

Edition-Based Redefinition

an Oracle Database capability to support online application upgrade
ORACLE WHITEPAPER | APRIL 2017

Contents

Introduction . 2

Customer Goals and Oracle Database Capabilities 3

Edition-Based Redefinition . 5
The edition . 5

The challenge . 5
Conceptual explanation of the edition . 6

editions . 6
editionable object types, editions-enabled users, and editioned objects . 7
actual objects, inherited objects, and name resolution . 8
Retiring an edition . 9
Dropping an edition . 10

The EBR lifecycle . 10
Diagramatically illustrated example . 12
A minimal, complete EBR exercise code example . 13
Consequential actualization of dependants and fine-grained

dependency tracking . 15
Deliberate invalidation and revalidation of editioned objects . 16
The effect of DDL in an edition with a child . 16
Using DBMS_Sql_Parse() to execute SQL outside of the current edition 17
Package state when the same package is instantiated in more than one edition 17

The editioning view . 18
The conditions that an editioning view must satisfy . 19

An editioning view must be owned by an editions-enabled user . 19
An editioning view must be owned by its table’s owner . 19
There can be no more than one visible editioning view for a particular table

in a particular edition . 19
The subquery factoring clause is not allowed . 19
The subquery must be a single query block . 19
The for update clause is not allowed . 20
The query block must identify exactly one table . 20
The select list must mention only column names and optional aliases . 20
The where clause, group by clause, and having clause are not allowed 20
The order by clause is not allowed . 20
Other restrictions . 20

Allowed freedoms when defining an editioning view . 20
The with read only clause is allowed . 20
Primary key constraints are allowed but foreign key constraints are disallowed 21

Operations supported by an editioning view that are not supported by
an ordinary view . 21
An editioning view allows table-style triggers . 21
A hint in a SQL statement that targets an editioning view can identify an index

by listing the names of its columns. 21
Queries against an editioning view allow partition extended syntax . 22

EBR using only editions and editioning views . 22
The crossedition trigger . 22

Basic firing rules for crossedition triggers . 24
Advanced firing rules for crossedition triggers . 27
 EDITION-BASED REDEFINITION 10-April-2017

The apply step: systematically visiting every row to transform the pre-upgrade representation to
the post-upgrade representation . 27
Using DBMS_Sql_Parse() to apply a forward crossedition trigger . 28
Crossedition triggers must be idempotent . 28
When to enable crossedition triggers—DBMS_Utility.Wait_On_Pending_DML() 29
Using the DBMS_Parallel_Execute API . 29
Using explicit SQL for the apply step . 29

Combining several bug fixes in a single EBR exercise . 29

EBR-readying an application . 31
Editions-enabling the intended users . 31
Introducing an editioning view in front of every table . 31

Existing features in the presence of editions . 33
Database links . 33
Application Contexts . 33
VPD policies on editioning views and synonyms . 35
Regular and fine-grained audit policies . 35

Conclusion . 37
 EDITION-BASED REDEFINITION 10-April-2017

Executive Overview

Large, mission critical applications designed for Oracle Database 11g Release 1, or earlier versions, are often

unavailable for tens of hours, or even longer, while the application’s database backend is patched or upgraded.

Oracle Database 11g Release 2 introduced edition-based redefinition—hereinafter EBR—a revolutionary

capability that allows online application upgrade with uninterrupted availability of the application. When the

installation of the upgrade is complete, the pre-upgrade application and the post-upgrade application can be

used at the same time. Therefore an existing session can continue to use the pre-upgrade application until its

user decides to end it; and all new sessions can use the post-upgrade application. As soon as no sessions are

any longer using the pre-upgrade application, it can be retired. In other words, the application as a whole

enjoys hot rollover from the pre-upgrade version to the post-upgrade version.

To take advantage of the capability, the application’s database backend must be EBR-readied by making some

one-time schema changes; and the script that install a patch or an upgrade must be written in a new way to use

EBR’s features. Therefore, EBR adoption and subsequent use is the perogative the development shop.

Oracle Database 12c Release 1 and Oracle Database 12c Release 2 brought significant improvements to EBR

that make it easier to EBR-ready an application’s database backend.

This whitepaper explains how EBR works, how to adopt it, and how to write online application upgrade scripts

using this capability, at the level of detail needed by the engineers who will plan and do the implementation.
1 | EDITION-BASED REDEFINITION 10-April-2017

Introduction

To achieve online application upgrade1, the following challenges must be met:

>> The installation of the changed database objects into the production database must not perturb live users of

the pre-upgrade application.

>> Transactions done by the users of the pre-upgrade application must be reflected in the post-upgrade

application.

>> For hot rollover, transactions done by the users of the post-upgrade application must be reflected in the

pre-upgrade application.

Oracle Database 11g meets these challenges by making some evolutionary improvements to existing

capabilities in both Release 1 in Release 2 and, more significantly, by introducing a revolutionary new

capability in Release 2.

The revolutionary new capability is edition-based redefinition—herinafter EBR:

>> Code changes are installed in the privacy of a new edition.

>> Data changes are made safely by writing only to new columns or new tables not seen by the old edition. An

editioning view exposes a different projection of a table into each edition to allow each to see just its own

columns.

>> A crossedition trigger propagates data changes made by the old edition into the new edition’s columns, or (in

hot-rollover) vice-versa.

This whitepaper explains EBR in detail by treating the concepts that underpin it and by illustrating the basic

operations with minimal code samples. Then it presents a series of realistic use cases in order of increasing

complexity. The discussion of these use cases should prepare the user for designing and implementing scripts

for the online upgrade of the database component of real world applications.

This whitepaper does not attempt to be a reference manual. The relevant SQL syntax and PL/SQL APIs are

documented in the Oracle Database SQL Language Reference book, the Oracle Database PL/SQL Language

Reference book, and the Oracle Database PL/SQL Packages and Types Reference book; and the catalog

views that expose facts about the relevant objects are documented in the Oracle Database Reference book.

Rather, it aims to explain the concepts and the use of EBR at a depth that is not practical in the Oracle

Database Documentation Library. In this way, it complements and extends the treatment in the Oracle

Database Advanced Application Developer’s Guide book and the Oracle Database Administrator’s Guide

book.

1. The term upgrade will be used in this whitepaper to denote both that and patch. The term patch is conventionally used to denote
changes that are made to a system to correct behavior which deviates from its current functional specification; and the term
upgrade is conventionally used to denote changes that are made to enhance behavior so that it conforms to a new version of the
functional specification. However, this distinction in intention has no consequence for the nature of the changes that are made to
an application’s database objects. A change, for example, to a PL/SQL unit, to table data, or to table structure requires the same
steps and has the same consequences whether the intention is to patch or to upgrade.
2 | EDITION-BASED REDEFINITION 10-April-2017

Customer Goals and Oracle Database Capabilities

Businesses rely on applications, some of which are used by their employees and others of which are used

directly by their customers. Increasingly commonly, both the employees and the customers may be located

anywhere around the world. For such applications, then, there is no common notion of the working day, the

working week, or of public holidays. Therefore, not only is randomly occurring unavailability in the face of some

kind of electrical or mechanical breakdown unacceptable, but so also is even planned unavailability to perform

predictable software maintenance tasks. The customer’s high availability goal is quite simply zero downtime

stretching into the indefinite future.

Oracle Database has for some time had various capabilities to allow customers to maintain availability in the

face of a spectrum of hardware problems ranging from disk or CPU failure through to demolition of the whole

site.

With respect to deliberately undertaken software changes, it is useful further to break down this class into

changes to the database system itself, as supplied by Oracle Corporation, and changes to the database

objects that constitute the back end of the application, as supplied by developers employed by the customer

organization or by an ISV.

Changes to the database itself are affected by running programs2 supplied by Oracle Corporation. These

changes are engineered to have no effect on the semantics of the database component of an extant

application3. This fact has allowed capabilities which were designed to maintain availability the face of

hardware problems to be used to maintain availability the face of planned changes to the database system.

Both Logical Standby and Streams may be used in this way. Briefly, a new database is established as true copy

of the extant database on a second hardware system dedicated to that purpose. For a period, the new

database tracks the old database. Then the new database is taken off line, noting the moment at which this is

done4. The new database’s system software is upgraded as required and then it is put back on line and

tracking of the old database is turned on again so that it “catches up” with the changes to customer objects that

were made in the old database while the new database was not tracking it. Finally, the new database is

declared to be the canonical one and end user sessions start to use it. (This requires a brief period of downtime

to ensure that no end-user sessions use the new database until the old one has been formally closed for such

sessions.) Then the hardware that supported the old database can be returned to the pool of available

hardware to restore the status quo of hardware use by the application. This approach is viable also when it is

required to upgrade the operating system software; it is viable, too, even if the goal is to migrate the database

to brand new hardware which possibly has a different operating system.

The approach just described relies on the fact that the customer’s database objects are identical in the old and

the new databases. When the aim is to upgrade these objects, a different approach is needed. Such an

approach is supported by EBR and is the subject of this whitepaper.

It is useful, finally, to distinguish between these two goals: online application upgrade and online application

maintenance. In the former, changes are made to the logical aspects of an application’s database objects; and

in the latter, changes are made to their physical aspects. Examples of online application maintenance goals are

the desire to tidy up a table by coalescing chained rows, by reclaiming the space taken up by a column that has

been set unused, or by moving it to a different tablespace; and by the desire to rebuild an index. Figure 1.

2. Here, the term program is used generically to mean a set of machine-readable files whose contents determine the outcome when
processed by various operating system utilities and utility components of the Oracle Database software installation.

3. Of course, a bug fix intentionally causes a behavior change. But such benign changes are insignificant in the present discussion.

4. This “moment” is recorded as a System Change Number.
3 | EDITION-BASED REDEFINITION 10-April-2017

summarizes the preceding discussion and shows illustrative capabilities of Oracle Database that support the

various depicted customer goals.

It is self-evident that the new Oracle Database capabilities that support the customer’s online application

upgrade goal must be fully interoperable with, and must not compromise the reliability of, the Oracle Database

capabilities that support other aspects of the customer’s overall high availability goal. This whitepaper will show

that this is the case.

Figure 1. Taxonomy of high availability goals and illustrative capabilities of Oracle Database
that support them

high availability

immunity to hardware failure
• RAC
• Physical Standby
• Logical Standby

ability to make planned software changes
on line

online database upgrade
• Logical Standby
• Streams

change application’s
database objects on line

online application maintenance
• online table redefinition
• online index rebuild

online application upgrade
• table DDLs governed by the

DDL_Lock_Timeout parameter
• edition-based redefinition
4 | EDITION-BASED REDEFINITION 10-April-2017

Edition-Based Redefinition

EBR depends upon three new kinds of object: the edition, the editioning view, and the crossedition trigger.

>> If the application upgrade will change only views, synonyms, and PL/SQL objects, then the edition alone is

sufficient to allow these changes to be made while the application remains on line. This type of change is

common when, for example, new presentations of data or new workflows are required.

>> If changes to table data or structure are restricted to only those tables that are not changed via the ordinary

end-user interfaces, then the edition together with the editioning view are sufficient to allow these changes to

be made while the application remains on line. Tables whose data parameterizes the user interface layout or

workflows meet this condition. So do tables that hold the catalog of wares for a shopping application.

>> If changes to table data or structure are required for those tables that are changed routinely by the end-user,

then the edition, the editioning view, and the crossedition trigger must be used in concert to allow these

changes to be made while the application remains on line.

This understanding determines the natural order of exposition of the following topics.

The edition

This section first explains, at the next level of detail the challenge that presents when several mutually referring

database objects are to be changed in the environment of others that, to implement the current upgrade, will

not be changed.

It then explains, at a conceptual level, what an edition is and how it solves the problem at hand. This

explanation brings with it some important terms of art that are not reflected directly in SQL syntax or in the

names of catalog views, their columns, or the values that these contain.

It then presents code that illustrates the minimal self-contained illustration of a complete EBR exercise.

The challenge
Suppose that an application has 1,000 mutually dependent tables, views, PL/SQL units, and triggers, that

these are owned by more than one user, and that the source code of these objects makes references to other

of these objects, often by schema-qualified name5. Suppose that the upgrade needs to change only 10 of

these. Figure 2. illustrates this.

5. There is no getting away from schema-qualified names when an application’s database objects span two or more schemas. The
best that can be done is to isolate the schema-qualification in the definition of synonyms.

