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Table 1. Third party free-softwar e packages

Softwar e/Copyright Website

License

ANTLR http://www.antlr2.org/ Public Domain
Batik http://xmlgraphi cs.apache.org/batik/ Apachev2.0
Copyright © 1999-2007 The Apache Software Foundation.

BLAS http://www.netlib.org/blas BSD Style
Copyright © 1992-2009 The University of Tennessee.

Boost http://www.boost.org/ Boost
Copyright © 1999-2007 The A pache Software Foundation.

Castor http://www.castor.org/ Apachev2.0
Copyright © 2004-2005 Werner Guttmann

CommonsCLI http://commons.apache.org/cli/ Apachev2.0
Copyright © 2002-2004 The Apache Software Foundation.

Commons Collections http://commons.apache.org/collections/ |Apache v2.0
Copyright © 2002-2004 The Apache Software Foundation.

CommonsLang http://commons.apache.org/lang/ Apachev2.0
Copyright © 1999-2008 The A pache Software Foundation.

Commons L ogging http://commons.apache.org/logging/ Apachevl.l

Copyright © 1999-2001 The Apache Software Foundation.

Cryptot++ (AES/Rijndael http://www.cryptopp.com/ Public Domain

and SHA-256)

Copyright © 1995-2009 Wei Dai and contributors.

Fast MD5 http://www.twmacinta.com/myjava/ LGPL v2.1
fast_md5.php

Copyright © 2002-2005 Timothy W Macinta.

HQP http://hgp.sourceforge.net/ LGPL v2

Copyright © 1994-2002 Ruediger Franke.

Jakarta Regexp http://jakarta.apache.org/regexp/ Apachevl.l

Copyright © 1999-2002 The Apache Software Foundation.

JavaHelp http://javahel p.java.net/ GPL v2 with

classpath exception

Copyright © 2011, Oracle and/or its affiliates.

JXButtonPanel http://swinghel per.dev.java.net/

LGPL v2.1 (or
later)

Copyright © 2011, Oracle and/or its affiliates.

LAPACK http://www.netlib.org/lapack/

BSD Style

libodbc++

http://libodbcxx.sourceforge.net/

LGPL v2




Softwar e/Copyright Website License
Copyright © 1999-2000 Manush Dodunekov <manush@stendahls.net>

Copyright © 1994-2008 Free Software Foundation, Inc.

|p_solve http://Ipsolve.sourceforge.net/ LGPL v2.1
Copyright © 1998-2001 by the University of Florida.

Copyright © 1991, 2009 Free Software Foundation, Inc.

MiGL ayout http://www.miglayout.com/ BSD
Copyright © 2007 MiG InfoCom AB.

Netbeans http://www.netbeans.org/ SPL
Copyright © 1997-2007 Sun Microsystems, Inc.

omniORB http://omniorb.sourceforge.net/ LGPL v2

Copyright © 1996-2001 AT& T Laboratories Cambridge.
Copyright © 1997-2006 Free Software Foundation, Inc.

TimingFramewor k http://timingframework.dev.java.net/ BSD

Copyright © 1997-2008 Sun Microsystems, Inc.

VecMath http://vecmath.dev.java.net/ GPL v2 with
classpath exception

Copyright © 1997-2008 Sun Microsystems, Inc.

Wizard Framework http://wizard-framework.dev.java.net/  |LGPL

Copyright © 2004-2005 Andrew Pietsch.

Xalan http://xml.apache.org/xalan-j/ Apachev2.0

Copyright © 1999-2006 The Apache Software Foundation.

Xerces-C http://xerces.apache.org/xerces-c/ Apachev2.0

Copyright © 1994-2008 The A pache Software Foundation.

Xerces-J http://xerces.apache.org/xerces2-j/ Apachev2.0

Copyright © 1999-2005 The Apache Software Foundation.

This product includes software developed by the Apache Software Foundation, http://
www.apache.org/.
gPROMS also uses the following third party commercial packages:

* FLEXnet Publisher software licensing management from Acresso Software Inc., http://
WWW.acresso.cormy/.

» JClassDesktopViewshby Quest Software, Inc., http://www.quest.com/jclass-desktopviews/.

