Electrical and Computer Engineering
(ECE) Systems Programming and
Concurrency ECE252 Laboratory

Manual

by

Yiging Huang
Jetf Zarnett

Electrical and Computer Engineering Department
University of Waterloo

Waterloo, Ontario, Canada, May 29, 2019

© Y. Huang and J. Zarnett 2019

Contents

List of Tables

List of Figures

Preface

I Lab Administration

II Lab Projects

1 Introduction to Systems Programming in Linux Computing Environment

1.1

1.2
1.3
1.4
1.5

1.6

1.7

Introduction e
1.1.1 Objectives e
112 Topics e
Starter Files
Pre-lab Preparation
Basic Linux Commands Exercises
Lab Assignment
1.5.1 Problemstatement,
152 Thefindpngcommand,
153 Thecatpngcommand
Deliverables e
1.6.1 Pre-labdeliverables.
1.6.2 Post-lab Deliverables
Marking Rubric o o

i1

vi

2 Multi-threaded Programming with Blocking I/O 18

21 Objectives e 18
22 StarterFiles 18
23 PrellabPreparation oo L 19
24 LabAssignment 19
24.1 Problem Statement 19
242 Requirements 20
243 Manpageofpaster L 21
2.5 Programming Tips L. 22
251 Thelibcurl API 22
252 Thepthreads API 22
2.6 Deliverables 23
2.6.1 Pre-labdeliverables., 23
2.6.2 Post-lab Deliverables 23
2.7 MarkingRubric Lo oo o 23

III Software Development Environment Quick Reference Guide
24

1 Introduction to ECE Linux Programming Environment 25
1.1 ECELinuxServers, 25

1.2 Connecting to Linuxservers 25

1.3 Basic Software Development Tools 27
131 Editor 28

132 CCompiler 29

133 Debugger 29

14 More on DevelopmentTools 30
141 How to AutomateBuild 30

142 Version Control Software 32

143 Integrated Development Environment 33

1.5 ManPage. 33

A Forms 34

111

References

iv

36

List of Tables

0.1

1.1
1.2

2.1

C1

Project Deliverable Weight of the Lab Grade, Scheduled Lab Sessions

and Deadlines. L 3
IHDR data field and value 15
Labl Marking Rubric o o 17
Lab2 Marking Rubric o o 23
Programming Stepsand Tools 28

List of Figures

1.1

C1
C2
C3
C4

Image Concatenation Illustration 10
MobaXterm Path on ECE Nexus Windows 10 Machines. 26
MobaXterm Welcome Page. 26
MobaXterm Welcome Page. 27
Linux files on P drive, a network mapped drive. 28

vi

Preface

Who Should Read This Lab Manual?

This lab manual is written for students who are taking Electrical and Computer En-
gineering (ECE) Systems Programming and Concurrency course ECE252 in the Uni-
versity of Waterloo.

What is in This Lab Manual?

The first purpose of this document is to provide the descriptions of each laboratory
project. The second purpose of this document is a quick reference guide of the rele-
vant development tools for completing laboratory projects. This manual is divided
into three parts.

Part I describes the lab administration policies

Part Il is a set of course laboratory projects as follows.

e Labl: Introduction to systems programming in Linux computing environment

e Lab2: Multi-threaded concurrency programming with blocking I/0O

Lab3: Inter-process communication and concurrency control

Lab4: Parallel web crawling

Labb: Single-threaded concurrency programming with asynchronous I/O

Part III is a quick reference guide of the Linux software development tools. We
will be using Ubuntu 18.04 LTS operating system. Materials in this part needs to be
self-studied before lab starts. The main topics are as follows.

e Linux hardware environment
e Editors
e Compiler

e Debugger

e Utility to automate build

e Utility for version control

Acknowledgments

We are grateful that Professor Patrick Lam shared his ECE459 projects with us. Eric
praetzel has provided continuous IT support, which makes the Linux computing
environment available to our students.

We would like to sincerely thank our students who took ECE254 and ECE459
courses in the past few years. They provided constructive feedback every term to
make the manual more useful to address problems that students would encounter
when working on each lab assignment.

Part 1

Lab Administration

Lab Administration Policy

Group Lab Policy

e Group Size. All labs are done in groups of two. A size of three is only consid-
ered in a lab section that has an odd number of students and only one group
is allowed to have a size of three. All group of three requests are processed
on a first-come first-served basis. A group size of one is not permitted except
that your group is split up. There is no workload reduction if you do the labs
individually. Everyone in the group normally gets the same mark. The Learn
at URL http://learn.uwaterloo.ca is used to signup for groups. The lab
group signup is due by 10:00pm on the Second Friday of the academic term. Late
group sign-up is not accepted and will result in losing the entire lab sign-up
mark, which is 2% of the total lab grade.

e Group Split-up. If you notice workload imbalance, try to solve it as soon as
possible within your group or split-up the group as the last resort. Group split-
up is only allowed once. You are allowed to join a one member group after the
split-up. But you are not allowed to split up from the newly formed group
again. There is one grace day deduction penalty to be applied to each mem-
ber in the old group. We highly recommend everyone to stay with your group
members as much as possible, for the ability to do team work will be an im-
portant skill in your future career. Please choose your lab partners carefully. A
copy of the code and documentation completed before the group split-up will
be given to each individual in the group.

e Group Split-up Deadline. To split from your group for a particular lab, you
need to notify the lab instructor in writing and sign the group slip-up form (see
Appendix). Labn (n=1,2,3,4) group split-up form needs to be submitted to the
lab instructor by 4:30pm Thursday in the week that Labn has scheduled lab ses-
sions. If you are late to submit the split-up form, then you need to finish Labn
as a group and submit your split-up form during the week where Lab(n+1) has
scheduled sessions and split starting from Lab(n+1).

Deliverable Weight | Lab Session Week | Deadline

Group Sign-up 2% N/A 10:00 pm Friday in Week 2
LAB1 18% Week 3 10:00 pm Wednesday in Week 4
LAB2 20% Week 5 10:00 pm Friday in Week 6
LAB3 20% Weeks 8 10:00 pm Wednesday in Week 9
LAB 4 20% Week 10 10:00 pm Wednesday in Week 11
LAB5 20% Week 12 10:00 pm Last day of lecture

Table 0.1: Project Deliverable Weight of the Lab Grade, Scheduled Lab Sessions and

Deadlines.

Lab Assignments Grading and Deadline Policy

Labs are graded by lab TAs based on the rubric listed in each lab. The weight of each

lab towards your final lab grade is listed in Table 0.1.

e Lab Assignment Preparation and Due Dates. Students are required to prepare

the lab well before they come to the schedule lab session. Pre-lab deliverable for
each lab is due before the scheduled lab session starts. During the scheduled lab
session, we either provide in lab help or conduct lab assignment evaluation or
do both at the same time.

