
Computers Math. Applic. Vol. 31, No. 6, pp. 1-11, 1996 
P e r g a m o n  Copyright©1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0898-1221/96 $15.00 + 0.00 

S0898-1221(96)00001-6 

Error Est imat ion  and Step Size Control  
for Delay Differential Equat ion Solvers 

Based on Cont inuously  E m b e d d e d  
Runge-Kutta-Sarafyan  M e t h o d s  

S .  P .  C O R W I N  AND S .  T H O M P S O N  
Department  of Mathematics  and Statistics, Radford University 

Radford, VA 24142, U.S.A. 

Ded ica t ed  wi th  w a r m t h  and respec t  to  Professor  Di ran  Sara fyan  

(Received May 1995; accepted September 1995) 

A b s t r a c t - - T h i s  paper considers the use of continuously embedded Runge-Kutta-Sarafyan meth- 
ods for the solution of delay differential equations. It discusses simple ways to improve the error 
estimation and step size selection strategies for delay solvers based on Sarafyan methods. Numerical 
results are given which demonstrate the manner in which these estimates improve the accuracy of 
the solvers in a natural way. 

U e y w o r d s - - A l g o r i t h m s ,  Delay differential equations, Derivative jump discontinuities, Functional 
differential equations, Interpolation for Runge-Kutta formulas, Retarded arguments, Retarded differ- 
ential equations, Runge-Kutta formulas, Time delays. 

I N T R O D U C T I O N  

Cont inuous ly  e m b e d d e d  R u n g e - K u t t a - S a r a f y a n  m e t h o d s  [1] m a y  be used for the  so lu t ion  of de lay  

dif ferent ia l  equa t ions  in which the  der ivat ive  a t  a given t ime  depends  on the  so lu t ion  a t  previ-  

ous t imes .  Neves and  T h o m p s o n  [2,3] descr ibe  the  i m p l e m e n t a t i o n  and  usage of a de lay  solver  

D R K L A G  based  on a (4,5) pa i r  of  Sara fyan  methods .  The  p rob lems  for which D R K L A G  is 

des igned  t ake  the  form 

dy(t) = f ( t ,  y(t), y(t, t3(t, y(t)))) 
dt 

or, more  general ly,  

dy(t) = f (t, y(t), y(t, ~(t, y(t))), ~'(t, ~(t, y(t)))) 
dt 

for t E [a, b] and  

wi th  y(t) =- ¢( t )  for t _< a, and  13(t, y(t)) < t for all t. 

(In the  above,  i t  is a s sumed  t h a t  t he  in teg ra t ion  proceeds  from left to  r ight .  Obvious  modi f ica t ions  

to  t he  n o t a t i o n  a p p l y  if th is  is no t  the  case.) 

The author is grateful to an anonymous referee for a careful reading of the original version of this paper and for 
several constructive suggestions. 
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2 S . P .  CORWIN AND S. THOMPSON 

For the purposes of the s tudy described in this paper, two additional experimental  versions 
of DRKLAG were developed based on the method pairs described below. In each solver, the 
higher order method is used to advance the integration, and the lower order method is used for 
the purposes of error estimation and step size selection. Local extrapolat ion is used to t reat  the 
error est imate as one for the higher order method. 

The purpose of the paper  is to demonstrate  the effectiveness of using alternate types of error 

control, ra ther  than  the s tandard difference of the embedded methods at integration grid points, 
for delay equations. We will present and discuss typical results which demonstrate  the effect 
of each of three error estimates for the three solvers. We argue tha t  more conservative forms of 
error est imation are appropriate  for codes intended to solve delay problems. We present numerical 
results for the three delay codes to support  this argument.  

This paper  is devoted to a discussion of al ternate forms of error control for delay equations. I t  

does not include a general discussion of the solution of delay equations. Readers interested in such 
a discussion are referred to [4]. An outstanding bibliography on the numerical solution of delay 
differential equations may be found in [5]. This paper  also does consider realistic applications of 
delay equations. Readers interested in discussions of such applications are referred to [6,7]. Use 

of the DRKLAG software for the solution of complicated models arising in realistic problems is 
addressed in considerable detail elsewhere [8,9]. 