Figure 2. The challenge of online application upgrade

990 unchanged objects
+

10 changed objects

1,000 mutually referring objects

pre-upgrade application

post-upgrade application
5 | EDITION-BASED REDEFINITION 10-April-2017

Of course, the 10 objects cannot be changed in place because many of the other 990 refer to them and doing

so would change the meaning of the pre-upgrade application. Through Oracle Database 11g Release 1, the

only dimensions that identify the intended object when one object refers to another, are its name and its owner:

these naming mechanisms are not rich enough to support online application upgrade.

A short digression on the viability of an approach that uses schemas and synonyms to explicitly to enrich the

naming mechanisms manually will be useful. It would be possible for a customer to impose a discipline where

every reference from an object to another “primary” object in a different schema is made via a “secondary”

private synonym in the referring object’s schema. In such a regime, it might seem that online application

upgrade could be achieved by installing the complete upgraded application in a new set of schemas with

appropriately redefined private synonyms. This would, at least, allow the source text of the 900 “primary”

objects for which no change was intended to remain unchanged in the source control system. There would,

however, be some effort in redefining the synonyms in the source control system, but this could, presumably be

done automatically. This approach suffers from a number of disadvantages with respect to using EBR:

>> It requires specific design by the customer.

>> Every “primary” object needs to be duplicated. This costs both space and the time it takes to run the

DDL statements.

>> While a scheme to handle changes to table data and structure might, just, be feasible using a hand-crafted

equivalent of the editioning view, the effort to design and implement a scheme to reflect changes made by

the pre-upgrade application into the representation that the post-upgrade application uses, and vice versa,

would be dauntingly complex and, because of that, subject to an appreciable risk of error.

>> Some applications issue DDL statements as part of their normal response to ordinary end-user interaction.

The effort to design and implement a scheme to reflect such changes forwards and backwards between the

pre-upgrade and the post-upgrade applications would be huge.

With applications of sufficient size and complexity, various issues arise (too complicated to describe in this

whitepaper) that defeat the scheme. It is, quite simply, not generally viable “in the large”.

As shall be seen, EBR supports the high-level philosophy of the manual approach just described but

overcomes all its disadvantages.

Conceptual explanation of the edition
The understanding of how the edition enriches the naming mechanism is best gained by first appreciating the

following new, seemingly dry, facts about EBR.

editions

>> An edition is a new, nonschema object type, uniquely identified, therefore, by just its name. Editions are

listed in the DBA_Objects catalog view family where, just like the nonschema object type directory, they

appear to by owned by Sys6.

>> Every database from 11.2 onwards, whether brand new or the result of an upgrade from an earlier version,

non-negotiably has at least one edition. Immediately on creation or upgrade to 11.2, there is exactly one

edition with the name Ora$Base.

>> A new edition must be created as the child of an existing one; the syntax of the create edition statement

allows that the parent edition be identified using the as child of clause.

6. A nonschema object, just as the name implies, is not owned by a schema and is potentially visible to all users, identified by just
its name. The fact that DBA_Objects shows the owner of an edition or directory to be Sys is an artefact of the implementation and
has no practical significance.
6 | EDITION-BASED REDEFINITION 10-April-2017

>> An edition may have no more than one child7.

>> The create edition statement allows that the as child of clause be omitted to mean that the new edition is

created as the child of the leaf edition8.

>> Every foreground database session, at every moment throughout its lifetime, non-negotiably uses a

particular edition9. This is reflected as the value of the new parameter Current_Edition_Name in the Userenv

namespace for the Sys_Context() builtin.

>> A new not null database property, Default_Edition, listed in Database_Properties, specifies the edition that a

session will use immediately on connection if the connect syntax does not nominate an explicit edition10.

Code_1 shows the SQL statement to set this.

A side effect of making an edition the default is to grant Use on it to public.

>> When a new connection is made, it is possible to specify to edition the session should (initially) use.

>> A new alter session command allows the edition that a session is using to be changed. However, this

command is legal only as a top-level server call; an attempt to issue it using PL/SQL’s dynamic SQL will

cause an error11. Further, an attempt to change the edition that a session is using will fail if there is any

uncommitted DML12.

editionable object types, editions-enabled users, and editioned objects

>> Views (and therefore editioning views), synonyms, and all the kinds of PL/SQL objects type13 (and therefore

crossedition triggers) are editionable object types. There are no other editionable object types. For example,

table is not an editionable object type; nor is java class14.

>> The nonschema object type user has a new Y/N property, shown in DBA_Users.Editions_Enabled. This can

be set with the create user command or changed with the alter user command, but only from N to Y.

7. This restriction may be relaxed in a later version of Oracle Database. The reader will see that the conceptual design
accommodates this.

8. As long as the restriction holds that an edition may have no more than one child, there will always be exactly one leaf edition. Until
this restriction is lifted, Oracle recommends thathe plain create edition command be used without the as child of clause.

9. Some background sessions, most notably MMON, also always use exactly one edition.

10. The OCI and JDBC programmatic interfaces have been enhanced to allow an edition to be specified at session-creation time; and
tools like SQL*Plus expose this new optional degree of freedom with appropriate syntax. However, in 11.2, the connect string
specification (i.e. the item for which an alias can be established in tnsnames.ora) does not allow the edition to be specified. This
means that a database link always connects to the target database’s default edition.

11. A new overload for DBMS_Sql_Parse() allows a single SQL statement to be executed in a specifically nominated edition. See
“Using DBMS_Sql_Parse() to execute SQL outside of the current edition” on page 17. And a new procedure
DBMS_Session.Set_Edition_Deferred() causes the nominated edition to be made current as the last action of the top-level server
call that issues it.

12. The attempt causes ORA-38814: Alter session set edition must be first statement of transaction.

13. All the PL/SQL object types are potentially listed in the DBA_PLSQL_Object_Settings catalog view family. This includes library.

14. Objects of some types are purely metadata (represented just by rows in tables in the data dictionary) and consume no quota. It is
convenient to call these code objects. Objects of other types, like tables and indexes, not only have metadata but also contain
quota consuming substantive data. It is convenient to call these data objects. Later releases of Oracle Database might grow the
list of editionable by adding more code object types. But for reasons that will become clear in “The editioning view” on page 18,
the list will never include data object types.

-- Code_1 Making_Edition_Default_Grants_Use_On_It_To_Public\Demo.sql
alter database default edition = Some_Edition
7 | EDITION-BASED REDEFINITION 10-April-2017

However, certain users (Sys, System, and any user listed in the DBA_Registry catalog view family) cannot

be editions-enabled; the attempt will cause an error.

>> An object of an editionable object type that is owned by an editions-enabled user is editioned. An object that

is not of an editionable object type can never be editioned. An object of an editionable object type that is

owned by a user that is not editions-enabled is not editioned, but it will irrevocably become so when its owner

is altered to become editions-enabled.

>> An object that is not editioned is uniquely identified, just as it was through 11.1, by just its owner, name and

namespace. The context of reference defines the namespace so that references mention only the owner and

name as explicit references. For example, a package is in the namespace 1, and a package body is in the

namespace 215. The create package statement establishes the namespace as 1; the create package body

statement establishes the namespace as 2; and the invocation of DBMS_Output.Put_Line() in a PL/SQL unit

establishes that the identifier DBMS_Output is in namespace 1.

>> An editioned object is uniquely identified by its owner, name, namespace and the value of current edition that

issued the SQL statement that created or changed it16. This fact is the sine qua non of EBR; it lets two or

several occurrences of the “same” object, as identified by owner, name, namespace, exist in the same

database.

>> The DBA_Objects catalog view family has a new column, Edition_Name17. It is always null for an object that

is not editioned; for an editioned object, it is always not null and shows the name of the edition where the

object was created or changed.

actual objects, inherited objects, and name resolution

>> There is no edition-extended syntax. When an editioned object is to be identified, the name of the edition is

always supplied implicitly by the context of the reference. For a DDL statement, the current edition provides

the value; and for a reference from the source code of an editioned object, the referring object’s edition

provides the value.

>> Therefore, the source code of an object that is not editioned may not refer to an editioned object; such an

attempt will cause a compilation error. As a corollary, an attempt to editions-enable a user will sometimes

fail18.

>> When the source code of an editioned object refers to another editioned object, then this reference is

resolved to that occurrence whose Edition_Name is that of the edition which is the closest ancestor to the

one denoted by the Edition_Name of the referring object. When the Edition_Name of the referenced object is

the same as that of the referring object, then the referenced object is said to be actual from the point of view

of the referring object; and when the Edition_Name of the referenced object denotes an ancestor to that of

15. Starting in 11.1, the DBA_Objects catalog view family gained the column Namespace to advertise this property that, hitherto, had
been somewhat obscure.

16. As will be seen, “change” includes not only the effect of the create or replace or alter statements but also statements like grant
and revoke.

17. This column was in fact introduced in 11.1, but there it was always null. It first becomes useful in 11.2.

18. First example: Suppose that the users u1 and u2 are both not editions-enabled and are not among those supplied by
Oracle Corporation that cannot be editions-enabled. Suppose that procedure u2.p depends on procedure u1.p. An attempt to
editions-enable u1 will fail unless u2 is editions-enabled first.

Second example: Suppose that table u1.Tabl has a column whose datatype is the user-defined type u1.Typ. An attempt to
editions-enable u1 will fail until u1.Tabl, or the column in question, is dropped.

This is discussed further in “EBR-readying an application” on page 31.
8 | EDITION-BASED REDEFINITION 10-April-2017

the referring object, then the referenced object is said to be inherited from the point of view of the referring

object.

>> This same distinction between actual and inherited holds between editioned objects listed in the

DBA_Objects catalog view family and varies according to the current edition. When

DBA_Objects.Edition_Name is the same as the current edition, then the object is said to be actual in that

edition; and when DBA_Objects.Edition_Name is that of an ancestor edition to the current edition, then the

object is said to be inherited in that edition.

>> All the catalog views that show properties about objects whose type is editionable share the behavior of

showing only those editioned objects that are visible in the current edition. However, only the DBA_Objects

and the DBA_Objects_AE20 catalog view families have an Edition_Name column19.

>> A DDL statement that changes an existing inherited editioned object (for example create or replace or alter)

causes that object to become actual in the current edition of the session that issued the DDL, in other words,

it actualizes a new occurrence of the target object. This means that the changes are not seen in ancestor

editions.

>> The effect of the drop command on an inherited object is to make it vanish from the point of view of the

current edition20. Again, the effect of this is not seen in ancestor editions. The rename command is

supported for views and synonyms but not for PL/SQL objects. Rename behaves as if the target had been

dropped and recreated with the new name: the target object is visible with its old name in ancestor editions

and with its new name in the edition where the DDL statement was executed21.

>> If the owner and name of the target of the create command collide with an existing editioned object, then the

attempt causes an error. This is the case both when the collision is with an actual object and when it is with

an inherited object. Of course, drop followed by create, using the same owner and name, can have the result

that the identified editioned object is of different types in different editions22.

>> An editioned object, then, is visible in its own edition and in descendants of its own edition until, in such a

descendant, there exists a new actual occurrence.

>> If an editioned object is the target of a DDL statement in particular edition (including drop), if that edition has

descendants, and if the object in question is not actual in any of these descendants, then the effect of the

change is visible in the descendants. If the object in question is actual in one of these descendants, then the

change is visible in the intervening descendants up to, but not including, the descendant where it is actual.

Retiring an edition

When an EBR exercise is complete, it is useful to ensure that no new sessions will start to use the pre-upgrade

edition. This is simply achieve by revoking the Use privilege on the to-be-retired edition from every user and

role in the database. Notice that Sys, being beyond the normal notions of privilege, can still use the retired

19. To do... Some other views like DBA_Errors_AE also have an Edition_Name column. List them here.

20. The DBA_Objects catalog view family is supplemented by the DBA_Objects_AE catalog view family. “AE” stands for “all editions”;
these views have the same columns as their non-AE counterparts; but for each editioned object, they show each actual occurrence
it has. DBA_Objects_AE shows an object that was the target of the drop command with the type non-existent in the edition where
it suffered that DDL. This fact is an overt part of the user’s conceptual model; it lets the user understand how, even after dropping
an object in a particular edition, it is still visible in that edition’s ancestors (but not visible in any descendent editions).

21. The DBA_Objects_AE shows an object that was the target of the rename command with the type non-existent in the edition where
it suffered that DDL.

