
Computers Math. Applic. Vol. 31, No. 6, pp. 1-11, 1996
P e r g a m o n Copyright©1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0898-1221/96 $15.00 + 0.00

S0898-1221(96)00001-6

Error Est imat ion and Step Size Control
for Delay Differential Equat ion Solvers

Based on Cont inuously E m b e d d e d
Runge-Kutta-Sarafyan M e t h o d s

S . P . C O R W I N AND S . T H O M P S O N
Department of Mathematics and Statistics, Radford University

Radford, VA 24142, U.S.A.

Ded ica t ed wi th w a r m t h and respec t to Professor Di ran Sara fyan

(Received May 1995; accepted September 1995)

A b s t r a c t - - T h i s paper considers the use of continuously embedded Runge-Kutta-Sarafyan meth-
ods for the solution of delay differential equations. It discusses simple ways to improve the error
estimation and step size selection strategies for delay solvers based on Sarafyan methods. Numerical
results are given which demonstrate the manner in which these estimates improve the accuracy of
the solvers in a natural way.

U e y w o r d s - - A l g o r i t h m s , Delay differential equations, Derivative jump discontinuities, Functional
differential equations, Interpolation for Runge-Kutta formulas, Retarded arguments, Retarded differ-
ential equations, Runge-Kutta formulas, Time delays.

I N T R O D U C T I O N

Cont inuous ly e m b e d d e d R u n g e - K u t t a - S a r a f y a n m e t h o d s [1] m a y be used for the so lu t ion of de lay

dif ferent ia l equa t ions in which the der ivat ive a t a given t ime depends on the so lu t ion a t previ-

ous t imes . Neves and T h o m p s o n [2,3] descr ibe the i m p l e m e n t a t i o n and usage of a de lay solver

D R K L A G based on a (4,5) pa i r of Sara fyan methods . The p rob lems for which D R K L A G is

des igned t ake the form

dy(t) = f (t , y(t), y(t, t3(t, y(t))))
dt

or, more general ly,

dy(t) = f (t, y(t), y(t, ~(t, y(t))), ~'(t, ~(t, y(t))))
dt

for t E [a, b] and

wi th y(t) =- ¢(t) for t _< a, and 13(t, y(t)) < t for all t.

(In the above, i t is a s sumed t h a t t he in teg ra t ion proceeds from left to r ight . Obvious modi f ica t ions

to t he n o t a t i o n a p p l y if th is is no t the case.)

The author is grateful to an anonymous referee for a careful reading of the original version of this paper and for
several constructive suggestions.

Typeset by .A.MS-TEX

1

2 S . P . CORWIN AND S. THOMPSON

For the purposes of the s tudy described in this paper, two additional experimental versions
of DRKLAG were developed based on the method pairs described below. In each solver, the
higher order method is used to advance the integration, and the lower order method is used for
the purposes of error estimation and step size selection. Local extrapolat ion is used to t reat the
error est imate as one for the higher order method.

The purpose of the paper is to demonstrate the effectiveness of using alternate types of error

control, ra ther than the s tandard difference of the embedded methods at integration grid points,
for delay equations. We will present and discuss typical results which demonstrate the effect
of each of three error estimates for the three solvers. We argue tha t more conservative forms of
error est imation are appropriate for codes intended to solve delay problems. We present numerical
results for the three delay codes to support this argument.

This paper is devoted to a discussion of al ternate forms of error control for delay equations. I t

does not include a general discussion of the solution of delay equations. Readers interested in such
a discussion are referred to [4]. An outstanding bibliography on the numerical solution of delay
differential equations may be found in [5]. This paper also does consider realistic applications of
delay equations. Readers interested in discussions of such applications are referred to [6,7]. Use

of the DRKLAG software for the solution of complicated models arising in realistic problems is
addressed in considerable detail elsewhere [8,9].