The detailed deadlines of post-lab deliverables are displayed in Table 0.1.

Lab Assignment Late Submissions. Late submission is accepted within five
days after the deadline of the lab. No late submission is accepted five days after
the lab deadline. There are five grace days ' that can be used for some post-lab
deliverables late submissions 2. A group split-up will consume one grace day.
After all grace days are consumed, a 10% per day late submission penalty will
be applied. However if it is five days after the lab deadline, no late submission
is accepted.

Lab Re-grading. To initiate a re-grading process, contact the grading TA in
charge first. The re-grading is a rigid process. The entire lab will be re-graded.
Your new grades may be lower, unchanged or higher than the original grade
received. If you are still not satisfied with the grades received after the re-
grading, escalate your case to the lab instructor to request a review and the lab
instructor will finalize the case.

!Grace days are calendar days. Days in weekends are counted.

2A post-lab deliverable that does not accept a late submission will be clearly stated in the lab
assignment description. Normally grace days are for lab reports. Labs whose evaluation involves
demonstrations do not accept late submissions of the code.

Lab Repeating Policy

For a student who repeats the course, labs need to be re-done with a new lab partner.
Simply turning in the old lab code is not allowed. We understand that the student
may choose a similar route to the solution chosen last time the course was taken.
However it should not be identical. The labs will be done a second time, we expect
that the student will improve the older solutions. Also the new lab partner should
be contributing equally, which will also lead to differences in the solutions.

Note that the policy is course specific to the discretion of the course instructor
and the lab instructor.

Lab Assignments Solution Internet Policy

It is not permitted to post your lab assignment solution source code or lab report
on the internet freely for public to access. For example, it is not acceptable to host a
public repository on GitHub that contains your lab assignment solutions. A warning
with instructions to take the lab assignment solutions off the internet will be sent out
upon the first offence. If no action is taken from the offender within twenty-four
hours, then a lab grade zero will automatically be assigned to the offender.

Seeking Help Outside Scheduled Lab Hours

e Discussion Forum. We recommend students to use the Piazza discussion fo-
rum to ask the teaching team questions instead of sending individual emails to
lab teaching staff. For questions related to lab projects, our target response time
is one business day before the deadline of the particular lab in question ®. There
is no guarantee on the response time to questions of a lab that passes the submission
deadline.

e Office Hours. The Learn system calendar gives the office hour details.

e Appointments. Students can also make appointments with lab teaching staff
should their problems are not resolved by discussion forum or during office
hours. The appointment booking is by email.

To make the appointment efficient and effective, when requesting an appoint-
ment, please specify three preferred times and roughly how long the appoint-
ment needs to be. On average, an appointment is fifteen minutes per project
group. Please also summarize the main questions to be asked in your ap-
pointment requesting email. If a question requires teaching staff to look at a

30ur past experiences show that the number of questions spike when deadline is close.The teach-
ing staff will not be able to guarantee one business day response time when workload is above aver-
age, though we always try our best to provide timely response.

4

code fragment, please bring a laptop with necessary development software in-
stalled.

Please note that teaching staff will not debug student’s program for the stu-
dent. Debugging is part of the exercise of finishing a programming assignment.
Teaching staff will be able to demonstrate how to use the debugger and pro-
vide case specific debugging tips. Teaching staff will not give direct solution
to a lab assignment. Guidances and hints will be provided to help students to
tind the solution by themselves.

Lab Facility After Hour Access Policy

After hour access to the lab will be given to the class when we start to use the Keil
boards in lab. However please be advised that the after hour access is a privilege.
Students are required to keep the lab equipment and furniture in good conditions to
maintain this privilege.

No food or drink is allowed in the lab. Please be informed that you may share
the lab with other classes. When resources become too tight, certain cooperation is
required such as taking turns to use the stations in the lab.

Part 11

Lab Projects

Lab 1

Introduction to Systems Programming
in Linux Computing Environment

1.1 Introduction

1.1.1 Objectives

This lab is to introduce system programming in a general Linux Development Envi-
ronment at ECE Department. After finishing this lab, students will be able to

e apply basic Linux commands to interact with the Linux system through shell;
e apply standard Linux C programming tools for system programming and

e create a program to interact with Linux file systems by applying the relevant
system and libray calls.

1.1.2 Topics

Concretely, the lab will cover the following topics:
e Basic Linux commands
e C programming toolchain including gcc, make, and ddd
e Linux manual pages

e Linux system calls and file I/O library calls to traverse a directory and perform
read /write operations on selected files.

1.2 Starter Files

The starter files are on GitHub at url: http:/ /github.com/ygh/ece252/tree /master/
lab1/starter. It contains the following sub-directories where we have example code
and image files to help you get started:

e the cmd_arg demonstrates how to capture command line input arguments;

e the images contains some image files;

e the Is demonstrates how to list all files under a directory and obtain file types;
e the png_util provides a set of utility functions to process a PNG image file; and

e the pointer demonstrates how to use pointers to access a C structure.

Using the code in the starter files is permitted and will not be considered as plagia-
rism.

1.3 Pre-lab Preparation

Read the Introduction to ECE Linux Programming Environment supplementary ma-
terial in Part III Chapter 1.

1.4 Basic Linux Commands Exercises

These in-lab exercises are to practice some basic commands on Linux.

1. Use the MobaXterm to login onto eceubuntu.uwaterloo.ca . You are
now inside the Linux shell and in your home directory. The home directory
usually has a path name in the format of /home /username, where username
normally is your UWID. For example, a user with UWID of jsmith hasahome
directory of /home/ jsmith.

2. Use the pwd command to print the full filename of the current working di-
rectory. You should see your home directory name printed on the screen. For
example: /home/ jsmith.

3. Use the echo $HOME command to print your home directory path name.
You will notice that the output matches the pwd output of exercise 2.

4. Use the env command to list all the environment variables and their values.
Note that HOME is one of the many environment variables.

5. One important environment variable is PATH. It specifies a set of directories
the system searches for executible programs. Use echo S$PATH to see your
PATH environment variable setting.

http://github.com/yqh/ece252/tree/master/lab1/starter
http://github.com/yqh/ece252/tree/master/lab1/starter
http://github.com/yqh/ece252/tree/master/lab1/starter/cmd_arg
http://github.com/yqh/ece252/tree/master/lab1/starter/images
http://github.com/yqh/ece252/tree/master/lab1/starter/ls
http://github.com/yqh/ece252/tree/master/lab1/starter/png_util
http://github.com/yqh/ece252/tree/master/lab1/starter/pointer

6.

10.

11.

12.

13.

14.