22. The create that follows a drop for a particular owner and name will re-use the non-existent object caused by the drop. (Here, re-
use refers to the value of Object_ID.) Most users will never notice this; but users who want to develop a complete mental model
might feel pleased when they appreciate that this is an inevitable consequence of the axioms of the conceptual model.
9 | EDITION-BASED REDEFINITION 10-April-2017

edition. Advantage can be taken of this to drop objects that are actual in such retired editions and that are not

visible in any non-retired edition because they are actual in a descendant of the retired edition.

Dropping an edition

It is useful to drop the new child edition that was used for an EBR exercise should the exercise for some reason

fail, or should the result be deemed unsatisfactory. For this use case, use the drop edition... cascade command

to drop all objects the are actual in the to-be-dropped edition.

While it is never necessary to drop the root edition, this may be done when the conditions given below are met.

The current root edition may be dropped, and then the new root edition may be dropped, until the database has

only a single edition: the leaf edition as was when these successive drops of the root edition were started.

Customers may occasionally like to do this in pursuit of a feeling of hygiene. But doing this has no practical

benefit except to remove mental clutter.

The drop edition... cascade command. just like the drop user... cascade command, is not atomic. This means

that if the instance is shut down while the command is in progress, some of the edition’s actual objects will have

been dropped but others, and the edition itself, will remain. However, unlike is the case if the instance is shut

down while a drop user... cascade command is in progress (where connecting as the to-be-dropped user is still

safe), it is not now safe to use the to-be-dropped edition. For this reason, such an edition is marked unusable.

This status is reflected in the Usable column in the DBA_Editions catalog view family. If a session attempts to

make an unusable edition its current edition, either with the alter session command or at connect time, then an

error occurs23.

An edition can be dropped only when the following conditions are met:

>> The edition is not the only one in the database

> and either it has no child edition (i.e. is the leaf edition)

> or both it has no parent edition (i.e. is the root edition) and it has no editioned objects that are inherited by its child edition24.

>> No session is using the edition.

>> The edition is not the database default edition.

Notice that the MMON background process, just as the foreground processes do, always use an edition. This

is because, unlike other “primitive” background processes like SMON or PMON, it issues SQL. Some other

background processes also issue SQL. MMON and other such SQL-issuing background processes use the

database default edition. Therefore, before attempting to drop, for example, edition Pre_Upgrade, it must be

ensured that the default edition is something else, for example, Post_Upgrade25.

The EBR lifecycle
Most EBR exercises will follow this simple pattern:

>> Before starting, the database will have only one non-retired edition, say Pre_Upgrade.

23. An error also occurs if the overload of DBMS_Sql_Parse() that has an Edition formal is used to attempt to execute a SQL statement
in an unusable edition.

24. Notice that crossedition triggers (see “The crossedition trigger” on page 22) are of an editionable object type. Moreover, every
crossedition trigger must be editioned. However, as will be seen, a crossedition trigger is visible only in the edition where it is actual.
Therefore, the presence of crossedition triggers in an edition does not affect whether that edition can be dropped.

25. MMON and other SQL-issuing background processes run in a continuous loop and poll the identity of the default edition on each
iteration. Should this be changed, then they issue an alter session command to use the new default. This switch usually happens
with very little delay. But if the attempt to drop the former default edition is made before the switch has happened, then ORA-38805:
edition is in use will occur.
10 | EDITION-BASED REDEFINITION 10-April-2017

>> During the EBR exercise, the database will have two non-retired editions, Pre_Upgrade and its child, say

Post_Upgrade.

>> When no sessions any longer need to use Pre_Upgrade, then this will be retired and the starting state for the

next exercise will be restored: the database has only one non-retired edition.

As long as the Pre_Upgrade edition is still available for ordinary use, then Post_Upgrade can be simply

dropped26. This might be done if it were realized that the upgrade install script is irrevocably incompatible with

some customizations that have be made at the particular deployed site. With possibly some manual follow-up

steps, all traces of the aborted upgrade attempt can be removed without interrupting the availability of the

pre-upgrade application. The use-case for dropping the ultimate child edition, then, is clear.

The use-case for dropping the ultimate parent edition is far less clear and is expected to be a rare occurrence.

The idea of returning to the “ground state” after each EBR exercise, where the database has just one edition,

seems initially to be intuitively appealing. However, this is unnecessary and resource-intensive.

The key question is this: what is the practical difference between using an edition where every editioned object

is actual and one where just a few are actual and most are inherited from many retired editions stretching back

over a lengthy ancestor chain? It might seem that, in principle, name resolution in the many-edition regime

would be appreciably slower than in the single-edition regime because most lookups would involve a recursive

search backwards in the edition ancestor chain. However, the implementation, which faithfully preserves the

conceptual model, transparently uses a denormalization to avoid the recursive search. Moreover, name

resolution takes place at compile time and not at run-time27. It turns out, therefore, that there is no noticeable

difference between using a database where the only non-retired edition is that database’s only edition and

using one where the only non-retired edition has an ancestor chain of, say, several hundred retired editions.

26. As soon as the post-upgrade application is used to record end-user transactions that cannot be represented by the pre-upgrade
application, then the possibility for a simple return to the pre-upgrade application vanishes. This is determined by ordinary logic
and not by any restrictions imposed by EBR.

27. The compilation of a stored PL/SQL unit is very visible, because it requires a separate step. The compilation of a SQL statement,
often referred to as parsing, is less visible to users because interfaces like PL/SQL’s embedded SQL disguise the distinction
between SQL compilation and SQL execution; nevertheless, the distinction is clear—and the famous so-called soft-parse skips
the SQL compilation and goes straight to the execution.
11 | EDITION-BASED REDEFINITION 10-April-2017

Diagramatically illustrated example
Figure 3. shows the kind of situation that might exist after a few distinct EBR exercises have been undertaken.

>> The starting point is that the database has exactly one edition, e128. The procedures p1 and p2 and the

views v1 and v2 are editioned objects and are actual, as they must be, in e1. The table t1, because it is not

an editioned object, is drawn outside of the containing box that represents e1.

>> Then e2 is created as the child of e1.

>> Then a session that uses e2 does create or replace on p2 and v1, causing them to be actualized in e2. A

session using e2 sees p2 and v1 as actual and p1 and v2 as inherited; sessions using respectively e1 and

e2 see the same occurrence of p1 and v2; each sees its own distinct occurrence of p2 and v1, each with its

own defining source code; and, of course, each sees the same t1 because there can never be more than

one occurrence of an object that is not editioned. When no sessions any longer need to use e1, it is retired.

>> Then e3 is created as the child of e2.

>> Then a session that uses e3 does create or replace on p1 and v2, causing them to be actualized in e3; and it

drops v1. A session using e3 sees p1 and v2 as actual and p2 as inherited. Of course, it cannot see the

dropped v1; and it sees the one-and-only occurrence of t1. Though v1 is dropped in e3, it is still visible in e1

and in e2. When no sessions any longer need to use e2, it is retired.

>> Then e4 is created as the child of e3.

>> Then a session that uses e4 does create or replace on v2, causing it to be actualized in e4. A session using

e4 sees v2 as actual and p1 and p2 as inherited. Of course, it too, like e3, cannot see the dropped v1; and it,

too, sees the one-and-only occurrence of t1. When no sessions any longer need to use e3, it is retired.

28. This is very easy to achieve. A freshly created, or newly upgraded, 11.2 database has no editions-enable users and therefore no
editioned objects. It is trivial to create edition e1 as the child of Ora$Base, to set the database default edition to e1, and then (when
no sessions are using it) drop Ora$Base. This succeeds because Ora$Base has no actual editioned objects. There is no reason
to do this in a production environment; the name Ora$Base is as good as any other name. But in a test database, and especially
in connection with developing code examples for teaching purposes, it is nice to choose the name of the starting edition.

Figure 3. The situation after three EBR exercises. Actual editioned objects are shown as squares with a solid
border; inherited editioned objects are shown as squares with no border; objects that are not editioned are shown
as circles with a solid border; active editions are shown with a light gray fill; and retired editions are shown with a
dark gray fill.

e1

p1

p2

v1

v2

p2

v1

v2

p1

p2

v1

v2

e2 e3 e4

t1

p1
12 | EDITION-BASED REDEFINITION 10-April-2017

Figure 4. shows the situation that might exist after the next EBR exercise.

>> e5 is created as the child of e4.

>> Then a session that uses e4 does create or replace on v2; this change is denoted by the asterisk in

Figure 4.. A session using e5 sees the same modified v2 because it sees v2 it as inherited.

>> Then a session that uses e5 creates package v1. Because, just before it does this, e5 sees no object called

v1, there is no reason why this name cannot now be used for an editioned object of a different type from that

which the name denotes in e1 and e2. Notice that had an attempt been made to create an object called v1

that was not editioned (for example a table called v1), then this would have failed because of name collisions

in e1 and e2.

A minimal, complete EBR exercise code example
The starting point is a database that has exactly one edition, Pre_Upgrade. The application architect has

worked out that objects whose type is editionable and that are owned by App_Owner should be editioned.

Therefore, the DBA has executed the SQL statement shown in Code_2.

App_Owner connects and inevitably uses edition Pre_Upgrade. The query shown in Code_3 is then executed.

The output is as shown in Code_4.

Of course, when Hello is executed, it shows “Hello from Pre_Upgrade”.

Figure 4. The situation after four EBR exercises

p1

p2

v1

v2

p2

v1

v2

v1

t1

v2*

p2

p1

v1

e1 e2 e3 e4 e5

v2*

p1

-- Code_2 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
alter user App_Owner enable editions

-- Code_3 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
select Text
from User_Source
where Name = 'HELLO' and Type = 'PROCEDURE'
order by Line

-- Code_4 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
procedure Hello is
begin
 DBMS_Output.Put_Line('Hello from Pre_Upgrade');
end Hello;
13 | EDITION-BASED REDEFINITION 10-April-2017

In preparation for the EBR exercise, a user who has the Create Any Edition system privilege creates

Post_Upgrade, and allows App_Owner to use it, using the SQL*Plus script shown in Code_5.

App_Owner is now able to execute the SQL statement shown in Code_6.

If Hello is executed, it still shows “Hello from Pre_Upgrade”. Now App_Owner executes exactly the same

DDL statement that would have been used to modify Hello in versions of Oracle Database prior to 11.2 as

shown in Code_7.

App_Owner now executes the SQL*Plus script shown in Code_8.

While App_Owner is using Post_Upgrade, the output of Hello is “Hello from Post_Upgrade” and the code

shown in User_Source is that of the new, modified occurrence; and while App_Owner is using Pre_Upgrade,

the output of Hello is “Hello from Pre_Upgrade” and the code shown in User_Source is that of the old, original

occurrence.

When all are satisfied that the application as represented in Post_Upgrade is an improvement on the one

represented in Pre_Upgrade, and no sessions any longer are using Pre_Upgrade, then a suitably privileged

user will retire the Pre_Upgrade edition29. In this trivial example, Pre_Upgrade now has no actual editioned

objects that are inherited by its child (and has no parent); there is no reason, therefore, not to drop it. However,

in the general case, it is very likely that Pre_Upgrade would have editioned objects that are inherited by

Post_Upgrade and it would not be cost-beneficial to actualize all of these in Post_Upgrade. Therefore, in the

general case, Pre_Upgrade would be retired but not dropped.

29. See “Retiring an edition” on page 9.

-- Code_5 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
create edition Post_Upgrade as child of Pre_Upgrade
/
grant use on edition Post_Upgrade to App_Owner
/

-- Code_6 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
alter session set Edition = Post_Upgrade

-- Code_7 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
create or replace procedure Hello is
begin
 DBMS_Output.Put_Line('Hello from Post_Upgrade');
end Hello;

-- Code_8 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
begin Hello(); end;
/
select Text
from User_Source
where Name = 'HELLO' and Type = 'PROCEDURE'
order by Line
/

alter session set edition = Pre_Upgrade
/
select Sys_Context('Userenv', 'Current_Edition_Name')
from Dual
/

-- Notice that the spelling that follows is identical
-- to that used before the current edition was changed
begin Hello(); end;
/
select Text
from User_Source
where Name = 'HELLO' and Type = 'PROCEDURE'
order by Line
/

14 | EDITION-BASED REDEFINITION 10-April-2017

If, for some reason, it is decided to abandon the changes made in Post_Upgrade, then a user who has the

Drop Any Edition system privileges ensures that no session is using Post_Upgrade and then executes the

SQL*Plus script shown in Code_930.