S A R A F Y A N M E T H O D S

The following coefficient tableau contains the coefficients ai and bij which determine the cal-
culation of the Runge-Kut ta derivative approximations for the first two pairs of methods. If the
integration step size is denoted by h, these derivative approximations are defined by

k0 = h f (tn, Yn

and

= h f tn + Yn + Z bijkj ki
j=o

for i > 0. The coefficient tableau for the methods used in the first two pairs of methods [1] is
given in Tableau 1. The polynomial coefficients for the methods used in the first pair are

~1 ~ ko
-25ko + 48k2 - 36k3 + 16k4 - 84k5 + 81k6 ~'/2 -=

6
70ko - 208k2 + 228k3 - 112k4 + 490k5 - 468k6

fit 3 _-
9

-40k0 + 144k2 - 192k3 + 112k4 - 399k5 + 375k6
~'~4

6
8 (4k0 - 16k2 -t- 24k3 - 16k4 + 49k5 - 45k6)

~5 -- 15
031 -~- k0

-127k0 + 144k2 + 36k3 - 80ka + 27k6
o32

42
2 (5k0 - 8k2 - 2k3 + 8k4 - 3k6)

033
3

2 (-13k0 + 24k2 + 6k3 - 32k4 + 15k6)
0J 4

21

E r r o r E s t i m a t i o n 3

T a b l e a u 1.

i a i b i j , j = 0 , . . . , i - 1

1 1 1
6 6

2 ! ! 3_
4 16 16

1 3 4 3 1 ~ 4

3 3 0 0 9 4 ~ 1"~ 1~

5 1 4 3 122 12 _8
7 7 7 7 7

6 1 ~0 0 3_22 1_22 32
90 90 ~ 90

Let c = (t - t~)lh. The two methods used in the first pair [1,3,10] are defined by

5

Y4,7,1 (tn + ch) = Yn + E ~ic~
i = 1

4

Y4,7,2 (tn -I- ch) = y~ + E wici"
i = 1

It is this first pair of methods which is implemented in the DRKLAG solver. Although each is a

7-stage method, the pair constitutes effectively a 6-stage pair since the final derivative evaluation

for any step is used as the first derivative evaluation for the next step. For c = 1, y4,7,1 is a fifth
order C 1 method; and Y4,7,2 is a fourth order method. For c ~ 1, both methods are fourth order.

For c = 1, the methods become

7k0 + 32k2 + 12k3 + 32k4 + 7k5
Y4,7,1 (tn + h) = y~ +

90
3k0 + 16k2 + 4k3 + 16k4 + 3k6

Y4,7,2 (tn + h) = y~ +
42

Their difference for c -- 1 is given by El,a = E1 where

4k0 - 16k2 + 24k3 - 16k4 + 49ks - 45k6
E1 = (Y4,7,1 - y4,7,2) (tn + h) = 630

The second pair [1] uses a method Y4,7,3 which is similar to but more accurate than Y4,7,2. (The
program in [11] may be used to see that the local truncation error coefficients for this method are

smaller than the corresponding ones for y4,7,2 b y factors of about 5.) Y4,7,3 is the method denoted
by YT in [1, equations (32a)-(32e)]. The polynomial coefficients for this method are given by

T1 = k0
-161k0 + 176k2 + 60k3 - 112k4 + 28k5 + 9k6

T 2 = 54

718ko - 1072k2 - 492k3 + 1328k4 - 392k5 - 90k6
T3 = 225

-68k0 + 112k2 + 72k3 - 208k4 + 77k5 + 15k6
T 4 = 60

The method Y4,7,3 is defined by

4

Y4,7,3 (tn + ch) = Yn + E Tici"

4 S . P . CORWIN AND S . T H O M P S O N

For each value of c, Y4,~,3 is a four th o rder me thod . For c = 1, t he m e t h o d becomes

206k0 + 976k2 + 336k3 + 976k4 ÷ 161ks + 45k6
Y4,7,3 (tn + h) = y,~ +

2700

T h e second pa i r of m e t h o d s considered in th is p a p e r consists of Y4,7,1 and Y4,7,3. The i r difference

for c = 1 is given b y E2,a = E2 where

4ko - 16k2 + 24k3 - 16k4 + 49k5 - 45k6
E 2 = (Y 4 , 7 , 1 - - Y 4 , 7 , 2) ($ n ÷ h) = 2700

Each of t he first two pa i rs is a con t inuous ly e m b e d d e d (4,5) pair . The t h i r d pa i r [10,12,13] is a

con t inuous ly e m b e d d e d (4,6) pair . T h e coefficient t a b l e a u for th is pa i r [12] is given in T a b l e a u 2.