Execute command which 1s to locate the directory the Is command is in.
You will notice the directory is listed in PATH environment variable. When
you issue a command and get an error message of “command not found”, it
means the command cannot be found after searching all the directories listed
in PATH environment variable. A commonly seen error is that a command in
your current working directory gives you “command not found” error. This
is normally due to the fact that the current working directory . or ./ is not in
the PATH. Consequently you need to add the path to the command name for
the system to know where the command is. For example ./a.out tells the
system to run the command a . out located in the current working directory.

Use the 1s command to list all files in your current working directory.

Read the online manual of the 1s command by issuing man 1s command to
the shell. Find out from the manual what options -1, ~a and -1a do. Execute
the 1s command with these three options and see the execution results.

. Create a directory as the work space of labs under your home directory. Name

the newly created directory as labs. Read the man page of the command
mkdir to see how to do it.

Change directory to the newly create directory of 1abs. Read the man page of
command cd to find out how to change directory.

Clone the ece252 lab repository by using the command:
git clone https://github.com/ygh/ece252.git .

A new directory named ece252 will be created. It has lab manual and starter
code of ECE252 labs.

Read the man page of the find command by issuing man find command
to the shell. Read what the —name option does. Use find with the —name
option to find all the files with .png file extension in the $HOME/labs/ece252
directory.

Change directory to where the WEEF_1.png is. Use file WEEF_1.png
command to obtain the file type and image properties such as dimensions and
bit depth.

Use file command to obtain the file type information of Disguise.png.
You should see that this is not an image file though the file exension is .png.
Use a text editor to open the file and see the contents. This exercise is to show
you that the file command does not obtain the file type information based
on the file extension. It looks into the contents of file to extract the file type
information !.

LA file has a magic number to indicate its type. The magic number is a sequence of bytes usually
appearing near the beginning of the file. The file command checks the magic number. The PNG file’s
magic number is 89 50 4E 47 in hexadecimal, which is .PNG in ASCIIL

1.5 Lab Assignment

1.5.1 Problem statement

You are given a directory under which some
files are PNG images and some files are not. The
directory may contain nested sub-directories?.
All valid PNG images under the given direc-
tory are horizontal strips of a bigger whole im-
age. They all have the same width. The height
of each image might be different. The PNG im-
ages have the naming convention of »_N.png,
where N is the image strip sequence number and
N=0, 1, 2,However afilewith.pngor
PNG extension may not be a real PNG image
file. You need to located all the real PNG im- Img_N.png data
age files under the given directory first. Then B
you will concatenate these horizontal strip im-
ages sequentially based on the sequence num-
ber in the file name to restore the original whole
image. The sequence number indicates the or-
der the image should be concatenated from top
to bottom. For example, file img_1.png is the first horizontal strip and img_2.png
is the second horizontal strip. To concatenate these two strips, the pixel data in
img_1.png should be followed immediately by the pixel data in img_2.png file.
Figure 1.1 illustrates the concatenation order.

Img_1.png data

Img_2.png data

Figure 1.1: Image Concatenation
Iustration

To solve the problem, first you will create a tool named findpng to search the
given directory hierarchy to find all the real PNG files under it. Secondly you will
create an image data concatenation tool named catpng to concatenate pixel data of
a set of PNG files to form a single PNG image file. The catpng only processes PNG
images with the same width in dimension.

1.5.2 The findpng command

The expected behaviour of the findpng is given in the following manual page of
the command.

2A nested sub-directory is a sub-directory that may contain many layers of sub-directories.

10

Man page of findpng
NAME

findpng - search for PNG files in a directory hierarchy

SYNOPSIS

findpng DIRECTORY

DESCRIPTION
Search for PNG files under the directory tree rooted at DIRECTORY and re-

turn the search results to the standard output. The command does not follow
symbolic links.

OUTPUT FORMAT
The output of search results is a list of PNG file relative path names, one file

pathname per line. The order of listing the search results is not specified. If the
search result is empty, then output “findpng: No PNG file found”.

EXAMPLES
findpng .

Find PNG of the current working directory. A non-empty search results might
look like the following;:

./1labl/sandbox/new_bak.png
./labl/sandbox/tl.png
./png_img/rgba_scanline.png
./png_img/vl.png

An empty search result will look like the following;:

findpng: No PNG file found

11

Searching PNG files under a given directory

UNIX file system is organized as a tree. A file has a type. Three file types that this
assignment will deal with are regular, directory and symbolic link. A PNG file is a
regular file. A directory is a directory file. A link created by 1s -n is a symblic link.
Read the section 2 of stat family system calls man page for information about
other file types. The 1s/1s_ftype.c in the starter code gives a sample program to
determine the file type of a given file.

To search all the files under a given directory and its subdirectories, one need
to traverse the given directory tree to its leaf nodes. The library call of opendir
returns a directory stream for readdir toread each entry in a directory. One need

tocall closedir to close the directory stream once operations on it is completed.
The control flow is to go through each entry in a directory and check the file type.
If it is a regular file, then further check whether it is a PNG file by comparing the
first 8 bytes with the PNG file header bytes (see Section 1.5.3). If it is a directory file,
then you need to check files under the sub-directory and repeat what you did in the
parent directory. The 1s/1s_fname. c in the starter code gives a sample program
that lists all file entries of a given directory.

Always check the man page of the systems calls and library calls for detailed
information.

1.5.3 The catpng command

The expected behaviour of the catpng is given in the following manual page of the
command.

Man page of the catpng
NAME

catpng - concatenate PNG images vertically to a new PNG named all.png

SYNOPSIS

catpng [PNG_FILE]...

DESCRIPTION

Concatenate PNG_FILE(s) vertically to all.png, a new PNG file.

12

OUTPUT FORMAT

The concatenated image is output to a new PNG file with the name of all.png.

EXAMPLES

catpng ./imgl.png ./png/img2.png

Concatenate the listed PNG images vertically to all.png.

File 1/0

There are two sets of functions for file I/O operations under Linux. At system call
level, we have the unbufferred 1/O functions: open , read , write , lseek and
close . At library call level, we have standard I/O functions: fopen , fread
, fwrite , fseek and fclose . The library is built on top of unbufferred
I/0O functions. It handles details such as buffer allocation and performing I1/0 in
optimal sized chunks to minimize the number of read and write usage, hence
is recommended to be used for this lab.

The fopen returns a FILE pointer given a file name and the mode. A PNG
image file is a binary file, hence when you call fopen ,usemode” rb ” for reading
and ” wb+ ” for reading and writing, where the “b” indicates it is a binary file that
we are opening. Read the man page of fopen for more mode options.

After the file is opened, use fread to read the number of bytes from the stream
pointed by the FILE pointer returned by fopen . Each opened file has an internal
state of file position indicator. The file position indicator sets to the beginning of the
file when it is just opened. The fread operation will advance the file position
indicator by the number of bytes that has been read from the file. The fseek sets
the file position indicator to the user specified location. The fwrite writes user
specified number of bytes to the stream pointed by the FILE pointer. The file position
indicator also advances by the number of bytes that has been written. It is important
tocall fclose toclose the file stream when I/O operations are finished. Failure to
do so may result in incomplete files.