Consequential actualization of dependants and fine-grained
dependency tracking
When an editioned object refers to, and therefore depends upon, another editioned object, then, of course, the

referenced editioned object31 must be visible in the edition where the dependant is actual. The referenced

object might be actual in the same edition as the dependant, or might be actual in an ancestor edition to the

dependant’s and therefore seen as inherited in the dependant’s edition. This rule implies that when a

referenced object is first actualized in a particular edition, then all its direct and recursive dependants, that are

not yet actual in that edition, will be consequentially actualized in that same edition32.

Oracle Database 11g Release 1 brought a new, fine-grained dependency tracking model. In earlier releases,

any change to a referenced object caused all objects that depended on it to become invalid. This was because

only coarse-grained dependency information (object p depends on object q) was recorded. The fine-grained

model records dependency information at the level of the element within the referenced object. For example:

>> If procedure p depends only on procedure x in the package Pkg and if Pkg also exposes other subprograms,

variables, type declarations, and so on, then the dependency information records that p depends on Pkg.x33.

>> If view v mentions only columns c1, c2 and c3 in table t, then the dependency information records exactly

this34.

This means that when a referenced object is changed without changing the elements that an object that

depends on it refer to, then the dependant remains valid.

This understanding needs to be extended when the referenced object, and therefore the dependant too, are

editioned. If the dependant is already actual in the same edition as the referenced object (after this has

suffered the DDL), or in a descendant of that edition, then the full benefit of fine-grained dependency tracking is

available and invalidation that is not logically required is avoided. However, if on completion of the DDL to the

referenced object, it is now in a younger edition than the dependant, then the dependant is actualized into the

referenced object’s edition in an invalid state35.

30. See “Dropping an edition” on page 10

31. The term referenced object reflects the names of the columns in the DBA_Dependencies catalog view family: Referenced_Owner,
Referenced_Name, and so on.

32. The rule is a consequence of logic: an object cannot depend on another that it cannot see.

33. The fine-grained dependency information also records the signature of Pkg.x (the names and datatypes of its formals).

34. The datatypes of the columns are recorded too.

35. It turns out that, because of various internal optimizations, an invalid object that is the result of consequential invalidation does not
show up immediately in the DBA_Objects and DBA_Objects_AE catalog view families. However, it will show up after a call to
DBMS_Utility.Compile_Schema() or to one of the Utl_Recomp APIs. It will show up, too, after an attempt to reference it (in either
a compilation or an execution context).

-- Code_9 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
drop edition Post_Upgrade cascade
/

15 | EDITION-BASED REDEFINITION 10-April-2017

Deliberate invalidation and revalidation of editioned objects
In an ordinarily installed Oracle Database, any user can invoke DBMS_Utility.Validate() or

DBMS_Utility.Compile_Schema()36 but only the owner, Sys, can invoke the Utl_Recomp APIs.

DBMS_Utility.Validate() has two overloads. One takes Object_ID and the other takes Owner, ObjName,

Namespace, and Edition. (Edition is defaulted to the current edition.) If the target object is not actual in the

current edition, then it is not actualized into this but remains actual in the edition where it was found. Notice that

this is different from how alter... compile behaves; here, the target object is actualized into the current edition.

DBMS_Utility.Compile_Schema() and the Utl_Recomp APIs can be understood as wrappers that apply

DBMS_Utility.Validate() to all the invalid objects in all editions in the specified schema or database-wide. As a

consequence, using these APIs never causes actualization.

It is likely that an EBR exercise will make changes to editioned objects where at least some of these will have

dependent objects. This will cause the dependent objects to be actualized into the new edition in an invalid

state37. It would be sensible to revalidate such objects as soon as all the intended DDLs have been done in the

new edition and before proceeding to the next steps38. Utl_Recomp.Recomp_Parallel() is the natural choice.

There are no privilege concerns; implicit validation of invalid objects in the closure of dependency parents of an

invalid object that is referenced for compilation or execution will anyway take place with no special privileges.

DBMS_Utility.Invalidate() has only one overload; this identifies the target object using Object_ID. Its only use

in an EBR exercise would be to enable the values of the PL/SQL compilation parameters for a large number of

units to be changed in the new edition with optimal efficiency. For example, an upgrade script might intend to

compile each of the application’s PL/SQL objects native. This is done efficiently by first invoking

DBMS_Utility.Invalidate() for each object, using an appropriate actual for p_plsql_object_settings, and then

invoking Utl_Recomp.Recomp_Parallel().

Oracle recommends against invoking DBMS_Utility.Invalidate() on an object that is not actual in the

current edition.

The effect of DDL in an edition with a child
Suppose that a database has exactly N editions, e1 through eN, where e2 is the child of e1 and so on. Let x[e1]

denote an editioned object x that is actual in e1 and that has no dependencies on any editioned objects. As

long as no DDL has been done on x, while using edition e2 or one of its descendants, then x[e1] will be visible

in e2 and its descendants because no actual occurrence of x exists in these editions. Notice that if x[e1] does

have a dependency on an editioned object, y, then it will be actualized as x[eM] in edition eM should y be

actualized there as y[eM].

In other words, when an editioned object suffers DDL using a particular edition, then the change is visible in all

descendent editions up to, but not including, the closest descendent edition where another actual occurrence

exists. (This actual occurrence might have Object_Type = non-existent if a DDL had been issued in the

descendent edition to drop the object in question39.)

36. The Execute privilege on DBMS_Utility is granted to public and the package has a public synonym.

37. This is explained in “Consequential actualization of dependants and fine-grained dependency tracking” on page 15.

38. The next steps begin with enabling all crossedition triggers and batch transforming all data from the old representation to the new
one.
16 | EDITION-BASED REDEFINITION 10-April-2017

It can be seen, therefore, that in general, the effect of DDL in any descendent editions it might have, depends

on specific circumstances and history: it might well happen that the effect “shines through” to all descendent

editions; but this result is not guaranteed.

Using DBMS_Sql_Parse() to execute SQL outside of the current edition
DBMS_Sql_Parse() has some new overloads in 11.2. Some support working with crossedition triggers; these

will be described in “The crossedition trigger” on page 22. One new overload is provided to execute a single

SQL statement in a specifically nominated edition. This allows a PL/SQL unit to execute SQL in two or more

different editions and can be useful for automating DBA tasks40. In 11.2, the remote session that supports

access via a database link can use only the remote database’s default edition. See “Database links” on

page 33. By using the remote database’s DBMS_Sql package, then at least single SQL statements can be

executed in the chosen edition in the remote database.

Package state when the same package is instantiated in more than one edition
Suppose that the database has two editions, Pre_Upgrade and Post_Upgrade and that the editioned package

Pkg, with the source shown in Code_1041, is actual in Pre_Upgrade and inherited in Post_Upgrade.

The SQL*Plus script shown in Code_11 runs without error.

This shows that the same editioned package is instantiated distinctly in each distinct edition from which it is

referenced during the lifetime of a session and that its state for each edition’s instantiation is preserved

independently. It is important to understand this when a forward crossedition trigger references an editioned

package that is referenced also by ordinary application code.

39. Objects with Object_Type = non-existent can be seen in the DBA_Objects_AE catalog view family but not in the DBA_Objects
catalog view family. This is a deliberate design. The latter view shows a world which, if a user uses only a single edition, reflects
the same mental model as held for databases before 11.2. The former view enables the user to understand the bigger picture and
to predict what objects will be visible in any edition.

40. Recall that alter session cannot be used to change the current edition from a database PL/SQL unit.

41. The datatype simple_integer, new in 11.1, has a not null constraint.

-- Code_10 State_When_Package_Instantiated_In_Two_Editions\Demo.sql
package Pkg authid Current_User is
 State simple_integer := 0;
end Pkg;

-- Code_11 State_When_Package_Instantiated_In_Two_Editions\Demo.sql
alter session set Edition = Pre_Upgrade
/
begin Pkg.State := 1; end;
/
alter session set Edition = Post_Upgrade
/
begin
 if Pkg.State <> 0 then
 Raise_Application_Error(-20000,
 'Unexpected Pkg.State: '||Pkg.State);
 end if;
end;
/
alter session set Edition = Pre_Upgrade
/
begin
 if Pkg.State <> 1 then
 Raise_Application_Error(-20000,
 'Unexpected Pkg.State: '||Pkg.State);
 end if;
end;
/

17 | EDITION-BASED REDEFINITION 10-April-2017

Notice that the opposite is the case for a noneditioned package. This has just a single instantiation. This can be

seen by re-running Code_11 when the owner of Pkg is not editions-enabled. Now, the value of Pkg.State that

was set in Pre_Upgrade is visible in Post_Upgrade42.

The editioning view

Only some object types are editionable. Those that, in 11.2 and onwards, are not can be split into two classes:

those that might become so in a later release of Oracle Database; and those that will never be editionable.

Objects of the types in the first class do not consume quota—they are represented entirely by metadata (rows

in various tables in the Sys schema) and cannot contain data. It is convenient to refer to these as code objects.

Objects of the types in the second class do consume quota. In addition to the metadata that describes them,

they contain substantive data. It is convenient to refer to these as data objects. The obvious examples of

data objects are tables and indexes. These days, it is not uncommon for tables to contain terabytes of data.

It is practical for a given editioned object to have many occurrences in different editions, and to rely on a name-

resolution scheme that supplies the Edition_Name implicitly because, as code objects, they are small enough

to allow many distinct, but similar, occurrences to exist without using a scheme that represents differences.

However, the potential enormous size of data objects makes such an approach impractical; and any approach

that attempted to represent only differences would have to use a fixed scheme in order not to harm the

performance of DML and queries. The obvious scheme is physical: to use the database block as the quantum

of differencing. But while this might allow a very compact representation of several occurrences of a table that

differed only in a tiny number of rows, it is easy to see that an unfortunate pattern of differences could lead to

such a large number of blocks that differed between the various occurrences that the explosion in data volume

would be unacceptable.

The only practical approach, then, is to let the user control the differencing explicitly. If the aim is to change a

column, for example by widening it, then the original column is left in place and a new wider replacement

column (or columns) is added to the table.

A further practical reason drives this design. Typical table changes during an application upgrade are

incremental: the pre-upgrade and post-upgrade applications see most of the table’s data in common.

Therefore, during an EBR exercise, it is natural and efficient to share this common data explicitly rather than to

use mechanisms to keep tow separate copies of nominally the same data synchronized.

How, then, can such a table be presented to editioned code objects so that these see only the logical intention

of the table at each new version and are not troubled by physical details? A view provides exactly the right

mechanism; but an ordinary view is too general in its power of expression, and because of this forbids it being

treated like a table with respect to some application requirements. For example, it is not allowed to create table-

style triggers43 on an ordinary view.

EBR brings a new kind of view, the editioning view. It is created using special syntax and its defining select

statement must satisfy strict restrictions if the creation is to succeed.

42. A happy consequence of this is that you can still use DBMS_Output totrace code that does DML that causes a crossedition trigger
to fire. The messages that are written by the application code that causes the DML, running for example in the pre-upgrade edition,
and those that are written by the forward crossedition trigger, running therefore in the post-upgrade edition, are interleaved in the
chronological order in which they are written and are displayed ordinarily in a tool like SQL*Plus when the server call completes.

43. A table-style trigger is one whose timing point is before statement, before each row, after each row, or after statement. An ordinary
view allows only instead of triggers.
18 | EDITION-BASED REDEFINITION 10-April-2017

An editioning view, as a special kind of view, is editionable. It might help to think that while the physical table

cannot be editioned, the editioning view allows different occurrences of its logical projection to be presented in

different editions.

Indexes and constraints remain in the physical domain at the table level.

The conditions that an editioning view must satisfy

An editioning view’s defining select statement must obey several restrictions44. The following list is not

intended to be complete; rather, it is intended to make the spirit of the design clearer. The restrictions reflect the

intention that an editioning view must simply return every row from a single table (and only those rows), without

explicit ordering, and project, and maybe rename, a subset of the columns.

Because a successfully created editioning view has been confirmed to have satisfied all the restrictions,

various operations on an editioning view can be supported that cannot be supported on an ordinary view. In

particular, all memory of the fact that an editioning view stands in front of a table is lost during SQL compilation.

The resulting execution plan is identical to the one for a query with the same meaning that targets the table(s)

directly. In other words, the use of an editioning view is guaranteed to bring no performance penalty.

An editioning view must be owned by an editions-enabled user

This restriction emphasizes the fact that an editioning view’s specific and only purpose is to provide an

editioned API to a projection of the data that is stored it the table it covers.