T a b l e a u 2.

i a s b l j , j = 0 , . . . , i - 1

1 1
1 6 6

1 1 3
2 ~ 2"--4

1 1 3 4 3 6 6

1 1 3 4 ~ ~ 0 0

2 17 63 51 1
5 ~ "6" 9 -~- 0

5 22 33 30 58 30 3
6 ~ 24 2"4 3-'4 24 2"4 2"4"

7 1 281 243 522 876 346 36 7._.22
82 82 82 82 82 82 82

T h e p o l y n o m i a l coefficients for the m e t h o d s i n th is pa i r are

A1 = ko

-67056ko + 110124k2 - 48717k3 - 1408k4 + 6624k5 + 2196k6 - 1763k7
A2 = 11788

247660ko - 626292k2+468639k3 - 34376k4 - 54594k5 - 16740k6+ 15703k7
A3 = 17682

3 (- 1 2 0 6 5 5 k o + 369216k2 - 354531k3 + 68336k4 + 39843k5 + l1280ks - 13489k7)
A4 = 23576

A5 = 9(9961ko - 33804k2 + 37287k3 - 10328k4 - 4113k5 - 684k6 + 1681k7)

14735

B1 = ko

-57501ko + 76743k2 - 31810k4 + 5715k5 + 11691k6 - 4838k7
B2 = 11200

25081k0 - 46683k2 + 37210k4 - 6615k5 - 15471k6 + 6478k7
Bs = 2400

3 (- 6 9 4 4 3 k 0 + 147849k2 - 156830k4 + 33645k5 + 80613k6 - 35834k7)
B4 = 22400

9(673ko - 1539k2 + 1930k4 - 495k5 - 1143k6 + 574k7)
B5 = 2000

T h e m e t h o d s [10,12] are defined by

5

Y6,s,1 (t~ + ch) = y~ + ~ A~c i
i = l

5

Y4,8,1 (tn ÷ ch) = Yn + E Bic~"
i = l

Error Estimation 5

Each of the methods is an 8-stage method. For c = 1, Y6,s,1 is a sixth order method; and

Y4,8,1 is a four th order method. For other values of c, the two methods are fourth order.

For c -- 1, the methods become

41k0 -}- 216k2 + 27k3 -t- 272k4 -}- 27k5 + 216k6 + 41k7
y6,8,1 (t,~ + h) = yn +

84O
284069k0 A- 1765233k2 + 2202290k4 + 207765k5 A- 1599021k6 -4- 325622k7

y4,8,1 (tn + h) = Yn + 6384000

Their difference for c = 1 is given by E3,a = E3 where

E3 = (Y6,8,1 - Ya,s,1) (tn + h)
3

- 112000 (161k0 - 723k2 + 1200k3 - 790k4 - 15k5 + 249k6 - 82k7).

Table 1 summarizes the methods used in the three pairs. Th roughou t this paper, we will refer

to the corresponding versions of D R K L A G as DELAY1, DELAY2, and DELAY3. The intent of

this paper is not to access the relative merits of the methods used or compare the per formance

of these solvers. Rather , it is to illustrate how the choice of different error es t imates can affect

the per formance of a given delay solver.

Table 1. Runge-Kutta-Sarafyan delay solvers.

Method Interpolant
Primary Subsidiary

Code Orders Orders
Method Method

(c = 1) (C ~ 1)

DELAY1 y4,T, 1 y4,7,2 5, 4 4, 4
DELAY2 Y4,7,1 Y4,7,3 5, 4 4, 4
DELAY3 Y6,S,I Y4,8,1 6, 4 4, 4

E R R O R E S T I M A T E S

I t was observed in [3] t ha t the difference of the solution polynomials for the Sarafyan methods
used in D R K L A G factors into a convenient form. For each of the above three pairs of methods ,

a similar factorizat ion is possible. We summarize the results in the following theorem which may

be proved using an a rgument like tha t sketched in [3].