The man pages of the standard I/O library is the main reference for details in-
cluding function prototypes and how to use them.

PNG File Format

In order to finish this assignment, one need to have some understanding of the png
tile format and how an image is represented in the file. One way to store an image
is to use an array of coloured dots referred to as pixels. A row of pixels within an
image is called a scanline. Pixels are ordered from left-to-right within each scanline.

13

Scanlines appear top-to-bottom in the pixel array. In this assignment, each pixel is
represented as four 8-bit 3 unsigned integers (ranging from 0 to 255) that specify the
red, green, blue and alpha intensity values. This encoding is often referred to as the
RGBA encoding. RGB values specify the colour and the alpha value specifies the
opacity of the pixel. The size of each pixel is determined by the number of bits per
pixel. The dimensions of an image is described in terms of horizontal and vertical
pixels.

PNG File
/] Chunk
b | Head
8950 4E 470D 0A1A0A | - Meader Length 4 Bytes
8 Bytes (Data field only)
IHDR Type 4 Bytes
Chunks
IDAT — Length
N Bytes Data 1’ Bytes
I[END CRC J‘ 4 Bytes
(a) PNG File Format (b) PNG Chunk Format

PNG stands for “Portable Network Graphics”. It is a computer file format for
storing, transmitting and displaying images[?]. A PNG file is a binary file. It starts
with an 8-byte header followed by a series of chunks. You will notice the second,
third and fourth bytes are the ASCII code of 'P’, 'N” and "G’ respectively (see Figure
1.2(a)).

The first chunk is the IHDR chunk, which contains meta information of the image
such as the dimensions of the pixels. The last chunk is always the IEND chunk,
which marks the end of the image datastream. In between there is at least one IDAT
chunk which contains the compressed filtered pixel array of the image. There are
other types chunks that may appear between IHDR chunk and IEND chunk. For all
the PNG files we are dealing with in this assignment, we use the format that only
has one IHDR chunk, one IDAT chunk and one IEND chunk (see Figure 1.2(a)).

Each chunk consists of four parts. A four byte length field, a four byte chunk type
code field, the chunk data field whose length is specified in the chunk length field,
and a four byte CRC (Cyclic Redundancy Check) field (see Figure 1.2(b)).

The length field stores the length of the data field in bytes. PNG file uses big
endian byte order, which is the network byte order. When we process any PNG data
that is more than one byte such as the length field, we need to convert the network
byte order to host order before doing arithmetic. The ntohl and htonl library

3Formally, we say the image has a bit depth of 8 bits per sample.

14

calls convert a 32 bit unsigned integer from network order to host order and vice
versa respectively.

The chunk type code consists four ASCII character. IHDR, IDAT and IEND are
the three chunk type code that this assignment involves with.

The data field contains the data bytes appropriate to the chunk type. This field
can be of zero length.

The CRC field calculates on the proceeding bytes in the type and data fields of
the chunk. Note that the length field is not included in the CRC calculation. The
crc function under the png_util starter code can be used to calculate the CRC
value.

The THDR chunk data field has a fixed
length of 13 bytes and they appear in the
order as shown in Table 1.1. Width and

N Length Val
height are four-byte unsigned integers a.lrne eng aue
giving the image dimensions in pixels. Width 4bytes N/A
You will need these two values to com- Hejght 4bytes N/A
plete this assignment. Bit depth gives the —
number of bits per sample. In this as- Bit depth 1 byte 8

signment, all images have a bit depth of = Colour type 1 byte

8. Colour type defines the PNG image

type. All png images in this assignment Compression method 1 byte

have a colour type of 6, which is truecolor ~ Filter method 1 byte

6

0

0
with alpha (i.e. RGBA image). The image 0
pixel array data are filtered to prepare
for the next step of compression. The
Compression method and Filter method
bytes encode the methods used. Both
only have 0 values defined in the current
standard. The Interlace method indicates the transmission order of the image data. 0
(no interlace) and 1 (Adam? interlace) are the only two defined. In this assignment,

all PNG images are non-interlaced. Table 1.1 Value column gives the typical IHDR
values the PNG images you will be processing.

Interlace method 1 byte

Table 1.1: IHDR data field and value

The IDAT chunk data field contains compressed filtered pixel data. For each scan-
line, first an extra byte is added at the very beginning of the pixel array to indicate
the filter method used. Filtering is for preparing the next step of compression. For
example, if the raw pixel scanline is 4 bytes long, then the scanline after applying fil-
ter will be 5 bytes long. This added one byte per scanline will help to achieve better
compression result. After all scanlines have be filtered, then the data are compressed
according to the compression method encoded in IHDR chunk. The compressed data
stream conforms to the zlib 1.0 format.

The IEND chunk marks the end of the PNG datastream. It has an empty data
field.

15

Concatenate the pixel data

To concatenate two horizontal image strips, the natural way of thinking is to start
with the pixel array of each image and then concatenate the two pixel arrays verti-
cally. Then we apply the filter to each scanline. Lastly we compress the filtered pixel
array to fill the data field of the new IDAT chunk of the concatenated image. How-
ever a simpler way exists. We can start with the filtered pixel data of each image and
then concatenate the two chunks of filtered pixel data arrays vertically, then apply
the compression method to generate the data field of the new IDAT chunk.

How do we get filtered pixel data from a PNG IDAT chunk? Recall that the
data field in IDAT chunk is compressed data that conforms to zlib format 1.0. We
can use zlib functions to uncompress(i.e. inflate) the data. The mem_inf in the
starter code takes in memory compressed(i.e. deflated) data as input and returns the
uncompressed data to a another memory location. For each IDAT chunk you want
to concatenate, call this function and stack the returned data in the order you wish
and then you have the concatenated filtered pixel array. To create an IDAT chunk,
we need to compress the filtered pixel data. The mem_def function in the starter
code uses the zlib to compress (i.e. deflate) the input in memory data and returns
the deflated data. The png_util directory in the starter code demos how to use the
aforementioned two functions.

To create a new PNG for the concatenated images, IHDR chunk also needs to
have the new dimension information of the new PNG file. The rest of the fields of
IHDR chunk can be kept the same as one of the PNG files to be concatenated. In
this assignment, we assume that catpng can only process PNG files whose IHDR
chunks only differ in the height field. So the new image will have a different height
tield, the rest of fields are the same as the input images.

1.6 Deliverables

1.6.1 Pre-lab deliverables

There is no pre-lab deliverable.

