page 1 of 9

ENCM 369 Winter 2018 Lab 9
for the Week of March 19

Steve Norman
Department of Electrical & Computer Engineering
University of Calgary

March 2018

Lab instructions and other documents for ENCM 369 can be found at
http://people.ucalgary.ca/~norman/encm369winter2018/

Administrative details

You may work in pairs on this assignment

You may complete this assignment individually or with one partner.

Students working in pairs must make sure both partners understand all of the
exercises being handed in. The point is to help each other learn all of the lab
material, not to allow each partner to learn only half of it! Please keep in mind
that you will not be able to rely on a partner to do work for you on midterm #2 or
the final exam.

Two students working together should hand in a single assignment with names
and lab section numbers for both students on the cover page. Names should be
complete and spelled correctly. If you as an individual are making the cover page,
please get the information you need from your partner. For partners who are not
both in the same lab section, please hand in the assignment to the collection box
for the student whose last name comes first in alphabetical order.

Due Date

The Due Date for this assignment is 3:30pm Friday, March 23.
The Late Due Date is 3:30pm Monday, March 26.

The penalty for handing in an assignment after the Due Date but before the Late
Due Date is 3 marks. In other words, X/Y becomes (X-3)/Y if the assignment is
late. There will be no credit for assignments turned in after the Late Due Date;
they will be returned unmarked.

Marking scheme

A 8 marks
B 5 marks
C 5 marks
D 2 marks

TOTAL ‘ 20 marks

How to package and hand in your assignments

Please see the Lab 1 instructions.

http://people.ucalgary.ca/~norman/encm369winter2018/

ENCM 369 Winter 2018 Lab 9 page 2 of 9

Exercise A: Sequential logic timing in a pipelined
processor

So you run and you run to catch up with the sun but it’s sinking
Racing around to come up behind you again ...

—Ilyrics from the excellent (but not totally encouraging) Pink Floyd song “Time”,
which, although certainly not written with synchronous logic design in mind, defi-
nitely has something to say about it.

Read This First

This exercise continues the timing analysis work started in Lab 8 Exercises A and B.

Circuit A in Figure 1 is a generalized circuit that describes both a simple counter
like the one of Lab 6 Exercise G, Part I and Lab 8 Exercise A, Part II, and also a
larger circuit such as the PC update logic for the single-cycle processor shown in
Figure 7.11 in the course textbook.

Figure 1: In these two circuits, the symbol ¢ is used to indicate some unspecified
combinational logic circuit, which could be a simple gate like an inverter, or could be a
cascade of large, complex combinational elements such as adders, ROMs, multiplexers, an
ALU, and so on. Reg, Reg X, and Reg Y are all parallel registers made up of one or more
positive-edge-triggered D flip-flops with common clock inputs. The circuits appear to have
different structures, but timing analysis is the same for both circuits.

Circuit A Circuit B
Reg X Reg Y

Reg

CLK

CLK

Circuit B in Figure 1 is a generalization that describes some important circuits
we are studying in this course:

e Consider the path from PC to destination GPR for an LW instruction in the
single-cycle computer of textbook Figure 7.11. The PC is Reg X and the
destination GPR is Reg Y. (This is somewhat confusing because it involves
conceptually putting the read logic of the Register File within the & block,
while the destination GPR, also part of the Register File, is not part of the
¢ block. But it is a valid way of thinking about timing issues for an LW
instruction.)

e In a pipelined processor, the & block is combinational logic in between two
pipeline registers.

Let’s consider the problem of determining the minimum safe clock period for
Circuits A and B. We’ll assume that all the flip-flops in both circuits have identical
specifications.

e When are the input signals for the € block guaranteed to be ready? That
happens with a delay of ¢pcq (flip-flop clock-to-Q propagation delay) after a
positive clock edge.

ENCM 369 Winter 2018 Lab 9 page 3 of 9

e When are the output signals of the ¢ block guaranteed to be ready? That
will be no more than ¢,q (propagation delay) after the input signals are ready.
Of course, determining t,q for the & block may require finding the critical
path through that block.

e When do the output signals of the € block need to be ready for correct update
to Reg or Reg Y7 That must be at least tseup (flip-flop setup time) in advance
of the next positive clock edge.

The above points can be summarized graphically in timing diagrams, as shown in
Figure 2. For safe operation of either Circuit A or Circuit B,

tpcq + tpd < TC - tsetupa

where T¢ is the clock period. If the circuit design is fixed but you get to choose the
clock period, that means
Ic > tpcq + tpd + tsetup'

On the other hand, if you are trying to design the & block to be compatible with
given flip-flops and a specified T, you must ensure that

tpd < TC - tpcq - tsetup-

Figure 2: For reliable updates to flip-flops at the end of a clock cycle, the clock period
Tc must satisfy tpeq + tpa < Tc — tsetup-

This is safe ... This is unsafe . ..