THEOREM. I f the s tep size is h, then for any c = (t - t n) /h ,

(Y4,7,1 - Y4,7,2) (t) = PI(c) E l ,

(Y4,7,1 - Y4,7,3) (t) = P2(c) E2, and

(Y6,8,1 - Y4,8,1) (t) -- P3(c) E3,

where the polynomials Pi(c) are given by

Pl (c) = 336c 5 - 855c a + 700c 3 - 180c 2,

P2(c) = 1440c 5 - 3735c a A- 3096c 3 - 800c 2, and

298296c 5 - 590885c 4 -4- 347140c 3 - 54130c 2
P3(c) = 421

Also,

, 1
(y4,7,1 - y4,7,2) (t) = ~ p l (c) E l ,

(Y4,7,1 - Y4,7,3)' (t) -- ~ p 2 (c) l E2, and

1
(y6,s,1 - Y4,s,1)' (t) = ~ p3(c) E3,

where p,(e) = P ' (c) .

6 S.P. CORWIN AND S. THOMPSON

Note that the polynomials Pi (c) are the same for each integration step and they do not depend
on {ki}. They may be thought of as amplification factors by which errors at integration grid
points are magnified at nongrid points. They suggest simple forms of error estimation for the
methods in question when applied to delay equations. For example, the maximum magnitude
of PI(C) for 0 < c < 1 is IP1(2/7)1 = 8224/2401 (note: [3] contains an incorrect statement
regarding this), or approximately 3.4, since

l/ s

Rather than use E1 to estimate the error for a given step, we may use

E1
E I , b - P,(2/7)"

This amounts to requesting about an additional half digit of accuracy at each step. Intuitively, by
requiring this additional accuracy, we are more confident that the off-grid solution values will be
accurate within the requested error tolerance when they are used later to interpolate the solution.

A more conservative estimate is given by

E1 E1
El,c 1680

fo Is(s - 2/7)(s - 3/4)(s - 1)1 ds 2P1(3/4) - 2P1(2/7) - 1'

The denominator in the El,c estimate is about 12.4. (The corresponding factors for E2,c and E3,c
are approximately 24.6 and 62.6, respectively.) Thus the difference of the two methods and hence
the accuracy of the Runge-Kutta polynomial interpolant can be better controlled by requesting
about an extra digit of accuracy at each step. Of course, the standard estimate El,a could
simply be used with a smaller error tolerance; but in the tests we have performed, the above
two estimates, particularly the second, consistently do a bet ter job of actually delivering the
accuracy requested of the solver. We favor using the alternate error estimates directly because
they increase our confidence in the accuracy of the off-grid solution values which are used later
and because they, at the same time, arise in a natural way from the continuously embedded
methods being used. Estimates similar to El,b, and El,c, and which will we denote by E2,b, E2,c,
E3,b, and E3,c, are obtained easily for use with the other two pairs of methods based on the
polynomials P2 and P3-

Although we will not pursue the matter in this paper, we note as a mat ter of interest that
estimates based on the maximum magnitudes or integrals of P~ on the interval [0,2] are also
incorporated in the solvers. Such estimates allow the accurate solution of so-called vanishing
and nearly vanishing delay problems. (By using a step size for which the solution polynomial
is accurate for twice this value, the solution polynomials may be extrapolated when necessary
near points at which a delay vanishes.) The interested reader is referred to [14] which contains
an excellent discussion of the issues and hard numerical realities associated with the solution of
vanishing delay (and other) problems.