An editioning view must be owned by its table’s owner

This implies that the table for an editioning view cannot be in a different database denoted by a database link.

There can be no more than one visible editioning view for a particular table
in a particular edition

This follows from the basic intent of the editioning view. Its purpose is to present different logical projections of

the data stored in a particular table in different editions. It is meaningless, in the basic conceptual model, to

have more than one logical projection of the same table data in the same edition45.

The subquery factoring clause is not allowed

Because of the other restrictions, the subquery factoring clause could anyway have no practical usability

benefit.

The subquery must be a single query block

This implies that the keywords union [all], minus, and intersect are not allowed.

44. An attempted create editioning view statement that fails to satisfy the restrictions will cause an error and the view will not be
created. The error message may seem obscure. For example, inclusion of a where clause causes ORA-00933: SQL command
not properly ended; and inclusion of the distinct keyword causes ORA-00936: missing expression. If the statement succeeds
without the editioning keyword but fails with it, then the reason is that the defining statement does not respect the restrictions. This
suggests an approach to debugging a failed create editioning view statement: try it again without the editioning keyword.

45. There are also situations where it is useful uniquely to identify, starting with a table, how it is projected in a particular edition. For
example, the intention to create an index on a list of logical columns is easily translated into the corresponding create index
statement at the physical level. And the presence of an index on physical columns that are projected in a particular way in one
edition suggests that a logically corresponding index, on possibly different columns, will be needed to support access from a
different edition. Customer-written utilities can take advantage of the fact that the editioning view that presents a table into a
particular edition is uniquely determined.
19 | EDITION-BASED REDEFINITION 10-April-2017

The for update clause is not allowed

The for update clause is always allowed in a query that targets an editioning view. (This is an instance of the

more general rule that the for update clause is allowed in a query that targets an updatable view.)

The query block must identify exactly one table

The from list must have just one item and the must be a table. A self-join is not permitted46. The item cannot be

a view or a synonym.

The select list must mention only column names and optional aliases

No column can be mentioned more than once. No kind of expression is allowed in the select list. For example,

columns cannot be arithmetically combined; SQL and PL/SQL functions are prohibited.

The where clause, group by clause, and having clause are not allowed

This is consistent with the basic intention to provide a logical cover for a physical table. Application upgrades

typically change the structure of tables and apply corrections, for every row, to values in particular columns. It is

rare that they need to add or remove rows in a table. For such scenarios, different occurrences of the editioning

view must denote different physical tables in different editions47.

The order by clause is not allowed

This, too, is consistent with the basic intention. In particular, without this restriction the requirement could not be

met that the execution plan for a query that targets an editioning view must be identical to the one for a query

with the same meaning that targets the table directly.

Other restrictions

The distinct, unique, and all keywords are not allowed before the select list. The hierarchical query clause and

the model clause are not allowed. The flashback query clause is not allowed.

Allowed freedoms when defining an editioning view
The following semantics are allowed in addition to the basic rule that an editioning view merely projects a single

table, maps the names of its columns, and does no restriction.

The with read only clause is allowed

Sometimes the amount of data in a table that needs to be changed in an application upgrade is small. This is

typically the case for lists of values and for data that configures the behavior of the application. Moreover, such

data is normally not modifiable by ordinary end-user actions but, rather, is changed only by an administrator. In

such cases, a very straightforward approach to online application upgrade is possible. A new table is defined

and populated ordinarily and is then exposed using an editioning view with the same name and logical

meaning in the new edition as the one that exposed the old table into the old edition. By setting these editioning

views with read only, the intention that the table content is not changed by end-users is formally enforced48.

46. ANSI join syntax is therefore disallowed.

47. It hardly needs pointing out that rows come and go, and are changed, as part of the routine operation of every application. The
capability to do this comfortably in a multiuser environment is well-established. It would be appropriate to use EBR to stage the
visibility of such ordinary changes only when the content of the tables in some way defines the behavior and meaning of the
application, and, of course, especially when both the context and the structure of such configuration tables needs to be changed.

48. The DBA_Views catalog view family has Y/N columns called Read_Only and Editioning_View.
20 | EDITION-BASED REDEFINITION 10-April-2017

Of course, the alter view command can be used to make an editioning view either read-only or read/write.

Notice that there is no special alter editioning view syntax.

Primary key constraints are allowed but foreign key constraints are disallowed

Primary key and foreign key constraints can be created on an ordinary view, but the keywords disable

novalidate must be used. The benefit is mainly that tools can generate diagrammatic representations of the

logical database design. However, an editioning view must be editioned and an editioned object cannot be the

source or the target of a foreign key constraint. Therefore, an editioning view cannot be the source or the target

of a foreign key constraint. An editioning view can have a disable novalidate primary key constraint.

Operations supported by an editioning view that are not supported by
an ordinary view
The fact that the following operations are allowed on an editioning view reflects the intention that, once an

editioning view is in place in front of every table, then the rest of the application design and implementation can

treat these editioning views as if they were tables and will never, therefore, need to refer to a table explicitly.

The following are examples. However, rather than listing every single property that distinguishes an editioning

view from an ordinary view, it is more useful to state the overall principle:

>> Any select, insert, update, delete, merge, lock table or explain plan SQL statement49 that will run without

error on a table will run without error on an editioning view that covers that table.

An editioning view allows table-style triggers

Following the approach described in “EBR-readying an application” on page 31 will leave triggers that had

been defined on renamed tables still attached to those table but possibly invalid50. However, to honor the

principle that application code should not refer explicitly to tables, the triggers should be recreated on the

editioning view that now has the table’s former name. This trivially achieved by dropping the triggers and then

re-running the DDL that created them51.

Notice that when DML is done using an editioning view, then not only will triggers defined on the editioning

view fire, but also ones defined on its base table will fire. However, when DML is done using a table, then only

the triggers defined on the table will fire—and triggers defined on the editioning view will not fire. The paradigm

requires that all regular application DML be done using editioning views; as shall be seen (see “The

crossedition trigger” on page 22) only crossedition triggers are allowed to do DML using tables.

A hint in a SQL statement that targets an editioning view can identify an index
by listing the names of its columns.

This, again, allows extant application code to remain correct after the introduction of an editioning view to cover

a table.

49. For example, select Rowid, ev.* from ev is legal when ev is an editioning view.

50. When a table is renamed, the opening part of the source text of a trigger on the table is automatically updated to reflect the new
name. The same happens when columns are renamed and the they are mentioned in the when clause. However, the source text
of the PL/SQL that implements the trigger action is not updated. This will leave the trigger in an invalid state when the text refers
to other tables that have been renamed.

51. The DDL will run without error because the new editioning view exposes exactly the same identifiers as the table it covers. This
holds also for compound triggers that may been defined on the renamed table.
21 | EDITION-BASED REDEFINITION 10-April-2017

Queries against an editioning view allow partition extended syntax

When an editioning view’s base table is partitioned, then the same query extended syntax that can be used

against the table can be used against the editioning view. The SQL*Plus script shown in Code_12 illustrates

this.

EBR using only editions and editioning views
If an application upgrade will change only those tables whose data is not changed via the ordinary end-user

interfaces, then the edition together with the editioning view are sufficient to allow these changes to be made

while the application remains on line. The most obvious example is configuration data—data that determines

the behavior of the application and that is changed only as part of an upgrade. Such data is typically not

voluminous and so it would be natural to create a replacement table for the upgrade so that an editioning view

with a particular owner and name selects from one table in the pre-upgrade edition and from a different table in

the post-upgrade edition. The upgrade installation script can simply populate the replacement table as

required. According to the requirements of the upgrade, the editioning view that covers the post-upgrade table

may, or may not, have the same shape as the editioning view that covers the pre-upgrade table.

The crossedition trigger

Sometimes, an application upgrade has to change one or more tables whose content is queried and changed

by ordinary end-user interaction. The use case described in Xref to be filled in52 provides such an example: a

single column that represents a telephone number as it would be used when dialling within the USA is to be

split into two columns, one for the country code and one for the within-country number. A bulk transformation of

the data is not, by itself, sufficient to ensure correctness of the transformed data. A mechanism is needed to

keep pace with changes that end-users of the pre-upgrade application make to the old representation of the

data, transforming it into the new representation, both during the bulk transformation and after it is complete as

some users continue to use the pre-upgrade application while others start to use the post-upgrade application.

Moreover, changes that end-users of the post-upgrade application make to the new representation of the data

must be transformed back into the old representation for the benefit of end-users of the pre-upgrade

application.

52. An account of this use case will be added in a later version of this whitepaper.

-- Code_12 Partition_Extended_Syntax_For_EV\Demo.sql
create table t(PK integer primary key, Info varchar2(10))
 partition by range(PK)
 (partition p1 values less than (10),
 partition p2 values less than (maxvalue))
/
begin
 insert into t(PK, Info) values (5, 'in p1');
 insert into t(PK, Info) values (15, 'in p2');
 commit;
end;
/

create view v as select a.PK, a.Info from t a
/
-- Causes ORA-14109
select * from v partition(p1)
/

create editioning view ev as select a.PK, a.Info from t a
/
-- Runs without error
select * from ev partition(p1)
/

22 | EDITION-BASED REDEFINITION 10-April-2017

Triggers have exactly the right properties to effect the proper responses to the changes that end-users make

during the bulk forward transformation of data and during the hot rollover period. Moreover, the use of a trigger

for this purpose meets the high level requirement that application code itself can be written to implement only

what is needed for its ordinary pre- and post-upgrade operation and need not implement special logic to

accommodate the period when an EBR exercise is in progress. Special triggers, understood to be distinct from

the application code, can be deployed during the EBR exercise and dropped when it is complete.

A crossedition trigger is a special kind of trigger; and a trigger is an editionable object type. However, unlike

other objects whose type is editionable, a crossedition trigger must be owned by an editions-enabled user; in

other words, a crossedition trigger is always editioned53. The reason for this restriction is that the firing rules for

a crossedition trigger are defined with respect to the relationship between the edition in which it is actual and

the current edition of the session that issues the DML. Further, a crossedition trigger is visible only in the

edition in which it is actual. As a consequence, the SQL*Plus script shown in Code_13 runs without error.

It is unimportant with respect to the firing rules that a crossedition trigger is visible only in the edition in which it

is actual because these rules are explicitly defined; but this has the consequence that dependencies between

crossedition triggers (by virtue of follows or precedes relationships) can exist only between sets of crossedition

triggers that are actual in the same edition54. If the clause is follows, then the target must be a forward

crossedition trigger; and if the clause is precedes, then the target must be a reverse crossedition trigger55.

The compilation of a crossedition trigger follows the normal rules for the compilation of any editioned object:

names are resolved to objects that are visible in the edition in which it is actual. But in contrast to other

53. If a user that is not editions-enabled attempts to create a crossedition trigger, this causes ORA-25030.

54. This restriction ensures that no contradictions about firing order can be expressed. As will be seen, the firing order of crossedition
triggers in a particular edition cannot be interleaved with that of crossedition triggers in a different edition.

55. The follows and precedes clauses were introduced in 11.1. A regular trigger may use only the follows clause and its target must
be a regular trigger on the same table. An ordering relationship may be established only between triggers with the same timing
point (before statement, before each row, after each row, or after statement). An attempt to violate this rule causes ORA-25022:
cannot reference a trigger of a different type. An ordering relationship may be established between compound triggers; however,
the ordinary ordering of the timing points (before statement fires before before each row, and so on) is always respected. It might
appear, therefore, that when a compound trigger with only a before statement section is defined using follows with respect to one
with only a before each row section, the ordering specification is not respected. However, the ordering can be seen to make sense
when many compound triggers are mutually ordered and different ones of them have sections for different subsets of timing points.

-- Code_13 Crossedition_Trigger_Visibilty\Demo.sql
alter session set edition = e2
/
create trigger x
 before insert or update or delete on t
 for each row
 forward crossedition
 disable
begin
 ...
end x;
/
-- e3 is the child of e2
alter session set edition = e3
/
-- Notice that we don't need "or replace"
create trigger x
 before insert or update or delete on t
 for each row
 forward crossedition
 disable
begin
 ...
end x;
/

23 | EDITION-BASED REDEFINITION 10-April-2017

editioned objects, a crossedition trigger and all code it calls always runs using the edition in which it is actual.

Code_20 is a SQL*Plus script that shows this.