1.6.2 Post-lab Deliverables
The following are the steps to create your post-lab deliverable submission.
e Create a directory and name it lab1.

e Put the entire source code with a Makefile under the directory lab labl. The
Makefile default target includes catpng and findpng. That is command
make should generate the aforementioned two executable files. We also ex-

16

pect that command make clean will remove the object code and the default
target. That is the . o files and the two executable files should be removed.

e Use zip command to zip up the contents of lab1 directory and name it lab1.zip.
We expect unzip labl.zip will produce a labl sub-directory in the current
working directory and under the 1abl sub-directory is your source code and
the Makefile.

Submit the 1abl.zip file to Lab1l Dropbox in Learn.

1.7 Marking Rubric

Points Description

10 Makefile correctly builds and cleans
35 Implementation of findpng

55 Implementation of catpng

Table 1.2: Lab1 Marking Rubric

Table 1.2 shows the rubric for marking the lab.

17

Lab 2

Multi-threaded Programming with
Blocking I/0

2.1 Objectives

This lab is to learn about and gain practical experience in multi-threaded program-
ming in a general Linux environment. A single-thread implementation using block-
ing I/0O to request a resource across the network is provided. Students are asked
to reduce the latency of this operation by sending out multiple requests simultane-
ously to different machines by using the pthreads library. After this lab, students
will have a good understanding of

e how to design and implement a multi-threaded program by using the pthreads
library; and

e the role mutli-threading plays in reducing the latency of a program.

2.2 Starter Files

The starter files are on GitHub at url: http://github.com/yqh/ece252/tree/master/
lab2 /starter. It contains the following sub-directories where we have example code
to help you get started:

e the cURL demonstrates how to use cURL to fetch an image segment from the
lab web server;

o the fn_ptr demonstrates how C function pointers work;
e the getopt demonstrates how to parse command line options;

o the pthreads demonstrates how to create two threads where each thread takes
multiple input parameters and return multiple values; and

18

http://github.com/yqh/ece252/tree/master/lab2/starter
http://github.com/yqh/ece252/tree/master/lab2/starter
http://github.com/yqh/ece252/tree/master/lab2/starter/cURL
http://github.com/yqh/ece252/tree/master/lab2/starter/fn_ptr
http://github.com/yqh/ece252/tree/master/lab2/starter/getopt
http://github.com/yqh/ece252/tree/master/lab2/starter/pthreads

e the times provides helper functions to profile program execution times.

Using the code in the starter files is permitted and will not be considered as plagia-
rism.

2.3 Pre-lab Preparation

Build the starter code and run the executables. Work through the code and under-
stand what they do and how they work. Create a single-threaded implementation of
the paster command.

24 Lab Assignment

2.4.1 Problem Statement

In the previous lab, a set of horizontal strips of a whole PNG image file were stored
on a disk and you were asked to restore the whole image from these strips. In this
lab, the horizontal image segments are on the web. I have three 400 x 300 pictures
(whole images) on three web servers. When you ask a web server to send you a
picture, the web server crops the picture into fifty 400 x 6 equally sized horizontal
strips 1. The web server assigns a sequence number to each strip from top to bottom
starting from 0 and increments by 1 2. Then the web server sleeps for a random
time and then sends out a random strip in a simple PNG format that we assumed
in labl. That is the horizontal strip PNG image segment consists one IHDR chunk,
one IDAT chunk and one IEND chunk (see Figure 1.2(a)). The PNG segment is an
8-bit RGBA /color image (see Table 1.1 for details). The web server uses an HTTP
response header that includes the sequence number to tell you which strip it sends to
you. The HTTP response header has the format of “X-Ece252-Fragment: A" where
M € [0,49]. To request a random horizontal strip of picture N, where N € [1, 3], use
the following URL: http://machine:2520/image?img=N, where

machine is one of the following;:

e ecce252-1.uwaterloo.ca,
e cce252-2.uwaterloo.ca,and

e cce252-3.uwaterloo.ca.

For example, when you request data from the following URL:
http://ece252-1.uwaterloo.ca:2520/image?img=1,

'Each image segment will have a size less than 8KB.

2The first horizontal strip has a sequence number of 0, the second strip has a sequence number of
1. The sequence number increments by 1 from top to bottom and the last strip has a sequence number
of 49.

19

http://github.com/yqh/ece252/tree/master/lab2/starter/times

you may receive a random horizontal strip of picture 1. Assume this random strip
you receive is the third horizontal strip (from top to bottom of the original picture),
the received HTTP header will contain “X-Ece52-Fragment: 2”. The received data
will be the image segment in PNG format. You may use the browser to view a ran-
dom horizontal strip of the PNG image the server sends. You will notice the same
URL displays a different image strip every time you hit enter to refresh the page.
Each strip has the same dimensions of 400 x 6 pixels and is in PNG format.

Your objective is to request all horizontal strips of a picture from the server and
then concatenate these strips to restore the original picture. Because every time the
server sends a random strip, if you use a loop to keep requesting a random strip
from a server, you may receive the same strip multiple times before you receive all
the fifty distinct strips. Due to the randomness, it will take a variable amount of time
to get all the strips you need to restore the original picture.

2.4.2 Requirements

Use the pthreads library, design and implement a threaded program to request
all image segments from a web server by using blocking I/O and concatenate these
segments together to form the whole image.

The provided starter code main_write_header_cb.c under cURL directory
is a single-threaded implementation which uses 1ibcurl blocking I/O function
curl_easy_peform() to fetch one random horizontal strip of picure 1 from one
of the web servers into memory and then output the received image segment to a
PNG file. Your program should repeatedly fetch the image strips until you have
them all. Recall because every time you get a random strip, the amount of time to
get all the fifty distinct strips of a picture varies.

A very inefficient approach is to use a single-threaded loop to keep fetching until
you get all fifty distinct strips of a picture and paste them together. You will notice
the blocking I/O operation is the main cause of the latency. Your program will be
blocked while each time waiting for the curl_easy_perform() to finish. One
way to reduce the latency of this operation is to send out multiple blocking I/O
requests simultaneously (to different machines) by using pthreads. You will use
this approach to reduce the latency in this lab °.

Your program should create as many threads as specified by the user command
line input, and distribute the work among the three provided servers. Make sure
all of your library (standard glibc and libcurl) calls are thread-safe (for glibc, e.g.
man 3 printf tolook at the documentation). Name your executable as paster.
The behaviour of the command paster is given in the following section.

The provided three pictures on the server are for you to test your program. Your
program should work for all these pictures. You may want to reuse part of your labl
code to paste the received image segments together.

3 Asynchronous /0 is another method to reduce the latency and we will explore it in lab5.

20

2.4.3 Man page of paster

NAME

paster - pasting downloaded png files together by using multiple threads and
blocking I/O through libcurl.

SYNOPSIS

paster [OPTION]...