D E R I V A T I V E D I S C O N T I N U I T I E S

A second nemesis for any solver for delay equations is the manner in which derivative jump
discontinuities occur and propagate [3]. If the initial function is not compatible with the differ-
ential equation (that is, there is a derivative discontinuity of some order at t = a), when the
delay function ~(t, y(t)) later "crosses" t = a, the potential for a derivative discontinuity in the
solution at tha t point exists. In general, such crossings occur at zeroes of odd multiplicity of the
functions

~(t. ,y(t)) - Y = O,

Error Estimation 7

where Y is either t -- a, or any subsequent point of derivative discontinuity. (The odd multiplicity
guarantees tha t the delay function actually crosses the previous jump point.) The resulting tree
of points with derivative discontinuities thus propagates from the initial discontinuity at t = a.

The present solvers contain provisions for automatically locating points of discontinuity using
root finding. (They use root finding similar to tha t used in well-known ode solvers to locate the
zeroes, and they augment the system of root functions each t ime a discontinuity point is found.)
We will present results in the next section which illustrate the effect of having the codes locate
points at which the potential for a discontinuity exists and include them as integration mesh

points, and also which illustrate the effect on the above error control strategies of having the
codes ignore such points.

We note tha t preliminary results suggest that the use of error estimates similar to those above
but based on P[(c) rather than Pi(c) may provide a less expensive alternative to root finding for
some problems. (For each of the three pairs, the difference of the derivatives of the methods is
equal to (1/h)P~(c) Ei,a.) Such estimates are very similar to the error per step estimates used in
some codes; and they effectively permit automatic switching between the usual error est imates
and per step estimates near discontinuities. Results pertaining to this issue will be presented
elsewhere.

E X A M P L E S A N D N U M E R I C A L R E S U L T S

As a first test to demonstrate the effect of using the above error estimates, we used each of
the three codes to solve each of the thir ty problems in the well-known D E T E S T set of nonstiff
test problems for odes [15]. (This is not a purely academic exercise: delay codes should do a
reasonable job solving odes since the need to solve systems of odes without delays arises frequently
in connection with the solution of delay equations; see [8] for an example.) Each problem was
solved for each of the four error tolerances 10 -4, 10 -6, 10 -s, and 10 -1°, for a total of 120 cases.

In each case, equal values were used for ea and e~, the absolute and relative error tolerances,
respectively.

DRKLAG is modeled very closely after a well-known Runge-Kut ta ode solver D D E R K F [16]
whenever possible. I t uses mixed absolute-relative error tests and controls the integration step
size depending on the magnitude of

[estimated error I

ea + e~lcomputed solution["

The codes a t t empt to achieve a value of 0.5 for this quanti ty at each integration step.

Table 2 contains a summary of the results. For each of the three pairs of methods and each of
the forms of error control described above, Table 2 contains the average error overrun (AVGERO)
at the final integration t ime and the average number of derivative evaluations (AVGNFE) required
for the 120 cases. By error overrun is meant the quantity

[actual error[

e~ + e~[exact solution["

In practice, it is difficult to predict the magnitude of this overrun since it depends on the
stabili ty of the differential equation; but in principle, a value of 0.5 is optimal since tha t is what
the codes aim for at each step. The results illustrate the improvement in the delay codes' ability
to control the error if either of the two alternate forms of error estimation are used. The results
for the third form are particularly encouraging. Of course, nothing is free; and the codes do,
in fact, have to work harder to achieve the additional accuracy. However, the resulting loss in
efficiency is justified by the additional accuracy. As a crude indication of efficiency, we note that

8 S.P. CORWIN AND S. THOMPSON

Table 2. DETEST test results.

AVGERO AVGNFE

DELAY1
El,a 51.6 1608
El,b 14.0 1985
El,c 3.4 2486

DELAY2
E2,a 98.1 1253
E2,b 7.5 2024
E2,c 4.0 2548

DELAY3
E3,a 72.2 1348
Ea, b 11.4 1767
E3,c 2.8 2260

AVGNFE for the ode solver in [16] for this test is 1328 (although AVGERO is considerably larger

than for any of the delay solver options).

As a second test, we considered the following problem.

EXAMPLE 1. [3]

dy(t) 1
dt = t y(t) y(ln(y(t))) for t _> 1

y(t) = 1 for 0 < t < 1.