I< TC

\ 4

Tc —»
tpeqTlpd | tpeqTlpd |

CLK . CLK

flip-flop flip-flop
D inputs XXX XXXXXXXXX)

D inputs

> tsetup < >

tsetu p

What to Do, Part 1

We're going to look at timing constraints for the pipelined processor of Figure 7.47
in the course textbook. We’ll assume the timing parameters given in the tables in
Figure 3. We'll also assume, as explained in lectures, that the PC, pipeline registers,
and Data Memory are updated in response to positive clock edges, but the Register
File is updated in response to negative clock edges.

In this part of the exercise, we’ll look at the Fetch stage. We’ll concern ourselves
only with the update to the F/D pipeline register, because the update to the PC
depends partly on work done in the Memory stage, which we’ll look at later.

1. Using whatever data you need from Figure 3, determine the shortest safe clock
period that will allow the Fetch stage of the Figure 7.47 computer to work
correctly.

2. Suppose the desired clock frequency is 3.333 GHz, and suppose it is not pos-
sible to reduce tpcq Or tsetup for the PC or the pipeline registers. One of the
components in the Fetch stage will have to have its t,q reduced. Which one
is it, and what is the maximum allowable ¢,q for that component?

ENCM 369 Winter 2018 Lab 9 page 4 of 9

Figure 3: Timing parameters for Exercise A. Data for the Register File is omitted because
Register File timing is complicated by use of negative-edge triggering for GPR updates in
the pipelined designs. Be aware that this exercise uses different timing parameters and a
slightly different timing model from what is presented in Section 7.5.5 of the textbook!

component tpd
Instruction Memory 265 ps
Control Unit 145 ps
Register File n/a component toeq tsetup
Sign-extend 25 ps PC 19ps 28ps
Multiplexer 36 ps pipeline registers 19ps 28 ps
ALU 160 ps Register File n/a n/a
Data Memory 275 ps Data Memory n/a 42ps
Adder 90 ps
Shift left 2 Ops
AND gate 15 ps

What to Do, Part I1

Let’s move on to the Execute stage of the Figure 7.47 computer. (We’ve skipped
the Decode stage, but we’ll take care of that later.)

1. Using whatever data you need from Figure 3, determine the critical path
through the Execute stage. What is the overall ¢,4 for the Execute stage?

2. Explain why it is not necessary to modify any part of the Execute stage to
allow a clock frequency of 3.333 GHz.

What to Do, Part II1

Now let’s consider the Memory stage of the Figure 7.47 computer. Note that this
stage updates the M/W pipeline register, and also plays a role in updating the PC.

1. What is the longest possible delay from a positive clock edge to the point
in time when the input to the PC is stable? What does that say about the
minimum clock period for the computer? Note that answering these questions
involves looking at the AND gate in the Memory stage and also the adder and
the multiplexer in the Fetch stage.

2. Determine the minimum clock period needed to allow safe operation of the
Memory stage.

3. As in Part I, suppose it is not possible to reduce tpcq Or tsetup for the PC or
the pipeline registers. What improvement must be made in the Memory stage
to allow a clock frequency of 3.333 GHz.

What to Do, Part IV

Thinking about timing issues for the Decode and Writeback stages is somewhat
complicated by the fact that a GPR update within the Register File happens in
response to a negative clock edge.
To keep things relatively simple we’ll assume that if the clock period is Tc,
negative clock edges occur 0.57¢ after positive clock edges, as shown in Figure 4.
Suppose that a Register File with the following properties has been designed for
us to use.

ENCM 369 Winter 2018 Lab 9 page 5 of 9

Figure 4: A clock signal. It’s possible to design electronics with tg # t1, but to keep things
relatively simple in this exercise we’ll assume that, as you see below, tg = t1, = 0.57¢.

i: Tc =i< tH —>|<— tL —»I

positive negative positive negative positive
edge edge edge edge edge
time —»

® tsetup fOr writes to the Register File is 31 ps in advance of a negative clock
edge.

e The RD1 and RD2 outputs are guaranteed to be ready no later than 117 ps
after a negative clock edge.

To see why it makes sense to measure this delay from the negative edge of the
clock, consider this example instruction sequence, which presents the toughest
kind of challenge for timing within the Register File:

add $t0, $t1, $t2
1w $t3, 0($t4)
sw $t5, 0($t6)
sub $t7, $t7, $tO

The $t0 value read in the Decode step of sub is written earlier in the same
clock cycle by the Writeback step of add. The combinational logic that is
supposed to copy the $t0 value to RD2 has to wait for the updates to the
flip-flops belonging to $t0; those updates happen in response to a negative
clock edge.