DESCRIPTION

With no options, the command retrieves all horizontal image segments of pic-
ture 1 from http:/ /ece252-1.uwaterloo.ca:2520 /image?img=1 and paste all dis-
tinct segments received from top to bottom in the order of the image segment
sequence number. Output the pasted image to disk and name it output.png.

-t=NUM

create NUM threads simultaneously requesting random image segments
from multiple lab web servers. When this option is not specified, assumes
a single-threaded implementation.

-n=NUM

request a random image segment of picture NUM from the web server.
Valid values are 1, 2 and 3. Default value is set to 1.

OUTPUT FORMAT

The concated image is output to a PNG file with the name of output.png.

EXAMPLES

paster -t 6 -n 2

Use 6 threads to simultaneously download all image segments of picture 2
from multiple web servers and concatenate these segments to restore picture 2.
Output the concatenated picture to disk and name it output.png.

21

http://ece252-1.uwaterloo.ca:2520/image?img=1

2.5 Programming Tips

2.5.1 The libcurl API

Though the image segment download code using 1ibcurl is provided, familiar-
ize yourself with the libcurl API will help you understand the provided code. The
libcurl documentation URL is https://curl.haxx.se/libcurl. The man page of each
function in the libcurl API can be found at URL https://curl.haxx.se/libcurl/c/
allfuncs.html.

Note the provided example cURL code downloads the received image segment
to memory and then output the data in memory to a PNG file. The output to a
PNG file is just to make it easier for you to view the downloaded image segment
to help you understand the example code. However your paster program does
not need to output each segment received to a file. An efficient way (i.e. without
unnecessary file I/O) is to directly use the received image segment data in memory
instead of outputting the data to a file first and then reading the data back from file
into memory.

Thread Safety

Libcurl is thread safe but there are a few exceptions. The man page of libcurl-
thread(3) (see https://curl.haxx.se/libcurl/c/threadsafe.html) is the ultimate refer-
ence. We re-iterate key points from libcurl manual that are relevant to this lab as
follows:

e The same libcurl handle should not be shared in multiple threads.

e The libcurl is thread safe but does not have internal thread synchronization
mechanism. You will need to take care of the thread synchronization.

2.5.2 The pthreads API

The pthreads (7) man page gives an overview of POSIX threads and should be

read. The SEE ALSO section near the bottom of the man page lists functions in the

APIL. The man pages of pthread_create (3),pthread_join(3) and pthread_exit (3)
provide detailed information of how to create, join and terminate a thread.

The pthread Memory Leak Bug
There is a known memory leak bug related to pthread_exit (). Please refer to

https:/ /bugzilla.redhat.com/show_bug.cgi?id=483821 for details. Using return ()
instead of pthread_exit () will avoid the memory leak bug.

22

https://curl.haxx.se/libcurl
https://curl.haxx.se/libcurl/c/allfuncs.html
https://curl.haxx.se/libcurl/c/allfuncs.html
https://curl.haxx.se/libcurl/c/threadsafe.html
https://bugzilla.redhat.com/show_bug.cgi?id=483821

2.6 Deliverables

2.6.1 Pre-lab deliverables

None.

2.6.2 Post-lab Deliverables

Create a multi-threaded implementation of the paster command. The following
are the steps to create your post-lab deliverable submission.

e Create a directory and name it lab2.

e Put the entire source code with a Makefile under the directory lab lab2. The
Makefile default target is paster. That is command make should generate
the paster executable file. We also expect that command make clean will
remove the object code and the default target. That is the . o files and the two
executable files should be removed.

e Use zip command to zip up the contents of lab2 directory and name it lab2.zip.
We expect unzip lab2.zip will produce a 1ab2 sub-directory in the current
working directory and under the 1ab2 sub-directory is your source code and
the Makefile.

Submit the 1ab2. zip file to Lab2 Dropbox in Learn.

2.7 Marking Rubric

Points Description

10 Makefile correctly builds and cleans paster

25 Implementation of single-threaded paster
65 Implementation of multi-threaded paster

Table 2.1: Lab2 Marking Rubric

Table 2.1 shows the rubric for marking the lab.

23

Part 111

Software Development Environment
Quick Reference Guide

24

Chapter 1

Introduction to ECE Linux
Programming Environment

1.1 ECE Linux Servers

There are a group of Linux Ubuntu servers that are open to ECE undergraduate
students. The machines are listed at url: https://ece.uwaterloo.ca/Nexus/arbeau/
clients. To access one of the machines, we recommend to use the alias name of
eceubuntu.uwaterloo.ca, which will direct the user to the most lightly loaded
machine at the time of login.

To access these machines from off campus. One way is to use the campus VPN.
Another way is to first connect to ecelinux4 .uwaterloo.caoreceterm.uwaterloo.ca
and then connect to other Linux servers from there. Note that the ecelinux4
should not be used for computing jobs, it is for accessing other Linux servers on
campus.

1.2 Connecting to Linux servers

A terminal client software that supports secure shell (ssh) will allow you to remotely
connect to the Linux servers. MobaXterm is a convenient application that not only
supports ssh, but also has a built-in X server that allows one to run Graphical User
Interface (GUI) applications from the Linux servers.

Use the File Explorer to navigate to 0: \eng\ece\Ut1i1 folder, scroll down until
you find the MobaXterm icon and double click it (see Figure C1). The MobaXterm
window will pop up. There is a grey rectangular button labelled “Start local termi-
nal” in the middle (see Figure C2). Click this button.

Then a terminal session starts. You will need to use the command line ssh com-
mand to connect to the Linux server. Use your UWID and password to login. The

25

https://ece.uwaterloo.ca/Nexus/arbeau/clients
https://ece.uwaterloo.ca/Nexus/arbeau/clients
https://uwaterloo.ca/information-systems-technology/services/virtual-private-network-vpn

I

Application Tools

Home Share View Manage
<« v 4 » ThisPC » software (\\engappl) (Gt) » eng » ece » Uil v O Search Util
~

‘v Downloads L Mame Date modified Type

. L= FTIRUIT R FATE R Pt L4 FIvL ApPpnCduun
J’! Music . ~ o

) [E] mkfifo.exe 34PM Application

&= Pictures [#] mknod.exe 20 34PM Application

B videos

s Windows ()

B Mobalterm.exe
MobaXterm76.exe

3011:10

166:14 PM

Application

Application

s Local Disk (D) Modelsim.bat 11:49 Windows Batch File
Personal (E:) || Modelsim.bat~ 54PM BAT- File
= yghuang (\\ecfilel.uwaterloo.ca) (N:) mt.bat 0:19 Windows Batch File
|| mt.bat.old OLD File
= homes (\\eceserv]l.uwaterloo.ca) (P:)
= | | mt.bat~ BAT~ File

= software (\\engapp1) (C)

mtt.bat
m mv.exe

Windows Batch File

¥ Network Application

324items 1item selected 16.3 MB

Figure C1: MobaXterm Path on ECE Nexus Windows 10 Machines.

