	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
2. Disconnect join in Check the following in Check the following in Continuity betwoen the Joint connector (Refer to EL-3 Continuity in Also check has in Then reconnect in Check In Ch	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
Disconnect joi Check the foll Continuity betw Joint connecto (Refer to EL-3 Continuity Also check ha Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
Disconnect joi Check the foll Continuity betw Joint connecto (Refer to EL-3 Continuity Also check ha Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
Disconnect joi Check the foll Continuity betw Joint connecto (Refer to EL-3 Continuity Also check ha Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
Disconnect joi Check the foll Continuity betw Joint connecto (Refer to EL-3 Continuity Also check ha Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
Disconnect joi Check the foll Continuity betw Joint connecto (Refer to EL-3 Continuity Also check ha Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
Disconnect joi Check the foll Continuity betw Joint connecto (Refer to EL-3 Continuity Also check ha Then reconne	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
2. Disconnect joi 3. Check the foll 4. Continuity betw 5. Joint connecto (Refer to EL-3 Continuity 6. Also check ha 6. Then reconne DK NG CHECK I	int connector-1. owing. ween joint connector-1 terminal 1 and ground r-1 14, "HARNESS LAYOUT".) should exist. uness for short to power. ct joint connector-1. OK or NG GO TO 10. Repair open circuit or short to power in harness or connectors. NTERMITTENT INCIDENT BLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	

Component Inspection

Component Inspection MASS AIR FLOW SENSOR

=NCEC0058

NCEC0058S01

- 1. Turn ignition switch "ON".
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 61 (Mass air flow sensor signal) and ground.

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.3 - 1.7
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.8 - 2.4
Idle to about 4,000 rpm*	1.3 - 1.7 to Approx. 4.0

^{*:} Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.

- If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.

DTC P0105 ABSOLUTE PRESSURE SENSOR

Component Description

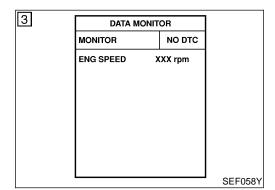
Component Description

The absolute pressure sensor is built into the ECM. The sensor detects ambient barometric pressure and sends the voltage signal to the micro computer. As the pressure increases, the voltage rises.

MA

EM

LC


On Board Diagnosis Logic

	·	NC NC	CEC0060
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
	An excessively low or high voltage from the sensor is sent to the micro computer.	• ECM	

EC FE

GL

MT

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

SU

NCEC0061

- (P) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 6 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-164.

BR

With GST

Follow the procedure "With CONSULT-II" above.

ST

BT

HA

SC

EL

DTC P0105 ABSOLUTE PRESSURE SENSOR

Diagnostic Procedure

NCEC0670

1 INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-163.

5. Is the 1st trip DTC P0105 displayed again?

With GST

- 1. Turn ignition switch "ON".
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-163.

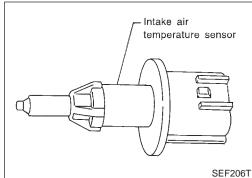
5. Is the 1st trip DTC P0105 displayed again?

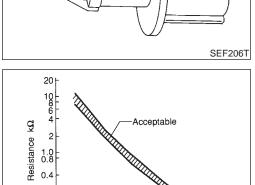
Yes or No

No	INSPECTION END	
Yes	GO TO 2.	

2 REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-81.
- 3. Perform "Idle Air Volume Learning", EC-65,


Is the result CMPLT or INCMP?


CMPLT or INCMP

CMPLT -	INSPECTION END
INCMP	Follow the construction of "Idle Air Volume Learning".

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

Component Description

20 40 60 80 100 (68) (104) (140) (176) (212)

emperature °C (°F)

0.2

Component Description

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

MA

LC

EC

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.1 - 2.9
80 (176)	1.23	0.27 - 0.38

^{*:} These data are reference values and are measured between ECM terminal 64 (Intake air temperature sensor) and ground.

GL

CAUTION:

SEF012P

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

AT

AX

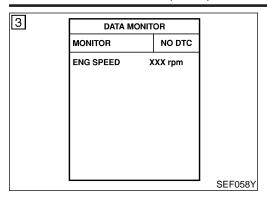
On Board Diagnosis Logic

DTC No.	Malfunction is detected when		Check Items (Possible Cause)	
P0110	A)	An excessively low or high voltage from the sensor is sent to ECM.	(The sensor circuit is open or shorted.)	
	В)	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Intake air temperature sensor	0

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR **MALFUNCTION B".**

HA


SC

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

DTC P0110 INTAKE AIR TEMPERATURE SENSOR

DTC Confirmation Procedure (Cont'd)

DATA MONITOR MONITOR NO DTC COOLAN TEMP/S XXX C VHCL SPEED SE XXX km/h

PROCEDURE FOR MALFUNCTION A

NCEC0068S01

- (P) With CONSULT-II
- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-168.
- **With GST**

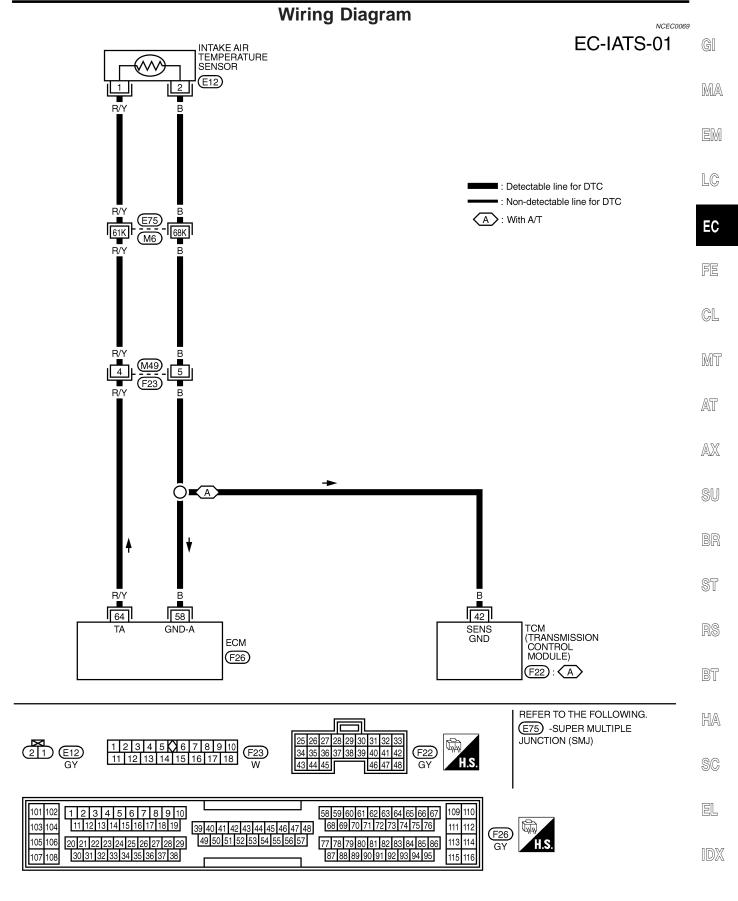
Follow the procedure "With CONSULT-II" above.

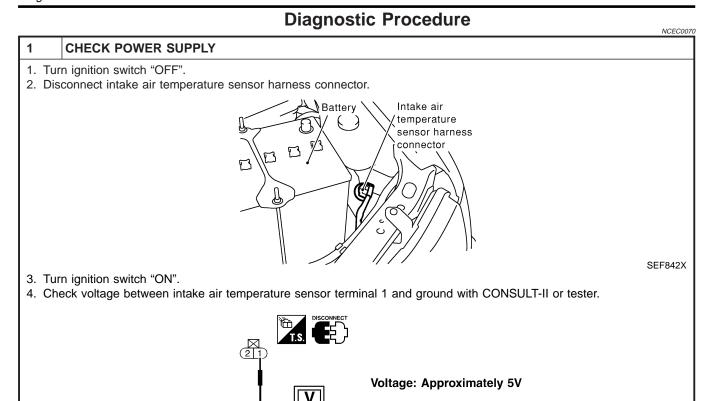
PROCEDURE FOR MALFUNCTION B

NCEC0068S02

CAUTION:

Always drive vehicle at a safe speed.

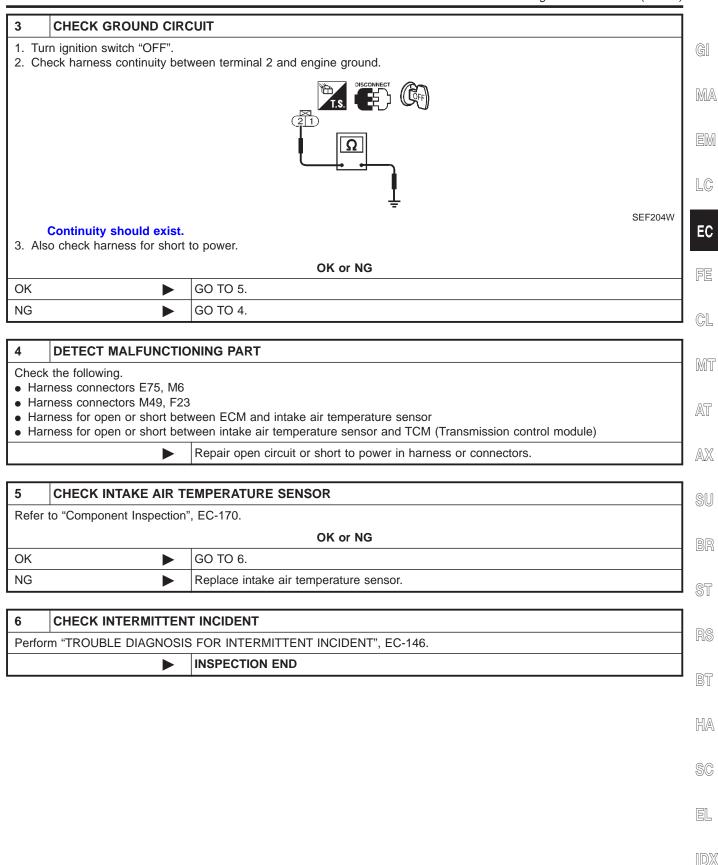

TESTING CONDITION:


This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- (P) With CONSULT-II
- Wait until engine coolant temperature is less than 90°C (194°F).
- a) Turn ignition switch "ON".
- b) Select "DATA MONITOR" mode with CONSULT-II.
- c) Check the engine coolant temperature.
- d) If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2) Turn ignition switch "ON".
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine.
- 5) Hold vehicle speed more than 70 km/h (43 MPH) for 105 consecutive seconds.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-168.

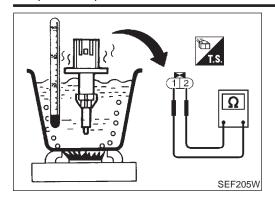
With GST

Follow the procedure "With CONSULT-II" above.


OK or NG

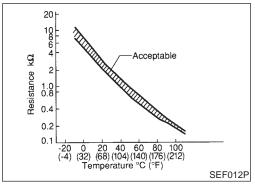
SEF301X

2 DETECT MALFUNCTIONING PART Check the following. Harness connectors E75, M6 Harness connectors M49, F23 Harness for open or short between ECM and intake air temperature sensor Repair harness or connectors.


DTC P0110 INTAKE AIR TEMPERATURE SENSOR

Diagnostic Procedure (Cont'd)

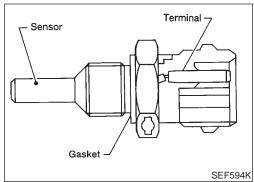
DTC P0110 INTAKE AIR TEMPERATURE SENSOR


Component Inspection

Component Inspection INTAKE AIR TEMPERATURE SENSOR

Check resistance as shown in the figure.

=NCEC0071 NCEC0071S01



<Reference data>

Intake air temperature °C (°F)	Resistance kΩ	
20 (68)	2.1 - 2.9	
80 (176)	0.27 - 0.38	

If NG, replace intake air temperature sensor.

Component Description

0 20 40 60 80 100 (32) (68) (104) (140) (176) (212)

Γempérature °C (°F)

0.2

Component Description

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

e I GI

MA

LG

EC

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

MT

GL

CAUTION:

SEF012P

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

AX

BR

CONSULT-II Reference Value in Data Monitor Mode

		NCEC0073
MONITOR ITEM	CONDITION	SPECIFICATION
COOLAN TEMP/S • Engine: After warming up		More than 70°C (158°F)

On Board Diagnosis Logic

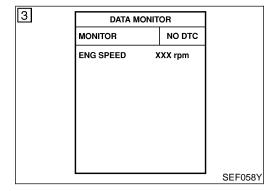
NCEC0074

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0115	An excessively high or low voltage from the sensor is sent to ECM.*	 Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor

SC SC

HA

EL


 $\mathbb{D}\mathbb{X}$

^{*:} These data are reference values and are measured between ECM terminal 70 (Engine coolant temperature sensor) and ground.

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

On Board Diagnosis Logic (Cont'd)

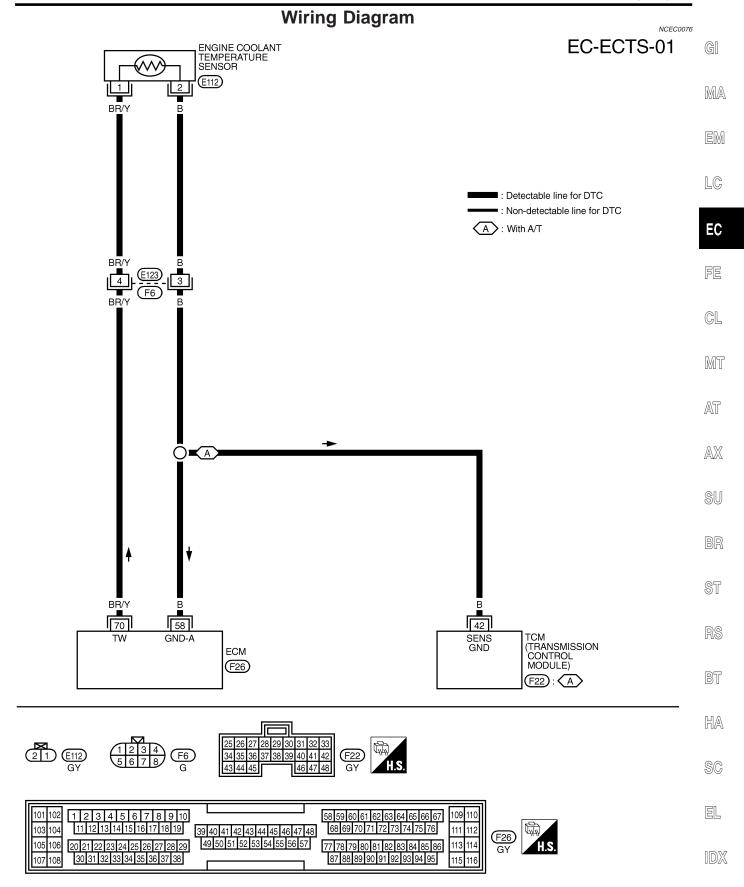
Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.		
	Condition	Engine coolant temperature decided (CONSULT-II display)	
Engine coolant tempera-	Just as ignition switch is turned ON or Start	40°C (104°F)	
ture sensor circuit	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant temperature sensor is activated, the cooling fan operates while the engine is running.		

DTC Confirmation Procedure

NCEC0075

NOTE:

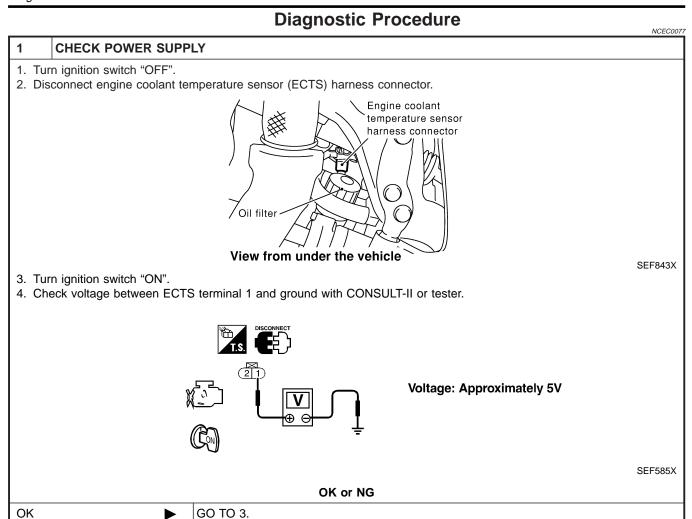
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-174.

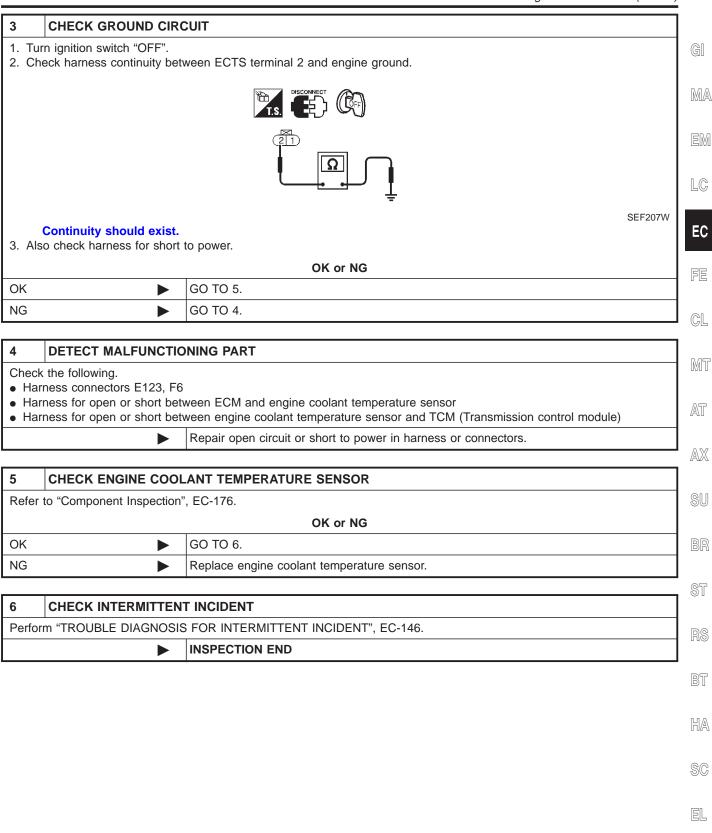
With GST

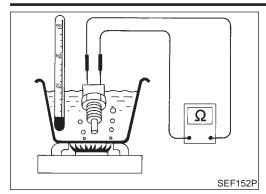
Follow the procedure "With CONSULT-II" above.

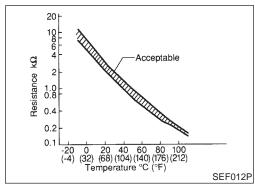

Wiring Diagram

TEC700

Diagnostic Procedure


NG


2	DETECT MALFUNCTIONING PART		
Hari	Check the following. • Harness connectors E123, F6 • Harness for open or short between ECM and engine coolant temperature sensor		
	► Repair harness or connectors.		


GO TO 2.

Diagnostic Procedure (Cont'd)

Component Inspection

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

NCEC0078 NCEC0078S01

Check resistance as shown in the figure. <Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

NCEC0079

MA

LC

EC

GL

MT

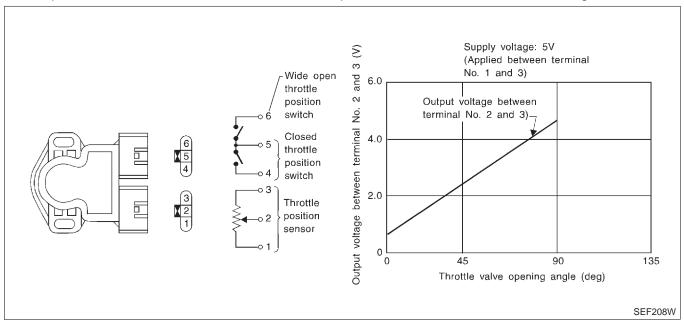
AT

AX

HA

SC

EL


Component Description

NOTE:

If DTC P0120 is displayed with DTC P0510, first perform trouble diagnosis for DTC P0510, EC-432.

The throttle position sensor responds to the accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up, idle the engine	Throttle valve: fully closed	0.15 - 0.85V
THRTL POS SEN	Engine: After warming upIgnition switch: ON (Engine stopped)	Throttle valve: fully opened	3.5 - 4.7V
	Engine: After warming up, idle the engine	Throttle valve: fully closed	0.0%
ABSOL TH-P/S	Engine: After warming upIgnition switch: ON (Engine stopped)	Throttle valve: fully opened	Approx. 88.0%

EC-177

DTC P0120 THROTTLE POSITION SENSOR

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

=NCEC0081

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
92	Y	Throttle position sensor	[Ignition switch "ON"] • Warm-up condition • Accelerator pedal fully released	0.15 - 0.85V
			[Ignition switch "ON"] • Accelerator pedal fully depressed	3.5 - 4.7V
111	P/L	Sensors' power supply	[Ignition switch "ON"]	Approximately 5V
58	В	Sensors' ground	[Engine is running] • Idle speed	Approximately 0V

On Board Diagnosis Logic

NCEC0082

DTC No.	Malfunction is detected when		Check Items (Possible Cause)	
P0120	A)	An excessively low or high voltage from the sensor is sent to ECM.*	Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor	
	В)	A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor Fuel injector Camshaft position sensor Mass air flow sensor 	
	C)	A low voltage from the sensor is sent to ECM under heavy load driving condition.	Harness or connectors (The throttle position sensor circuit is open or shorted.) Intake air leaks Throttle position sensor	

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Throttle position will be determined based on the injected fuel amount and the engine speed. Therefore, acceleration will be poor.		
Throttle position sensor circuit	Condition	Driving condition	
Circuit	When engine is idling	Normal	
	When accelerating	Poor acceleration	

DTC Confirmation Procedure

Perform "PROCEDURE FOR MALFUNCTION A" first. If the 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B". If there is no problem on "PROCEDURE FOR MALFUNCTION B", perform "PROCEDURE FOR MALFUNCTION C".

G[

MA

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

LC

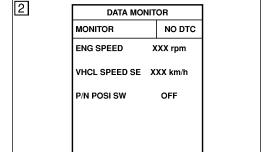
EC

NCEC0083S01

PROCEDURE FOR MALFUNCTION A

CAUTION:

Always drive vehicle at a safe speed.


TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

O.

FE

MT

(P) With CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and maintain the following conditions for at least 5 consecutive seconds.

VHCL SPEED SE	More than 4 km/h (2 MPH)
	Suitable position except "P" or "N" position

3) If 1st trip DTC is detected, go to "Diagnostic Procedure",

AX

SU

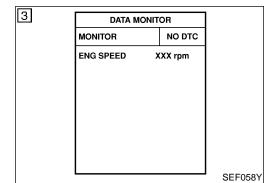
With GST

EC-184.

SEF065Y

Follow the procedure "With CONSULT-II" above.

n@


. . .

HA

SC

NCEC0083S02

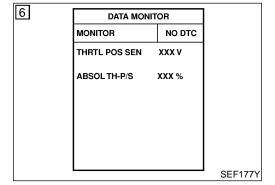
BT

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

1) Turn ignition switch "ON".

- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 10 seconds. If idle speed is over 1,000 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,000 rpm.


EL

	Selector lever	Suitable position except "P" or "N" position
A/T model	Brake pedal	Depressed
	Vehicle speed	0 km/h (0 MPH)
M/T model	Selector lever	Suitable position except "N" (Higher gear position such as 3rd or 4th is better to keep low engine rpm.)
	Accelerator pedal	Released
	Vehicle speed	As slow as possible

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-184.

With GST

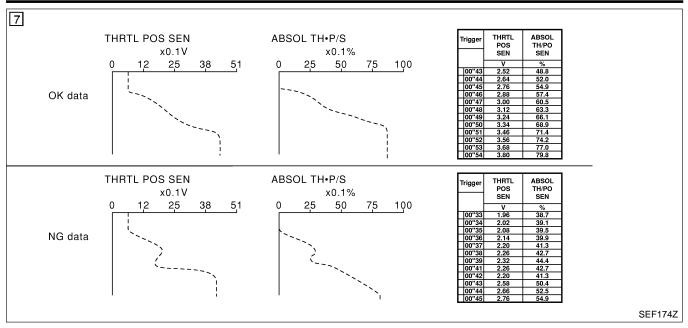
Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

NCEC0083S03

CAUTION:

Always drive vehicle at a safe speed.


(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- Select "MANU TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 5) Select "THRTL POS SEN" and "ABSOL TH-P/S" in "DATA MONITOR" mode with CONSULT-II.
- 6) Press RECORD on CONSULT-II SCREEN at the same time accelerator pedal is depressed.
- 7) Print out the recorded graph and check the following:
- The voltage rise is linear in response to accelerator pedal depression.
- The voltage when accelerator pedal is fully depressed is approximately 4V.

If NG, go to "Diagnostic Procedure", EC-184.

If OK, go to following step.

DTC Confirmation Procedure (Cont'd)

9	DATA MONI	TOR	
	MONITOR	NO DTC	
	ENG SPEED	XXX rpm	
	MAS A/F SE-B1	xxx v	
	COOLAN TEMP/S	xxx °C	
			SEF178Y

- Select "AUTO TRIG" in "DATA MONITOR" mode with CON-SULT-II.
- 9) Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
MAS A/F SE-B1	More than 3V
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

10) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-184.

With GST

1) Maintain the following conditions for at least 10 consecutive seconds.

Gear position	Suitable position
Engine speed	More than 2,000 rpm
Engine coolant temperature	More than 70°C (158°F)
Voltage between ECM terminal 61 (Mass air flow sensor signal) and ground	More than 3V

GI

MA

EM

LG

EC

FE

GL

MT

AX

AT

SU

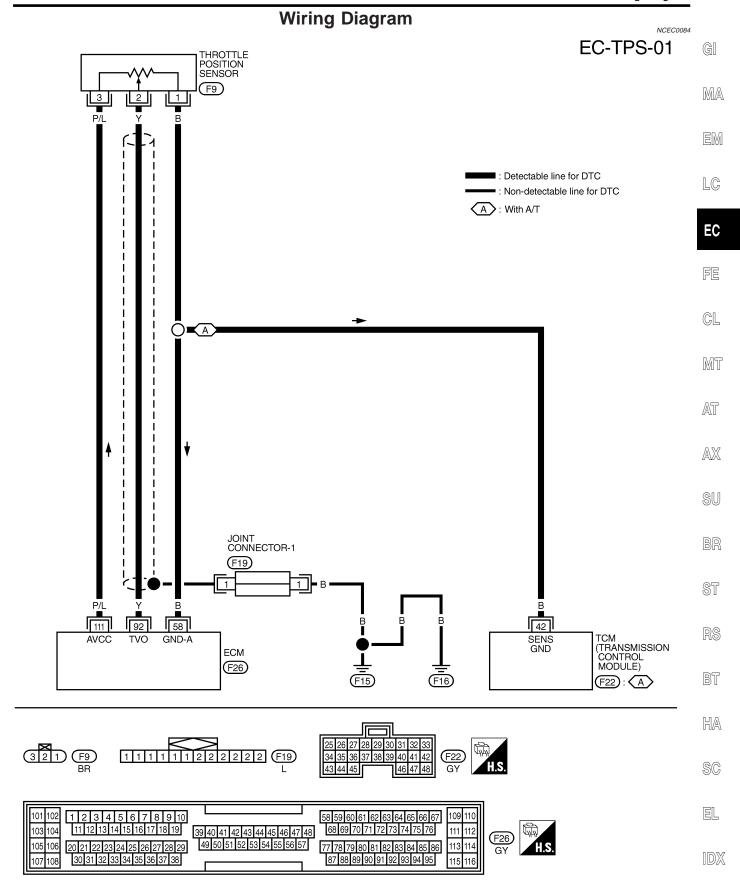
BR

ST

RS

BT

HA

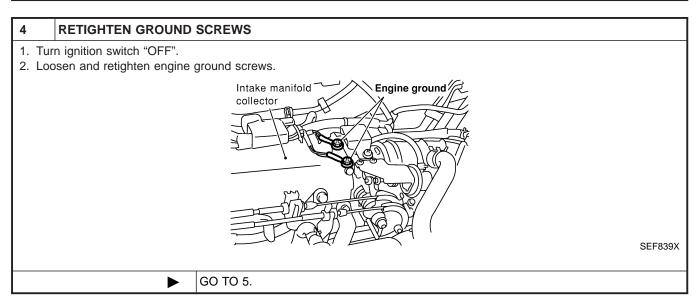

SC

EL

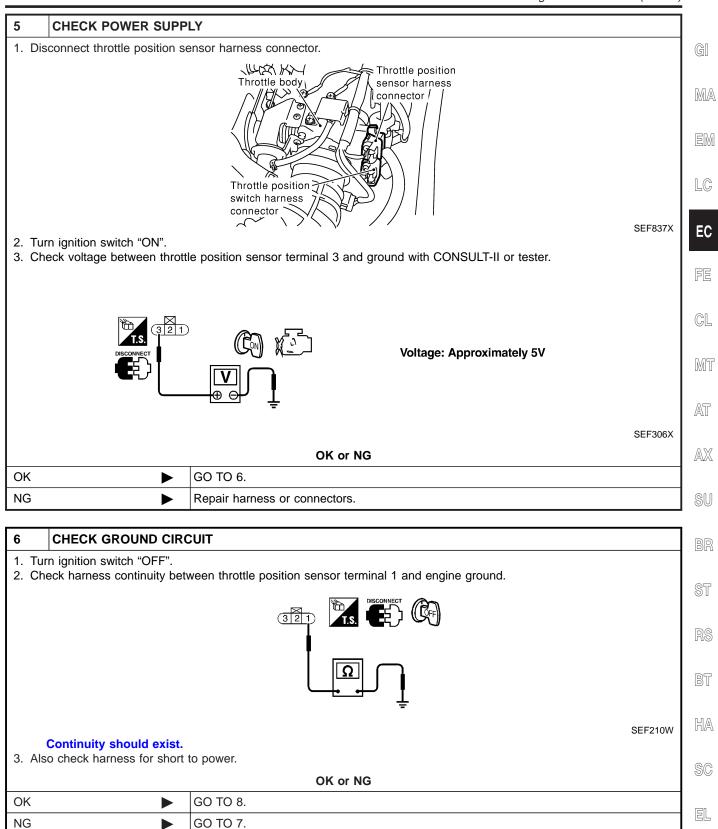
 $\mathbb{D}\mathbb{X}$

DTC Confirmation Procedure (Cont'd)

2) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-184.



Diagnostic Procedure


NCEC0085 **INSPECTION START** Which malfunction A, B or C is duplicated? MALFUNCTION Туре Α В В С С MTBL0066 Type A, B or C GO TO 4. Type A or B GO TO 2. Type C

2	ADJUST THROTTLE POSITION SENSOR				
Perfor	Perform "Basic Inspection", EC-107.				
OK or NG					
ОК	>	GO TO 3.			

3 CHECK INTAKE SYSTEM Check the followings for connection. • Air duct • Vacuum hoses • Intake air passage between air duct to intake manifold collector OK or NG OK Reconnect the parts.

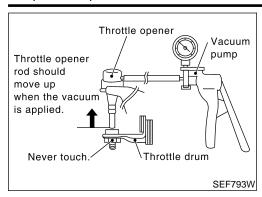
Diagnostic Procedure (Cont'd)

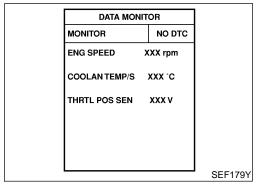
 $\mathbb{D}\mathbb{X}$

Diagnostic Procedure (Cont'd)

7 DETECT MALFUNCTIONING PART Check the following. • Harness for open or short between ECM and throttle position sensor • Harness for open or short between throttle position sensor and TCM (Transmission control module) Repair open circuit or short to power in harness or connectors.

8	CHECK INPUT SIGNAL	CIRCUIT	
2. Che Ref	Disconnect ECM harness connector. Check harness continuity between ECM terminal 92 and throttle position sensor terminal 2. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to ground and short to power.		
	OK or NG		
OK	•	GO TO 9.	
NG	>	Repair open circuit or short to ground or short to power in harness or connectors.	


9	CHECK THROTTLE POSITION SENSOR		
Refer	Refer to "Component Inspection", EC-188.		
	OK or NG		
OK (T	ype B in step1)	•	GO TO 10.
OK (T step1)	ype A or C in	>	GO TO 13.
NG			Replace throttle position sensor. To adjust it, perform "Basic Inspection", EC-107.


10	0 CHECK MASS AIR FLOW SENSOR		
Refer to "Component Inspection", EC-162.			
OK or NG			
OK	>	GO TO 11.	
NG	NG Replace mass air flow sensor.		

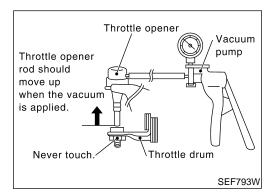
11	11 CHECK CAMSHAFT POSITION SENSOR		
Refer to "Component Inspection", EC-333.			
OK or NG			
OK	>	GO TO 12.	
NG Replace camshaft position sensor.			

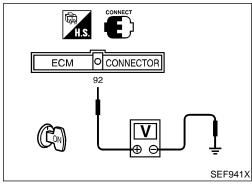
Diagnostic Procedure (Cont'd)

Component Inspection THROTTLE POSITION SENSOR

NCEC0086 NCEC0086S01

(P) With CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine (ignition switch OFF).
- 3) Remove the vacuum hose connected to the throttle opener.
- 4) Connect suitable vacuum hose to the vacuum pump and the opener.
- 5) Apply vacuum [more than -40.0 kPa (-300 mmHg, 11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- Turn ignition switch ON.
- 7) Select "DATA MONITOR" mode with CONSULT-II.
- Check voltage of "THRTL POS SEN" under the following conditions.


NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V	
Completely closed	0.15 - 0.85 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.7 (b)	

- If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-179.
- 9) If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine (ignition switch OFF).
- 3) Remove the vacuum hose connected to the throttle opener.
- Connect suitable vacuum hose to the vacuum pump and the opener.
- 5) Apply vacuum [more than -40.0 kPa (-300 mmHg, 11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.
- Turn ignition switch ON.
- 7) Check voltage between ECM terminal 92 (Throttle position sensor signal) and ground under the following conditions.

NOTE:

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage V
Completely closed	0.15 - 0.85 (a)
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7 (b)

Component Inspection (Cont'd)

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-179.

8) If it is impossible to adjust closed throttle position switch in Basic Inspection, replace throttle position sensor.

MA

LG

EC

FE

GL

MT

AT

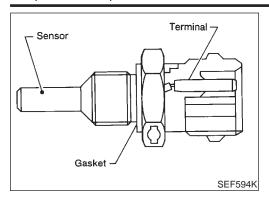
 $\mathbb{A}\mathbb{X}$

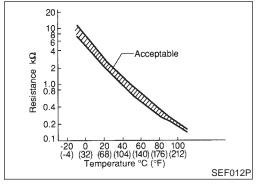
SU

BR

ST

RS


BT


HA

SC

EL

Component Description

Component Description

NOTE:

If DTC P0125 is displayed with P0115, first perform trouble diagnosis for DTC P0115, EC-171.

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

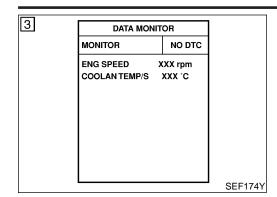
Engine coolant temperature °C (°F)	Voltage* V	Resistance $k\Omega$
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal 70 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

CONSULT-II Reference Value in Data Monitor Mode


		NCEC0088
MONITOR ITEM	CONDITION	SPECIFICATION
COOLAN TEMP/S	Engine: After warming up	More than 70°C (158°F)

On Board Diagnosis Logic

NCEC0089

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0125	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

DTC Confirmation Procedure

=NCEC0090

CAUTION:

Be careful not to overheat engine.

GI

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

MA

(E) With CONSULT-II

- Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.

LC

EM

3) Check that "COOLAN TEMP/S" is above 15°C (59°F). If it is above 15°C (59°F), the test result will be OK. If it is below 15°C (59°F), go to following step.

10

4) Start engine and run it for 65 minutes at idle speed. If "COOLAN TEMP/S" increases to more than 15°C (59°F) within 65 minutes, stop engine because the test result will be OK.

EC

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-193.

GL

FE

With GST

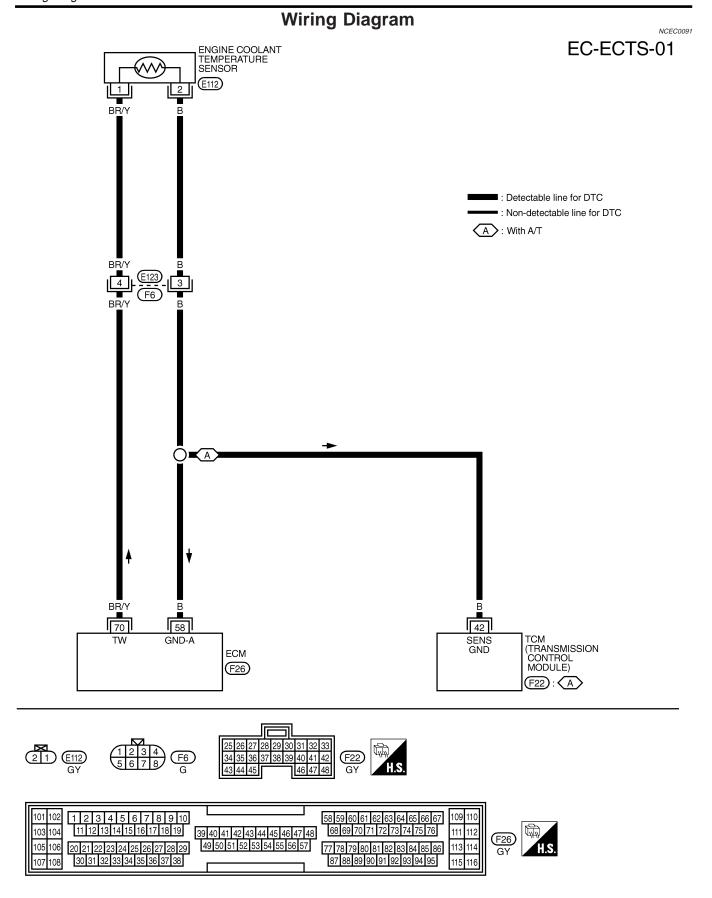
Follow the procedure "With CONSULT-II" above.

MT

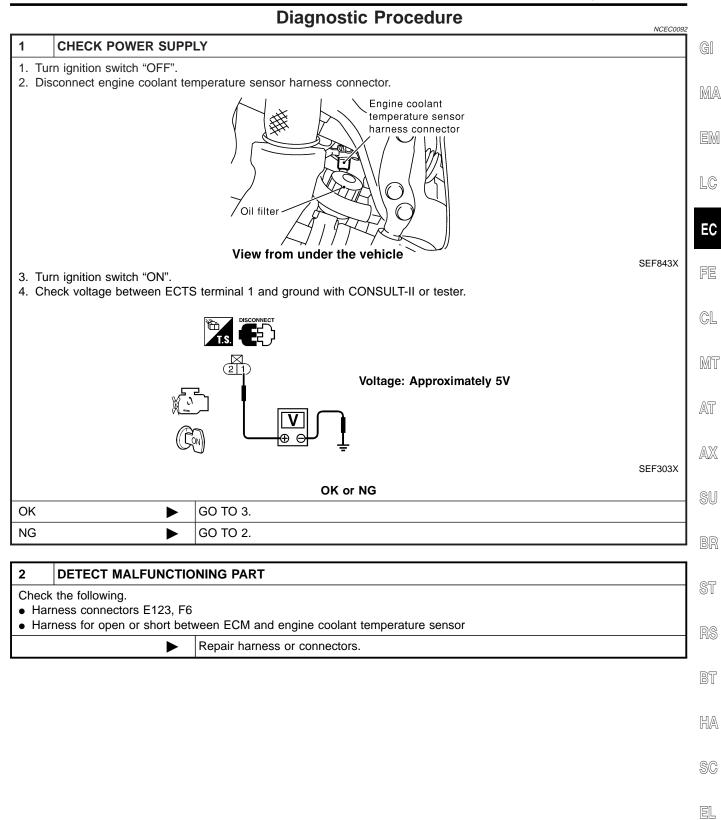
AT

011

AX


ST

RS


BT

HA

SC

Diagnostic Procedure

Diagnostic Procedure (Cont'd)

3 CHECK GROUND CIRCUIT 1. Turn ignition switch "OFF". 2. Check harness continuity between ECTS terminal 2 and engine ground. Continuity should exist. 3. Also check harness for short to power.

NG GO TO 4.

4 DETECT MALFUNCTIONING PART

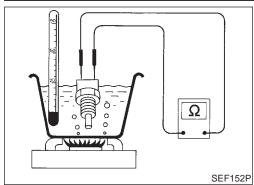
Check the following.

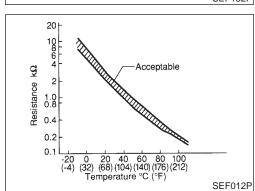
OK

- Harness connectors E123, F6
- Harness for open or short between ECM and engine coolant temperature sensor

GO TO 5.

• Harness for open or short between engine coolant temperature sensor and TCM (Transmission control module)


Repair open circuit or short to power in harness or connectors.


5	CHECK ENGINE COOLANT TEMPERATURE SENSOR		
Refer	Refer to "Component Inspection", EC-195.		
OK or NG			
OK	>	GO TO 6.	
NG	>	Replace engine coolant temperature sensor.	

6	CHECK THERMOSTAT	OPERATION	
	When the engine is cooled [lower than 82°C (180°F)], condition grasp lower radiator hose and confirm the engine coolant does not flow.		
OK or NG			
OK	•	GO TO 7.	
NG	•	Repair or replace thermostat. Refer to LC-12, "Thermostat".	

7	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	► INSPECTION END		

Component Inspection

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

NCEC0093 NCEC0093S01

Check resistance as shown in the figure. <Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

LC

MA

EC

FE

CL

MT

AT

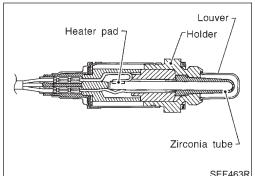
 $\mathbb{A}\mathbb{X}$

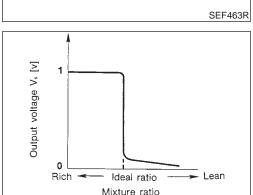
SU

BR

ST

RS


BT


HA

SC

EL

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

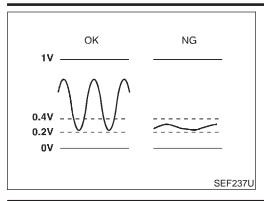
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NCEC0096

Specification data are reference values and are measured between each terminal and ground.


SEF288D

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			· · · · · · · · · · · · · · · · · · ·	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 1 0.5 0 1 s SEF059V

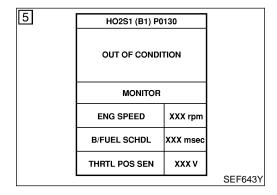
On Board Diagnosis Logic

On Board Diagnosis Logic

Under the condition in which the heated oxygen sensor 1 (front) signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

MA

LC


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0130	The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)

EC

GL

MT

NCEC0098

HO2S1 (B1) P0130

TESTING

MONITOR

XXX rpm

XXX mse

XXX V

SEF644Y

SEF645Y

ENG SPEED

B/FUEL SCHDL

THRTL POS SEN

5

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

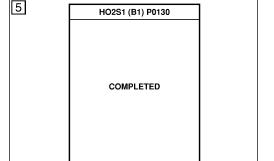
Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "HO2S1 (B1) P0130" of "HO2S1" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Touch "START".
- 4) Let it idle for at least 3.5 minutes.

Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 4.

When the following conditions are met, "TESTING" will be dis-

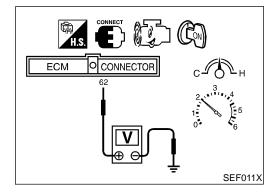

님	1/2
ШΙ	14

played on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

@@	
2011	
99	

EL

ENG SPEED	1,500 - 3,200 rpm
Vehicle speed	More than 65 km/h (40 MPH)
B/FUEL SCHDL	2.4 - 11.0 msec
Selector lever	Suitable position


If "TESTING" is not displayed after 5 minutes, retry from step 2.

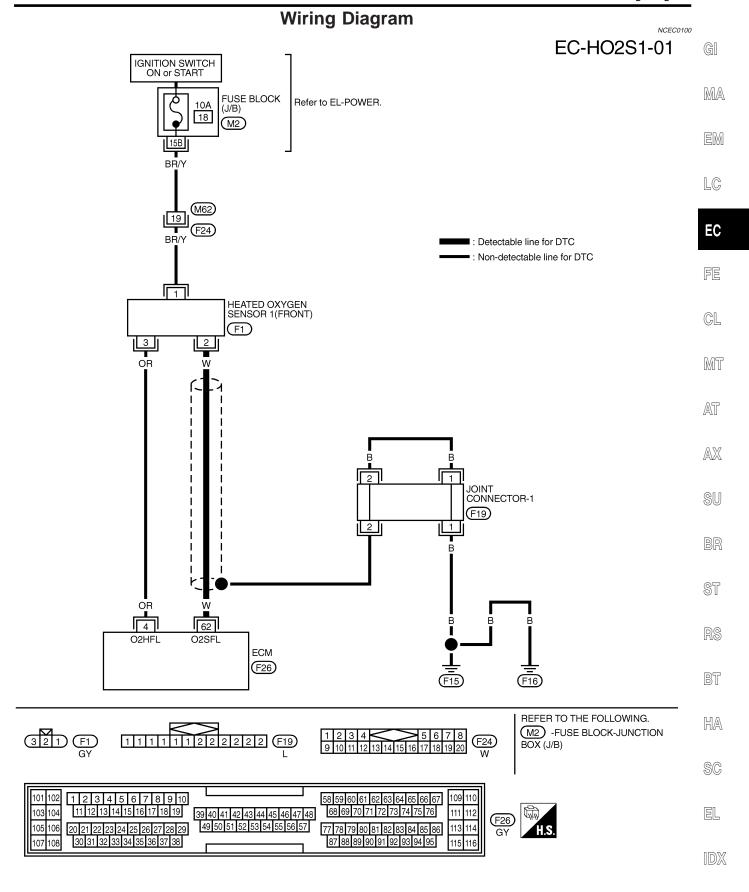
Make sure that "OK" is displayed after touching "SELF-DIAG

DTC Confirmation Procedure (Cont'd)

RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-200.

During this test, P1148 may be displayed on CONSULT-II screen.

Overall Function Check

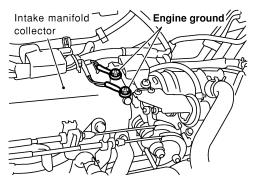

NCEC0099

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

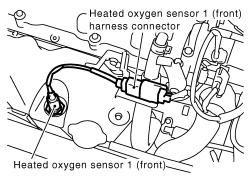
With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 0.4V.
- 4) If NG, go to "Diagnostic Procedure", EC-200.

Wiring Diagram


TEC778

Diagnostic Procedure


NCEC0101

1 INSPECTION START

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.

3. Disconnect heated oxygen sensor 1 (front) harness connector.

SEF917Z

SEF839X

▶ GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 62 and HO2S1 terminal 2. Refer to Wiring Diagram.

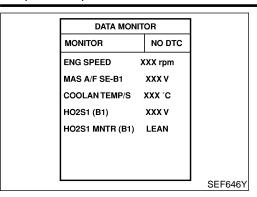
Continuity should exist.

 Check harness continuity between ECM terminal 62 (or HO2S1 terminal 2) and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to power.

OK or NG


OK •	GO TO 3.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

3	CHECK HEATED OXYGEN SENSOR 1 (FRONT)				
Refer to "Component Inspection", EC-202.					
	OK or NG				
OK	OK GO TO 4.				
NG	NG Replace heated oxygen sensor 1 (front).				

Diagnostic Procedure (Cont'd)

		Diagnostic Proce	dure (Cont u)
4 CHECK	SHIELD CIRC		$\overline{}$
Turn ignition s Disconnect jo Check the following	int connector-1 lowing.		GI
Continuity betoJoint connecto	ween joint conr or-1	nector-1 terminal 2 and ground	MA
(Refer to EL-3	14, "HARNESS should exist.		
4. Also check has 5. Then reconne	arness for short	t to power.	
5. Then reconne	ect joint connec	OK or NG	LG
ОК	•	GO TO 5.	
NG	•	Repair open circuit or short to power in harness or connectors.	EC
5 CHECK	INTERMITTEN	NT INCIDENT	
		IS FOR INTERMITTENT INCIDENT", EC-146.	FE
	>	INSPECTION END	<u> </u>
			MT
			AT
			ZA.II
			AX
			SU
			BR
			ST
			© @
			RS
			BT
			HA
			SC
			EL
			IDX

Component Inspection

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

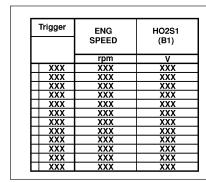
R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

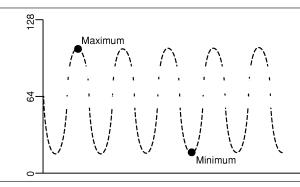
SFF217YA

Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)

=NCEC0102

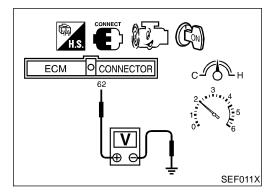
NCEC0102S01


- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.
 5 times (cycles) are counted as shown below:


R = "HO2Ś1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

№ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

Component Inspection (Cont'd)

- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant

GI

MA

LG

EC

FE

CL

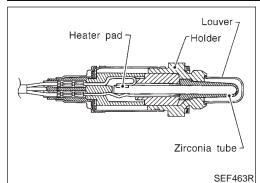
MT

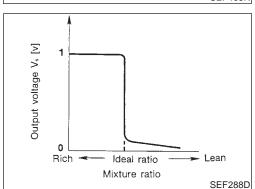
AT

AX

SU

ST


BT


HA

SC

EL

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NCEC0105

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			<u> </u>	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	w	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 1 0.5 0 1 s SEF059V

On Board Diagnosis Logic

OK NG 0.1V 0V SEF300U

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

MA

LC

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0131	The maximum and minimum voltages from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks

EC

GL

MT

NCEC0107

6	HO2S1 (B1) P0131			
	OUT OF CONDI			
	MONITOR			
	ENG SPEED			
	B/FUEL SCHDL XXX msec			
	THRTL POS SEN			
		•	SEF649Y	

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

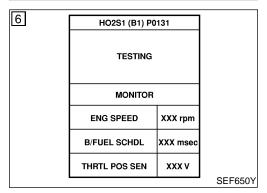
AX

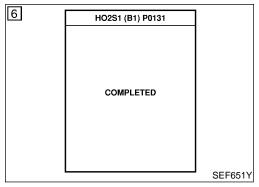
TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1) P0131" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

- Touch "START".
- Start engine and let it idle for at least 3.5 minutes.

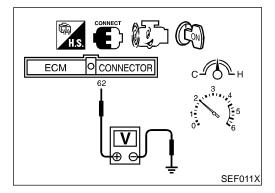

NOTE:


Never raise engine speed above 3,200 rpm after this step. If $\mathbb{H}\mathbb{A}$ the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

EL

ENG SPEED	1,900 - 3,100 rpm (A/T) 2,000 - 3,100 rpm (M/T)
Vehicle speed	Less than 120 km/h (75 MPH)
	4.0 - 12.0 msec (A/T) 3.5 - 12.0 msec (M/T)
Selector lever	Suitable position



DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-206.

Overall Function Check

NCEC010

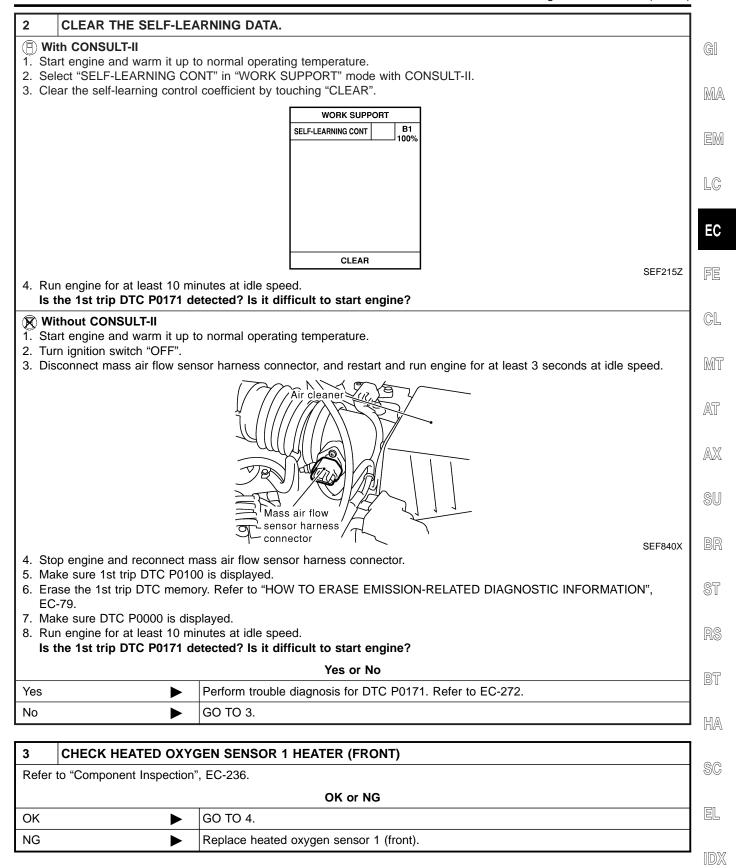
Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is over 0.1V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-206.

Diagnostic Procedure

NCEC0109


- RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)
- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten heated oxygen sensor 1 (front).

Tightening torque:

40 - 60 N-m (4.1 - 6.1 kg-m, 30 - 44 ft-lb)

GO TO 2.

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

4	4 CHECK HEATED OXYGEN SENSOR 1 (FRONT)				
Refer to "Component Inspection", EC-208.					
	OK or NG				
OK	OK ▶ GO TO 5.				
NG	>	Replace heated oxygen sensor 1 (front).			

5 **CHECK SHIELD CIRCUIT**

- 1. Turn ignition switch "OFF".
- 2. Disconnect joint connector-1.
- 3. For circuit, refer to "DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)", EC-199.
- 4. Check the following.
- Continuity between joint connector-1 terminal 2 and ground

GO TO 6.

INSPECTION END

Joint connector-1

OK

NG

(Refer to EL-314, "HARNESS LAYOUT".)

Continuity should exist.

- 5. Also check harness for short to power.
- 6. Then reconnect joint connector-1.

6	CHECK INTERMITTENT INCIDENT			
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.				
Kelei	Refer to "Wiring Diagram", EC-199, for circuit.			

OK or NG

Repair open circuit or short to power in harness or connectors.

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

Component Inspection **HEATED OXYGEN SENSOR 1 (FRONT)**

NCEC0110 NCEC0110S02

(P) With CONSULT-II

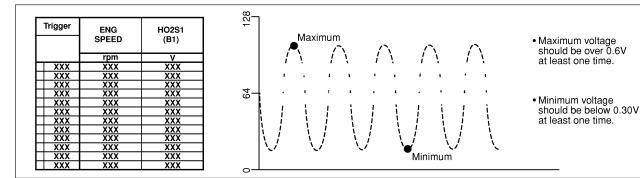
- 1) Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:

R = "HO2S1 MNTR (B1)", "RICH"

L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.


CAUTION:

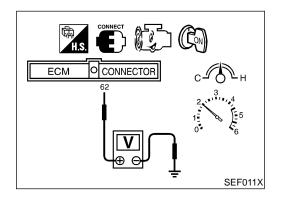
Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

EC-208

Component Inspection (Cont'd)

 Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

LC


EC

SEF648Y

GL

MT

⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature. \mathbb{AT}
- Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.

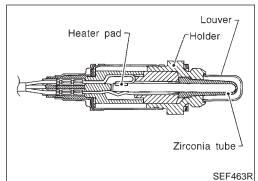
1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

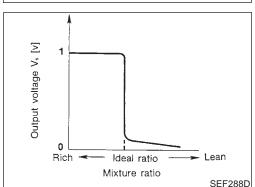
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

BT


HA


SC

EL

DW

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)	2S1 (B1)		0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NCEC0113

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			<u> </u>	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	W	Heated oxygen sensor 1 (front)	[Engine is running] ● After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 1 0.5 0 1 s SEF059V

On Board Diagnosis Logic

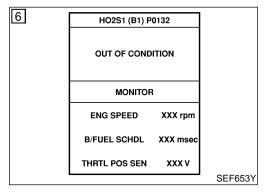
OK NG 1۷ 0.80 SEF299U

On Board Diagnosis Logic

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be

MA

LC


DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0132	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors

EC

GL

MT

NCEC0115

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

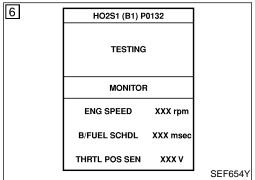
NOTE:

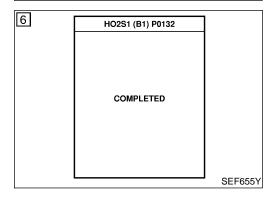
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- Turn ignition switch "ON" and select "HO2S1 (B1) P0132" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Start engine and let it idle for at least 3.5 minutes.

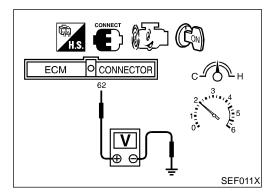

NOTE:


Never raise engine speed above 3,200 rpm after this step. If $\mathbb{H}A$ the engine speed limit is exceeded, return to step 5.

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

96	

ENG SPEED	1,900 - 3,100 rpm (A/T) 2,000 - 3,100 rpm (M/T)
Vehicle speed	Less than 120 km/h (75 MPH)
B/FUEL SCHDL	4.0 - 12.0 msec (A/T) 3.5 - 12.0 msec (M/T)
Selector lever	Suitable position



DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-213.

Overall Function Check

NCEC011

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.
- 4) If NG, go to "Diagnostic Procedure", EC-213.

Diagnostic Procedure

Diagnostic Procedure =NCEC0117 **RETIGHTEN HEATED OXYGEN SENSOR 1 (FRONT)** GI 1. Turn ignition switch "OFF". 2. Loosen and retighten heated oxygen sensor 1 (front). MA **Tightening torque:** 40 - 60 N·m (4.1 - 6.1 kg-m, 30 - 44 ft-lb) GO TO 2. **CLEAR THE SELF-LEARNING DATA** (P) With CONSULT-II 1. Start engine and warm it up to normal operating temperature. EC 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 3. Clear the self-learning control coefficient by touching "CLEAR". FE WORK SUPPORT B1 SELF-LEARNING CONT MT AT CLEAR SEF215Z 4. Run engine for at least 10 minutes at idle speed. AX Is the 1st trip DTC P0172 detected? Is it difficult to start engine? (R) Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. 2. Turn ignition switch "OFF". 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed. Mass air flow BT sensor harness connector SFF840X 4. Stop engine and reconnect mass air flow sensor harness connector. HA 5. Make sure 1st trip DTC P0100 is displayed. 6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79. SC 7. Make sure DTC P0000 is displayed. 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine? EL Yes or No Yes Perform trouble diagnosis for DTC P0172. Refer to EC-279.

GO TO 3.

No

Diagnostic Procedure (Cont'd)

3	CHECK HARNESS CO	NNECTOR
2. Dis 3. Ch	rn ignition switch "OFF". sconnect heated oxygen so leck harness connector for ater should not exit.	ensor 1 (front) harness connector. water.
		OK or NG
OK	•	GO TO 4.
NG	•	Repair or replace harness connector.

4	CHECK HEATED OXYG	GEN SENSOR 1 HEATER (FRONT)
Refer	to "Component Inspection"	, EC-236.
		OK or NG
ОК	>	GO TO 5.
NG	>	Replace heated oxygen sensor 1 (front).

5	CHECK HEATED OXYG	GEN SENSOR 1 (FRONT)
Refer	to "Component Inspection"	, EC-215.
		OK or NG
OK	>	GO TO 6.
NG	•	Replace heated oxygen sensor 1 (front).

6 CHECK SHIELD CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect joint connector-1.
- 3. For circuit, refer to "DTC P0130 HEATED OXYGEN SENSOR 1 (FRONT) (CIRCUIT)", EC-199.
- 4. Check the following.
- Continuity between joint connector-1 terminal 2 and ground
- Joint connector-1

(Refer to EL-314, "HARNESS LAYOUT".)

Continuity should exist.

- 5. Also check harness for short to power.
- 6. Then reconnect joint connector-1.

OK •	GO TO 7.
NG ►	Repair open circuit or short to power in harness or connectors.

7 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146. Refer to "Wiring Diagram", EC-199, for circuit. INSPECTION END

Component Inspection

MONITOR NO DTC ENG SPEED XXX rpm MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V HO2S1 MNTR (B1) LEAN	DATA MONI	ITOR	
MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V	MONITOR	NO DTC	
COOLAN TEMP/S XXX °C HO2S1 (B1) XXX V	ENG SPEED	XXX rpm	
HO2S1 (B1) XXX V	MAS A/F SE-B1	xxx v	
` ′	COOLAN TEMP/S	XXX °C	
HO2S1 MNTR (B1) LEAN	HO2S1 (B1)	XXX V	
	HO2S1 MNTR (B1)	LEAN	
			0556

SEF646Y

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SFF217YA

Component Inspection **HEATED OXYGEN SENSOR 1 (FRONT)**

NCEC0118

NCEC0118S02

MA

EM

LC

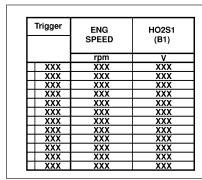
EC

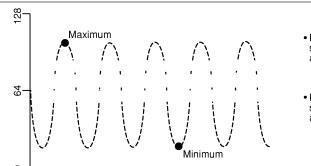
FE

GL

MT

AX


SU


ST

- (P) With CONSULT-II
- Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds. 5 times (cycles) are counted as shown below: R = "HO2\$1 MNTR (B1)", "RICH" L = "HO2\$1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

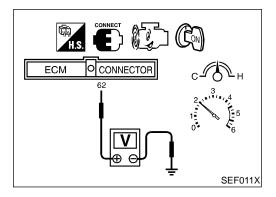
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool AT J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- Maximum voltage should be over 0.6V at least one time.
- Minimum voltage should be below 0.30V at least one time.

SEF648Y

HA

SC


EL

BT

№ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times when 10 seconds.

1 time: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V


Component Inspection (Cont'd)

- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

MA

LC

EC

FE

GL

MT

AT

AX

SU

ST

BT

HA

SC

CONSULT-II Reference Value in Data Monitor Mode

NCEC0120

Specification data are reference values.

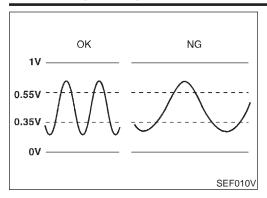
Ideal ratio Mixture ratio 1 ean

SEF288D

MONITOR ITEM	CONDITION		SPECIFICATION	L
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.	(

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

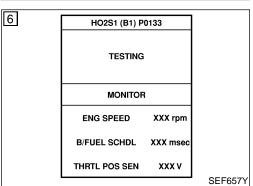

CAUTION:

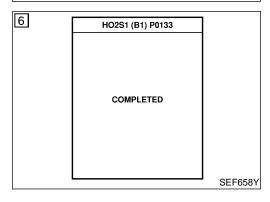
Output voltage V_s [v]

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

age to t	ige to the Lom 3 transistor. Ose a ground other than Lom terminals, such as the ground.				
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
62	W	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 1 0.5 0 1 s SEF059V	

On Board Diagnosis Logic




On Board Diagnosis Logic

To judge the malfunction of heated oxygen sensor 1 (front), this diagnosis measures response time of heated oxygen sensor 1 (front) signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 (front) temperature index. Judgment is based on whether the compensated time [heated oxygen sensor 1 (front) cycling time index] is inordinately long or not.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0133	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

6 HO2S1 (B1) P0133 OUT OF CONDITION MONITOR ENG SPEED XXX rpm B/FUEL SCHDL XXX msec THRTL POS SEN XXX V

DTC Confirmation Procedure

NCEC0123

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Stop engine and wait at least 10 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0133" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3.5 minutes.

NOTE:

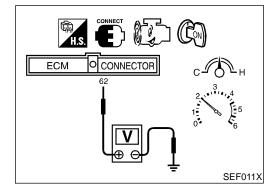
Never raise engine speed above 3,200 rpm after this step. If the engine speed limit is exceeded, return to step 5.

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds.)

ENG SPEED	1,900 - 3,100 rpm (A/T) 2,000 - 3,100 rpm (M/T)
Vehicle speed	More than 80 km/h (50 MPH)
B/FUEL SCHDL	4.0 - 12.0 msec (A/T) 3.5 - 12.0 msec (M/T)
Selector lever	Suitable position

DTC Confirmation Procedure (Cont'd)

If "TESTING" is not displayed after 5 minutes, retry from step 2.


7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-221.

 $\mathbb{M}\mathbb{A}$

EM

LC

Overall Function Check

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

EC

FE

GL

MT

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

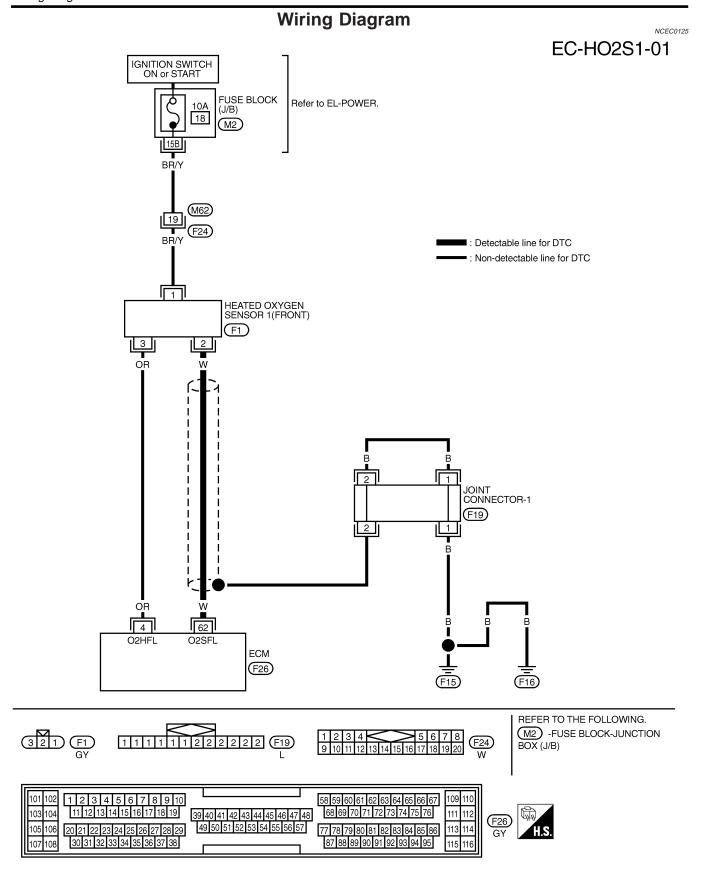
AX

4) If NG, go to "Diagnostic Procedure", EC-221.

SU

BR

ST


KS

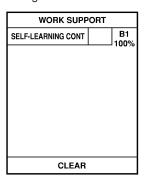
BT

HA

SC

EL

Diagnostic Procedure

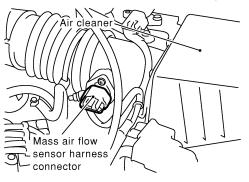


Repair or replace.

Diagnostic Procedure (Cont'd)

CLEAR THE SELF-LEARNING DATA

- (II) With CONSULT-II
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".