A crossedition trigger may be created only directly on a table—and not on either a regular view or an editioning

view56. This implies that only the before statement, before each row, after each row, and after statement

variants may be specified; the instead of variant is not legal for a crossedition trigger. A crossedition trigger

may be a compound trigger.

Basic firing rules for crossedition triggers
The firing rules were designed on the assumption that the crossedition triggers required to implement a

particular upgrade are all installed in the post-upgrade edition. This is consistent with the overall paradigm that

(in order that the pre-upgrade application will be unperturbed) all DDL to editioned objects is done in the

post-upgrade edition. The rules assume that pre-upgrade columns are changed (by ordinary application code)

only by sessions using the pre-upgrade edition and that post-upgrade columns are changed (again by ordinary

application code) only by sessions using the post-upgrade edition. There are therefore two kinds of

crossedition trigger:

>> A forward crossedition trigger is fired by application DML issued by sessions using the pre-upgrade edition.

Such a trigger is used to implement transformations from the old representation forwards into the new

representation.

>> A reverse crossedition trigger is fired by application DML issued by sessions using the post-upgrade edition.

Such a trigger is used to implement transformations from the new representation backwards into the old

representation.

The following is a more careful statement of the rules, acknowledging the fact that three or more editions might

be active during an EBR exercise:

>> A forward crossedition trigger is fired by application DML issued by a session using any ancestor edition to

that in which the trigger is actual.

>> A reverse crossedition trigger is fired by application DML issued by a session using the edition in which the

trigger is actual or any descendant of that edition.

The following demonstration illustrates these basic firing rules for crossedition triggers. The database has five

editions, e1, e2 (child of e1), and so on through to e5 (child of e4).

The procedure Trace57, shown in Code_15, is owned by Sys and is therefore not editioned.

There is a public synonym for Sys.Trace, and Execute on Sys.Trace is granted to public.

56. The attempt causes ORA-42306: a crossedition trigger may not be created on an editioning view.

-- Code_14 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
procedure Trace(
 t1 in varchar2, t2 in varchar2 := null)
 authid Definer
is
 f Utl_File.File_Type := Utl_File.Fopen(
 Location => 'MY_DIR',
 Filename => 't.txt',
 Open_Mode => 'a',
 Max_Linesize => 32767);
begin
 if t2 is null then
 Utl_File.Put_Line(f, t1);
 else
 Utl_File.Put_Line(f, Rpad(t1, 30, '.')||' '||t2);
 end if;
 Utl_File.Fclose(f);
end Trace;
24 | EDITION-BASED REDEFINITION 10-April-2017

The user Usr is editions-enabled and is granted only Create Session, Resource, and Use on each of e1

through e5.

The function Usr.Curr_Edn, shown in Code_15, is actual in edition e1.

The table Usr.t has a column n of datatype number; the editioning view Usr.ev covers it and selects n. The

regular trigger Usr.Regular, shown Code_16, is actual in edition e2.

The forward crossedition trigger Usr.Fwd_Xed, shown in Code_17, is actual in edition e3.

The reverse crossedition trigger Usr.Rev_Xed, shown in Code_19, is actual in edition e4.

Finally, the procedure Usr.Do_Update58, shown in Code_19, is actual in edition e1.

57. It is typically not possible to trace the behavior of a crossedition trigger using DBMS_Output.Put_Line(). This is because the
procedure accumulates the lines in a DBMS_Output package global collection so that, when the server call terminates, SQL*Plus
can traverse the collection to print out the lines. However, as has been explained (see “Package state when the same package is
instantiated in more than one edition” on page 17), when a session uses different editions during its lifetime, then a particular
package is separately instantiated in each edition from which a reference to the package is made. It is for this reason that the more
cumbersome approach, using Utl_File, is used. This method of tracing, using Utl_File to open the trace file in append mode, write
one line, and then to close the file is very inefficient. However, in a test such as this, the inefficiency is undetectable.

58. Notice that the procedure Usr.Do_Update issues a commit. This allows the scripts shown in Code_20 to run without error. It is
illegal to change the current edition during a transaction. (See “Conceptual explanation of the edition” on page 6.)

-- Code_15 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
function Curr_Edn return varchar2 authid Definer is
 e constant varchar2(30) not null :=
 Sys_Context('Userenv', 'Current_Edition_Name');
begin
 return e;
end Curr_Edn;

-- Code_16 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
trigger Regular
 after update on ev
begin
 Trace('From Regular', Curr_Edn());
end Regular;

-- Code_17 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
trigger Fwd_Xed
 after update on t
 forward crossedition
begin
 Trace('From Fwd_Xed. Expect E3', Curr_Edn());
end Fwd_Xed;

-- Code_18 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
trigger Rev_Xed
 after update on t
 reverse crossedition
begin
 Trace('From Rev_Xed. Expect E4', Curr_Edn());
end Rev_Xed;

-- Code_19 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
Do_Update authid Definer is
begin
 Trace('From Do_Update', Curr_Edn());
 update ev set n = n + 1;
 commit;
end Do_Update;
25 | EDITION-BASED REDEFINITION 10-April-2017

The SQL*Plus script shown in Code_20

will then produce this output to the trace file t.txt:

When a database has no more than two active editions during an EBR exercise and when no crossedition

trigger issues DML59, then it is sufficient just to understand these basic firing rules.

59. This situation is expected to be common.

-- Code_20 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
alter session set edition = e1
/
begin
 Trace(Chr(10)||'App using e1');
 Do_Update();
end;
/

alter session set edition = e2
/
begin
 Trace(Chr(10)||'App using e2');
 Do_Update();
end;
/

alter session set edition = e3
/
begin
 Trace(Chr(10)||'App using e3');
 Do_Update();
end;
/

alter session set edition = e4
/
begin
 Trace(Chr(10)||'App using e4');
 Do_Update();
end;
/

alter session set edition = e5
/
begin
 Trace(Chr(10)||'App using e5');
 Do_Update();
end;
/

-- Code_21 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
App using e1
From Do_Update................ E1
From Fwd_Xed. Expect E3....... E3

App using e2
From Do_Update................ E2
From Regular.................. E2
From Fwd_Xed. Expect E3....... E3

App using e3
From Do_Update................ E3
From Regular.................. E3

App using e4
From Do_Update................ E4
From Regular.................. E4
From Rev_Xed. Expect E4....... E4

App using e5
From Do_Update................ E5
From Regular.................. E5
From Rev_Xed. Expect E4....... E4
26 | EDITION-BASED REDEFINITION 10-April-2017

Advanced firing rules for crossedition triggers
We will use the term crossedition trigger DML for DML issued directly, using embedded SQL or

native dynamic SQL, from the PL/SQL unit that is a crossedition trigger; and we will use the term regular DML

for DML issued from any other site. Notice that this definition means that DML that is issued from a

PL/SQL unit that is invoked by a crossedition trigger is regular DML. In particular, DML issued by using the

DBMS_Sql API is by default regular DML, even when the invocation of these subprograms is made directly

from the implementation of a crossedition trigger. However, if the name of the crossedition trigger that invokes

the DBMS_Sql API is provide for the actual of the Applying_Crossedition_Trigger() formal parameter to

DBMS_Sql_Parse(), then the DML that the DBMS_Sql API issues will be crossedition trigger DML.

>> Regular DML always fires both visible regular triggers and appropriately selected crossedition triggers.

>> The firing order of crossedition triggers in a particular edition is never interleaved with that of crossedition

triggers in a different edition. All forward crossedition triggers in edition e will fire before any in a descendent

edition of edition e. And all reverse crossedition triggers in edition e will fire after any in an ancestor edition of

edition e.

>> Crossedition trigger DML from a forward crossedition trigger actual in edition e will fire forward crossedition

triggers that are actual in descendents of edition e but will never fire reverse crossedition triggers or regular

triggers.

>> Correspondingly, crossedition trigger DML from a reverse crossedition trigger actual in edition e will fire

reverse crossedition triggers that are actual in ancestors of edition e but will never fire forward crossedition

triggers or regular triggers.

>> Recall the fact that DML done to a table does not fire triggers on an editioning view that covers the table (see

“An editioning view allows table-style triggers” on page 21). This means that, in practice, even DML to tables

that a crossedition trigger issues using the DBMS_Sql API or a helper PL/SQL unit that in turn does the DML

(which is therefore regular DML) will not fire regular triggers because these, following the paradigm, will not

be created on tables but will be created only on editioning views.

>> Crossedition trigger DML from a unit that is actual in edition e does not, unless special programming steps

(described in the next two bullet points) are taken, fire crossedition triggers that are actual in edition e.

>> If forward crossedition trigger Fwd_Xed_1, on table t1, issues crossedition trigger DML to table t2, then

forward crossedition trigger Fwd_Xed_2, on table t2, will fire if and only if there is an ordering relationship

between Fwd_Xed_2 and Fwd_Xed_1. Either Fwd_Xed_2 may be defined using the follows Fwd_Xed_1

syntax; or the ordering relationship between Fwd_Xed_1 and Fwd_Xed_2 may be established transitively

(through one or several intervening crossedition triggers).

>> Correspondingly, if reverse crossedition trigger Rev_Xed_1, on table t1, issues crossedition trigger DML to

table t2, then reverse crossedition trigger Rev_Xed_2, on table t2, will fire if and only if there is an ordering

relationship between Rev_Xed_2 and Rev_Xed_1. Again, the ordering may be direct or transitive60.

The apply step: systematically visiting every row to transform the pre-upgrade representation to the
post-upgrade representation
While forward crossedition triggers are necessary in order to propagate changes that happen to be made to the

pre-upgrade representation by user activity, just having them in place is, of course, not sufficient to ensure that

every row will be transformed. The simplest way to ensure that every row is transformed is to use a batch

process to force each forward crossedition trigger to fire. This is trivially achieved by updating each forward

60. Of course, neither the use of the precedes clause nor the use of the follows must specify circularity. The attempt causes
ORA-25023: Cyclic trigger dependency is not allowed.
27 | EDITION-BASED REDEFINITION 10-April-2017

crossedition trigger’s base table to set a column that fires the trigger on update to itself. There is, however, a

little more to this than you might at first think.

Using DBMS_Sql_Parse() to apply a forward crossedition trigger

The firing rules for crossedition triggers dictate that regular DML issued by a session using edition e will not fire

forward crossedition triggers that are actual in edition e. But the paradigm for EBR requires that a session that

is installing the upgrade should use the post-upgrade edition. How, then, can such a session make a relevant

forward crossedition trigger fire?

New in 11.2, DBMS_Sql_Parse() has overloads with the formal parameter Apply_Crossedition_Trigger. These

overloads also have the formal parameters Edition and Fire_Apply_Trigger. Apply_Crossedition_Trigger has

no default value, Edition has the default value null, and Fire_Apply_Trigger has the default value true. (Other

overloads have just the formal parameter Edition; in these, it has no default value.) Code_22 shows the simple

use of the overload with Apply_Crossedition_Trigger to fire the forward crossedition trigger Fwd_Xed, on

table t, for each of its rows.

When Edition is null, then names are resolved in the current edition of the session that invokes

DBMS_Sql_Parse(). The significance of Fire_Apply_Trigger is explained in “Using explicit SQL for the

apply step” on page 29.

Forward crossedition triggers are the only triggers that you can apply (cause to fire on every row of the table on

which they are defined).

Crossedition triggers must be idempotent

It is impossible to predict whether a particular row that is to be transformed by a forward crossedition trigger will

be visited first by ordinary end-user activity or by the apply step. Therefore, it is possible that, when the

apply step happens second, the same transform will be applied twice to the same row. The action of a forward

crossedition trigger must therefore, by explicit design, be idempotent. (Similar rationale holds for the design of

a reverse crossedition trigger—even though these are never the subject of an apply step.)

When a replacement table is used, then every row in the original table needs to be reflected in the

replacement. If the source row is visited first by ordinary end-user activity, then when the same row is visited by

the apply step, no further cation is needed. (This is because the current state of the source row is already

reflected in the target replacement table.) The Ignore_Row_On_Dupkey_Index61 is provided to allow the rule

to be simply implemented. It is, however, necessary to detect that the apply step is in progress if this is

implemented simply by causing the forward crossedition trigger that implements the transform to fire for every

row. The boolean function Applying_Crossedition_Trigger() in the package DBMS_Standard is provided for this

purpose.

It is possible, of course, that when the forward crossedition trigger fires in response to ordinary end-user

activity, the source row is already reflected in the target table. If this is the case, then the functional equivalent

of a merge must be done. The Change_Dupkey_Error_Index hint is provided to allow this functionality to be

programmed conveniently62.