S A R A F Y A N  M E T H O D S  

The following coefficient tableau contains the coefficients ai and bij which determine the cal- 
culation of the Runge-Kut ta  derivative approximations for the first two pairs of methods.  If the 
integration step size is denoted by h, these derivative approximations are defined by 

k0 = h f (tn, Yn 

and 

= h f tn + Yn + Z bijkj ki 
j=o 

for i > 0. The coefficient tableau for the methods used in the first two pairs of methods [1] is 
given in Tableau 1. The polynomial coefficients for the methods used in the first pair are 

~1 ~ ko 
-25ko + 48k2 - 36k3 + 16k4 - 84k5 + 81k6 ~'/2 -= 

6 
70ko - 208k2 + 228k3 - 112k4 + 490k5 - 468k6 

fit 3 _- 
9 

-40k0 + 144k2 - 192k3 + 112k4 - 399k5 + 375k6 
~'~4 

6 
8 (4k0 - 16k2 -t- 24k3 - 16k4 + 49k5 - 45k6) 

~5 -- 15 
031 -~- k0 

-127k0 + 144k2 + 36k3 - 80ka + 27k6 
o32 

42 
2 (5k0 - 8k2 - 2k3 + 8k4 - 3k6) 

033 
3 

2 ( -13k0 + 24k2 + 6k3 - 32k4 + 15k6) 
0J 4 

21 
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T a b l e a u  1. 

i a i  b i j ,  j = 0 , . . . , i -  1 

1 1 1 
6 6 

2 ! ! 3_  
4 16 16 

1 3 4 3 1 ~ 4 

3 3 0 0 9 4 ~ 1"~ 1~ 

5 1 4 3 122 12 _8 
7 7 7 7 7 

6 1 ~0 0 3_22 1_22 32 
90 90 ~ 90 

Let c = (t - t~)lh. The two methods used in the first pair [1,3,10] are defined by 

5 

Y4,7,1 (tn + ch) = Yn + E ~ic~ 
i = 1  

4 

Y4,7,2 (tn -I- ch) = y~ + E wici" 
i = 1  

It is this first pair of methods which is implemented in the DRKLAG solver. Although each is a 

7-stage method, the pair constitutes effectively a 6-stage pair since the final derivative evaluation 

for any step is used as the first derivative evaluation for the next step. For c = 1, y4,7,1 is a fifth 
order C 1 method; and Y4,7,2 is a fourth order method. For c ~ 1, both methods are fourth order. 

For c = 1, the methods become 

7k0 + 32k2 + 12k3 + 32k4 + 7k5 
Y4,7,1 (tn + h) = y~ + 

90 
3k0 + 16k2 + 4k3 + 16k4 + 3k6 

Y4,7,2 (tn + h) = y~ + 
42 

Their difference for c -- 1 is given by El,a = E1 where 

4k0 - 16k2 + 24k3 - 16k4 + 49ks - 45k6 
E1 = (Y4,7,1 - y4,7,2) (tn + h) = 630 

The second pair [1] uses a method Y4,7,3 which is similar to but more accurate than Y4,7,2. (The 
program in [11] may be used to see that  the local truncation error coefficients for this method are 

smaller than the corresponding ones for y4,7,2 b y  factors of about 5.) Y4,7,3 is the method denoted 
by YT in [1, equations (32a)-(32e)]. The polynomial coefficients for this method are given by 

T1 = k0 
-161k0 + 176k2 + 60k3 - 112k4 + 28k5 + 9k6 

T 2 =  54 

718ko - 1072k2 - 492k3 + 1328k4 - 392k5 - 90k6 
T3 = 225 

-68k0 + 112k2 + 72k3 - 208k4 + 77k5 + 15k6 
T 4 =  60 

The method Y4,7,3 is defined by 

4 

Y4,7,3 (tn + ch) = Yn + E Tici" 
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For  each  value of c, Y4,~,3 is a four th  o rder  me thod .  For  c = 1, t he  m e t h o d  becomes  

206k0 + 976k2 + 336k3 + 976k4 ÷ 161ks + 45k6 
Y4,7,3 (tn + h) = y,~ + 

2700 

T h e  second pa i r  of  m e t h o d s  considered in th is  p a p e r  consists  of  Y4,7,1 and  Y4,7,3. The i r  difference 

for c = 1 is given b y  E2,a = E2 where  

4ko - 16k2 + 24k3 - 16k4 + 49k5 - 45k6 
E 2  = ( Y 4 , 7 , 1  - -  Y 4 , 7 , 2 )  ( $ n  ÷ h) = 2700 

Each  of  t he  first  two pa i rs  is a con t inuous ly  e m b e d d e d  (4,5) pair .  The  t h i r d  pa i r  [10,12,13] is a 

con t inuous ly  e m b e d d e d  (4,6) pair .  T h e  coefficient t a b l e a u  for th is  pa i r  [12] is given in T a b l e a u  2. 