SEF215Z

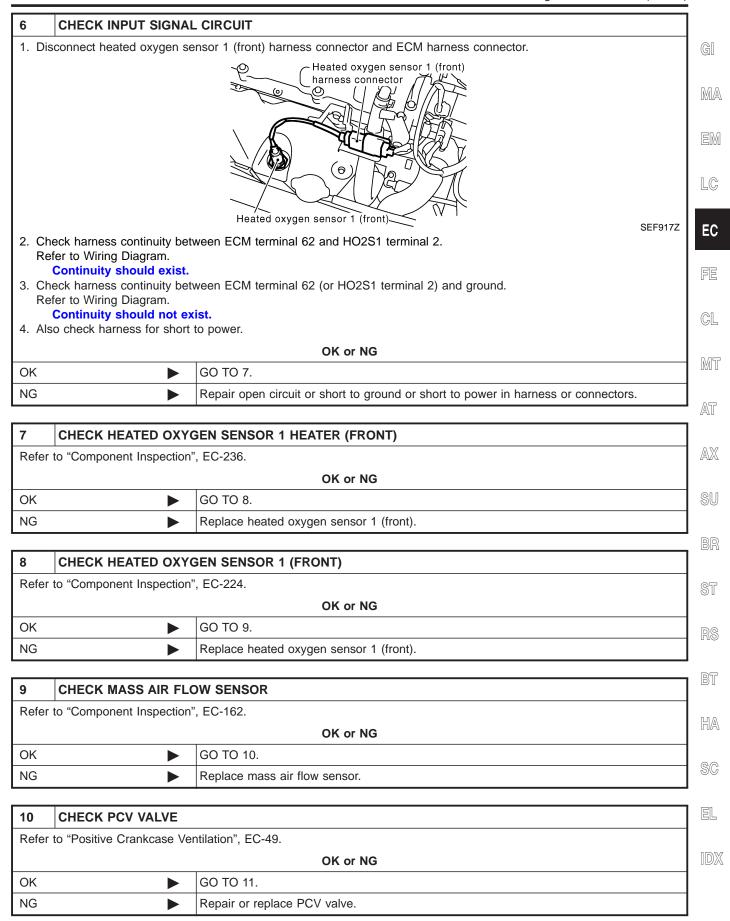
4. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

(R) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.

SEF840X

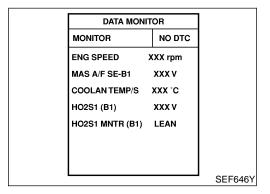

- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION", EC-79.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 or P0172 detected? Is it difficult to start engine?

Yes or No

Yes	>	Perform trouble diagnosis for DTC P0171, P0172. Refer to EC-272, 279.
No	>	GO TO 6.

Diagnostic Procedure (Cont'd)


Diagnostic Procedure (Cont'd)

NG

11 CHECK SHIELD CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect joint connector-1. 3. Check the following. • Continuity between joint connector-1 terminal 2 and ground Refer to Wiring Diagram. • Joint connector-1 (Refer to EL-314, "HARNESS LAYOUT".) Continuity should exist. 4. Also check harness for short to power. 5. Then reconnect joint connector. OK or NG

12	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	► INSPECTION END			

Repair open circuit or short to power in harness or connectors.

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

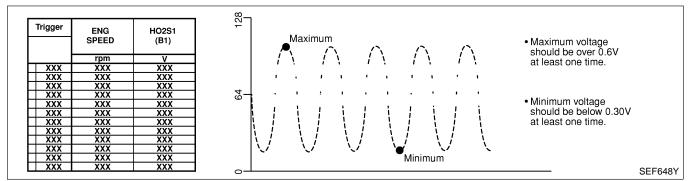
R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

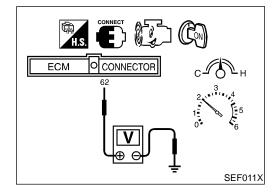
SEF217YA

Component Inspection HEATED OXYGEN SENSOR 1 (FRONT)

NCEC0127

NCEC0127S02


(P) With CONSULT-II


- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" five times in 10 seconds.
 5 times (cycles) are counted as shown below:
 R = "HO2S1 MNTR (B1)", "RICH"
 L = "HO2S1 MNTR (B1)", "LEAN"
- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Inspection (Cont'd)

🕅 Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

EC

FE

CL

MT

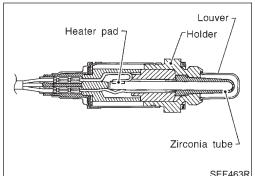
AT

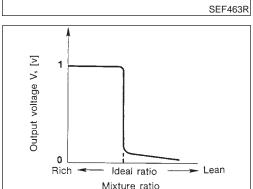
SU

<u></u>

ST

D@


DZ.


HA

SC

EL

Component Description

Component Description

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II Reference Value in Data Monitor Mode

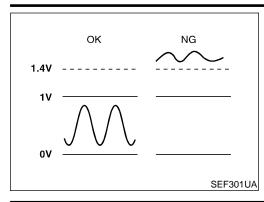
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

ECM Terminals and Reference Value

NCEC0130

Specification data are reference values and are measured between each terminal and ground.


SEF288D

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			<u> </u>	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
62	w	Heated oxygen sensor 1 (front)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V (V) 1 0.5 0 1 s SEF059V

On Board Diagnosis Logic

On Board Diagnosis Logic

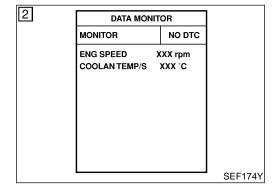
To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 (front) output is not inordinately high.

GI

MA

EM

LC


DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0134	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front) 	

EC

GL

FE

MT

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

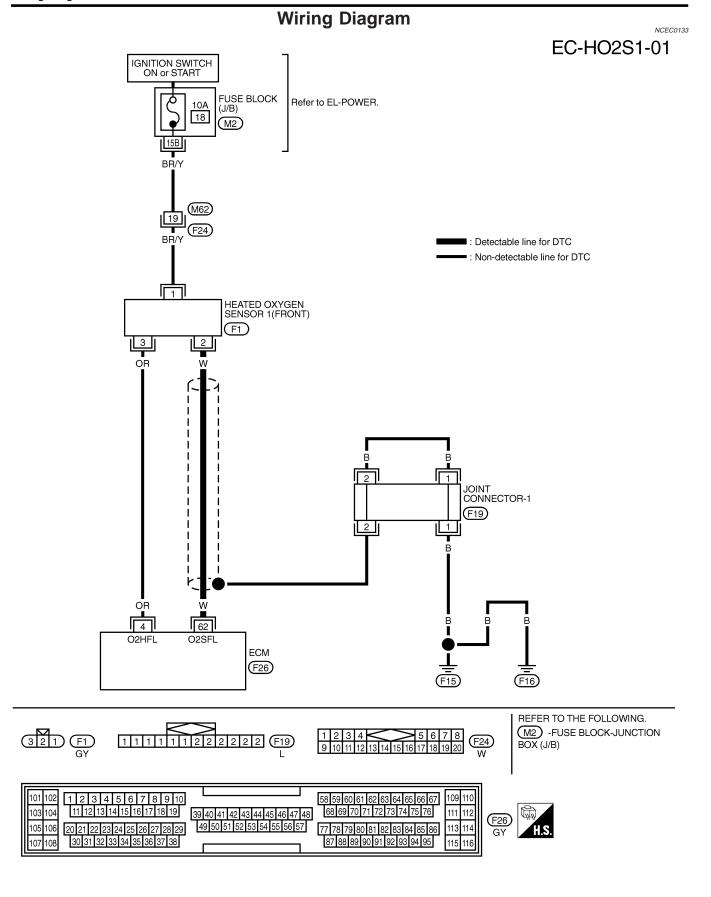
 $\mathbb{A}\mathbb{X}$

NCEC0132

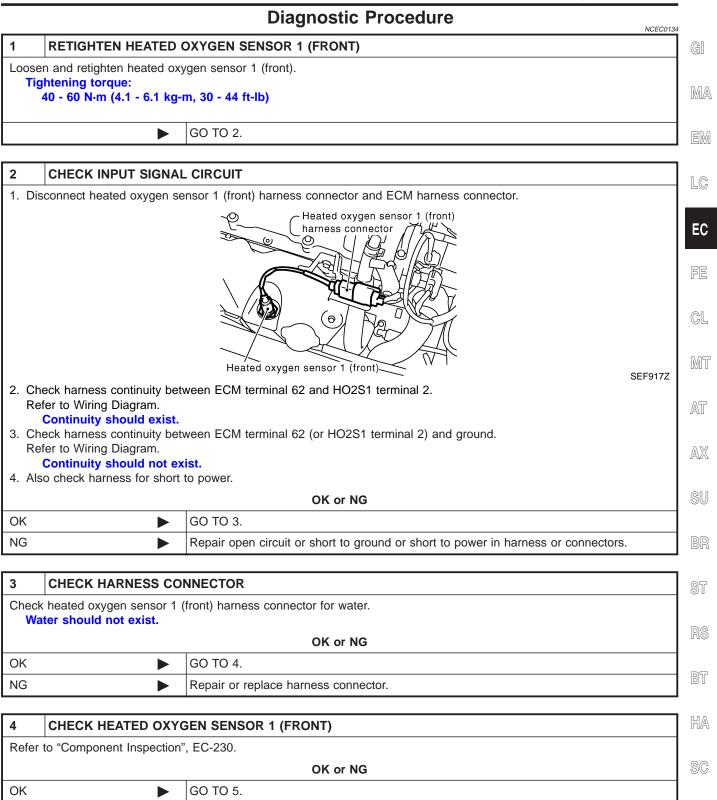
(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- Restart engine and let it idle for 2 minutes.
- 6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-229.

dure", ST


With GST

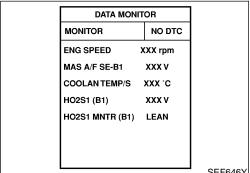
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Restart engine and let it idle for 2 minutes.
- 4) Turn ignition switch "OFF" and wait at least 10 seconds.
- 5) Restart engine and let it idle for 2 minutes.
- 6) Select "MODE 3" with GST.
- 7) If DTC is detected, go to "Diagnostic Procedure", EC-229.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


SC

BT

HA

Diagnostic Procedure


Replace heated oxygen sensor 1 (front).

NG

Diagnostic Procedure (Cont'd)

CHECK SHIELD CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect joint connector-1. 3. Check the following. Continuity between joint connector-1 terminal 2 and ground Refer to Wiring Diagram. Joint connector-1 (Refer to EL-314, "HARNESS LAYOUT".) Continuity should exist. 4. Also check harness for short to power. Then reconnect joint connector. OK or NG GO TO 6. OK NG Repair open circuit or short to power in harness or connectors.

6	CHECK INTERMITTENT INCIDENT		
Perfori	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

SEF646Y

| 1 | 2 | 3 | 4 | 5 | cycle HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

R means HO2S1 MNTR (B1) indicates RICH L means HO2S1 MNTR (B1) indicates LEAN

SEF217YA

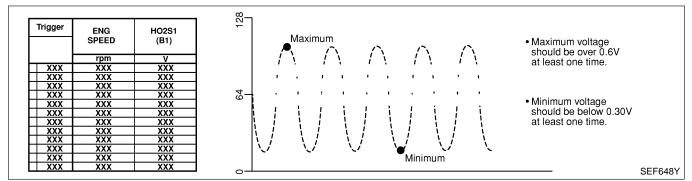
Component Inspection **HEATED OXYGEN SENSOR 1 (FRONT)**

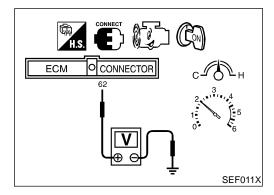
NCEC0135

NCEC0135S01

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" in "DATA MONITOR" mode, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" five times in 10 seconds. 5 times (cycles) are counted as shown below: R = "HO2S1 MNTR (B1)", "RICH"


L = "HO2S1 MNTR (B1)", "LEAN"


- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.3V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Inspection (Cont'd)

🕅 Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than five times within 10 seconds.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.3V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

EC

_

CL

MT

AT

AX

@III

a

ST

DS.

HA

SC

EL

Description

SYSTEM DESCRIPTION

NCEC0136

NCEC0136S0

			NCECU1365U1
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed	Heated oxygen sensor 1 heater (front) con- trol	Heated oxygen sensor 1 heater (front)

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater (front) corresponding to the engine operating condition.

OPERATION

NCEC0136S02

Engine speed	Front heated oxygen sensor heater	
Above 3,200 rpm	OFF	
Below 3,200 rpm	ON	

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

ICEC0137

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	Engine speed: Below 3,200 rpm	ON
	Engine speed: Above 3,200 rpm	OFF

ECM Terminals and Reference Value

NCEC0138

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	OR		[Engine is running] • Engine speed is below 3,200 rpm.	Approximately 0V
4	OK	heater (front)	[Engine is running] • Engine speed is above 3,200 rpm.	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NCEC0139

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	
P0135	The current amperage in the heated oxygen sensor 1 heater (front) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 1 heater (front).]	Harness or connectors [The heated oxygen sensor 1 heater (front) circuit is open or shorted.] Heated oxygen sensor 1 heater (front)	

DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT)

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

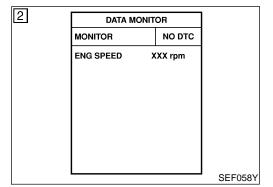
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds

GI

NCEC0140

TESTING CONDITION:

before conducting the next test.


Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

MA

EM

LC

EC

(P) With CONSULT-II

 Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

2) Start engine and run it for at least 6 seconds at idle speed.

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-235.

FE

GL

With GST

1) Start engine and run it for at least 6 seconds at idle speed.

2) Turn ignition switch "OFF" and wait at least 10 seconds.

3) Start engine and run it for at least 6 seconds at idle speed.

4) Select "MODE 3" with GST.

i) If DTC is detected, go to "Diagnostic Procedure", EC-235.

AT

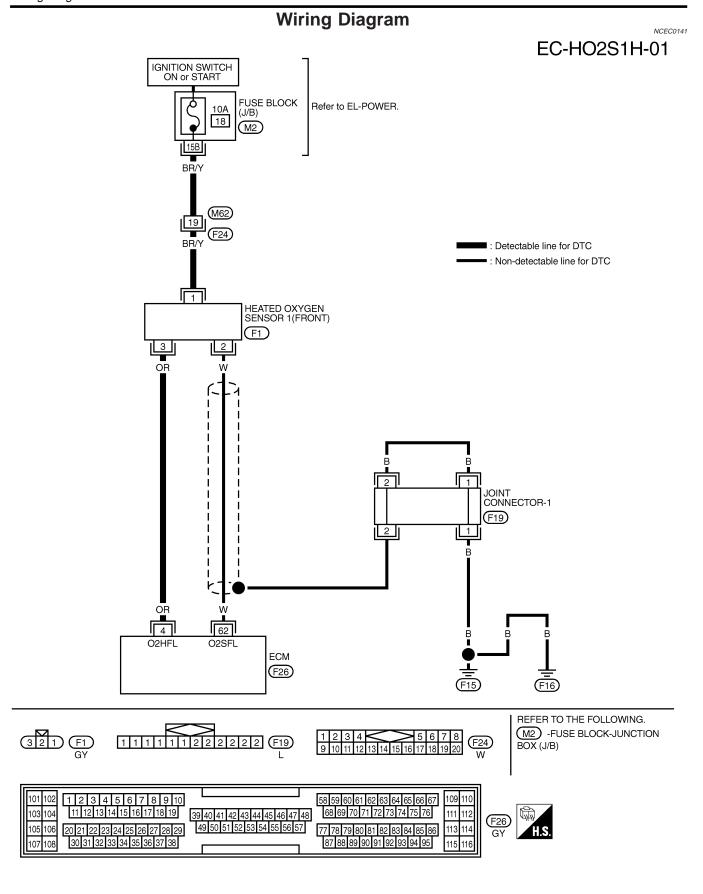
MT

 When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

SU

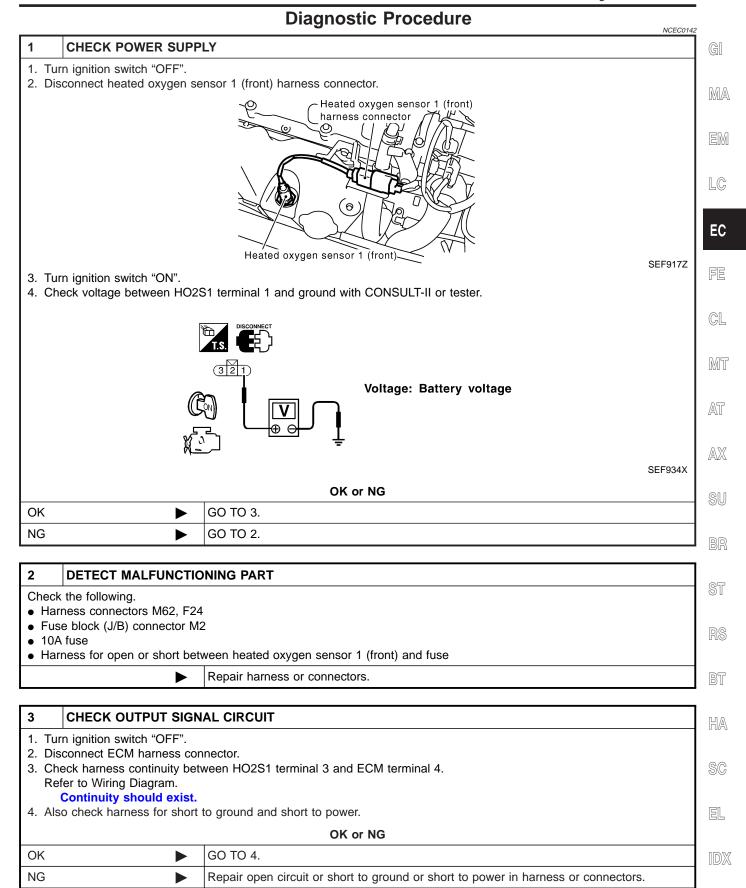
BK

ST


RS

BT

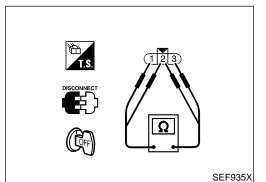
HA


SC

EL

DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Diagnostic Procedure



DTC P0135 HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Diagnostic Procedure (Cont'd)

4	CHECK HEATED OXYGEN SENSOR 1 HEATER (FRONT)		
Refer	Refer to "Component Inspection", EC-236.		
	OK or NG		
OK	OK ▶ GO TO 5.		
NG	•	Replace heated oxygen sensor 1 (front).	

5	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	INSPECTION END	

Component Inspection HEATED OXYGEN SENSOR 1 HEATER (FRONT)

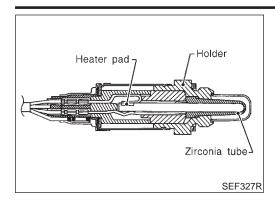
NCEC0143

NCEC0143S01

Check resistance between terminals 3 and 1.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

Check continuity between terminals 2 and 1, 3 and 2.


Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

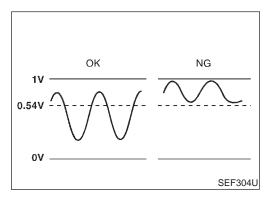
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0145


MONITOR ITEM	CONE	DITION	SPECIFICATION	[
HO2S2 (B1)	Engine: After warming	Revving engine from idle	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1)	up	to 3,000 rpm	$LEAN \longleftrightarrow RICH$	(

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	W	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the minimum voltage of the sensor is sufficiently low during various driving conditions such as fuel-cut.

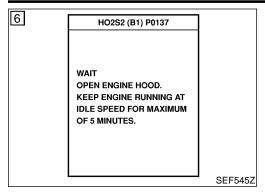
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	SC
P0137	The minimum voltage from the sensor does not reach the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors 	EL IDX

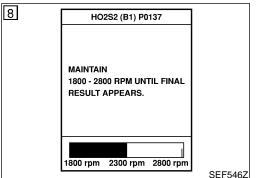
LC

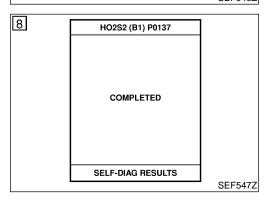
MA

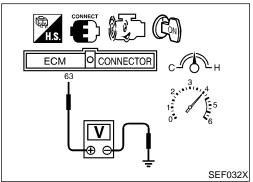
EC

MT


GL


AX


HA


X

DTC Confirmation Procedure

DTC Confirmation Procedure

NCEC0148

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

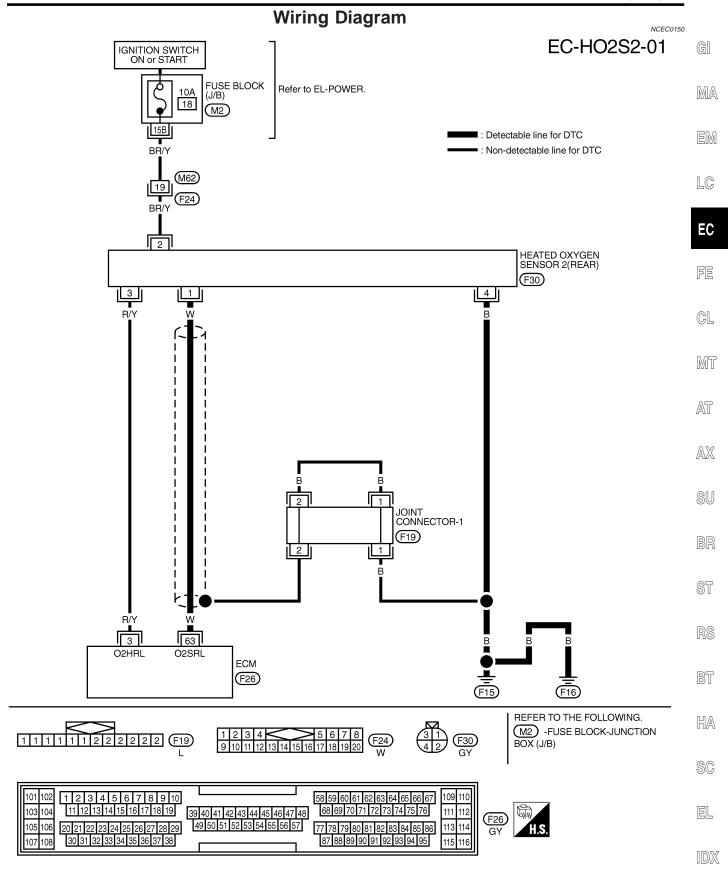
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- Select "HO2S2 (B1) P0137" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Start engine and follow the instruction of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "Diagnostic Procedure", EC-240. If "CANNOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b) Turn ignition switch "ON".
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

NCEC0149

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

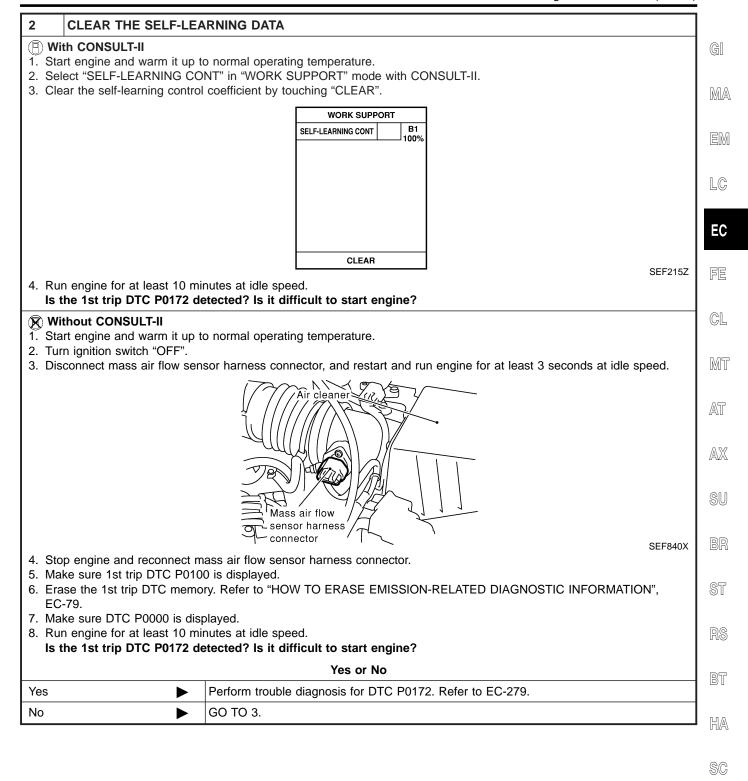
With GST


- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.54V at least once during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.54V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-240.


Wiring Diagram

Diagnostic Procedure

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch "OFF". 2. Loosen and retighten engine ground screws. Intake manifold collector Collector SEF839X ■ GO TO 2.

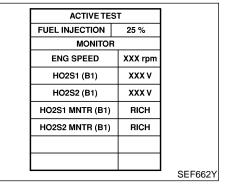
Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

NG

CHECK INPUT SIGNAL CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector. Heated oxygen sensor 2 (rear) harness connector Heated oxygen sensor 2 (rear) View from under the vehicle SEF918Z 3. Check harness continuity between ECM terminal 63 and HO2S2 terminal 1. Refer to Wiring Diagram. Continuity should exist. 4. Check harness continuity between ECM terminal 63 (or HO2S2 terminal 1) and ground. Refer to Wiring Diagram. Continuity should not exist. 5. Also check harness for short to ground and short to power. OK or NG OK GO TO 4.

4	CHECK GROUND CIRCUIT		
Ref	 Check harness continuity between HO2S2 terminal 4 and body ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power. 		
	OK or NG		
OK	•	GO TO 5.	
NG	>	Repair open circuit or short to power in harness or connectors.	


Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK HEATED OXYGEN SENSOR 2 (REAR)		
Refer	Refer to "Component Inspection", EC-243.		
	OK or NG		
OK	DK		
NG	>	Replace heated oxygen sensor 2 (rear).	

Diagnostic Procedure (Cont'd)

6	CHECK SHIELD CIRCU	IIT	7	
1. Tu	rn ignition switch "OFF".		7	
2. Di:	sconnect joint connector-1.		Т	
	neck the following.		Т	
	-	ector-1 terminal 2 and ground	Т	
	fer to Wiring Diagram.		Т	
	Joint connector-1		Т	
	(Refer to EL-314, "HARNESS LAYOUT".)		Т	
	Continuity should exist.		Т	
	so check harness for short	·	Т	
o. In	en reconnect joint connecto	ΣΓ-1.	1	
		OK or NG	Ι.	
OK	OK ▶ GO TO 7.			
NG	G Repair open circuit or short to power in harness or connectors.			

7	7 CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	INSPECTION END	

Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

NCEC0152

NOECO4F0C04

GI

MA

EM

LC

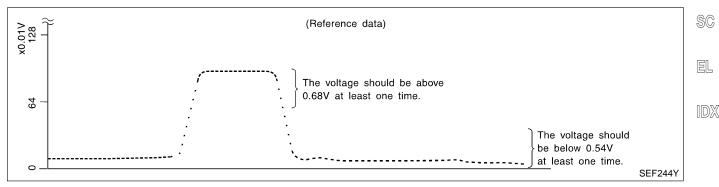
EC

FE

GL

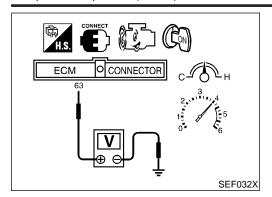
MT

BT


(II) With CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

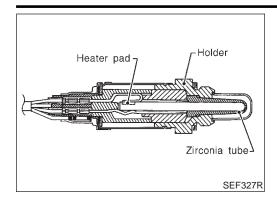

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

EC-243

Component Inspection (Cont'd)

⋈ Without CONSULT-II


- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once.
 - If the voltage is above 0.68V at step 4, step 5 is not necessary.
- 5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.54V at least once.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

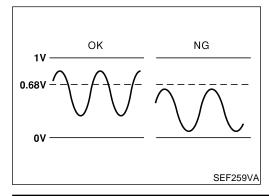
MONITOR ITEM

NCEC0154 CONDITION **SPECIFICATION** 0 - 0.3V ←→ Approx. 0.6 - 1.0V · Engine: After warming Revving engine from idle

LEAN ←→ RICH

ECM Terminals and Reference Value

to 3,000 rpm


Specification data are reference values and are measured between each terminal and ground.

HO2S2 (B1)

HO2S2 MNTR (B1)

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	W	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and engine speed is 2,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the maximum voltage of the sensor is sufficiently high during various driving conditions such as fuel-cut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	• SG
P0138	The maximum voltage from the sensor does not reach the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure 	
		Injectors Intake air leaks	[D]

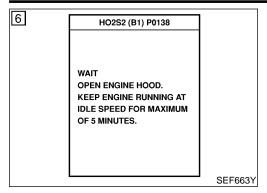
LC

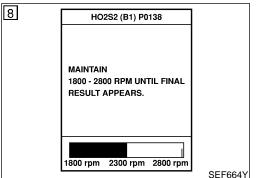
MA

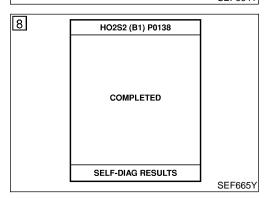
EC

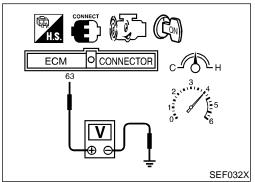
FE

GL


MT


AX


HA


)[(

DTC Confirmation Procedure

DTC Confirmation Procedure

NCEC0157

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

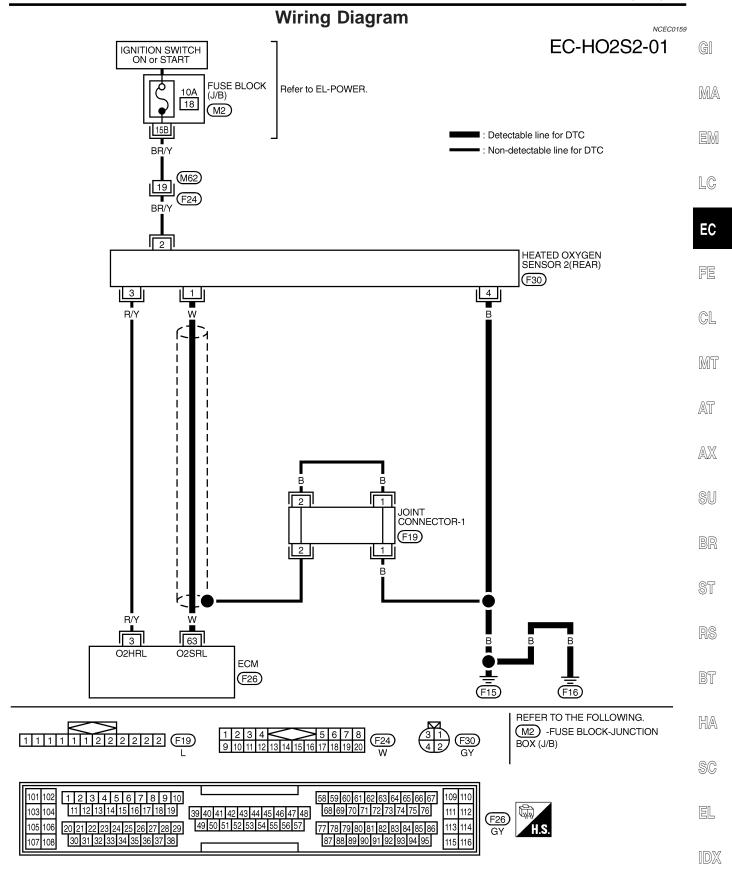
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- Select "HO2S2 (B1) P0138" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- Start engine and follow the instruction of CONSULT-II.
- 8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "Diagnostic Procedure", EC-248. If "CANNOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b) Turn ignition switch "ON".
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- e) Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

NCEC015

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

With GST


- Start engine and drive vehicle at a speed of 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- 4) Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be above 0.68V at least once during this procedure.
- 6) If NG, go to "Diagnostic Procedure", EC-248.

Wiring Diagram

Diagnostic Procedure

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch "OFF". 2. Loosen and retighten engine ground screws. Intake manifold collector Collector SEF839X ■ GO TO 2.

Diagnostic Procedure (Cont'd)

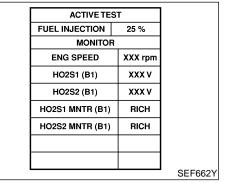
SC

EL

2 CLEAR THE SELF-LEARNING DATA		
 With CONSULT-II Start engine and warm it up to normal operating temperature. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II. 	GI	
3. Clear the self-learning control coefficient by touching "CLEAR".		
WORK SUPPORT SELF-LEARNING CONT B1 100%		
	L©	
	EC	
CLEAR	SEF215Z	
 Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine? 		
 Without CONSULT-II Start engine and warm it up to normal operating temperature. Turn ignition switch "OFF". 		
3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at it	dle speed.	
Air cleaner (17)	AT	
Mass air flow sensor harness	S	
connector	SEF840X	
 Stop engine and reconnect mass air flow sensor harness connector. Make sure 1st trip DTC P0100 is displayed. Erase the 1st trip DTC memory. Refer to "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORM 	IATION", Sī	
EC-79. 7. Make sure DTC P0000 is displayed.		
8. Run engine for at least 10 minutes at idle speed.	R	
Is the 1st trip DTC P0171 detected? Is it difficult to start engine?		
Yes or No	B1	
Yes Perform trouble diagnosis for DTC P0171. Refer to EC-272.		
No ► GO TO 3.		

Diagnostic Procedure (Cont'd)

CHECK INPUT SIGNAL CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector. Heated oxygen sensor 2 (rear) harness connector Heated oxygen sensor 2 (rear) View from under the vehicle SEF918Z 3. Check harness continuity between ECM terminal 63 and HO2S2 terminal 1. Refer to Wiring Diagram. Continuity should exist. 4. Check harness continuity between ECM terminal 63 (or HO2S2 terminal 1) and ground. Refer to Wiring Diagram. Continuity should not exist. 5. Also check harness for short to ground and short to power. OK or NG OK GO TO 4. NG Repair open circuit or short to ground or short to power in harness or connectors.


4	CHECK GROUND CI	CUIT	
 Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power. 			
OK or NG			
OK	•	GO TO 5.	
NG	>	Repair open circuit or short to power in harness or connectors.	

5	CHECK HEATED OXYG	GEN SENSOR 2 (REAR)
Refer to "Component Inspection", EC-251.		
OK or NG		
OK	•	GO TO 6.
NG	>	Replace heated oxygen sensor 2 (rear).

Diagnostic Procedure (Cont'd)

6 CH	HECK SHIELD CIRCU	ІТ	
1. Turn ig	nition switch "OFF".		
2. Discon	nect joint connector-1.		
3. Check	the following.		
Continuity between joint connector-1 terminal 2 and ground			
	o Wiring Diagram.		
Joint co			
•	(Refer to EL-314, "HARNESS LAYOUT".)		
	tinuity should exist.		
	neck harness for short t	·	
5. Then re	econnect joint connecto	r-1.	
		OK or NG	_
ОК	•	GO TO 7.	
NG		Repair open circuit or short to power in harness or connectors.	ı

7 CHECK INTERMITTENT INCIDENT]
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	>	INSPECTION END]

Component Inspection **HEATED OXYGEN SENSOR 2 (REAR)**

NCEC0161

AT

GI

MA

EM

LC

EC

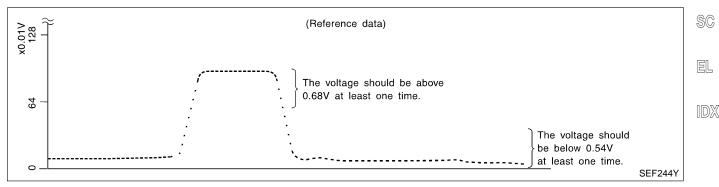
FE

GL

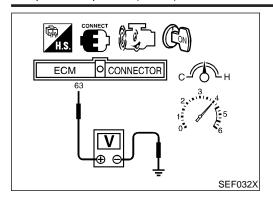
MT

BT

(P) With CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes...
- Stop vehicle with engine running.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

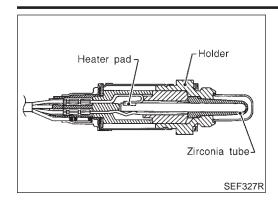

"HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Inspection (Cont'd)

⋈ Without CONSULT-II


- Start engine and drive vehicle at a speed of 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once.
 - If the voltage is above 0.68V at step 4, step 5 is not necessary.
- 5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.54V at least once.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

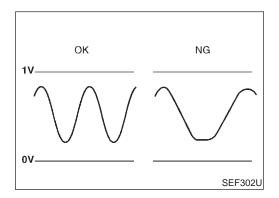
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0163


MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	Engine: After warming	Revving engine from idle	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	ир	to 3,000 rpm	LEAN ←→ RICH

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	W	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 2,000 rpm 	0 - Approximately 1.0V

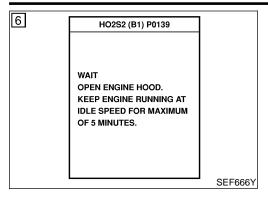
On Board Diagnosis Logic

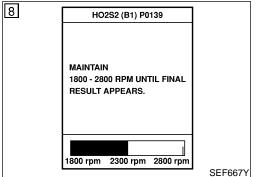
The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the switching response of the sensor's voltage is faster than specified during various driving conditions such as fuel-cut.

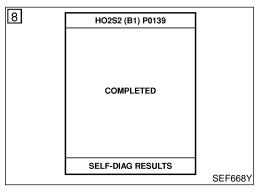
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	SC
P0139	It takes more than the specified time for the sensor to respond between rich and lean.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors Intake air leaks 	EL IDX

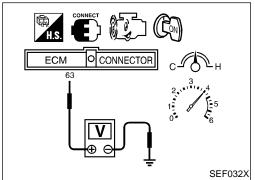
MA

EC


GL


MT


AX


HA

DTC Confirmation Procedure

DTC Confirmation Procedure

NCEC0166

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

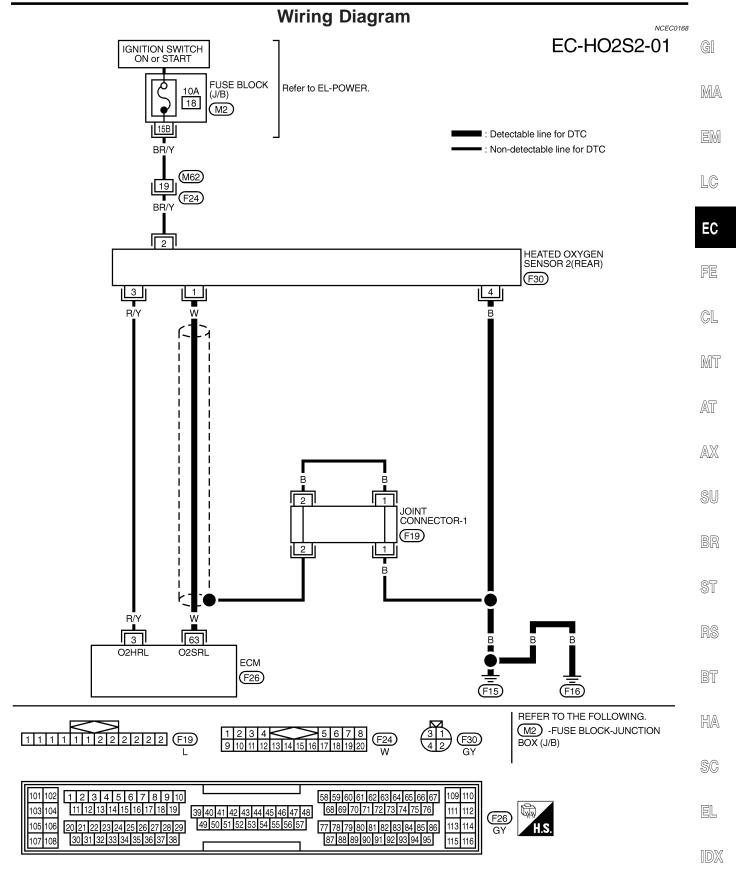
- (P) With CONSULT-II
- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
- Select "HO2S2 (B1) P0139" of "HO2S2" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 7) Start engine and follow the instruction of CONSULT-II.
- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "Diagnostic Procedure", EC-256. If "CANNOT BE DIAGNOSED" is displayed, perform the following.
- Stop engine and cool down until "COOLAN TEMP/S" indicates less than 70°C (158°F).
- b) Turn ignition switch "ON".
- c) Select "DATA MONITOR" mode with CONSULT-II.
- d) Start engine.
- Return to step 6 again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

Overall Function Check

NCEC0167

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

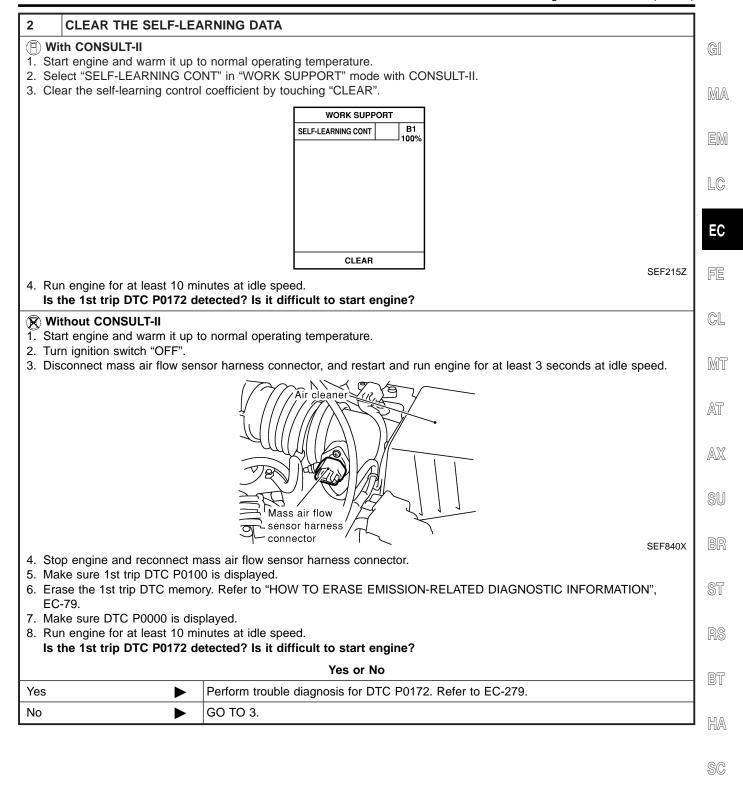

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should change at more than 0.06V for 1 second during this procedure.

If the voltage can be confirmed in step 4, step 5 is not necessary.

- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should change at more than 0.06V for 1 sec-
- ond during this procedure.6) If NG, go to "Diagnostic Procedure", EC-256.

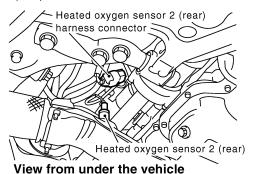
Wiring Diagram



TEC780

Diagnostic Procedure

Diagnostic Procedure 1 RETIGHTEN GROUND SCREWS 1. Turn ignition switch "OFF". 2. Loosen and retighten engine ground screws. Intake manifold collector collector SEF839X ▶ GO TO 2.


Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.

SEF918Z

3. Check harness continuity between ECM terminal 63 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Check harness continuity between ECM terminal 63 (or HO2S2 terminal 1) and ground.

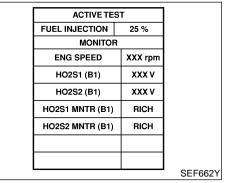
Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

0	K	or	N	G

OK ►	GO TO 4.
NG ▶	Repair open circuit or short to ground or short to power in harness or connectors.


4	CHECK GROUND CIRC	CUIT			
Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power.					
	OK or NG				
OK	>	GO TO 5.			
NG	•	Repair open circuit or short to power in harness or connectors.			

5	5 CHECK HEATED OXYGEN SENSOR 2 (REAR)		
Refer to "Component Inspection", EC-259.			
	OK or NG		
OK	•	GO TO 6.	
NG	•	Replace heated oxygen sensor 2 (rear).	

Diagnostic Procedure (Cont'd)

6	CHECK SHIELD CIRCUIT					
1. Turr	I. Turn ignition switch "OFF".					
2. Disc	. Disconnect joint connector-1.					
	ck the following.					
	•	ctor-1 terminal 2 and ground				
	er to Wiring Diagram.					
	t connector-1					
-	er to EL-314, "HARNESS	LAYOUT".)				
	ontinuity should exist.					
	check harness for short to	·				
5. The	n reconnect joint connecto	n-1.				
		OK or NG				
OK	•	GO TO 7.				
NG	•	Repair open circuit or short to power in harness or connectors.				

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	•	INSPECTION END	

Component Inspection **HEATED OXYGEN SENSOR 2 (REAR)**

NCEC0170

GI

MA

EM

LC

EC

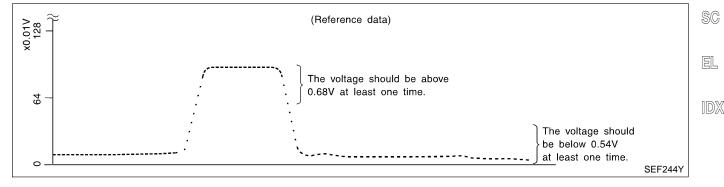
FE

GL

MT

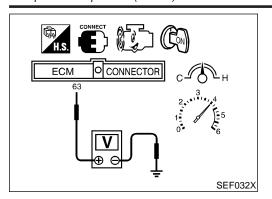
BT

(P) With CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

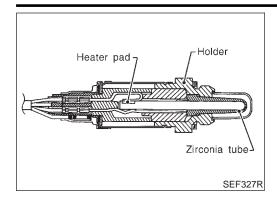

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

EC-259

Component Inspection (Cont'd)

⋈ Without CONSULT-II


- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once.
 - If the voltage is above 0.68V at step 4, step 5 is not necessary.
- 5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.54V at least once.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Component Description

Component Description

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

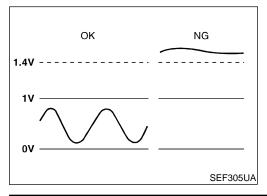
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

NCEC0172

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.


MONITOR ITEM	CONIC	DITION	SPECIFICATION	•
MONITOR ITEM	CONDITION		SPECIFICATION	_ [
HO2S2 (B1)	Engine: After warming	Revving engine from idle	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1)	up	to 3,000 rpm	LEAN ←→ RICH	(

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	W	Heated oxygen sensor 2 (rear)	 [Engine is running] After warming up to normal operating temperature and revving engine from idle to 2,000 rpm 	0 - Approximately 1.0V

On Board Diagnosis Logic

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether or not the voltage is too high during various driving conditions such as fuelcut.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	_ (
P0140	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) 	[

MA

EM

LC

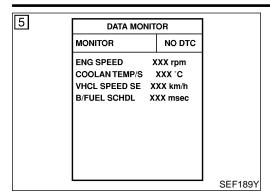
EC

FE

CL

MT

AX


SU

HA

SC

EL

DTC Confirmation Procedure

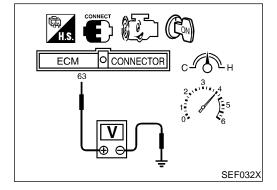
DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

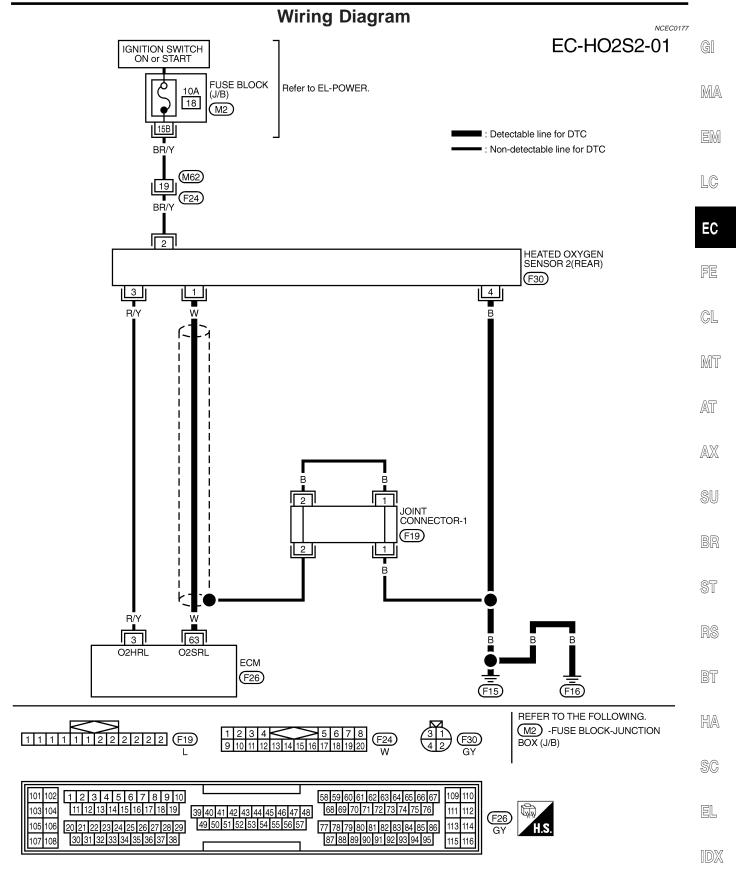

NCEC0175

(P) With CONSULT-II

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) Stop vehicle with engine running.
- 4) Let engine idle for 1 minute.
- 5) Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	1,400 - 3,400 rpm
VHCL SPEED SE	64 - 120 km/h (40 - 75 MPH)
B/FUEL SCHDL	0.5 - 3.9 msec
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	Suitable position

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-264.


Overall Function Check

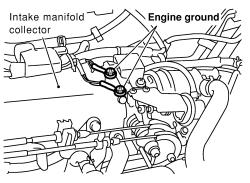
Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

(R) Without CONSULT-II

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- Check the voltage after revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 1.4V during this procedure.
- 5) If NG, go to "Diagnostic Procedure", EC-264.

Wiring Diagram

TEC780

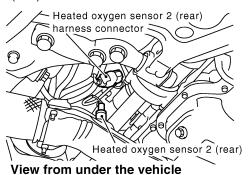

Diagnostic Procedure

Diagnostic Procedure

NCEC0178

1 RETIGHTEN GROUND SCREWS

- 1. Turn ignition switch "OFF".
- 2. Loosen and retighten engine ground screws.



SEF839X

▶ GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.

SEF918Z

2. Check harness continuity between ECM terminal 63 and HO2S2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Check harness continuity between ECM terminal 63 (or HO2S2 terminal 1) and ground. Refer to Wiring Diagram.

Continuity should not exist.

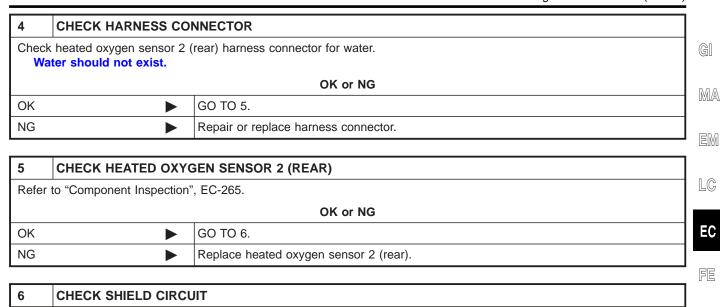
4. Also check harness for short to ground and short to power.

ΩK	or	N	ഭ

OK I	GO TO 3.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

3 CHECK GROUND CIRCUIT

 Check harness continuity between HO2S2 terminal 4 and engine ground. Refer to Wiring Diagram.


Continuity should exist.

2. Also check harness for short to power.

Ok	· ~	r N	JC.
Ur	(O	rr	ИG

OK •	GO TO 4.
NG ▶	Repair open circuit or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

6	CHECK SHIELD CIRCU	IT		
1. Tu	1. Turn ignition switch "OFF".			
2. Dis	2. Disconnect joint connector-1.			
	neck the following.		l	
	-	ctor-1 terminal 2 and ground	l	
	fer to Wiring Diagram.		ı	
	nt connector-1		ı	
	(Refer to EL-314, "HARNESS LAYOUT".)			
Continuity should exist.				
4. Also check harness for short to power.				
5. Then reconnect joint connector-1.				
OK or NG				
OK	•	GO TO 7.		
NG	•	Repair open circuit or short to power in harness or connectors.		

7	CHECK INTERMITTENT	T INCIDENT
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	>	INSPECTION END

ACTIVE TES	ST .	
FUEL INJECTION		
MONITOR	1	
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
	•	SEF662Y

Component Inspection HEATED OXYGEN SENSOR 2 (REAR)

NCEC017

GL

MT

AT

AX

SU

ST

BT

HA

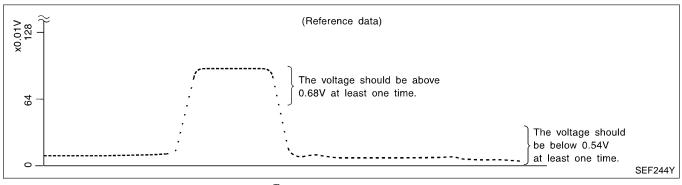
SC

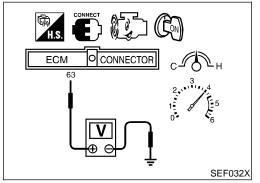
EL

NCEC0179S01

(P) With CONSULT-II

Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.


- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


"HO2S2 (B1)" should be above 0.68V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

(R) Without CONSULT-II

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.68V at least once. If the voltage is above 0.68V at step 4, step 5 is not necessary.

5) Check the voltage when revving up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.54V at least once.

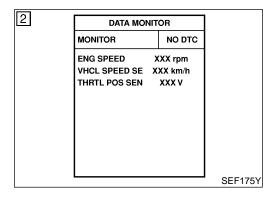
CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

			Descriptio	n			
SYSTE	M DES	CRIPTION	•				NCEC0180S01
		Sensor	Input Signal to	o ECM	ECM func		
Camshaft position sensor		Engine speed	Engine speed Heate oxyge senso heater (rear) trol		Heated oxygen sensor 2 (rear)	heater	
The ECN speed. OPERA	•	ms ON/OFF control o	f the heated oxyger	n sensor	2 heater (rea	r) corresponding to the	engine
		Engine speed rpm			Heated oxygen	sensor 2 heater (rear)	140200100002
		Above 3,600				OFF	
		Below 3,600				ON	
•	ation da	ta are reference value	Mode es.			SPECIFICATION	NCEC018:
HO2S2 F	Ignition switch: ON (Eng. Engine speed: Above 3.					OFF	
HO2S2 HTR (B1)		• Engine speed: Below speed of 70 km/h (43	for 2 minu	ites at a	NC		
CAUTIO Do not u	N: use ECI	l's transistor. Use a	when measuring in	ed between put/out	en each termi put voltage. I rminals, suc	inal and ground. Doing so may result i	
		Heated oxygen sensor 2	Engine is running ■ Engine speed is ■ After driving for 2 (43 MPH) or more	below 3,60 2 minutes a		km/h 0 - 1.0V	
3	R/Y	heater (rear)	[Ignition switch "C • Engine stopped [Engine is running	[Ignition switch "ON"] • Engine stopped [Engine is running] • Engine speed is above 3,600 rpm		BATTERY VOLTAG (11 - 14V)	E
			On Board	Diagno	osis Logic	;	NCEC0183
DTC	No.	Malfunction is	detected when		Check	Items (Possible Cause)	
DTC		Malfunction is The current amperage in heater (rear) circuit is out	the heated oxygen sens	sor 2	• Harness or co		

The current amperage in the heated oxygen sensor 2 heater (rear) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 2 heater (rear).] Harness or connectors [The heated oxygen sensor 2 heater (rear) circuit is open or shorted.] Heated oxygen sensor 2 heater (rear)	D10 140.	Wallandion is actedica when	Officer ficting (1 obstatic dauge)
	P0141	heater (rear) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through	[The heated oxygen sensor 2 heater (rear) circuit is open or shorted.]

DTC Confirmation Procedure


NOTE:

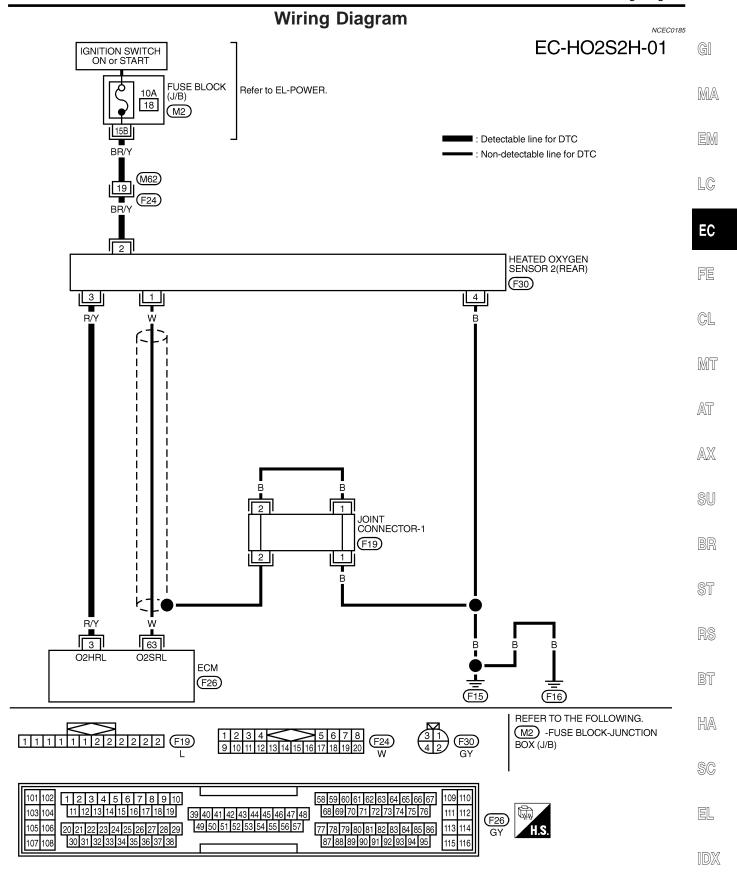
NCEC0184

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is in between 10.5V and 16V at idle.

(P) With CONSULT-II


- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 3) Stop vehicle and let engine idle for at least 6 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-270.

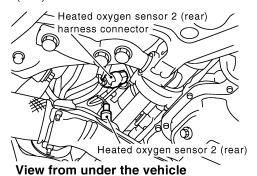
With GST

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle and let engine idle for at least 6 seconds.
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- 4) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 5) Stop vehicle and let engine idle for at least 6 seconds.
- 6) Select "MODE 3" with GST.
- 7) If DTC is detected, go to "Diagnostic Procedure", EC-270.

When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

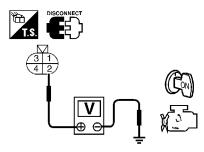
Wiring Diagram

Diagnostic Procedure


NCEC0186

SEF918Z

SEF218W


1 CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 2 (rear) harness connector.

3. Turn ignition switch "ON".

4. Check voltage between HO2S2 terminal 2 and ground.

Voltage: Battery voltage

OK or NG

OK ►	GO TO 3.
NG ►	GO TO 2.

2 DETECT MALFUNCTIONING PART

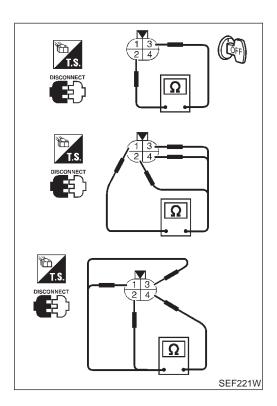
Check the following.

- Harness connectors M62, F24
- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open or short between heated oxygen sensor 2 (rear) and fuse
 - Repair harness or connectors.

3 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between HO2S2 terminal 3 and ECM terminal 3. Refer to Wiring Diagram.

Continuity should exist.


4. Also check harness for short to ground and short to power.

OK or NG

l	OK J		GO TO 4.
	NG J		Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

4	CHECK HEATED OXY	GEN SENSOR 2 HEATER (REAR)	
Refe	r to "Component Inspection"	, EC-271.	GI
		OK or NG	
OK	•	GO TO 5.	1 M/
NG	•	Replace heated oxygen sensor 2 (rear).	
			. En
5 CHECK INTERMITTENT INCIDENT			
Perfo	orm "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-146.] _{[(}
	•	INSPECTION END	1 🖳

Component Inspection HEATED OXYGEN SENSOR 2 HEATER (REAR)

NCEC0187 AT

EC

FE

GL

MT

AX

SU

Check the following.

1. Check resistance between terminals 2 and 3.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)

2. Check continuity.

Terminal No.	Continuity	
1 and 2, 3, 4	No	
4 and 1, 2, 3	NO	

If NG, replace the heated oxygen sensor 2 (rear).

CAUTION

 Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

RS

ST

 Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

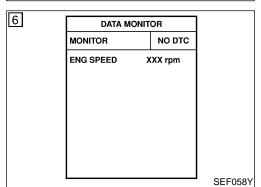
HA

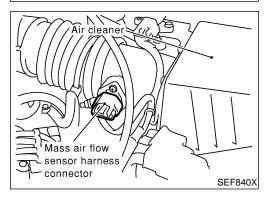
SC

EL

On Board Diagnosis Logic

On Board Diagnosis Logic


With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios


In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM func- tion	Actuator
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection & mixture ratio	Injectors

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0171	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	 Intake air leaks Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks Incorrect fuel pressure Lack of fuel Mass air flow sensor

WORK SUPPORT SELF-LEARNING CONT B1 100% CLEAR SEF215Z

DTC Confirmation Procedure

NCEC0189

NOTE

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-275.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-275. If engine does not start, visually check for exhaust and intake air leak.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.

DTC Confirmation Procedure (Cont'd)

- Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-275.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-275. If engine does not start, visually check for exhaust and intake air leak.

MA

EM

SUVU

LC

EC

FE

GL

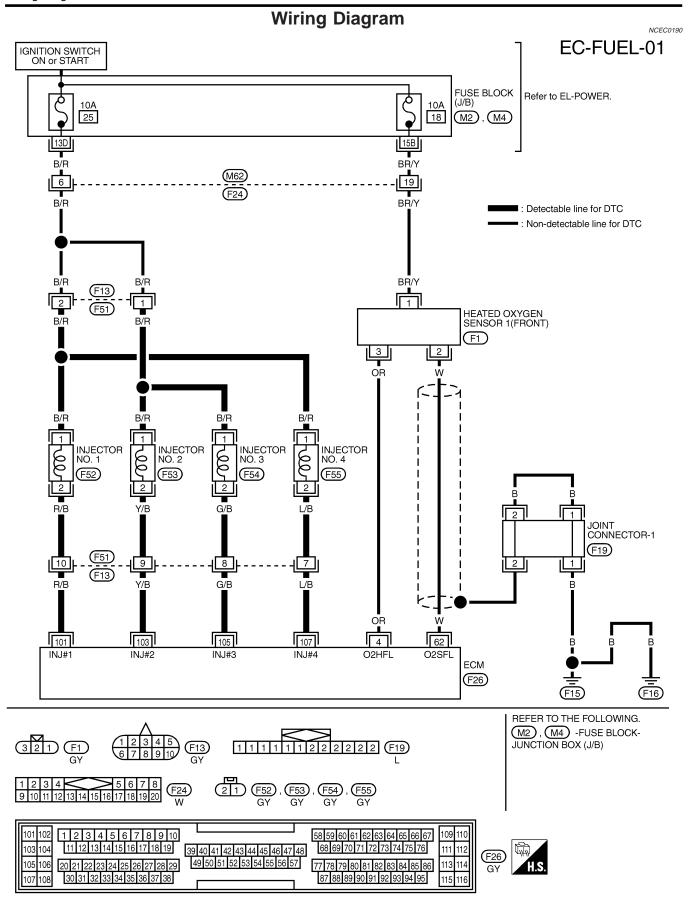
MT

AT

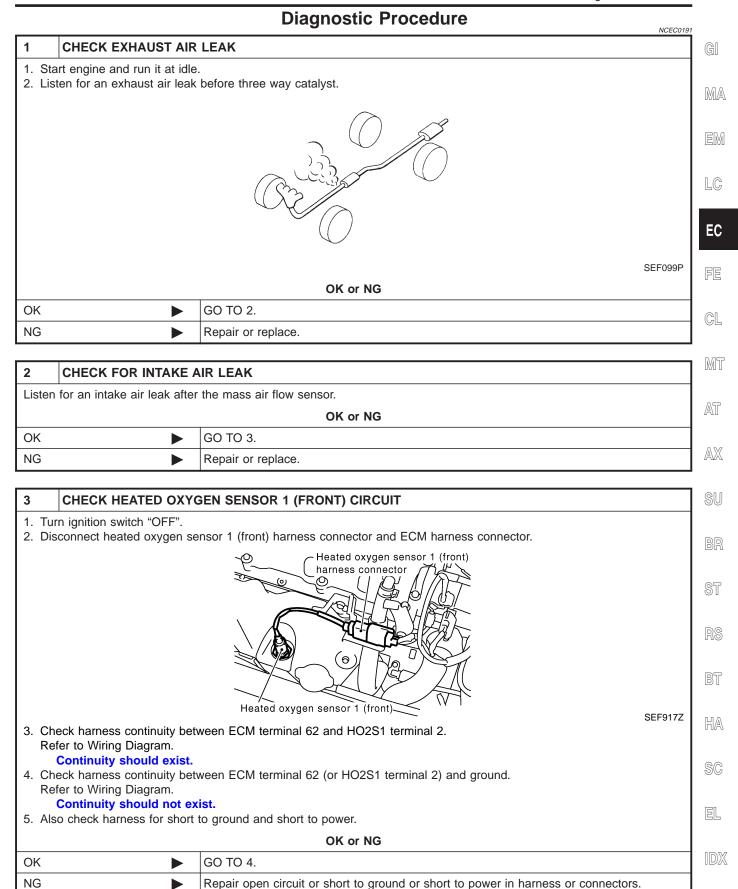
 $\mathbb{A}\mathbb{X}$

SU

ST


50

BT


HA

SC

EL

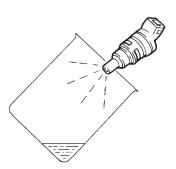
Diagnostic Procedure

Diagnostic Procedure (Cont'd)

4	CHECK FUEL PRESSU	RE		
	Release fuel pressure to zero.			
	fer to EC-50.			
2. Ins	tall fuel pressure gauge an	d check fuel pressure.		
	At idling:			
		gulator valve vacuum hose is connected.		
	235 kPa (2.4 kg/cm ²	² , 34 psi)		
	When fuel pressure re	gulator valve vacuum hose is disconnected.		
	294 kPa (3.0 kg/cm², 43 psi)			
	OK or NG			
OK	>	GO TO 6.		
NG	>	GO TO 5.		

5	DETECT MALFUNCTIONING PART	
FueFueFue	Check the following. Fuel pump and circuit (Refer to EC-583.) Fuel pressure regulator (Refer to EC-51.) Fuel lines. Refer to MA-16, "Checking Fuel Lines". Fuel filter for clogging	
	•	Repair or replace.

6	6 CHECK MASS AIR FLOW SENSOR		
1. Ins 2. Ch	With CONSULT-II 1. Install all removed parts. 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. at idling: 2.5 - 5.0 g-m/sec at 2,500 rpm: 7.1 - 12.5 g-m/sec		
1. Ins 2. Ch	With GST 1. Install all removed parts. 2. Check mass air flow sensor signal in MODE 1 with GST. at idling: 2.5 - 5.0 g·m/sec at 2,500 rpm: 7.1 - 12.5 g·m/sec		
	OK or NG		
OK	OK ▶ GO TO 7.		
NG	NG Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-154.		


Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS (II) With CONSULT-II GI 1. Start engine. 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II. MA **ACTIVE TEST** POWER BALANCE MONITOR **ENG SPEED** XXX rpm MAS A/F SE-B1 xxx v LC IACV-AAC/V XXX step EC SEF190Y 3. Make sure that each circuit produces a momentary engine speed drop. FE Without CONSULT-II 1. Start engine. 2. Listen to each injector operating sound. MT STITUTE OF THE PARTY OF THE PAR AT AX Suitable tool MEC703B Clicking noise should be heard. OK or NG GO TO 8. OK NG Perform trouble diagnosis for "INJECTORS", EC-574. ST 8 **REMOVE INJECTOR** 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle. 2. Turn ignition switch "OFF". 3. Remove injector with fuel tube assembly. Refer to EC-51. BT Keep fuel hose and all injectors connected to injector gallery. The injector harness connectors should remain connected. HA GO TO 9. SC

Diagnostic Procedure (Cont'd)

9 CHECK INJECTOR

- 1. Disconnect all ignition wires.
- 2. Place pans or saucers under each injector.
- 3. Crank engine for about 3 seconds. Make sure that fuel sprays out from injectors.

Fuel should be sprayed evenly for each cylinder.

SEF595Q

OV.	CO TO 10

NG Replace injectors from which fuel does not spray out. Always replace O-ring with new one.

OK or NG

10	10 CHECK INTERMITTENT INCIDENT		
Р	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

On Board Diagnosis Logic

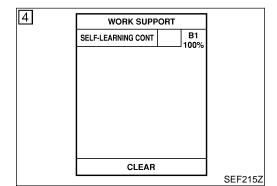
On Board Diagnosis Logic

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical

In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

$\mathbb{M}\mathbb{A}$	

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection & mixture ratio	Injectors	


EM

_	1.
=	

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0172	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

(G/L

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.

NCEC0193

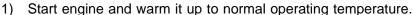
- Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.

Start engine again and let it idle for at least 10 minutes. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-282.