The questions for you to answer are:

1. What is the minimum clock period T¢ that will allow reliable operation of
the Writeback stage? (For Writeback to work, the A3 and WD3 inputs of
the Register File must meet a tqtup constraint in advance of a negative clock
edge.)

2. What is the minimum clock period T¢ that will allow reliable operation of
the Decode stage? (For Decode to work, all inputs to the D/E register must
meet a tgetyp constraint in advance of a positive clock edge.)

3. Using your answers from the above two questions, is there anything about
the designs of the Writeback and Decode stages that would prevent use of a
3.333 GHz clock?

What to Do, Part V

Let’s draw some conclusions regarding the system as a whole, using answers from

Parts I to IV.

1. Given the timing parameters of Figure 3 and the timing model for the Register
File given in Part IV, what is the minimum clock period to allow reliable
operation of all five pipeline stages?

ENCM 369 Winter 2018 Lab 9 page 6 of 9

2. Suppose that 3.333 GHz is the desired clock frequency, and suppose also that
it is not possible to change any t,cq Or tsetup values. Which components in the
system need to be modified to work faster, and what would the new timing
parameters have to be for those components?

What to hand in

Hand in well-organized calcuations and clear answers to questions for Parts I to V.

Exercise B: beq in textbook Figure 7.47

Read This First

Note that the processor of textbook Figure 7.47 makes an attempt to handle beq
instructions, but does not handle them correctly. In this exercise, you are asked to
determine what exactly the processor does with a beq, not to guess based on what
you think should happen.

What to Do

Consider this program fragment, running in the processor of Figure 7.47 with a
clock period of 0.5ns (as in Lab 8, Exercise C):

0x0040_00b4

0x0319_56825

or

instruction address — instruction disassembly
0x0040_0090 0x8e12_0000 L1: 1w $18, ($16)
0x0040_0094 0x0211_8020 add $16, $16, $17
0x0040_0098 0x0000_0000 nop
0x0040_009c 0x0000_0000 nop
0x0040_00a0 0x0000_0000 nop
0x0040_00a4 0x1240_fffa beq $18, $0, L1
0x0040_00a8 0x0319_4022 sub $8, $24, $25
0x0040_00ac 0x0319_482a slt $9, $24, $25
0x0040_00b0 0x0319_5024 and $10, $24, $25

$11, $24, $25

Suppose that the Fetch stage for the beq instruction starts at ¢ = 45.0ns, and
suppose that the 1w instruction has put a value of zero into $18.

Answer the following questions. As in Lab 8, Exercise C, use hexadecimal no-
tation for 32-bit numbers, and explain how you got your answers.

1. At t = 45.5ns, what gets written into the PC?
Shortly after ¢ = 45.5 ns, what are the values of InstrD and PCPlus4D?

2. At t = 46.0ns, what gets written into the PC?
Shortly after ¢ = 46.0 ns, what are the values of InstrD and PCPlus4E?

3. At t = 46.5ns, what gets written into the PC?
Shortly after ¢ = 46.5 ns, what are the values of InstrD, PCBranchM, and
ZeroM?

4. At t = 47.0ns, what gets written into the PC?
Shortly after t = 47.0 ns, what is the value of InstrD?

5. At t = 47.5ns, what gets written into the PC?
Shortly after t = 47.5ns, what is the value of InstrD?

ENCM 369 Winter 2018 Lab 9 page 7 of 9

Figure 5: For Exercise C, diagram to clarify which are the “A” and “B” inputs of the
ALU, and to highlight the multiplexers added for forwarding in the Execute stage in
textbook Figure 7.50. See the textbook figure for full details, including the inputs to the
Hazard Unit.

L
°
L 15
CLK = S
-)
— —
< <
00
o1 SrcAE A
- — 10
1 5
a0
3 o1 SrcBE
2 10 1
S | SignlmmE
% £ WriteDataE
u T2 T2 1
o) ALUOu’EM
ResultW
ForwardAE ForwardBE
[Hazard Unit J

Exercise C: Forwarding details

Read This First

The point of this exercise is to help you understand the forwarding logic presented
in Figure 7.50 in your textbook.

Figure 5 shows the outputs of the Hazard Unit, and the multiplexers that guide
the correct source data into the ALU.

For this exercise, we’ll assume that the Control Unit design has been extended
to support the addi instruction. It’s explained in Section 7.3.3 of the textbook how
that can be done. (Section 7.3.3 refers to the single-cycle computer, but the same
extension works for the pipelined computer of Figure 7.50.)

