
page 1 of 10

ENCM 369 Winter 2018 Lab 6

for the Week of February 26

Steve Norman
Department of Electrical & Computer Engineering

University of Calgary

February 2018

Lab instructions and other documents for ENCM 369 can be found at
http://people.ucalgary.ca/~norman/encm369winter2018/

Administrative details

You may work in pairs on this assignment

You may complete this assignment individually or with one partner.
Students working in pairs must make sure both partners understand all of the

exercises being handed in. The point is to help each other learn all of the lab
material, not to allow each partner to learn only half of it! Please keep in mind
that you will not be able to rely on a partner to do work for you on midterm #2 or
the final exam.

Two students working together should hand in a single assignment with names
and lab section numbers for both students on the cover page. Names should be
complete and spelled correctly. If you as an individual are making the cover page,
please get the information you need from your partner. For partners who are not
both in the same lab section, please hand in the assignment to the collection box
for the student whose last name comes first in alphabetical order.

Due Dates

The Due Date for this assignment is 3:30pm Friday, March 2.
The Late Due Date is 3:30pm Monday, March 5.

The penalty for handing in an assignment after the Due Date but before the Late
Due Date is 3 marks. In other words, X/Y becomes (X–3)/Y if the assignment is
late. There will be no credit for assignments turned in after the Late Due Date;
they will be returned unmarked.

Marking scheme

A 4 marks
B 4 marks
E 4 marks
F 4 marks

total 16 marks

How to package and hand in your assignments

Please see the Lab 1 instructions.

http://people.ucalgary.ca/~norman/encm369winter2018/

ENCM 369 Winter 2018 Lab 6 page 2 of 10

Exercise A: 16-bit two’s complement and MIPS in-
structions

Part I

Here is a MIPS assembly language instruction to allocate 40 words on the stack:

addiu $sp, $sp, -160

Answer the following questions:

1. What is the machine code for the instruction? Show how you obtained your
answer, and express your answer in base two.

2. Suppose that before the instruction is run, $sp = 0x7fff_e8c0. A 32-bit
adder will compute the new value for $sp. What are the two 32-bit inputs
to the adder, and what is the 32-bit output of the adder? Show how you
obtained your answers, and express all your answers in base two.

What to Hand In for Part I

Hand in typed or neatly handwritten answers to questions 1 and 2.

Part II

In Lab 5 Exercise B you saw that store and load instruction mnemonics like sw and
sb could be used to make pseudoinstructions with labels as operands, such as

sw $t0, foo

and

sb $t8, str99

where foo and str99 were labels for data items in .data sections.
Now let’s consider a similar pseudoinstruction for a load operation:

lw $s0, bar

Suppose that the address of bar is 0x1002_b000.
It would be tempting to conclude that the pseudoinstruction could be turned

into the following two real instructions, in a way similar to what was done in Lab 5
Exercise B:

lui $at, 0x1002

lw $s0, some offset ($at)

1. Explain why it is impossible to load from address 0x1002_b000 using the above

two instructions, regardless of the value of some offset . (Hint: Remember
that the offset in a load or store instruction is a signed 16-bit constant.)

2. Show how the pseudoinstruction can be implemented using an lui instruction
followed by a real lw instruction. Express your answer in assembly language
using a base ten offset in the lw instruction. (Hint: Use a negative offset.)

What to Hand In for Part II

Hand in typed or neatly handwritten answers to questions 1 and 2.

ENCM 369 Winter 2018 Lab 6 page 3 of 10

Exercise B: Integer addition examples

Read This First

This is a pencil and paper exercise. Don’t use a computer or a calculator.
In this exercise, you get to add bit patterns as if you were an 8-bit processor,

millions of times slower than electronic hardware.

What to Do

For each of the following pairs of hexadecimal patterns, write 8-bit binary patterns,
and find the sum that would be generated by adding the patterns with an 8-bit
adder.

part a b part a b
I 0x90 0xc0 III 0x45 0x48

II 0x45 0x38 IV 0xf2 0xf3

For each part, do the following after calculating the sum:

• First interpret the numbers as two’s-complement signed values. Decide if the
addition resulted in signed overflow.

• Then interpret the numbers as unsigned values. Decide if the addition resulted
in unsigned overflow.