ST

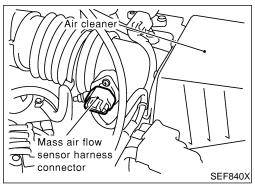
- If it is difficult to start engine at step 6, the fuel injection sys-
- tem has a malfunction. Crank engine while depressing accelerator pedal. If engine

SC


EL

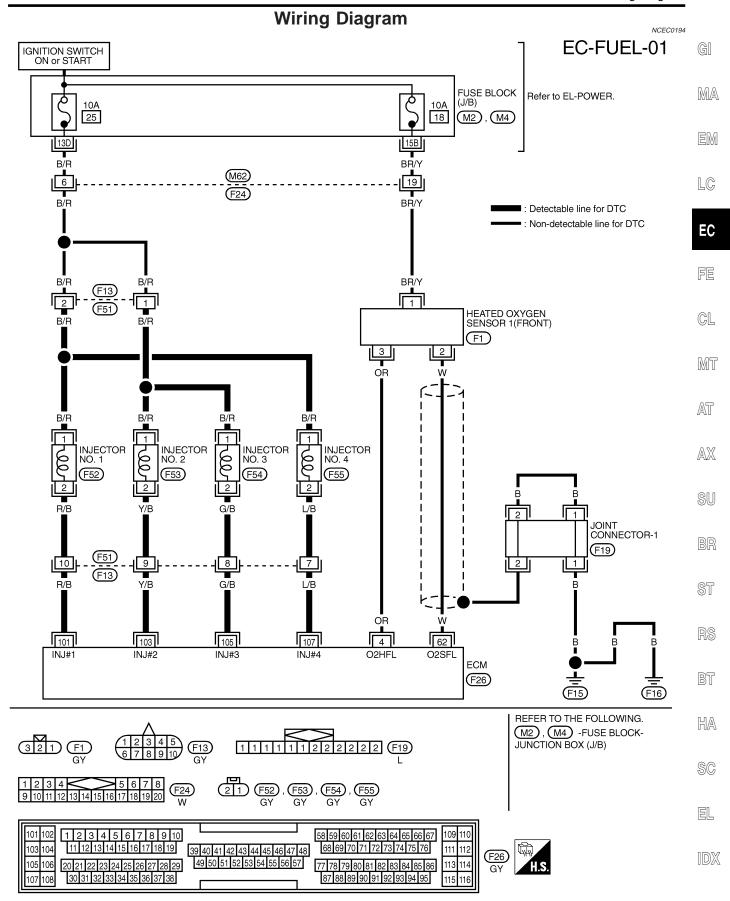
BT


starts, go to "Diagnostic Procedure", EC-282. If engine does not start, remove ignition plugs and check for fouling, etc.


HA

With GST

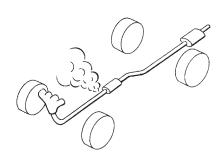
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is 5) detected.
- Select "MODE 4" with GST and erase the 1st trip DTC P0100.



DTC Confirmation Procedure (Cont'd)

- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists. If so, go to "Diagnostic Procedure", EC-282.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "Diagnostic Procedure", EC-282. If engine does not start, remove ignition plugs and check for fouling, etc.

Wiring Diagram

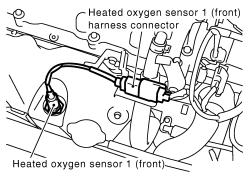

Diagnostic Procedure

Diagnostic Procedure

NCEC0195

1 CHECK FOR EXHAUST AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust air leak before the three way catalyst.


SEF099P

OK or NG

OK	GO TO 2.
NG	Repair or replace.

2 CHECK HEATED OXYGEN SENSOR 1 (FRONT) CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.

SEF917Z

3. Check harness continuity between ECM terminal 62 and HO2S1 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Check harness continuity between ECM terminal 62 (or HO2S1 terminal 2) and ground. Refer to Wiring Diagram.

Continuity should not exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 3.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

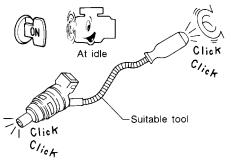
		Diagnostic Procedure (Cont	u)
3 CHEC	K FUEL PRESSU	JRE	7
	el pressure to zero	D.	GI
Refer to E0		nd check fuel pressure.	
At idling		id dileok idel pressure.	
		egulator valve vacuum hose is connected.	000
		kPa (2.4 kg/cm², 34 psi) egulator valve vacuum hose is disconnected.	
		kPa (3.0 kg/cm², 43 psi)	
		OK or NG	П /
OK	•	GO TO 5.	
NG	•	GO TO 4.	
			_ E
4 DETE	CT MALFUNCTIO	DNING PART	-
Check the foll			F
	and circuit (Refer t ire regulator (Refe		
• ruei piessu		· · · · · · · · · · · · · · · · · · ·	$+$ $_{\mathbb{G}}$
		Repair or replace.	┙
5 01150	V 14 4 0 0 4 1 D E1 4	OW OFNIGOR	\neg
	K MASS AIR FLO	OW SENSOR	
With CON	SULT-II emoved parts.		
		"DATA MONITOR" mode with CONSULT-II.	A
at idling	g: 2.5 - 5.0 g·m/se	ec e e e e e e e e e e e e e e e e e e	
at 2,500) rpm: 7.1 - 12.5 g	j·m/sec	A
With GST			+
	emoved parts.		S
		signal in MODE 1 with GST.	
	g: 2.5 - 5.0 g·m/se) rpm: 7.1 - 12.5 g		
u: 2 ,000		OK or NG	
OK		GO TO 6.	$+$ $_{\circ}$
NG			_ \$
NG		Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-154.	
			8
			F
			6
			8
			E

Diagnostic Procedure (Cont'd)

CHECK FUNCTION OF INJECTORS

With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.


ACTIVE TEST				
POWER BALANCE				
MONITOR				
ENG SPEED	XXX rpm			
MAS A/F SE-B1	xxx v			
IACV-AAC/V	XXX step			

SEF190Y

3. Make sure that each circuit produces a momentary engine speed drop.

⋈ Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

MEC703B

Clicking noise should be heard.

OK or NG

OK ►	GO TO 7.
NG ►	Perform trouble diagnosis for "INJECTORS", EC-575.

7 REMOVE INJECTOR

- 1. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 2. Turn ignition switch "OFF".
- 3. Remove injector assembly. Refer to EC-51.

Keep fuel hose and all injectors connected to injector gallery.

▶ GO TO 8.

8 CHECK INJECTOR

- 1. Disconnect all injector harness connectors.
- 2. Disconnect all ignition wires.
- 3. Prepare pans or saucers under each injectors.
- Crank engine for about 3 seconds.
 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip)	>	GO TO 9.
NG (Drips)	•	Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
► INSPECTION END			

G[

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

CL

MT

AT

 $\mathbb{A}\mathbb{X}$

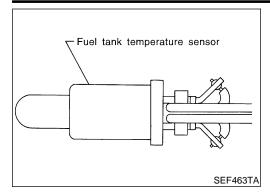
SU

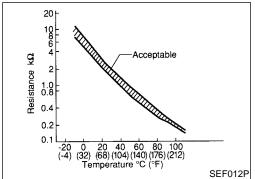
BR

ST

RS

BT


HA


SC

EL

DTC P0180 FUEL TANK TEMPERATURE SENSOR

Component Description

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} These data are reference values and are measured between ECM terminal 82 (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

			NCECUTA
DTC No. Malfunction is detected when		Malfunction is detected when	Check Items (Possible Cause)
 Rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature 		Rationally incorrect voltage is sent to ECM, compared	 Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX 'C

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

NOTE:

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-289.

DTC P0180 FUEL TANK TEMPERATURE SENSOR

DTC Confirmation Procedure (Cont'd)

If the result is OK, go to following step.

- 4) Check "COOLAN TEMP/S" signal. If the signal is less than 60°C (140°F), the result will be OK. If the signal is above 60°C (140°F), go to the following step.
- 5) Cool engine down until "COOLAN TEMP/S" signal is less than 60°C (140°F).
- 6) Wait at least 10 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-289.

LC

GI

MA

EM

With GST

Follow the procedure "With CONSULT-II" above.

FE

CL

MT

AT

AX

SU

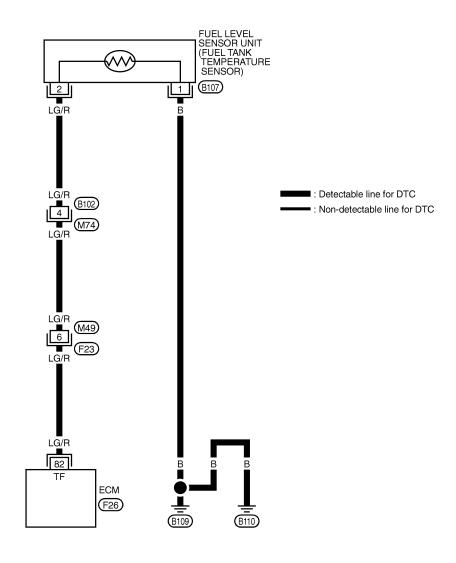
BR

ST

RS

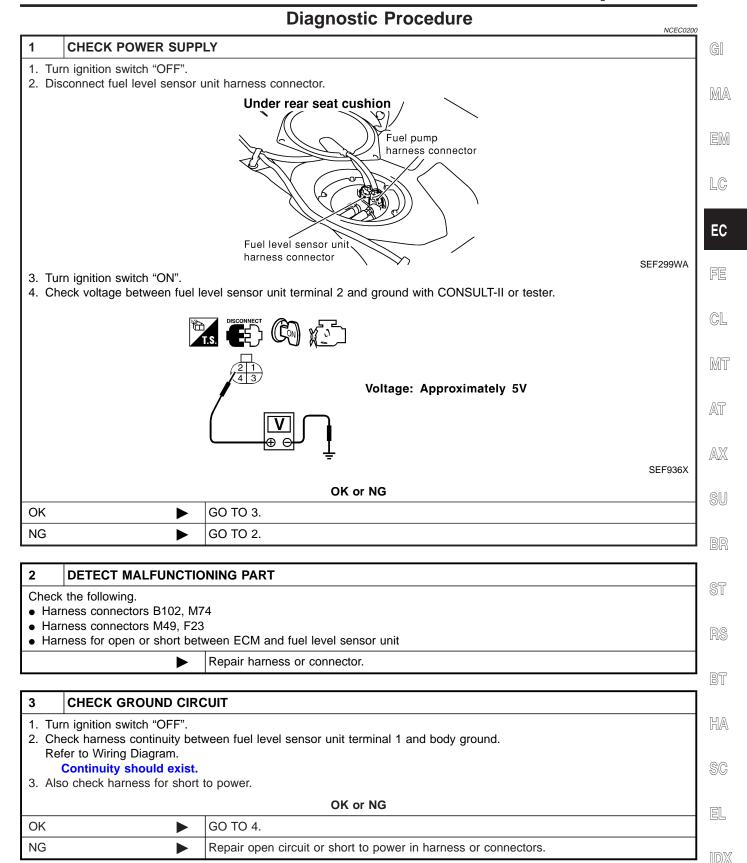
BT

HA


SC

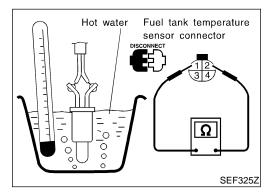
EL

Wiring Diagram


NCEC0199

EC-TFTS-01

TEC707



DTC P0180 FUEL TANK TEMPERATURE SENSOR

Diagnostic Procedure (Cont'd)

4	CHECK FUEL TANK TEMPERATURE SENSOR			
Refer to "Component Inspection", EC-290.				
		OK or NG		
OK	OK ▶ GO TO 5.			
NG	•	Replace fuel tank temperature sensor.		

5	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

Component Inspection FUEL TANK TEMPERATURE SENSOR

NCEC0201

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

System Description

System Description

COOLING FAN CONTROL

NCEC0505

				NCEC0505S01	(Gil
Sensor	Input Signal to ECM	ECM func- tion	Actuator		MA
Vehicle speed sensor	Vehicle speed				UVUZ=Z
Engine coolant temperature sensor	Engine coolant temperature				EM
Air conditioner switch	Air conditioner "ON" signal	Cooling fan control	Cooling fan relay(s)		
Ignition switch	Start signal				LC
Refrigerant pressure sensor	Refrigerant pressure				

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

EC

FE

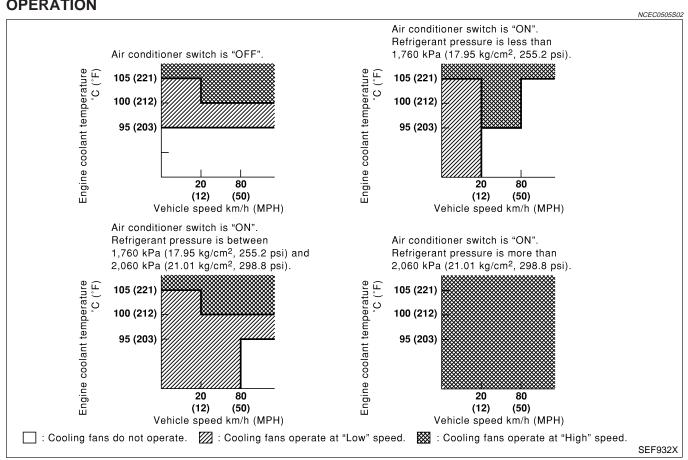
GL

MT

AT

AX

SU


ST

BT

HA

SC

OPERATION

CONSULT-II Reference Value in Data Monitor Mode NCEC0506

Specification data are reference values.

MONITOR ITEM

DN	SPECIFICATION	EL
conditioner switch: OFF	OFF	

Air c • Engine: After warming up, idle AIR COND SIG Air conditioner switch: ON the engine ON (Compressor operates)

CONDITIO

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	SPECIFICATION	
		Engine coolant temperature is 94°C (201°F) or less	OFF
COOLING FAN	After warming up engine, idle the engine.Air conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW
		Engine coolant temperature is 105°C (221°F) or more	HIGH

ECM Terminals and Reference Value

NCEC0643

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12 LG	1.0	Cooling for roley (High)	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
	LG	Cooling fan relay (High)	[Engine is running] ■ Cooling fan (High) is operating	0 - 0.6V
13	L/Y	L/Y Cooling fan relay (Low)	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
13			[Engine is running] • Cooling fan is operating	0 - 0.6V

On Board Diagnosis Logic

This diagnosis checks whether the engine coolant temperature is extraordinary high, even when the load is not heavy.

When malfunction is detected, the malfunction indicator lamp (MIL) will light up even in the first trip.

Malfunction is detected when engine coolant temperature is excessively high under normal engine speed.

Possible Cause

NCEC0508

- Harness or connectors (The cooling fan circuit is open or shorted)
- Cooling fan
- **Thermostat**
- Improper ignition timing
- Engine coolant temperature sensor
- Blocked radiator
- Blocked front end (Improper fitting of nose mask)

Possible Cause (Cont'd)

- Crushed vehicle frontal area (Vehicle frontal is collided but not repaired)
- Blocked air passage by improper installation of front fog lamp or fog lamps.

- Improper mixture ratio of coolant
- Damaged bumper

For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-308.

MA

CAUTION:

When a malfunction is indicated, be sure to replace the coolant. Refer to MA-14, "Changing Engine Coolant". Also, replace the engine oil. Refer to MA-18, "Changing Engine Oil".

Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-12, "Antifreeze Coolant Mixture Ratio".

2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

MT

Overall Function Check

AT

Use this procedure to check the overall function of the coolant overtemperature enrichment protection check, a DTC might not be confirmed.

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high-pressure fluid escaping from the radiator.

Wrap a thick cloth around the cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-II

Check the coolant level and mixture ratio (using coolant tester) in the reservoir tank and radiator.

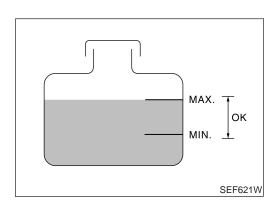
Allow engine to cool before checking coolant level and mixture ratio.

If the coolant level in the reservoir and/or radiator is below the proper range, go to "Diagnostic Procedure", EC-297.

If the coolant mixture ratio is out of the range of 45 to 55%, replace the coolant in the following procedure MA-14, "Changing Engine Coolant".

HA

Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant from a kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA-12,


"Anti-freeze Coolant Mixture Ratio". b) After refilling coolant, run engine to ensure that no water-flow

After checking or replacing coolant, go to step 3 below.

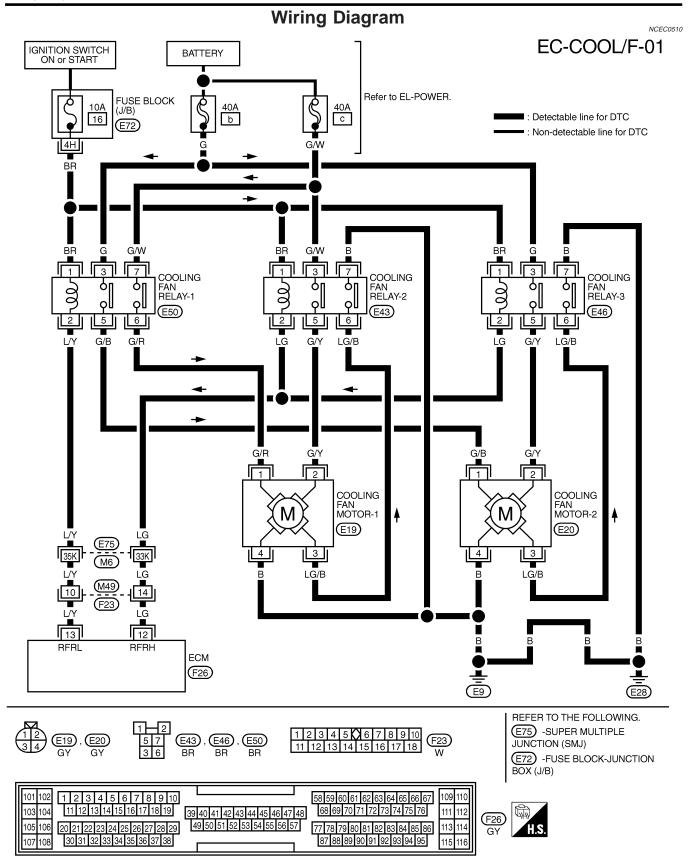
- Ask the customer if engine coolant has been added. If it has been added, go to "Diagnostic Procedure", EC-297. After repair, go to the next step.
- Start engine and let it idle.

noise is emitted.

Make sure that A/C switch is "OFF" and air conditioner is not

- operating. If NG, check air conditioner circuit. Refer to HA-23 or HA-140, "TROUBLE DIAGNOSES". After repair, go to the next step.
- 5) Perform "ENG COOLANT TEMP" in "ACTIVE TEST" mode with CONSULT-II.
- a) Set "ENG COOLANT TEMP" to 95°C (203°F) and make sure that cooling fan operates at low speed.
 If NG, go to "Diagnostic Procedure", EC-297.
- b) Set "ENG COOLANT TEMP" to 105°C (221°F) and make sure that cooling fan operates at high speed. If NG, go to "Diagnostic Procedure", EC-297. After repair, go to the next step.
- Check for blocked coolant passage.
- Warm up engine to normal operating temperature, then grasp radiator upper hose and lower hose and make sure that coolant flows.
 - If NG, go to "Diagnostic Procedure", EC-297. After repair, go to the next step.

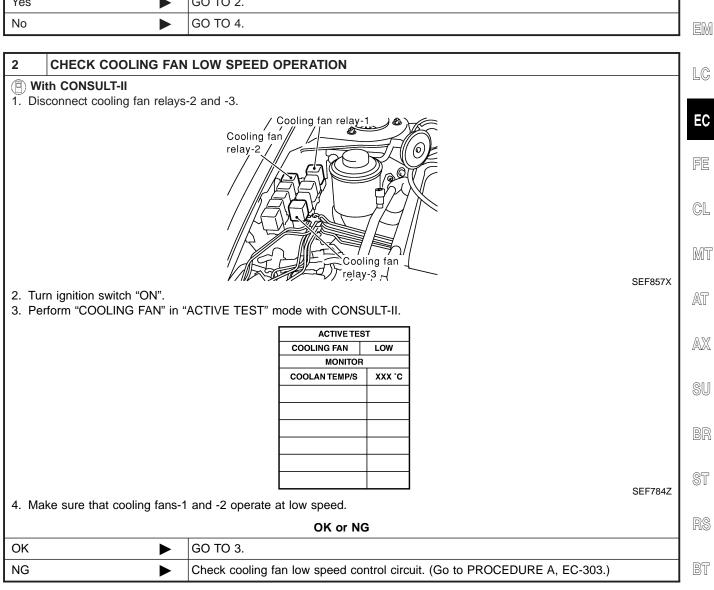
Be extremely careful not to touch any moving or adjacent parts.


- 7) Check for blocked radiator air passage.
- a) When market fog lamps have been installed, check for damaged fans and clogging in the condenser and radiator.
- b) Check the front end for clogging caused by insects or debris.
- c) Check for improper fitting of front-end cover, damaged radiator grille or bumper, damaged vehicle front.
 If NG, take appropriate action and then go to the next step.
- 8) Check function of ECT sensor. Refer to step 7 of "Diagnostic Procedure", EC-297. If NG, replace ECT sensor and go to the next step.
- 9) Check ignition timing. Refer to basic inspection, EC-107. Make sure that ignition timing is 15°±2° at idle. If NG, adjust ignition timing and then recheck.

® WITH GST

NCEC0509S02

- 1) Check the coolant level and mixture ratio (using coolant tester) in the reservoir tank and radiator.
 - Allow engine to cool before checking coolant level and mixture ratio.
- If the coolant level in the reservoir and/or radiator is below the proper range, and go to "Diagnostic Procedure", EC-297.
- If the coolant mixture ratio is out of the range of 45 to 55%, replace the coolant in the following procedure MA-14, "Changing Engine Coolant".
- a) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant from a kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA-12, "Anti-freeze Coolant Mixture Ratio".
- b) After refilling coolant, run engine to ensure that no water-flow noise is emitted.
- c) After checking or replacing coolant, go to step 3 below.
- 2) Ask the customer if engine coolant has been added. If it has been added, go to "Diagnostic Procedure", EC-297. After repair, go to the next step.
- Start engine and let it idle.
- 4) Make sure that A/C switch is "OFF" and air conditioner is not operating. If NG, check air conditioner circuit. Refer to HA-23 or HA-140, "TROUBLE DIAGNOSES". After repair, go to the next step.

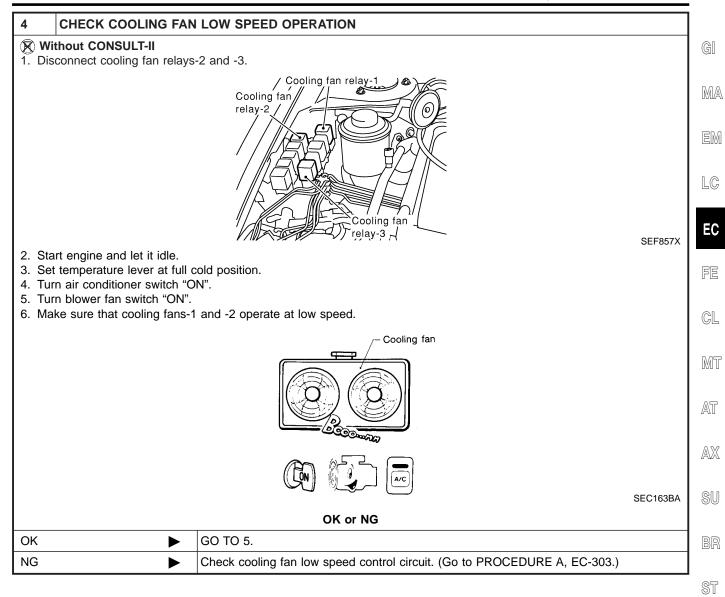

KII	EMPERATURE ENRICHMENT PROTECTION Overall Function Check (Cont'd)	
5)	Turn ignition switch "OFF"	
6)	Disconnect engine coolant temperature sensor harness connector.	GI
7) 8)	Connect 150Ω resistor to engine coolant temperature sensor. Start engine and make sure that cooling fan operates.	MA
	Be careful not to overheat engine. If NG, go to "Diagnostic Procedure", EC-297. After repair, go to the next step.	EM
9)	Check for blocked coolant passage.	
a)	Warm up engine to normal operating temperature, then grasp radiator upper hose and lower hose and make sure that cool- ant flows.	LC
	If NG, go to "Diagnostic Procedure", EC-297. After repair, go	
	to the next step. Be extremely careful not to touch any moving or adjacent parts.	EC
10)	Check for blocked radiator air passage.	FE
a) Î	When market fog lamps have been installed, check for damaged fans and clogging in the condenser and radiator.	GL
b)	Check the front end for clogging caused by insects or debris.	
c)	Check for improper fitting of front-end cover, damaged radiator grille or bumper, damaged vehicle front. If NG, take appropriate action and then go to the next step.	MT
11)	Check function of ECT sensor. Refer to step 6 of "Diagnostic Procedure", EC-297. If NG, replace ECT sensor and go to the next step.	AT
12)	Check ignition timing. Refer to basic inspection, EC-107. Make sure that ignition timing is 15°±2° at idle. If NG, adjust ignition timing and then recheck.	$\mathbb{A}\mathbb{X}$
		SU
		BR
		ST
		RS
		BT
		HA
		SC
		EL

Diagnostic Procedure

HA

SC

3	CHECK COOLING FAN	HIGH SPEED OPER	ATION			
1. Turr 2. Rec 3. Disc 4. Turr	 With CONSULT-II Turn ignition switch "OFF". Reconnect cooling fan relays-2 and -3. Disconnect cooling fan relay-1. Turn ignition switch "ON". Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II. 					
			ACTIVE TEST	Г		
		coo	LING FAN	HIGH		
			MONITOR			
		cool	LANTEMP/S	XXX °C		
	SEF785Z					
6. Mał	6. Make sure that cooling fans-1 and -2 operate at higher speed than low speed.					
			OK or NG	i		
ОК	>	GO TO 6.				
NG		Check cooling fan higl	h speed co	ntrol cire	cuit. (Go to PROCEDURE B. EC-306.)	

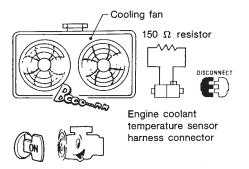

Diagnostic Procedure (Cont'd)

BT

HA

SC

EL



Diagnostic Procedure (Cont'd)

CHECK COOLING FAN HIGH SPEED OPERATION

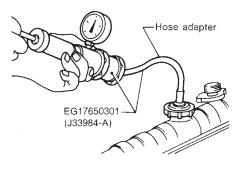
Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Reconnect cooling fan relays-2 and -3.
- 3. Disconnect cooling fan relay-1.
- 4. Turn air conditioner switch and blower fan switch "OFF".
- 5. Disconnect engine coolant temperature sensor harness connector.
- 6. Connect 150Ω resistor to engine coolant temperature sensor harness connector.
- 7. Restart engine and make sure that cooling fans-1 and -2 operate at higher speed than low speed.

MEF613EA

OK or NG

OK		GO TO 6.
NG		Check cooling fan high speed control circuit. (Go to PROCEDURE B, EC-306.)


CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage.

SLC754A

Pressure should not drop.

OK or NG

OK ►	GO TO 8.
NG ►	GO TO 7.

EC-300

7 DETECT MALFUNCTIONING PART

Check the following for leak.

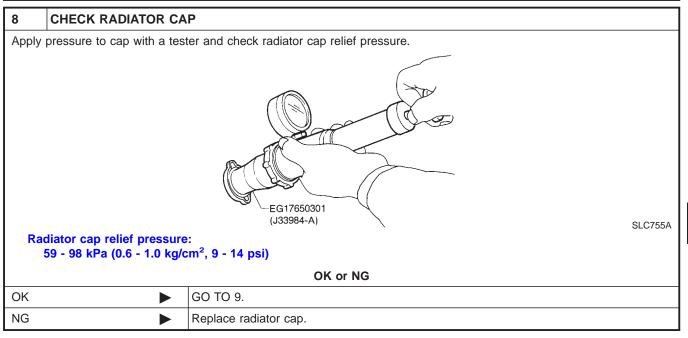
- Hose
- Radiator
- Water pump (Refer to LC-10, "Water Pump".)

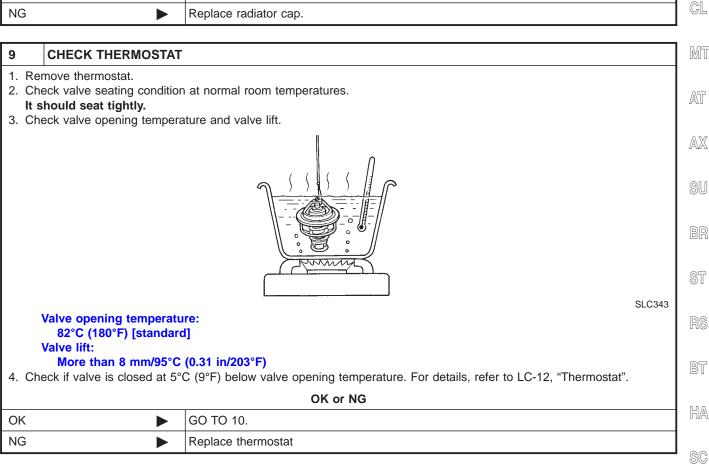
Repair or replace.

Diagnostic Procedure (Cont'd)

GI

MA


LC


EC

FE

EL

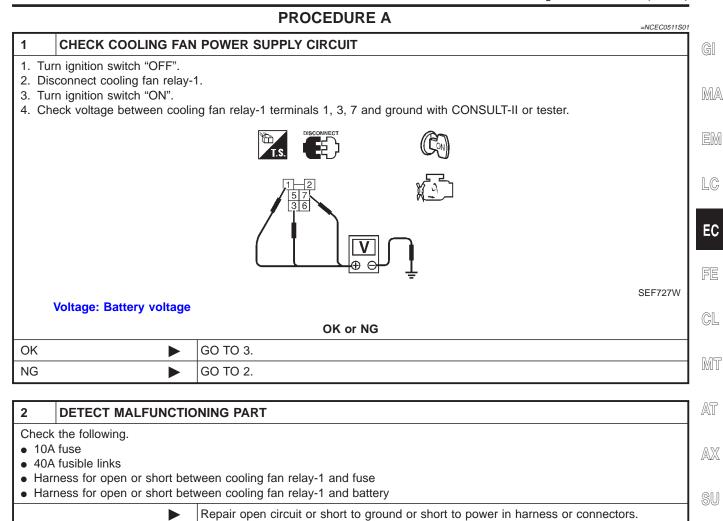
[DX

Diagnostic Procedure (Cont'd)

CHECK ENGINE COOLANT TEMPERATURE SENSOR 1. Remove engine coolant temperature sensor. 2. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure. <Reference data> Resistance $k\Omega$ Temperature °C (°F) 2.1 - 2.9 20 (68) 0.68 - 1.00 50 (122) 90 (194) 0.236 - 0.260 Resistance kΩ Acceptable 0.2 20 40 60 80 100 (68) (104) (140) (176) (212) 0 (32) Temperature °C (°F) SEF304X OK or NG OK GO TO 11. NG Replace engine coolant temperature sensor.

11	CHECK MAIN 12 CAUSES		
If the	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-308.		
► INSPECTION END			

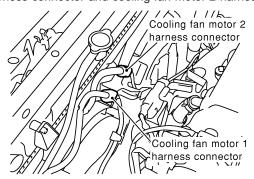
Diagnostic Procedure (Cont'd)


ST

BT

HA

SC


EL

Diagnostic Procedure (Cont'd)

CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

SEF854X

3. Check harness continuity between cooling fan relay-1 terminal 6 and cooling fan motor-1 terminal 1, cooling fan motor-1 terminal 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-1 terminal 5 and cooling fan motor-2 terminal 1, cooling fan motor-2 terminal 4 and body ground. Refer to Wiring Diagram.

Continuity should exist.

6. Also check harness for short to ground and short to power.

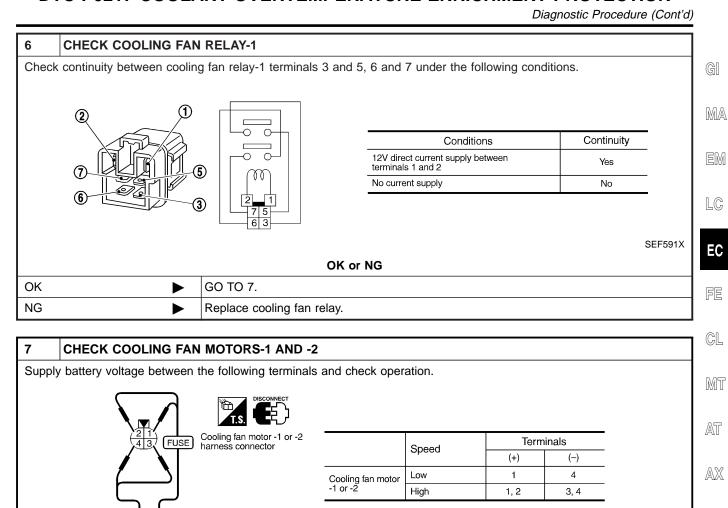
0	K	or	N	G

OK •	GO TO 4.
NG •	Repair open circuit or short to ground or short to power in harness or connectors.

CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 13 and cooling fan relay-1 terminal 2. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK or NG


OK	•	GO TO 6.
NG		GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, M6
- Harness connectors M49, F23
- Harness for open or short between cooling fan relay-1 and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

		SEF937X	
OK or NG			
ОК	>	GO TO 8.	
NG	>	Replace cooling fan motors.	

8	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

EL IDX

SU

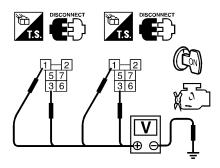
BR

ST

BT

HA

SC


Diagnostic Procedure (Cont'd)

PROCEDURE B

=NCEC0511S02

1 CHECK COOLING FAN POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan relays-2 and -3.
- 3. Turn ignition switch "ON".
- 4. Check voltage between cooling fan relays-2 and -3 terminals 1, 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF593X

OK or NG

OK	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between cooling fan relays-2 and -3 and fuse
- Harness for open or short between cooling fan relays-2 and -3 and fusible link

Repair harness or connectors.

3 CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- Check harness continuity between cooling fan relay-2 terminal 5 and cooling fan motor-1 terminal 2, cooling fan relay-2 terminal 6 and cooling fan motor-1 terminal 3, cooling fan relay-2 terminal 7 and body ground. Refer to Wiring Diagram.
 Continuity should exist.
- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-3 terminal 5 and cooling fan motor-2 terminal 2, cooling fan relay-3 terminal 6 and cooling fan motor-2 terminal 3, cooling fan relay-3 terminal 7 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 6. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 4.
NG		Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK COOLING FAN OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 12 and cooling fan relay-2 terminal 2, cooling fan relay-3 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

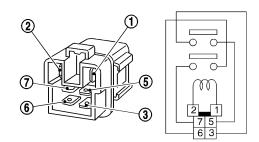
3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ▶	GO TO 5.

Diagnostic Procedure (Cont'd)

DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors E75, M6
- Harness connectors M49, F23
- Harness for open or short between cooling fan relays-2 and -3 and ECM

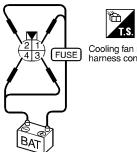
Repair open circuit or short to ground or short to power in harness or connectors.

6 **CHECK COOLING FAN RELAYS-2 AND -3**

Check continuity between cooling fan relay-2, -3 terminals 3 and 5, 6 and 7 under the following conditions.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

SEF591X


OK or NG

OK GO TO 7.

NG Replace cooling fan relays.

CHECK COOLING FAN MOTORS-1 AND -2

Supply battery voltage between the following terminals and check operation.

	Speed	Terminals		
	Speed	(+)	(-)	
Cooling fan motor -1 or -2	Low	1	4	
	High	1, 2	3, 4	

SEF937X

OK or NG

OK	>	GO TO 8.
NG	▶	Replace cooling fan motors.

8 CHECK INTERMITTENT INCIDENT			
Perform	m "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT"	FC-1/	

INSPECTION END

GI

MA

EM

LC

EC

FE

GL

MT

AT

AX

SU

ST

BT

HA

SC

EL

[DX

Main 12 Causes of Overheating

Main 12 Causes of Overheating NCEC0512 Standard Engine Step Inspection item Equipment Reference page OFF 1 Blocked radiator Visual No blocking • Blocked condenser • Blocked radiator grille • Blocked bumper 2 Coolant mixture Coolant tester 50 - 50% coolant mixture See MA-11, "RECOM-MENDED FLUIDS AND LUBRICANTS". 3 Coolant level Visual Coolant up to MAX level See MA-14, "Changing Engine Coolant". in reservoir tank and radiator filler neck 59 - 98 kPa See LC-9, "System 4 • Radiator cap Pressure tester (0.6 - 1.0 kg/cm², 9 - 14 Check". psi) (Limit) ON*2 5 Coolant leaks Visual See LC-9, "System No leaks Check". ON*2 6 Both hoses should be See LC-12, "Thermostat" Thermostat • Touch the upper and lower radiator hoses and LC-14, "Radiator". ON*17 CONSULT-II See trouble diagnosis for · Cooling fan Operating DTC P0217 (EC-291). **OFF** 8 · Color checker chemi- Combustion gas leak Negative cal tester 4 Gas analyzer ON*3 9 Visual • Coolant temperature Gauge less than 3/4 gauge when driving Coolant overflow to Visual No overflow during driv-See MA-14, "Changing reservoir tank Engine Coolant". ing and idling OFF*4 10 Coolant return from Visual Should be initial level in See MA-13, "ENGINE reservoir tank to radiareservoir tank MAINTENANCE". OFF 11 Cylinder head Straight gauge feeler 0.1 mm (0.004 in) Maxi-See EM-36, "Inspection". gauge mum distortion (warping) 12 • Cylinder block and pis-No scuffing on cylinder See EM-59, "Inspection". Visual

walls or piston

For more information, refer to LC-15, "OVERHEATING CAUSE ANALYSIS".

^{*1:} Turn the ignition switch ON.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

On Board Diagnosis Logic

On Board Diagnosis Logic

When a misfire occurs, engine speed will fluctuate (vary). If the engine speed fluctuates enough to cause the CKP sensor to vary, ECM can detect a misfire.

Sensor	Input Signal to ECM	ECM function	. התה
Crankshaft position sensor (OBD)	Engine speed	On board diagnosis of misfire	MA

The misfire detection logic consists of the following two conditions.

1. One Trip Detection Logic (Three Way Catalyst Damage)

On the first rip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor (OBD) signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

2. Two Trip Detection Logic (Exhaust quality deterioration) For misfire conditions that will not cause damage to the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor (OBD) signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on-multiple cylinders.

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	LIV.
P0300	Multiple cylinders misfire.	Improper spark plug Insufficient compression	A
P0301	No. 1 cylinder misfires.	Incorrect fuel pressure EGR volume control valve The injector circuit is open or shorted	A
P0302	No. 2 cylinder misfires.	Injectors Intake air leak	
P0303	No. 3 cylinder misfires.	The ignition secondary circuit is open or shorted Lack of fuel Drive plate/Flywheel	SI
P0304	No. 4 cylinder misfires.	Heated oxygen sensor 1 (front) Incorrect distributor roter	B

4	DATA M	DATA MONITOR		
	MONITOR	NO DTC		
	ENG SPEED	XXX rpm]	
			SEF058Y	

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

- Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine again and drive at 1,500 to 3,000 rpm for at least

Hold the accelerator pedal as steady as possible.

Refer to the freeze frame data for the test driving conditions.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-310.

With GST

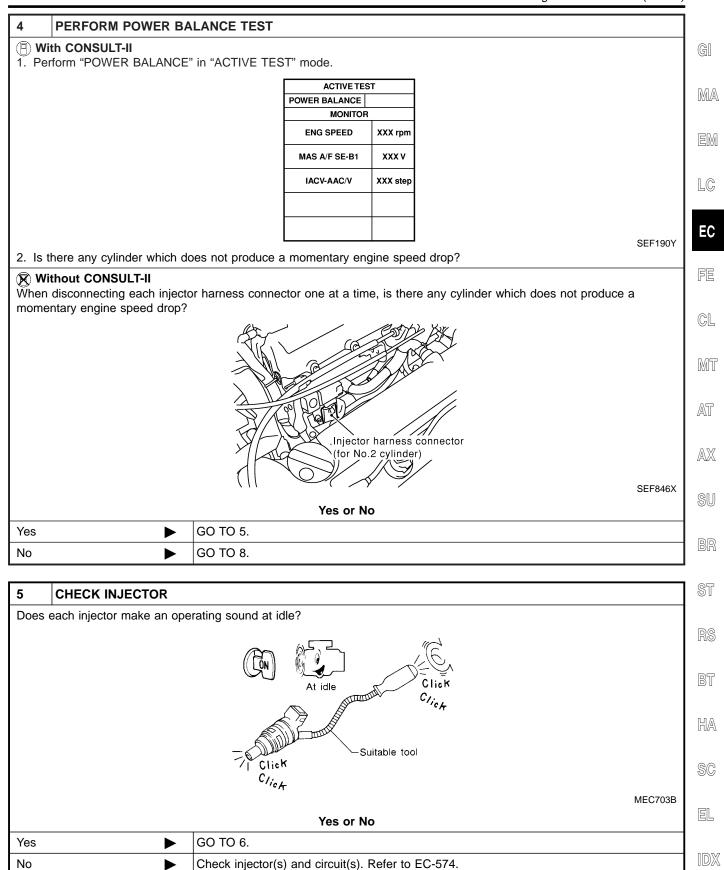
Follow the procedure "With CONSULT-II" above.

EC

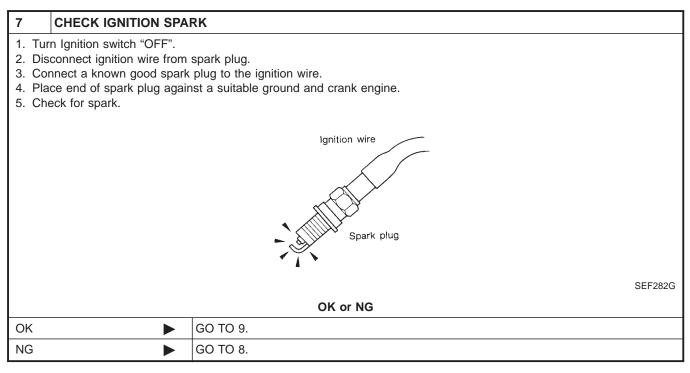
LC

MT

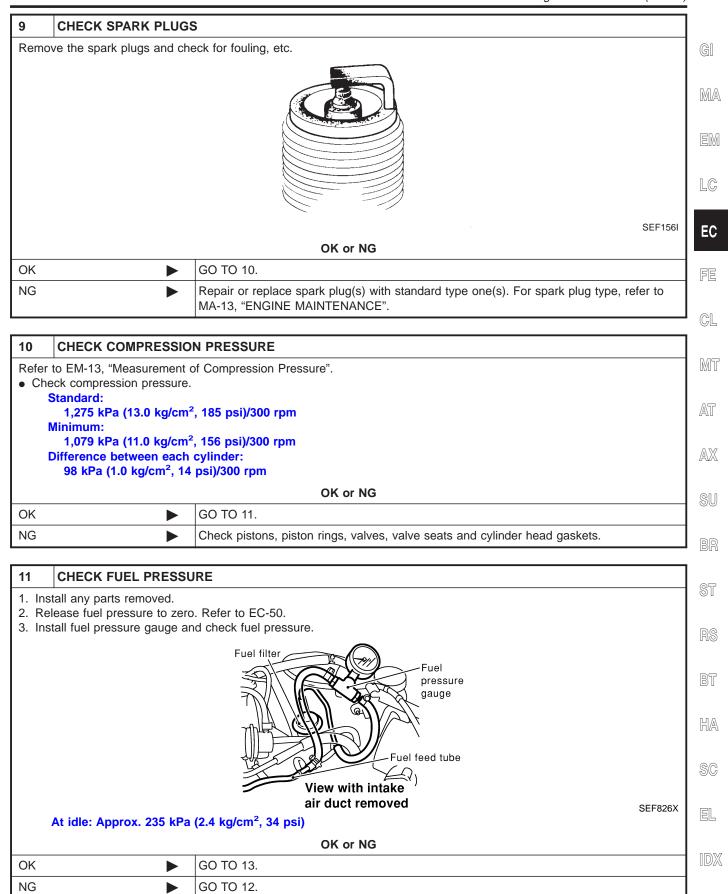
NCEC0203



Diagnostic Procedure


Diagnostic Procedure 1 CHECK FOR INTAKE AIR LEAK 1. Start engine and run it at idle speed. 2. Listen for the sound of the intake air leak. OK or NG OK Discover air leak location and repair.

2	CHECK FOR EXHAUST SYSTEM CLOGGING		
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.			
	OK or NG		
OK	OK ▶ GO TO 3.		
NG	>	Repair or replace it.	


3	CHECK EGR FUNCTION			
	Perform DTC Confirmation Procedure for DTC P1402 EGR FUNCTION (OPEN). Refer to EC-481.			
	OK or NG			
OK	OK ▶ GO TO 4.			
NG	>	Repair EGR system.		

6	CHECK IGNITION SIGNAL CIRCUIT		
Refer to "Diagnostic Procedure", EC-569.			
OK or NG			
OK	OK ▶ GO TO 7.		
NG	•	Repair or replace malfunctioning parts.	

8	CHECK IGNITION WIRES		
Refer to "Component Inspection", EC-315.			
	OK or NG		
OK	-	Check distributor rotor head for incorrect parts. Check ignition coil, power transistor and their circuits. Refer to EC-566.	
NG	>	Replace.	

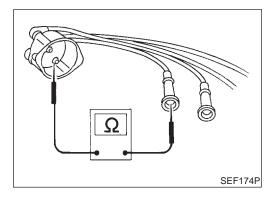
Diagnostic Procedure (Cont'd)

12 DETECT MALFUNCTIONING PART Check the following. • Fuel pump and circuit (Refer to EC-583.) • Fuel pressure regulator (Refer to EC-51.) • Fuel lines. Refer to MA-16, "Checking Fuel Lines". • Fuel filter for clogging

Repair or replace.

13	3 CHECK IGNITION TIMING		
Perfor	Perform "Basic Inspection", EC-107.		
	OK or NG		
OK	•	GO TO 14.	
NG	>	Adjust ignition timing.	

14	4 CHECK HEATED OXYGEN SENSOR 1 (FRONT)		
Refer	Refer to "Component Inspection", EC-202.		
	OK or NG		
OK	>	GO TO 15.	
NG	>	Replace heated oxygen sensor 1 (front).	


15	CHECK MASS AIR FLO	OW SENSOR	
Checl at	With CONSULT-II Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. at idling: 2.5 - 5.0 g-m/sec at 2,500 rpm: 7.1 - 12.5 g-m/sec		
Čhecl at	With GST Check mass air flow sensor signal in MODE 1 with GST. at idling: 2.5 - 5.0 g-m/sec at 2,500 rpm: 7.1 - 12.5 g-m/sec		
	OK or NG		
ОК	OK ▶ GO TO 17.		
NG	NG GO TO 16.		

16	CHECK CONNECTORS		
	Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or engine grounds. Refer to EC-154.		
	OK or NG		
NG	NG Repair or replace it.		

17	17 CHECK SYMPTOM MATRIX CHART	
Check items on the rough idle symptom in "Symptom Matrix Chart", EC-125.		
OK or NG		
ОК	>	GO TO 18.
NG	•	Repair or replace.

Diagnostic Procedure (Cont'd)

18	ERASE THE 1ST TRIP	DTC	
	tests may cause a 1st trip the 1st trip DTC from the	DTC to be set. ECM memory after performing the tests. Refer to EC-79.	GI
	>	GO TO 19.	
19	CHECK INTERMITTEN	T INCIDENT	
Perfor	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-146.	EM
	•	INSPECTION END	1

Component Inspection IGNITION WIRES

NCEC0205

....

Inspect wires for cracks, damage, burned terminals and for improper fit.

2. Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks.

Resistance:

13.6 - 18.4 kΩ/m (4.15 - 5.61 kΩ/ft) at 25°C (77°F)

If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

EC

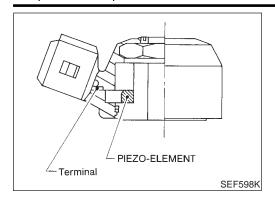
MT

GL

AX

AT

SU


ST

HA

BT

SC

EL

Component Description

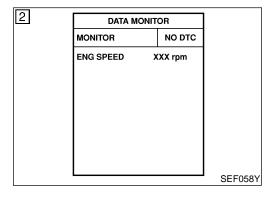
The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM. Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction. The knock sensor has one trip detection logic.

ECM Terminals and Reference Value

NCEC0207

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
81	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V

On Board Diagnosis Logic

NCEC0208

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0325	An excessively low or high voltage from the knock sensor is sent to ECM.	Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor

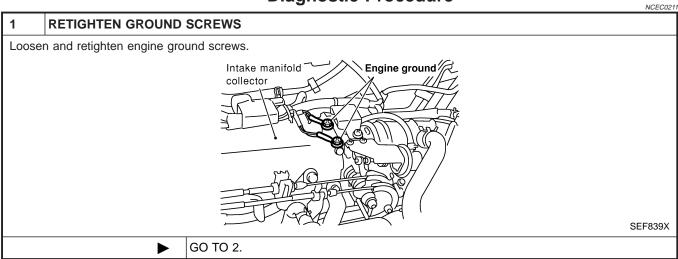
DTC Confirmation Procedure

NOTE:

NCEC0209

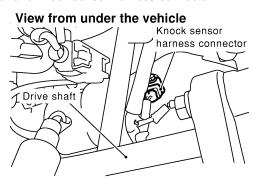
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

- (P) With CONSULT-II
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 10 seconds at idle speed.
- 3) If DTC is detected, go to "Diagnostic Procedure", EC-318.
- **With GST**

Follow the procedure "With CONSULT-II" above.


Wiring Diagram NCEC0210 EC-KS-01 GI MA ECM (F26) KNK 81 LC EC FE GL : Detectable line for DTC MT : Non-detectable line for DTC AT AXSU BR 2 KNOCK SENSOR ST E131 RS BT HA 2 1 E131 B SC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 58 59 60 61 62 63 64 65 66 67 103 104 68 69 70 71 72 73 74 75 76 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 EL F26 GY 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 105 106 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Diagnostic Procedure

2 CHECK INPUT SIGNAL CIRCUIT-1

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and knock sensor harness connector.

SEF856X

Check harness continuity between knock sensor terminal 1 and ECM terminal 81. Refer to Wiring Diagram.

Continuity should exist.

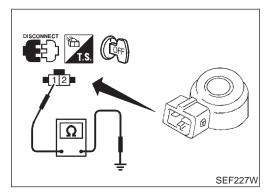
4. Also check harness for short to ground and short to power.

ΟK	or	NG

OK •	GO TO 4.
NG	GO TO 3.

3 DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors F6, E123
- Harness for open or short between knock sensor and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

DTC P0325 KNOCK SENSOR (KS)

Diagnostic Procedure (Cont'd)

5	CHECK SHIELD CIR	CUIT	
	connect harness conne		
	sconnect harness conne	ctors F6, E123. between harness connector E123 terminal 2 and engine ground.	
Re 4. Als	fer to Wiring Diagram. Continuity should exists of check harness for sheen reconnect harness of	ort to power.	
		OK or NG	
OK	•	GO TO 6.	
NG	•	Repair open circuit or short to power in harness or connecto	rs.

6	CHECK INTERMITTENT INCIDENT	
Perfori	m "TROUBLE DIAGNOSIS	FOR INTERMITTENT INCIDENT", EC-146.
	>	INSPECTION END

Component Inspection KNOCK SENSOR

NCEC0212

20212501

• Use an ohmmeter which can measure more than 10 $\stackrel{\text{\tiny MOL}}{\Omega}$.

1. Disconnect knock sensor harness connector.

Check resistance between terminal 1 and ground.

Resistance: 500 - 620 kΩ [at 20°C (68°F)]

CAUTION:

Discard any knock sensors that have been dropped or physically damaged. Use only new ones.

SU BR

AX

GI

MA

LC

EC

FE

GL

MT

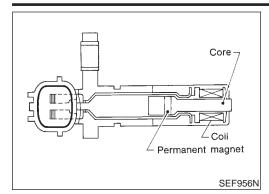
ST

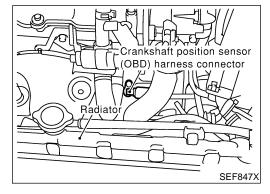
9 11

RS

BT

HA


SC


EL

 $\mathbb{D}\mathbb{X}$

DTC P0335 CRANKSHAFT POSITION SENSOR (CKPS) (OBD)

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transaxle housing facing the gear teeth (cogs) of the flywheel or drive plate

housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

ECM Terminals and Reference Value

NCEC0214

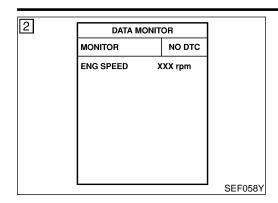
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			· · · · · · · · · · · · · · · · · · ·	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
		Crankshaft position	[Engine is running] • Warm-up condition • Idle speed	3 - 5V (V) 20 10 0.2 ms SEF721W
65	W	sensor (OBD)	[Engine is running] ● Engine speed is 2,000 rpm	6 - 9V (V) 20 10 0.2 ms SEF722W

On Board Diagnosis Logic


NCEC021

		NGEG0213
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0335	The proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed.	

DTC P0335 CRANKSHAFT POSITION SENSOR (CKPS) (OBD)

(P) With CONSULT-II

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

ted. Gl

NCEC0216

плл

MA

EM

with CONSULT-II.
) Start engine and run it for at least 10 seconds at idle speed.

Turn ignition switch "ON" and select "DATA MONITOR" mode

3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-323.

LC

With GST

Follow the procedure "With CONSULT-II" above.

EC

FE

CL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

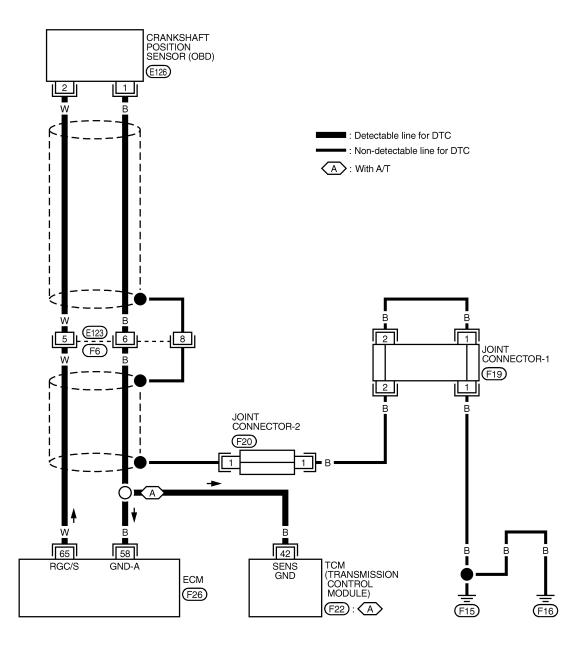
BR

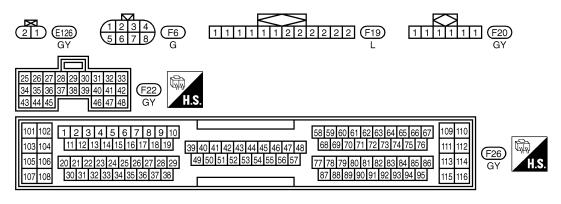
ST

29

BT

HA

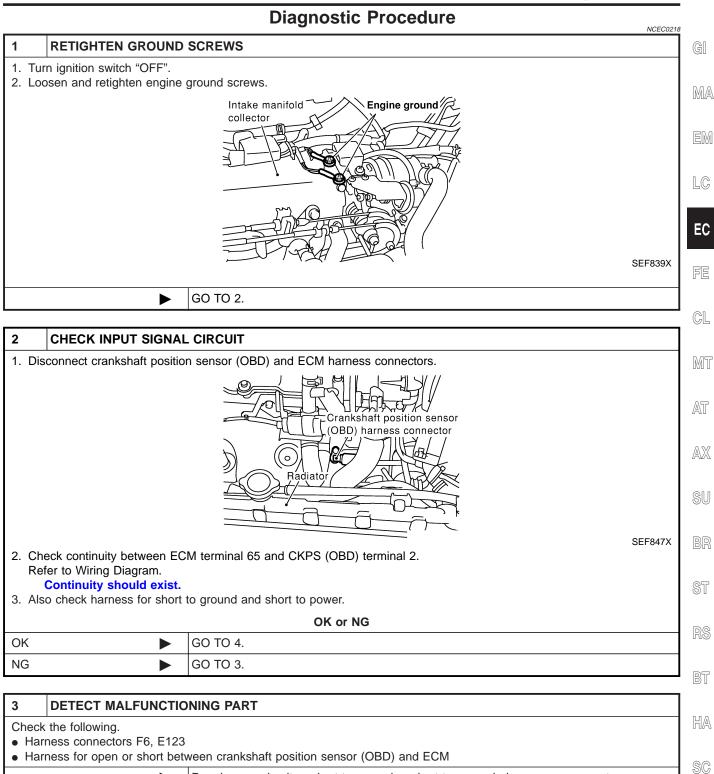

SC


EL

Wiring Diagram

NCEC0217

EC-CKPS-01



DTC P0335 CRANKSHAFT POSITION SENSOR (CKPS) (OBD)

Diagnostic Procedure

EL

[DX

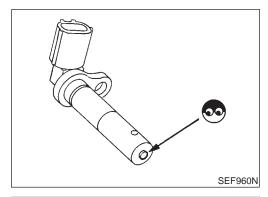
Repair open circuit or short to ground or short to power in harness or connectors.

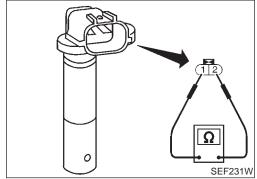
DTC P0335 CRANKSHAFT POSITION SENSOR (CKPS) (OBD)

Diagnostic Procedure (Cont'd)

5	DETECT MALFUNCTIO	NING PART	
	Check the following. • Harness connectors F6, E123		
• Har	ness for open or short betw	ween crankshaft position sensor (OBD) and ECM ween crankshaft position sensor (OBD) and TCM (Transmission control module)	
	•	Repair open circuit or short to power in harness or connectors.	

•	OUEOK OUUEL D OIDOL		
6	CHECK SHIELD CIRCU	u I	
2. Che Ref 3. Also	connect harness connecto eck harness continuity between the Wiring Diagram. Continuity should exist. To check harness for short on reconnect harness connect harness connect harness connect harness connect harness connect	veen harness connector F6 terminal 8 and engine ground.	
	OK or NG		
OK	>	GO TO 8.	
NG	•	GO TO 7.	


7	DETECT MALFUNCTIO	NING PART
HarJoir	,	er to EL-314, "HARNESS LAYOUT".) ween harness connector F6 and Engine ground
	•	Repair open circuit or short to power in harness or connectors.


8	8 CHECK CRANKSHAFT POSITION SENSOR (OBD)	
Refer to "Component Inspection", EC-325.		
OK or NG		
ОК	>	GO TO 9.
NG	>	Replace crankshaft position sensor (OBD).

DTC P0335 CRANKSHAFT POSITION SENSOR (CKPS) (OBD)

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

Component Inspection CRANKSHAFT POSITION SENSOR (OBD)

NCEC0219

NCEC0219S01 Disconnect crankshaft position sensor (OBD) harness connec-

2. Loosen the fixing bolt of the sensor.

3. Remove the sensor.

Visually check the sensor for chipping.

GL

MT

GI

MA

LC

EC

FE

5. Check resistance as shown in the figure.

Resistance: 166 - 204 Ω [at 20°C (68°F)]

If NG, replace crankshaft position sensor (OBD).

AX

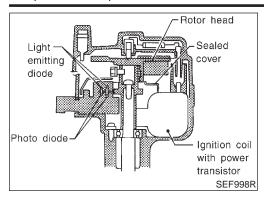
AT

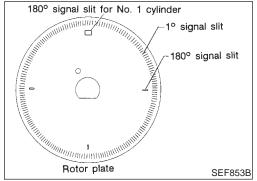
SU

BR

ST

RS


BT


HA

SC

EL

Component Description

Component Description

The camshaft position sensor is a basic component of the engine control system. It monitors engine speed and piston position. These input signals to the engine control system are used to control fuel injection, ignition timing and other functions.

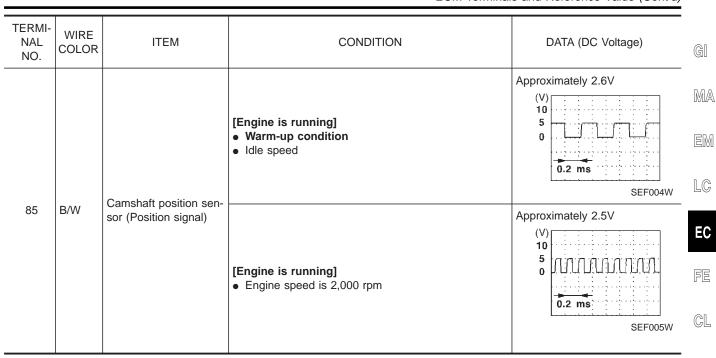
The camshaft position sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for a 1° (POS) signal and 4 slits for a 180° (REF) signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

ECM Terminals and Reference Value

NCEC0221


Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
66	L	Camshaft position sensor (Reference signal)	[Engine is running] • Warm-up condition • Idle speed	0.1 - 0.4V (V) 10 5 0 10 ms SEF006W
75	L		[Engine is running] • Engine speed is 2,000 rpm	0.1 - 0.4V (V) 10 5 0 10 ms SEF007W

ECM Terminals and Reference Value (Cont'd)

On Board Diagnosis Logic

	MT
NCEC0222	

DTC No.	Malfunction is detected when		Check Items (Possible Cause)	
P0340	A)	Either 1° or 180° signal is not sent to ECM for the first few seconds during engine cranking.	Harness or connectors (The camshaft position sensor circuit is open or	-
	В)	Either 1° or 180° signal is not sent to ECM often enough while the engine speed is higher than the specified engine speed.	 shorted.) Camshaft position sensor Starter motor (Refer to SC-10, "STARTING SYSTEM".) 	
	C)	The relation between 1° and 180° signal is not in the normal range during the specified engine speed.	Starting system circuit (Refer to SC-10, "STARTING SYSTEM".) Dead (Weak) battery	

DTC Confirmation Procedure

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B and C".

ST

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

BT

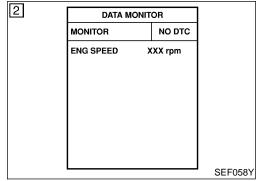
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V.

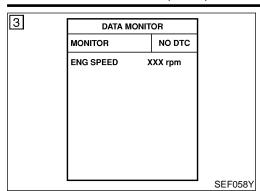
HA

SC

EL


PROCEDURE FOR MALFUNCTION A DATA MONITOR (P) With CONSULT-II NO DTC

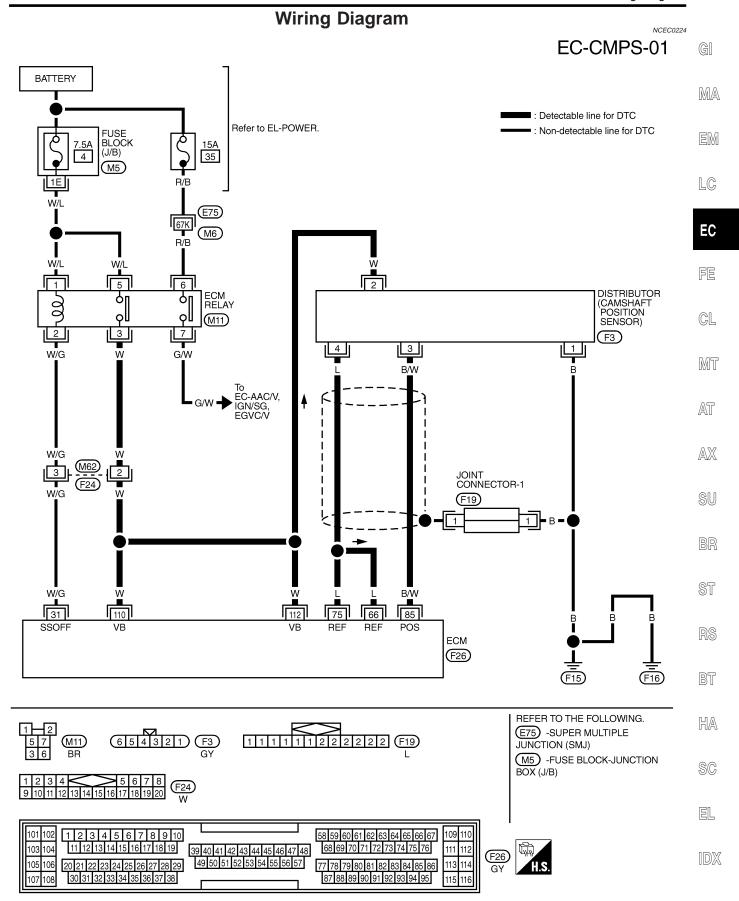
NCEC0223S01


- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", IDX EC-330.

(a) With GST

Follow the procedure "With CONSULT-II" above.

DTC Confirmation Procedure (Cont'd)



PROCEDURE FOR MALFUNCTION B AND C

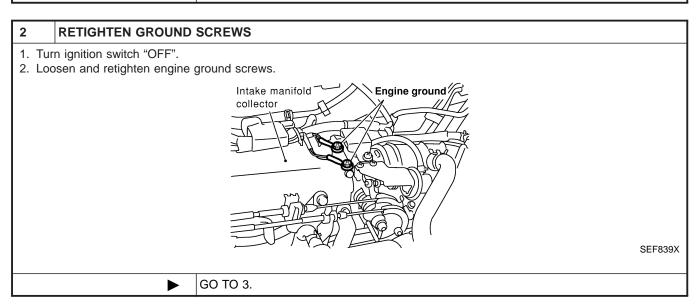
NCEC0223S02

- (I) With CONSULT-II
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-330.
- With GST

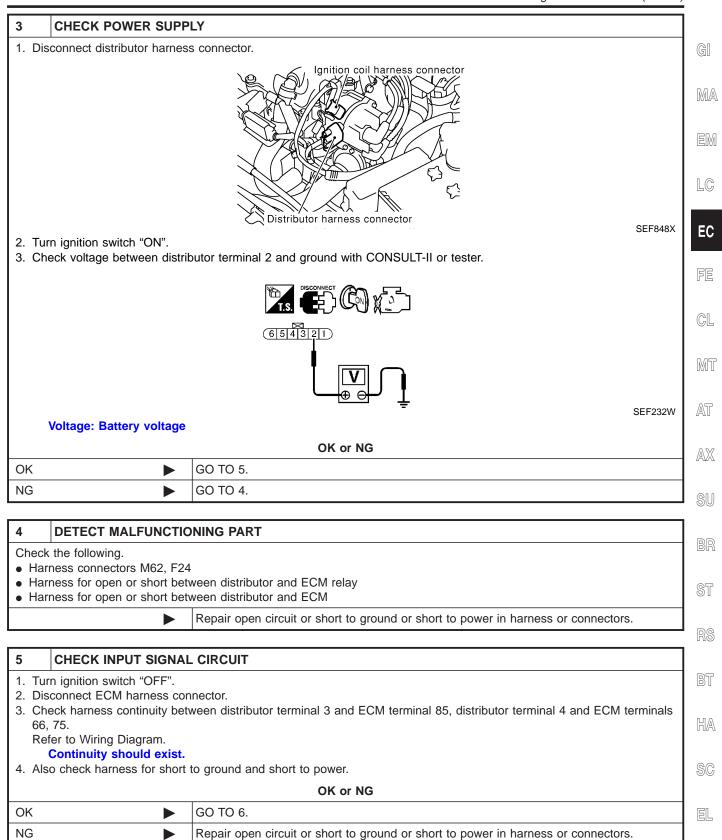
Follow the procedure "With CONSULT-II" above.

Yes or No

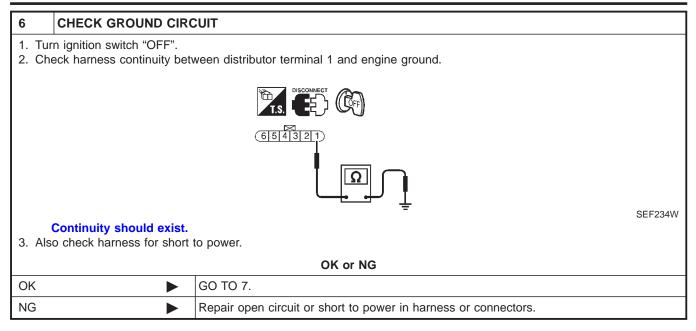
Diagnostic Procedure


Does the engine turn over? (Does the starter motor operate?)