The solution for this problem has derivative jump discontinuities at the points t = 0, t = e,
t = e 2, and t = e3 (orders 1, 2, and 3, respectively). The exact solution for t <_ e3 is given by

t, (~) i f l < t < e ,

y(t) = exp , if e < t < e 2,

g - T n (t) , i f e 2 < t < e 3 ,

where ea = exp(3 - exp(1 - e)).

Tables 3 and 4 contain the results for the three delay solvers and several error tolerances. The
tables contain the maximum error overrun (MAXERO) during the integration and the number of
derivative evaluations (NFE) required to solve the problem for each error tolerance. The results
in Table 3 were obtained by using the codes' root finding option to automatical ly locate the
points of derivative discontinuity. Table 4 contains the results obtained when the discontinuities
were ignored. In both cases, the codes perform satisfactorily; but the results in the first case
are clearly better. They demonstrate the potential problems associated with forcing a solver to
fend for itself in the presence of discontinuities. However, in both cases, the integration overruns
generally are bet ter for the al ternate error estimates.

As a third test, we considered the following problem.

EXAMPLE 2. [17]

dy(t)
y(t) + y(t - 1) - l y ' (t - 1) for 0 < t < 2

dt
y(t) = - t for t _< O.

Error Estimation 9

Table 3. Example 1 results (discontinuities located).

10 -4 10-6 10-8 10-10

MAXERO NFE MAXERO NFE MAXERO NFE MAXERO NFE

DELAY1

El ,a 3.0 262 8.4 286 6.5 646 6.5 1558

El,b 1.6 286 2.5 346 1.9 826 1.9 1978

El ,c .45 328 .52 436 .53 1042 .53 2542

DELAY2

E2,a 9.1 250 4.0 226 2.8 502 27.9 1174

E2,b 1.5 280 1.9 358 1,7 832 1.7 2008

E2,c .30 328 .44 460 ,45 1072 .53 2626

DELAY3

E3,a 4.0 283 21.6 203 25.7 468 2.0 1259

E3,b 1.0 314 3.0 275 3.6 636 1.0 1720

E3,c .20 331 .41 355 .71 844 .59 2204

Table 4. Example 1 results (discontinuities ignored).

10 -4 10-6 10-8 10--10

M A X E R O N F E MAXERO NFE MAXERO NFE MAXERO NFE

DELAY1

El,a 15.6 136 629.5 313 360.5 664 527.6 1639

El,b 1.3 142 422.0 367 96.5 844 45.7 2029

El,c .59 202 .98 541 46.2 1102 7.4 2617

DELAY2

E2,a 634.3 100 1388.8 229 408.9 514 25.9 1279

E2,b 18.9 148 25.4 391 12.9 904 13.7 2095

E2,c 12.3 208 6.6 535 7.5 1150 4.5 2743

DELAY3

E3,a 190.3 110 295.2 238 431.6 566 217.3 1373

E3, b 364.8 134 48.5 369 25.8 735 8.1 1793

E3,c 28.0 216 7.8 472 7.0 943 5.5 2254

The solution for this problem has first derivative jump discontinuities at t = 1 and t = 2. The
exact solution for t < 2 is given by

+ t + l e t , i f 0 < t < l
y(t)

~ - t + ¼ e t - l - t - - ~ t e t - 1 i f l < t < 2 .

This problem was solved using the delay codes for several error tolerances. The results obtained
are summarized in Table 5. Once again, the improved performance of the codes using the alternate
error estimates is evident.

We have performed similar experiments for numerous other problems from various test sets.
Comparable improvements were obtained in all cases. Consequently, we recommend that solvers
such as DRKLAG employ the more conservative error estimates, particularly the third (which is
now the default in DRKLAG).

S U M M A R Y

This paper considered the use of Runge-Kutta-Sarafyan methods for the solution of delay
equations. One widely used code and two experimental variants of it based on Sarafyan methods

31-6-8

10 S . P . CORWIN AND S. THOMPSON

Table 5. Example 2 results.