B Mobaxterm - O x

Terminal ~ Sessions View Xserver Tools Games Settings

E % % s A B B Y B & & 0 X ©

Macros Help

Session Servers Tools Games Sessions View Split MultExec Tunneling Packages Settings Help X server Exit

Quick connect... &5 &
Bmu)

<< - ISEr SESsIoNs *
=]

-

2

F

&

0

o

o

=

J !) Start local terminal I

w

g2

o

£ Find existing session or server name

#

Welcome to MobaXterm

Press <return> to start a local terminal

UNREGISTERED VERSION - Please support MobaXterm by subscribing to the professional edition here: https: {fmobaxterm.mobatek. net

Figure C2: MobaXterm Welcome Page.

syntax of the command is as follows:

ssh —-XY <UWID>(@eceubuntu.uwaterloo.ca

See Figure C3 for reference.

26

B Mobaxterm - O X

Terminal Sessions View Xserver Tools Games Settings Macres Help

E % % . & B B Y B & & 6 X 0

Session Servers Tools Games Sessions View Split MultiExec Tunneling Packages Settings Help ¥ server Exit

it Bl 2. yghuang @bl Bl 3. yghuang@bl |4 home/moba

» N rm P al Edition v11.1 «
r, S5H client and network tools)

Your computer drives are accessible through the /drives path
Your DISPLAY 1s set to 129.97 1:0.0

When using S5H, your remote

Your HOME folder is not persistent: it will be sed on restart
Each command status 1s specified by a special symbol (v or x)

Sessions

@i Tools

1 edition
Xterm for your company: you can add
5, your welcome message and generate

4 r
an MSI 1in
We can also modify
For more information: = I m. mobatek 1load. html

™. Macros

[2619-81-25 15:43.10]

[yghuang.EC 71] » ssh -XY yghuang@eceubuntu.uwaterloo.ca

Warning: Permanently added 'eceubuntu.uwaterloo.ca' (RSA) to the list of known hosts.
yghuang@eceubuntu.uwaterloo.ca's password:

UNREGISTERED VERSION - Please support MobaXterm by subscribing to the professional edition here: https: f/mobaxterm.mobatek.net

Figure C3: MobaXterm Welcome Page.

All your ECE Linux account files are accessible through P Drive on Nexus ma-
chines (See Figure C4). The P Drive is only accessible within campus network. Map-
ping the Linux account as a network drive off campus is not supported due to secu-
rity reasons.

1.3 Basic Software Development Tools

To develop a program, there are three important steps. First, a program is started
from source code written by programmers. Second, the source code is then compiled
into object code, which is a binary. Non-trivial project normally contains more than
one source file. Each source file is compiled into one object code and the linker would
finally link all the object code to generate the final target, which is the executable that
runs. The steps of compiling and linking are also known as building a target. It is
very rare that the target will run perfectly the first time it is built. Most of time we
need to fix defects and bugs in the code and the this is the third step. The debugger
is a tool to help you identify the bug and fix it. Table C1 shows the key steps in
programming work flow and example tools provided by a general purpose Linux
operating system.

Most of you probably are more familiar with a certain Integrated Development

27

= | = | Drive Tools homes (\eceservl.uwaterloo.ca) (P1) — [} b4
Home Share View Manage 9
€« “ A == 5 ThisPC > homes (Veceservl.uwaterloo.ca) (P:) v Search homes (\\eceservl.uw.. @
[Desktop () MName : Date modified Type ~
| Documents .themes File folder
‘ Downloads thumbnails File folder
J” Music .Trash File folder
= Pictures vim File folder
) a File folder
m Videos aa File folder
= Windows (C) aaa File folder
o= Local Disk (D) ab File folder
s Personal (E:) b File folder
= yghuang (\\ecfilel.uwaterloo.ca) (M:) bin File folder
== homes (\\eceserv].uwaterloo.ca) (P:) code File folder
= software (\\engapp1) (@) config F?|E folder
& cce327 (eceservl) (¥ courses File folder
- lab File folder
¥ Metwerk mail 2018-10-239:31 PM File folder v
LB 4 >
144 items =
Figure C4: Linux files on P drive, a network mapped drive.
Task Tool Examples
Editing the source code Editor vi, emacs

Compiling the source code Compiler gcc
Debugging the program Debugger gdb, ddd

Table C1: Programming Steps and Tools

Environment (IDE) which integrates all these tools into a single environment. For
example Eclipse and Visual Studio. A different approach is to select a tool in each
programming step and build your own tool chain. Many seasoned Linux program-
mers build their own tool chains. A few popular tools are introduced in the following
subsections.

1.3.1 Editor

Some editors are designed to better suit programmers’ needs than others. The vi (vim
and govim belong to the vi family) and emacs (xemacs belongs to emacs family) are the
two most popular editors for programming purposes.

Two simple notepad editors pico and nano are also available for a simple editing
job. These editors are not designed for programming activity. To use one of them to
write your first Hello World program is fine though.

After you finish editing the C source code, give the file name an extension of .c.
Listing 1.1 is the source code of printing “Hello World!” to the screen.

28

#include <stdio.h>
#include <stdlib.h>

int main ()

{
printf ("Hello World!\n");
exit (0);

}

Listing 1.1: HelloWorld C source Code

1.3.2 C Compiler

The source code then gets fed into a compiler to be come an executable program.
The GNU project C and C++ compiler is gcc. To compile the HelloWorld source code
in Listing 1.1, type the following command at the prompt:

gcc helloworld.c+

You will notice that a new file named a . out is generated. This is the executable gen-
erated from the source code. To run it, type the following command at the prompt
and hit Enter.

The result is“Hello World!” appearing on the screen.

You can also instruct the compiler to name the executable another name instead
of the default a.out. The —o option in gcc allows one to name the executable a
name. For example, the following command will generate an executable named
“helloworld.out”.

gcc helloworld.c -o helloworld.out

although there is no requirement that the name ends in . out.

1.3.3 Debugger

The GNU debugger gdb is a command line debugger. Many GUI debugger uses
gdb as the back-end engine. One GNU GUI debugger is ddd. It has a powerful data
display functionality.

29

GDB needs to read debugging information from the binary in order to be able to
help one to debug the code. The —g option in gcc tells the compiler to produce such
debugging information in the generated executable. In order to use gdb to debug our
simple HelloWorld program, we need to compile it with the following command:

gcc —g helloworld.c -o helloworld.out

The following command calls gdb to debug the helloworld.out

gdb helloworld.out

This starts a gdb session. At the (gdb) prompt, you can issue gdb command such
as b main to set up a break point at the entry point of main function. The 1 lists
source code. The n steps to the next statement in the same function. The s steps
into a function. The p prints a variable value provided you supply the name of the
variable. Type h to see more gdb commands.