Diagnostic Procedure

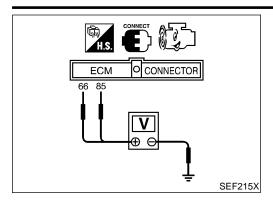

Yes ▶ GO TO 2.

CHECK STARTING SYSTEM


No Check starting system. (Refer to SC-10, "STARTING SYSTEM".)

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)



7	CHECK CAMSHAFT POSITION SENSOR			
Refer	Refer to "Component Inspection", EC-333.			
		OK or NG		
OK	>	GO TO 8.		
NG	>	Replace camshaft position sensor.		

8	CHECK SHIELD CIRCU	IT	
1. Tur	n ignition switch "OFF".		
2. Dis	connect joint connector-1.		
3. Ch	eck the following.		
Con	tinuity between joint conne	ctor-1 terminal 1 and ground	
Refe	er to Wiring Diagram.		
Join	t connector-1		
(Ref	fer to EL-314, "HARNESS	LAYOUT".)	
	Continuity should exist.		
	o check harness for short t	·	
5. The	en reconnect joint connecto	or-1.	
	OK or NG		
OK	>	GO TO 9.	
NG	>	Repair open circuit or short to power in harness or connectors.	

9	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	>	INSPECTION END	

Component Inspection

Component Inspection CAMSHAFT POSITION SENSOR

=NCEC0226

MA

LC

EC

FE

GL

BR

ST

RS

BT

HA

SC

EL

- NCEC0226S01
- Start engine and warm it up to normal operating temperature.
 Check voltage between ECM terminals 66, 85 and engine

Check voltage between ECM terminals 66, 85 and engine ground under the following conditions.

Terminal 66 (or 75) and engine ground

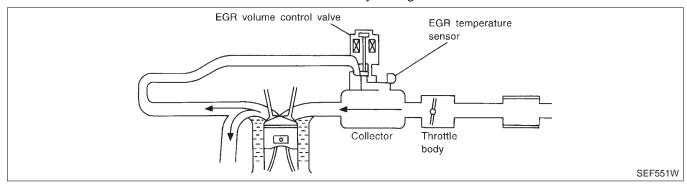
Condition	ldle	2,000 rpm
Voltage	0.1 - 0.4V	0.1 - 0.4V
Pulse signal	(V) 10 5 0 10 ms SEF006W	(V) 10 5 0 10 ms SEF007W

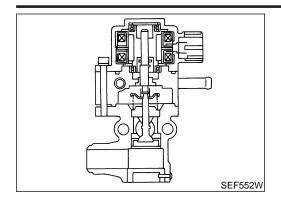
Terminal 85 and engine ground

Condition	ldle	2,000 rpm	D 052
Voltage	Approximately 2.5V	Approximately 2.4V	MT
Pulse signal	(V) 10 5 0 0.2 ms SEF004W	(V) 10 5 0 0.2 ms SEF005W	at ax su

If NG, replace distributor assembly with camshaft position sensor.

EC-333


Description SYSTEM DESCRIPTION


NCEC0513

Sensor	Input Signal to ECM	ECM func- tion	Actuator	
Camshaft position sensor	Engine speed			
Vehicle speed sensor	Vehicle speed			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			
Throttle position sensor	Throttle position		EGR volume control valve	
Battery	Battery voltage	EGR vol- ume control		
Mass air flow sensor	Amount of intake air			
Air conditioner switch	Air conditioner operation			
Power steering oil pressure switch	Power steering load signal			
Electrical load	Electrical load signal			
PNP switch	Park/Neutral position signal			
TCM (Transmission Control Module)	Gear position, shifting signal			

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.

- Engine stopped
- Engine starting
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle
- Low battery voltage

COMPONENT DESCRIPTION EGR volume control valve

NCEC0513S02

NCEC0513S0201

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

U\U_\\

EM

LC

EC

GL

MT

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0514

	1			
MONITOR ITEM	CONDITION		SPECIFICATION	
EGR TEMP SEN	Engine: After warming up		Less than 4.5V	
	Engine: After warming up Air conditioner switch: "OFF"	Idle	0 step	(
EGR VOL CON/V	Shift lever: "N" No-load	Revving engine up to 3,000 rpm quickly	10 - 55 step	ļ

ECM Terminals and Reference Value

NCEC0644

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Λ	V
/A	٧'n

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	SU
8 9 17 18	SB W/B R/W G/R	EGR volume control valve	[Engine is running] ● Idle speed	0.1 - 14V	BR ST
58	В	Sensor's ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	RS
72	R/B	EGR temperature sen-	[Engine is running] • Warm-up condition • Idle speed	Less than 4.5V	BT
	IV.D	sor	[Engine is running]Warm-up conditionEGR system is operating	0 - 1.5V	HA

EGR temperature sensor EGR temperature temperature ECM SEF073P

On Board Diagnosis Logic

NCEC0515

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

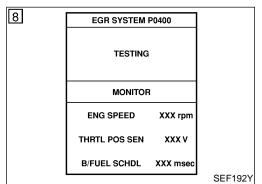
' EL

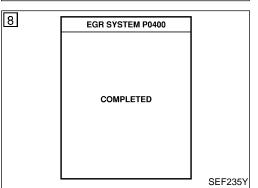
SC

Malfunction is detected when no EGR flow is detected under condition that calls for EGR.

Possible Cause

NCEC0516


- Harness or connectors (EGR volume control valve circuit is open or shorted.)
- EGR volume control valve stuck closed
- Dead (Weak) battery
- EGR passage clogged
- EGR temperature sensor and circuit
- Exhaust gas leaks


EGR SYSTEM P0400 OUT OF CONDITION MONITOR ENG SPEED XXX rpm THRTL POS SEN XXX V

XXX msec

SEF191Y

B/FUEL SCHDL

DTC Confirmation Procedure

NCEC0517

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- P0400 will not be displayed at "SELF-DIAG RESULTS" mode with CONSULT-II even though DTC work support test result is NG.

TESTING CONDITION:

- Before performing the following procedure, confirm battery voltage is more than 10V at idle, then stop engine immediately.
- For best results, perform the test at a temperature of 5°C (41°F) or higher.

(P) WITH CONSULT-II

NCEC0517S01

- 1) Turn ignition switch "OFF" and wait at least 10 seconds.
- 2) Turn ignition switch "ON"
- 3) Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.

Confirm COOLAN TEMP/S value is within the range listed below.

COOLAN TEMP/S: Less than 40°C (104°F)

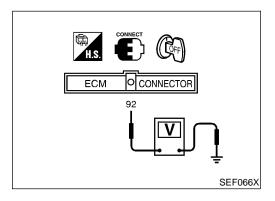
If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the engine coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- 4) Start engine and let it idle monitoring "COOLAN TEMP/S" value. When the "COOLAN TEMP/S" value reaches 70°C (158°F), immediately go to the next step.
- 5) Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle with engine running.
 If "COMPLETED" appears on CONSULT-II screen, go to step

If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.

- 8) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions

DTC P0400 EGR FUNCTION (CLOSE)


DTC Confirmation Procedure (Cont'd)

until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds or more.)

	<u> </u>
ENG SPEED	1,800 - 2,800 rpm
Vehicle speed	More than 10 km/h (6 MPH)
B/FUEL SCHDL	5.0 - 8.5 msec
THRTL POS SEN	(X + 0.05) - (X + 0.87) V X = Voltage value measured at step 8
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

10) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-339.

WITH GST

- 1) Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON".
- Check engine coolant temperature in MODE 1 with GST. Engine coolant temperature: Less than 40°C (104°F)

 If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.
- 4) Start engine and let it idle monitoring the value of "COOLAN TEMP/S". When the engine coolant temperature reaches 70°C (158°F), immediately go to the next step.
- Maintain the following conditions for at least 1 minute.
 Engine speed: 1,800 2,800 rpm
 Vehicle speed: More than 10 km/h (6 MPH)
 Voltage between ECM terminal 92 and ground: 0.86 2.0V
 Selector lever: Suitable position
- Stop vehicle.
- 7) Turn ignition switch "OFF" and wait at least 10 seconds, then turn "ON".
- 8) Repeat step 3 to 5.
- 9) Select "MODE 3" with GST.
- 10) If DTC is detected, go to "Diagnostic Procedure", EC-339.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

GI

MA

EM

LC

EC

FE

MT

GL

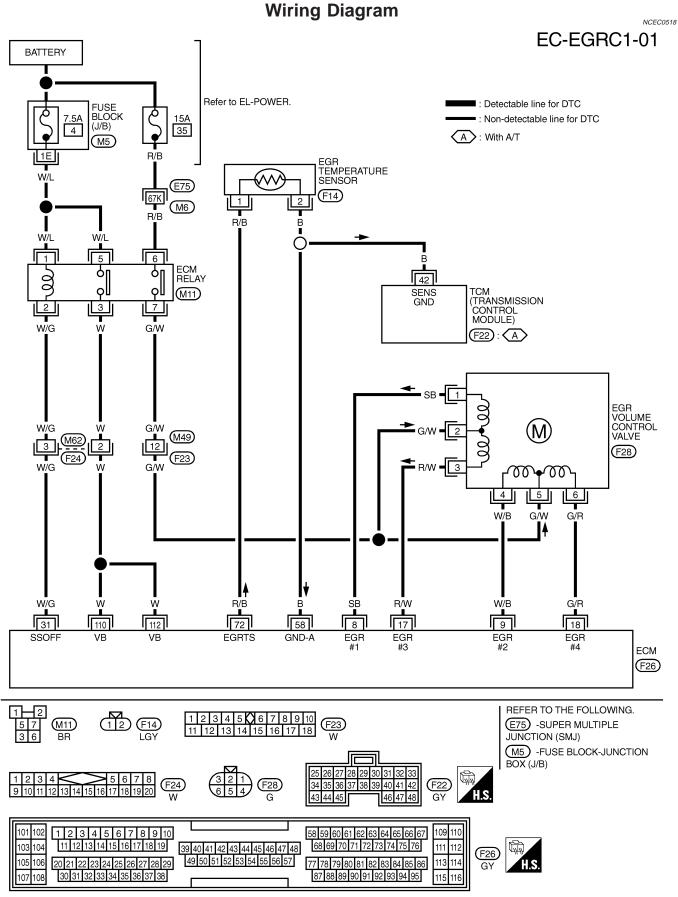
AT

SU

BR

ST

RS


BT

HA

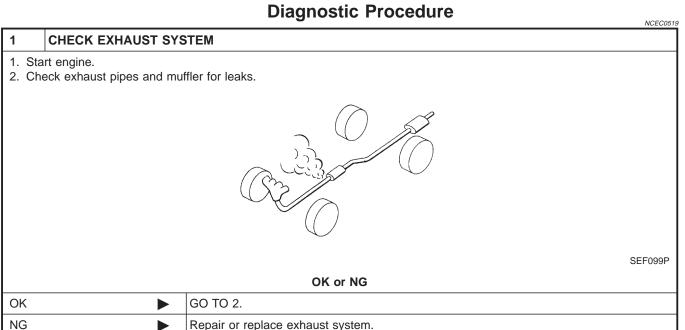
SC

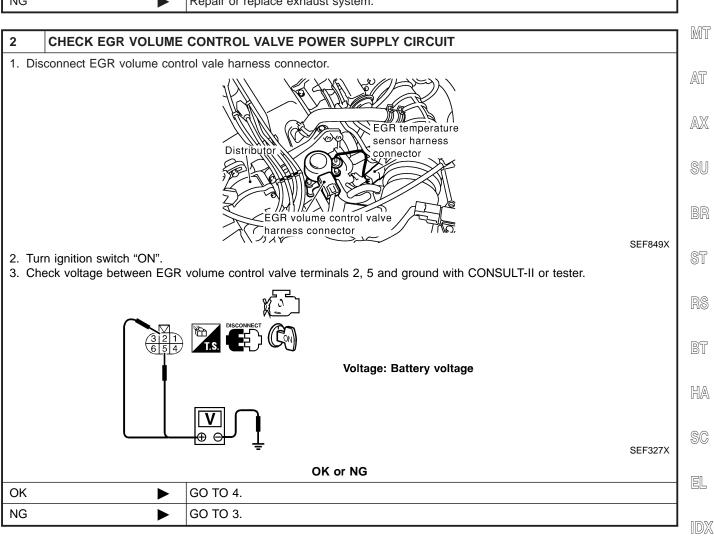
EL

 \mathbb{Z}

GI

MA


EM


LC

EC

FE

GL

DTC P0400 EGR FUNCTION (CLOSE)

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F23, M49
- Harness for open or short between ECM relay and EGR volume control valve
 - Repair harness or connectors.

4 CHECK EGR VOLUME CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	EGR volume control valve
8	1
9	4
17	3
18	6

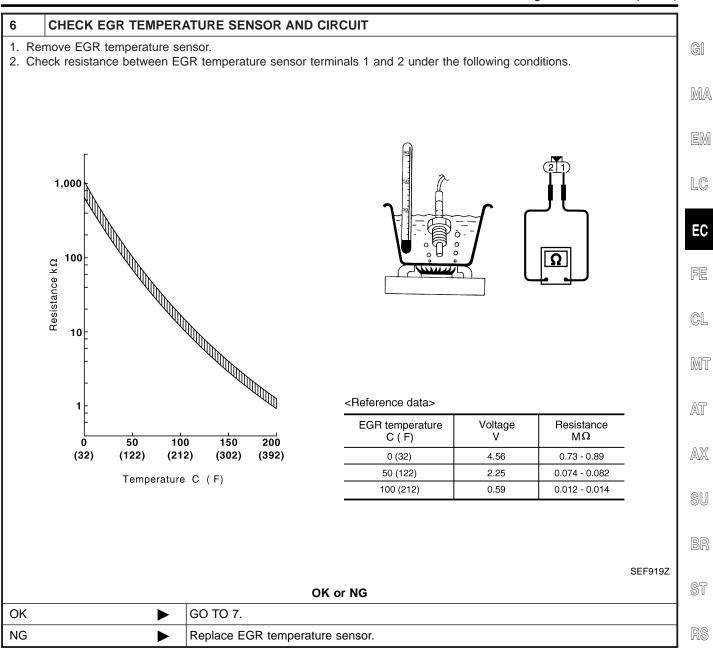
MTBL0389

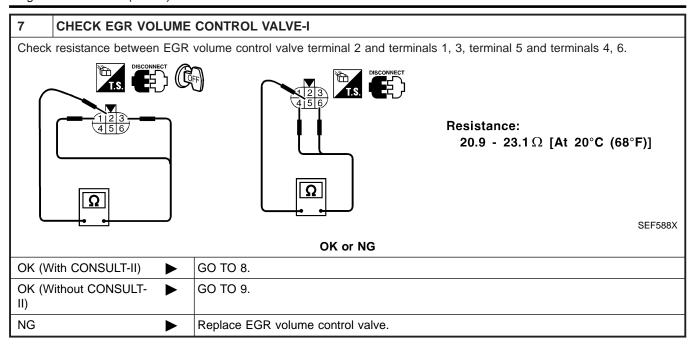
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

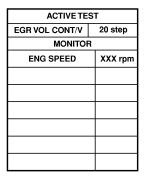

5	CHECK EGR PASSAGE			
Check EGR passage for clogging and cracks.				
	OK or NG			
OK	OK ▶ GO TO 6.			
NG	•	Repair or replace EGR passage.		

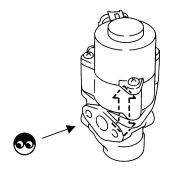

BT

HA

SC

EL





8 CHECK EGR VOLUME CONTROL VALVE-II

(P) With CONSULT-II

- 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch "ON".
- 4. Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening steps.

SEF067Y

OI	v	or	N	2
v	-	or	14	_

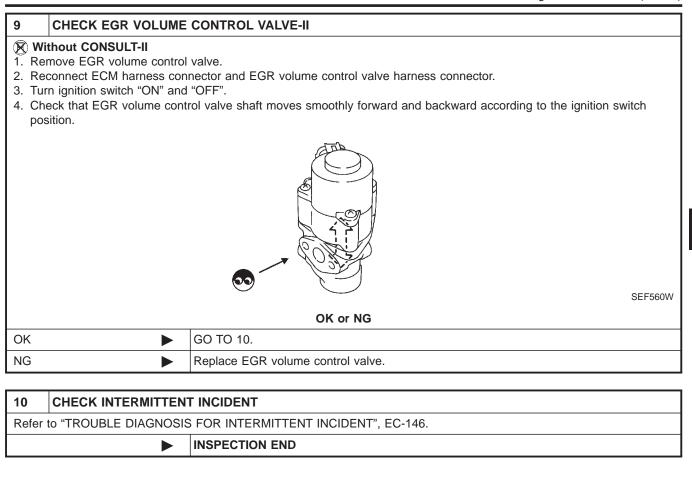
OK ►	GO TO 10.
NG ►	Replace EGR volume control valve.

DTC P0400 EGR FUNCTION (CLOSE)

Diagnostic Procedure (Cont'd)

GI

MA


LC

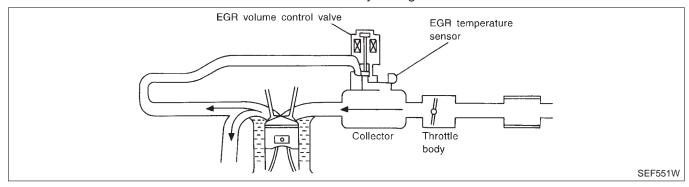
EC

FE

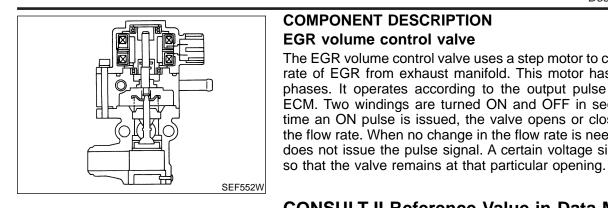
GL

MT

	AT
TENT INCIDENT", EC-146.	
ND	AX
	SU
	BR
	ST
	RS
	BT
	HA
	SC
	EL
	IDX
EC-343	


Description SYSTEM DESCRIPTION

NCEC0520 NCEC0520S01


			140200020001
Sensor	Input Signal to ECM	ECM func- tion	Actuator
Camshaft position sensor	Engine speed		
Vehicle speed sensor	Vehicle speed		
Engine coolant temperature sensor	Engine coolant temperature		
Ignition switch	Start signal		
Throttle position sensor	Throttle position		
Battery	Battery voltage	EGR vol-	ECD values control value
Mass air flow sensor	Amount of intake air	ume control	EGR volume control valve
Air conditioner switch	Air conditioner operation		
Power steering oil pressure switch	Power steering load signal		
Electrical load	Electrical load signal		
PNP switch	Park/Neutral position signal	1	
TCM (Transmission Control Module)	Gear position, shifting signal	1	

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.

- Engine stopped
- Engine starting
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle
- Low battery voltage

Description (Cont'd)

COMPONENT DESCRIPTION EGR volume control valve

NCEC0520S02

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding

phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued

LC

EC

GL

MT

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0521

MONITOR ITEM	CONDITION		SPECIFICATION	
	Engine: After warming up Air conditioner switch: "OFF"	Idle	0 step	
EGR VOL CON/V	Shift lever: "N" No-load	Revving engine up to 3,000 rpm quickly	10 - 55 step	(

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NCEC0645

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
8 9 17 18	SB W/B R/W G/R	EGR volume control valve	[Engine is running] • Idle speed	0.1 - 14V	

ST

HA

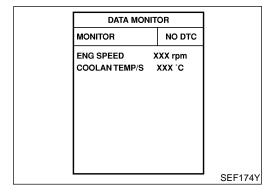
SC

EL

On Board Diagnosis Logic

Malfunction is detected when an improper voltage signal is sent to ECM through the valve.

FAIL-SAFE MODE


When the ECM enters the fail-safe mode, the MIL illuminates.

Detected items	Engine operating condition in fail-safe mode
EGR volume control valve circuit	Engine speed will not rise more than 2,800 rpm due to the fuel cut.

Possible Cause

NCEC0523

- Harness or connectors (EGR volume control valve circuit is open or shorted.)
- EGR volume control valve

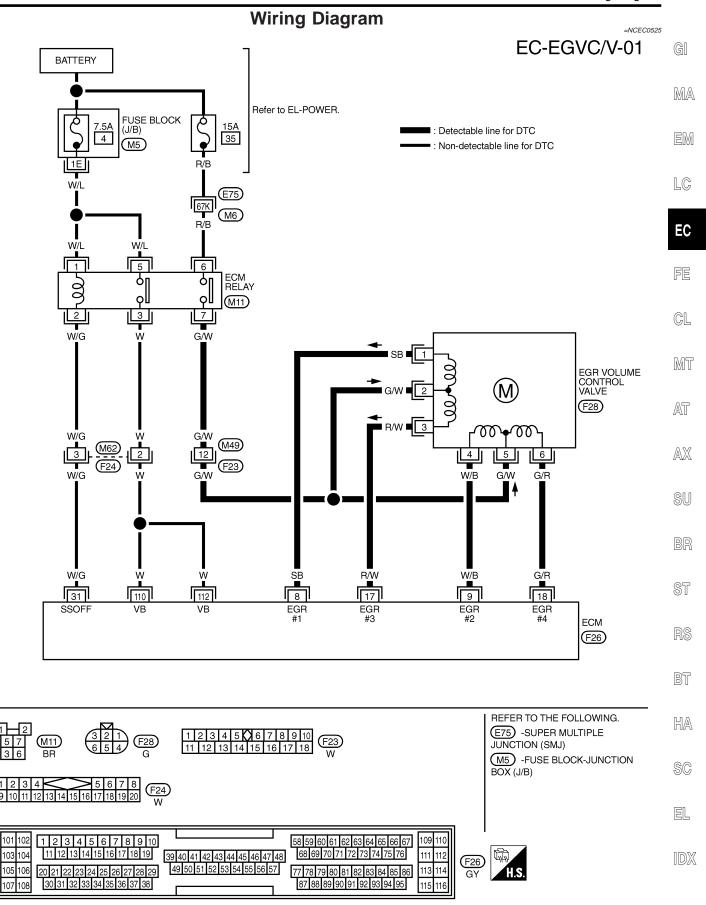
DTC Confirmation Procedure

NCEC0524

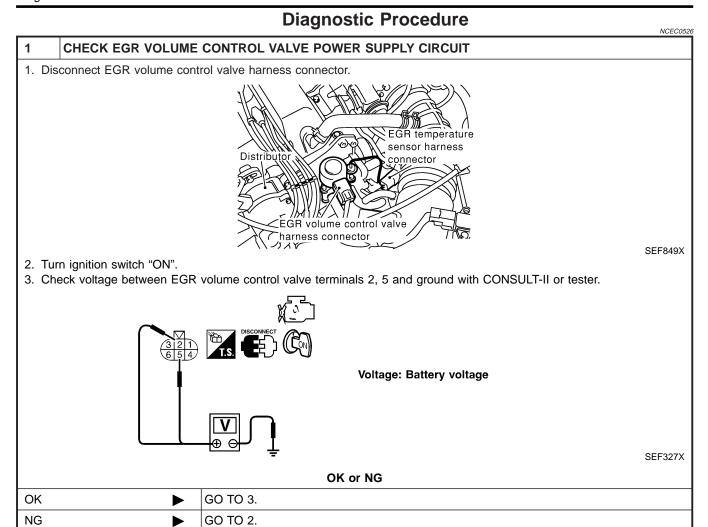
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(P) WITH CONSULT-II

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 3) Rev engine from idle to 2,000 rpm 10 times.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-348.


WITH GST

NCEC0524S02

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

2 DETECT MALFUNCTIONING PART Check the following. • Harness connectors F23, M49 • Harness for open or short between ECM relay and EGR volume control valve Repair harness or connectors.

Diagnostic Procedure (Cont'd)

CHECK EGR VOLUME CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	EGR volume control valve
8	1
9	4
17	3
18	6

MTBL0389

GI

MA

LC

EC

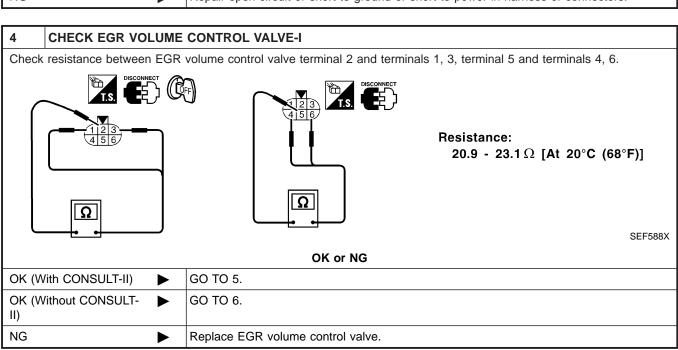
FE

GL

MT

AT

AX


SU

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

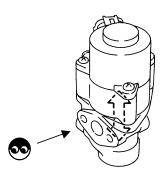
BT

ST

HA

SC

EL


Diagnostic Procedure (Cont'd)

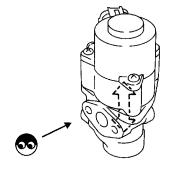
CHECK EGR VOLUME CONTROL VALVE-II

(I) With CONSULT-II

- 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch "ON".
- 4. Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- Check that EGR volume control valve shaft moves smoothy forward and backward according to the valve opening steps.

ACTIVE TEST		
EGR VOL CONT/V	20 step	
MONITOR	₹	
ENG SPEED	XXX rpm	

SEF067Y

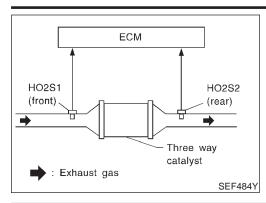

0	K	٥r	NO

OK		GO TO 7.
NG	•	Replace EGR volume control valve.

6 CHECK EGR VOLUME CONTROL VALVE-II

⋈ Without CONSULT-II

- 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch "ON" and "OFF".
- 4. Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position.


SEF560W

OK	or	NG

OK •	GO TO 7.
NG ►	Replace EGR volume control valve.

7 CHECK INTERMITTENT INCIDENT Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146. INSPECTION END

On Board Diagnosis Logic

On Board Diagnosis Logic

The ECM monitors the switching frequency ratio of heated oxygen sensor 1 (front) and 2 (rear).

A three way catalyst with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2 (rear). As oxygen storage capacity decreases, the heated oxygen sensor 2 (rear) switching frequency will increase.

When the frequency ratio of heated oxygen sensor 1 (front) and 2 (rear) approaches a specified limit value, the three way catalyst malfunction is diagnosed.

MA

П	0	
ĮL	_(_7	

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	_
P0420	 Three way catalyst does not operate properly. Three way catalyst does not have enough oxygen storage capacity. 	Three way catalystExhaust tubeIntake air leaks	EC
		InjectorsInjector leaksSpark plugImproper ignition timing	c. Cl

MT

SRT WORK SUPPORT CATALYST INCMP **EVAP SYSTEM** INCMP O2 SEN HEATER CMPLT O2 SENSOR INCMP **EGR SYSTEM** INCMP MONITOR **ENG SPEED** XXX rpm MAS A/F SE B1 XXX V **B/FUEL SCHDL** XXX msec A/F ALPHA-B1 XXX V COOLAN TEMP/S XX .C HO2S1 (B1) XXX V

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

(A) WITH CONSULT-II

TESTING CONDITION:

NCEC0241S01

NCEC0241

- Open engine hood before conducting the following procedure.
 - Do not hold engine speed for more than the specified
- 1) Turn ignition switch "ON".

minutes below.

- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-
- PORT" mode with CONSULT-II.

Start engine.

Rev engine up to 3,000±500 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.

Wait 5 seconds at idle.

Rev engine up to 2,500±500 rpm and maintain it until "INCMP" of CATALYST changes to "CMPLT" (It will take approximately 5 minutes).

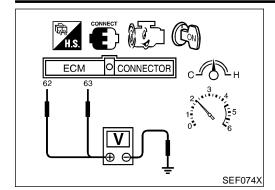
If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.

- Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- Confirm that the 1st trip DTC is not detected. If the 1st trip DTC is detected, go to "Diagnostic Procedure",

HA

SC

ST


EC-352.

SEF671Y

SRT WORK SUPPORT CATALYST EVAP SYSTEM INCMP O2 SEN HEATER CMPLT O2 SENSOR INCMP **EGR SYSTEM** INCMP MONITOR **ENG SPEED** XXX rpm MAS A/F SE B1 XXX V B/FUEL SCHDL XXX msec A/F ALPHA-B1 XXX V COOLAN TEMP/S XX °C HO2S1 (B1) XXX V SEF672Y

SELF DIAG RESULTS DTC RESULTS NO DTC IS DETECTED **FURTHER TESTING** MAY BE REQUIRED. SEF560X

Overall Function Check

Overall Function Check

NCEC024

Use this procedure to check the overall function of the three way catalyst. During this check, a 1st trip DTC might not be confirmed.

With GST

- Start engine and drive vehicle at a speed of more than 70 km/h
 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeters probes between ECM terminals 62 [Heated oxygen sensor 1 (front) signal], 63 [Heated oxygen sensor 2 (rear) signal] and engine ground.
- 4) Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminal 63 and engine ground is much less than that of ECM terminal 62 and engine ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 (rear) voltage switching frequency

B: Heated oxygen sensor 1 (front) voltage switching frequency

This ratio should be less than 0.75.

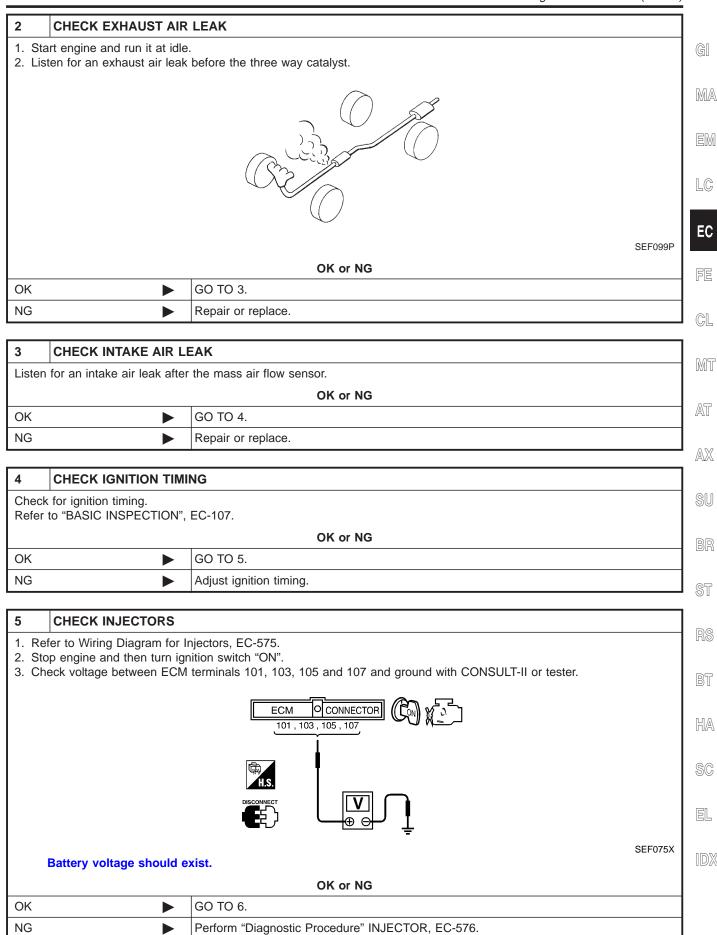
If the ratio is greater than above, it means three way catalyst does not operate properly.

NOTE:

If the voltage at terminal 62 does not switch periodically more than 5 times within 10 seconds at step 4, perform trouble diagnosis for DTC P0133 first. (See EC-217.)

Diagnostic Procedure

1 CHECK EXHAUST SYSTEM


Visually check exhaust tubes and muffler for dent.

OK or NG

OK

Repair or replace.

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

6 CHECK IGNITION SPARK 1. Disconnect ignition wire from spark plug. 2. Connect a known good spark plug to the ignition wire. 3. Place end of spark plug against a suitable ground and crank engine. 4. Check for spark. Ignition wire Spark plug OK or NG OK GO TO 8. NG GO TO 7.

7	CHECK IGNITION WIRES		
Refer to "Component Inspection", EC-315.			
	OK or NG		
OK	OK Check ignition coil, power transistor and their circuits. Refer to EC-566.		
NG	•	Replace.	

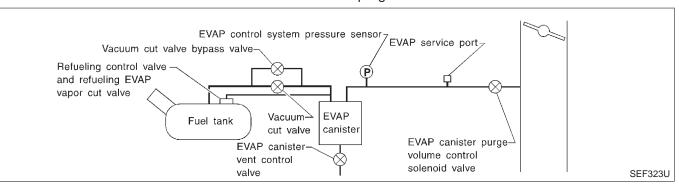
8	CHECK INJECTO	PR	
2. Re Ke 3. Dis 4. Tur	 Turn ignition switch "OFF". Remove injector assembly. Refer to EC-51. Keep fuel hose and all injectors connected to injector gallery. Disconnect distributor harness connector. Turn ignition switch "ON". Make sure fuel does not drip from injector. 		
	OK or NG		
OK (D	OK (Does not drip) GO TO 9.		
NG (D	NG (Drips) Replace the injector(s) from which fuel is dripping.		

9	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
Troubl	e is fixed		INSPECTION END
Trouble	e is not fixed		Replace three way catalyst.

On Board Diagnosis Logic

NCEC0527

On Board Diagnosis Logic


NOTE:

If DTC P0440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-525.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

Possible Cause

Incorrect fuel tank vacuum relief valve

Incorrect fuel filler cap used

Fuel filler cap remains open or fails to close.

Foreign matter caught in fuel filler cap.

Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.

Foreign matter caught in EVAP canister vent control valve.

EVAP canister or fuel tank leaks

EVAP purge line (pipe and rubber tube) leaks

MA

EC

FE

GL

MT

AT

AX

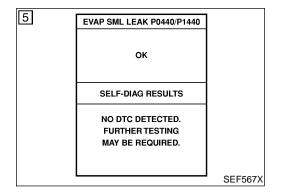
_---

51

38

27

HA


Possible Cause (Cont'd)

- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- Water separator
- EVAP canister is saturated with water.
- EVAP control system pressure sensor
- Fuel level sensor and the circuit
- Refueling control valve
- ORVR system leaks

1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F) -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON,STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

DTC Confirmation Procedure

NCEC0529

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

SEF565X

- If DTC P0440 or P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-525.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

(A) WITH CONSULT-II

NCEC0529S01

- 1) Turn ignition switch "ON".
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met. COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)
- Select "EVAP SML LEAK P0440/P1440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

DTC Confirmation Procedure (Cont'd)

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-107.

Make sure that "OK" is displayed.

If "NG" is displayed, refer to "Diagnostic Procedure", EC-357.

. MA

WITH GST

NOTE:

NCEC0529S02

Be sure to read the explanation of "Driving Pattern" on EC-74 before driving vehicle.

-74

LC

EC

GL

MT

AX

- 1) Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-74.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine.It is not necessary to cool engine down before driving.
- 7) Drive vehicle again according to the "Driving Pattern", EC-74.
- 8) Stop vehicle.
- Select "MODE 3" with GST.
- If P0440 or P1440 is displayed on the screen, go to "Diagnostic Procedure", EC-357.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure" for DTC P1447, EC-516.
- If P0440, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

NCEC0530

- 1. Turn ignition switch "OFF".
- 2. Check for genuine NISSAN fuel filler cap design.

CHECK FUEL FILLER CAP DESIGN

SEF915U

OK or NG

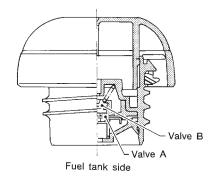
OK GO TO 2.

NG Replace with genuine NISSAN fuel filler cap.

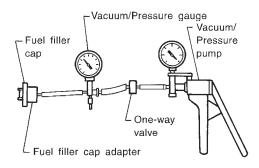
EL

HA

SC


Diagnostic Procedure (Cont'd)

2	CHECK FUEL FILLER	CAP INSTALLATION
Check that the cap is tightened properly by rotating the cap clockwise.		
OK or NG		
OK	>	GO TO 3.
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard.


3	CHECK FUEL FILLER	CAP FUNCTION	
Check for air releasing sound while opening the fuel filler cap.			
OK or NG			
OK	>	GO TO 6.	
NG	•	GO TO 4.	

CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF427N

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.4 kPa (-0.061 to -0.035 kg/cm², -0.87 to -0.48 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

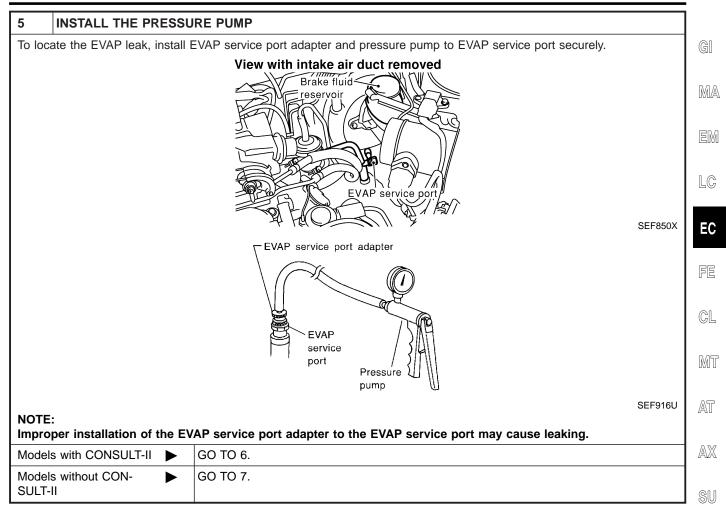
OK or NG

OK •	GO TO 5.
NG ►	Replace fuel filler cap with a genuine one.

Diagnostic Procedure (Cont'd)

BR

ST

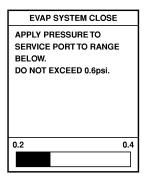

RS

BT

HA

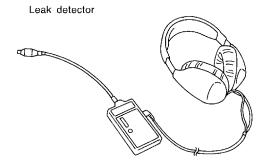
SC

EL



Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK


- (I) With CONSULT-II
- 1. Turn ignition switch "ON".
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

 NOTE:
 - Never use compressed air or a high pressure pump.
 - Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

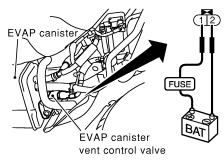
PEF917U

4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

SEF200U

OK or NG

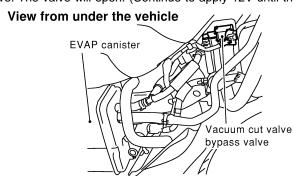
OK •	GO TO 8.
NG ►	Repair or replace.


Diagnostic Procedure (Cont'd)

CHECK FOR EVAP LEAK

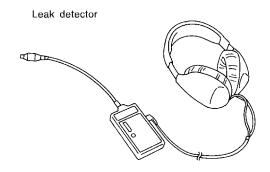
Without CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)


View from under the vehicle

SEF323Z

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEF869X

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

SEF200U

OK or NG

OK ► GO TO 8.

NG ► Repair or replace.

MA

GI

EM

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

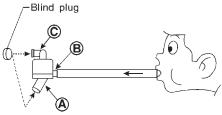
SU

BR

ST

RS

BT


HA

SC

Diagnostic Procedure (Cont'd)

CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

Do not disassemble water separator.

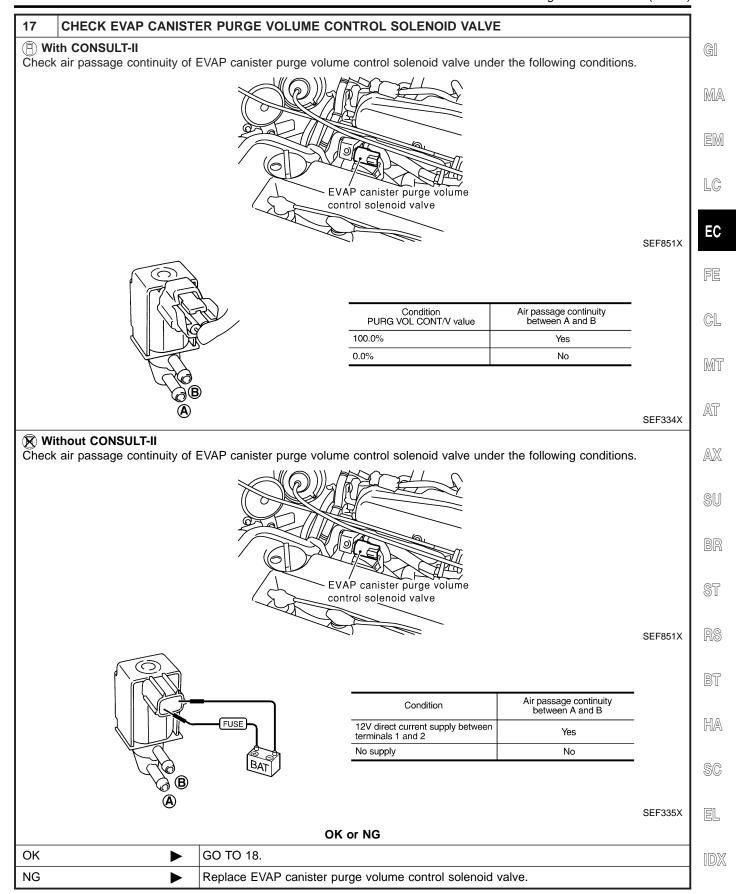
OK	or	N	G
----	----	---	---

OK ►	GO TO 9.
NG •	Replace water separator.

9	CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT	
Refer	Refer to "DTC Confirmation Procedure", EC-371.	
	OK or NG	
OK	•	GO TO 10.
NG	•	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

10 CHECK IF EVAP CANISTER SATURATED WITH WATER 1. Remove EVAP canister with EVAP canister vent control valve attached. 2. Does water drain from the EVAP canister? EVAP canister ÈVAP canister vent control valve SEF596U Yes or No GO TO 11. Yes No (With CONSULT-II) GO TO 13. No (Without CONSULT-GO TO 14. II)

Diagnostic Procedure (Cont'd)

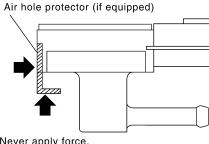

11 CHECK EVAP CANIS	rfr	Diagnostic Procedure (Contra)
Weigh the EVAP canister with t	he EVAP canister vent co	ontrol valve attached.
The weight should be less th		
OLC (MEST CONTOLLIT III)		OK or NG
OK (With CONSULT-II)	GO TO 13.	
OK (Without CONSULT-	GO TO 14.	
NG >	GO TO 12.	
	<u>'</u>	
12 DETECT MALFUNCTI	ONING PART	
Check the following. EVAP canister for damage		
	anister and water separa	tor for clogging or poor connection
•	Repair hose or replace	EVAP canister.
	TER PURGE VOLUME	CONTROL SOLENOID VALVE OPERATION
With CONSULT-II Disconnect vacuum hose to	EVAP canister purge volu	ume control solenoid valve at EVAP service port.
. Start engine.	. •	· ·
. Perform "PURG VOL CONT		ode. G VOL CONT/V" opening to 100.0%.
. Check vacuum hose for vac		
	ACTIVE TEST	1
	PURG VOL CONT/V XXX %	
	MONITOR ENG SPEED XXX rpm	
	A/F ALPHA-B1 XXX %	
	HO2S1 MNTR (B1) LEAN	Vacuum should exist.
	THRTL POS SEN XXX V	
		SEF595Y
N/		OK or NG
OK D	GO TO 16.	
G >	GO TO 15.	
4 CHECK EVAP CANIS	TED DUDGE VOLUME	CONTROL SOLENOID VALVE OPERATION
Without CONSULT-II	ILK FUNGE VULUME	CONTROL SOLENOID VALVE OPERATION
Start engine and warm it up	to normal operating temp	perature.
. Stop engine.		
 Disconnect vacuum hose to Start engine and let it idle for 		ume control solenoid valve at EVAP service port.
. Start Stignio and lot it lale it		e up to 2,000 rpm.
Check vacuum hose for vac		
 Check vacuum hose for vac Vacuum should exist. 		
		OK or NG
5. Check vacuum hose for vacuum should exist. OK	GO TO 18.	OK or NG

Diagnostic Procedure (Cont'd)

15	15 CHECK VACUUM HOSE		
Check	Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-27.		
	OK or NG		
OK (W	/ith CONSULT-II)		GO TO 16.
OK (W	/ithout CONSULT-	•	GO TO 17.
NG			Repair or reconnect the hose.

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % HO2S1 MNTR (B1) LEAN THRTL POS SEN xxx v SEF801Y OK or NG GO TO 18. OK NG GO TO 17.

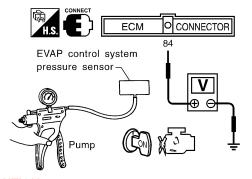
Diagnostic Procedure (Cont'd)



Diagnostic Procedure (Cont'd)

18	CHECK FUEL TANK TE	MPERATURE SENSOR
2. Che	 Remove fuel level sensor unit. Check fuel tank temperature sensor. Refer to EC-290, "Component Inspection". 	
	OK or NG	
OK	>	GO TO 19.
NG	•	Replace fuel level sensor unit.

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - **CAUTION:**
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION:**
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Voltage V
3.0 - 3.6
0.4 - 0.6

SEF342X

CAUTION:

 Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG

OK ►	GO TO 20.
NG ►	Replace EVAP control system pressure sensor.

Diagnostic Procedure (Cont'd)

GI

MA

EM

LC

EC

FE

GL

MT

AT

AX

SU

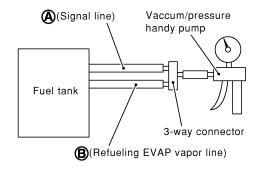
ST

BT

HA

SC

20	CHECK EVAP PURGE	LINE
	EVAP purge line (pipe, ruto "Evaporative Emission	ubber tube, fuel tank and EVAP canister) for cracks or improper connection. System", EC-33.
		OK or NG
OK	•	GO TO 21.
NG	•	Repair or reconnect the hose.


21	CLEAN EVAP PURGE LINE	
Clean	EVAP purge line (pipe and	I rubber tube) using air blower.
	•	GO TO 22.

22 CHECK REFUELING EVAP VAPOR LINE		
Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to "ON BOARD REFUELING VAPOR RECOVERY (ORVR)", EC-39.		
OK or NG		
OK ▶ GO TO 23.		
>	Repair or replace hoses and tubes.	
	refueling EVAP vapor line or location, refer to "ON BO	

23	CHECK SIGNAL LINE	AND RECIRCULATION LINE	ı	
Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.				
	OK or NG			
OK	•	GO TO 24.	1	
NG	>	Repair or replace hoses, tubes or filler neck tube.		

24 CHECK REFUELING CONTROL VALVE

- 1. Remove fuel filler cap.
- 2. Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- 4. Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

SEF968X

OK or NG		
ОК	>	GO TO 25.
NG	>	Replace refueling control valve with fuel tank.

EC-367

Diagnostic Procedure (Cont'd)

25	5 CHECK FUEL LEVEL SENSOR				
Refer to EL-96, "Fuel Level Sensor Unit Check".					
	OK or NG				
OK	>	GO TO 26.			
NG	>	Replace fuel level sensor unit.			

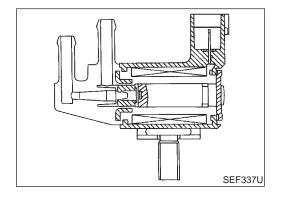
26	CHECK INTERMITTENT INCIDENT				
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.				
	INSPECTION END				

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

Description

Description SYSTEM DESCRIPTION

NCEC0531


MT

AT

AX

			NCEC0531S01	(II)
Sensor	Input Signal to ECM	ECM function	Actuator	MA
Camshaft position sensor	Engine speed			UVUZAL
Mass air flow sensor	Amount of intake air			EM
Engine coolant temperature sensor	Engine coolant temperature			LSUVI
Ignition switch	Start signal			LC
Throttle position sensor	Throttle position	EVAP can- ister purge	EVAP canister purge volume	
Throttle position switch	Closed throttle position	flow control	control solenoid valve	EC
Heated oxygen sensor 1 (front)	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			rg
Vehicle speed sensor	Vehicle speed			0.5

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

HA

SC

EL

CONSULT-II Reference Value in Data Monitor Mode

NCEC0532

Specification data are reference values.

MONITOR ITEM	COND	SPECIFICATION	
PURG VOL C/V	Engine: After warming upAir conditioner switch "OFF"	Idle (Vehicle stopped)	0%
PURG VOL C/V	Shift lever: "N"No-load	2,000 rpm	_

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

ECM Terminals and Reference Value

ECM Terminals and Reference Value

NCEC0646

CAUTION:

Specification data are reference values and are measured between each terminal and ground.

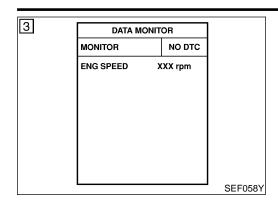
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
14	P	EVAP canister purge volume control sole- noid valve	[Engine is running] ● Engine speed is about 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF995U

On Board Diagnosis Logic

NCEC

Malfunction is detected when an improper voltage signal is sent to ECM through the valve.


Possible Cause

NCEC0534

- Harness or connectors (The valve circuit is open or shorted.)
- EVAP canister purge volume control solenoid valve

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

Before performing the following procedure, confirm battery

d, GI

плл

 $\mathbb{M}\mathbb{A}$

EM

(A) WITH CONSULT-II

TESTING CONDITION:

1) Turn ignition switch "ON".

voltage is more than 11V at idle.

NCEC0535S01

CEC0535S01

NCEC0535

2) Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle for at least 13 seconds.

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-373.

LC

EC

WITH GST

Follow the proocedure "WITH CONSULT-II" above.

NCEC0535S02

CL

MT

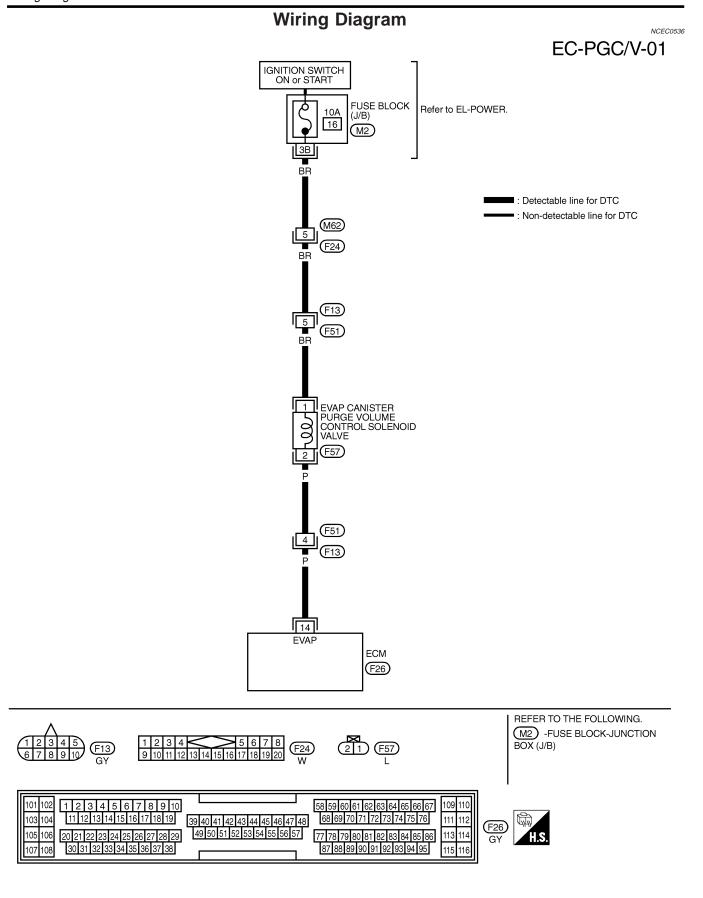
AT

AX

SU

ST

RS


BT

HA

SC

EL

Wiring Diagram

Diagnostic Procedure

SC

EL

[DX

Diagnostic Procedure

NCEC0537 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT 1. Turn ignition switch "OFF". 2. Disconnect EVAP canister purge volume control solenoid valve harness connector. MA LC EVAP canister purge volume control solenoid valve EC SEF851X FE 3. Turn ignition switch "ON". 4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester. GL MT AT SEF206W Voltage: Battery voltage OK or NG OK GO TO 3. NG GO TO 2. **DETECT MALFUNCTIONING PART** Check the following. Harness connectors F13, F51 • Harness connectors F24, M62 • Fuse block (J/B) connector M2 10A fuse Harness for open or short between EVAP canister purge volume control solenoid valve and fuse Repair harness or connectors. HA

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

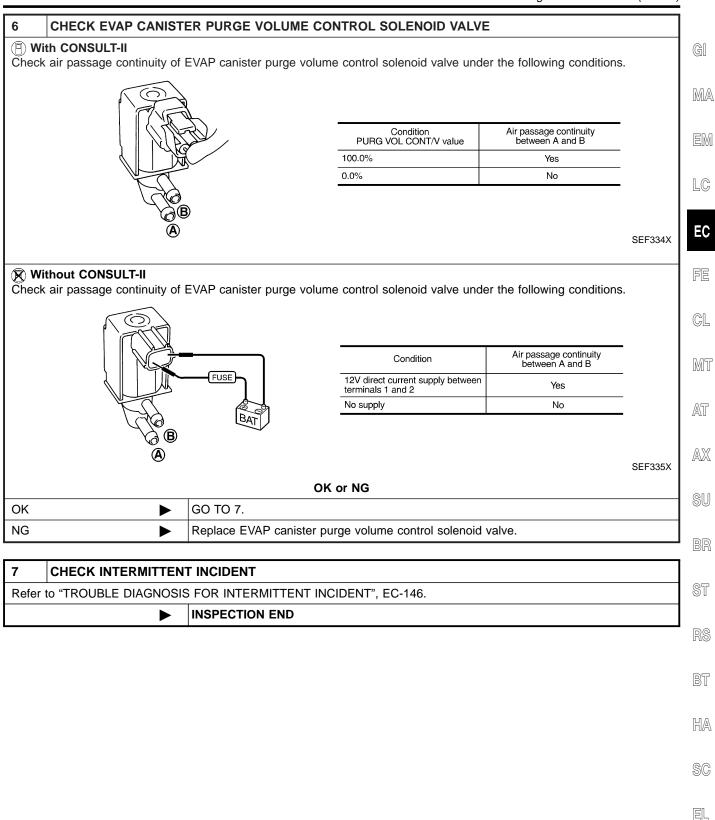
Diagnostic Procedure (Cont'd)

NG

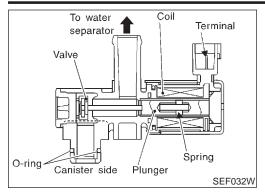
CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". 2. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminal 14 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK (With CONSULT-II) GO TO 5. OK (Without CONSULT- GO TO 6.

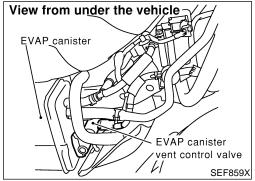
4	DETECT MALFUNCTIONING PART			
Check the following. • Harness connectors F13, F51 • Harness for open or short between EVAP canister purge volume control solenoid valve and ECM				
	Repair open circuit or short to ground and short to power in harness or connectors.			

GO TO 4.


5	CHECK EVAP CANISTER	PURGE VOLUME CONTRO	L SOLE	ENOID VALVE OPERATION
) Wi	ith CONSULT-II			
	art engine.			
		"ACTIVE TEST" mode with C	ONSUL	T-II. Check that engine speed varies according
to t	the valve opening.			
		ACTIVE TES	Т]
		PURG VOL CONT/V	XXX %	
		MONITOR		
		ENG SPEED	XXX rpm	
		A/F ALPHA-B1	XXX %	
		HO2S1 MNTR (B1)	LEAN	
		THRTL POS SEN	xxx v	
				1

SEF801Y


	OK or NG			
OK	•	GO TO 7.		
NG		GO TO 6		


DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

ECM Terminals and Reference Value

NCEC0647

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102	PU/W	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NCECOE

Malfunction is detected when an improper voltage signal is sent to ECM through EVAP canister vent control valve.

Possible Cause

Possible Cause

 Harness or connectors (The valve circuit is open or shorted.) NCEC0541

EVAP canister vent control valve

G[

MA

EM

LC

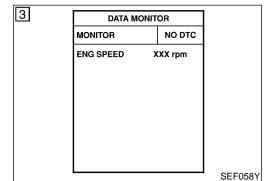
DTC Confirmation Procedure

NOTE:

NCEC0542

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

FE


EC

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

GL

MT

(II) WITH CONSULT-II

NCEC0542S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 8 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-379.

WITH GST

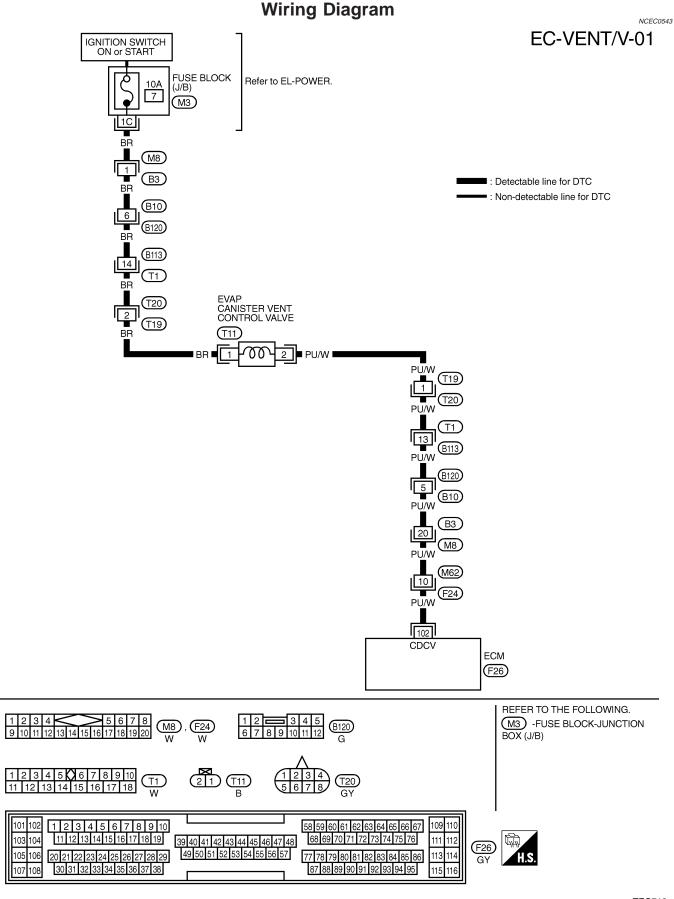
NCECUS

Follow the procedure "WITH CONSULT-II" above.

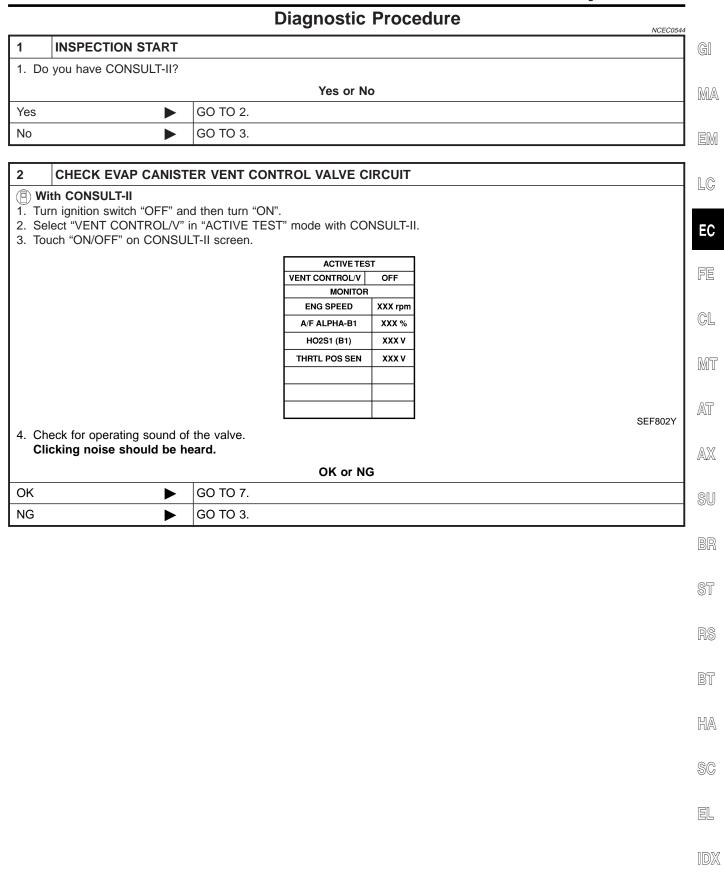
NCEC0542S02

SU

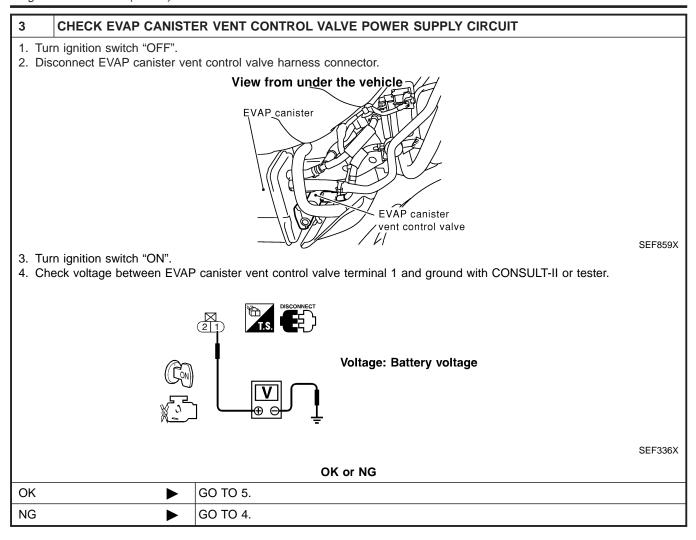
ST


BT

HA


SC

EL


Wiring Diagram

Diagnostic Procedure

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors T19, T20
- Harness connectors B113, T1
- Harness connectors B10, B120
- Harness connectors B3, M8
- Fuse block (J/B) connector M3
- 10A fuse
- Harness for open or short between EVAP canister vent control valve and fuse
 - Repair harness or connectors.

5 CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 102 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

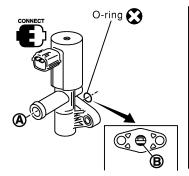
4. Also check harness for short to ground and short to power.

OK	or	NO

OK •	GO TO 7.
NG •	GO TO 6.

Diagnostic Procedure (Cont'd)

 $\mathbb{D}\mathbb{X}$


	Diagnostic Procedure (Cont'd)	
6 DETECT MAI	FUNCTIONING PART	
Check the following.		G[
Harness connectorsHarness connectors		
 Harness connectors 		M
Harness connectors		UVU
 Harness for open of 	s F24, M62 r short between EVAP canister vent control valve and ECM	
• Harriess for open c	Repair open circuit or short to ground or short to power in harness or connectors.	
	repair open cheart of chert to greatly of chert to power in manifest of commence.	П
7 CHECK RUB	BER TUBE FOR CLOGGING	L(
Disconnect rubber Check the rubber	tube connected to EVAP canister vent control valve. ube for clogging.	E
	OK or NG	
OK	▶ GO TO 8.	F
NG	Clean the rubber tube using an air blower.	
		C
8 CHECK EVAI	CANISTER VENT CONTROL VALVE-I	
	O-ring (0.54 - 1.2 kg-m, 46.9 - 104 in-lb)	
	OK or NG	6
OK	▶ GO TO 9.	S
NG	Replace EVAP canister vent control valve.	[6
		R
		ŀ
		8
		F

Diagnostic Procedure (Cont'd)

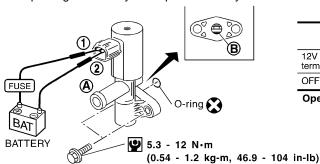
CHECK EVAP CANISTER VENT CONTROL VALVE-II

With CONSULT-II

- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch "ON".
- 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR	3	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 (B1) XXX V		
THRTL POS SEN	xxx v	

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes


Operation takes less than 1 second.

SEF803Y

SEF339X

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

Make sure new O-ring is installed properly.

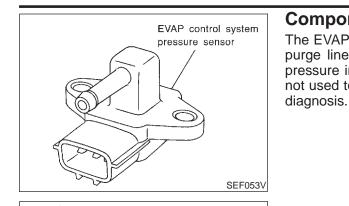
OK or NG

ОК	>	GO TO 11.
NG	•	GO TO 10.

10 CHECK EVAP CANISTER VENT CONTROL VALVE-III

- 1. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 2. Perform Test No. 9 again.

OK or NG


OK ▶	GO TO 11.
NG >	Replace EVAP canister vent control valve.

11 CHECK INTERMITTENT INCIDENT

Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.

INSPECTION END

Component Description

Component Description The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as

pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board

MA

LC

GL

EC

MT

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

NCEC0546

Specification data are reference values.

Pressure kPa (mmHg, inHg, psi)

(Relative to atmospheric pressure)

+4.0

(+30, +1.18, +0.58)

SEF954S

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES • Ignition switch: ON		Approx. 3.4V

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NCEC0648

ST

4.5

0.5

-9.3 (-70, -2.76, -1.35)

4

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensor's ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
84	W	EVAP control system pressure sensor	[Ignition switch "ON"]	Approximately 3.4V
111	P/L	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V

SC

HA

On Board Diagnosis Logic

On Board Diagnosis Logic

IÇEC05

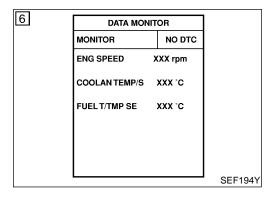
Malfunction is detected when an improper voltage signal from EVAP control system pressure sensor is sent to ECM.

Possible Cause

NCEC0548

- Harness or connectors (The EVAP control system pressure sensor circuit is open or shorted.)
- Rubber hose to EVAP control system pressure sensor is clogged, vent, kinked, disconnected or improper connection.
- EVAP control system pressure sensor
- EVAP canister vent control valve
- EVAP canister purge volume control solenoid valve
- EVAP canister
- Rubber hose from EVAP canister vent control valve to water separator

DTC Confirmation Procedure

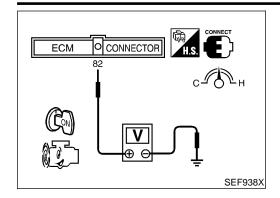

NOTE:

NCEC0549

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.



(A) WITH CONSULT-II

NCEC0549S0

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
- 7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-387.

DTC Confirmation Procedure (Cont'd)

WITH GST

Start engine and warm it up to normal operating temperature.

- Check that voltage between ECM terminal 82 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure",

MA

EM

LC

EC

FE

CL

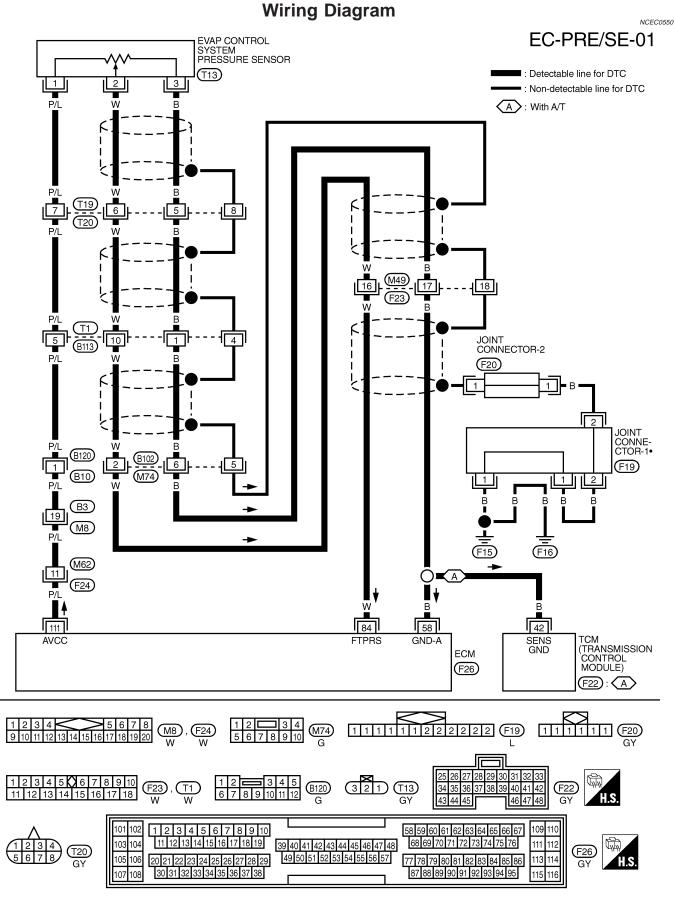
MT

AT

AX

SU

BR


ST

BT

HA

SC

EL

Diagnostic Procedure

GI

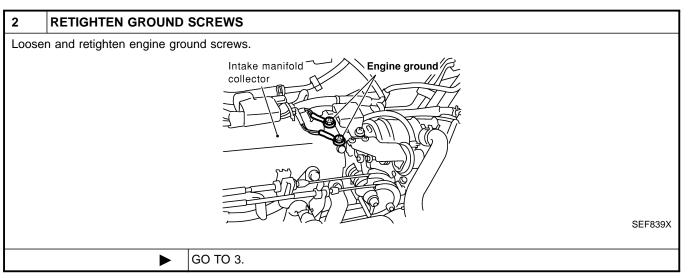
MA

LC

EC

FE

GL


MT

AT

AX

ST

Diagnostic Procedure NCEC0551 **CHECK RUBBER TUBE** 1. Turn ignition switch "OFF". 2. Check rubber tube connected to the EVAP control system pressure sensor for clogging, vent, kink, disconnection or improper connection. View from under the vehicle EVAP_canister EVAP control system pressure sensor SEF860X OK or NG OK GO TO 2. NG Reconnect, repair or replace.