T a b l e a u  2.  

i a s  b l j ,  j = 0 , . . . , i -  1 

1 1 
1 6 6 

1 1 3 
2 ~ 2"--4 

1 1 3 4 3 6 6 

1 1 3 4 ~ ~ 0 0 

2 17 63 51 1 
5 ~ "6" 9 -~- 0 

5 22 33 30 58 30 3 
6 ~ 24 2"4 3-'4 24 2"4 2"4" 

7 1 281 243 522 876 346 36 7._.22 
82 82 82 82 82 82 82 

T h e  p o l y n o m i a l  coefficients for the  m e t h o d s i n  th is  pa i r  are  

A1 = ko 

-67056ko  + 110124k2 - 48717k3 - 1408k4 + 6624k5 + 2196k6 - 1763k7 
A2 = 11788 

247660ko - 626292k2+468639k3  - 34376k4 - 54594k5 - 16740k6+ 15703k7 
A3 = 17682 

3 ( - 1 2 0 6 5 5 k o  + 369216k2 - 354531k3 + 68336k4 + 39843k5 + l1280ks  - 13489k7) 
A4 = 23576 

A5 = 9(9961ko - 33804k2 + 37287k3 - 10328k4 - 4113k5 - 684k6 + 1681k7) 

14735 

B1 = ko 

-57501ko  + 76743k2 - 31810k4 + 5715k5 + 11691k6 - 4838k7 
B2 = 11200 

25081k0 - 46683k2 + 37210k4 - 6615k5 - 15471k6 + 6478k7 
Bs  = 2400 

3 ( - 6 9 4 4 3 k 0  + 147849k2 - 156830k4 + 33645k5 + 80613k6 - 35834k7) 
B4 = 22400 

9(673ko - 1539k2 + 1930k4 - 495k5 - 1143k6 + 574k7) 
B5 = 2000 

T h e  m e t h o d s  [10,12] are  defined by  

5 

Y6,s,1 (t~ + ch) = y~ + ~ A~c i 
i = l  

5 

Y4,8,1 (tn ÷ ch) = Yn + E Bic~" 
i = l  



Error Estimation 5 

Each  of  the methods  is an 8-stage method.  For c = 1, Y6,s,1 is a sixth order method;  and 

Y4,8,1 is a four th  order  method.  For other  values of  c, the  two methods  are fourth order.  

For c -- 1, the methods  become 

41k0 -}- 216k2 + 27k3 -t- 272k4 -}- 27k5 + 216k6 + 41k7 
y6,8,1 (t,~ + h) = yn + 

84O 
284069k0 A- 1765233k2 + 2202290k4 + 207765k5 A- 1599021k6 -4- 325622k7 

y4,8,1 (tn + h) = Yn + 6384000 

Their  difference for c = 1 is given by E3,a = E3 where 

E3 = (Y6,8,1 - Ya,s,1) (tn + h) 
3 

- 112000 (161k0 - 723k2 + 1200k3 - 790k4 - 15k5 + 249k6 - 82k7). 

Table 1 summarizes  the methods  used in the three pairs. Th roughou t  this paper,  we will refer 

to  the  corresponding versions of  D R K L A G  as DELAY1,  DELAY2,  and DELAY3.  The  intent  of 

this paper  is not  to  access the relative merits of  the methods  used or compare  the per formance  

of  these solvers. Rather ,  it is to  illustrate how the choice of different error es t imates  can affect 

the  per formance  of  a given delay solver. 

Table 1. Runge-Kutta-Sarafyan delay solvers. 

Method Interpolant 
Primary Subsidiary 

Code Orders Orders 
Method Method 

(c = 1) (C ~ 1) 

DELAY1 y4,T, 1 y4,7,2 5, 4 4, 4 
DELAY2 Y4,7,1 Y4,7,3 5, 4 4, 4 
DELAY3 Y6,S,I Y4,8,1 6, 4 4, 4 

E R R O R  E S T I M A T E S  

I t  was observed in [3] t ha t  the difference of the solution polynomials  for the Sarafyan methods  
used in D R K L A G  factors into a convenient form. For each of the above three pairs of  methods ,  

a similar factorizat ion is possible. We summarize  the results in the following theorem which may  

be proved using an a rgument  like tha t  sketched in [3]. 