Compared to gdb command line interface, the ddd GUI interface is more user
friendly and easy to use. To start a ddd session, type the command

and click File — Open Program to open an executable such as helloworld.out. You
will then see gdb console in the bottom window with the source window on top
of the gdb console window. You could see the value of variables of the program
through the data window, which is on top of the source code window. Select View
— to toggle all these three windows.

1.4 More on Development Tools

For any non-trivial software project, it normally contains multiple source code files.
Developers need tools to manage the project build process. Also project normally
are done by several developers. A version control tool is also needed.

1.4.1 How to Automate Build

Make is an utility to automate the build process. Compilation is a cpu-intensive job
and one only wants to re-compile the file that has been changed when you build a
target instead of re-compile all source file regardless. The make utility uses a Make-
tile to specify the dependency of object files and automatically recompile files that
has been modified after the last target is built.

30

In a Makefile, one specifies the targets to be built, what prerequisites the target
depends on and what commands are used to build the target given these prerequi-
sites. These are the rules contained in Makefile. The Makefile has its own syntax. The
general form of a Makefile rule is:

target ...: prerequisites
recipe

One important note is that each recipe line starts with a TAB key rather than white
spaces. To build a target, use command make followed by the target name or omit
the target name to default to the first target in the Makefile. For example

will build your lab starter code.

Listing 1.2 is our first attempt to write a very simple Makefile.

helloworld.out: helloworld.c
gcc —-o helloworld.out helloworld.c

Listing 1.2: Hello World Makefile: First Attempt

The following command will generate the helloworld. out executable file.

make helloworld.out

Our second attempt is to break the single line gcc command into two steps. First
is to compile the source code into object code .o file. Second is to link the object code to
one final executable binary. Listing 1.3 is our second attempted version of Makefile.

helloworld.out: helloworld.o

gcc —o helloworld.out helloworld.o
helloworld.o: helloworld.c

gcc —c helloworld.c

Listing 1.3: Hello World Makefile: Second Attempt

When a project contains multiple files, separating object code compilation and
linking stages would give a clear dependency relationship among code. Assume that
we now need to build a project that contains two source files srcl.c and src2.c
and we want the final executable to be named as app.out. Listing 1.4 is a typical
example Makefile that is closer to what you will see in the real world.

31

all: app.out
app.out: srcl.o src2.0
gcc -0 app.out srcl.o src2.0
srcl.o: srcl.c
gcc —c srcl.c
sSrc2.0: src2.c
gcc —c src2.c
clean:
rm *.0 app.out

Listing 1.4: A More Real Makefile: First Attempt

We also have added a target named clean so that make clean will clean the build.

So far we have seen the Makefile contains explicit rules. Makefile can also contain
implicit rules, variable definitions, directives and comments. Listing 1.5 is a Makefile that
is used in the real world.

Makefile to build app.out

CC=gcc
CFLAGS=-Wall -g
LD=gcc
LDFLAGS=-g

OBJS=srcl.o src2.o

all: app.out
app.out: $(OBJS)
$(LD) $(CFLAGS) $(LDFLAGS) —-o $S@ $(OBJS)
.Cc.0:
$(CC) $(CFLAGS) -c S$<
.PHONY: clean
clean:
rm —f *.0 x.out

Listing 1.5: A Real World Makefile
Line 1 is a comment. Lines 2 — 7 are variable definitions. Line 12 is an implicit rule to

generate .o file for each .c file. See http://www.gnu.org/software/make/manual/
make.html to explore more of makefile.

1.4.2 Version Control Software

We use Git version control software. It is installed both on the Linux servers and
Nexus windows machines. If you decide to use GitHub to host your repository,

32

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

please make sure it is a private one. Go to http://github.com/edu to see how to
obtain five private repositories for two years on GitHub for free.

1.4.3 Integrated Development Environment

Eclipse with C/C++ Plug-in has been installed on all ECE Linux servers. Type the
following command to bring up the eclipse frontend.

/opt/eclipse64/eclipse

This eclipse is not the same as the default eclipse under /usr/bin directory. You
may find running eclipse over network performs poorly at home though. It depends
on how fast your network speed is.

If you have Linux operating system installed on your own personal computer,
then you can download the eclipse with C/C++ plugin from the eclipse web site
and then run it from your own local computer. However you should always make
sure the program will also work on ecelinux machines, which is the environment
TAs would be using to test your code.

1.5 Man Page

Linux provides manual pages. You can use the command man followed by the spe-
cific command or function you are interested in to obtain detailed information.

Mange pages are grouped into sections. We list frequently used sections here:

e Section 1 contains user commands.
e Section 2 contains system calls
e Section 3 contains library functions

e Section 7 covers conventions and miscellany.

To specify which section you want to see, provide the section number after the
man command. For example,

shows the system call stat man page. If you omit the 2 in the command, then it
will return the command stat man page.

You can also use man -k or apropos followed by a string to obtain a list of
man pages that contain the string. The Whatis database is searched and now run
man whatis to see more details of whatis.

33

http://github.com/edu

Appendix A

Forms

Lab administration related forms are given in this appendix.

34

ECE252 Request to Leave a Project Group Form

Name:

Quest ID:

Student ID:

Lab Assignment ID

Group ID:

Name of Other Group Members:

Provide the reason for leaving the project group here:

Signature Date

35

Bibliography

[1] Mark Mitchell and Alex Samuel. Advanced Linux Programming. New Riders Pub-
lishing, Thousand Oaks, CA, USA, 2001.

[2] Greg Roelofs. PNG: The Definitive Guide. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1999.

36

	List of Tables
	List of Figures
	Preface
	I Lab Administration
	II Lab Projects
	Introduction to Systems Programming in Linux Computing Environment
	Introduction
	Objectives
	Topics

	Starter Files
	Pre-lab Preparation
	Basic Linux Commands Exercises
	Lab Assignment
	Problem statement
	The findpng command
	The catpng command

	Deliverables
	Pre-lab deliverables
	Post-lab Deliverables

	Marking Rubric

	Multi-threaded Programming with Blocking I/O
	Objectives
	Starter Files
	Pre-lab Preparation
	Lab Assignment
	Problem Statement
	Requirements
	Man page of paster

	Programming Tips
	The libcurl API
	The pthreads API

	Deliverables
	Pre-lab deliverables
	Post-lab Deliverables

	Marking Rubric

	III Software Development Environment Quick Reference Guide
	Introduction to ECE Linux Programming Environment
	ECE Linux Servers
	Connecting to Linux servers
	Basic Software Development Tools
	Editor
	C Compiler
	Debugger

	More on Development Tools
	How to Automate Build
	Version Control Software
	Integrated Development Environment

	Man Page

	Forms
	References