		66 16 3.	RS
			- 110
3	CHECK CONNECTOR		
2. Ch	sconnect EVAP control syst eck sensor harness connect Water should not exist.	em pressure sensor harness connector. ctor for water.	BT HA
		OK or NG	ITIZA
OK	>	GO TO 4.] SC
NG	>	Repair or replace harness connector.	96

IDX

EL

Diagnostic Procedure (Cont'd)

4 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT 1. Turn ignition switch "ON". 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester. Voltage: Approximately 5V SEF341X OK or NG OK GO TO 6. NG GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors T19, T20
- Harness connectors B113, T1
- Harness connectors B10, B120
- Harness connectors B3, M8
- Harness connectors F24, M62
- Harness for open or short between EVAP control system pressure sensor and ECM
 - Repair harness or connectors.

6 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Check harness continuity between EVAP control system pressure sensor terminal 3 and engine ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

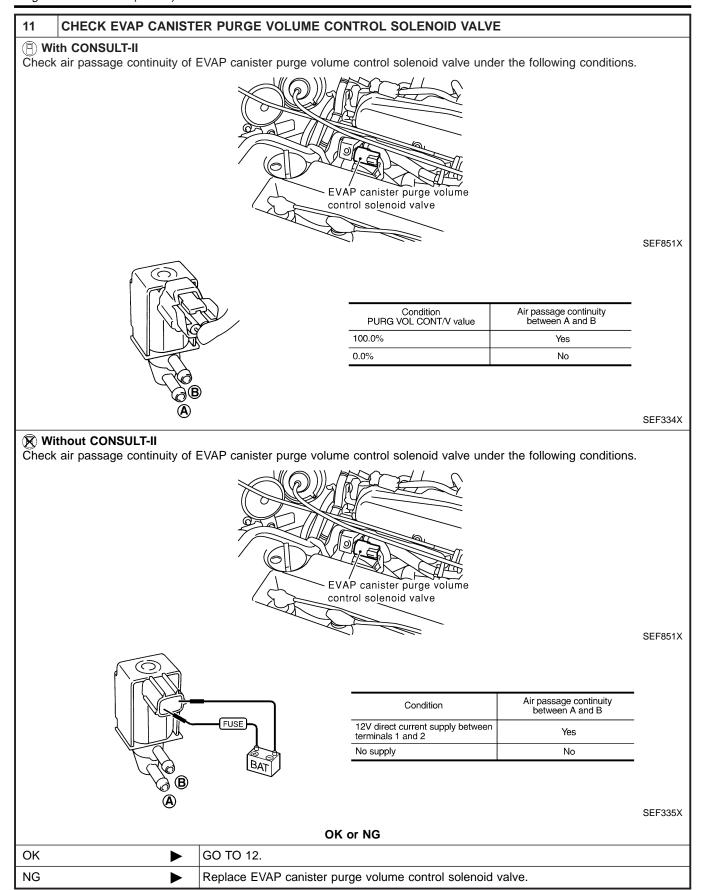
OK or NG		
OK ►	GO TO 8.	
NG ►	GO TO 7.	

7 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors T19, T20
- Harness connectors B113, T1
- Harness connectors B102, M74
- Harness connectors F23, M49
- Harness for open or short between EVAP control system pressure sensor and ECM
- Harness for open or short between EVAP control system pressure sensor and TCM (Transmission Control Module)

Repair open circuit or short to power in harness or connectors.


Diagnostic Procedure (Cont'd)

SC

EL

8	CHECK EVAP CONTROSHORT	OL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND	
2. Che Ref	er to Wiring Diagram. Continuity should exist.	nnector. tween ECM terminal 84 and EVAP control system pressure sensor terminal 2. to ground and short to power.	GI M
		OK or NG	
OK (W	ith CONSULT-II)	GO TO 10.	
OK (W II)	ithout CONSULT-	GO TO 11.	L(
NG	>	GO TO 9.	E(
			E
9	DETECT MALFUNCTION	ONING PART	FE
HarrHarr	the following. ness connectors T19, T20 ness connectors B113, T1		CL
	ness connectors B102, Miness connectors F23, M49		⊕L
		tween ECM and EVAP control system pressure sensor	M'
	•	Repair open circuit or short to ground or short to power in harness or connectors.	ШVЛП
			A1
10		TER PURGE VOLUME CONTROL SOLENOID VALVE	<i>[</i> ~] [
1. Sta 2. Per	th CONSULT-II rt engine. form "PURG VOL CONT/' he valve opening.	V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according	AD
10 11	ne valve opening.	ACTIVE TEST PURG VOL CONT/V XXX %	SI
		MONITOR ENG SPEED XXX rpm	B
	A/F ALPHA-B1 XXX % HO2S1 MNTR (B1) LEAN		
	THRTL POS SEN XXX V		
			R
			2 41
	OK or NG		
ОК		GO TO 12.	
NG		GO TO 11.	H

Diagnostic Procedure (Cont'd)

Diagnostic Procedure (Cont'd)

GI

MA

EM

EC

FE

GL

MT

AT

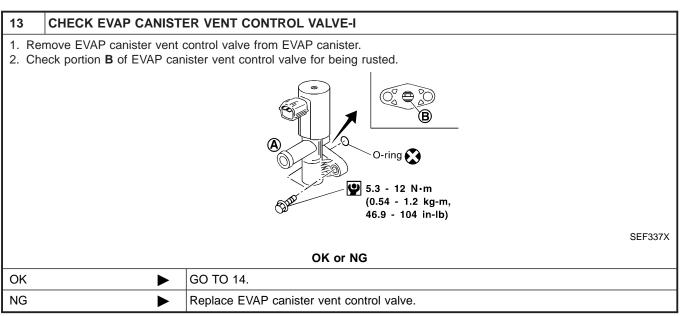
AX

SU

BR

ST

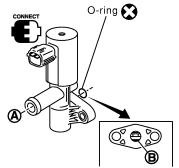
RS


BT

HA

SC

EL


12 CHECK	RUBBER TUBE	E FOR CLOGGING	
	Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging.		
	OK or NG		
OK	•	GO TO 13.	
NG	•	Clean the rubber tube using an air blower.	

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER VENT CONTROL VALVE

- With CONSULT-II
- 1. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TES	Т
VENT CONTROL/V	OFF
MONITOR	
ENG SPEED	XXX rpm
A/F ALPHA-B1	XXX %
HO2S1 (B1)	xxx v
THRTL POS SEN	xxx v

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes


Operation takes less than 1 second.

SEF803Y

SEF339X

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

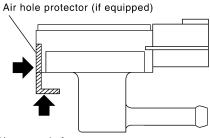
Make sure new O-ring is installed properly.

OK or NG

OK	>	GO TO 16.
NG	•	GO TO 15.

15 CHECK EVAP CANISTER VENT CONTROL VALVE-III

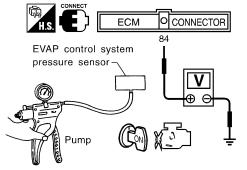
- 1. Clean the air passage (portion A to B) of EVAP canister vent control valve using an air blower.
- 2. Perform Test No. 14 again.


OK or NG

OK ►	GO TO 16.
NG ►	Replace EVAP canister vent control valve.

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- Remove EVAP control system pressure sensor with its harness connector connected.
 CAUTION:
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
\mathbf{v}	VI.	110

OK ►	GO TO 17.
NG ►	Replace EVAP control system pressure sensor.

17 CHECK RUBBER TUBE]	
Check obstructed rubber tube connected to EVAP canister vent control valve.			
OK or NG			
OK	•	GO TO 18.	1
NG	>	Clean rubber tube using an air blower, repair or replace rubber tube.	

SIII

MA

LC

EC

FE

CL

MT

AT

AX

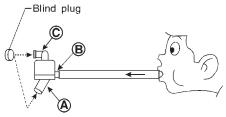
@11

SEF342X

057

BT

HA


SC

=1

Diagnostic Procedure (Cont'd)

18 CHECK WATER SEPARATOR

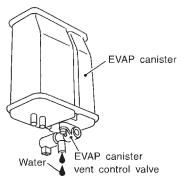
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:


Do not disassemble water separator.

OK or NG

OK ►	GO TO 19.
NG •	Replace water separator.

19 CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

SEF596U

Yes or No

Yes		GO TO 20.
No		GO TO 22.

20 CHECK EVAP CANISTER

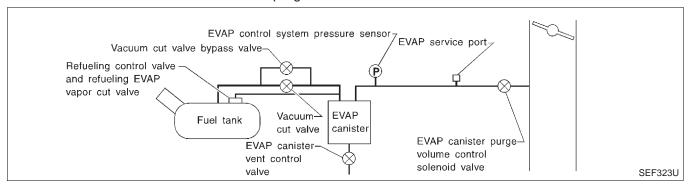
Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK		GO TO 18.
NG	•	GO TO 17.

Diagnostic Procedure (Cont'd)


	Diagnostic Procedure (Cor	it a)			
21 DETECT MA	LFUNCTIONING PART	\neg			
Check the following.	dans and	<u> </u>			
EVAP canister for ofEVAP hose between	damage en EVAP canister and water separator for clogging or poor connection				
	Repair hose or replace EVAP canister.				
		_ 			
	P CONTROL SYSTEM PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT				
 Reconnect harness connectors disconnected. Disconnect harness connectors T19, T20. 					
Check harness co Refer to Wiring Di	ntinuity between harness connector T20 terminal 8 and engine ground.				
Continuity sho	puld exist.				
4. Also check harnes					
011	OK or NG				
OK	► GO TO 24.	_			
NG	► GO TO 23.				
23 DETECT MA	LFUNCTIONING PART	\neg			
Check the following.					
Harness connectorHarness connector		"			
Harness connectorHarness connector					
Harness connectorJoint connector-1 a		<i>I</i>			
Refer to EL-314, "H	HARNESS LAYOUT".				
Harness for open of	or short between harness connector T20 and engine ground				
	Repair open circuit or short to power in harness or connectors.				
24 CHECK INTE	ERMITTENT INCIDENT	\neg			
Refer to "TROUBLE I	DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.				
	INSPECTION END	\neg			
	·	0			
		[
		7			
		r			
		[
		г			

On Board Diagnosis Logic

NOTE:

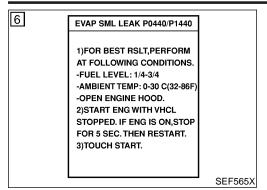
If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-525.)

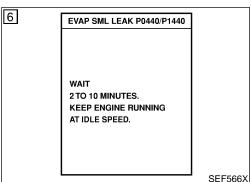
This diagnosis detects a very large leak (fuel filler cap fell off etc.) in the EVAP system between the fuel tank and the EVAP canister purge volume control solenoid valve.

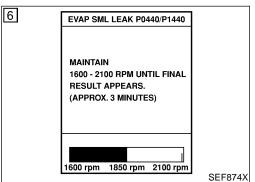
Malfunction is detected when EVAP control system has very large leaks such as when fuel filler cap has fallen off, EVAP control system does not operate properly.

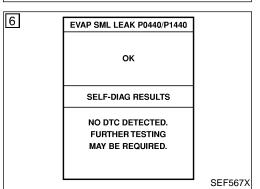
CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.


Possible Cause


NCEC0650


NCEC0649


- Fuel filler cap remains open or fails to close.
- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Foreign matter caught in fuel filler cap.
- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
- Foreign matter caught in EVAP canister vent control valve.
- EVAP canister or fuel tank leaks
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve and the circuit
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- EVAP control system pressure sensor

DTC Confirmation Procedure

DTC Confirmation Procedure

NCEC0651

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure.

ro- [©]

NOTE:

- If DTC P0455 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-525.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

П

MA

TESTING CONDITION:

 Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface. EC

Open engine hood before conducting the following procedure.

;-

(P) WITH CONSULT-II

NCEC0651S01

1) Tighten fuel filler cap securely until ratcheting sound is heard.

MT

GL

- Turn ignition switch "ON".
- 3) Turn ignition switch "OFF" and wait at least 10 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

AT

5) Make sure that the following conditions are met. COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

AX

6) Select "EVAP SML LEAK P0440/P1440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

. 50

Follow the instruction displayed.

NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-107.

ST

7) Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to "Diagnostic Procedure", EC-398.

KS

If P0440 is displayed, perform "Diagnostic Procedure" for DTC P0440.

BT

HA

WITH GST

NCEC0651S02

NOTE:

Be sure to read the explanation of "Driving Pattern" on EC-74 before driving vehicle.

SC

- Start engine.
- 2) Drive vehicle according to "Driving Pattern", EC-74.

EL

- Stop vehicle.
- Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine.

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving Pattern", EC-74.
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P0455 is displayed on the screen, go to "Diagnostic Procedure", EC-398.
- If P0440 or P1440 is displayed on the screen, go to "Diagnostic Procedure", for DTC P0440, EC-357.
- If P1447 is displayed on the screen, go to "Diagnostic Procedure" for DTC P1447, EC-516.
- If P0440, P0455, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

1 CHECK FUEL FILLER CAP DESIGN

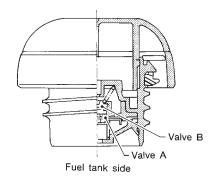
1. Turn ignition switch "OFF".
2. Check for genuine NISSAN fuel filler cap design.

SEF915U

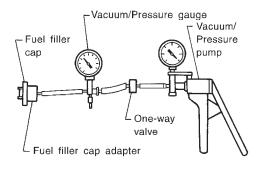
OK or NG

OK

Replace with genuine NISSAN fuel filler cap.


2	CHECK FUEL FILLER CAP INSTALLATION		
Check	Check that the cap is tightened properly by rotating the cap clockwise.		
	OK or NG		
OK	•	GO TO 3.	
NG	>	 Open fuel filler cap, then clean cap and fuel filler neck threads using air blower. Retighten until ratcheting sound is heard. 	

Diagnostic Procedure (Cont'd)


3	CHECK FUEL FILLER	CAP FUNCTION	
Check for air releasing sound while opening the fuel filler cap.			
		OK or NG	
OK	•	GO TO 5.	
NG	•	GO TO 4.	

4 CHECK FUEL TANK VACUUM RELIEF VALVE

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

SEF427N

SEF943S

Pressure:

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 - 2.90 psi)

Vacuum:

-6.0 to -3.4 kPa (-0.061 to -0.035 kg/cm², -0.87 to -0.49 psi)

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

OK or NG

OK •	GO TO 5.
NG •	Replace fuel filler cap with a genuine one.

CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection. Refer to "Evaporative Emission System", EC-33.

OK or NG	١G	r N	0	K	0
----------	----	-----	---	---	---

OK •	GO TO 6.
NG •	Repair or reconnect the hose.

EC-399

GI

MA

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

5U

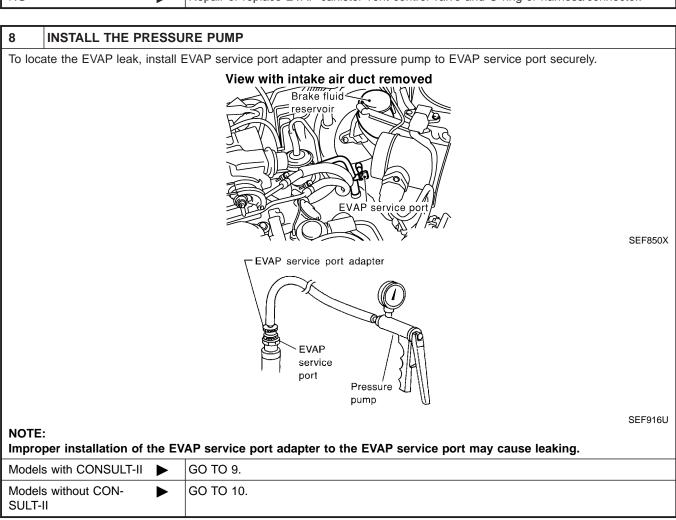
BR

ST

<u></u>

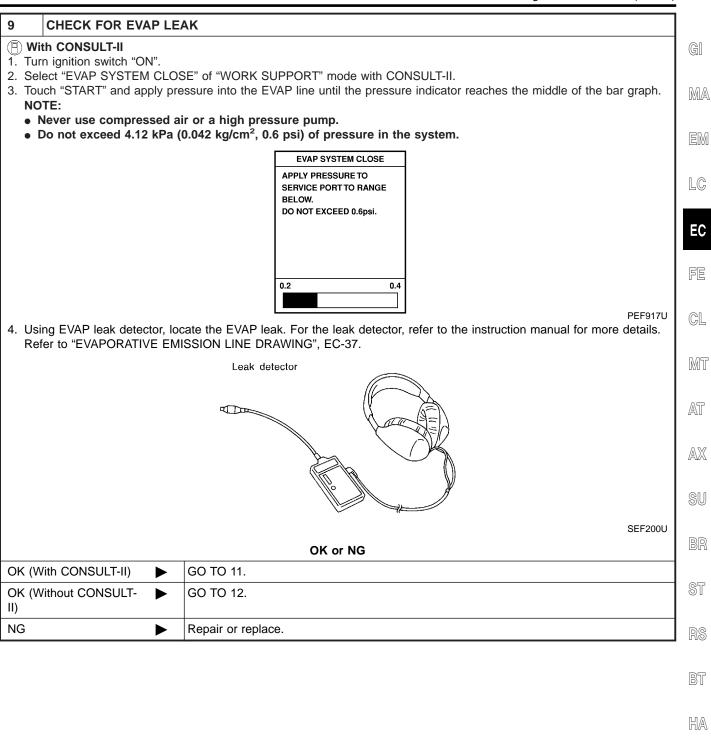
BT

HA


SC

EL

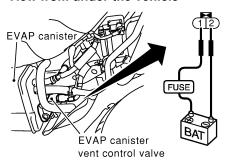
Diagnostic Procedure (Cont'd)


6	6 CLEAN EVAP PURGE LINE			
Clean	Clean EVAP purge line (pipe and rubber tube) using air blower.			
	▶ GO TO 7.			

7	7 CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT	
Refer to "DTC Confirmation Procedure", EC-377.		
OK or NG		
ОК	>	GO TO 8.
NG	>	Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

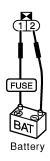
Diagnostic Procedure (Cont'd)

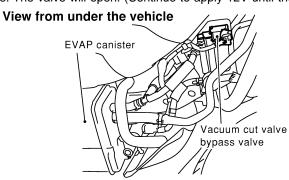
SC


Diagnostic Procedure (Cont'd)

10 CHECK FOR EVAP LEAK

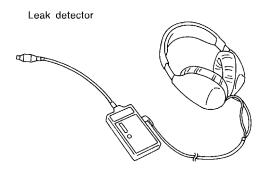
Without CONSULT-II


- 1. Turn ignition switch "OFF".
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)


View from under the vehicle

SEF323Z

3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)



SEF869

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.

NOTE:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.

SEF200U

OK or NG

OK (With CONSULT-II)	>	GO TO 11.
OK (Without CONSULT-II)	•	GO TO 12.
NG	•	Repair or replace.

Diagnostic Procedure (Cont'd)

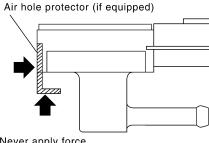

SC

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION (II) With CONSULT-II 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 2. Start engine. 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode. MA 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100.0%. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR LC **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % Vacuum should exist. HO2S1 MNTR (B1) LEAN EC THRTL POS SEN xxx v SEF595Y GL OK or NG OK GO TO 14. GO TO 13. MT NG 12 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION AT **⋈** Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. AX 2. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 4. Start engine and let it idle for at least 80 seconds. 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Vacuum should exist. OK or NG OK GO TO 15. NG GO TO 13. 13 **CHECK VACUUM HOSE** Check vacuum hoses for clogging or disconnection. Refer to "Vacuum Hose Drawing", EC-27. OK or NG OK (With CONSULT-II) GO TO 14. OK (Without CONSULT-GO TO 15. HA NG Repair or reconnect the hose.

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE With CONSULT-II 1. Start engine. 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. ACTIVE TEST PURG VOL CONT/V XXX % MONITOR **ENG SPEED** XXX rpm A/F ALPHA-B1 XXX % HO2S1 MNTR (B1) THRTL POS SEN XXX V SEF801Y OK or NG GO TO 16. OK NG GO TO 15.

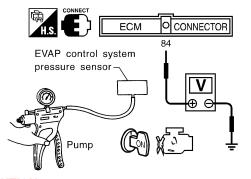
Diagnostic Procedure (Cont'd)



Diagnostic Procedure (Cont'd)

16	CHECK FUEL TANK TEMPERATURE SENSOR		
2. Che	 Remove fuel level sensor unit. Check fuel tank temperature sensor. Refer to EC-290, "Component Inspection". 		
	OK or NG		
OK	>	GO TO 17.	
NG	•	Replace fuel level sensor unit.	

17 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- 1. Remove EVAP control system pressure sensor with its harness connector connected.
 - **CAUTION:**
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

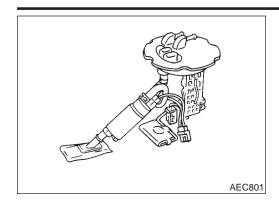
SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION:**
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Voltage V
3.0 - 3.6
0.4 - 0.6

SEF342X

CAUTION:


 Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG

OK •	•	GO TO 18.
NG •	•	Replace EVAP control system pressure sensor.

18	18 CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

GI

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

MA

LC

EC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NCEC0653

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

FE

GL

MT

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	(
83	G/R	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.	[
90	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V	7

AT

On Board Diagnostic Logic

53 S

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

RS

Malfunction is detected when even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.

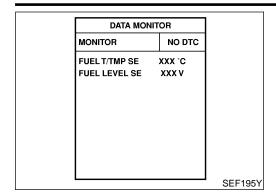
BT

HA

SC

Possible Cause

NCEC0554


Fuel level sensor circuit
 (The fuel level sensor circuit is open or shorted.)

EL

Fuel level sensor

D.Y.

DTC Confirmation Procedure

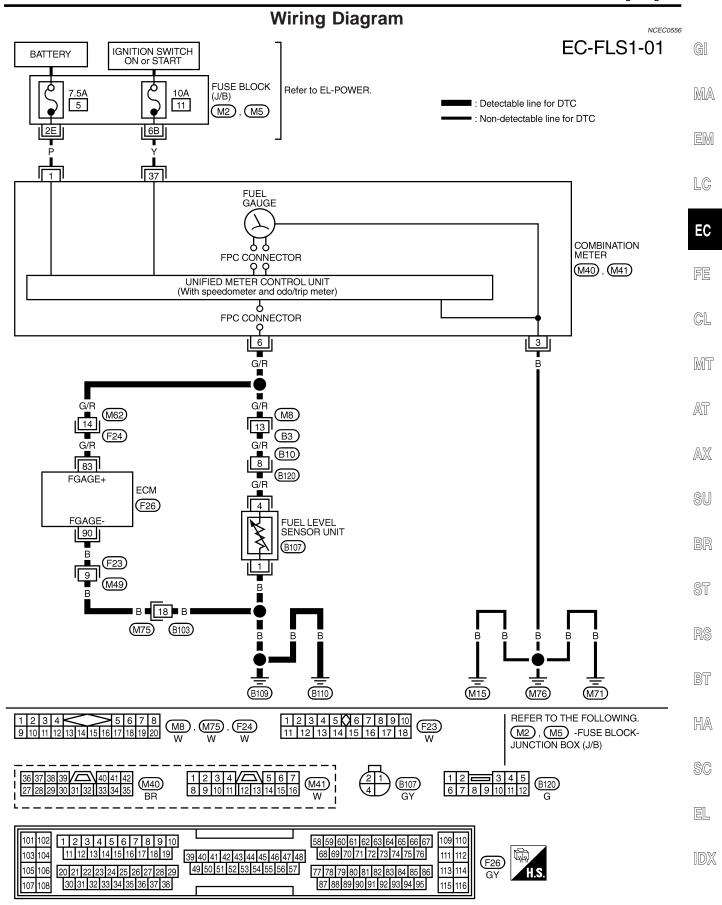
DTC Confirmation Procedure

NCEC0555

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

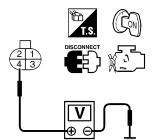

NCEC0555S01

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait maximum of 2 consecutive minutes.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-410.

WITH GST

NCEC0555S02

Follow the procedure "WITH CONSULT-II" above.


Diagnostic Procedure

Diagnostic Procedure

=NCEC0557

1 CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor until and fuel pump harness connector.
- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit terminal 4 and ground with CONSULT-II or a tester.

Voltage: Battery voltage

SEF939XA

OK or NG

ОК	>	GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M8, B3
- Harness connectors B10, B120
- · Harness for open or short between combination meter and fuel level sensor unit
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between fuel level sensor unit terminal 1 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

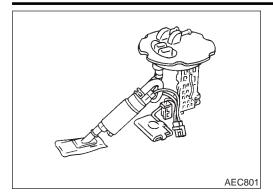
OK or NG

OK •	GO TO 4.
NG •	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 83 and fuel level sensor unit terminal 4, ECM terminal 90 and fuel level sensor unit terminal 1. Refer to Wiring Diagram.

Continuity should exist.


3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 6.
NG ►	GO TO 5.

Diagnostic Procedure (Cont'd)

		_
5 DETECT	ALFUNCTIONING PART	
Check the followi Harness conne Harness conne Harness conne	ors B103, M75 ors F23, M49	GI
 Harness conne 	ors B10, B120	MA
Harness conne Harness for an		
Harness for op	or short between ECM and fuel level sensor	
	Repair open circuit or short to ground or short to power in harness or connectors.	
6 CHECK F	EL LEVEL SENSOR	
L	el Level Sensor Unit Check".	
ĺ	OK or NG	EC
ОК	▶ GO TO 7.	_
NG	Replace fuel level sensor unit.	FE
7 CHECK I	ERMITTENT INCIDENT	GL
Refer to "TROUB	DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	INSPECTION END	MT
		AT AX SU
		BR
		ST
		RS
		BT
		HA
		SC
		EL
		IDX

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnostic Logic

NCEC0559

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

Malfunction is detected when the output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.

Possible Cause

NCEC0560

- Harness or connectors (The level sensor circuit is open or shorted.)
- Fuel level sensor

Overall Function Check

NCEC

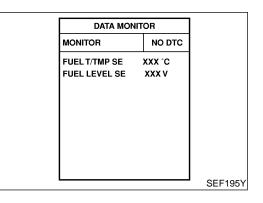
Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to FE-5, "FUEL SYSTEM".

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.


(P) WITH CONSULT-II

NCEC0561S01

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

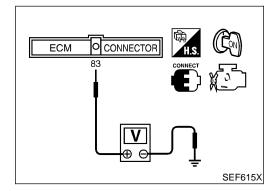
- 1) Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to "Fuel Pressure Release". EC-50.
- Remove the fuel feed hose on the fuel level sensor unit.
- Connect a spare fuel hose where the fuel feed hose was removed.

DTC P0461 FUEL LEVEL SENSOR FUNCTION

Overall Function Check (Cont'd)

- Turn ignition switch "OFF" and wait at least 10 seconds then turn "ON".
- 6) Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- 7) Check "FUEL LEVEL SE" output voltage and note it.
- 8) Select "FUEL PUMP" in "ACTIVE TEST" mode with CON-SULT-II.
- 9) Touch "ON" and drain fuel approximately 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10) Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 11) Check "FUEL LEVEL SE" output voltage and note it.
- 12) Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V during step 7 to 11. If NG, check the fuel level sensor, refer to EL-96, "FUEL LEVEL SENSOR UNIT CHECK".

MA


EM

LC

FE

CL

MT

WITH GST

NOTE:

Start from step 11, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

/A\ X/

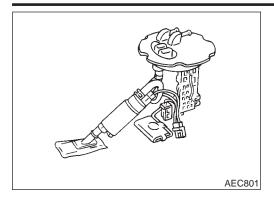
NCEC0561S02

- 1) Prepare a fuel container and a spare hose.
- Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-50.
 - Remove the fuel feed hose on the fuel level sensor unit.
- 4) Connect a spare fuel hose where the fuel feed hose was removed.
 - as BR

- Turn ignition switch "OFF".
- 6) Set voltmeters probe between ECM terminal 83 (fuel level sensor signal) and ground.
 - 50

- Turn ignition switch "ON".
- Check voltage between ECM terminal 83 and ground and note it.
- 9) Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10) Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 lmp gal).
- 11) Confirm that the voltage between ECM terminal 83 and ground changes more than 0.03V during step 8 - 10. If NG, check component of fuel level sensor, refer to EL-96, "FUEL LEVEL SENSOR UNIT CHECK".

HA


SC

EL

 $\mathbb{D}\mathbb{X}$

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

ECM Terminals and Reference Value

NCEC0654

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
83	G/R	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.
90	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

On Board Diagnostic Logic

NCEC056

ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

Malfunction is detected when an excessively low or high voltage is sent from the sensor is sent to ECM.

Possible Cause

NCEC0564

- Fuel level sensor circuit
 (The fuel level sensor circuit is open or shorted.)
- Fuel level sensor

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

NCEC0565

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

LG

DATA MOI	NITOR
MONITOR	NO DTC
FUEL T/TMP SE FUEL LEVEL SE	

(II) WITH CONSULT-II

1) Turn ignition switch "ON".

2) Select "DATA MONITOR" mode with CONSULT-II.

3) Wait at least 5 seconds.

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-417.

EC

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NCEC0565S02

NCEC0565S01

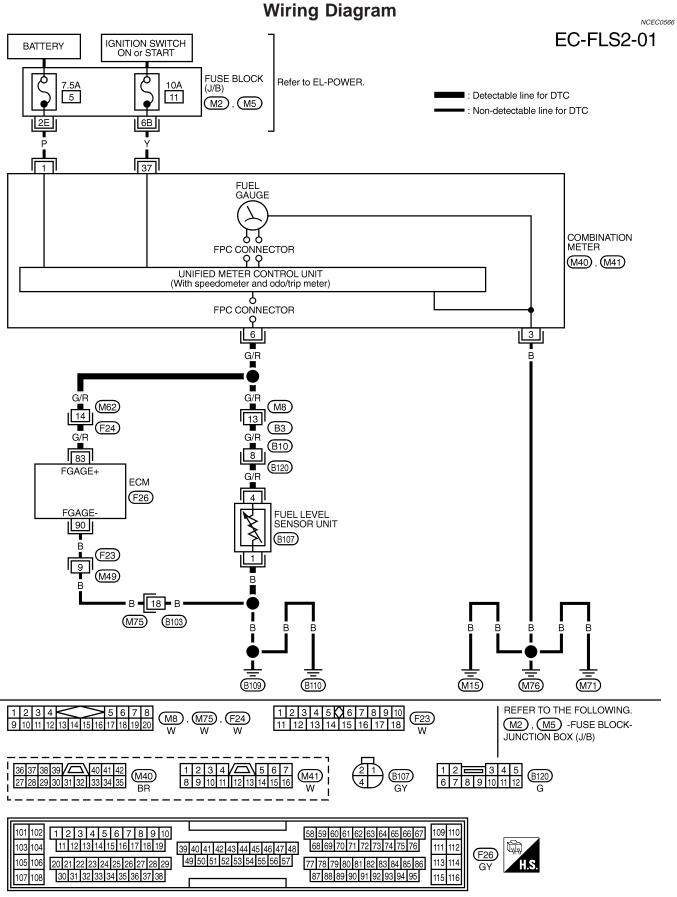
MT

GL

AT

AX

SU


ST

BT

HA

SC

EL

Diagnostic Procedure

=NCEC0567

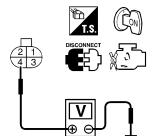
MA

LC

EC

GL

MT


AT

AX

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel level sensor until and fuel pump harness connector.

CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel level sensor unit terminal 4 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF939XA

OK	or	NG
----	----	----

OK	>	GO TO 3.
NG		GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M8, B3
- Harness connectors B10, B120
- Harness for open or short between combination meter and fuel level sensor unit
 - Repair or replace harness or connectors.

3 CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- Check harness continuity between fuel level sensor unit terminal 1 and body ground. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to power.

OK or NG	ì	C	J	Ν	r	o	<	۱	0	
----------	---	---	---	---	---	---	---	---	---	--

OK •	GO TO 4.
NG ►	Repair open circuit or short to power in harness or connectors.

4 CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 83 and fuel level sensor unit terminal 4. Refer to Wiring Diagram. Continuity should exist.
- 3. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 6.
NG 🕨	GO TO 5.

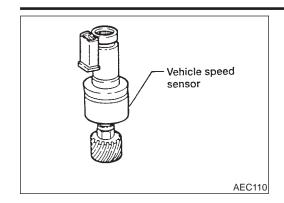
HA

SC

DTC P0464 FUEL LEVEL SENSOR CIRCUIT

Diagnostic Procedure (Cont'd)

5 DETECT MALFUNCTIONING PART Check the following. • Harness connectors M62, F24 • Harness connectors M8, B3 • Harness connectors B10, B120 • Harness for open or short between ECM and fuel level sensor


Repair open circuit or short to ground or short to power in harness on connectors.

6	6 CHECK FUEL LEVEL SENSOR			
Refer	Refer to EL-96, "Fuel Level Sensor Unit Check".			
	OK or NG			
OK	>	GO TO 7.		
NG	>	Replace fuel level sensor unit.		

7	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	•	INSPECTION END	

DTC P0500 VEHICLE SPEED SENSOR (VSS)

Component Description

Component Description

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

50272 S A

MA

en a

LC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NCEC0273

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

FE

EC

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	CL
86	Y/G	Vehicle speed sensor	 [Engine is running] Lift up the vehicle In 2nd gear position Vehicle speed is 40 km/h (25 MPH) 	0 - Approximately 4.2V (V) 10 5 0 SEF003W	MT AT

On Board Diagnosis Logic

NCEC0274

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0500	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor

_ _

1110

Ď [

HA

SC

DTC Confirmation Procedure

NCECOSTE

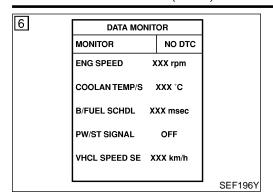
CAUTION:

Always drive vehicle at a safe speed.

EL

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


 $\mathbb{D}\mathbb{X}$

TESTING CONDITION:

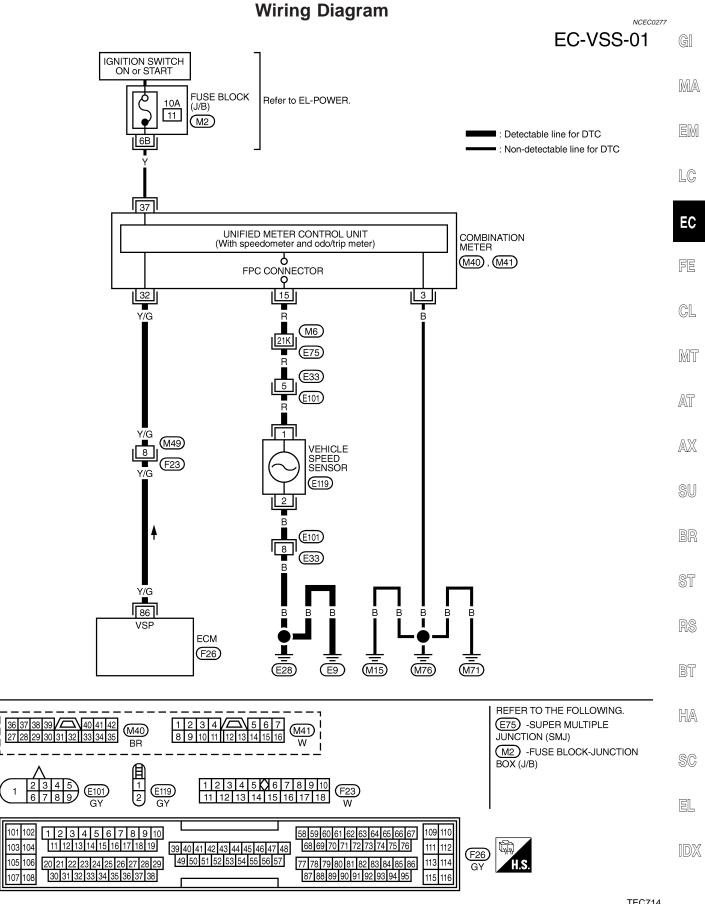
This procedure may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

DTC Confirmation Procedure (Cont'd)

- (P) With CONSULT-II
- Start engine
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 3) If NG, go to "Diagnostic Procedure", EC-422. If OK, go to following step.
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	1,650 - 3,000 rpm (A/T) 1,900 - 3,900 rpm (M/T)
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	4.8 - 12.0 msec (A/T) 4.5 - 10.5 msec (M/T)
Selector lever	Suitable position
PW/ST SIGNAL	OFF


 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-422.

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1) Lift up drive wheels.
- 2) Start engine.
- 3) Read vehicle speed sensor signal in "MODE 1" with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position
- 4) If NG, go to "Diagnostic Procedure", EC-422.

DTC P0500 VEHICLE SPEED SENSOR (VSS)

Diagnostic Procedure

NCEC0278

1 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and combination meter harness connector.
- 3. Check harness continuity between ECM terminal 86 and combination meter terminal 32. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

-				_
O	۸.	or	N	C

0	K •	GO TO 3.
Ν	G ▶	GO TO 2.

2 DETECT MALFUNCTIONING PART

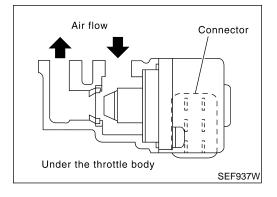
Check the following.

- Harness connectors F23, M49
- Harness for open or short between ECM and combination meter
 - Repair open circuit or short to ground or short to power in harness or connectors.

3	3 CHECK SPEEDOMETER FUNCTION			
Make	Make sure that speedometer functions properly.			
	OK or NG			
OK	•	GO TO 5.		
NG	•	GO TO 4.		

4 CHECK SPEEDOMETER CIRCUIT FOR OPEN AND SHORT Check the following. ■ Harness connectors M6, E75 ■ Harness connectors E33, E101 ■ Harness for open or short between combination meter and vehicle speed sensor OK or NG OK Check combination meter and vehicle speed sensor. Refer to EL-83, "METERS AND GAUGES". NG Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	>	INSPECTION END


DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

Description

Description

SYSTEM DESCRIPTION					GI
Sensor Input Signal to ECM ECM function Actuate					ПЛΛ
Camshaft position sensor	Engine speed				MA
Mass air flow sensor	Amount of intake air				EM
Engine coolant temperature sensor	Engine coolant temperature				الالاكا
Ignition switch	Start signal				LC
Throttle position sensor	Throttle position				
Park/neutral position (PNP) switch	Park/neutral position	Idle air control	IACV-AAC valve		EC
Air conditioner switch	Air conditioner operation				
Power steering oil pressure switch	Power steering load signal				FE
Battery	Battery voltage				
Vehicle speed sensor	Vehicle speed				CL
Intake air temperature sensor	Intake air temperature				

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via IACV-AAC valve. The IACV-AAC valve changes the opening of the air by-pass passage to control the amount of auxiliary air. This valve is actuated by a step motor built into the valve, which moves the valve in the axial direction in steps corresponding to the ECM output signals. One step of IACV-AAC valve movement causes the respective opening of the air by-pass passage. (i.e. when the step advances, the opening is enlarged.) The opening of the valve is varied to allow for optimum control of the engine idling speed. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the step position of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by takin into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner, power steering and cooling fan operation).

COMPONENT DESCRIPTION IACV-AAC Valve

The IACV-AAC valve is operated by a step motor for centralized control of auxiliary air supply. This motor has four winding phases and is actuated by the output signals of ECM which turns ON and OFF two windings each in sequence. Each time the IACV-AAC valve opens or closes to change tha auxiliary air quantity, the ECM sends a pulse signal to the step motor. When no change in the auxiliary air quantity is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

NCEC0279S02

BT

HA

MT

EL

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

NCEC0280

MONITOR ITEM	CONDITION		SPECIFICATION
IACV-AAC/V	Air conditioner switch: OFFShift lever: "N"	Idle	5 - 20 steps
		2,000 rpm	_

ECM Terminals and Reference Value

NCEC0281

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

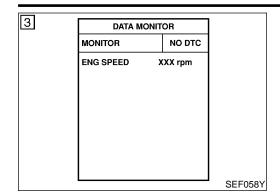
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6 7 15 16	BR L R G	IACV-AAC valve	[Engine is running] • Idle speed	0.1 - 14V

On Board Diagnosis Logic

NCEC0282

DTC No.	Malfunction is detected when		Check Items (Possible Cause)
P0505	A)	The IACV-AAC valve does not operate properly.	Harness or connectors (The IACV-AAC valve circuit is open.) IACV-AAC valve
	В)	The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is shorted.) Air control valve (Power steering) IACV-AAC valve

DTC Confirmation Procedure


NOTE:

NCEC0283

- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.
- Perform "Procedure for malfunction A" first. If 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B".
- If the target idle speed is out of the specified value, perform "Idle Air Volume Learning", EC-65, before conducting "DTC Confirmation Procedure". For the target idle speed, refer to the "Service Data and Specifications (SDS)", EC-610.

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

DTC Confirmation Procedure (Cont'd)

PROCEDURE FOR MALFUNCTION A

TESTING CONDITION:

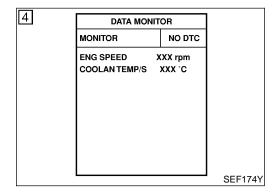
Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch "ON".

(P) With CONSULT-II

1) Turn ignition switch "ON".

Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle.


Keep engine speed at 2,500 rpm for three seconds, then let it idle for three seconds.

Perform step 4 once more.

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-427.

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

TESTING CONDITION:

Before performing the following procedure, make sure battery voltage is more than 11V at idle.

Always perform the test at a temperature above -10°C (14°F).

(P) With CONSULT-II

Open engine hood.

Start engine and warm it up to normal operating temperature.

Turn ignition switch "OFF" and wait at least 10 seconds.

Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.

Start engine and run it for at least 1 minute at idle speed.

If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-427.

With GST

Follow the procedure "With CONSULT-II" above.

NCEC0283502

AT

MA

LC

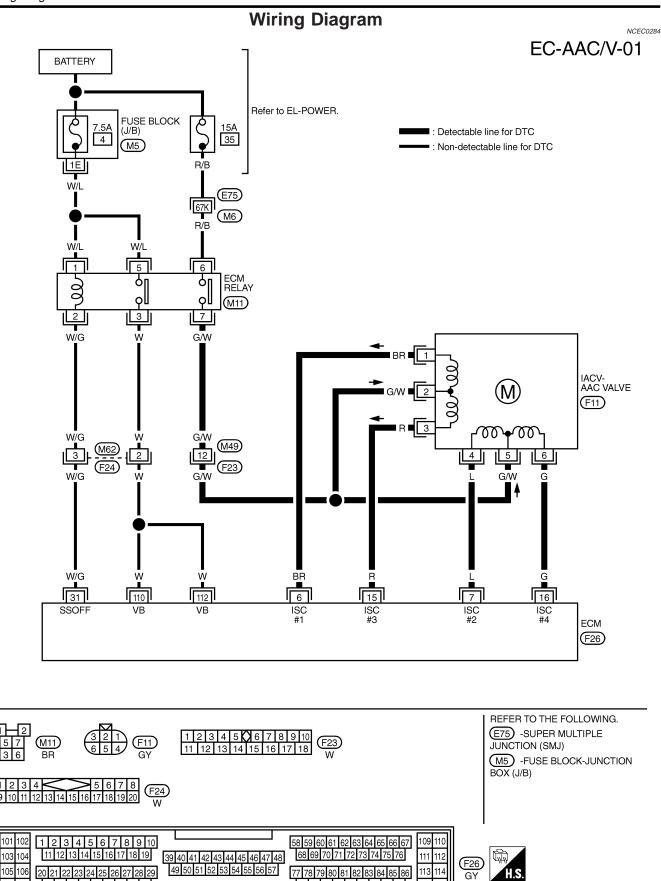
EC

FE

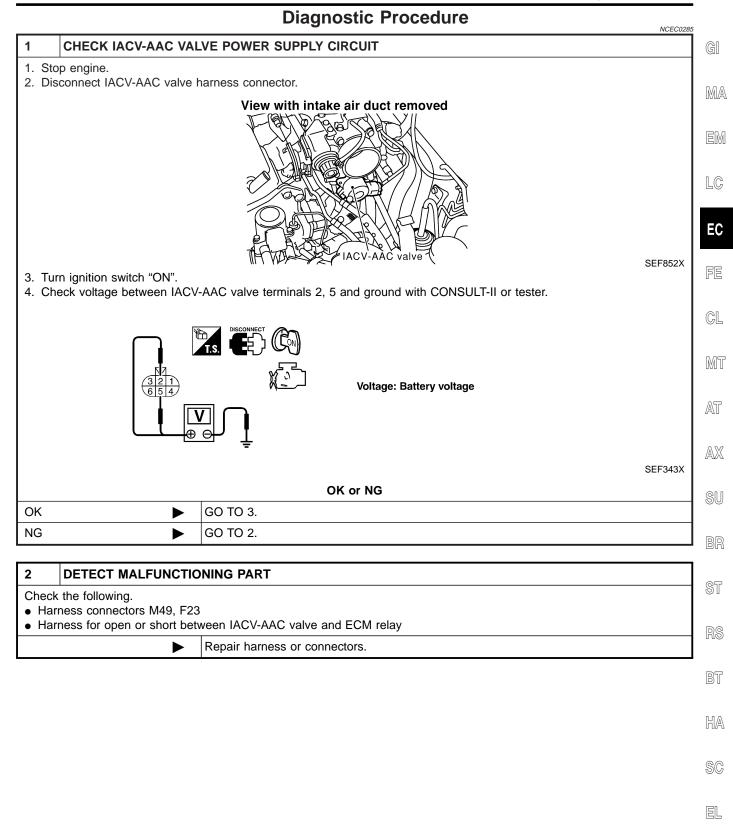
GL

MT

SU


ST

BT


HA

SC

EL

Diagnostic Procedure

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

Diagnostic Procedure (Cont'd)

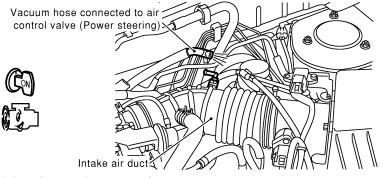
CHECK IACV-AAC VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and IACV-AAC valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	IACV-AAC valve terminal
6	1
7	4
15	3
16	6

MTBL0390

Continuity should exist.


4. Also check harness for short to ground and short to power.

-	-			_
	ĸ	or	Ν	(=

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK AIR CONTROL VALVE (POWER STEERING) OPERATION-I

- 1. Reconnect ECM harness connector and IACV-AAC valve harness connector.
- 2. Disconnect vacuum hose connected to air control valve (Power steering) at intake air duct.
- 3. Start engine and let it idle.
- 4. Check vacuum hose for vacuum existence.

SEF969X

Vacuum slightly exists or does not exist.

OK or NG

OK ►	GO TO 5.
NG •	Replace air control valve (Power steering).

DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

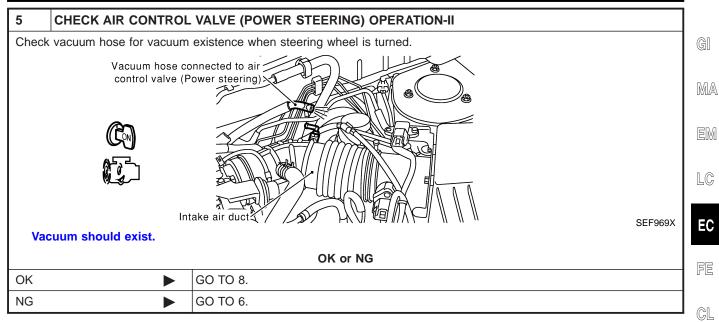
Diagnostic Procedure (Cont'd)

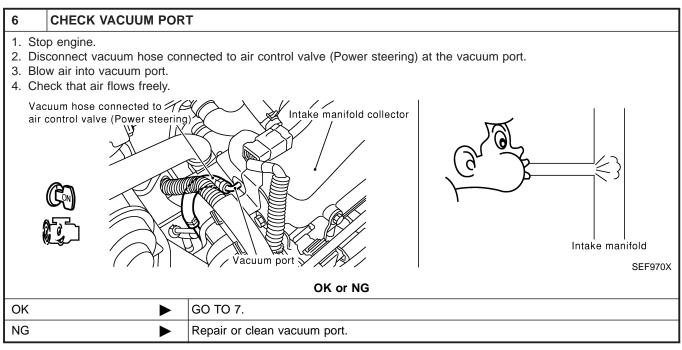
EC

MT

AT

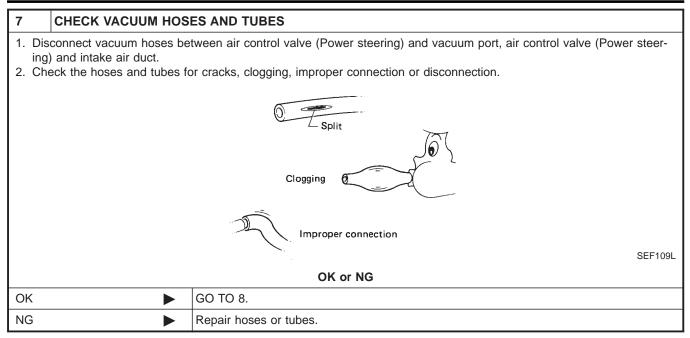
AX

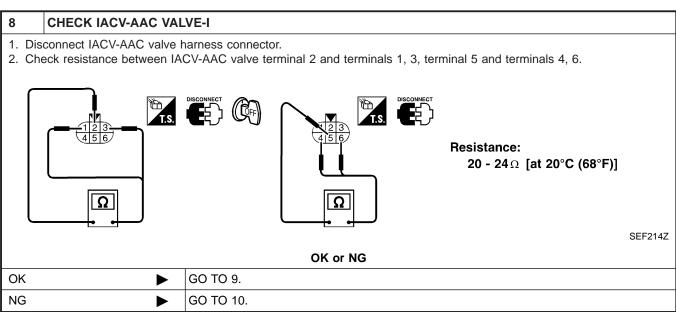

SU


ST

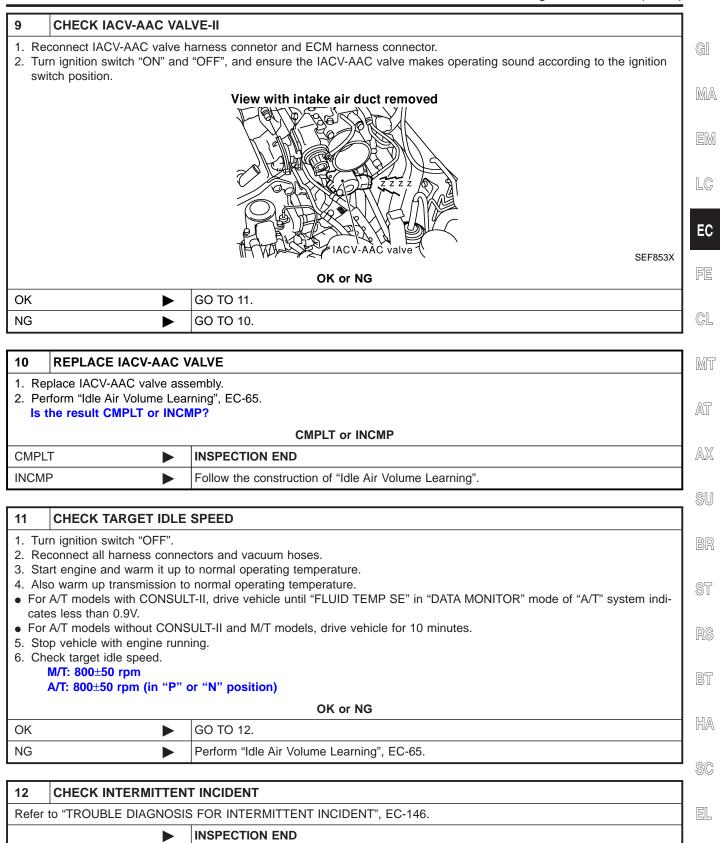
BT

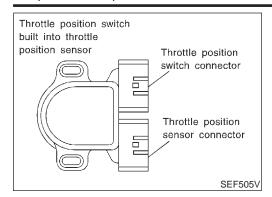
HA


SC



DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE


Diagnostic Procedure (Cont'd)


DTC P0505 IDLE AIR CONTROL VALVE (IACV) — AUXILIARY AIR CONTROL (AAC) VALVE

Diagnostic Procedure (Cont'd)

DTC P0510 CLOSED THROTTLE POSITION SWITCH

Component Description

Component Description

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control.

When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge volume control solenoid valve when the throttle position sensor is malfunctioning.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0655

MONITOR ITEM	CONDITION		SPECIFICATION
CLSD THL/P SW	the engine	Throttle valve: Idle position	ON
		Throttle valve: Slightly open	OFF

ECM Terminals and Reference Value

NCEC0288

Specification data are reference values and are measured between each terminal and ground.

CAUTION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
40 Y	Υ	Throttle position switch (Closed position)	[Engine is running]Warm-up conditionAccelerator pedal released	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Accelerator pedal depressed	Approximately 0V

On Board Diagnosis Logic

NCEC028

		NoEddada
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0510	Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.	 Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor

DTC Confirmation Procedure

NCEC0290

GI

MA

LC

EC

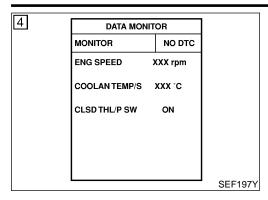
FE

GL

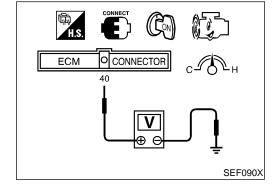
MT

AT

AX


SU

ST


HA

SC

EL

6	DATA MON	DATA MONITOR		
	MONITOR	NO DTC		
	COOLAN TEMP/S VHCL SPEED SE THRTL POS SEN	XXX km/h		
			SEF198Y	

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF", wait at least 10 seconds and then start engine.
- 3) Select "CLSD THL/P SW" in "DATA MONITOR" mode.
- 4) Check the signal under the following conditions.

Condition	Signal indication
Throttle valve: Idle position	ON
Throttle valve: Slightly open	OFF

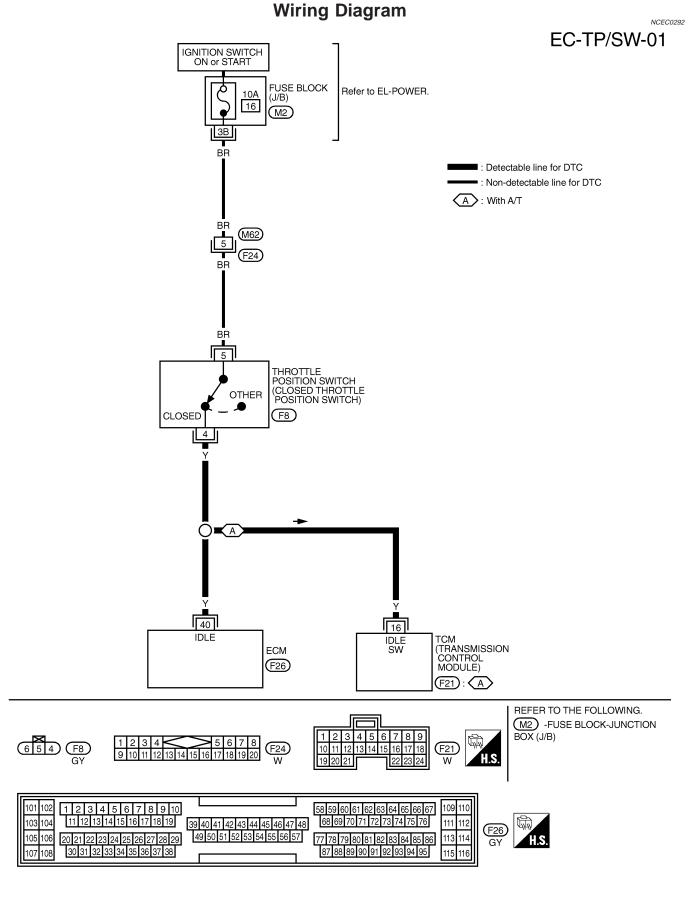
If the result is NG, go to "Diagnostic Procedure", EC-435. If OK, go to following step.

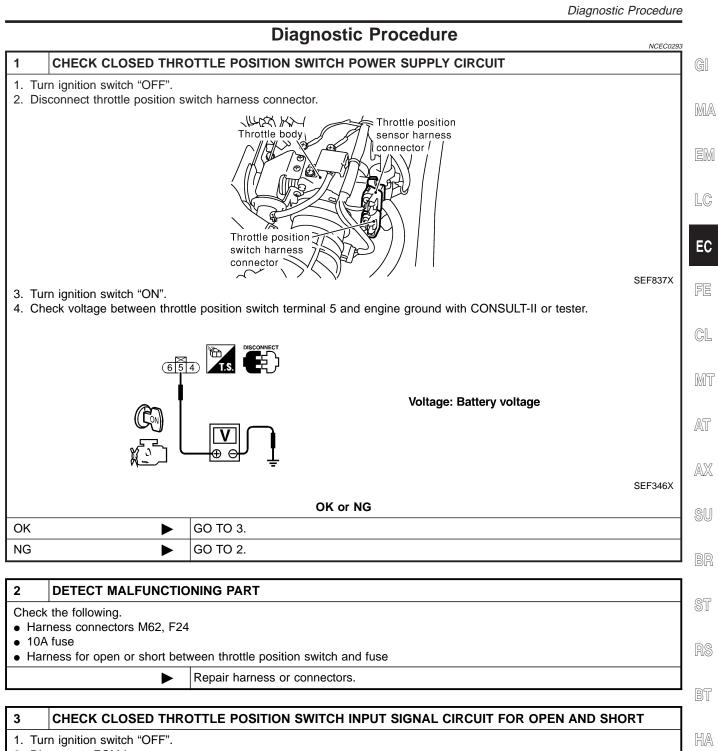
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Drive the vehicle for at least 5 consecutive seconds under the following condition.

THRTL POS SEN	More than 2.3V
VHCL SPEED SE	More than 4 km/h (2 MPH)
Selector lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

7) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-435.

Overall Function Check


Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.


⋈ Without CONSULT-II

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check the voltage between ECM terminal 40 (Closed throttle position switch signal) and ground under the following conditions.

Condition	Voltage
At idle	Battery voltage
At 2,000 rpm	Approximately 0V

3) If NG, go to "Diagnostic Procedure", EC-435.

		Tropair Harriess of confidences.	
3 CHECK	CLOSED THR	OTTLE POSITION SWITCH INPUT SIGNAL CIRCUIT FOR OP	
1. Turn ignition	switch "OFF".		ŀ
3. Check harne Refer to Wir Continui	ing Diagram. ty should exist.	nector. ween ECM terminal 40 and throttle position switch terminal 4. to ground and short to power.	
		OK or NG	
OK	•	GO TO 5.	
NG		GO TO 4.	

Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART

Check the following.

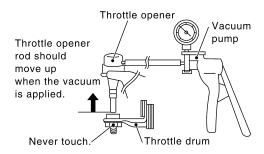
- Harness for open or short between ECM and throttle position switch
- Harness for open or short between throttle position switch and TCM (Transmission control module)

Repair open circuit or short to ground or short to power in harness or connectors.

5 CHECK IGNITION TIMING AND ENGINE IDLE SPEED

Check the following items. Refer to "Basic Inspection", EC-107.

Items	Specifications
Ignition timing	15° ± 2° BTDC
Idle speed	M/T: 800 ± 50 rpm A/T: 800 ± 50 rpm (in "P" or "N" position)


MTBL0391

Мо	dels with CONSULT-II	>	GO TO 6.
	dels without CON- LT-II	>	GO TO 7.

6 CHECK THROTTLE POSITION SWITCH

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Remove vacuum hose connected to throttle opener.
- 4. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 5. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

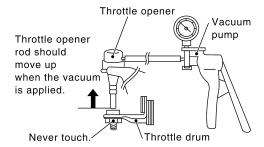
- 6. Turn ignition switch "ON".
- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check indication of "CLSD THL/P SW" under the following conditions.

 Measurement must be made with throttle position switch installed in vehicle.

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

MTBL0355

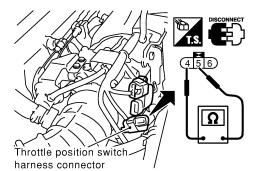
OK	or	NG
----	----	----


OK (With CONSULT-II)	>	GO TO 9.
OK (Without CONSULT-II)	•	GO TO 10.
NG	•	GO TO 8.

Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SWITCH

⊗ Without CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch "OFF".
- 3. Remove vacuum hose connected to throttle opener.
- 4. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 5. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

6. Disconnect closed throttle position switch harness connector.

7. Check continuity between closed throttle position switch terminals 4 and 5 under the following conditions. Resistance measurement must be made with throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or compleately open	No

SEF940X

OK or I	NG

OK (With CONSULT-II)	>	GO TO 9.
OK (Without CONSULT-II)	>	GO TO 10.
NG	>	GO TO 8.

GI

MA

LC

EC

FE

MT

AT

 $\mathbb{A}\mathbb{X}$

9W

ST

RS

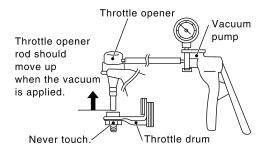
BT

HA

SC

Diagnostic Procedure (Cont'd)

8 ADJUST THROTTLE POSITION SWITCH Check the following items. Refer to "Basic Inspection", EC-107. | Items | Specifications | | Ignition timing | 15°±2° BTDC | | Closed throttle position switch idle position adjustment | D.05 mm (0.0020 in): ON 0.15 mm (0.0059 in): OFF | | Target idle speed | M/T: 800±50 rpm (in "P" or "N" position) | Is it possible to adjust closed throttle position switch?


Yes	or	No
-----	----	----

Yes (With CONSULT-II)	>	GO TO 9.
Yes (Without CONSULT-II)	•	GO TO 10.
No	>	Replace throttle position switch.

9 CHECK THROTTLE POSITION SENSOR

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Remove the vacuum hose connected to the throttle opener.
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

- 6. Turn ignition switch ON.
- 7. Select "DATA MONITOR" mode with CONSULT-II.
- 8. Check voltage of "THRTL POS SEN" under the following conditins.

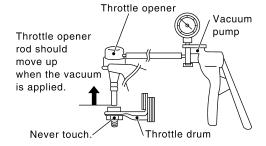
Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	THRTL POS SEN
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V

MTBL0230

OK (or N	IG
------	------	----

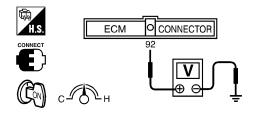
OK ▶	GO TO 11.
NG ►	Replace throttle position sensor.


Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SENSOR

⋈ Without CONSULT-II

10


- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine (ignition switch OFF).
- 3. Remove the vacuum hose connected to the throttle opener.
- 4. Connect suitable vacuum hose to the vacuum pump and the opener.
- 5. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

- 6. Turn ignition switch ON.
- 7. Check voltage between ECM terminal 92 (Throttle position sensor signal) and ground.

 Voltage measurement must be made with throttle position sensor installed in vehicle.

Voltage
0.15 - 0.85V
Between (a) and (b)
3.5 - 4.7V

SEF526Z

OK	>	GO TO 11.
NG		Replace throttle position sensor.

11	CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	► INSPECTION END		

OK or NG

GI

MA

_n/n

LC

EC

FE

G

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

ST

RS

BT

HA

SC

EL

System Description

ICEC049

These circuit lines are used to control the smooth shifting up and down of A/T during the hard acceleration/deceleration. Voltage signals are exchanged between ECM and TCM (Transmission control module).

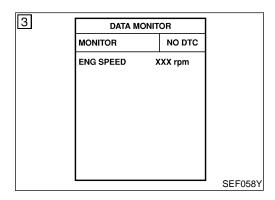
ECM Terminals and Reference Value

NCEC0495

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
10	Y/B	A/T signal No. 3	[Engine is running] • Idle speed	0 - 1.0V
19	BR/W	A/T signal No. 5	[Engine is running] • Idle speed	Approximately 8V
54	Y/R	A/T signal No. 1	[Engine is running] • Idle speed	Approximately 0 - 1.0V
55	Y/G	A/T signal No. 2	[Engine is running] • Idle speed	Approximately 0 - 1.0V
56	G/Y	A/T signal No. 4	[Engine is running] • Idle speed	Approximately 0 - 1.0V

On Board Diagnosis Logic

NCEC0496

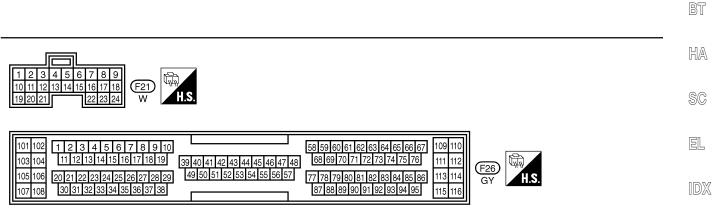
DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0600*	ECM receives incorrect voltage from TCM (Transmission control module) continuously.	Harness or connectors [The circuit between ECM and TCM (Transmission control module) is open or shorted.]

^{*:} This DTC can be detected only by "DATA MONITOR (AUTO TRIG)" with CONSULT-II.

DTC Confirmation Procedure

NCEC0497

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 10 seconds.
- 4) If DTC is detected, go to "Diagnostic Procedure", EC-442.

Wiring Diagram **Wiring Diagram** NCEC0499 EC-AT/C-01 GI MA TCM (TRANSMISSION CONTROL MODULE) (F21) DT2 6 Y/G DT3 DT5 9 G/Y BR/W Y/B LC ■ : Detectable line for DTC : Non-detectable line for DTC EC

5 Y<u>/</u>R Y/G 55 BR/W 19 Y/B G/Y 56 54 10 DT3 DT5 ECM (F26)

TEC717

FE

GL

MT

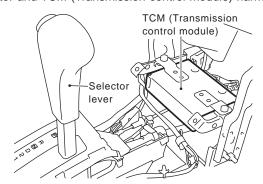
AT

AX

SU

BR

ST


RS

Diagnostic Procedure

NCEC0500

CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and TCM (Transmission control module) harness connector.

SEF313W

3. Check harness continuity between ECM terminal 10 and TCM terminal 7, ECM terminal 19 and TCM terminal 8, ECM terminal 54 and terminal 5, ECM terminal 55 and TCM terminal 6, ECM terminal 56 and TCM terminal 9. Refer to Wiring Diagram.

Continuity should exist.

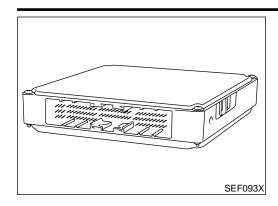
OK or NG

OK •	GO TO 2.
NG ►	Repair harness or connectors.

2 CHECK INPUT SIGNAL CIRCUIT

1. Check harness continuity between ECM terminal 10 and ground, ECM terminal 19 and ground, ECM terminal 54 and ground, ECM terminal 55 and ground, ECM terminal 56 and ground.

Refer to Wiring Diagram.


Continuity should not exist.

2. Also check harness for short to power.

OK or NG

OK •	GO TO 3.
NG ►	Repair short to ground or short to power in harness.

I	3	CHECK INTERMITTENT INCIDENT		
	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	► INSPECTION END			

Component Description

The ECM consists of a microcomputer and connector for signal input and output and for power supply. The ECM controls the engine.

ial

MA

EM

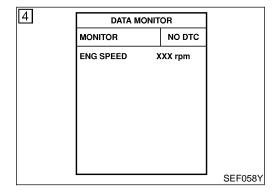
LC

On Board Diagnosis Logic

NCEC0296

NCEC0297

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P0605 • ECM calculation function is malfunctioning.		• ECM



GL

FE

\ /152

MT

DTC Confirmation Procedure

NOTF:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

SU

BR

(P) With CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine.
- 4) Run engine for at least 30 seconds at idle speed.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-444.
- **With GST**

Follow the procedure "With CONSULT-II" above.