61. The Ignore_Row_On_Dupkey_Index, Change_Dupkey_Error_Index, and Retry_On_Row_Change hints are new in 11.2.

62. To do... explain the circumstances when the Retry_On_Row_Change hint is useful.

-- Code_22
DBMS_Sql.Parse(
 c => The_Cursor,
 Language_Flag => DBMS_Sql.Native,
 Statement => 'update t set c1 = c1',
 Apply_Crossedition_Trigger => 'Fwd_Xed');
28 | EDITION-BASED REDEFINITION 10-April-2017

When to enable crossedition triggers—DBMS_Utility.Wait_On_Pending_DML()

In order that there be no “lost updates” during the apply step, the following logic must be used.

>> Enable the forward crossedition triggers that are mutually related by the follows relationship.

>> Invoke DBMS_Utility.Wait_On_Pending_DML(). This waits until all transactions (other than the caller’s own)

that have locks on the listed tables and that began prior to the invocation of this function have either

committed or been rolled back.

>> Start the apply step.

Using the DBMS_Parallel_Execute API

If the table which will suffer the apply step has very many rows, then should the operation be done as a single

transaction, ordinary users attempting to change rows in the same table would be very likely to suffer

unacceptable waits. Therefore, the availability of the pre-upgrade application will be improved if the apply step

is conducted in separately committed chunks of reasonable size. (Because the transform is required to be

idempotent, there is no requirement to complete the apply step in a single commit unit and no requirement to

keep the wall clock time between the commit of the separate chunks short.) The DBMS_Parallel_Execute

package63 provides a convenient way to achieve this. It exposes just the same degrees of freedom as does the

DBMS_Sql_Parse() overload shown in Code_22 on page 28.

Using explicit SQL for the apply step

While it takes least effort on behalf of the developers of the EBR exercise to implement the apply step simply

by causing the forward crossedition trigger(s) that implement the transform for each row of the table, this is not

always the approach that produces the most performant result. This is especially the case when a replacement

table is used. A SQL statement that has the same effect (if one can be written) will use less computational

resource than the row-by-row approach (with associated per row SQL to PL/SQL to SQL context switches) that

reusing the forward crossedition trigger(s) implies. Code_23 shows how, to achieve this, DBMS_Sql_Parse() is

used with Fire_Apply_Trigger set to false to indicate that rather than firing the forward crossedition trigger

designated by Apply_Crossedition_Trigger, the real SQL statement designated by Statement will be used.

It is necessary to specify the name of the forward crossedition trigger, Fwd_Xed, that implements the same

transform so that the closure of other forward crossedition triggers in follows relationship the Fwd_Xed will fire.

Of course, the DBMS_Parallel_Execute approach may be used for this approach to the apply step.

Combining several bug fixes in a single EBR exercise
Real applications are often very large and complex; they may be developed and maintained by a large team;

and, sadly but realistically, they suffer from many independent bugs. Each bug fix might be implemented

independently of others by a different developer. There are two ways to implement a set of fixes at a deployed

site.

>> Either, a single patch script is developed to make the transformation corresponding to N distinct bug fixes,

going from the start state to the end state in an optimal fashion

63. The DBMS_Parallel_Execute is new in 11.2. It is implemented ordinarily in PL/SQL as wrapper for calls to the DBMS_Scheduler
API. It manages the state of progress of a task by using Sys-owned tables exposed via catalog views.

-- Code_23
DBMS_Sql.Parse(
 c => The_Cursor,
 Language_Flag => DBMS_Sql.Native,
 Statement => The_Real_SQL_Statement,
 Apply_Crossedition_Trigger => 'Fwd_Xed',
 Fire_Apply_Trigger => false);
29 | EDITION-BASED REDEFINITION 10-April-2017

>> or N separate patch scripts are developed, each to implement the fix for one bug, and these N scripts are run

in succession in an order that has been designed to be appropriate.

The first approach is potentially more efficient; but the second approach is likely to require less effort from the

team that develops and maintains the application. Moreover, especially when the application is delivered by an

ISV64, different sites where the same application is deployed might need to apply different bug fixes; in such

cases, the second approach offers more flexibility.

When the first approach is implemented using EBR, it is very unlikely that the advanced firing rules for

crossedition triggers will be useful. The exercise will use only a single new edition, and no crossedition trigger

Trg2 will implement logic to respond to a change that a different crossedition trigger Trg1 will make. (Rather,

Trg1 will implement directly the logic that Trg2 otherwise would have implemented.)

However, when the second approach is implemented using EBR, it might happen that one crossedition trigger

Trg2 must fire only after another crossedition trigger Trg1 has fired because, in the ordering scheme for

individual fixes, it is realized that Trg2 (on table t2) must read data that Trg1 (on table t1) must first have

changed. In relatively rare cases, not only might Trg1 do DML to t2 but also Trg2 might do DML to t1—in other

words, a possibility of circularity might arise.

The conceptually simple way to avoid such circularity is to use a new edition for each fix, where the parent-child

order of the editions reflects the designed order of applying the fixes. End-user sessions would use only the

ultimate ancestor edition and the ultimate descendent edition. The fact that crossedition trigger DML from a

forward crossedition trigger will fire only those forward crossedition triggers in descendent editions (and

correspondingly for reverse crossedition triggers) avoids circular firing. However, it is less cumbersome to use

only a single new edition; in this case, that fact that crossedition trigger DML will never fire crossedition triggers

in the same edition unless this is explicitly requested with a follows or precedes mutual relationship avoids

circular firing.

64. ISV stands for Independent Software Vendor and here denotes a vendor that produces an application for Oracle Database that is
deployed by many different customers.
30 | EDITION-BASED REDEFINITION 10-April-2017

EBR-readying an application

EBR-readying an application requires that at lest one user be editions-enabled and that an editioning view be

introduced to cover each of the application’s tables. It might be necessary to do some schema reorganization in

order that the intended editions-enabling will succeed.

This EBR-readying step is a non-negotiably offline operation. And, because of the requirement for testing that

the various changes to the application imply, the vehicle must be a new version of the application. The

application author must decide if a new version will be dedicated to be the vehicle for delivering the

EBR-readied application or if other functionality changes might be bundled into the same new version.

Editions-enabling the intended users

Because an editioning view can be owned only by an editions-enabled user, then every user that owns a table

that belongs to the application, and that therefore will be covered by an editioning view, must be

editions-enabled65. Further, every user that owns a synonym, view, or PL/SQL object that belongs to the

application should be editions-enabled so that such objects can be modified as appropriate in the child edition

during an EBR exercise. Note though that an evolved ADT cannot be editioned and nor can a view that is the

source or the target of a foreign key constraint. This implies that, when the application has such objects, some

kind of explicit fix will be necessary.

Recall that an object that is not editioned cannot depend on one that is editioned. This means that the attempt

to editions-enable a user that owns an object whose type is editionable will fail66 if that object has an object that

is not editioned in the closure of its dependants that is not owned by the to-be-editions-enabled user. If this

failure occurs, then the force keyword can be used. The alter user... enable editions force command will

succeed but all the not editioned objects in the closure of dependants of each now editioned object owned by

the newly editions-enabled user, not owned by the user, will be invalidated.

The invalidation will be recoverable for an invalidated object of editionable type if its owner can, in turn, be

successfully editions-enabled. But the invalidation will be irrecoverable for an invalidated object that cannot

become an editioned object, either because its type is not editionable or because its owner cannot be

editions-enabled.

It might prove necessary to designate one or more users that own objects that belong to the application that will

not be editions-enabled for the specific purpose of owning objects whose type is editionable but that must

become editioned in order to avoid irrecoverable invalidations.

Introducing an editioning view in front of every table

Suppose that an extant application that runs in 11.1 has a table The_Rows with columns PK, a, b, c, and d. Of

course, these names will be reflected in very many places in the application’s install scripts and in its code. In

order to take advantage of EBR, application code must no longer refer to this table explicitly but must instead

refer to an editioning view that covers the table.

65. Oracle recommends that no attempt be made to predict which tables are likely to suffer change in patches and upgrades to the
application in the hope that only each of these needs to be covered by an editioning view. This is bound to be a false economy of
effort.

66. The attempt causes ORA-38819.
31 | EDITION-BASED REDEFINITION 10-April-2017

In fact, each one of an application’s tables must be covered by an editioning view; and all data access from

application code must reference the covering editioning view; only crossedition triggers67 and, of course,

editioning views, should be allowed to reference tables.

The least invasive way to effect this regime is to rename the table, giving it a name that is conventionally

related to its former name, and then to create an editioning view with the table’s former name and that exposes

the same column list as did the table. It is natural, but not necessary, to rename the table’s columns using a

convention that denotes the change history.

Code_24 shows an example of a create editioning view statement that follows such a naming convention68.

Notice that EBR cannot be used to support the introduction of an editioning view to cover each of an

applications tables69. Rather, the one-time operation, like the upgrade of the Oracle Database to 11.2, is the

price that must be paid to EBR-ready the application. It would be natural to do both first the upgrade to 11.2 and

then the introduction of the editioning views in the same downtime exercise.

Notice that constraints and indexes (with the exception of join indexes70) remain valid when their tables, and

the columns in these, are renamed because the rename command automatically updates the constraint and

index metadata. However, such renaming will, in general, invalidate triggers because the trigger prologue is

automatically edited but the PL/SQLcode that implements the trigger is not. The remedy is simply to re-run the

scripts that created the triggers once the covering editioning views are in place. This will have the effect of

moving each trigger from a table to the editioning view that covers it, in line with the recommended practice.

67. See “The crossedition trigger” on page 22.

68. The name PK is meant to suggest primary key. Suppose that a particular application upgrade intended to split a single primary
key column into two which then would be then new primary key. Because constraints are defined at the table level, this step would
require the intermediate use of unique indexes.

69. This restriction needs to be stated more carefully. When the aim is to cover each table The_Rows with an editioning view
The_Rows by first renaming the table to The_Rows_, then EBR cannot be used to support this. If, rather, each table retains its old
name and each editioning view has a new name, then EBR can be used. In this approach, a new edition would be used for the
creation of the editioning views. Of course, every database object that had referred directly to the table would now need to be
edited so that it referred to the corresponding editioning view. When such a reference was made from the code of an editioned
object, then a new occurrence could be ordinarily made in the new edition. However, when the reference was made from a
noneditioned object, then this would need to be manually versioned by giving the new occurrence a new name. It is expected that
the effort, and therefore the risk of introducing bugs, of using EBR to introduce the editioning views will be considered by most
customers too great and that they will choose, instead, to EBR-ready their applications offline.

70. A join index is created like this.

An attempt to rename the column Masters.Val fails with ORA-23293: Cannot rename a column which is part of a join index.

-- Code_24 n/a
create editioning view The_Rows as
 select
 a.PK_1 PK,
 a.a_1 a,
 a.b_1 b,
 a.c_2 c,
 a.d_3 d
 from The_Rows_ a
32 | EDITION-BASED REDEFINITION 10-April-2017

Existing features in the presence of editions

Database links
A database link has always been allowed between databases at different versions of Oracle Database.

However, we need not consider the case where a database link in a database at 11.1 or earlier denotes a 11.2

database71. We need only consider a database link in a database at 11.2 or later that denotes a database at its

own version or at an earlier version. The interesting case is when a database with more than one edition has a

database link that denotes another database with more than one edition. It turns out that the case where the

target database has just one edition, or is at 11.1 or earlier where there is no such thing as an edition, is a just

degenerate case of the more interesting one.

Though a database link is a code object, the object type is not editionable.

The create database link statement has no way to identify the edition at the target database72. When this target

has more than one edition, then the session that supports the reference to an object @Some_Link uses the

target’s default edition. The local database therefore sees a “flat” picture of the remote database. It cannot tell

whether the target is at a version of Oracle Database that knows nothing of editions, has is just one edition, or

has several editions. Especially, it cannot detect whether a remote object is editioned or not73.

For objects within a single database, an object that is not editioned cannot depend on an editioned object. This

restriction is necessary because of the rules which are used to determine which actual occurrence of an

editioned referenced object to resolve to. These rules rely on knowing the edition of the dependent object.

The general rule, that an object that is not editioned cannot depend on one that is, needs to be stated very

carefully when the referenced object is remote. In this case, the flattening effect of seeing the referenced object

via the link trumps the fact that it might be editioned. For a remote dependency, the mechanism of the link is

sufficient to uniquely identify which actual occurrence of the reference object to use when it is editioned.