» JGraph by JGraph Ltd., http://www.jgraph.com/.
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Chapter 1. gPROMS Fundamentals

gPROMS process models are built from a number of fundamental building blocks or Entities (see aso: Entities).
A gPROMS process model (for a Simulation activity) consists of the following entities:

» Variable Types
» Connection Types
* Models

* Tasks

* Processes

Saved Variable Sets
Note that the entities required as a minimum are highlighted in bold.
In addition

* To execute Optimisation activities, Optimisation entites are required. For details on solving Optimisation
problems in gPROMS refer to the gPROMS Advanced Users Guide - included in the gPROMS installation.

* To execute Model Validation activities (Parameter Estimation and Experiment Design), Parameter

Estimation, Experiment Design and Experiment Entites are required. For details on solving Parameter
Estimation and Experiment Design problems in gPROM S refer to the Model Validation Guide

Variables and Variable Types

See also: Declaring Variable Types

In gPROMS, all quantities calculated by Model Equations are Variables; Variables are always Real (continuous)
numbers and must always be given aVariable Type.

Variable Types have the following information,

* A name, to which the type may be referred globally.

» A default value for Variables of thistype. Thisvaluewill be used asan initial guessfor any iterative calculation
involving Variables of this type, unlessit is overridden for individual Variables or a better guess is available
from a previous calculation.

» Upper and lower boundson the values of Variables of thistype. Any calculationinvolving Variables of thistype
must giveresultsthat lie within these bounds. These bounds can be used to ensure that the results of acalculation

are physically meaningful. Again, these bounds may be overridden*for individual Variables of this type.

* An optional unit of measurement. Users are encouraged to provide thisin order to aid Model readability.

Yt is possible to override the bounds on certain Variables. Thisis done using in PRESET section of the Process entity.
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Figure 1.1. Variable Typesdeclared in the gPROM S Process Model Library

&, Variable Types [PML Basics)

Mame Lower bound Default value Upper bound Units
activation_energy -1E12 10000.0 1E12 | Ifmal
area 0.0 1.0 100000.0 | mz
diameter 0.0 1.0 100000.0|m
differential_pressure -1E20 1000.0 1EZ0|Pa
differential_temperature -50000.0 0.0 50000.0(K
dynamic_viscosity 1E-10 0.001 1000000.0|Pa.s
efficiency -1.0 50.0 101.0
elevation 0.0 1.0 100000.0|m
Energy -1E20 10000 1E20(]
energy_holdup -1E20 1000.0 1E20|]
energy_rate -1E50 1.0 1E50| Jfs
fFanning_friction_factor 1E-8 1.0 1EZ0|10
head 0.0 1.0 100000,0/| m
heat_flux -1E50 1.0 1ES0 | Jfsfmetre
heatcapacity _ratio 1.01 1.1 10.0
height -1E-6 1.0 100000,0/| m
length 0.0 1.0 100000,0/| m
linear_flow_coefficient 1E-10 1.0 100000.0|kg/Pa s
mass -0.,001 1.0 1E20 | kg
mass_concentration -1E-10 1.0 1E10|kg/m3
mass_density 1E-5 1000.0 1E20 | kg/m3
mass_flowrate -1E20 1.0 1E20 | kgls
mass_fraction -1E-10 1.0 1.0001
mass_holdup -0.,001 1.0 1E20 | kg
mass_specific_enthalpy -1E20 10.0 1E20| Ifkg
mass_specific_volume -1.0 0.01 10000000 [ m3/kg
molar_concentration -1E-10 1.0 1E10| molfm3
molar_flovrate -1E20 1.0 1E20 | molfs
molar_fraction -1E-10 1.0 1.0001
molar_specific_enthalpy -1E20 10.0 1E20 | Ifmal
molar_specific_volume -1.0 0.01 1000000.,0 | m3/mol
molecular_weight 1E-5 1.0 1E20
moles 0.0 1.0 1E20 | mol
no_type -1EZ00 1.0 1EZ00
no_kype_gezero 0.0 1.0 1E20
no_kype_gkunity 1.01 1.1 10.0
no_kype_gtzero 1E-10 1.0 1E200
no_bype_percentage -1.0 50.0 101.0
no_type_positive_fraction -1E-10 1.0 1.0
no_type_smallbound 0.0 1.0 1.0
polytropic_head -1E20 100.0 1E20| Ifkg
power -1E50 1.0 1ES0 | wakk
pressure 1.0 100000,0 1E20|Pa
protected_velocity 1E-& 1.0 1000.0|mjs
reaction_rate -1E20 1.0 1E20 | molfs
reynolds_number -1000.0 30000.0 1E12
rps_speed 0.0 1.0 1E20 |rev per sec
specific_gravity 0.0 1.0 1000000.0
ternperature 10.0 300.0 50000.0/| K
torque -1E50 1.0 1ES0|M-m
welocity -1000.0 1.0 1000.0|mjs
wvolume 0.0 1.0 100000.0 | m3
volume_energy -1E10 1000.0 1E10| 3fm3
volume_Flowrate -1E20 1.0 1E20 | m3fs