ST

RS

BT

HA

SC

Diagnostic Procedure

NCEC0298

1 INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch "ON".
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-443.

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch "ON".
- 2. Select MODE 4 with GST.
- 3. Touch "ERASE".
- 4. Perform "DTC Confirmation Procedure".

See EC-443.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No

No •	INSPECTION END	
Yes	GO TO 2.	

2 REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM NATS)", EC-81.
- 3. Perform "Idle Air Volume Learning", EC-65.

Is the result CMPLT or INCMP?

CMPLT or INCMP

CMPLT -	INSPECTION END
INCMP	Follow the construction of "Idle Air Volume Learning".

On Board Diagnosis Logic

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat open stuck. Malfunction is detected when the engine coolant temperature does not reach to specified temperature even though the engine has run long enough.

MA

LC

Possible Cause

NCEC0569

Thermostat function

- Leakage from sealing portion of thermostat
- Engine coolant temperature sensor

EC

GL

MT

DTC Confirmation Procedure

NCEC0570

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 60°C (140°F).

(A) WITH CONSULT-II

- 1) Replace thermostat with new one. Refer to LC-12, "Thermostat". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.

Turn ignition switch "ON".

Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.

Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 60°C (140°F), go to following step. If it is above 60°C (140°F), stop engine and cool down the engine to less than 60°C (140°F), then retry from step 1.

HA

5) Drive vehicle for 10 consecutive minutes under the following conditions.

SC

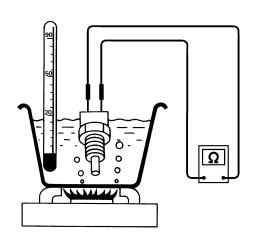
VHCL SPEED SE

80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to "Diagnostic Procedure"

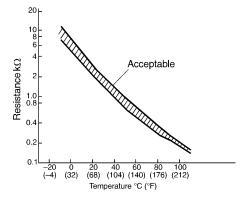
EC-446. **® WITH GST**

NCEC0570S02


1) Follow the prodedure "WITH CONSULT-II" above.

Diagnostic Procedure

NCEC0571


CHECK ENGINE COOLANT TEMPERATURE SENSOR

- 1. Turn ignition switch OFF.
- 2. Remove engine coolant temperature sensor.
- 3. Check resistance between engine coolant temperature sensor terminals under the following conditions.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

SEF304X

OK or NG

OK •	INSPECTION END
NG •	Replace engine coolant temperature sensor.

DTC P1148 CLOSED LOOP CONTROL

On Board Diagnosis Logic

On Board Diagnosis Logic

★ The closed loop control has the one trip detection logic.

	GI
se)	0.5
circuit is	MA

NCEC0307

DTC No.	Malfunction is detected when	Check Items (Possible Cause)	· GII
P1148	The closed loop control function does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 (front) circuit is open or shorted. Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) 	MA . EM

LC

EC

3	DATA MONITOR			
	MONITOR		NO DTC	
	ENG SPEED B/FUEL SCHDL COOLAN TEMP/S HO2S1 (B1) VHCL SPEED SE	X 2	XXX°C XXXV	
				SEF68

DTC Confirmation Procedure

NCEC0308

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Never raise engine speed above 3,200 rpm during the "DTC Confirmation Procedure". If the engine speed limit is exceeded, retry the procedure from step 4.

MT

AT

AX

GL

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "DATA MONITOR" mode with CONSULT-II.
- Hold engine speed at 2,000 rpm and check the following.
- "HO2S1 (B1)" voltage should go above 0.70V at least once.
- "HO2S1 (B1)" voltage should go below 0.21V at least once. If the result is NG, perform "Diagnosis Procedure", EC-448. If the result is OK, perform the following step.
- Let engine idle at least 4 minutes.
- Maintain the following condition at least 50 consecutive seconds.

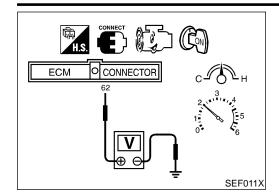
@T
Ø

B/FUEL SCHDL	More than 2.4 msec
ENG SPEED	More than 1,500 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 71 km/h (44 MPH)

During this test, P0130 DTC may be displayed on CON-

HA

6) If DTC is detected, go to "Diagnostic Procedure", EC-448.


SC

EL

SULT-II screen.

DTC P1148 CLOSED LOOP CONTROL

Overall Function Check

Overall Function Check

NCEC030

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

With GST

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 62 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- 4) If NG, go to "Diagnostic Procedure", EC-448.

Diagnostic Procedure

NCEC0310

Refer to "Diagnostic Procedure" for DTC P0133, EC-221.

System Description

System Description

COOLING FAN CONTROL

NCEC0433

			NCEC04	33501	JU
Sensor	Input Signal to ECM	ECM func- tion	Actuator	[\/]	1A
Vehicle speed sensor	Vehicle speed			UVU	11/~7
Engine coolant temperature sensor	Engine coolant temperature			F	M
Air conditioner switch	Air conditioner "ON" signal	ECM	Cooling fan relay(s)		UVU
Ignition switch	Start signal			L(C
Refrigerant pressure sensor	Refrigerant pressure				_

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

EC

FE

GL

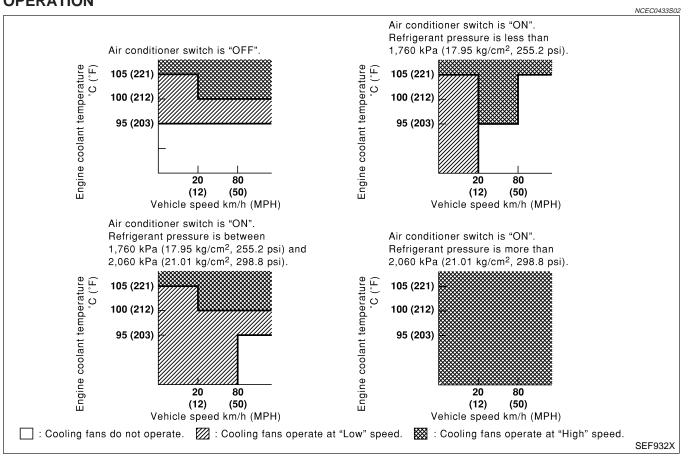
MT

AT

AX

SU

ST


BT

HA

SC

EL

OPERATION

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0486

MONITOR ITEM	CONE	SPECIFICATION	
		Air conditioner switch: OFF	OFF
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates)	ON

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

MONITOR ITEM	CONE	SPECIFICATION	
	Engine coolant temperature is 94°C (201°F) or less	OFF	
COOLING FAN	 After warming up engine, idle the engine. Air conditioner switch: OFF	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F)	LOW
		Engine coolant temperature is 105°C (221°F) or more	HIGH

ECM Terminals and Reference Value

NCEC0487

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

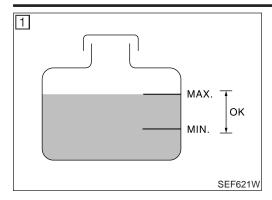
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	LG	Cooling fan relay (High)	[Engine is running] • Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
12	LG		[Engine is running] ■ Cooling fan (High) is operating	0 - 0.6V
13	L/Y	Occling for valou (Low)	[Engine is running] ■ Cooling fan is not operating	BATTERY VOLTAGE (11 - 14V)
13	L/ I	Cooling fan relay (Low)	[Engine is running] ■ Cooling fan is operating	0 - 0.6V

On Board Diagnosis Logic

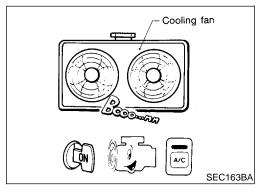
NOTCO 40

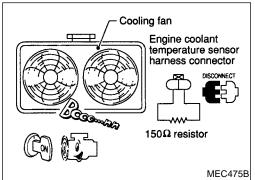
If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1217	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. 	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-465.

CAUTION:


When a malfunction is indicated, be sure to replace the coolant. Refer to MA-14, "Changing Engine Coolant". Also, replace the engine oil. Refer to MA-18, "Changing Engine Oil".


- 1) Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-12, "Anti-freeze Coolant Mixture Ratio".
- 2) After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

[4]	ACTIVE TES	ST	
	COOLING FAN	OFF	
	MONITOR	1	
	COOLAN TEMP/S	xxx °c	
		1	SEF111X

Overall Function Check

NCEC0489

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

MA

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

EM

(P) With CONSULT-II

LC

Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-453.

EC

2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-453.

GL

FE

Turn ignition switch "ON".

- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.

MT

If the results are NG, go to "Diagnostic Procedure", EC-453.

With GST

AT

Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "Diagnostic Procedure", EC-453.

Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "Diagnostic Procedure", EC-453.

Start engine.

Be careful not to overheat engine.

Set temperature control lever to full cold position.

5) Turn air conditioner switch "ON".

Turn blower fan switch "ON". 6)

7) Run engine at idle for a few minutes with air conditioner operating.

Be careful not to overheat engine.

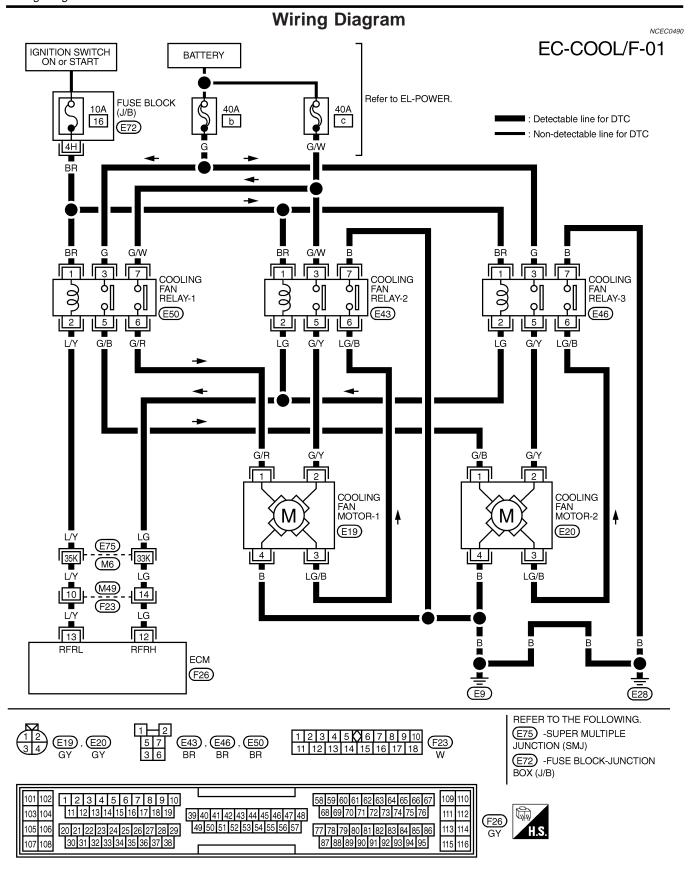
Make sure that cooling fan operates at low speed. If NG, go to "Diagnostic Procedure", EC-453. If OK, go to the following step.

HA

9) Turn ignition switch "OFF".

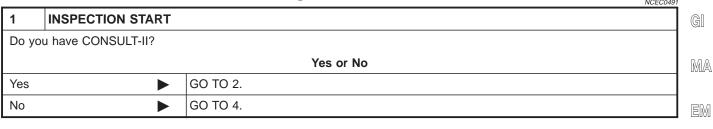
10) Turn air conditioner switch and blower fan switch "OFF".

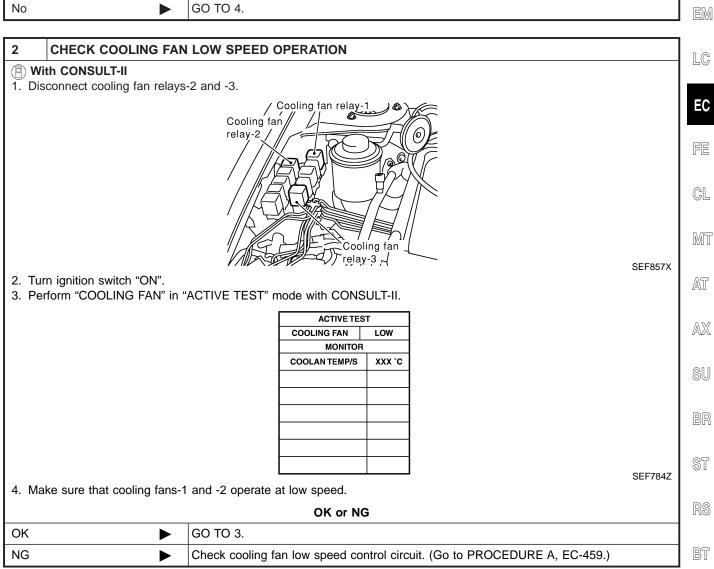
SC


11) Disconnect engine coolant temperature sensor harness connector.

EL

12) Connect 150 Ω resistor to engine coolant temperature sensor harness connector.


13) Restart engine and make sure that cooling fan operates at higher speed than low speed.


Be careful not to overheat engine. 14) If NG, go to "Diagnostic Procedure", EC-453.

Diagnostic Procedure

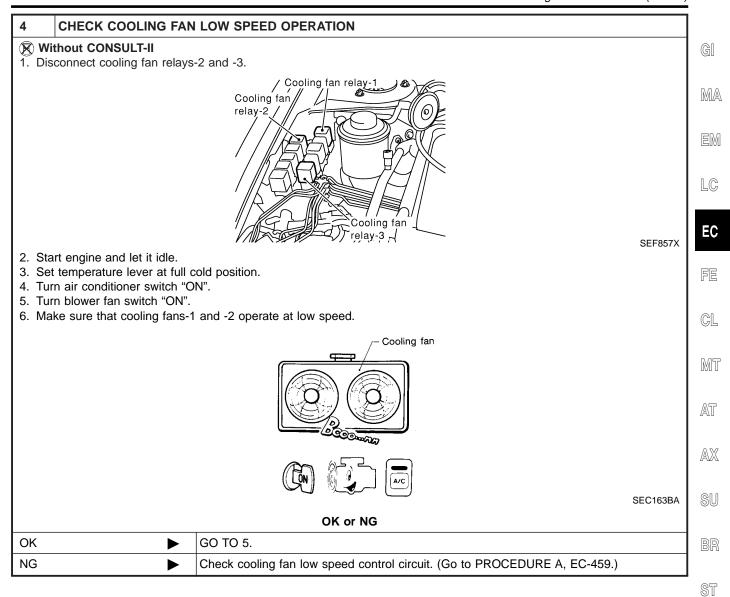
Diagnostic Procedure NCEC0491 **INSPECTION START** Do you have CONSULT-II? Yes or No

SC

HA

Diagnostic Procedure (Cont'd)

3 CHECK COOLING FAN	I HIGH SPEED OPERATION			
 With CONSULT-II 1. Turn ignition switch "OFF". 2. Reconnect cooling fan relays 3. Disconnect cooling fan relay- 4. Turn ignition switch "ON". 5. Perform "COOLING FAN" in " 	1.	SULT-II.		
	ACTIVE TE			
	COOLING FAN	HIGH		
	MONITO COOLAN TEMP/S	XXX °C		
	GGEAN TEIM 76	AAA O		
				SEF785Z
6. Make sure that cooling fans-	and -2 operate at higher speed	than low	speed.	
	OK or N	G		
OK •	GO TO 6.			
NG >	Check cooling fan high speed	control cir	cuit. (Go to PROCEDURE B, EC-462.)	

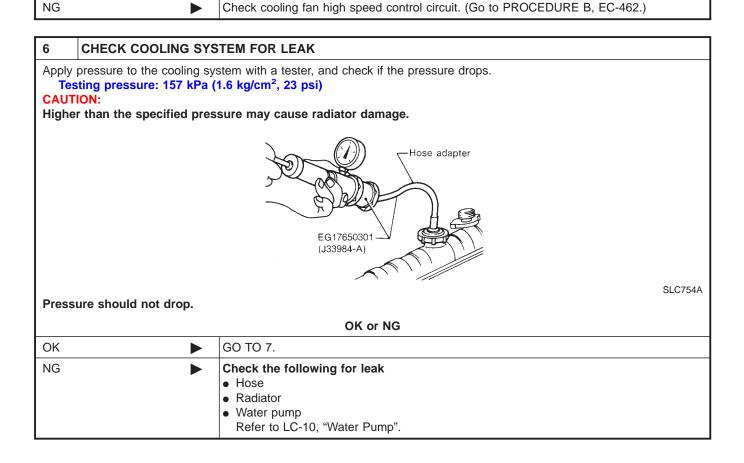

Diagnostic Procedure (Cont'd)

BT

HA

SC

EL


EC-455

Diagnostic Procedure (Cont'd)

OK

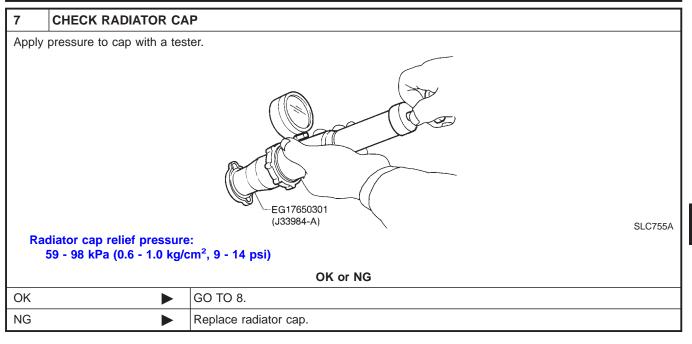
CHECK COOLING FAN HIGH SPEED OPERATION Without CONSULT-II 1. Turn ignition switch "OFF". 2. Reconnect cooling fan relays-2 and -3. 3. Disconnect cooling fan relay-1. 4. Turn air conditioner switch and blower fan switch "OFF". 5. Disconnect engine coolant temperature sensor harness connector. 6. Connect 150Ω resistor to engine coolant temperature sensor harness connector. 7. Restart engine and make sure that cooling fans-1 and -2 operate at higher speed than low speed. Cooling fan 150 Ω resistor Engine coolant temperature sensor harness connector MEF613EA OK or NG

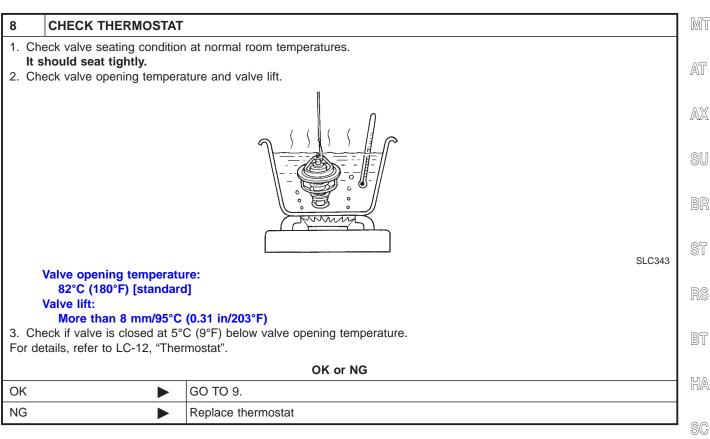
GO TO 6.

Diagnostic Procedure (Cont'd)

GI

MA


LC


EC

FE

GL

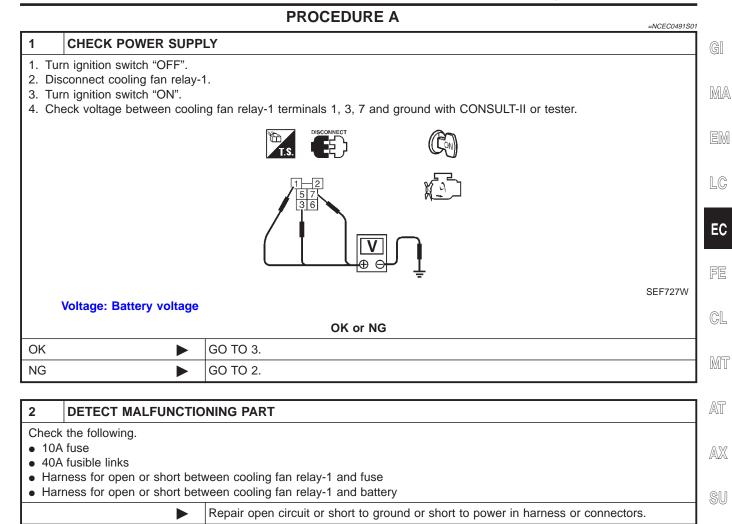
EL

9	CHECK ENGINE COOLANT TEMPERATURE SENSOR		
Refer	Refer to "COMPONENT INSPECTION", EC-195.		
	OK or NG		
OK	>	GO TO 10.	
NG	>	Replace engine coolant temperature sensor.	

Diagnostic Procedure (Cont'd)

10	CHECK MAIN 12 CAUSES		
If the	If the cause cannot be isolated, go to "MAIN 12 CAUSES OF OVERHEATING", EC-465.		
	INSPECTION END		

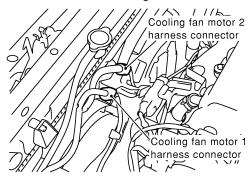
Diagnostic Procedure (Cont'd)


ST

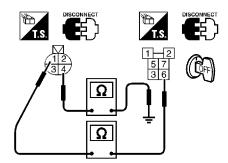
BT

HA

SC

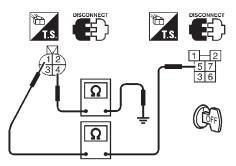

EL

Diagnostic Procedure (Cont'd)


CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.

SEF854X


3. Check harness continuity between cooling fan relay-1 terminal 6 and cooling fan motor-1 terminal 1, cooling fan motor-1 terminal 4 and body ground.

SEF728W

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-1 terminal 5 and cooling fan motor-2 terminal 1, cooling fan motor-2 terminal 4 and body ground.

SEF729W

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure (Cont'd)

4 CHECK	OUTPUT SIGNAL CIRCUIT	
	ECM harness connector.	\neg
	ess continuity between ECM terminal 13 and cooling fan relay-1 terminal 2. ring Diagram.	
Continui	ty should exist.	
3. Also check	harness for short to ground and short to power.	
	OK or NG	_
OK	► GO TO 6.	_
NG	▶ GO TO 5.	
5 DETEC	T MALFUNCTIONING PART	<u> </u>
Check the follo		
 Harness con 	nectors E75, M6	- [!
	nectors M49, F23 open or short between cooling fan relay-1 and ECM	
	Repair open circuit or short to ground or short to power in harness or connectors.	\dashv
6 CHECK	COOLING FAN RELAY-1	
Refer to "Comp	ponent Inspection", EC-465.	
	OK or NG	
OK	▶ GO TO 7.	
NG	Replace cooling fan relay.	
7 CHECK	COOLING FAN MOTORS-1 AND -2	
Refer to "Comp	ponent Inspection", EC-466.	
	OK or NG	
OK	▶ GO TO 8.	
NG	Replace cooling fan motors.	
	(INTERMITTENT INCIDENT	
	USPECTION END	

Diagnostic Procedure (Cont'd)

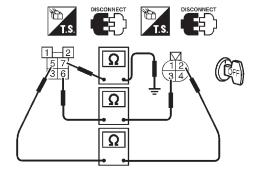
OK

NG

1 CHECK POWER SUPPLY 1. Turn ignition switch "OFF". 2. Disconnect cooling fan relays-2 and -3. 3. Turn ignition switch "ON". 4. Check voltage between cooling fan relays-2 and -3 terminals 1, 3 and ground with CONSULT-II or tester. Voltage: Battery voltage Voltage: Battery voltage

2	DETECT MALFUNCTIONING PART			
• Ha	Check the following. Harness for open or short between cooling fan relays-2 and -3 and fuse Harness for open or short between cooling fan relays-2 and -3 and fusible link			
	•	Repair harness or connectors.		

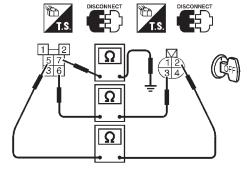
OK or NG


GO TO 3.

GO TO 2.

Diagnostic Procedure (Cont'd)

CHECK COOLING FAN MOTOR CIRCUIT FOR OPEN AND SHORT


- 1. Turn ignition switch "OFF".
- 2. Disconnect cooling fan motor-1 harness connector and cooling fan motor-2 harness connector.
- 3. Check harness continuity between cooling fan relay-2 terminal 5 and cooling fan motor-1 terminal 2, cooling fan relay-2 terminal 6 and cooling fan motor-1 terminal 3, cooling fan relay-2 terminal 7 and body ground.

SEF732W

Continuity should exist.

- 4. Also check harness for short to ground and short to power.
- 5. Check harness continuity between cooling fan relay-3 terminal 5 and cooling fan motor-2 terminal 2, cooling fan relay-3 terminal 6 and cooling fan motor-2 terminal 3, cooling fan relay-3 terminal 7 and body ground.

SEF732W

Continuity should exist.

6. Also check harness for short to ground and short to power.

OK or NG	C)K	or	Ν	G
----------	---	----	----	---	---

OK	GO TO 4.
NG	Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 12 and cooling fan relay-2 terminal 2, cooling fan relay-3 terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK	or	NG
\mathbf{v}	VI.	110

OK •	GO TO 6.
NG ►	GO TO 5.

5 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E75, M6
- Harness connectors M49, F23
- Harness for open or short between cooling fan relays-2 and -3 and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

LC

EC

۱۸۸ ا

MT

AT

SU

ST

RS

HA

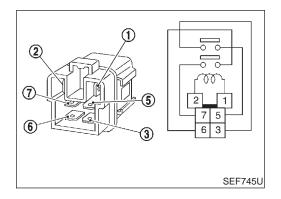
SC

1100%

Diagnostic Procedure (Cont'd)

6	CHECK COOLING FAN	RELAYS-2 AND -3		
Refer	Refer to "Component Inspection", EC-465.			
	OK or NG			
OK	•	GO TO 7.		
NG	•	Replace cooling fan relays.		

7	CHECK COOLING FAN	MOTORS		
Refer	Refer to "Component Inspection", EC-466.			
	OK or NG			
OK	>	GO TO 8.		
NG	>	Replace cooling fan motors.		


8	CHECK INTERMITTENT INCIDENT				
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.				
	•	INSPECTION END			

Main 12 Causes of Overheating

			Main 12 Cause	s of Overheating	NCEC0492	2
Engine	Step	Inspection item	Equipment	Standard	Reference page	(
OFF	1	Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper	Visual	No blocking	_	-
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See MA-11, "RECOM- MENDED FLUIDS AND LUBRICANTS".	-
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See MA-14, "Changing Engine Coolant".	
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi) (Limit)	See LC-9, "System Check".	
ON*2	5	Coolant leaks	Visual	No leaks	See LC-9, "System Check".	
ON*2	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See LC-12, "Thermostat", and LC-14, "Radiator".	- (
ON*1	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-449).	[
OFF	8	Combustion gas leak	Color checker chemi- cal tester 4 Gas ana- lyzer	Negative	_	-
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_	-
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See MA-14, "Changing Engine Coolant".	-
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See MA-13, "ENGINE MAINTENANCE".	
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See EM-36, "Inspection".	- (
	12	Cylinder block and pis-	Visual	No scuffing on cylinder	See EM-59, "Inspection".	-

^{*1:} Turn the ignition switch ON.

For more information, refer to LC-15, "OVERHEATING CAUSE ANALYSIS".

Component Inspection COOLING FAN RELAYS-1, -2 AND -3

NCEC0493

BT

HA

SC

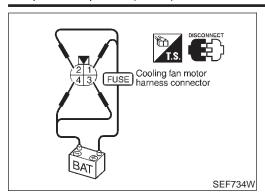
EL

Check continuity between terminals 3 and 5, 6 and 7.

walls or piston

NCEC0493S01

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No


If NG, replace relay.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

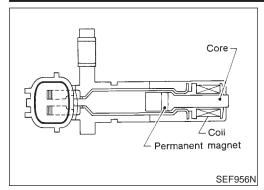
^{*4:} After 60 minutes of cool down time.

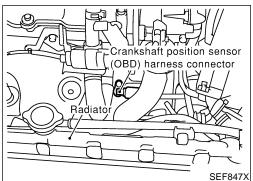
Component Inspection (Cont'd)

COOLING FAN MOTORS-1 AND -2

NCEC0493S02

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.


	Spood	Term	inals
Speed		(+)	(-)
Cooling for motor	Low	1	4
Cooling fan motor	High	1, 2	3, 4


Cooling fan motor should operate.

If NG, replace cooling fan motor.

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

Component Description

Component Description

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not used to control the engine system.

It is used only for the on board diagnosis.

EC

MA

EM

LC

36

CL

MT

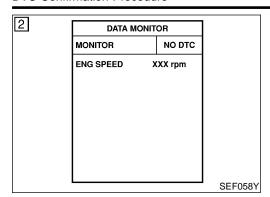
NCEC0328

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
58	В	Sensors' ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
		Crankahaft masition	[Engine is running] ■ Warm-up condition ■ Idle speed	3 - 5V (AC range) (V) 20 10 0.2 ms SEF721W
65	W	Crankshaft position sensor (OBD)	[Engine is running] ● Engine speed is 2,000 rpm	6 - 9V (AC range) (V) 20 10 0.2 ms SEF722W

On Board Diagnosis Logic

	On Board Blag	10010 20910	NCEC0329
DTC No.	Malfunction is detected when	Check Items (Possible Cause)	_
P1336	A chipping of the flywheel or drive plate gear tooth (cog) is detected by the ECM.	Harness or connectors Crankshaft position sensor (OBD) Drive plate/Flywheel	

DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

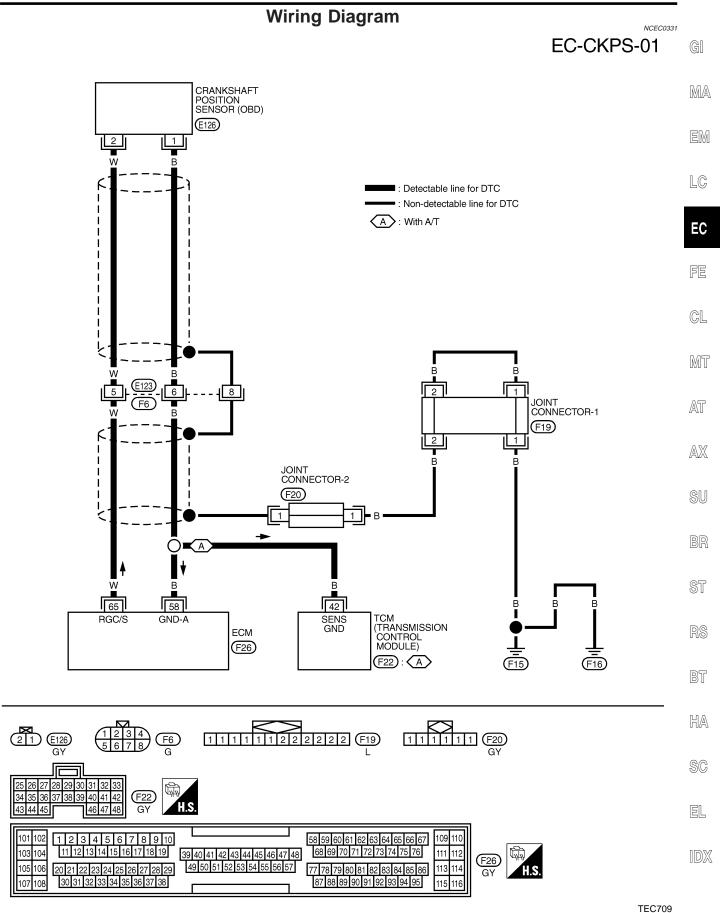
DTC Confirmation Procedure

DTC Confirmation Procedure

NCEC0330

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.


(I) With CONSULT-II

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 4 minutes at idle speed.
- 3) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-470.

With GST

Follow the procedure "With CONSULT-II" above.

Wiring Diagram

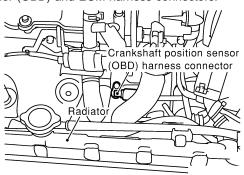
DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

Diagnostic Procedure

Diagnostic Procedure

NCEC0332

1 RETIGHTEN GROUND SCREWS


1. Turn ignition switch "OFF".

2. Loosen and retighten engine ground screws.

▶ GO TO 2.

2 CHECK INPUT SIGNAL CIRCUIT

1. Disconnect crankshaft position sensor (OBD) and ECM harness connectors.

SEF847X

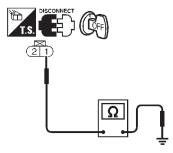
Check continuity between ECM terminal 65 and terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK	GO TO 4.
NG •	GO TO 3.


3 DETECT MALFUNCTIONING PART

Check the following.

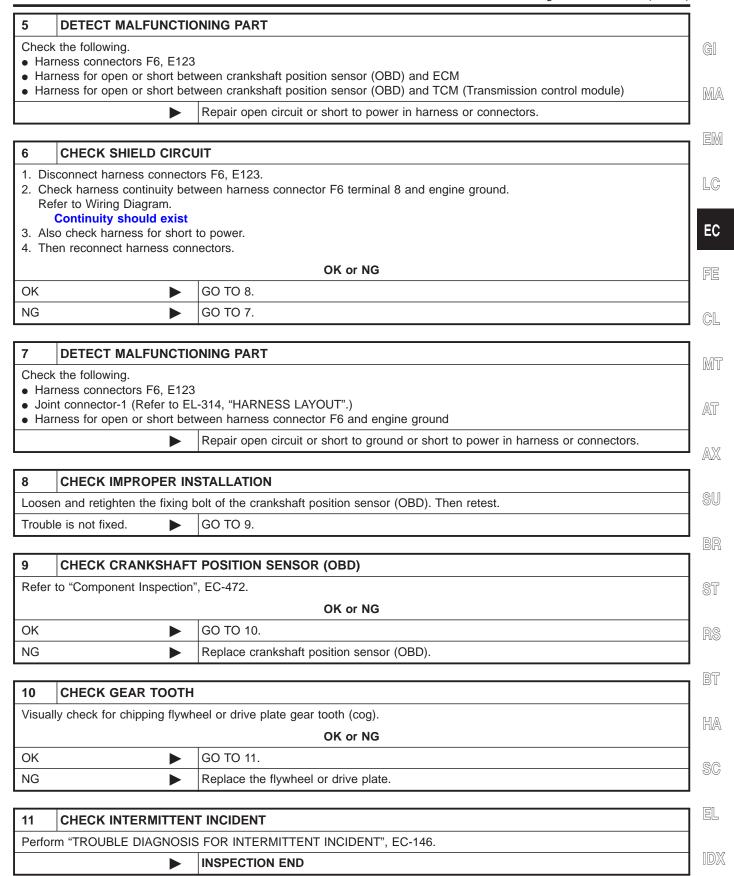
- Harness connectors F6, E123
- Harness for open or short between crankshaft position sensor (OBD) and ECM
 - Repair open circuit or short to ground or short to power in harness or connectors.

4 CHECK GROUND CIRCUIT

- 1. Reconnect ECM harness connectors.
- 2. Check harness continuity between CKPS (OBD) terminal 1 and engine ground.

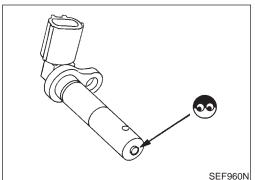
SEF229W

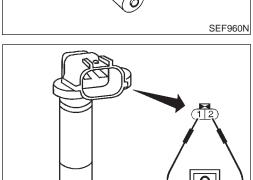
Continuity should exist.


3. Also check harness for short to power.

OK or NG

OK •	GO TO 6.
NG •	GO TO 5.


DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

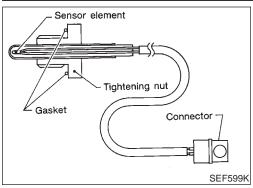

Diagnostic Procedure (Cont'd)

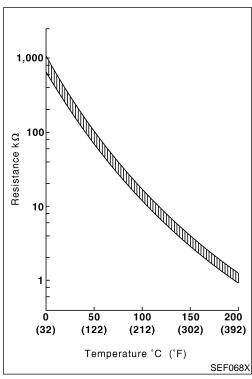
DTC P1336 CRANKSHAFT POSITION SENSOR (CKPS) (OBD) (COG)

Component Inspection

SEF231W

Component Inspection CRANKSHAFT POSITION SENSOR (OBD)


NCEC0333


- Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Resistance: 166 - 204 Ω [at 20°C (68°F)]

Component Description

Component Description

The EGR temperature sensor detects temperature changes in the EGR passage way. When the EGR volume control valve opens, hot exhaust gases flow, and the temperature in the passage way changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance $M\Omega$	
0 (32)	4.56	0.73 - 0.89	
50 (122)	2.25	0.074 - 0.082	
100 (212)	0.59	0.012 - 0.014	

*: These data are reference values and are measured between ECM terminal 72 (EGR temperature sensor) and ground.

When EGR system is operating.

Voltage: 0 - 1.5V

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

Malfunction is detected when

(Malfunction A) an excessively low voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is low.

(Malfunction B) an excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.

Possible Cause MALFUNCTION A

Harness or connectors (The EGR temperature sensor circuit is shorted.)

- EGR temperature sensor
- Malfunction of EGR function

MALFUNCTION B

Harness or connectors (The EGR temperature sensor circuit is open.)

EGR temperature sensor

EC-473

MA

LC

EC

MT

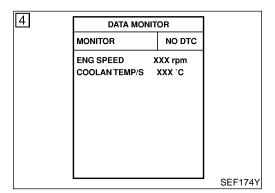
AT

AX

HA

SC

Malfunction of EGR function


DTC Confirmation Procedure

NCEC0575

Perform "PROCEDURE FOR MALFUNCTION A" first. If 1st trip DTC cannot be confirmed, perform "PROCEDURE FOR MALFUNCTION B".

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

NCEC0575S01

(P) With CONSULT-II

NCEC0575S0101

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Verify that "COOLAN TEMP/S" is less than 50°C (122°F). If the engine coolant temperature is above the range, cool the engine down.
- 4) Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-477.

With GST

NCEC0575S0102

Follow the procedure "With CONSULT-II" above.

DTC Confirmation Procedure (Cont'd)

NCEC0575S02

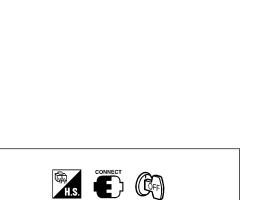
GI

MA

LC

EC

FE


AT

AX

SU

ACTIVE TES		
EGR VOL CONT/V	50 step	
MONITOR	l	
ENG SPEED	XXX rpm	
EGR TEMP SEN	xxx v	
		SEF200Y

DATA MONIT		
MONITOR		
ENG SPEED S COOLAN TEMP/S VHCL SPEED SE X	XXX rpm XXX °C XXX km/h	
THRTL POS SEN B/FUEL SCHDL X	XXX V XX msec	
		SEF201

CONNECTOR

SEF066X

92

ECM

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature above -10°C (14°F).

(P) With CONSULT-II

Start engine and warm it up to normal operating temperature.

Select "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.

Hold engine speed at 1,500 rpm.

Touch "Qu" and set the EGR volume control valve opening to 50 step and check EGR TEMP SEN. EGR TEMP SEN should decrease to less than 1.0V. If the check result is NG, go to "Diagnostic Procedure". EC-477.

If the check result is OK, go to the following step.

5) Turn ignition switch "OFF" and wait at least 10 seconds then turn "ON".

6) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.

Start engine and maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	1,800 - 2,800 rpm
VHCL SPEED SE	10 km/h (6 MPH) or more
B/FUEL SCHDL	5.0 - 8.5 msec
THRTL POS SEN	(X + 0.05) - (X - 0.87) V X = Voltage value measured at step 6
Selector lever	Suitable position

8) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-477.

Turn ignition switch "OFF" and wait at least 10 seconds, then

Select "MODE 1" with GST and maintain the following condi-

Engine speed	1,800 - 2,800 rpm
Vehicle speed	10 km/h (6 MPH) or more
Voltage between ECM terminal 92 and ground	0.86 - 2.0V
Selector lever	Suitable position

4) Select "MODE 7" with GST.

5) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-477.

With GST Start engine and warm it up to normal operating temperature. turn "ON". tions for at least 5 consecutive seconds.

BT

HA

SC

105 106

107 108

20 21 22 23 24 25 26 27 28 29

Wiring Diagram NCEC0576 EC-EGR/TS-01 EGR TEMPERATURE SENSOR (F14) ■ : Detectable line for DTC : Non-detectable line for DTC A : With A/T R/B 72 58 42 TCM (TRANSMISSION CONTROL MODULE) SENS GND GND-A ECM (F26) F22 : (A) 1 2 F14 LGY (F22) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 101 102 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 103 104

77 78 79 80 81 82 83 84 85 86

2 C	HECK EGR TEMPER	ATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT		
 Turn ignition switch "OFF". Check harness continuity between EGR temperature sensor terminal 2 and engine ground. Refer to Wiring Diagram. Continuity should exist. Also check harness for short to power. 				
	OK or NG			
OK	•			

Repair or replace harness or connectors.

NG

3	DETECT MALFUNCTIO	NING PART			
Check	Check the following.				
	 Harness for open or short between ECM and EGR temperature sensor 				
Harness for open or short between TCM (Transmission Control Module) and EGR temperature sensor					
	Repair open circuit or short to power in harness or connector.				

BR

ST

HA

SC

EL

Diagnostic Procedure (Cont'd) **CHECK EGR TEMPERATURE SENSOR** 1. Remove EGR temperature sensor. 2. Check resistance between EGR temperature sensor terminals 1 and 2 under the following conditions. 1,000 100 Resistance kΩ 10 <Reference data> Voltage V EGR temperature Resistance $M\Omega$ C (F) 50 100 150 200 0.73 - 0.89 (32)(122)(212)(302)(392)0 (32) 4.56 50 (122) 2.25 0.074 - 0.082 Temperature C (F) 100 (212) 0.59 0.012 - 0.014

SEF919Z

	OK or NG
OK •	GO TO 5.
NG •	Replace EGR temperature sensor.

Diagnostic Procedure (Cont'd)

G[

MA

EM

LC

EC

FE

GL

MT

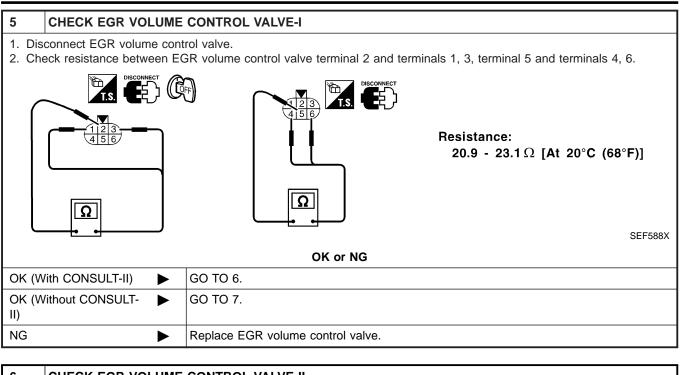
AT

AX

SU

BR

ST

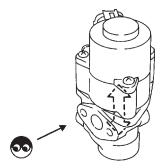

RS

BT

HA

SC

EL


6	CHECK EGR VOL	LUME	CONTROL VA	ALVE-II	
(a) Wi 1. Rei 2. Rei 3. Tur 4. Pei	th CONSULT-II move EGR volume of connect ECM harnes in ignition switch ON form "EGR VOL CO eck that EGR volume"	control sss con l. NT/V' e cont	valve. nector and EGI	R volume control valve harness connector. EST" mode with CONSULT-II. moves smoothly forward and backward according to the valve opening	
				OK or NG	7Y
ОК			GO TO 8.		
NG			Replace EGR	volume control valve.	

	\sim $^{\prime}$	7	n
	_/		u
_	U-4	•	J

Diagnostic Procedure (Cont'd)

CHECK EGR VOLUME CONTROL VALVE-II

- Without CONSULT-II
 1. Remove EGR volume control valve.
 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch ON and OFF.
- 4. Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

SEF560W

OV		NI	
()K	or	N	(-

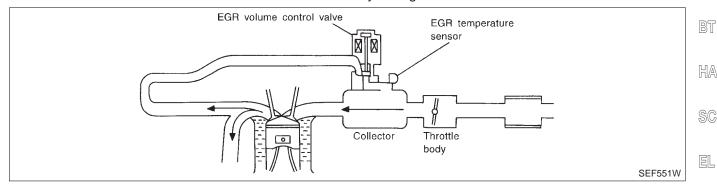
OK •	GO TO 8.
NG ►	Replace EGR volume control valve.

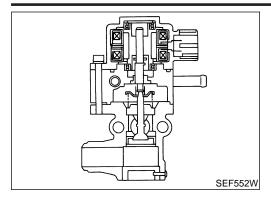
8	CHECK INTERMITTENT INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	•	INSPECTION END

Description SYSTEM DESCRIPTION

NCEC0578 NCEC0578S01

Sensor	Input Signal to ECM	ECM func- tion	Actuator	– MA
Camshaft position sensor	Engine speed			
Vehicle speed sensor	Vehicle speed			EM
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal			LC
Throttle position sensor	Throttle position			
Battery	Battery voltage	EGR vol-	ECD values control value	EC
Mass air flow sensor	Amount of intake air	trol	EGR volume control valve	
Air conditioner switch	Air conditioner operation			FE
Power steering oil pressure switch	Power steering load signal			
Electrical load	Electrical load signal			GL
Park/Neutral position switch	Park/Neutral position			
TCM (Transmission Control Module)	Gear position, shifting signal			MT


This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.



SU

ST

- Engine stopped
- Engine starting
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle
- Low battery voltage

COMPONENT DESCRIPTION EGR Volume Control Valve

NCEC0578S02

NCEC0578S0201

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

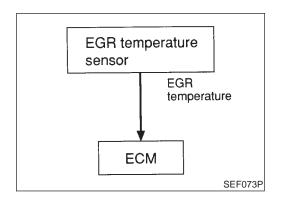
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0579

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming up Air conditioner switch: "OFF"	Idle	0 step
EGR VOL CON/V	Air conditioner switch: "OFF"Shift lever: "N"No-load	Revving engine up to 3,000 rpm quickly	10 - 55 step

ECM Terminals and Reference Value


NCEC0656

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8 9 17 18	SB W/B R/W G/R	EGR volume control valve	[Engine is running] ● Idle speed	0.1 - 14V
58	В	Sensor's ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
72	FGR temperature sen-		[Engine is running] • Warm-up condition • Idle speed	Less than 4.5V
72	IV.D	sor	[Engine is running]Warm-up conditionEGR system is operating	0 - 1.5V

On Board Diagnosis Logic

NCECOE

If the EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.

Malfunction is detected when EGR flow is detected under condition that does not call for EGR.

DTC P1402 EGR FUNCTION (OPEN)

On Board Diagnosis Logic (Cont'd)

NOTE:

Diagnosis for this DTC will occur when engine coolant temperature is below 50 to 60°C (122 to 140°F). Therefore, it will be better to turn ignition switch "ON" (start engine) at the engine coolant temperature below 30°C (86°F) when starting DTC confirmation procedure.

GI

MA

LG

Possible Cause

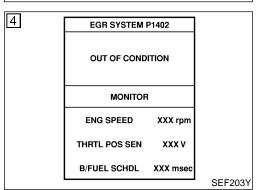
Harness or connectors (EGR volume control valve circuit is open or shorted.)

• EGR volume control valve leaking or stuck open

EGR temperature sensor

EC

NCEC0581


NCEC0582

312

GL

MT

DATA MONITOR MONITOR NO DTC COOLAN TEMP/S XXX 'C EGR TEMP SEN XXX V SEF202Y

DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

 Always perform the test at a temperature above -10°C (14°F).

· 5U

AX

 Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.

COOLAN TEMP/S: -10 to 50°C (14 to 122°F)* EGR TEMP SEN: Less than 4.8V

If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the engine coolant temperature or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccu-

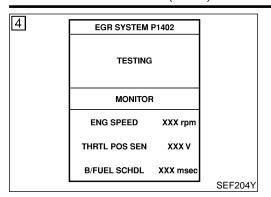
110

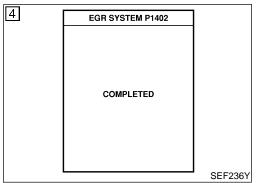
ST

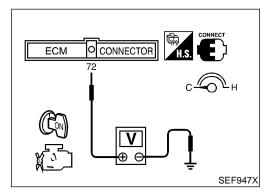
other than ambient air. Doing so may produce an inaccurate diagnostic result.

*: Although CONSULT-II screen displays "-10 to 40°C (14 to

104°F)" as a range of engine coolant temperature, ignore it.


SC


El

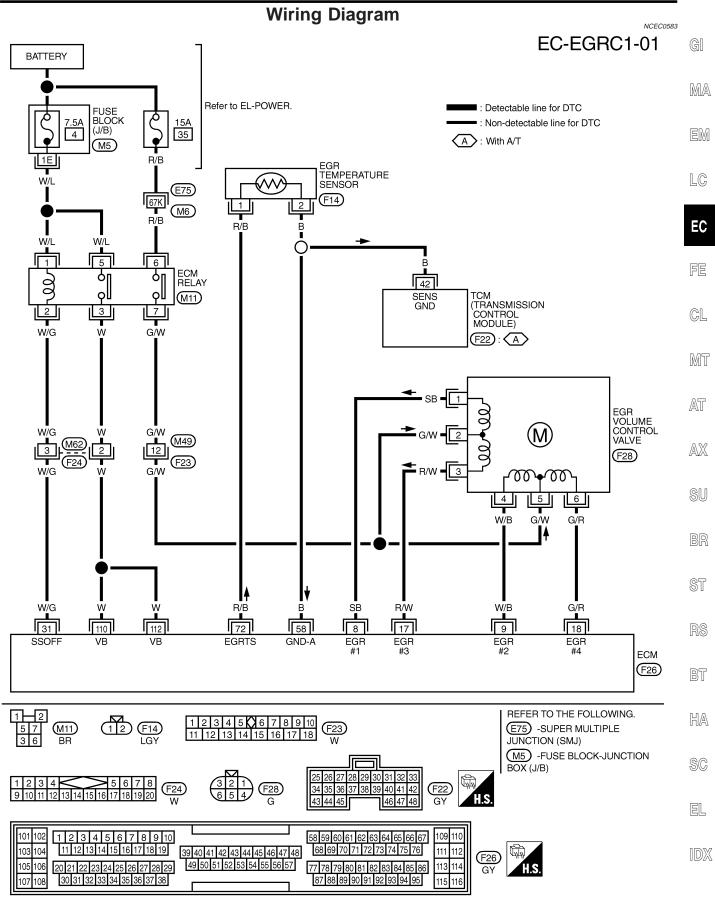

 $\mathbb{D}\mathbb{X}$

DTC P1402 EGR FUNCTION (OPEN)

DTC Confirmation Procedure (Cont'd)

NITH CONSULT-II

1) Turn ignition switch "OFF", and wait at least 10 seconds, and then turn "ON".

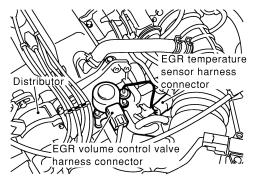

- Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Start engine and let it idle until "TESTING" on CONSULT-II screen is turned to "COMPLETED". (It will take 80 seconds or more.)

If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 50°C (14 to 122°F). Retry from step 1.

5) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-486.

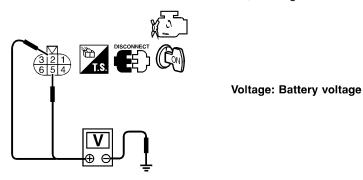
WITH GST

- I) Turn ignition switch "ON" and select "MODE 1" with GST.
- Check that engine coolant temperature is within the range of -10 to 50°C (14 to 122°F).
- 3) Check that voltage between ECM terminal 72 (EGR temperature sensor signal) and ground is less than 4.8V.
- 4) Start engine and let it idle for at least 80 seconds.
- 5) Stop engine.
- 6) Perform from step 1 to 4.
- 7) Select "MODE 3" with GST.
- 8) If DTC is detected, go to "Diagnostic Procedure", EC-486.
- When using GST, "DTC Confirmation Procedure" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.



Diagnostic Procedure

NCEC0584



1. Disconnect EGR volume control valve harness connector.

SEF849X

- 2. Turn ignition switch ON.
- 3. Check voltage between EGR volume control valve terminals 2, 5 and ground with CONSULT-II or tester.

SEF327X

OK or NG

OK	>	GO TO 3.
NG	>	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F23, M49
- Harness for open or short between ECM relay and EGR volume control valve

Repair harness or connectors.

DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure (Cont'd)

3 CHECK EGR VOLUME CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

EGR volume control valve	
1	
4	
3	
6	

MTBL0389

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 4.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

EM

LC

DECOCO

EC

FE

CL

MT

AT

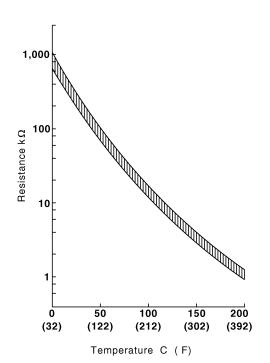
 $\mathbb{A}\mathbb{X}$

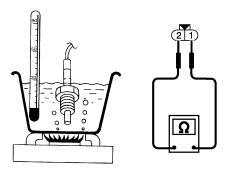
SU

BR

ST

RS

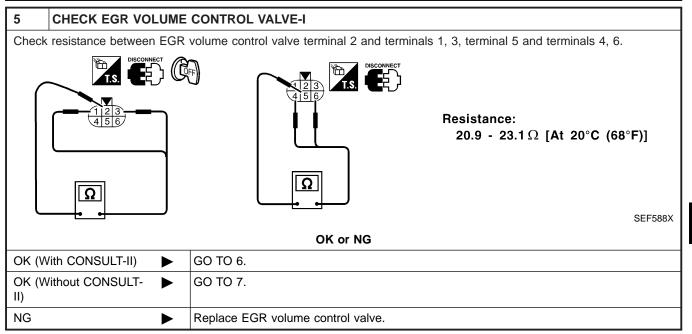

BT


HA

SC

CHECK EGR TEMPERATURE SENSOR

- 1. Remove EGR temperature sensor.
- 2. Check resistance between EGR temperature sensor terminals 1 and 2 under the following conditions.

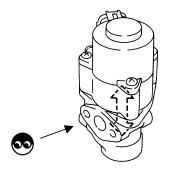

<Reference data>

EGR temperature C (F)	Voltage V	Resistance $M\Omega$
0 (32)	4.56	0.73 - 0.89
50 (122)	2.25	0.074 - 0.082
100 (212)	0.59	0.012 - 0.014

SEF919Z

OK or NG

OK ►	GO TO 5.
NG ▶	Replace EGR temperature sensor.



6 CHECK EGR VOLUME CONTROL VAL	∕E-II
--------------------------------	-------

(P) With CONSULT-II

- 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch "ON".
- 4. Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening steps.

ACTIVE TES	ST T
EGR VOL CONT/V	20 step
MONITOR	1
ENG SPEED	XXX rpm

SEF067Y

OK	or	NG
VIV	vı	110

OK ►	GO TO 8.
NG ►	Replace EGR volume control valve.

GI

MA

EM

LC

EC

FE

CL

MT

AT

AX

SU

BK

ST

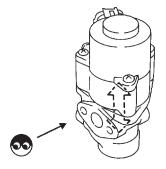
29

BT

HA

SC

EL


DTC P1402 EGR FUNCTION (OPEN)

Diagnostic Procedure (Cont'd)

CHECK EGR VOLUME CONTROL VALVE-II

- Without CONSULT-II

 1. Remove EGR volume control valve.
- 2. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 3. Turn ignition switch ON and OFF.
- 4. Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

SEF560W

OK or NG

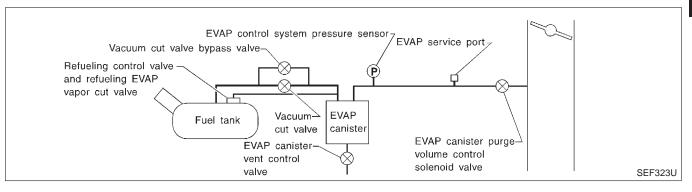
OK •	GO TO 8.
NG •	Replace EGR volume control valve.

8	CHECK INTERMITTENT	T INCIDENT
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	•	INSPECTION END

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

On Board Diagnosis Logic

On Board Diagnosis Logic


NOTE:

If DTC P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-525.)

This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may
- If the fuel filler cap is not tightened properly, the MIL may
- Use only a genuine NISSAN rubber tube as a replacement.

Possible Cause

Incorrect fuel tank vacuum relief valve

Incorrect fuel filler cap used

Fuel filler cap remains open or fails to close.

Foreign matter caught in fuel filler cap.

Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.

Foreign matter caught in EVAP canister vent control valve.

EVAP canister or fuel tank leaks

EVAP purge line (pipe and rubber tube) leaks

NCEC0585

MA

LC

EC

GL

MT

AX

BR

HA

DTC P1440 EVAP CONTROL SYSTEM (SMALL LEAK) (POSITIVE PRESSURE)

Possible Cause (Cont'd)

- EVAP purge line rubber tube bent.
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged.
- Water separator
- EVAP canister is saturated with water.
- Fuel level sensor and the circuit
- EVAP control system pressure sensor
- Refueling control valve
- ORVR system leaks

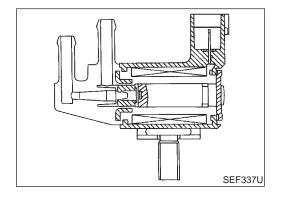
DTC Confirmation Procedure

Refer to "P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-356.

Diagnostic Procedure

Refer to "P0440 EVAP CONTROL SYSTEM (SMALL LEAK) (NEGATIVE PRESSURE)", EC-357.

Description


Description SYSTEM DESCRIPTION

NCEC0589

NCEC0589S01

Input Signal to ECM	ECM function	Actuator	MA	
Engine speed			UVUZAL	
Amount of intake air			EM	
Engine coolant temperature				
Start signal	EVAP canister purge volume control solenoid valve		-	LC
Throttle position				
Closed throttle position				control solenoid valve
Density of oxygen in exhaust gas (Mixture ratio feedback signal)				
Fuel temperature in fuel tank			FE	
Vehicle speed			GL	
	Engine speed Amount of intake air Engine coolant temperature Start signal Throttle position Closed throttle position Density of oxygen in exhaust gas (Mixture ratio feedback signal) Fuel temperature in fuel tank	Engine speed Amount of intake air Engine coolant temperature Start signal Throttle position Closed throttle position Density of oxygen in exhaust gas (Mixture ratio feedback signal) Fuel temperature in fuel tank	Engine speed Amount of intake air Engine coolant temperature Start signal Throttle position Closed throttle position Density of oxygen in exhaust gas (Mixture ratio feedback signal) Fuel temperature in fuel tank	

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

MT

HA

SC

EL

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0590

MONITOR ITEM	CONDITION		SPECIFICATION
PURG VOL C/V	Engine: After warming upAir conditioner switch "OFF"	Idle (Vehicle stopped)	0%
PORG VOL C/V	Shift lever: "N"	2,000 rpm	_

ECM Terminals and Reference Value

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NCEC0657

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		EVAP canister purge	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms
14	P	volume control solenoid valve	[Engine is running] • Engine speed is about 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 50 ms SEF995U

On Board Diagnosis Logic

NCEC05

Malfunction is detected when the canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.

Possible Cause

NCEC059

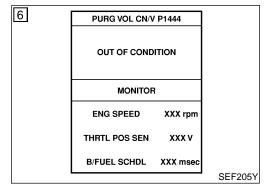
- EVAP control system pressure sensor
- EVAP canister purge volume control solenoid valve (The valve is stuck open.)
- EVAP canister vent control valve
- EVAP canister
- Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure

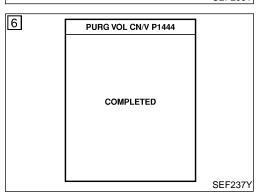
DTC Confirmation Procedure

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.



TESTING CONDITION:


Always perform test at a temperature of 5°C (41°F) or more.

MA

LC

6 PURG VOL CN/V P1444 **TESTING** MONITOR **ENG SPEED** XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msed SEF206Y

WITH CONSULT-II

Start engine and warm it up to normal operating temperature.

- Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON".
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYS-TEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START". 5)
- Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take for approximately 10

If "TESTING" is not displayed after 5 minutes, retry from step 2.

Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-497.

WITH GST

- Start engine and warm it up to normal operating temperature. 1)
- Turn ignition switch "OFF" and wait at least 10 seconds. 2)
- Start engine and let it idle for at least 20 seconds. 3)
- 4) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-497.

NCEC0593

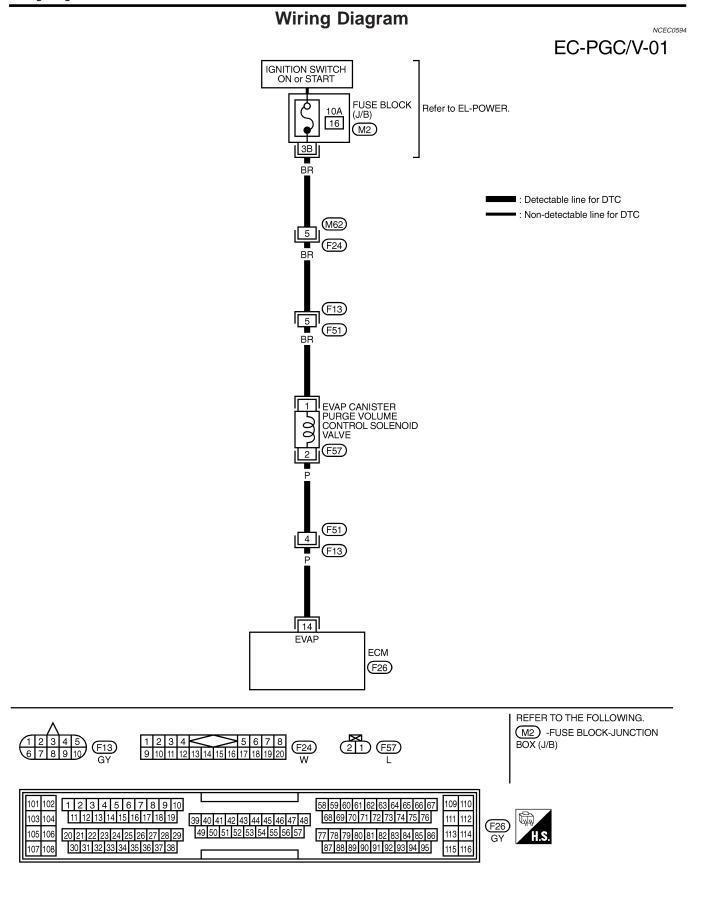
FE

EC

MT

AX

SU


ST

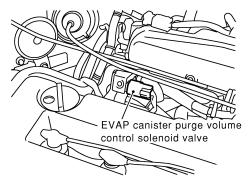
BT

HA

SC

EL

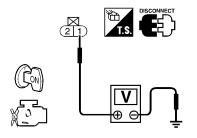
Diagnostic Procedure


Diagnostic Procedure

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

NCEC059

1. Turn ignition switch "OFF".


2. Disconnect EVAP canister purge volume control solenoid valve harness connector.

SEF851X

3. Turn ignition switch "ON".

4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and engine ground with CON-SULT-II or tester.

Voltage: Battery voltage

SEF948X

OK or NG

OK	>	GO TO 3.
NG	>	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M62, F24
- Harness connectors F13, F51
- Fuse block (J/B) connector M2
- 10A fuse
- Harness for open or short between EVAP canister purge volume control solenoid valve and fuse

Repair harness or connectors.

3 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 14 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
----	----	----

OK •	GO TO 5.
NG	GO TO 4.

EC-497

G[

MA

LG

EC

FE

CL

MT

AT

AX

@11

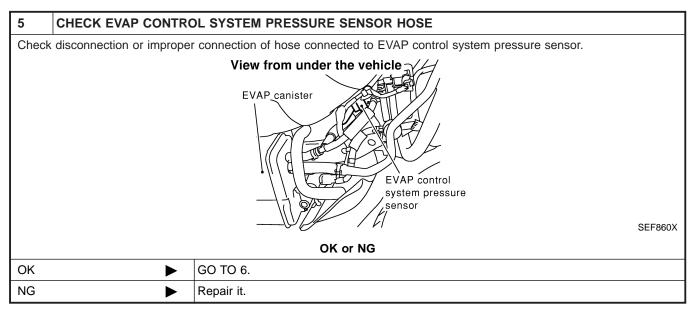
51

RS

B

HA

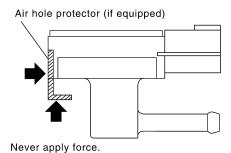
@@


SC

EL

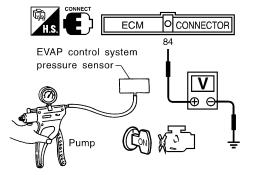
Diagnostic Procedure (Cont'd)

4 DETECT MALFUNCTIONING PART Check the following. • Harness connectors F13, F51 • Harness for open or short between EVAP canister purge volume control solenoid valve and ECM Repair open circuit or short to ground or short to power in harness or connectors.



6	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR CONNECTOR	
2. Che	Disconnect EVAP control system pressure sensor harness connector. Check connectors for water. Water should not exist.		
OK or NG			
OK	•	GO TO 7.	
NG	>	Replace EVAP control system pressure sensor.	

Diagnostic Procedure (Cont'd)


CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- 1. Remove EVAP control system pressure sensor with its harness connector connected. **CAUTION:**
 - Never apply force to the air hole protector of the sensor if equipped.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION:**
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
\mathbf{v}	VI.	110

OK (With CONSULT-II)		GO TO 8.
OK (Without CONSULT-II)	•	GO TO 9.
NG		Replace EVAP control system pressure sensor.

MA

LC

EC

GL

MT

AT

AX

SEF342X

HA

SC

EL

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

With CONSULT-II

- 1. Turn ignition switch "OFF".
- 2. Reconnect harness connectors disconnected.
- 3. Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	

SEF801Y

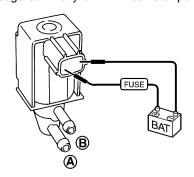
OK or NG

ОК	>	GO TO 10.
NG	•	GO TO 9.

9 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.



Condition PURG VOL CONT/V value	Air passage continuity between A and B
100.0%	Yes
0.0%	No

SEF334X

(R) Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

SEF335X

OK or NG

OK ▶	GO TO 10.
NG ►	Replace EVAP canister purge volume control solenoid valve.

Diagnostic Procedure (Cont'd)

GI

MA

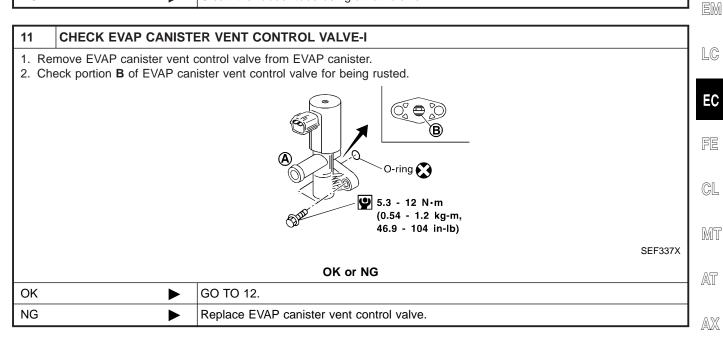
EC

SU

BR

ST

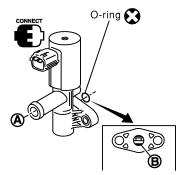
RS


BT

HA

SC

EL

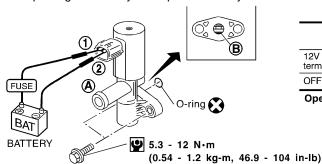

10	CHECK RUBBER TUBE	FOR CLOGGING
Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging.		
OK or NG		
OK	>	GO TO 11.
NG	>	Clean the rubber tube using an air blower.