Show the work you did to generate the addition results and explain in each case
how you decided whether overflow occurred.

Exercise C: Scary facts about real-world C integer
types

Read This First

A key fact, emphasized in ENCM 369 lectures: Two’s complement is by far the
most common system for representing signed integers in computers. (This fact is
not scary, but the next two are.)

Another key fact, also emphasized in ENCM 369 lectures: Typical implemen-
tations of C and C++ will allow integer arithmetic to generate results that do not
make sense according to normal, everyday mathematics; these implementations will
not do anything special to alert programmers or users that results probably do
not make sense. For example, it is quite easy to get a C program to add two int

variables with positive values and generate a sum that is apparently negative.
Here is a third key fact: C and C++ programming language standards do not

exactly specify the numbers of bits that should be used for numerical types!
Back in the early days of C, there were three signed integer types: short int,

int, and long int. (There were also various unsigned types, and char, which
was usually an 8-bit type, but which was signed on some systems and unsigned on
others.) It may seem weird, but for a given platform, typically one of the following
was true:

• short int and int were the same size, while long int was wider than int;

• short int was narrower than int, while long int and int were the same
size.

ENCM 369 Winter 2018 Lab 6 page 4 of 10

Figure 1: Sizes for signed integer types on various platforms.

long

short long long

Platform int int int int

Typical Unix minicomputer or
workstation, starting in early
1980’s

16 bits 32 bits 32 bits n/a

PC with MS-DOS and typical C
compiler, starting in early 1980’s

16 bits 16 bits 32 bits n/a

Linux system with x86
architecture

16 bits 32 bits 32 bits 64 bits

Linux system with x86-64
architecture

16 bits 32 bits 64 bits 64 bits

Current and recent Mac OS X
(64-bit)

16 bits 32 bits 64 bits 64 bits

Current and recent Microsoft
Windows (both 32- and 64-bit),
with Microsoft compilers

16 bits 32 bits 32 bits 64 bits

Cygwin64 running on top of
Microsoft Windows

16 bits 32 bits 64 bits 64 bits

Later a type called long long int became available; this type was usually 64 bits
wide. Figure 1 gives some size information for some C types on some important
platforms.

Now consider software development in the early 1980’s. It would not have been
uncommon for a programmer to write C code for an expensive Unix workstation,
get an executable built and tested, then later copy the C source code to a cheaper
PC running MS-DOS and try to build an executable for the PC. If values of ints
could be expected to go beyond the range of a 16-bit type, the PC version of the
program could fail in ways that were never seen on Unix, and that were either
mysterious or just annoying, depending on how much the programmer knew about
how int values were represented on the two different platforms.

In 2018, a similar problem can occur if programmers move code from one plat-
form to another and are not careful to check on the width of the long int type—the
width is 64 bits for many current platforms, but only 32 bits for others.

(By the way, the designers of the Java programming language had experience
with the problems of a given C or C++ type having different sizes on different
platforms. For Java there are strict rules such as, “an int must be represented
using 32-bit two’s-complement,” and “a long must be represented using 64-bit
two’s-complement.”)

What to Do

Copy the directory encm369w18lab06/exC

Do not yet make an executable and run it. Instead, carefully read the code in
long_ints.c and develop predictions for the program output for the following cases:
first, a platform on which long int is a 32-bit type; second, a platform on which
long int is a 64-bit type. Here are a few facts which may be helpful:

230 = 1, 073, 741, 824
230 + 228 = 1, 342, 177, 280

ENCM 369 Winter 2018 Lab 6 page 5 of 10

231 + 228 = 2, 415, 919, 104
231 − 228 = 1, 879, 048, 192

You can test your prediction for 64-bit long int by building and running executable
on Cygwin64.

For 32-bits, you can write a small Mars program that uses addu to add the
integers 1342177280 and 1073741824, then print the sum.

What to Hand In

There is nothing to hand in. If it’s not clear to you why the two programs produce
the output they do, you can check an explanation that will be posted on the course
“lab solutions” web page on or before February 27.

Exercise D: 64-bit addition with 32-bit registers

Read This First

The material in Exercise C may raise a number of questions. One of them might be:
How is a 64-bit integer type possible on a machine where the all the general-purpose
registers (GPRs) are 32 bits wide?