THEOREM. I f  the s tep  size is h, then for any  c = (t - t n ) /h ,  

(Y4,7,1 - Y4,7,2) (t) = PI(c) E l ,  

(Y4,7,1 - Y4,7,3) (t) = P2(c) E2, and 

(Y6,8,1 - Y4,8,1) (t) -- P3(c) E3, 

where the polynomials  Pi(c) are given by 

Pl (c)  = 336c 5 - 855c a + 700c 3 - 180c 2, 

P2(c) = 1440c 5 - 3735c a A- 3096c 3 - 800c 2, and  

298296c 5 - 590885c 4 -4- 347140c 3 - 54130c 2 
P3(c) = 421 

Also, 

, 1 
(y4,7,1 - y4,7,2) (t) = ~ p l ( c )  E l ,  

(Y4,7,1 - Y4,7,3)' (t) -- ~ p 2 ( c ) l  E2, and 

1 
(y6,s,1 - Y4,s,1)' (t) = ~ p3(c) E3, 

where p,(e)  = P ' (c ) .  
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Note that the polynomials Pi (c) are the same for each integration step and they do not depend 
on {ki}. They may be thought of as amplification factors by which errors at integration grid 
points are magnified at nongrid points. They suggest simple forms of error estimation for the 
methods in question when applied to delay equations. For example, the maximum magnitude 
of PI(C) for 0 < c < 1 is IP1(2/7)1 = 8224/2401 (note: [3] contains an incorrect statement 
regarding this), or approximately 3.4, since 

l/ s 

Rather  than use E1 to estimate the error for a given step, we may use 

E1 
E I , b -  P,(2/7)"  

This amounts to requesting about an additional half digit of accuracy at each step. Intuitively, by 
requiring this additional accuracy, we are more confident that  the off-grid solution values will be 
accurate within the requested error tolerance when they are used later to interpolate the solution. 

A more conservative estimate is given by 

E1 E1 
El,c 1680 

fo  Is( s - 2/7)(s - 3/4)(s - 1)1 ds 2P1(3/4) - 2P1(2/7) - 1' 

The denominator in the El,c estimate is about 12.4. (The corresponding factors for E2,c and E3,c 
are approximately 24.6 and 62.6, respectively.) Thus the difference of the two methods and hence 
the accuracy of the Runge-Kutta  polynomial interpolant can be better  controlled by requesting 
about  an extra digit of accuracy at each step. Of course, the standard estimate El,a could 
simply be used with a smaller error tolerance; but  in the tests we have performed, the above 
two estimates, particularly the second, consistently do a bet ter  job of actually delivering the 
accuracy requested of the solver. We favor using the alternate error estimates directly because 
they increase our confidence in the accuracy of the off-grid solution values which are used later 
and because they, at the same time, arise in a natural way from the continuously embedded 
methods being used. Estimates similar to El,b, and El,c, and which will we denote by E2,b, E2,c, 
E3,b, and E3,c, are obtained easily for use with the other two pairs of methods based on the 
polynomials P2 and P3- 

Although we will not pursue the matter  in this paper, we note as a mat ter  of interest that  
estimates based on the maximum magnitudes or integrals of P~ on the interval [0,2] are also 
incorporated in the solvers. Such estimates allow the accurate solution of so-called vanishing 
and nearly vanishing delay problems. (By using a step size for which the solution polynomial 
is accurate for twice this value, the solution polynomials may be extrapolated when necessary 
near points at which a delay vanishes.) The interested reader is referred to [14] which contains 
an excellent discussion of the issues and hard numerical realities associated with the solution of 
vanishing delay (and other) problems. 

D E R I V A T I V E  D I S C O N T I N U I T I E S  

A second nemesis for any solver for delay equations is the manner in which derivative jump 
discontinuities occur and propagate [3]. If the initial function is not compatible with the differ- 
ential equation (that  is, there is a derivative discontinuity of some order at t = a), when the 
delay function ~(t, y(t)) later "crosses" t = a, the potential for a derivative discontinuity in the 
solution at tha t  point exists. In general, such crossings occur at zeroes of odd multiplicity of the 
functions 

~(t. ,y(t))  - Y = O, 
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where Y is either t -- a, or any subsequent point of derivative discontinuity. (The odd multiplicity 
guarantees tha t  the delay function actually crosses the previous jump point.) The resulting tree 
of points with derivative discontinuities thus propagates from the initial discontinuity at t = a. 