Diagnostic Procedure (Cont'd)

CHECK EVAP CANISTER VENT CONTROL VALVE-II

- With CONSULT-II
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch "ON".
- 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 (B1)	xxx v	
THRTL POS SEN	xxx v	


Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

SEF803Y

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

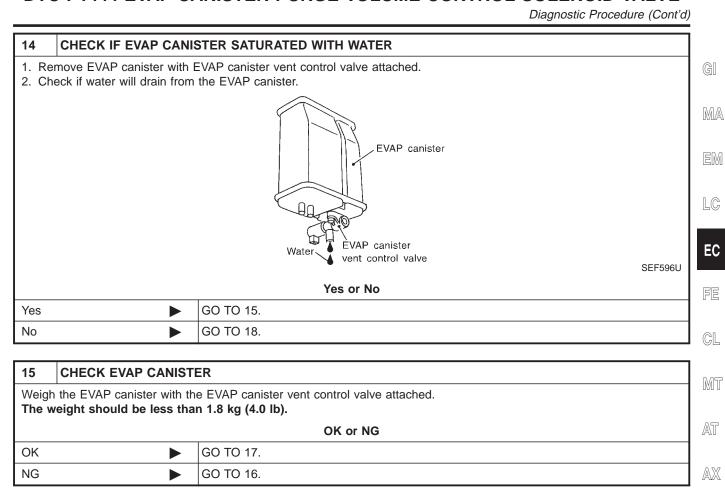
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

SEF339X

Make sure new O-ring is installed properly.

OK or NG


OK	>	GO TO 14.
NG	•	GO TO 13.

13 CHECK EVAP CANISTER VENT CONTROL VALVE-III

- 1. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 2. Perform procedure 10 again.

OK or NG

OK ▶	GO TO 14.
NG •	Replace EVAP canister vent control valve.

16	DETECT MALFUNCTIONING PART	
Check the following. • EVAP canister for damage • EVAP hose between EVAP canister and water separater for clogging or poor connection		
	•	Repair hose or replace EVAP canister.

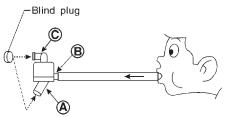
SU

BR

ST

BT

HA


SC

Diagnostic Procedure (Cont'd)

17 CHECK WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

GO TO 18.

* (A): Bottom hole (To atmosphere)

(B): Emergency tube (From EVAP canister)

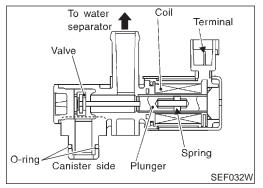
(C): Inlet port (To member)

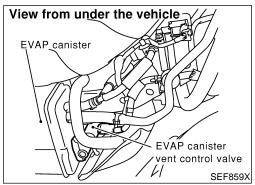
SEF829T

5. In case of NG in items 2 - 4, replace the parts.

NOTE:

OK


• Do not disassemble water separator.


OK or NG

NG ▶	Clean or replace water separator.

18	CHECK INTERMITTENT INCIDENT	
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	•	INSPECTION END

Component Description

Component Description

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

MA

EC

GL

MT

AT

AX

CONSULT-II Reference Value in Data Monitor Mode NCEC0597

ECM Terminals and Reference Value

Specification data are reference values.

ITEM

EVAP canister vent con-

trol valve

TER-

MINAL

NO.

102

WIRE

COLOR

PU/W

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

Specification data are reference values and are measured between each terminal and ground.

age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

[Ignition switch "ON"]

DATA (DC Voltage)

BATTERY VOLTAGE

(11 - 14V)

NCEC0658

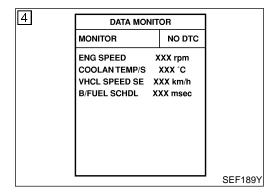
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-

HA

On Board Diagnosis Logic

CONDITION

Malfunction is detected when EVAP canister vent control valve remains closed under specified driving conditions.


SC

Possible Cause

Possible Cause

NCEC0599

- EVAP canister vent control valve
- EVAP control system pressure sensor and the circuit
- Blocked rubber tube to EVAP canister vent control valve
- Water separator
- EVAP canister is saturated with water.

DTC Confirmation Procedure

NCEC0600

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

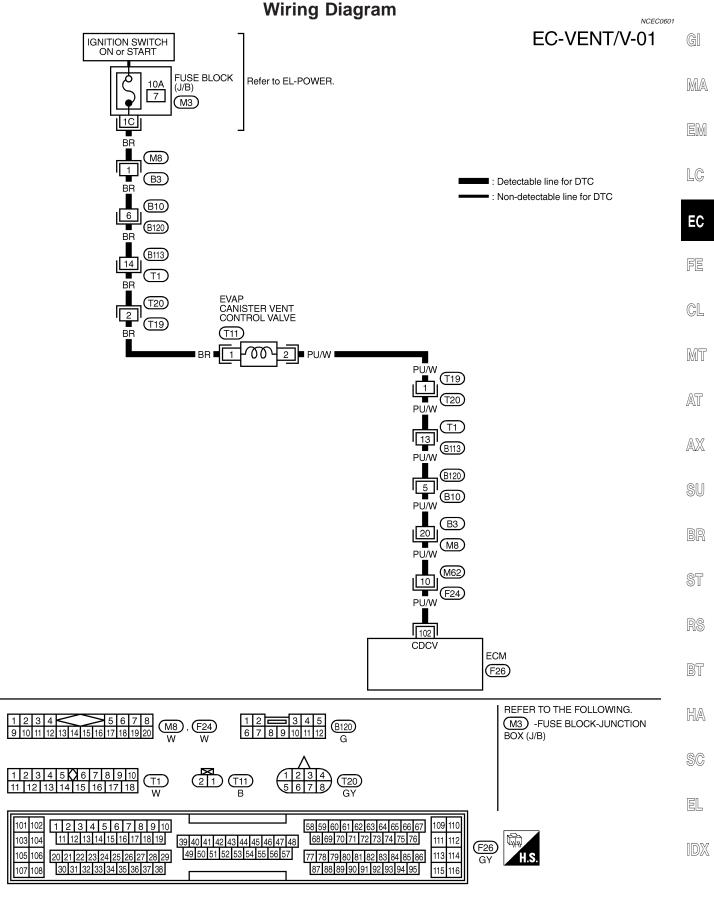
(P) WITH CONSULT-II

NCEC0600S01

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- 4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

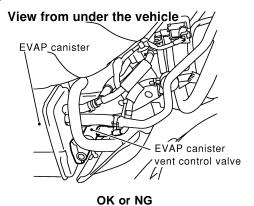

 If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-508.

WITH GST

NCEC0600S02

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

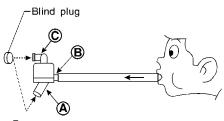

Diagnostic Procedure

Diagnostic Procedure

NCEC0602

1	CHECK RUBBER TUBE

- 1. Turn ignition switch "OFF".
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.
- 3. Check the rubber tube for clogging.


SEF859X

OK	•	GO TO 2.

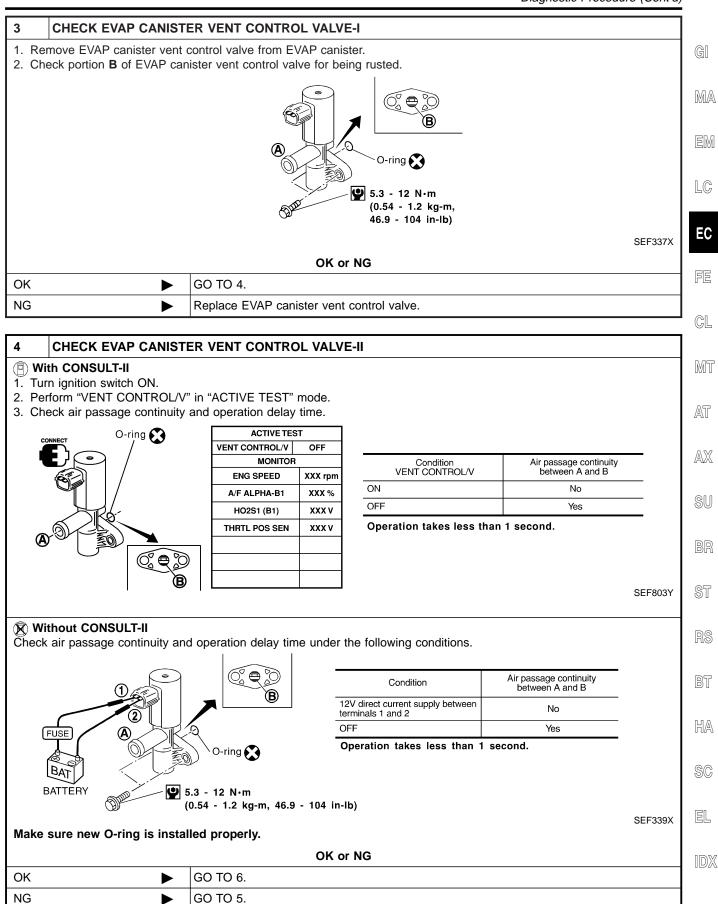
NG Clean rubber tube using an air blower.

2 CHECK WATER SEPARATOR

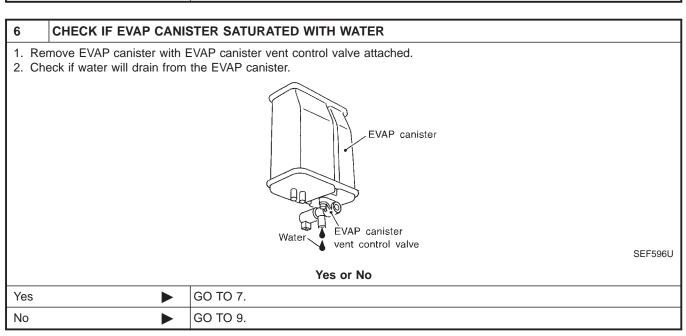
- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air into B with A, and then C plugged.

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

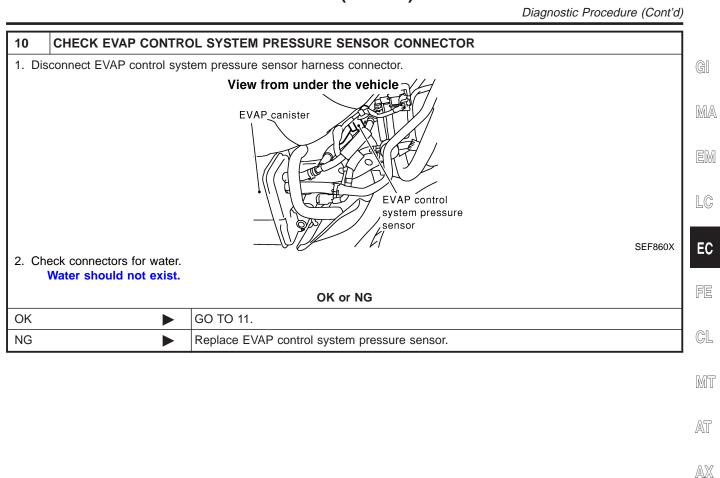

5. In case of NG in items 2 - 4, replace the parts.

NOTE:


• Do not disassemble water separator.

OK or NG

OK ▶	GO TO 3.
NG ►	Clean or replace water separator.


5	CHECK EVAP CANISTE	ER VENT CONTROL VALVE-III	
 Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform the procedure 4 again. 			
	OK or NG		
OK	OK ▶ GO TO 6.		
NG	•	Replace EVAP canister vent control valve.	

7	CHECK EVAP CANIST	ER	
Weigh the EVAP canister with the EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).			
	OK or NG		
OK	>	GO TO 9.	
NG	>	GO TO 8.	

8	DETECT MALFUNCTIONING PART	
Check the following. EVAP canister for damage EVAP hose between EVAP canister and water separator for clogging or poor connection		
	•	Repair hose or replace EVAP canister.

9	CHECK EVAP CONTRO	DL SYSTEM PRESSURE SENSOR HOSE
Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.		
OK or NG		
OK	>	GO TO 10.
NG	•	Repair it.

SU

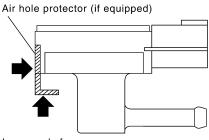
BR

ST

RS

BT

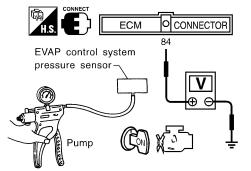
HA


SC

EL

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR


- Remove EVAP control system pressure sensor with its harness connector connected.
 CAUTION:
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

SEF799W

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION**:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

SEF342X

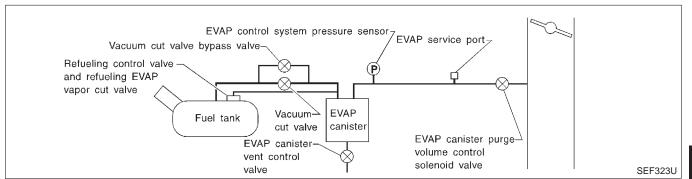
CAUTION:

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK or NG

OK •	GO TO 12.
NG ►	Replace EVAP control system pressure sensor.

12	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		


System Description

System Description

NCEC0603

NOTE:

If DTC P1447 is displayed with P0510, perform trouble diagnosis for DTC P0510 first. (See EC-432.)

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

EC

LC

MA

GL

MT

On Board Diagnosis Logic

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

Malfunction is detected when EVAP control system does not operate properly, EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.

Possible Cause

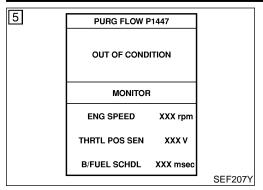
- EVAP canister purge volume control solenoid valve stuck closed
- EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube

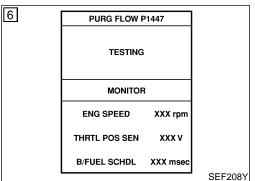
Blocked rubber tube

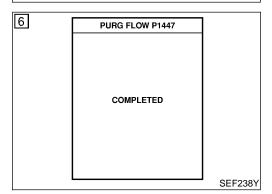
Cracked EVAP canister

- EVAP canister purge volume control solenoid valve circuit

Closed throttle position switch


EVAP canister vent control valve


HA


Blocked purge port

SC

DTC Confirmation Procedure

DTC Confirmation Procedure

NCEC0606

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

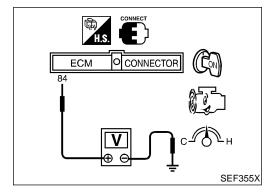
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

JCEC0606S01


- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Start engine and let it idle for at least 70 seconds.
- 4) Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- 5) Touch "START".

 If "COMPLETED" is displayed, go to step 7.
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever	Suitable position
Vehicle speed	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,650 rpm
B/FUEL SCHDL	1.0 - 8.9 msec
Engine coolant temperature	More than 70°C (158°F)

If "TESTING" is not changed for a long time, retry from step 2.

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-516.

Overall Function Check

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

NCEC0607S01

- 1) Lift up drive wheels.
- 2) Start engine (TCS switch "OFF") and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF", wait at least 10 seconds.
- Start engine and wait at least 70 seconds.

Overall Function Check (Cont'd)

5)	Set voltmeter probes to ECM terminals 84 (EVAP control sys-
	tem pressure sensor signal) and ground.

6)	Check	EVAP	control	system	pressure	sensor	value	at	idle
	speed	and no	te it.						

7) Establish and maintain the following conditions for at least 1

Air conditioner switch	ON
Steering wheel	Fully turned
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than "P", "N" or "R"

8) Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.

9) If NG, go to "Diagnostic Procedure", EC-516.

GI

MA

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

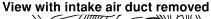
BT

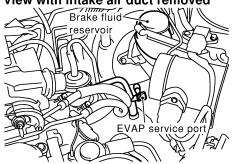
HA

SC

EL

Diagnostic Procedure


Diagnostic Procedure


=NCEC0608 **CHECK EVAP CANISTER** 1. Turn ignition switch "OFF". 2. Check EVAP canister for cracks. OK or NG OK (With CONSULT-II) GO TO 2. OK (Without CONSULT-GO TO 3. NG Replace EVAP canister.

2 **CHECK PURGE FLOW**

(P) With CONSULT-II

1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge.

SEF850X

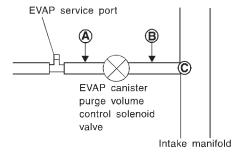
- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

ACTIVE TEST					
PURG VOL CONT/V	XXX %				
MONITOR					
ENG SPEED	XXX rpm				
A/F ALPHA-B1	XXX %				
HO2S1 MNTR (B1)	LEAN				
THRTL POS SEN	xxx v				

PURG VOL CONT/V	VACUUM
100.0%	Should exist
0.0%	Should not exist

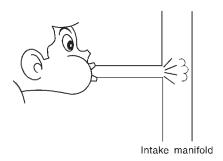
SEF804Y

OK or NG


OK ▶	GO TO 7.
NG ►	GO TO 4.

3	CHECK PURGE FLOW		
1. Sta	ithout CONSULT-II art engine and warm it up to pp engine.	o normal operating temperature.	GI
3. Dis		nected to EVAP canister purge volume control solenoid valve at EVAP service port and	MA
		View with intake air duct removed Brake fluid reservoir	EM
			LG
		EVAP service port	EC
5. Ch	Vacuum should exist.	at least 80 seconds. on when revving engine up to 2,000 rpm.	CL
	lease the accelerator peda Vacuum should not exist		MT
		OK or NG	
OK NG	<u> </u>	GO TO 7. GO TO 4.	AT
			ı AX
4	CHECK EVAP PURGE	LINE	
2. Ch		aproper connection or disconnection. SSION LINE DRAWING", EC-37.	SU
		OK or NG	BR
OK	>	GO TO 5.	
NG	<u> </u>	Repair it.	ST
			RS
			BT
			HA
			SC
			EL

Diagnostic Procedure (Cont'd)


5 CHECK EVAP PURGE HOSE AND PURGE PORT

1. Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.

SEF367U

- 2. Blow air into each hose and EVAP purge port C.
- 3. Check that air flows freely.

SEF368U

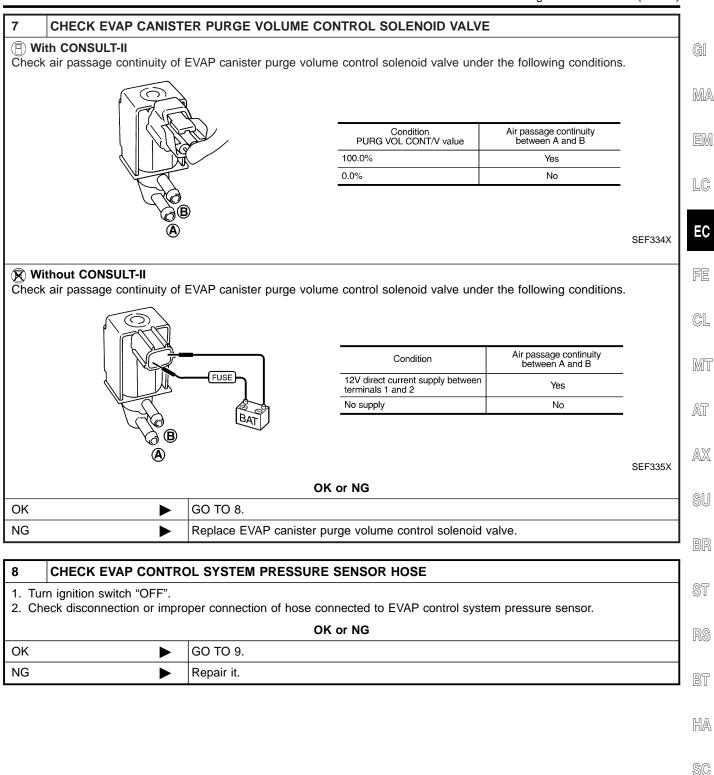
OK or NG

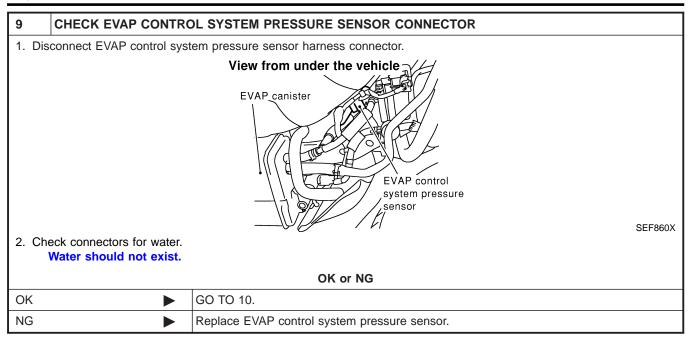
OK (With CONSULT-II)		GO TO 6.
OK (Without CONSULT-II)	•	GO TO 7.
NG	>	Repair or clean hoses and/or purge port.

6 CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

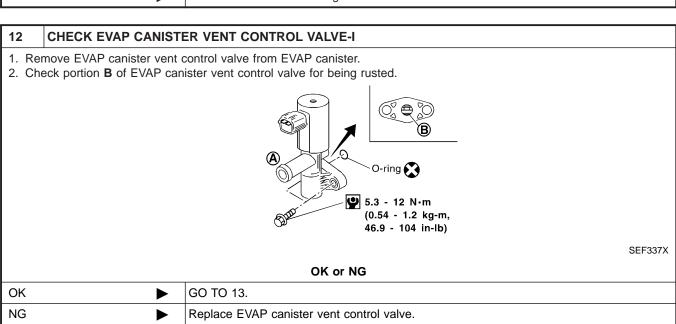
- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

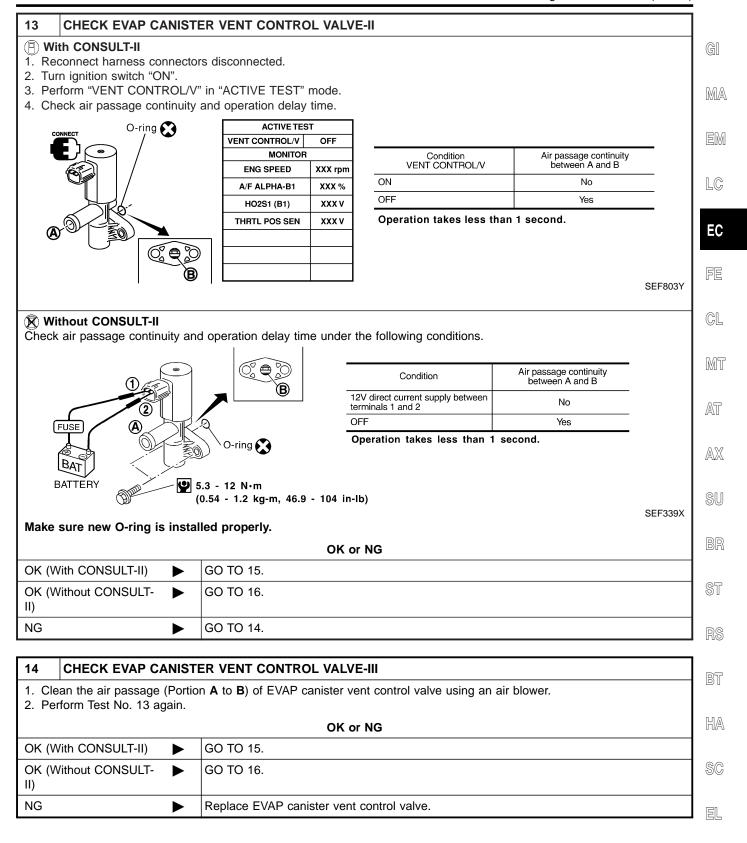

ACTIVE TEST					
PURG VOL CONT/V	XXX %				
MONITOR	7				
ENG SPEED	XXX rpm				
A/F ALPHA-B1	XXX %				
HO2S1 MNTR (B1)	LEAN				
THRTL POS SEN	xxx v				


SEF801Y

OK or NG

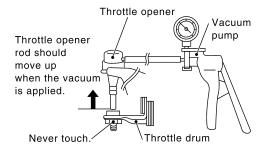
OK •	•	GO TO 8.
NG ▶	•	GO TO 7.


Diagnostic Procedure (Cont'd)



10	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION				
Refer	Refer to "DTC Confirmation Procedure" for DTC P0450, EC-384.				
	OK or NG				
OK	OK ▶ GO TO 11.				
NG	>	Replace EVAP control system pressure sensor.			

11	1 CHECK RUBBER TUBE FOR CLOGGING				
	 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 				
	OK or NG				
OK	OK GO TO 12.				
NG	•	Clean the rubber tube using an air blower.			



Diagnostic Procedure (Cont'd)

CHECK THROTTLE POSITION SWITCH

(I) With CONSULT-II

- 1. Install all removed parts.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF".
- 4. Remove vacuum hose connected to throttle opener.
- 5. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 6. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

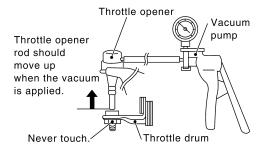
- 7. Turn ignition switch "ON".
- 8. Select "DATA MONITOR" mode with CONSULT-II.
- 9. Check indication of "CLSD THL/P SW" under the following conditions.

 Measurement must be made with throttle position switch installed in vehicle.

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

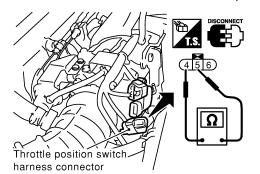
MTBL0355

OK or NG


OK •	GO TO 18.
NG ▶	GO TO 17.

Diagnostic Procedure (Cont'd)

16 CHECK THROTTLE POSITION SWITCH Without CONSULT-II


1. Install all removed parts.

- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch "OFF".
- 4. Remove vacuum hose connected to throttle opener.
- 5. Connect suitable vacuum hose to vacuum pump and the throttle opener.
- 6. Apply vacuum [more than -40.0 kPa (-300 mmHg, -11.81 inHg)] until the throttle drum becomes free from the rod of the throttle opener.

SEF793W

- 7. Disconnect closed throttle position switch harness connector.
- 8. Check continuity between closed throttle position switch terminals 4 and 5 under the following conditions. Resistance measurement must be made with throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or compleately open	No

SEF940X

OK •		GO TO 18.
NG •		GO TO 17.

OK or NG

17 ADJUST THROTTLE POSITION SWITCH

Check the following items. Refer to "Basic Inspection", EC-107.

Items	Specifications
Ignition timing	15°±2° BTDC
Closed throttle position switch idle position adjustment	Feeler gauge thickness and switch condition 0.05 mm (0.0020 in): ON 0.15 mm (0.0059 in): OFF
Target idle speed	M/T: 800±50 A/T: 800±50 rpm (in "P" or "N" position)

MTBL0518

Is it possible to adjust closed throttle position switch?

Yes	or	No

Yes	>	GO TO 18.
No	>	Replace throttle position switch.

EC-523

GI

MA

EM

LC

EC

FE

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

B

ST

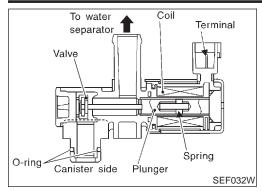
50

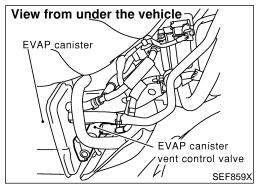
KS

RT

HA

SC


18	CHECK EVAP PURGE	LINE	
Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to "EVAPORATIVE EMISSION LINE DRAWING", EC-37.			
OK or NG			
OK	•	GO TO 19.	
NG	>	Replace it.	


19	CLEAN EVAP PURGE LINE		
Clean EVAP purge line (pipe and rubber tube) using air blower.			
	>	GO TO 20.	

20	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
► INSPECTION END			

Component Description

NCEC0609

Component Description

NOTE:

If DTC P1448 is displayed with P0440, perform trouble diagnosis for DTC P1448 first.

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

MA

GL

MT

AT

AX

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

SU

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

NCEC0659

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102	PU/W	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)

ST

HA

On Board Diagnosis Logic

Malfunction is detected when EVAP canister vent control valve remains opened under specified driving conditions.

EL

SC

Possible Cause

NCEC0612

- EVAP canister vent control valve
- EVAP control system pressure sensor and circuit
- Blocked rubber tube to EVAP canister vent control valve
- Water separator
- EVAP canister is saturated with water.
- Vacuum cut valve

DTC Confirmation Procedure

NCEC0613

NOTE:

- If DTC P1448 is displayed with P0440 or P1440, perform trouble diagnosis for DTC P1448 first.
- If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

EVAP SML LEAK P0440/P1440

1)FOR BEST RSLT,PERFORM AT FOLLOWING CONDITIONS. -FUEL LEVEL: 1/4-3/4 -AMBIENT TEMP: 0-30 C(32-86F) -OPEN ENGINE HOOD. 2)START ENG WITH VHCL STOPPED. IF ENG IS ON,STOP FOR 5 SEC. THEN RESTART. 3)TOUCH START.

SEF565X

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

6 EVAP SML LEAK P0440/P1440

OK

SELF-DIAG RESULTS

NO DTC DETECTED.
FURTHER TESTING
MAY BE REQUIRED.

SEF567X

WITH CONSULT-II TESTING CONDITION:

NCEC0613S01

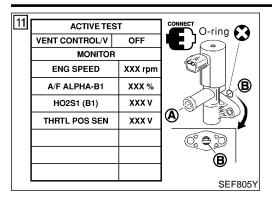
- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- 1) Turn ignition switch "ON".
- 2) Turn ignition switch "OFF" and wait at least 10 seconds.
- 3) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met.

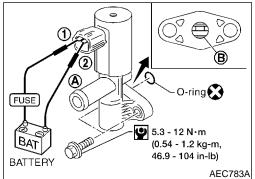
COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 30°C (32 - 86°F)

5) Select "EVAP SML LEAK P0440/P1440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II

Follow the instruction displayed.

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to "Basic Inspection", EC-107.


Make sure that "OK" is displayed.
 If "NG" is displayed, go to the following step.


NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7) Stop engine and wait at least 5 seconds, then turn "ON".
- 8) Disconnect hose from water separator.
- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch "ON" and "OFF" alternately.

DTC Confirmation Procedure (Cont'd)

11)	Make	sure	the	following.
-----	------	------	-----	------------

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to "Diagnostic Procedure", EC-529. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-357.

MA

GI

EM

LC

Overall Function Check

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

WITH GST

1) Disconnect hose from water separator.

NCEC0614S01

- 2) Disconnect EVAP canister vent control valve harness connector
- 3) Verify the following.

Condition	Air passage continuity	
12V direct current supply between terminals 1 and 2	No	
No supply	Yes	

If the result is NG, go to "Diagnostic Procedure", EC-529. If the result is OK, go to "Diagnostic Procedure" for DTC P0440, EC-357.

MT

AT

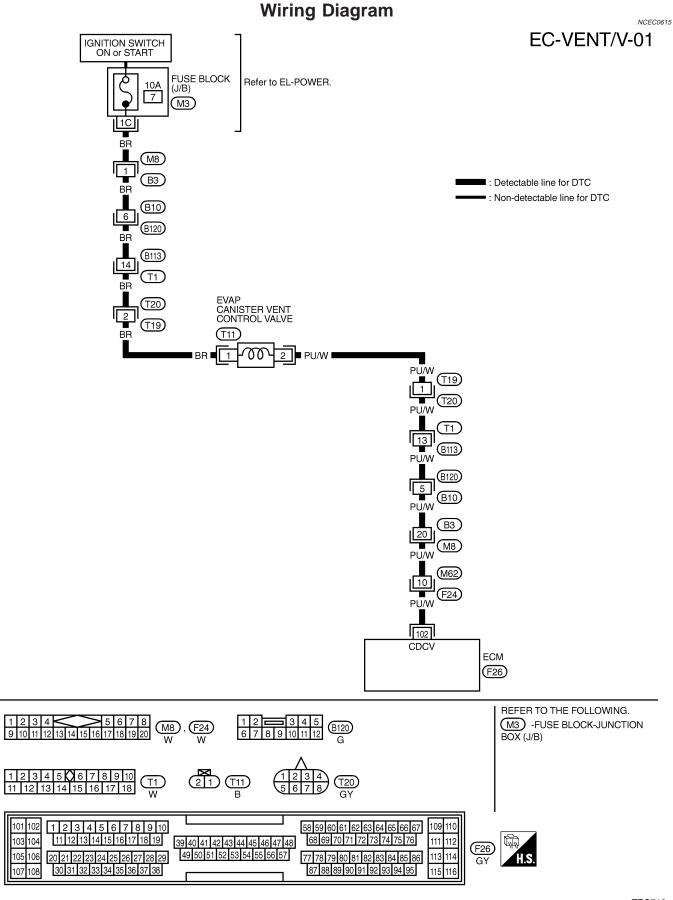
AX

SU

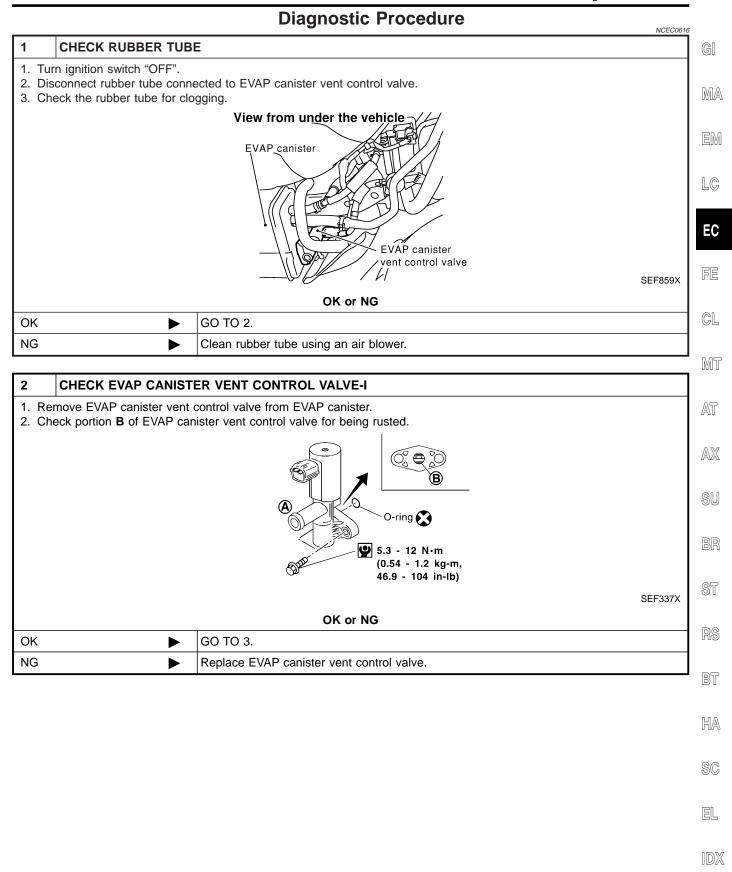
BR

ST

RS


BT

HA


SC

EL

Wiring Diagram

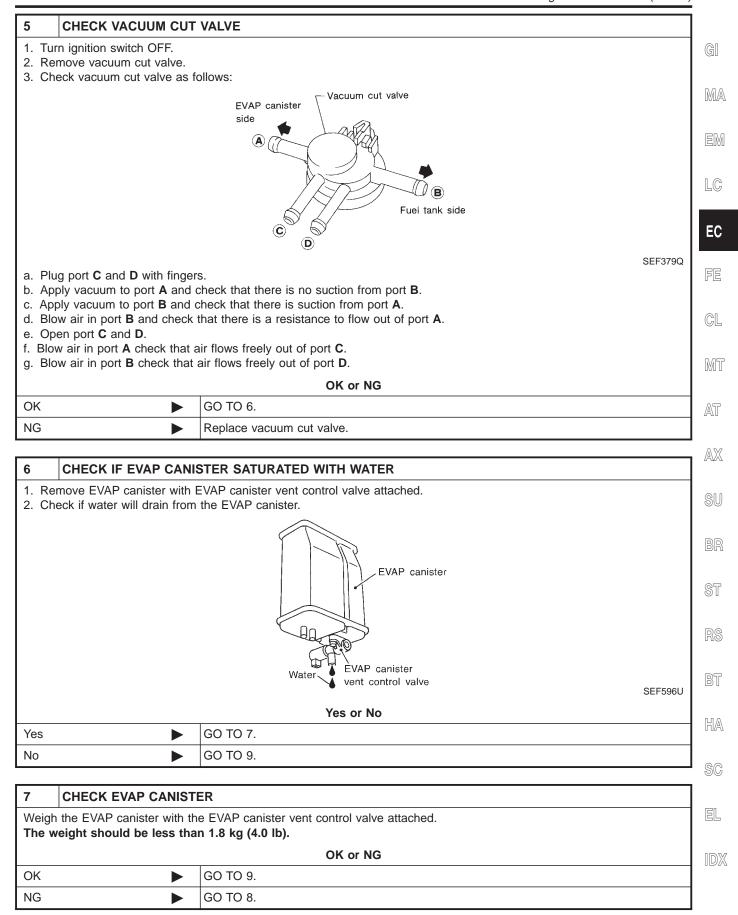
Diagnostic Procedure

Diagnostic Procedure (Cont'd) CHECK EVAP CANISTER VENT CONTROL VALVE-II (I) With CONSULT-II 1. Turn ignition switch ON. 2. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode. 3. Check air passage continuity and operation delay time. ACTIVE TEST O-ring VENT CONTROL/V MONITOR Condition VENT CONTROL/V Air passage continuity between A and B **ENG SPEED** XXX rpm ON No XXX % A/F ALPHA-B1 OFF Yes HO2S1 (B1) XXX V THRTL POS SEN XXX V Operation takes less than 1 second. SEF803Y (R) Without CONSULT-II Check air passage continuity and operation delay time under the following conditions. Air passage continuity between A and B Condition 12V direct current supply between terminals 1 and 2 No Yes FUSE Operation takes less than 1 second. O-ring 🔀 **BATTERY 9** 5.3 - 12 N⋅m (0.54 - 1.2 kg-m, 46.9 - 104 in-lb)

4	CHECK EVAP CANISTE	ER VENT CONTROL VALVE-III		
	 Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform Test No. 3 again. 			
	OK or NG			
OK	OK ▶ GO TO 5.			
NG	>	Replace EVAP canister vent control valve.		

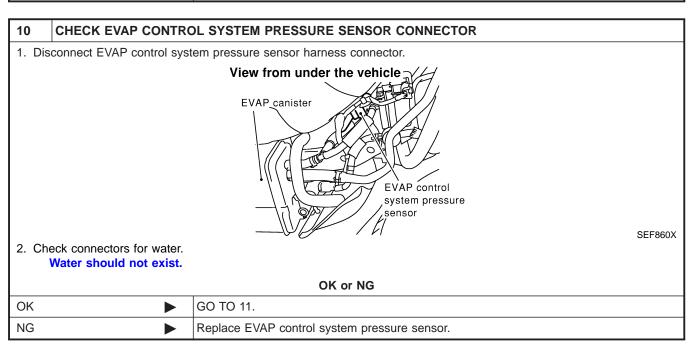
OK or NG

Make sure new O-ring is installed properly.


GO TO 5.

GO TO 4.

OK

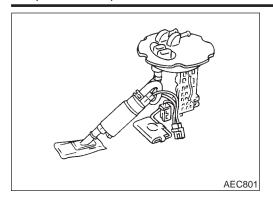

NG

SEF339X

8	DETECT MALFUNCTIONING PART		
• EVA	the following. AP canister for damage AP hose between EVAP car	nister and water separator for clogging or poor connection	
Repair hose or replace EVAP canister.			

9	CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE			
Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.				
OK or NG				
OK	OK ▶ GO TO 10.			
NG	>	Repair it.		

Diagnostic Procedure (Cont'd) CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR 1. Remove EVAP control system pressure sensor with its harness connector connected. **CAUTION:** Never apply force to the air hole protector of the sensor if equipped. MA Air hole protector (if equipped) LC EC Never apply force. SEF799W 2. Remove hose from EVAP control system pressure sensor. 3. Turn ignition switch "ON". 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. **CAUTION:** GL Always calibrate the vacuum pump gauge when using it. Do not apply below −20 kPa (−150 mmHg, −5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure. 5. Check input voltage between ECM terminal 84 and ground. MT O CONNECTOR **ECM** AT EVAP control system Pressure (Relative to atmospheric pressure) Voltage V pressure sensor AX 0 kPa (0 mmHg, 0 inHg) 3.0 - 3.6 0.4 - 0.6 -9.3 kPa (-70 mmHg, -2.76 inHg) Pump SEF342X **CAUTION:** • Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one. OK or NG GO TO 12. OK NG Replace EVAP control system pressure sensor.


12	CHECK INTERMITTENT INCIDENT		
Refer t	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

HA

SC

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL)

Component Description

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

ECM Terminals and Reference Value

NCEC0660

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
83	G/R	Fuel level sensor	[Ignition switch "ON"]	Approximately 0 - 4.8V Output voltage varies with fuel level.
90	В	Fuel level sensor ground	[Engine is running]	Approximately 0V

On Board Diagnostic Logic

NCEC0618

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the latter to detect open circuit malfunction. Malfunction is detected when a high voltage from the sensor is sent to ECM.

Possible Cause

NCEC0619

 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.)

DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL)

DTC Confirmation Procedure

DTC Confirmation Procedure

NOTE:

NCEC0620

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

GI

MA

EM

LC

EC

DATA MON	DATA MONITOR	
MONITOR	NO DTC	
FUEL T/TMP SE FUEL LEVEL SE		

(II) WITH CONSULT-II

NCEC0620S01

1) Turn ignition switch "ON".

2) Select "DATA MONITOR" mode with CONSULT-II.

3) Wait at least 5 seconds.

4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-537.

re", 🎏

WITH GST

Follow the procedure "WITH CONSULT-II" above.

NCEC0620S02

MT

GL

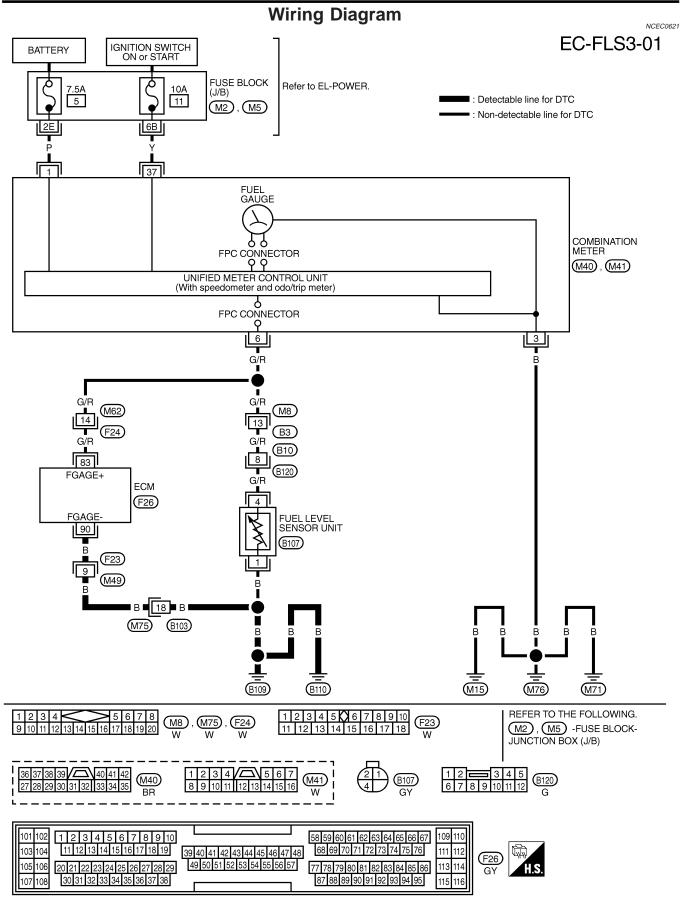
AT

SU

AX

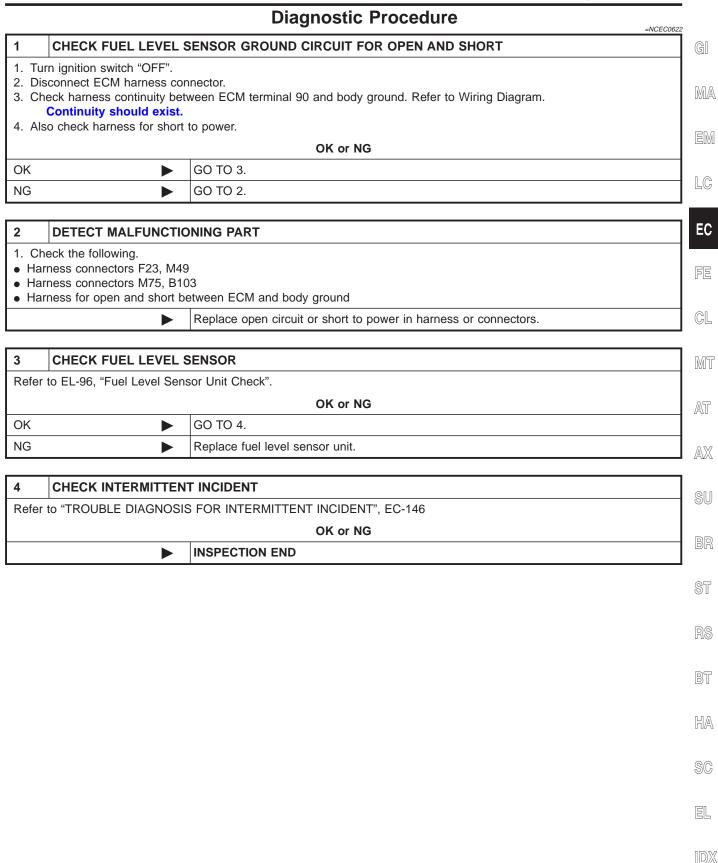
BR

ST

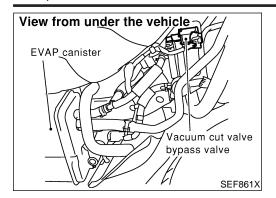

RS

BT

HA


SC

EL


DTC P1464 FUEL LEVEL SENSOR CIRCUIT (GROUND SIGNAL)

Diagnostic Procedure

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

Description

Description COMPONENT DESCRIPTION

=NCEC0623

NCEC0623S01 The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NCEC0623S02 EVAP control system pressure sensor EVAP service port-Vacuum cut valve bypass valve-Refueling control valve and refueling EVAP vapor cut valve **EVAP** Vacuum-Fuel tank canister cut valve EVAP canister purge EVAP canister volume control vent control solenoid valve valve SFF323U

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0624

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	• Ignition switch: ON	OFF

ECM Terminals and Reference Value

NCEC0661

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	PU/R	Vacuum cut valve bypass valve	Hanition switch "ON"	BATTERY VOLTAGE (11 - 14V)

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

On Board Diagnosis Logic

On Board Diagnosis Logic

Malfunction is detected when an improper voltage signal is sent to ECM through vacuum cut valve bypass valve.

MA

LC

Possible Cause

Harness or connectors

(The vacuum cut valve bypass valve circuit is open or shorted.)

Vacuum cut valve bypass valve

EC

FE

GL

MT

DTC Confirmation Procedure

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle speed.

(P) WITH CONSULT-II DATA MONITOR Turn ignition switch "ON".

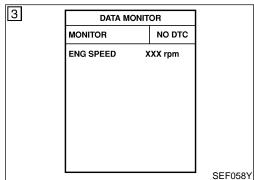
NCEC0627

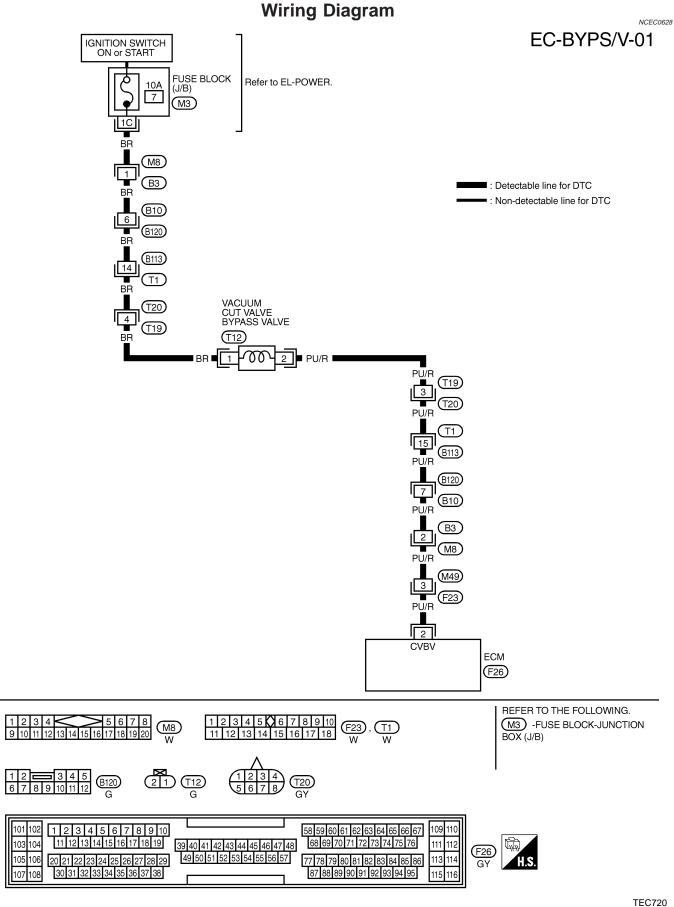
Select "DATA MONITOR" mode with CONSULT-II.

Start engine and wait at least 5 seconds.

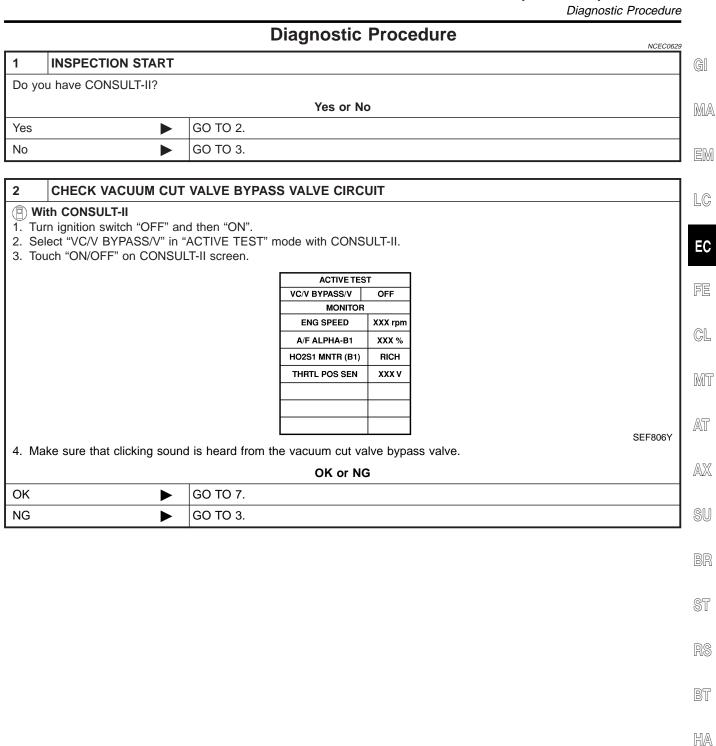
If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-541.

BT


® WITH GST

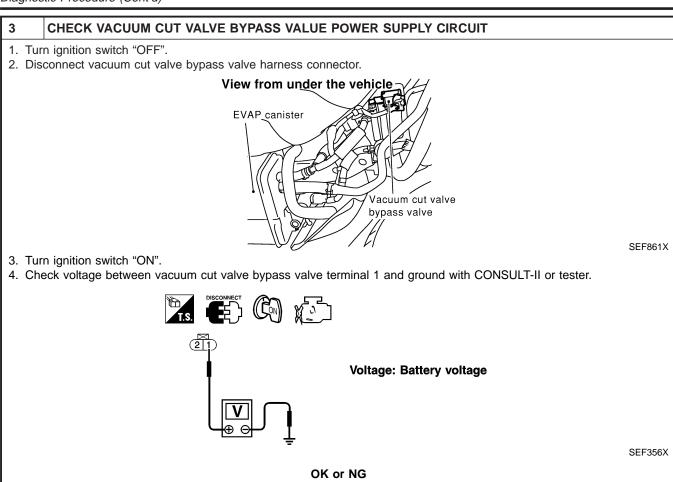

NCEC0627S02

Follow the procedure "WITH CONSULT-II" above.


HA

SC

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)



SC

EL

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

	i			
1	DETECT	MAIFIING	CTIONING	DART

Check the following.

- Harness connectors M8, B3
- Harness connectors B10, B120
- Harness connectors B113, T1
- Harness connectors T20, T19
- Fuse block (J/B) connector M3
- 10A fuse

OK

NG

· Harness for open or short between vacuum cut valve bypass valve and fuse

GO TO 5. GO TO 4.

Repair harness or connectors.

5 CHECK VACUUM CUT VALVE BYPASS VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 2 and vacuum cut valve bypass valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG

	511 51 HG
OK •	GO TO 7.
NG •	GO TO 6.

DTC P1490 VACUUM CUT VALVE BYPASS VALVE (CIRCUIT)

Diagnostic Procedure (Cont'd)

GI

MA

LC

EC

FE

GL

MT

AT

ST

BT

HA

SC

DETECT MALFUNCTIONING PART

Check the following.

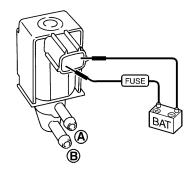
- Harness connectors T19, T20
- Harness connectors T1, B113
- Harness connectors B120, B10
- Harness connectors B3, M8
- Harness connectors M49, F23
- Harness for open or short between vacuum cut valve bypass valve and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.


ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	RICH	
THRTL POS SEN	xxx v	

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

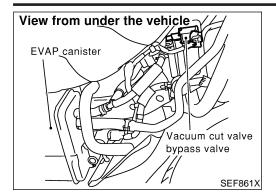
Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

SEF557Y

SEF807Y

OK	•	GO TO 8.


NG Replace vacuum cut valve bypass valve.

8	CHECK INTERMITTENT INCIDENT		
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	► INSPECTION END		

OK or NG

EC-543

Description

Description COMPONENT DESCRIPTION

NCEC0630

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

NCEC0630S02 EVAP control system pressure sensor EVAP service port-Vacuum cut valve bypass valve-Refueling control valve and refueling EVAP vapor cut valve **EVAP** Vacuum-Fuel tank canister cut valve EVAP canister purge EVAP canister volume control vent control solenoid valve valve SFF323U

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0631

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	• Ignition switch: ON	OFF

ECM Terminals and Reference Value

NCEC0662

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	PU/R	Vacuum cut valve bypass valve	Hanition switch "ON"	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

Malfunction is detected when vacuum cut valve bypass valve does not operate properly.

MA

LC

EC

Possible Cause

Vacuum cut valve bypass valve

NCEC0633

Vacuum cut valve

Bypass hoses for clogging

NCEC0634

EVAP canister vent control valve

Hose between fuel tank and vacuum cut valve clogged

EVAP control system pressure sensor and circuit

GL

Hose between vacuum cut valve and EVAP canister clogged **EVAP** canister

EVAP purge port of fuel tank for clogging

MT

DTC Confirmation Procedure

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

AX

TESTING CONDITION:

Always perform test at a temperature of 5 to 30°C (41 to 86°F).

(A) WITH CONSULT-II

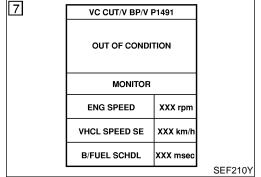
NCEC0634S01

- Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.

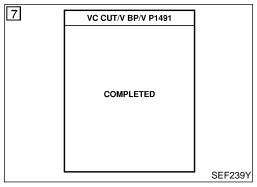
- Turn ignition switch "OFF" and wait at least 10 seconds.
- Start engine and let it idle for at least 70 seconds.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Touch "START". 6)

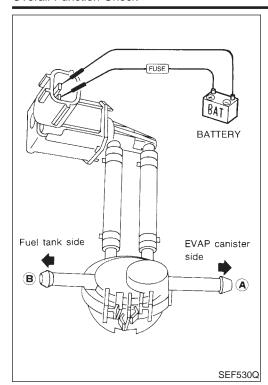
When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It


will take at least 30 seconds.)

ENG SPEED	More than 1,000 rpm
Selector lever	Suitable position
Vehicle speed	More than 37 km/h (23 MPH)
B/FUEL SCHDL	1.0 - 8.9 msec


step 3.

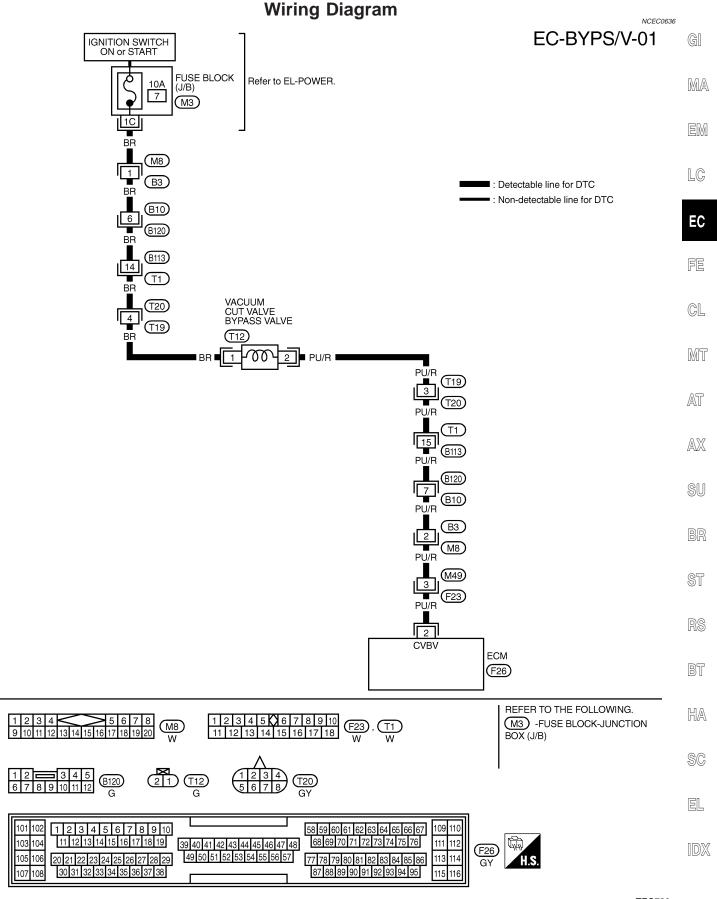
If "TESTING" is not displayed after 5 minutes, retry from


Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "Diagnostic Procedure", EC-548.

7 VC CUT/V BP/V P1491 **TESTING** MONITOR **ENG SPEED** XXX rpm **VHCL SPEED SE** XXX km/h B/FUEL SCHOL XXX msed SEF211Y

Overall Function Check

Overall Function Check

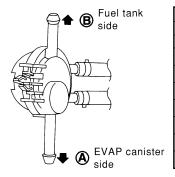

NCEC063

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

WITH GST

NCEC0635S

- 1) Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 2) Apply vacuum to port **A** and check that there is no suction from port **B**.
- 3) Apply vacuum to port **B** and check that there is suction from port **A**.
- 4) Blow air in port **B** and check that there is a resistance to flow out of port **A**.
- 5) Supply battery voltage to the terminal.
- 6) Blow air in port **A** and check that air flows freely out of port **B**.
- 7) Blow air in port **B** and check that air flows freely out of port **A**.
- 8) If NG, go to "Diagnostic Procedure", EC-548.



Diagnostic Procedure

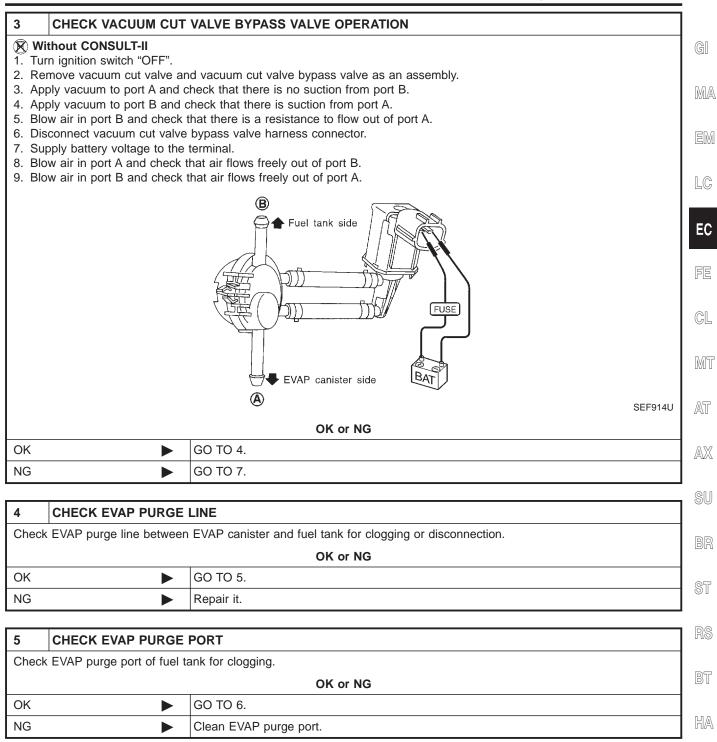
2 CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

(P) With CONSULT-II

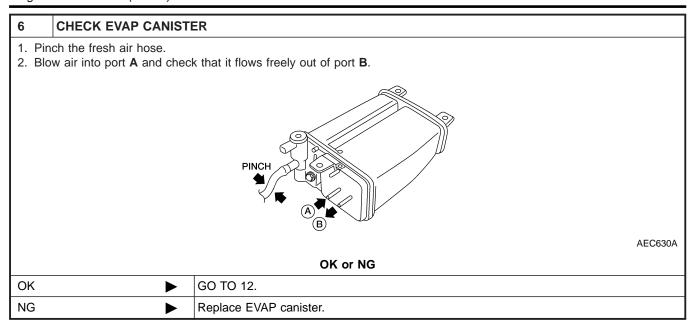
- 1. Turn ignition switch "OFF".
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Turn ignition switch "ON".
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

ACTIVE TEST		
VC/V BYPASS/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	RICH	
THRTL POS SEN	xxx v	
	•	

SEF808Y


OK or NG

OK ▶	GO TO 4.
NG ►	GO TO 5.

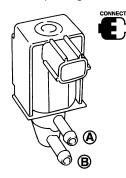

Diagnostic Procedure (Cont'd)

SC

EL

Diagnostic Procedure (Cont'd)

7	CHECK BYPASS HOSE		
Check bypass hoses for clogging.			
	OK or NG		
ОК	OK ▶ GO TO 8.		
NG	>	Repair or replace hoses.	


Diagnostic Procedure (Cont'd)

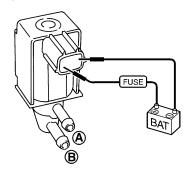
CHECK VACUUM CUT VALVE BYPASS VALVE

With CONSULT-II

8

- 1. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 2. Check air passage continuity and operation delay time under the following conditions.

ACTIVE TEST		
OFF		
XXX rpm		
XXX %		
RICH		
xxx v		


Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.

SEF807Y

⊗ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

SEF557Y

OK or NG

 EM

GI

MA

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

ST

M

BT HA

SC

EL

Diagnostic Procedure (Cont'd)

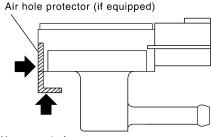
OK

NG

GHECK VACUUM CUT VALVE Check vacuum cut valve as follows: EVAP canister side EVAP canister side Fuel tank side SEF379Q a. Plug port C and D with fingers. b. Apply vacuum to port A and check that there is no suction from port B. c. Apply vacuum to port B and check that there is a resistance to flow out of port A. d. Blow air in port B and check that air flows freely out of port C. g. Blow air in port B check that air flows freely out of port D. OK or NG

10	0 CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE		
	Turn ignition switch "OFF". Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG		
ОК	OK ▶ GO TO 11.		
NG	>	Repair or replace.	

GO TO 10.


Replace vacuum cut valve.

Diagnostic Procedure (Cont'd)

CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

- Remove EVAP control system pressure sensor with its harness connector connected. CAUTION:
 - Never apply force to the air hole protector of the sensor if equipped.

Never apply force.

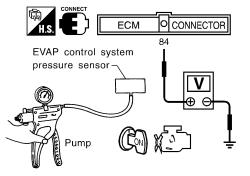
SEF799W

SEF342X

MA

LC

EC


GL

MT

AT

AX

- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure. CAUTION:
 - Always calibrate the vacuum pump gauge when using it.
 - Do not apply below -20 kPa (-150 mmHg, -5.91 inHg) or over 20 kPa (150 mmHg, 5.91 inHg) of pressure.
- 5. Check input voltage between ECM terminal 84 and ground.

oltage V
3.0 - 3.6
0.4 - 0.6

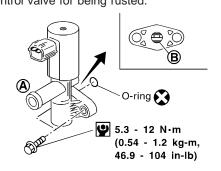
CAUTION:

• Discard and EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

OK	or	NG
\mathbf{v}	VI.	110

OK •	GO TO 13.
NG •	Replace EVAP control system pressure sensor.

13	13 CHECK RUBBER TUBE FOR CLOGGING		
	 Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging. 		
OK or NG			
	OK GO TO 14.		
OK	>	GO TO 14.	


SC EL

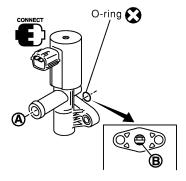
HA

Diagnostic Procedure (Cont'd)

14 CHECK EVAP CANISTER VENT CONTROL VALVE-I 1. Remove EVAP canister vent control valve from EVAP canister.

Remove EVAP canister vent control valve from EVAP canister.
 Check portion B of EVAP canister vent control valve for being rusted.

SEF337X


0	Κ	or	N	G
$\mathbf{\sigma}$	ľ	UI.	14	u

OK •	GO TO 15.
NG >	Replace EVAP canister vent control valve.

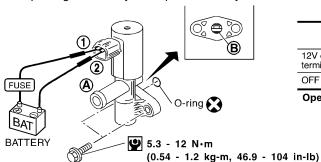
15 CHECK EVAP CANISTER VENT CONTROL VALVE-II

(II) With CONSULT-II

- 1. Reconnect harness disconnected connectors.
- 2. Turn ignition switch ON.
- 3. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time.

ACTIVE TEST				
VENT CONTROL/V	OFF			
MONITOR				
ENG SPEED	XXX rpm			
A/F ALPHA-B1	XXX %			
HO2S1 (B1)	xxx v			
THRTL POS SEN	xxx v			

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes


Operation takes less than 1 second.

SEF803Y

SEF339X

Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

Make sure new O-ring is installed properly.

OK or NG

OK •	GO TO 17.
NG ►	GO TO 16.

Diagnostic Procedure (Cont'd)

16	CHECK EVAP CANISTI	ER VENT CONTROL VALVE-III		
 Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower. Perform the Test No. 15 again. 				
	OK or NG			
OK	•	GO TO 17.		
NG	•	Replace EVAP canister vent control valve.		

17	17 CHECK INTERMITTENT INCIDENT		
Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	•	INSPECTION END	

G[

 $\mathbb{M}\mathbb{A}$

EM

LC

EC

FE

CL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

DTC P1605 A/T DIAGNOSIS COMMUNICATION LINE

System Description

System Description

NCEC041

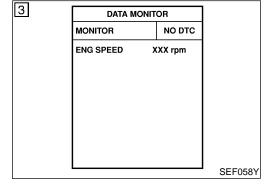
The malfunction information related to A/T (Automatic Transaxle) is transferred through the line (circuit) from TCM (Transmission Control Module) to ECM. Therefore, be sure to erase the malfunction information such as DTC not only in TCM (Transmission Control Module) but also ECM after the A/T related repair.

ECM Terminals and Reference Value

NCEC0419

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
91	PU	A/T check signal	[Ignition switch "ON"]	0 - Approximately 5V

On Board Diagnosis Logic

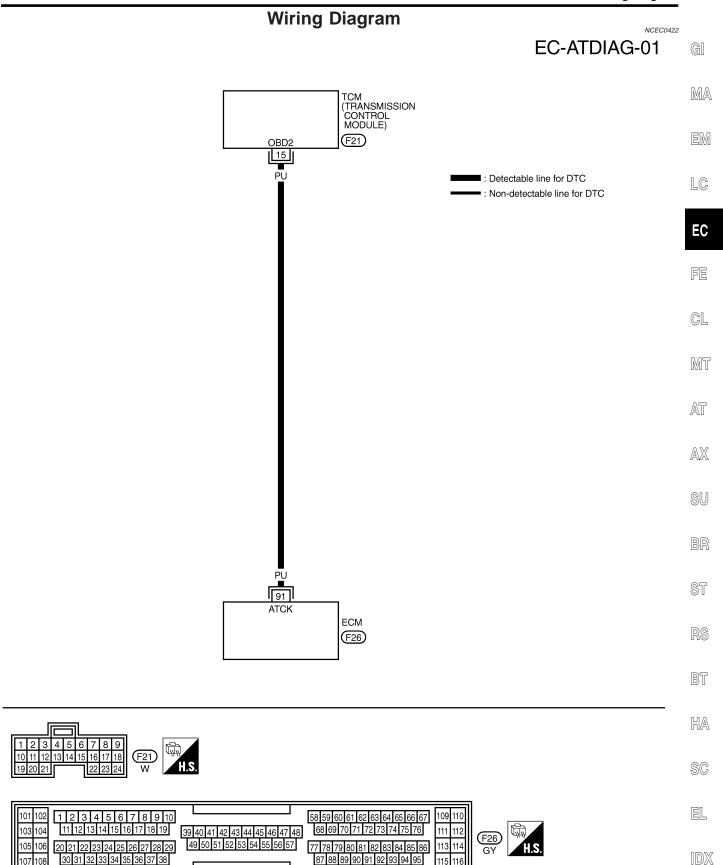
NCEC0420

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1605	An incorrect signal from TCM (Transmission Control Module) is sent to ECM.	Harness or connectors [The communication line circuit between ECM and TCM (Transmission Control Module) is open or shorted.] Dead (Weak) battery TCM (Transmission Control Module)

DTC Confirmation Procedure

NCEC0421

NOTE:


If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

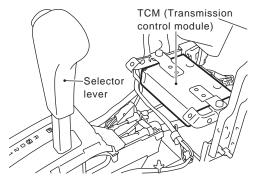
(P) With CONSULT

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT.
- 3) Start engine and let it idle for at least 40 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-558.