Therefore, a local object that is not editioned can depend on a remote object that is editioned.

The pre-11.2 understanding about remote dependencies (timestamp mode versus signature mode) holds even

when both the local dependent object and the remote referenced object are editioned and when the local

database and the remote database each has several editions.

Application Contexts
Code_25 shows a SQL statement that creates a global application context.

Objects whose type is context are listed in the DBA_Objects catalog view family and they are never

editioned74. While it appears that My_Context depends on the package Usr.My_Context_API, this is not a

71. The source database should not be at an earlier version than the target. This rule holds for any client, for example SQL*Plus; the
client version must be at least the same as the database version. If a 9.2 SQL*Plus client connects to a 11.1 database, many
operations might seem to work, but some will fail. The advent of editions doesn’t change this.

72. The power of expression of the connect string could be extended to allow the target edition to be specified.

73. Of course, if the local database executes a PL/SQL unit that uses remote procedure call to invoke the overload of
DBMS_Sql_Parse() in the remote database that allows the edition to be specified, and other appropriate DBMS_Sql subroutines,
then it can discover arbitrary information about the remote objects and execute SQL statements of all sorts in any remote edition
that it chooses. But such a unit is not expected to be part of an ordinary application.

-- Code_25 Application_Context\Demo.sql
create context My_Context
using Usr.My_Context_API
accessed globally
33 | EDITION-BASED REDEFINITION 10-April-2017

formal relationship. The create context statement will succeed even if the package Usr.My_Context_API does

not exist. Therefore, even though My_Context is not editioned, Usr.My_Context_API may be.

The consequence of this is best understood by an example. Suppose that the database has two editions,

Pre_Upgrade and Post_Upgrade and that package Usr.My_Context_API with the source shown in Code_26 is

actual in Pre_Upgrade and inherited in Post_Upgrade.

Suppose, too, that the implementation in the body of My_Context_API is actual in both Pre_Upgrade and

Post_Upgrade because improved functionality is introduced in the newer occurrence. It is common to use

Set_Value() to restrict the choice of key using a list of allowed keys and, therefore, a common improvement is

to add a new key with a new meaning for the clients of the context it controls. Such details are unimportant for

this example; it is sufficient to consider the Pre_Upgrade implementation shown in Code_27

and a Post_Upgrade implementation that simply replaces the text Pre_Upgrade with Post_Upgrade.

Suppose now that the SQL*Plus script shown in Code_28 is used to store values in the context.

The result stands in contrast to that for package state75. All six key-value pairs are stored in the same context

but are (in this example) annotated differently reflecting the current edition at the time that Set_Value() was

invoked.

74. The list of editionable object types is given in “editionable object types, editions-enabled users, and editioned objects” on page 7;
context is not among them.

75. See “Package state when the same package is instantiated in more than one edition” on page 17.

-- Code_26 Application_Context\Demo.sql
package My_Context_API authid Current_User is
 procedure Set_Value(Key in varchar2, Val in varchar2);
 function Key_Value(Key in varchar2) return varchar2;
end My_Context_API;

-- Code_27 Application_Context\Demo.sql
package body My_Context_API is
 procedure Set_Value(Key in varchar2, Val in varchar2) is
 begin
 DBMS_Session.Set_Context(
 namespace => 'My_Context',
 attribute => Key,
 value => 'Using the Pre_Upgrade''s Set: '||Val);
 end Set_Value;

 function Key_Value(Key in varchar2)return varchar2 is
 begin
 return 'Using Pre_Upgrade''s Key_Value: '||
 Sys_Context('My_Context', Key);
 end Key_Value;
end My_Context_API;

-- Code_28 Application_Context\Demo.sql
alter session set edition = Pre_Upgrade
/
begin
 My_Context_API.Set_Value(Key=>'a', Val=>'Apple');
 My_Context_API.Set_Value(Key=>'b', Val=>'Banana');
 My_Context_API.Set_Value(Key=>'c', Val=>'Carrot');
end;
/
alter session set edition = Post_Upgrade
/
begin
 My_Context_API.Set_Value(Key=>'d', Val=>'Date');
 My_Context_API.Set_Value(Key=>'e', Val=>'Eggplant');
 My_Context_API.Set_Value(Key=>'f', Val=>'Fig');
end;
/

34 | EDITION-BASED REDEFINITION 10-April-2017

Suppose, finally, that the SQL*Plus script shown in Code_29 is used to retrieve values from the context.

It produces this output:

This shows that both the old and new implementations of Key_Value() see the same edition-independent set of

values stored in the context.

It is essential to understand this behavior when designing an upgrade to an application that uses a context.

Different strategies will serve different purposes. For example, if the setter and getter subprograms did no more

than enforce the list of allowed keys, then a new key could be added in a new edition without considering the

representation of the values that the context stores, and the both the new and the old implementations could

populate the same context. For a more radical change, the new setter and getter subprograms could use a

different context than the old ones76.

VPD policies on editioning views and synonyms
Oracle recommends that any VPD policy that is attached to a table in the application before it has been readied

for EBR be dropped and re-created on the editioning view that covers the table after the application has been

readied for EBR. The main reason is that the apply step needs to visit every row in the table; and a VPD policy

can block the table’s owner from seeing every row in he table.

Regular and fine-grained audit policies
Oracle recommends that any regular or fine-grained auditing policy that is attached to a table in the application

before it has been readied for EBR be left at the table level after the application has been readied for EBR. This

is because auditing is the last line of defense in a security design. It is conceivable that a person who knows

76. This discussion reinforces the wisdom of the discipline of using a getter function in all application code, thereby hiding the name
of the context, rather than invoking Sys_Context('My_Context', Key) directly.

-- Code_29 Application_Context\Demo.sql
alter session set edition = Pre_Upgrade
/
begin
 DBMS_Output.Put_Line('a: '||
 Usr.My_Context_API.Key_Value('a'));
 ...
 DBMS_Output.Put_Line('d: '||
 Usr.My_Context_API.Key_Value('d'));
 ...
end;
/
alter session set edition = Post_Upgrade
/
begin
 DBMS_Output.Put_Line('a: '||
 Usr.My_Context_API.Key_Value('a'));
 ...
 DBMS_Output.Put_Line('d: '||
 Usr.My_Context_API.Key_Value('a'));
 ...
end;
/

a: Using Pre_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Apple
b: Using Pre_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Banana
c: Using Pre_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Carrot
d: Using Pre_Upgrade's Key_Value: Using the Post_Upgrade's Set: Date
e: Using Pre_Upgrade's Key_Value: Using the Post_Upgrade's Set: Eggplant
f: Using Pre_Upgrade's Key_Value: Using the Post_Upgrade's Set: Fig

a: Using Post_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Apple
b: Using Post_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Banana
c: Using Post_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Carrot
d: Using Post_Upgrade's Key_Value: Using the Post_Upgrade's Set: Date
e: Using Post_Upgrade's Key_Value: Using the Post_Upgrade's Set: Eggplant
f: Using Post_Upgrade's Key_Value: Using the Post_Upgrade's Set: Fig
35 | EDITION-BASED REDEFINITION 10-April-2017

the password of the user that owns a table could turn out to be untrustworthy and might make unauthorized

changes to the data that the table stores.
36 | EDITION-BASED REDEFINITION 10-April-2017

Conclusion

This whitepaper has explained how edition-based redefinition is used to allow an application’s database

objects to be patched or upgraded while the application remains in uninterrupted use. It has drawn attention to

the following characteristics that distinguish the capability markedly from other Oracle Database capabilities

that support the other subgoals of the overall high availability goal.

>> An application’s database backend must be specifically prepared to use EBR. This will need a new version

of the application as the vehicle. The new version will be designed by the application’s architect and will be

delivered by upgrade scripts created in by the application’s developers. The upgrade to the EBR-readied

version must be done in downtime because tables will be renamed and dependent objects will be

invalidated. Only when an editioning view covers each table and restores its former name will revalidation be

possible77.

>> If the extant application, before it is EBR-readied, has unfavorable occurrences of objects that cannot be

editioned that depend on objects that will be editioned, if it has occurrences of evolved ADTs owned by users

that will be editions-enabled, or if it has occurrences of views that are the source or target of foreign key

constraints owned by users that will be editions-enabled, then the application’s architect will need to design

some non-trivial changes to the distribution of objects among the applications owners.

>> Once the application has been EBR-readied, then subsequent upgrades and patches may be done online.

>> Such scripted EBR exercises, just like scripted classical offline upgrades and patches, will be designed by

the application’s architect and implemented by the application’s developers. An administrator at the

deployed site of an application cannot perform an online application upgrade unless the application’s

developers have delivered the upgrade scripts as an EBR exercise.

Should a particular upgrade require to change only synonyms, views, or PL/SQL objects, then the upgrade

scripts will be identical to those used for a classical offline upgrade. The only difference will be that they are

executed using a new edition.

Should a particular upgrade require additionally (or alternatively) to change the shape or content of only those

tables that do not suffer changes in consequence of ordinary end-user activity, then the design and

implementation of the EBR exercise will not need to use crossedition triggers; it will need only to change

editioning views, and possibly other editioned objects, in the new edition.

Only when the upgrade requires to change the shape or content of tables that do suffer changes in

consequence of ordinary end-user activity, is the use of crossedition triggers required. These crossedition

triggers are created to sustain the EBR exercise and are dropped when it is complete; in contrast to editioning

views, they are not a permanent part of the application.

Enjoy!

Bryn Llewellyn,

Distinguished Product Manager,

Database Server Technologies Division, Oracle Headquarters

bryn.llewellyn@oracle.com

10-April-2017

77. Of course, this revalidation will be possible without changing the code of the dependent objects.
37 | EDITION-BASED REDEFINITION 10-April-2017

mailto:bryn.llewellyn@oracle.com

Integrated Cloud Applications & Platform Services

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1014

Edition-Based Redefinition
April 2017
Author: Bryn Llewellyn

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000

Fax: +1.650.506.7200

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Introduction
	Customer Goals and Oracle Database Capabilities
	Edition-Based Redefinition
	The edition
	The challenge
	Conceptual explanation of the edition
	editions
	editionable object types, editions-enabled users, and editioned objects
	actual objects, inherited objects, and name resolution
	Retiring an edition
	Dropping an edition

	The EBR lifecycle
	Diagramatically illustrated example
	A minimal, complete EBR exercise code example
	Consequential actualization of dependants and fine-grained dependency tracking
	Deliberate invalidation and revalidation of editioned objects
	The effect of DDL in an edition with a child
	Using DBMS_Sql_Parse() to execute SQL outside of the current edition
	Package state when the same package is instantiated in more than one edition

	The editioning view
	The conditions that an editioning view must satisfy
	An editioning view must be owned by an editions-enabled user
	An editioning view must be owned by its table’s owner
	There can be no more than one visible editioning view for a particular table in a particular edition
	The subquery factoring clause is not allowed
	The subquery must be a single query block
	The for update clause is not allowed
	The query block must identify exactly one table
	The select list must mention only column names and optional aliases
	The where clause, group by clause, and having clause are not allowed
	The order by clause is not allowed
	Other restrictions

	Allowed freedoms when defining an editioning view
	The with read only clause is allowed
	Primary key constraints are allowed but foreign key constraints are disallowed

	Operations supported by an editioning view that are not supported by an ordinary view
	An editioning view allows table-style triggers
	A hint in a SQL statement that targets an editioning view can identify an index by listing the names of its columns.
	Queries against an editioning view allow partition extended syntax

	EBR using only editions and editioning views

	The crossedition trigger
	Basic firing rules for crossedition triggers
	Advanced firing rules for crossedition triggers
	The apply step: systematically visiting every row to transform the pre-upgrade representation to the post-upgrade representation
	Using DBMS_Sql_Parse() to apply a forward crossedition trigger
	Crossedition triggers must be idempotent
	When to enable crossedition triggers—DBMS_Utility.Wait_On_Pending_DML()
	Using the DBMS_Parallel_Execute API
	Using explicit SQL for the apply step

	Combining several bug fixes in a single EBR exercise

	EBR-readying an application
	Editions-enabling the intended users
	Introducing an editioning view in front of every table

	Existing features in the presence of editions
	Database links
	Application Contexts
	VPD policies on editioning views and synonyms
	Regular and fine-grained audit policies

	Conclusion