What to Do, Part 1

There are four data hazards in the following instruction sequence:

sw $0, 0($29) # line 1
sW $0, 4($29) # line 2
sw $0, 8($29) # line 3
add $25, $16, $17 # line 4
sub $24, $18, $25 # line 5
addi $23, $25, 1 # line 6
1w $10, ($24) # line 7
addi $24, $24, 4 # line 8
sw $10, ($23) # line 9

The first hazard is the use of the first add result as a source in the sub instruction
of line 5. Here is a detailed description of how this hazard is managed by the

ENCM 369 Winter 2018 Lab 9 page 8 of 9

forwarding unit:

During the Execute stage of sub, the Hazard Unit detects that RsE
(110014, for $25) matches WriteRegM (also 110014y, for $25) and that
RegWriteM=1. So it sets ForwardBE=10 so that ALUOutM (the first add
result) is passed to the “B” input of the ALU.

Identify the other three data hazards. For each hazard, give details of how the
Hazard Unit solves the hazard, using the above example as a model.

What to Do, Part II

There is an obvious data hazard in the following instruction sequence:

1w $10, ($8)
sw $10, ($9)

This kind of code is very common when data is being copied from one memory
location to another memory location.

Consider the circuit of Figure 7.50 in the textbook. For the above instruction
sequence, does the circuit

e handle the hazard properly using only forwarding;

e handle the hazard properly using a combination of stalling and forwarding;
e fail to handle the hazard properly, storing an out-of-date $10 value;

e or fail in a different way, storing some other wrong value?

Give a brief explanation for your answer—just a few short sentences.

What to Hand In

Hand in your answers to Parts I and II.

Exercise D: Avoiding branch instructions

Read This First

One of the conclusions that can be reached from reading the material titled “Solving
Control Hazards” starting on page 421 of the textbook is that branch instructions
are potentially very expensive. If there is no branch prediction, or if branch predic-
tion is present but incorrect, a branch instruction may cause a stall of several clock
cycles.

As a result, modern compilers try to avoid generating branch instructions when
possible.

Here is an example C code fragment from lectures on solutions to control hazards:

/* Count negative elements in an array of ints. */
do {
if (xp < 0)
count++;
pt+;

} while (p != past_end);

MIPS code I thought of for this fragment, aimed at the real MIPS instruction set
with delayed branches, is

ENCM 369 Winter 2018 Lab 9 page 9 of 9

L1: 1w $t0, ($a0)
slt $t1, $t0, $zero
beq $t1, $zero, L2
addiu $a0, $a0, 4
addiu $t9, $t9, 1
L2: bne $a0, $t8, L1
nop

However, when I gave the C code to gce 4.8.3 for MIPS, it cleverly came up with
code like this:

Ll1: 1w $t0, ($a0)
addiu $a0, $a0, 4
slt $t1, $t0, $zero
L2: bne $a0, $t8, L1
addu $t9, $t9, $t1 # add slt result to count

Notice that the loop is reduced from seven instructions to five, and there is no
possibility of a stall around the decision on *p < 0. Note also that the update to
count is in the delay slot of bne, so the update is part of the loop, and that p++
got moved to avoid a stall due to the data hazard of loading to $t0 and then using
$t0 as source in slt.

Read This Second

Modern instruction sets offer various ways to do some things conditionally without
using a branch instruction. For example, MIPS has “conditional move” instructions
called movz and movn:

$t1
$a0

movz $t0, $t1, $t2 # if ($t2 == 0) $t0O
movn $s0, $a0, $al # if ($al !'= 0) $s0

The operands can be any GPRs—the ones used above are just examples.

What to Do
Consider this C code:

do {
if (xp > 0)
sum += *p;
ptt;
} while (p !'= past_last);

Using ideas from “Read This First” and “Read This Second”, show how this loop
can be coded in the real MIPS instruction set without using a branch instruc-
tion for the if-else statement, and without any nop instructions. Assume that
p and past_last are of type pointer-to-int in $a0 and $al, and that sum is an int
in $t0.

This is a pencil-and-paper exercise—you do not need to make it work in MARS.

What to Hand In

Hand in your code.

	Administrative details
	You may work in pairs on this assignment
	Due Date
	Marking scheme
	How to package and hand in your assignments

	Exercise A: Sequential logic timing in a pipelined processor
	Read This First
	What to Do, Part I
	What to Do, Part II
	What to Do, Part III
	What to Do, Part IV
	What to Do, Part V
	What to hand in

	Exercise B: beq in textbook Figure 7.47
	Read This First
	What to Do

	Exercise C: Forwarding details
	Read This First
	What to Do, Part I
	What to Do, Part II
	What to Hand In

	Exercise D: Avoiding branch instructions
	Read This First
	Read This Second
	What to Do
	What to Hand In