The present solvers contain provisions for automatically locating points of discontinuity using 
root finding. (They use root finding similar to tha t  used in well-known ode solvers to locate the 
zeroes, and they augment the system of root functions each t ime a discontinuity point is found.) 
We will present results in the next section which illustrate the effect of having the codes locate 
points at which the potential for a discontinuity exists and include them as integration mesh 

points, and also which illustrate the effect on the above error control strategies of having the 
codes ignore such points. 

We note tha t  preliminary results suggest that  the use of error estimates similar to those above 
but based on P[(c) rather than Pi(c) may provide a less expensive alternative to root finding for 
some problems. (For each of the three pairs, the difference of the derivatives of the methods is 
equal to (1/h)P~(c) Ei,a.) Such estimates are very similar to the error per step estimates used in 
some codes; and they effectively permit  automatic  switching between the usual error est imates 
and per step estimates near discontinuities. Results pertaining to this issue will be presented 
elsewhere. 

E X A M P L E S  A N D  N U M E R I C A L  R E S U L T S  

As a first test to demonstrate  the effect of using the above error estimates, we used each of 
the three codes to solve each of the thir ty  problems in the well-known D E T E S T  set of nonstiff 
test  problems for odes [15]. (This is not a purely academic exercise: delay codes should do a 
reasonable job solving odes since the need to solve systems of odes without delays arises frequently 
in connection with the solution of delay equations; see [8] for an example.) Each problem was 
solved for each of the four error tolerances 10 -4, 10 -6, 10 -s, and 10 -1°, for a total  of 120 cases. 

In each case, equal values were used for ea and e~, the absolute and relative error tolerances, 
respectively. 

DRKLAG is modeled very closely after a well-known Runge-Kut ta  ode solver D D E R K F  [16] 
whenever possible. I t  uses mixed absolute-relative error tests and controls the integration step 
size depending on the magnitude of 

[estimated error I 

ea + e~lcomputed solution[" 

The codes a t t empt  to achieve a value of 0.5 for this quanti ty at each integration step. 

Table 2 contains a summary  of the results. For each of the three pairs of methods and each of 
the forms of error control described above, Table 2 contains the average error overrun (AVGERO) 
at the final integration t ime and the average number of derivative evaluations (AVGNFE) required 
for the 120 cases. By error overrun is meant  the quantity 

[actual error[ 

e~ + e~[exact solution[" 

In practice, it is difficult to predict the magnitude of this overrun since it depends on the 
stabili ty of the differential equation; but in principle, a value of 0.5 is optimal  since tha t  is what 
the codes aim for at each step. The results illustrate the improvement in the delay codes' ability 
to control the error if either of the two alternate forms of error estimation are used. The results 
for the third form are particularly encouraging. Of course, nothing is free; and the codes do, 
in fact, have to work harder to achieve the additional accuracy. However, the resulting loss in 
efficiency is justified by the additional accuracy. As a crude indication of efficiency, we note that  
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Table 2. DETEST test results. 

AVGERO AVGNFE 

DELAY1 
El,a 51.6 1608 
El,b 14.0 1985 
El,c 3.4 2486 

DELAY2 
E2,a 98.1 1253 
E2,b 7.5 2024 
E2,c 4.0 2548 

DELAY3 
E3,a 72.2 1348 
Ea, b 11.4 1767 
E3,c 2.8 2260 

AVGNFE for the ode solver in [16] for this test  is 1328 (although AVGERO is considerably larger 

than  for any of the delay solver options). 

As a second test, we considered the following problem. 

EXAMPLE 1. [3] 

dy(t)  1 
dt = t y(t)  y( ln(y( t ) ) )  for t _> 1 

y(t) = 1 for 0 < t < 1. 

The solution for this problem has derivative jump discontinuities at the points t = 0, t = e, 
t = e 2, and t = e3 (orders 1, 2, and 3, respectively). The exact solution for t <_ e3 is given by 

t, ( ~ )  i f l < t < e ,  

y(t)  = exp , if e < t < e 2, 

g - T n ( t )  , i f e  2 < t < e 3 ,  

where ea = exp(3 - exp(1 - e)). 

Tables 3 and 4 contain the results for the three delay solvers and several error tolerances. The 
tables contain the maximum error overrun (MAXERO) during the integration and the number  of 
derivative evaluations (NFE) required to solve the problem for each error tolerance. The results 
in Table 3 were obtained by using the codes' root finding option to automatical ly locate the 
points of derivative discontinuity. Table 4 contains the results obtained when the discontinuities 
were ignored. In both cases, the codes perform satisfactorily; but the results in the first case 
are clearly better.  They demonstrate  the potential  problems associated with forcing a solver to 
fend for itself in the presence of discontinuities. However, in both cases, the integration overruns 
generally are bet ter  for the al ternate error estimates. 