A partial answer is: If 64-bit integer variables are to be in GPRs, each of those
variables will need two GPRs; an operation such as addition cannot be done with
a single instruction, so will need a sequence of instructions instead.

Consider this situation on MIPS: i, j, and k are all 64-bit signed integer variables
in a C program. Suppose registers are allocated this way:

i: bits 31–0 in $s0, bits 63–32 in $s1

j: bits 31–0 in $s2, bits 63–32 in $s3

k: bits 31–0 in $s4, bits 63–32 in $s5

How could the C statement k = i + j; be implemented in assembly language?
Let’s pretend that two untrue things are actually true. First, let’s suppose that

the MIPS addu instruction places the carry out of the most significant bit of the
adder hardware into a special location within the processor called the carry bit.
Second, let’s suppose there is an instruction called addc (“add-with-carry”) that is
exactly like addu, except that it takes the 0 or 1 in the carry bit as a carry into the
least significant bit of the adder hardware. With those two pretended conditions in
place, the 64-bit addition is simple:

addu $s4, $s0, $s2 # get bits 31-0 of result

addc $s5, $s1, $s3 # get bits 63-32 of result with

appropriate carry from bit 31 to 32

So why did I bother to explain how to solve the problem using fictional prop-
erties of the MIPS architecture? I did it because the carry bit and add-with-carry
instructions are available on a wide range of important architectures, including x86
and ARM, and, I would guess, most others, so this kind of solution is useful to know
about.

A similar solution is usually available to allow 32-bit integer addition on archi-
tectures with 16-bit GPRs.

What to Do

Consider the problem of implementing the 64-bit addition of the Read This First
section with real MIPS instructions.

ENCM 369 Winter 2018 Lab 6 page 6 of 10

1. Find a solution that is a sequence of five instructions—addu, another addu,
addiu, beq, sltu, not in that exact order. Hint: Think about the condition
to detect unsigned overflow in addition—that happens if and only if the carry
out of the most significant bit is 1.

2. Find another solution that is only four instructions in length, without any
branches. Hint: Think about what possible bit patterns sltu could put into
its destination register.

Note that if you want to test your work using MARS, you can, but first try to
convince yourself of the correctness of your work without actually writing a MARS
program.

What to Hand In

There is nothing to hand in. Solutions will be posted on the course “lab solutions”
web page no later than March 2.

Exercise E: Integer subtraction examples

Read This First

An 8-bit adder can compute a− b by inverting the bits of b and supplying a value
of 1 as the carry in to the least significant bit. For example, if a is 0000_1001 (9 in
base ten) and b is 0000_0100 (4 in base ten), here’s how the subtraction works:

carry in: 11110111

bits of a: 00001001

inverted bits of b: 11111011

result: 00000101

Note that the correct result (5 in base ten) is produced.

What to Do

Like Exercise B, this is a pencil and paper exercise. Don’t use a computer or a
calculator.

For each of the following pairs of hexadecimal patterns, write 8-bit binary pat-
terns, and find the 8-bit subtraction result a − b. As in Exercise B, identify cases
where signed overflow has occurred and cases where unsigned overflow has occurred.

part a b part a b
I 0x70 0xe9 III 0xc5 0xb2

II 0x93 0x14 IV 0x41 0xfe

Show the work you did to generate the subtraction results and explain in each case
how you decided whether signed overflow and/or unsigned overflow has occurred.

Exercise F: Review of D Flip-Flops

Read This First

D flip-flops (DFFs) were covered in ENEL 353. They are very important building
blocks for the processor designs that we will study in lectures starting on Febru-
ary 16.

ENCM 369 Winter 2018 Lab 6 page 7 of 10

Figure 2: Summary of D flip-flop behaviour. Nothing about digital logic design is more
important than this! Getting this wrong in any way should be considered to be just as
serious a mistake as writing an incorrect truth table for an inverter, an OR gate, or an
AND gate.

A clock signal . . .

1

0

negative
edge

positive
edge

negative
edge

positive
edgeedge

positive

CLK

time

negative-edge-
triggered DFF

positive-edge-
triggered DFF

Q copies D on
falling edges
of CLK

Q copies D on
rising edges
of CLK.

D Q D Q

CLK CLK

Very shortly after an active clock edge, Q takes on the
value D had just before that clock edge; Q then holds that
value until the next active clock edge.