10-a 10-6 10-8 10-10

MAXERO NFE MAXERO NFE MAXERO NFE MAXERO NFE

DELAY1

El,a 41.7 80 17.1 176 16.7 266 16.1 482

El,b 5.4 122 4.8 188 4.8 308 5.0 572

El,c 1.3 146 1.2 218 1.4 362 1.3 710

DELAY2

E2,a 74.9 70 73.9 146 71.9 224 66.7 398

E2,b 27.6 68 4.1 194 4.4 260 4.4 584

E2,c i. 1 146 I. 1 218 1.2 368 I. 1 722

DELAY3

E3,a 64.0 84 13.5 209 14.5 287 13.6 453

E3,b 55.8 77 2.7 232 2.5 334 2.7 542

E3,c .54 172 .56 263 .60 382 .56 668

were discussed. Numerical results were presented which demonstrate tha t by controlling the local
error using more conservative, but natural, error estimates, the accuracy of each of the codes can
be significantly improved. The DRKLAG solver along with various test programs including those
used to obtain the results given in this paper are available from the author. Maple programs
which may be used to verify the estimates given in the theorem in this paper or modified for
similar methods are also available from the author.

R E F E R E N C E S

1. D. Sarafyan, Approximate solution of ordinary differential equations and their systems through discrete and
continuous embedded Runge-Kut ta formulae and upgrading of their order, Computers Math. Applic. 28
(10-12), 353-384 (1994).

2. K.W. Neves and S. Thompson, DRKLAG: Solution of systems of functional differential equations with s tate
dependent delays, TR-92-003, Computer Science Department Technical Report Series, Radford University,
Radford, VA, (1992).

3. K.W. Neves and S. Thompson, Software for the numerical solution of systems of functional differential
equations with s tate dependent delays, J. Appl. Num. Math. 9, 385-401 (1992).

4. R.E. Bellman and K.L. Cooke, Differential-Difference Equations, Math. in Sci. and Eng. 6, Academic Press,
(1963).

5. C.T.H. Baker, C.A.H. Paul and D.R. Will~, A bibliography on the numerical solution of delay differential
equations, Numerical Analysis Report No. 269, Department of Mathematics, University of Manchester,
Manchester, England, (1995).

6. N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge,
(1989).

7. J.D. Murray, Mathematical Biology, 2 nd edition, Springer-Verlag, New York, (1993).
8. S.P. Corwin, D. Sarafyan and S. Thompson, Solution of systems of delay differential equations with s ta te

dependent delays using the DRAKE/DRKLAG solvers (to be submitted).
9. S. Thompson, Use of a delay differential equation solver for the solution of a complex biological control

model arising in the s tudy of the human respiratory system, (in preparation).
10. D. Sarafyan, (private communication).
11. M.E. Hosea, Rapid calculation of Runge-Kut ta t runcat ion error coefficients, Technical Report #92-7, Math-

ematics Department, Southern Methodist University, Dallas, TX, (1992).
12. D. Sarafyan, Effective and efficient numerical solution of ordinary differential equations, In Proceedings of

SHARE XXXVIII, San Francisco, CA, (1972).
13. S. Thompson, Implementat ion and evaluation of several continuously imbedded methods of Sarafyan, Tech-

nical Report ORNL/TM-10434, Oak Ridge National Laboratory, Oak Ridge, TN, (1987).
14. C.T.H. Baker, C.A.H. Paul and D.R. Will~!, Issues in the numerical solution of evolutionary delay differential

equations, Numerical Analysis Report No. 248, Department of Mathematics, University of Manchester,
Manchester, England, (1994).

15. W.H. Enright and J.D. Pryce, Two FORTRAN packagea for assessing initial value methods, ACM Trans-
actions on Math. Software 13 (1), 1-27 (1987).

Error Estimation 11

16. L.F. Shampine and H.A. Watts, Software for ordinary differential equations, In Sources and Development
of Mathematical Software, (Edited by W.R. Cowell), pp. 112-133, Prentice Hall, (1984).

17. F. Kappel and K. Kunisch, Spline approximations for neutral functional differential equations, SIAM J. Nu-
mer. Anal. 18, 1058-1080 (1981).