As a third test,  we considered the following problem. 

EXAMPLE 2. [17] 

dy(t)  
y(t)  + y( t  - 1) - l y ' ( t  - 1) for 0 < t < 2 

dt 
y(t)  = - t  for t _< O. 
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Table 3. Example 1 results (discontinuities located). 

10 -4  10-6 10-8 10-10 

MAXERO NFE MAXERO NFE MAXERO NFE MAXERO NFE 

DELAY1 

El ,a  3.0 262 8.4 286 6.5 646 6.5 1558 

El,b 1.6 286 2.5 346 1.9 826 1.9 1978 

El ,c  .45 328 .52 436 .53 1042 .53 2542 

DELAY2 

E2,a 9.1 250 4.0 226 2.8 502 27.9 1174 

E2,b 1.5 280 1.9 358 1,7 832 1.7 2008 

E2,c .30 328 .44 460 ,45 1072 .53 2626 

DELAY3 

E3,a 4.0 283 21.6 203 25.7 468 2.0 1259 

E3,b 1.0 314 3.0 275 3.6 636 1.0 1720 

E3,c .20 331 .41 355 .71 844 .59 2204 

Table 4. Example 1 results (discontinuities ignored). 

10 -4  10-6 10-8 10--10 

M A X E R O  N F E  MAXERO NFE MAXERO NFE MAXERO NFE 

DELAY1 

El,a 15.6 136 629.5 313 360.5 664 527.6 1639 

El,b 1.3 142 422.0 367 96.5 844 45.7 2029 

El,c .59 202 .98 541 46.2 1102 7.4 2617 

DELAY2 

E2,a 634.3 100 1388.8 229 408.9 514 25.9 1279 

E2,b 18.9 148 25.4 391 12.9 904 13.7 2095 

E2,c 12.3 208 6.6 535 7.5 1150 4.5 2743 

DELAY3 

E3,a 190.3 110 295.2 238 431.6 566 217.3 1373 

E3, b 364.8 134 48.5 369 25.8 735 8.1 1793 

E3,c 28.0 216 7.8 472 7.0 943 5.5 2254 

The solution for this problem has first derivative jump discontinuities at t = 1 and t = 2. The 
exact solution for t < 2 is given by 

+ t + l e t ,  i f 0 < t < l  
y(t) 

~ - t + ¼ e  t - l - t - - ~ t e  t - 1  i f l  < t  < 2 .  

This problem was solved using the delay codes for several error tolerances. The results obtained 
are summarized in Table 5. Once again, the improved performance of the codes using the alternate 
error estimates is evident. 

We have performed similar experiments for numerous other problems from various test sets. 
Comparable improvements were obtained in all cases. Consequently, we recommend that solvers 
such as DRKLAG employ the more conservative error estimates, particularly the third (which is 
now the default in DRKLAG). 

S U M M A R Y  

This paper considered the use of Runge-Kutta-Sarafyan methods for the solution of delay 
equations. One widely used code and two experimental variants of it based on Sarafyan methods 

31-6-8 
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Table 5. Example 2 results. 

10-a  10-6 10-8 10-10 

MAXERO NFE MAXERO NFE MAXERO NFE MAXERO NFE 

DELAY1 

El,a 41.7 80 17.1 176 16.7 266 16.1 482 

El,b 5.4 122 4.8 188 4.8 308 5.0 572 

El,c 1.3 146 1.2 218 1.4 362 1.3 710 

DELAY2 

E2,a 74.9 70 73.9 146 71.9 224 66.7 398 

E2,b 27.6 68 4.1 194 4.4 260 4.4 584 

E2,c i. 1 146 I. 1 218 1.2 368 I. 1 722 

DELAY3 

E3,a 64.0 84 13.5 209 14.5 287 13.6 453 

E3,b 55.8 77 2.7 232 2.5 334 2.7 542 

E3,c .54 172 .56 263 .60 382 .56 668 

were discussed. Numerical results were presented which demonstrate  tha t  by controlling the local 
error using more conservative, but natural,  error estimates, the accuracy of each of the codes can 
be significantly improved. The DRKLAG solver along with various test  programs including those 
used to obtain the results given in this paper  are available from the author. Maple programs 
which may be used to verify the estimates given in the theorem in this paper  or modified for 
similar methods are also available from the author. 
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