The critical thing to understand about a DFF is that its state Q can change
only in response to an active edge of its clock input.

• For positive-edge-triggered DFFs (the kind we saw a lot in ENEL 353) the
active edge of the clock is the rising edge—a low-to-high transition;

• for negative-edge-triggered DFFs (which we did not see much in ENEL 353),
the active edge of the clock is the falling edge—a high-to-low transition.

Behaviour of DFFs is summarized in Figure 2.
Knowing how a DFF responds as a “black box” to its clock and D inputs is

essential in understanding sequential logic designs. On the other hand, knowing
what is inside a DFF is not very important at all, unless your job is designing
DFFs to meet specifications such as high speed, low chip area, and low power
consumption.

Figure 3 shows a classic design for a DFF that was presented in ENEL 353.
Don’t worry if you don’t understand how it works—that’s not important in ENCM
369. (Note also that DFFs in modern CMOS integrated circuits don’t use NAND
gates at all—typically DFFs are built from inverters and devices called transmission
gates, which we did not study in ENEL 353.)

ENCM 369 Winter 2018 Lab 6 page 8 of 10

Figure 3: Positive-edge-triggered D flip-flop built from two NAND-based D latches.
Knowing exactly how this circuit works will NOT help you at all in ENCM 369!
It is infinitely more important to understand what is meant by the text in Figure 2!

D

CLK

Q

Q

Example problem. (This was a problem on the December 2012 Final Exam in
ENEL 353.) Complete the timing diagram:

CLK
0

1

B
0

1

A
0

1

A

B

CLK

Solution to example problem. Before drawing waveforms, a very small amount
of analysis is required:

• The DFFs are positive-edge-triggered, so the dotted lines dropping from neg-
ative edges of the clock are irrelevant and should be ignored.

• For the FF that has A as its output, the D input is B. (I am assuming
you have not forgotten what an inverter does!) That means that just after a
positive clock edge, A will take on the value B had just before that edge. In the
notation of the textbook used for ENEL 353 and ENCM 369 this year—and
for the previous few years—A′ = B.

• For the FF that has B as its output, A is wired directly to the D input. So
B′ = A.

This analysis leads to the solution in Figure 4.

What to Do

Print a copy of page 10 of this document.
In the spaces beneath each of the two given circuits, write next-state equations

for the circuit. In Part I, that means equations giving Q′
1 and Q′

0 in terms of Q1

and Q0. In Part II, that means equations giving Q′
0, Q′

1 and Q′
2 in terms of Q0,

Q1, Q2 and the input A.
Then complete the given timing diagrams. Be very careful to check which clock

edges are active for the given DFFs.

What to Hand In

Hand in your completed worksheet.

ENCM 369 Winter 2018 Lab 6 page 9 of 10

Figure 4: Solution to example DFF problem. Moving left to right, each time you en-
counter a positive clock edge, use values of signals just before the edge to find the values
the FF outputs will take on after the edge.

A′ = B = 1
B′ = A = 1

A′ = B = 0
B′ = A = 0

A′ = B = 0
B′ = A = 1

CLK
0

1

B
0

1

A
0

1

ENCM 369 Winter 2018 Lab 6 page 10 of 10

Worksheet for Exercise F

Part I

Q0

Q1

CLK

CLK
0

1

Q1
0

1

Q0
0

1

Part II

A

CLK

Q0 Q1 Q2

CLK
0

1

A
0

1

0

1

Q1
0

1

0

1

Q0

Q2

	Administrative details
	You may work in pairs on this assignment
	Due Dates
	Marking scheme
	How to package and hand in your assignments

	Exercise A: 16-bit two's complement and MIPS instructions
	Part I
	What to Hand In for Part I
	Part II
	What to Hand In for Part II

	Exercise B: Integer addition examples
	Read This First
	What to Do

	Exercise C: Scary facts about real-world C integer types
	Read This First
	What to Do
	What to Hand In

	Exercise D: 64-bit addition with 32-bit registers
	Read This First
	What to Do
	What to Hand In

	Exercise E: Integer subtraction examples
	Read This First
	What to Do

	Exercise F: Review of D Flip-Flops
	Read This First
	What to Do
	What to Hand In