With GST

Follow the procedure "With CONSULT-II" above.

DTC P1605 A/T DIAGNOSIS COMMUNICATION LINE


Diagnostic Procedure

Diagnostic Procedure

NCEC0423

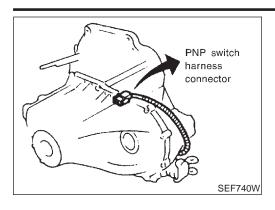
1 CHECK INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect ECM harness connector and TCM harness connector.

SEF313W

3. Check harness continuity between ECM terminal 91 and TCM terminal 15. Refer to Wiring Diagram.

Continuity should exist.


4. Also check harness for short to ground and short to power.

0	K	or	N	C
.,	n	OI	IV	v.

	NG		Repair open circuit or short to ground or short to power in harness or connectors.
ı	OK		GO TO 2.

ĺ	2	CHECK INTERMITTENT INCIDENT	
	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
		•	INSPECTION END

Component Description

Component Description

When the gear position is "P" (A/T models only) or "N", park/neutral position (PNP) switch is "ON".

ECM detects the park/neutral position when continuity with ground exists.

G[

MA

LG

EC

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0425

MONITOR ITEM	CONDITION		SPECIFICATION	[
P/N POSI SW	Ignition switch: ON	Shift lever: "P" or "N"	ON	
		Except above	OFF	(

_ | |

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

0426 MT

GL

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

•	AT	

AX

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	G/OR	PNP switch	[Ignition switch "ON"] ■ Gear position is "Neutral position" (M/T models) ■ Gear position is "N" or "P" (A/T models)	Approximately 0V
			[Ignition switch "ON"] ■ Except the above gear position	BATTERY VOLTAGE (11 - 14V)

On Board Diagnosis Logic

NCEC0427

DTC No.	Malfunction is detected when	Check Items (Possible Cause)
P1706	The signal of the PNP switch is not changed in the process of engine starting and driving.	Harness or connectors (The PNP switch circuit is open or shorted.) PNP switch

- RS

HA

SC

EL

DATA MONITOR MONITOR NO DTC P/N POSI SW ON

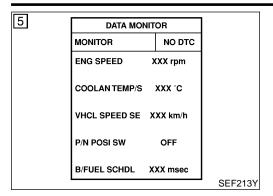
DTC Confirmation Procedure

NCEC042

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


SEF212Y

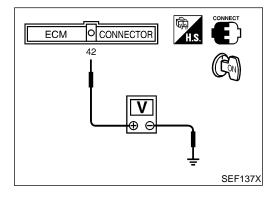
If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 10 seconds before conducting the next test.

(P) With CONSULT-II

1) Turn ignition switch "ON".

DTC Confirmation Procedure (Cont'd)

 Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.


Position (Selector lever)	Known-good signal
"N" and "P" (A/T only) position	ON
Except the above position	OFF

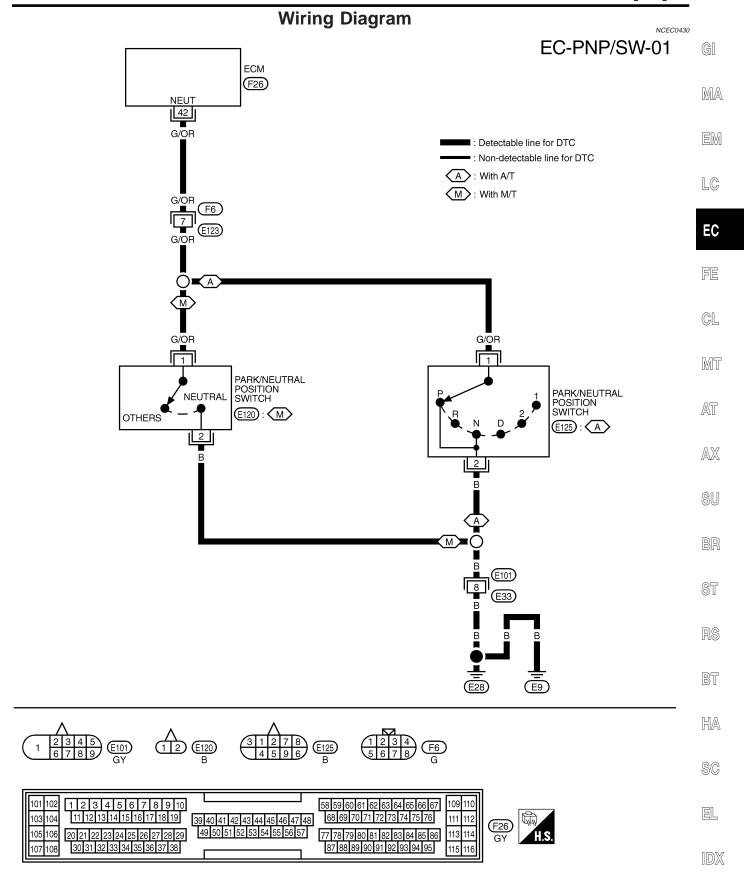
If NG, go to "Diagnostic Procedure", EC-562. If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- 5) Maintain the following conditions for at least 50 consecutive seconds.

ENG SPEED	1,500 - 3,400 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.4 - 12 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

6) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-562.

Overall Function Check

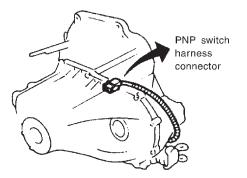

Use this procedure to check the overall function of the park/neutral position switch circuit. During this check, a 1st trip DTC might not be confirmed.

⋈ Without CONSULT-II

- 1) Turn ignition switch "ON".
- 2) Check voltage between ECM terminal 42 (PNP switch signal) and body ground under the following conditions.

Condition (Gear position)	Voltage (V) (Known-good data)	
"P" (A/T only) and "N" position	Approx. 0	
Except the above position	BATTERY VOLTAGE (11 - 14V)	

3) If NG, go to "Diagnostic Procedure", EC-562.


Diagnostic Procedure For M/T Models

Diagnostic Procedure For M/T Models

NCEC0431

1 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect PNP switch harness connector.

SEF740W

Check harness continuity between PNP switch terminal 2 and body ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK	GO TO 3.
NG	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E101, E33
- Harness for open or short between PNP switch and body ground

Repair open circuit or short to power in harness or connectors.

3 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 42 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK		GO TO 5.
NG	•	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F6, E123
- Harness for open or short between ECM and PNP switch

Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure For M/T Models (Cont'd)

6	CHECK INTERMITTENT	INCIDENT
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	>	INSPECTION END

GI

MA

EM

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

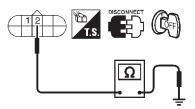
RS

BT

HA

SC

EL


Diagnostic Procedure For A/T Models

Diagnostic Procedure For A/T Models

=NCEC0432

1 CHECK GROUND CIRCUIT

- 1. Turn ignition switch "OFF".
- 2. Disconnect PNP switch harness connector.
- 3. Check continuity between PNP switch terminal 2 and ground with CONSULT-II or tester.

SFF269W

Continuity should exist.

4. Also check harness for short to power.

OK	or	N	G

OK		GO TO 3.
NG	•	GO TO 2.

2 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E101, E33
- · Harness for open or short between PNP switch and body ground
 - Repair open circuit or short to power in harness or connectors.

3 CHECK INPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 42 and PNP switch terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK •	GO TO 5.
NG ►	GO TO 4.

4 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F6, E123
- Harness for open or short between PNP switch and ECM

Repair open circuit or short to ground or short to power in harness or connectors.

Diagnostic Procedure For A/T Models (Cont'd)

6	CHECK INTERMITTENT INCIDENT			
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	► INSPECTION END			

GI

MA

EM

LC

EC

FE

GL

MT

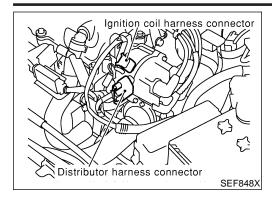
AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST


RS

BT

HA

SC

EL

Component Description IGNITION COIL & POWER TRANSISTOR (BUILT INTO DISTRIBUTOR)

The ignition coil is built into distributor. The ignition signal from the ECM is sent to the power transistor. The power transistor switches on and off the ignition coil primary circuit. As the primary circuit is turned on and off, the proper high voltage is induced in the coil secondary circuit.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

CONSULT-II Reference Value in Data Monitor Mode

			NCEC0320
MONITOR ITEM	COND	DITION	SPECIFICATION
IGN TIMING	Engine: After warming upAir conditioner switch: OFF	Idle	15°±2° BTDC
IGN TIMING	Shift lever: "N"No-load	2,000 rpm	More than 25° BTDC

ECM Terminals and Reference Value

NCEC0321

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	W/D		[Engine is running] • Warm-up condition • Idle speed	Approximately 0.3V (V) 4 2 0 20 ms SEF996V
35	W/B	Ignition signal	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 0.5V (V) 4 2 0 20 ms SEF997V

IGNITION SIGNAL

 $\mathbb{A}\mathbb{X}$

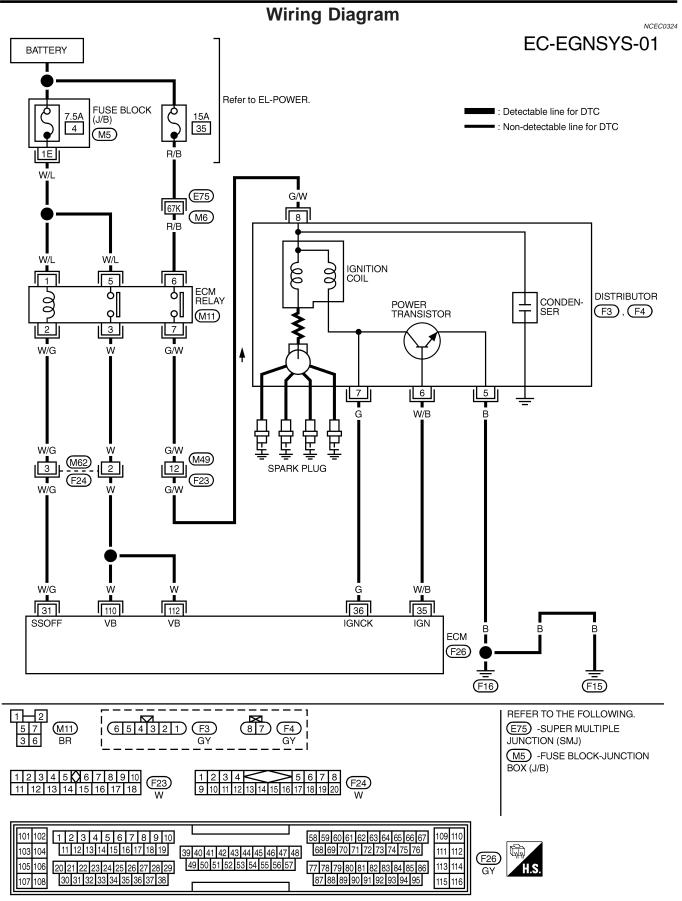
SU

BR

ST

RS

BT


HA

SC

EL

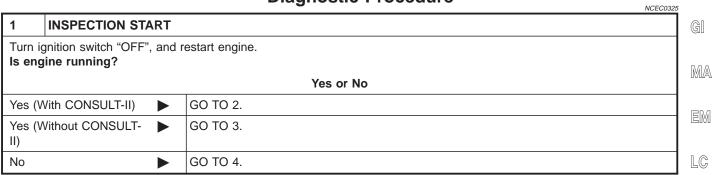
 $\mathbb{D}\mathbb{X}$

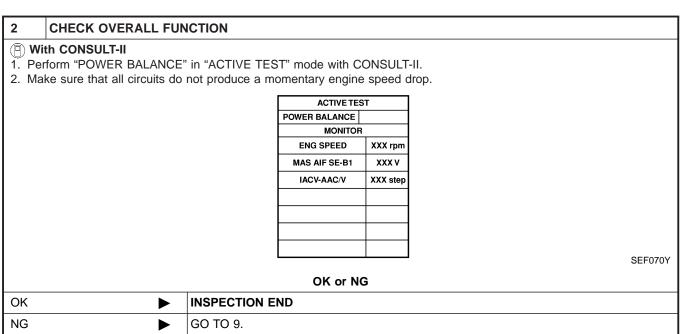
			ECM Termina	Is and Reference Value (Cont'd)	
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
			[Engine is running] • Warm-up condition • Idle speed	Approximately 13V (V) 40 20 0 20 ms SEF998V	MA EM
36	G	Ignition check	[Engine is running] ● Engine speed is 2,000 rpm	Approximately 13V (V) 40 20 0 20 ms SEF999V	EC FE
					MT
					AT

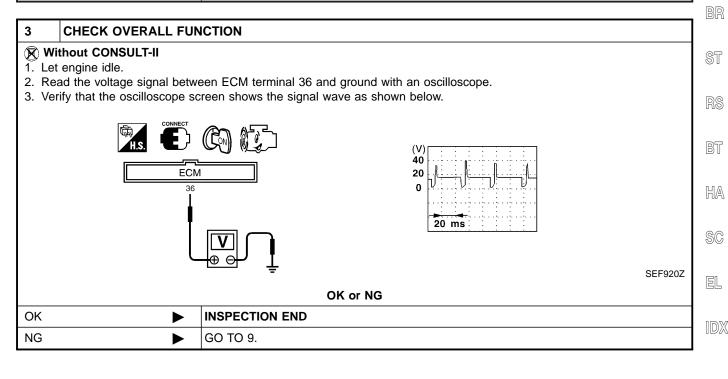
TEC796

EC

FE

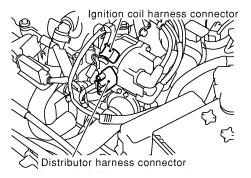

GL

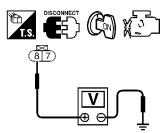

MT


AT

SU

Diagnostic Procedure




CHECK POWER SUPPLY

- 1. Turn ignition switch "OFF".
- 2. Disconnect ignition coil harness connector.

SEF848X

- 3. Turn ignition switch "ON".
- 4. Check voltage between terminal 8 and ground with CONSULT-II or tester.

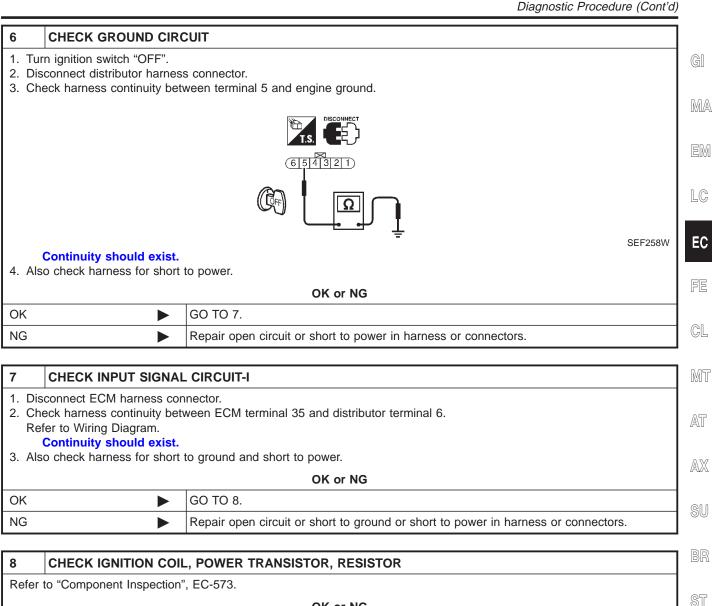
SEF257W

Voltage: Battery voltage

OK or NG

OK •	GO TO 6.
NG ▶	GO TO 5.

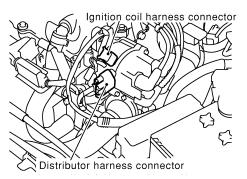
5 DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors M49, F23
- Harness connectors E75, M6
- ECM relay
- 15A fuse
- Harness for open or short between ignition coil and fuse

Repair harness or connectors.

HA


SC

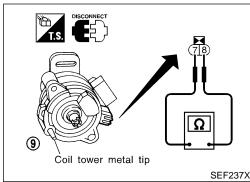
8	CHECK IGNITION COIL, POWER TRANSISTOR, RESISTOR			
Refer	Refer to "Component Inspection", EC-573.			
	OK or NG			
OK	>	GO TO 9.	l	
NG	•	Replace malfunctioning component(s).		

CHECK INPUT SIGNAL CIRCUIT-II

- 1. Stop engine.
- 2. Disconnect ignition coil harness connector.

SEF848X

- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between ignition coil terminal 7 and ECM terminal 36. Refer to Wiring Diagram.


 Continuity should exist.

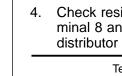
5. Also check harness for short to ground and short to power.

0	Κ	or	Ν	G

ľ	NG		Repair open circuit or short to ground or short to power in harness or connectors.
	OK		GO TO 10.

10	CHECK INTERMITTENT INCIDENT				
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.				
	INSPECTION END				

Component Inspection IGNITION COIL


NCEC0326S01

- Disconnect ignition coil harness connector.
- 2. Check resistance as shown in the figure.

MA

LC

EC

For checking secondary coil, remove distributor cap. Check resistance between ignition coil harness connector terminal 8 and coil tower metal tip 9 (secondary terminal) on the

distributor head.

FE

Terminal	Resistance [at 25°C (77°F)]	
7 - 8 (Primary coil)	Approximately 0.8Ω	
8 - secondary terminal on distributor head (Secondary coil)	Approximately 16 kΩ	

MT

GL

If NG, replace distributor.

Disconnect distributor harness connector.

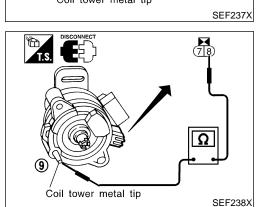

NCEC0326S02

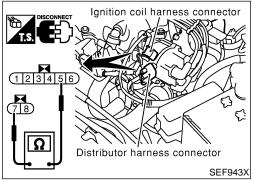
2. Check power transistor resistance between terminals 5 and 7.

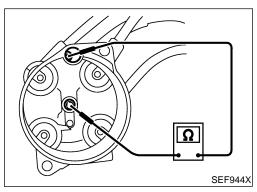
Terminals	Resistance	Result
5 and 7	Except 0Ω	ОК
5 and 7	0Ω	NG

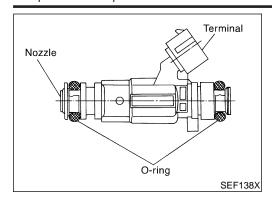
If NG, replace distributor.

RESISTOR




If NG, replace distributor cap.


Resistance: 4 - 8 k Ω [at 25°C (77°F)]


HA

SC

Component Description

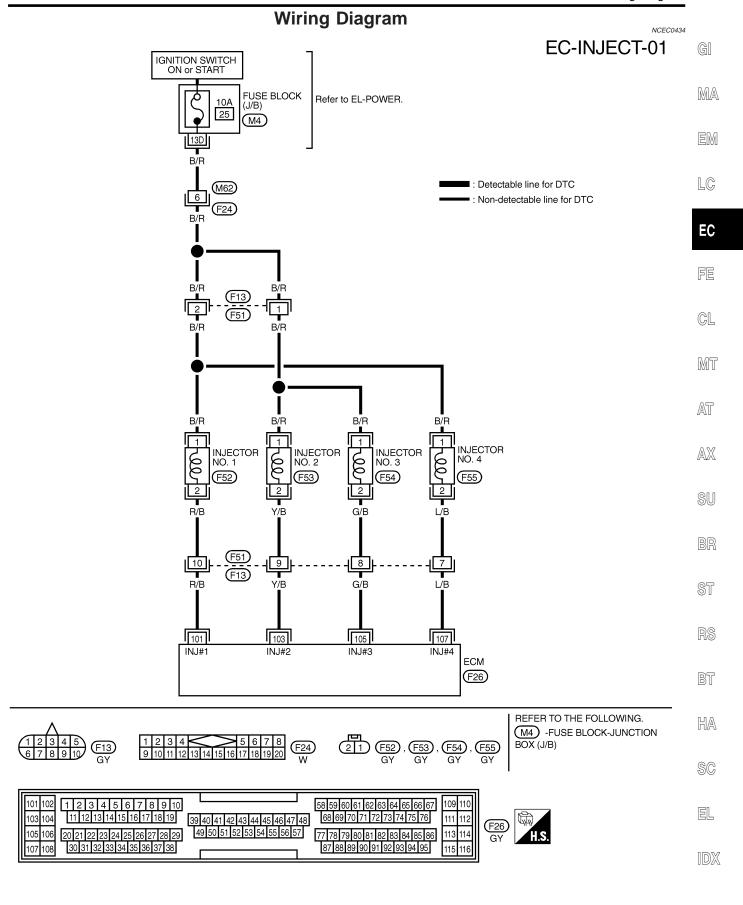
The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the needle valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

NCEC0436

MONITOR ITEM	CONDITION		SPECIFICATION
INJ PULSE-B1	Engine: After warming upAir conditioner switch: OFF	Idle	2.4 - 3.2 msec
INJ POLSE-BI	Shift lever: "N"No-load	2,000 rpm	1.9 - 2.8 msec
D/EUEL SCUDI	 Engine: After warming up Air conditioner switch: OFF Shift lever: "N" No-load 	Idle	1.0 - 1.6 msec
B/FUEL SCHDL		2,000 rpm	0.7 - 1.3 msec

ECM Terminals and Reference Value


Specification data are reference values and are measured between each terminal and ground.

NCEC0437

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 103 105 107	R/B Y/B G/B L/B	Injector No. 1 Injector No. 2 Injector No. 3 Injector No. 4	[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 SEF011W
			[Engine is running]Warm-up conditionEngine speed is 2,000 rpm	BATTERY VOLTAGE (11 - 14V) (V) 40 20 0 20 ms SEF012W

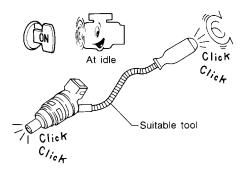
Diagnostic Procedure

NCEC0438

SEF190Y

MEC703B

1 CHECK OVERALL FUNCTION


- With CONSULT-II
- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.

ACTIVE TEST				
POWER BALANCE				
MONITOR				
ENG SPEED	XXX rpm			
MAS A/F SE-B1	xxx v			
IACV-AAC/V	XXX step			

3. Make sure that each circuit produces a momentary engine speed drop.

Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK •	INSPECTION END
NG ▶	GO TO 2.

SC

EL

CHECK POWER SUPPLY 1. Stop engine. 2. Disconnect injector harness connector. 3. Turn ignition switch "ON". 4. Check voltage between injector terminal 1 and ground with CONSULT-II or tester. MA T.S. ED CON XI LC Voltage: Battery voltage EC SEF949X OK or NG OK GO TO 4. GL NG GO TO 3. MT 3 **DETECT MALFUNCTIONING PART** Check the following. • 10A fuse AT Harness connectors M62, F24 • Harness connectors F13, F51 · Harness for open or short between injector and fuse AX Repair harness or connectors. **CHECK OUTPUT SIGNAL CIRCUIT** 1. Turn ignition switch "OFF". 2. Disconnect ECM harness connector. 3. Check harness continuity between injector harness connector terminal 2 and ECM terminals 101, 103, 105, 107. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK GO TO 6. NG GO TO 5. 5 **DETECT MALFUNCTIONING PART** HA Check the following.

Repair open circuit or short to ground or short to power in harness or connectors.

Harness connectors F51, F13

Harness for open or short between ECM and injector

7	CHECK INTERMITTENT INCIDENT		
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	>	INSPECTION END	

START SIGNAL

CONSULT-II Reference Value in Data Monitor Mode

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

NCEC0441

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	 Ignition switch: ON → START → ON 	$OFF \to ON \to OFF$

MA

GI

ECM Terminals and Reference Value

NCEC0442

Specification data are reference values and are measured between each terminal and ground.

EM

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	41 B/Y Start signal		[Ignition switch "ON"]	Approximately 0V
41 6/1		[Ignition switch "START"]	9 - 14V	

FE

GL

MT

AT

AXSU

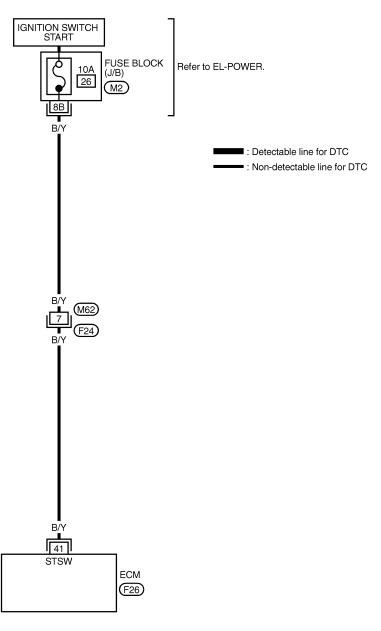
BR

ST

RS

BT

HA


SC

EL

Wiring Diagram

NCEC0440

EC-S/SIG-01

GI

MA

EC

FE

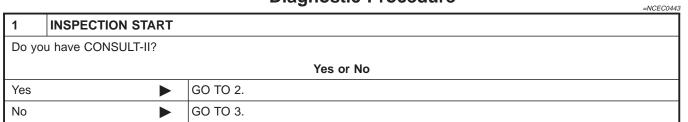
GL

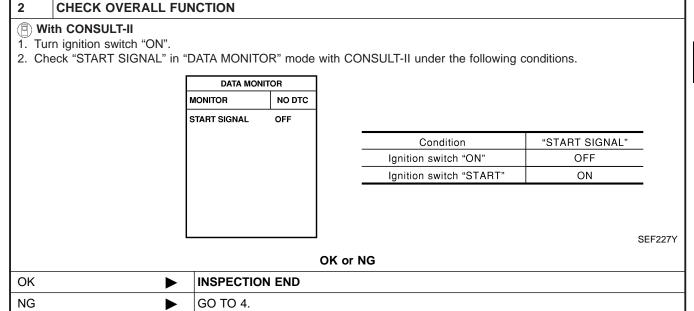
MT

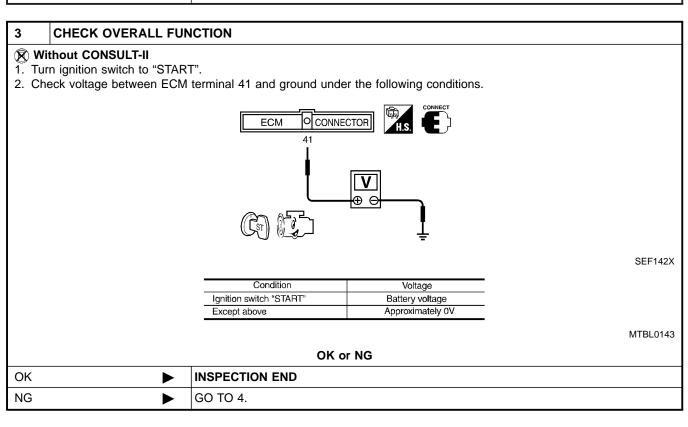
AT

AX

SU


ST


BT


HA

SC

START SIGNAL

Diagnostic Procedure (Cont'd)

4	DETECT MALFUNCTIO	NING PART
Check the following. • Harness connectors M62, F24 • 10A fuse • Harness for open or short between ECM and fuse		
OK or NG		
OK	•	GO TO 5.
NG	•	Repair open circuit or short to ground or short to power in harness or connectors.

5	CHECK INTERMITTENT INCIDENT		
Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.			
	► INSPECTION END		

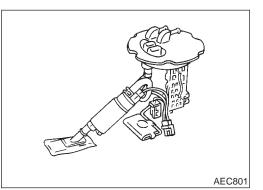
System Description

			NCECU444	
Sensor	Input Signal to ECM	ECM func- tion	Actuator	(
Camshaft position sensor	Engine speed	ECM	Fuel pump relay	[
Ignition switch	Start signal	ECIVI	Fuel pump relay	

MA

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 180° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to perform. If the 180° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

EM


Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 5 seconds
Engine running and cranking	Operates
When engine is stopped	Stops in 1 second
Except as shown above	Stops

EC

FE

GL

MT

Component Description

NCEC0501

A turbine type design fuel pump is used in the fuel tank.

AX

SU

CONSULT-II Reference Value in Data Monitor Mode

NCEC0445

MONITOR ITEM	CONDITION SPECIFICA	
FUEL PUMP RLY	 Ignition switch is turned to ON (Operates for 5 seconds) Engine running and cranking When engine is stopped (stops in 1.0 seconds) 	ON
	Except as shown above	OFF

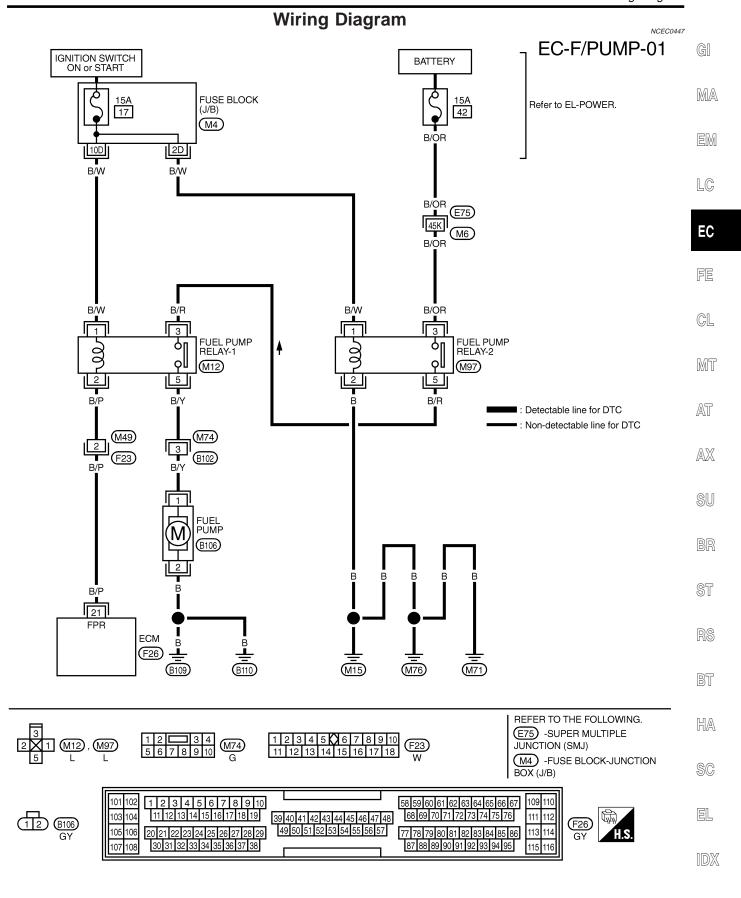
HA

BT

SC

EL

ECM Terminals and Reference Value

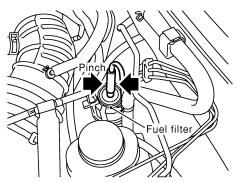

=NCEC0446

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21	B/D	Fuel nump relay	[Ignition switch "ON"] ● For 5 seconds after turning ignition switch "ON" [Engine is running]	0 - 1V
21	B/P Fuel pump relay	[Ignition switch "ON"] ■ More than 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	



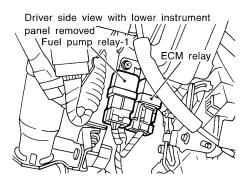
Diagnostic Procedure

NCEC0448

1 CHECK OVERALL FUNCTION

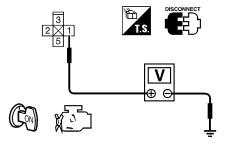
- 1. Turn ignition switch "ON".
- 2. Pinch fuel feed hose with fingers.

SEF858X


Fuel pressure pulsation should be felt on the fuel feed hose for 5 seconds after ignition switch is turned "ON".

	or NG
--	-------

OK D	>	INSPECTION END
NG	>	GO TO 2.


2 CHECK POWER SUPPLY-I

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel pump relay-1.

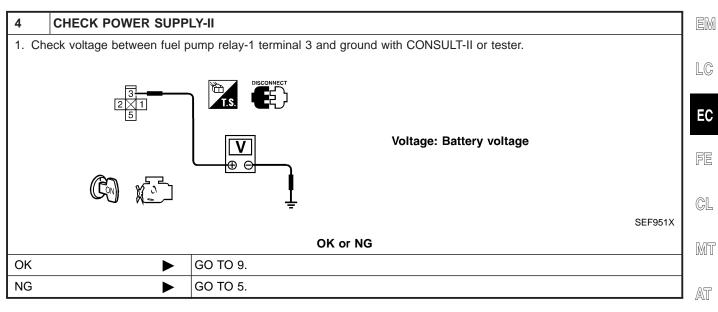
SEF185XA

- 3. Turn ignition switch "ON".
- 4. Check voltage between fuel pump relay-1 terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

SEF950X

OK or NG


OK •	GO TO 4.
NG ►	GO TO 3.

G[

MA

 $\mathbb{A}\mathbb{X}$

3	DETECT MALFUNCTIONING PART	
Check the following. • 15A fuse • Harness for open or short between fuse and fuel pump relay-1		
	•	Repair harness or connectors.

5 CHECK POWER SUPPLY-III 1. Turn ignition switch "OFF". 2. Disconnect fuel pump relay-2. Door mirror defogger relay prelay-2. Front door drivers side 3. Check voltage between fuel pump relay-2 terminals 1, 3 and ground with CONSULT-II or tester.

6	DETECT MALFUNCTIONING PART

Voltage: Battery voltage

Check the following.

- Harness connectors E75, M6
- 15A fuse

OK

NG

• Harness for open or short between fuse and fuel pump relay-2

GO TO 7.

GO TO 6.

Repair open circuit or short to ground or short to power in harness or connectors.

7 CHECK POWER SUPPLY-IV

1. Check continuity between fuel pump relay-2 terminal 5 and fuel pump relay-1 terminal 3, fuel pump relay-2 terminal 2 and body ground.

OK or NG

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK ►	GO TO 8.
NG ►	Repair open circuit or short to ground or short to power in harness or connectors.

GI

MA

EM

LC

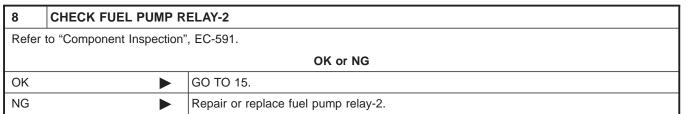
EC

FE

GL

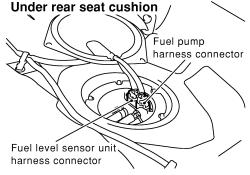
MT

AT

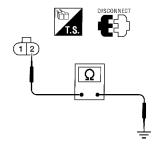

AX

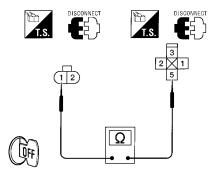
HA

SC


EL

SEF299WA




9 **CHECK POWER GROUND CIRCUIT**

- 1. Turn ignition switch "OFF".
- 2. Disconnect fuel pump harness connector.

3. Check harness continuity between fuel pump terminal 2 and body ground, fuel pump terminal 1 and fuel pump relay-1 terminal 5.

AEC758

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK	or	NG
VIV	VI.	110

OK •	GO TO 11.
NG •	GO TO 10.

10 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M74, B102
- Harness for open or short between fuel pump and body ground
- Harness for open or short between fuel pump and fuel pump relay-1

Repair open circuit or short to ground or short to power in harness or connectors.

11 CHECK OUTPUT SIGNAL CIRCUIT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 21 and fuel pump relay-1 connector terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

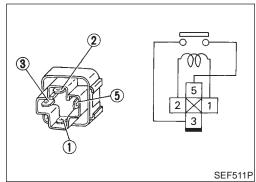
OK		GO TO 13.
NG	•	GO TO 12.

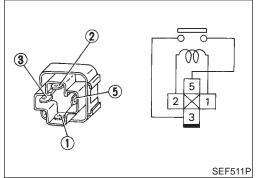
12 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M49, F23
- Harness for open or short between ECM and fuel pump relay-1

NG Repair open circuit or short to ground or short to power in harness or connectors.


13	CHECK FUEL PUMP R	ELAY-1
Refer to "Component Inspection", EC-591.		
OK or NG		
OK	•	GO TO 14.
NG	•	Replace fuel pump relay-1.


14	CHECK FUEL PUMP	
Refer to "Component Inspection", EC-591.		
OK or NG		
OK	>	GO TO 15.
NG	•	Replace fuel pump.

15	CHECK INTERMITTENT INCIDENT	
Perfor	Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.	
	•	INSPECTION END

FUEL PUMP

Component Inspection

Component Inspection FUEL PUMP RELAY-1 AND -2

=NCEC0449

NCE

Check continuity between terminals 3 and 5.

C0449S01	G

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

MA

If NG, replace relay.

EM

LC

FUEL PUMP

Disconnect fuel pump harness connector.

2. Check resistance between terminals 1 and 2.

Resistance: 0.2 - 5.0 Ω [at 25°C (77°F)]

If NG, replace fuel pump.

NCEC0449S02

EC

FE

CL

MT

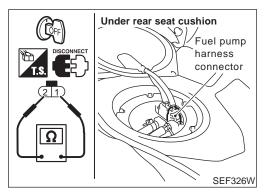
AT

AX

SU

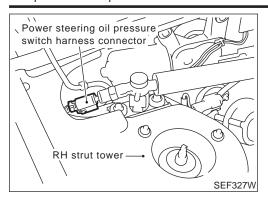
BR

ST


RS

BT

HA


SC

EL

POWER STEERING OIL PRESSURE SWITCH

Component Description

Component Description

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

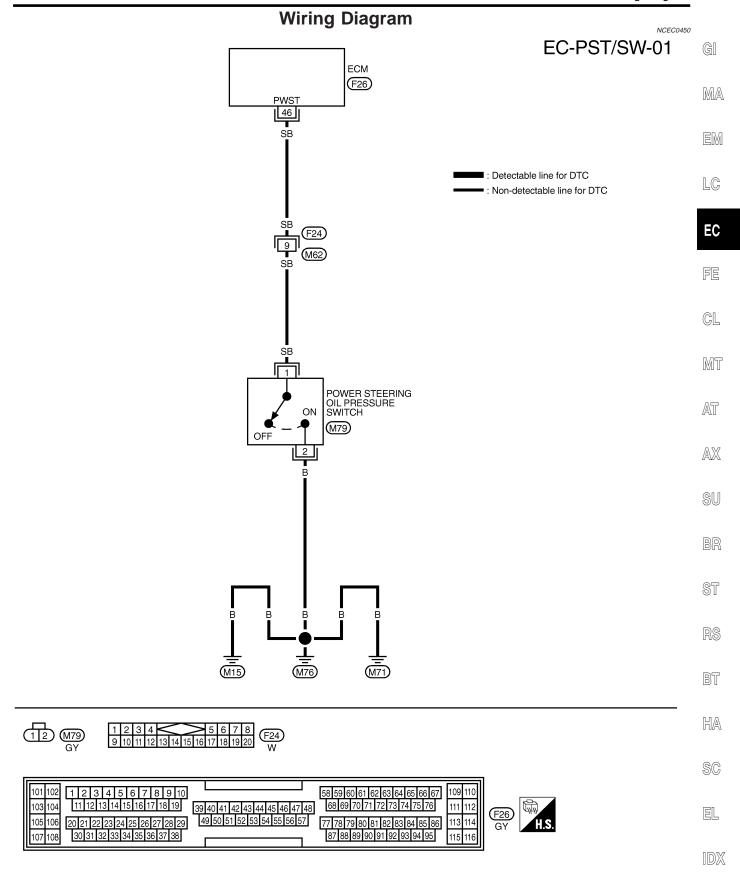
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

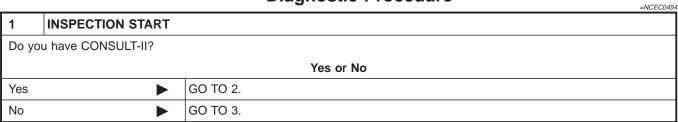
NCEC0452

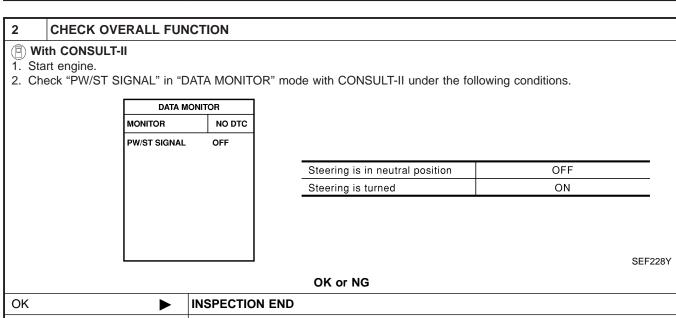
MONITOR ITEM	CONE	DITION	SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel in neutral position (forward direction)	OFF
	the engine	The steering wheel is fully turned	ON

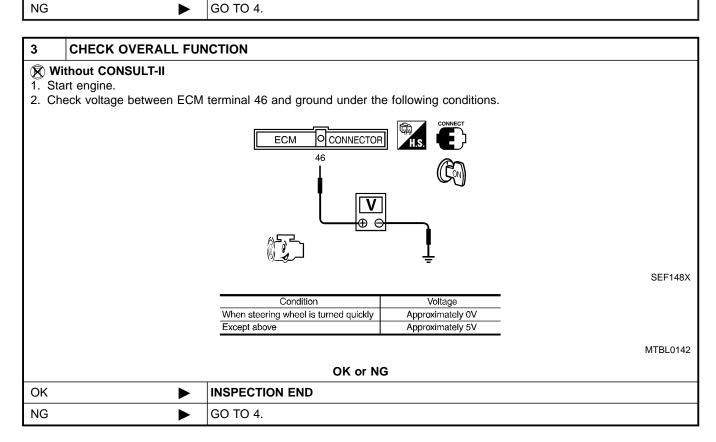
ECM Terminals and Reference Value


NCEC0453

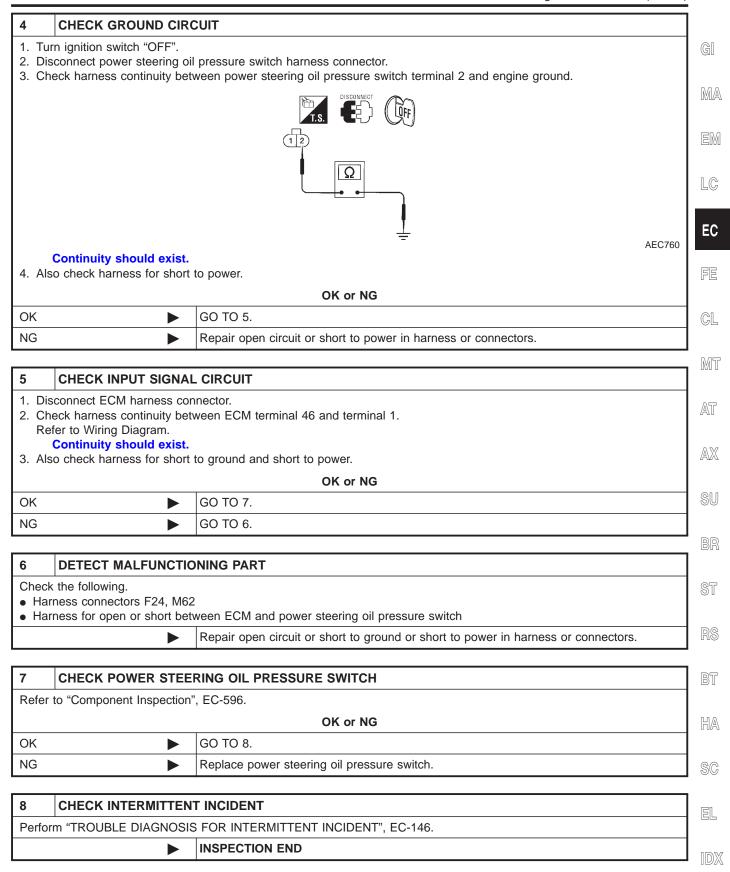
Specification data are reference values and are measured between each terminal and ground.

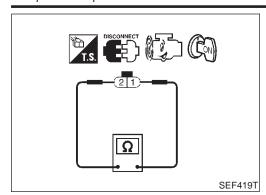

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46 SB	C D	Power steering oil pressure	[Engine is running] • Steering wheel is fully turned	Approximately 0V
40	switch		[Engine is running] • Steering wheel is not turned	Approximately 5V

Diagnostic Procedure

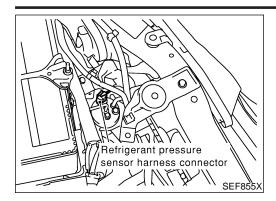



POWER STEERING OIL PRESSURE SWITCH

Diagnostic Procedure (Cont'd)

POWER STEERING OIL PRESSURE SWITCH

Component Inspection

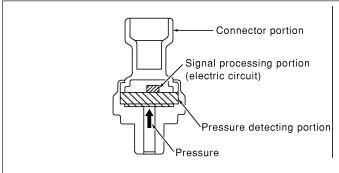

Component Inspection POWER STEERING OIL PRESSURE SWITCH

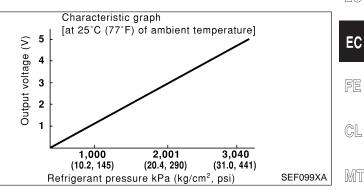
NCEC0455

- Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminals 1 and 2.

Conditions	Continuity
Steering wheel is being turned	Yes
Steering wheel is not being turned	No

If NG, replace power steering oil pressure switch.




Description

The refrigerant pressure sensor is installed at the liquid tank of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan sys-

MA

LC

ECM Terminals and Reference Value

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

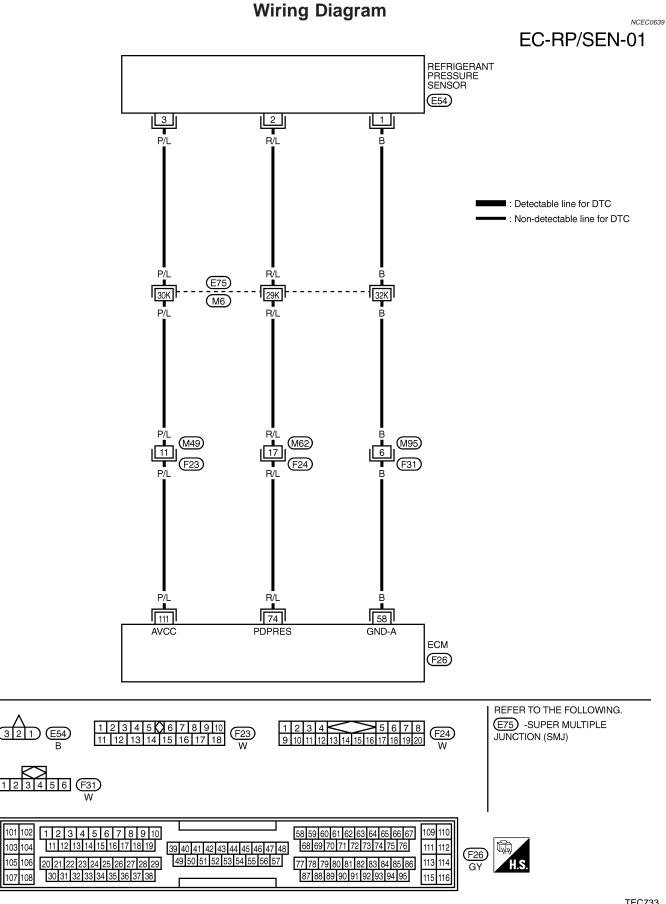
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
58	В	Sensor's ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
74	R/L	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch are "ON" (Compressor operates.) 	0.36 - 3.88V
111	P/L	Sensor's power supply	[Ignition switch "ON"]	Approximately 5V

EC

FE

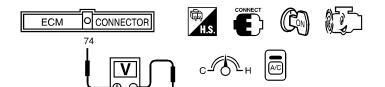
NCEC0663


AX

SU

HA

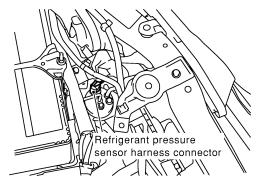
SC


EL

CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION 1. Start engine and warm it up to normal operating temperature.

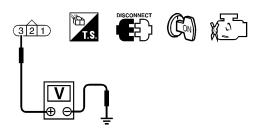
- 2. Turn A/C switch and blower switch "ON".
- 3. Check voltage between ECM terminal 74 and ground with CONSULT-II or tester.

Voltage: 0.36 - 3.88V


SEF952X

OK or NG

OK ►	INSPECTION END
NG ►	GO TO 2.


CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT 2

- 1. Turn A/C switch and blower switch "OFF".
- 2. Stop engine.
- 3. Disconnect refrigerant pressure sensor harness connector.

4. Turn ignition switch "ON".

5. Check voltage between refrigerant pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

SEF953X

SEF855X

OK or NG

OK ▶	GO TO 4.
NG ►	GO TO 3.

EC-599

GI

NCEC0640

MA

LC

EC

FE

GL

MT

AT

AX

SU

ST

BT

HA

SC

REFRIGERANT PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

3 DETECT MALFUNCTIONING PART

Check the following.

NG

- Harness connectors E75, M6
- Harness connectors M49, F23
- Harness for open or short between ECM and refrigerant pressure sensor

GO TO 5.

Repair harness or connectors.

4 CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT 1. Turn ignition switch "OFF". 2. Check harness continuity between refrigerant pressure sensor terminal 1 and engine ground. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG OK GO TO 6.

5	DETECT MALFUNCTIO	NING PART	
	Check the following.		
	ness connectors E75, M6		
	Harness connectors M95, F31		
• Har	ness for open or short bety	veen ECM and refrigerant pressure sensor	
	•	Repair open circuit or short to power in harness or connectors.	

_	CHECK BEEDICEDAN	PRESCUE SENSOR INDUT SIGNAL CIRCUIT FOR OPEN AND SUIGHT			
6	CHECK REFRIGERAN	F PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT			
1. Dis	1. Disconnect ECM harness connector.				
		ween ECM terminal 74 and refrigerant pressure sensor terminal 2. Refer to Wiring Dia-			
gra	•	Total Low tolling 1 1 and foringerant procession continual 2. Telor to Trilling Bid			
_	Continuity should exist.				
		to ground and short to newer			
3. AIS	o check harness for short	to ground and short to power.			
		OK or NG			
OK	•	GO TO 8.			
NG	•	GO TO 7.			

7	DETECT MALFUNCTIONING PART	
Check	the following.	
Har	ness connectors E75, M6	
Har	ness connectors M62, F24	
Har	ness for open or short between ECM and refrigerant pressure sensor	
	Repair open circuit or short to ground or short to power in harness or co	nnectors.

8	CHECK REFRIGERANT	PRESSURE SENSOR	
Refer	Refer to HA-79 or HA-181, "Refrigerant pressure sensor".		
	OK or NG		
OK	>	GO TO 9.	
NG	•	Replace refrigerant pressure sensor.	

REFRIGERANT PRESSURE SENSOR

Diagnostic Procedure (Cont'd)

9	CHECK INTERMITTENT	T INCIDENT	
Refer	Refer to "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146.		
	>	INSPECTION END	

GI

MA

EM

LC

EC

FE

GL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

HA

SC

EL

ELECTRICAL LOAD SIGNAL

CONSULT-II Reference Value in Data Monitor Mode

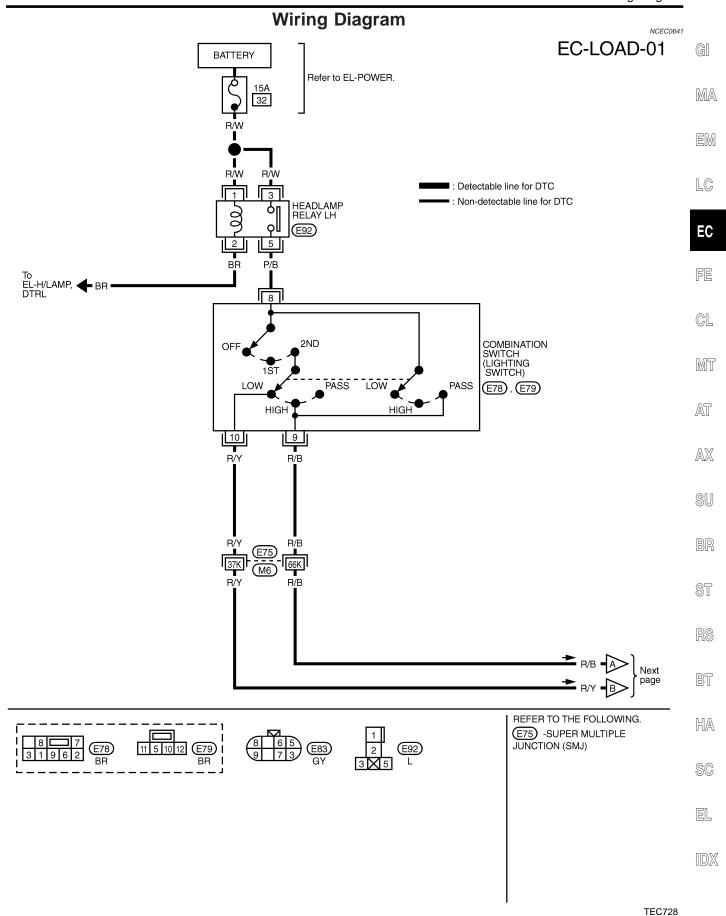
CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

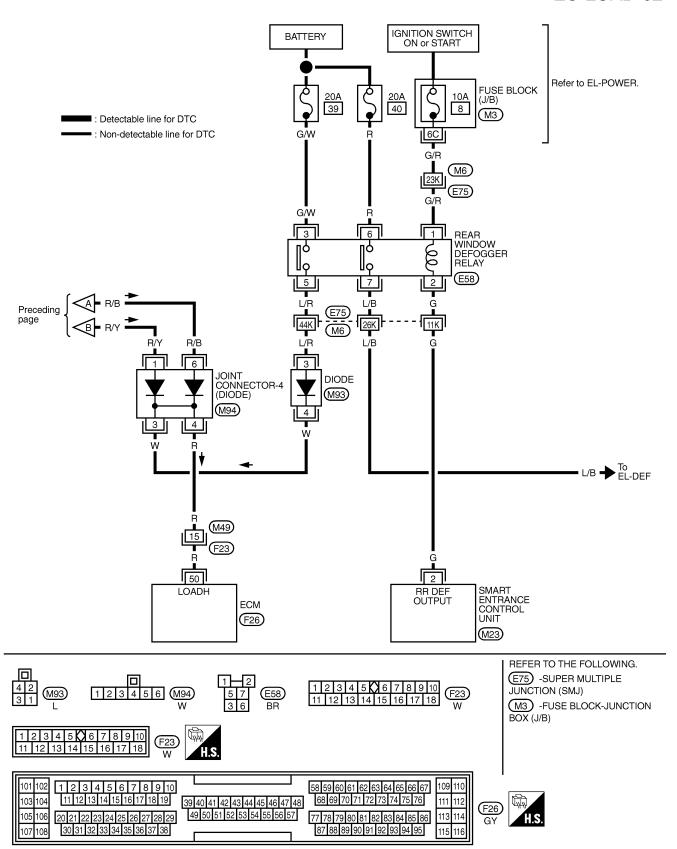
NCEC0664

MONITOR ITEM	CONDITION		SPECIFICATION
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch "ON" and/or lighting switch "2ND"	ON
LOAD SIGNAL		Rear window defogger switch and lighting switch "OFF"	OFF

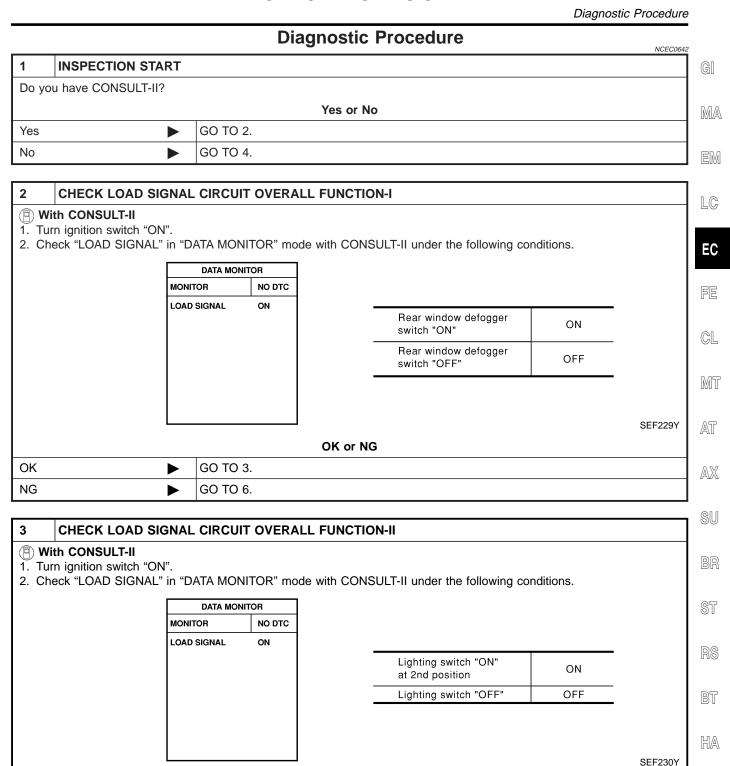
ECM Terminals and Reference Value


NCEC0665

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

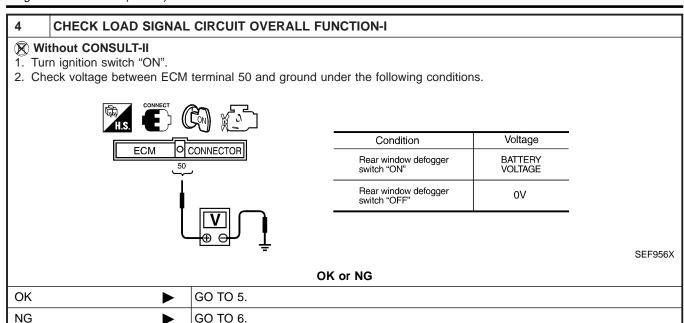
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

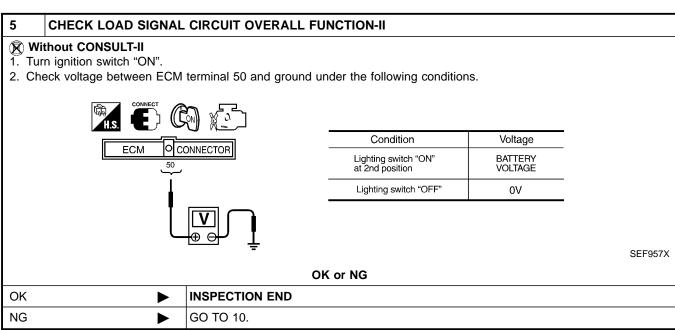

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50 5		[Engine is running]Rear window defogger switch "ON" and/or lighting switch "2ND"	BATTERY VOLTAGE (11 - 14V)	
50	R	Electric load signal	[Engine is running] • Rear window defogger switch and lighting switch "OFF"	Approximately 0V

EC-LOAD-02

TEC729

SC

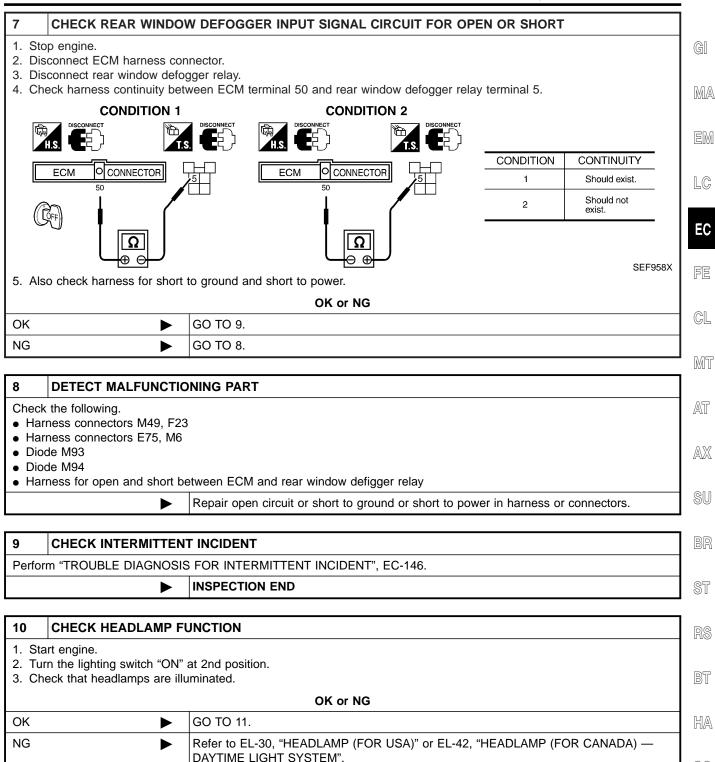

OK or NG


INSPECTION END

GO TO 10.

OK

NG



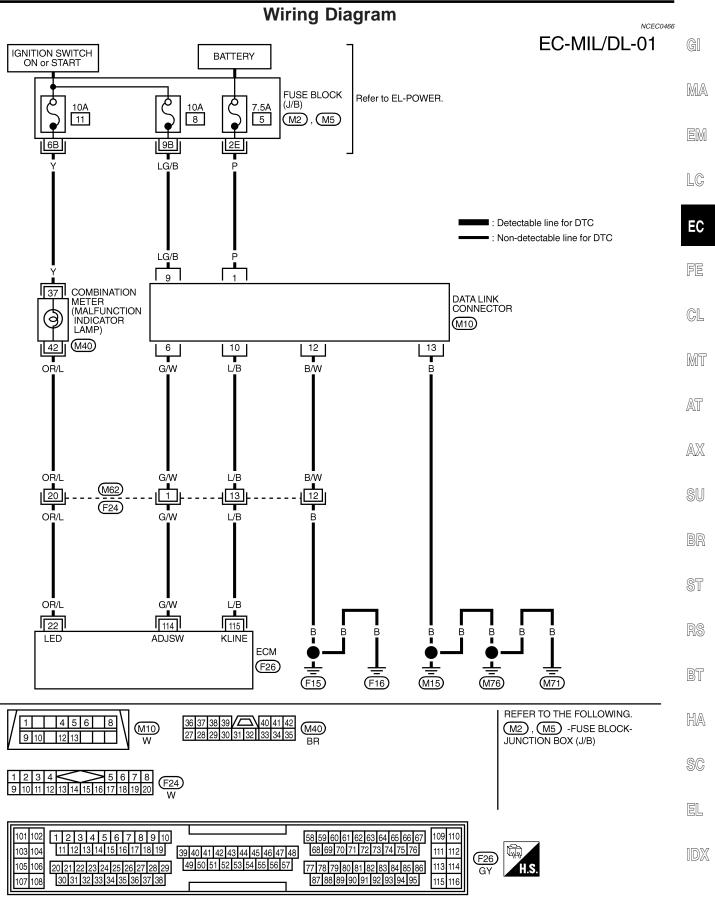
6	CHECK REAR WINDOW DEFOGGER FUNCTION				
2. Tu	 Start engine. Turn "ON" the rear window defogger switch. Check the rear windshield. Is the rear windshield heated up? 				
	Yes or No				
Yes	>	GO TO 7.			
No	>	Refer to EL-121, "Rear Window Defogger".			

SC

EL

ELECTRICAL LOAD SIGNAL

Diagnostic Procedure (Cont'd)


CHECK HEADLAMP INPUT SIGNAL CIRCUIT FOR OPEN OR SHORT 1. Stop engine. 2. Disconnect ECM harness connector. 3. Disconnect lighting switch harness connectors. 4. Check harness continuity between ECM terminal 50 and lighting switch terminals 9, 10 under the following conditions. **CONDITION 1 CONDITION 2** CONDITION CONTINUITY CONNECTOR CONNECTOR ECM ECM Should exist. Should not 2 exist. Ω Ω \oplus SEF959X 5. Also check harness for short to ground and short to power. OK or NG OK GO TO 13. NG GO TO 12.

12 DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M49, F23
- Harness connectors E75, M6
- Diode M94
- Harness for open and short between ECM and lighting switch
 - Repair open circuit or short to ground or short to power in harness or connectors.

13 CHECK INTERMITTENT INCIDENT Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-146. INSPECTION END

		Fuel Pressure Ro	egulator	NCEC046
Fuel pressure at idling	Vacuum I	hose is connected	Approximately 235 (2.4, 34)	
kPa (kg/cm², psi)	Vacuum hose is disconnected		Approximately 294 (3.0, 43)	
		Idle Speed and I	gnition Timing	NCEC046
Target idle speed*1 rpm	No-le	oad*3 (in "P" or "N" position)	800±50	
Air conditioner: ON rpm	In "F	or "N" position	850 or more	
Ignition timing*2	In "F	or "N" position	15°±2° BTDC	
Throttle position sensor idle position V		0.15 - 0.85		
1: Throttle position sensor harn	ness connector co		0.15 - 0.05	
11: Throttle position sensor harm 12: Throttle position sensor harm 13: Under the following condition 14: Air conditioner switch: OFF 15: Electrical load: OFF (Lights 16: Steering wheel: Kept in stra	ness connector dis	efogger)	0.15 - 0.05	Votes
 2: Throttle position sensor harm 3: Under the following condition Air conditioner switch: OFF Electrical load: OFF (Lights Steering wheel: Kept in strain 	ness connector dis	efogger) on		NCEC046
2: Throttle position sensor harm3: Under the following conditionAir conditioner switch: OFFElectrical load: OFF (Lights	ness connector con ness connector dis ns: s & rear window do aight-ahead position	efogger) on	Battery voltage (11 - 14) Approximately 0.8	NCEC046:

	NCEC0470
Battery voltage (11 - 14)	
1.3 - 1.7*	

 Output voltage
 V
 1.3 - 1.7*

 Mass air flow
 2.5 - 5.0 at idle*

 (Using CONSULT-II or GST)
 g·m/sec
 7.1 - 12.5 at 2,500 rpm*

Engine Coolant Temperature Sensor

	NCEC0471
Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

EGR Volume Control Valve

20.9 - 23.1

NCEC0671

NCEC0472

Resistance [at 20°C (68°F)] Ω Between terminals 1-2, 2-3, 4-5 and 5-6

Supply voltage V

EGR Temperature Sensor

 EGR temperature °C (°F)
 Voltage V
 Resistance MΩ

 0 (32)
 4.56
 0.73 - 0.89

 50 (122)
 2.25
 0.074 - 0.082

 100 (212)
 0.59
 0.012 - 0.014

^{*:} Engine is warmed up to normal operating temperature and idling under no-load.

SERVICE DATA AND SPECIFICATIONS (SDS)

	Fuel Pump
Fu	uel Pump
Resistance [at 25°C (77°F)] Ω	0.2 - 5.0
IA	CV-AAC Valve
Resistance [at 20°C (68°F)] Ω	20 - 24
<u> </u>	
ını	jector NCEC0475
Resistance [at 20°C (68°F)] Ω	13.5 - 17.5
Re	esistor NCEC0476
Resistance [at 25°C (77°F)] kΩ	4 - 8
Th	nrottle Position Sensor
Throttle valve conditions	Voltage (at normal operating temperature, engine off, ignition switch ON, throttle opener disengaged)
Completely closed (a)	0.15 - 0.85V
Partially open	Between (a) and (b)
Completely open (b)	3.5 - 4.7V
Не	eated Oxygen Sensor 1 Heater (Front)
Resistance [at 25°C (77°F)] Ω	2.3 - 4.3
Са	alculated Load Value
	Calculated load value % (Using CONSULT-II or GST)
At idle	20.0 - 35.5
At 2,500 rpm	17.0 - 30.0
Int	take Air Temperature Sensor
Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38
EV	/AP Canister Purge Volume Control Valve
Resistance [at 20°C (68°F)] Ω	22 - 26
He	eated Oxygen Sensor 2 Heater (Rear)
Resistance [at 25°C (77°F)] Ω	2.3 - 4.3
Cr	rankshaft Position Sensor (OBD)
Resistance [at 20°C (68°F)] Ω	166 - 204

 $\mathbb{D}\mathbb{X}$

SERVICE DATA AND SPECIFICATIONS (SDS)

Fuel Tank Temperature Sensor

Fuel Tank Temperature Sensor	
Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90