i Properties |

When devel oping gPROM S Model s you can either use the existing Variable Typesthat are found in the gPROM S
Process Model Library (PML) (refer to the gPROM S Process Model Library Guide) or define your own Variable
Types.

Connection Types

See also: Declaring Connection Types

Connections between different Unitsin aflowsheet Model are associated with a Connection Type which defines
the type of information conveyed by the connection.

A Connection Type definition includes

» A declaration of a set of Parameters, Distribution domains and Variables; these are identical to those that are
declared in Models.

* A Graphical representation.

» Connectivity rulesto allow and forbid connections between Ports of different categories.
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« A Display template which specifieshow any connection based on this Connection Type appearsin results stream
tables.

A connections to or from a Unit is made from its Model Port. Model Ports are associated with a Connection Type

and all the quantities declared by the Connection Type are automatically included in the Model that declares the
Port.

When aconnection between two Portsismadein aflowsheet Model; al the Variables, Parametersand Distribution
domain are equated.

Figure 1.2. The PMLMaterial Connection Type from the gPROM S
ProcessModel Library - Parametersand Variable declaration tab

4 CONNECTION TYPE PKMLKMaterial [PKL Basics)

Conneckion parameters

Mame Type Foreign Object class Default
no_components IMTEGER <Mot applicable =
phys_prop FOREIGN OBIECT PhysProp

Distribution domains

Domain name Lower bound Upper bound
Connection variables
Marme Type Dimensions

info_mass_fraction mass_fraction no_components
info_mass_specific_enthalpy mass_specific_enthalpy <scalar=

info_pressure pressure <scalar=
mass_flowrate mass_flowrate <scalar=
mass_fraction mass_fraction no_components
mass_specific_enthalpy mass_specific_enthalpy <scalar=

I Parameters & variables | Graphical representationl Part categoriesl Display templatesl Propertiesl

When devel oping gPROM S Models you can either use existing Connection Types such as those that are found in
the gPROM S Process Model Library (PML) or you can define your own Connection Types.

Models

See also: Defining a gPROMS Model

A Model providesadescription of the physical behavior of agiven systemin theform of mathematical equations: a
gPROMS process model will contain at least one Model. Each Model contains the following information (defined
in each of its associated tabs):

* A gPROMS Language declaration: a Model's gPROMSS Language tab is where the mathematical equations are
provided along with the declaration of the quantities (such as Parameters and Variables) that appear in these
equations.

» A Public Interface: a Model interface consists of an icon, Model port declarations and a Specification dialog.
The interface capturesinformation explaining how to use the Model within composite or flowsheet Models and
to aid in making Model specifications.

A topology: thetopology tab isused for the graphical construction of flowsheet Models. On the topol ogy tab you
can drag and drop existing component Models and equate their Model Ports by making graphical connections.
Note that these connections are of course represented in the gPROM S language tab as mathematical equations.
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gPROMS Language declaration for Models

The gPROMS Language Tab in the Model entity comprises a number of sections, each containing a different type
of information regarding the system being Modelled. The minimal information that needs to be specified in any
Model isthe following:

» A set of constant Parameters that characterise the system. These correspond to quantities that will never be
calculated by any simulation or other type of cal culation making use of thisModel. Therefore, their values must
aways be specified before the simulation begins and remain unchanged thereafter. They are declared in the
PARAMETER section.

* A set of Variables that describe the time-dependent behaviour of the system. These may be specified in later
sections or |eft to be calculated by the simulation. They are declared in the VARIABLE section.

» A set of Equations involving the declared Variables and Parameters. These are used to determine the time-
dependent behaviour of the system. They are declared in the EQUATION section.

The structure of asimple Model declaration in the gPROMS language is the following:
PARAMETER

Par amet er declarations ....
VARI ABLE
Vari abl e declarations ...
EQUATI ON

Equati on decl arations ...
The general structure that aModel entity may have is shown below.

Please notethat the SET, ASSIGN, INITIAL and INITIALSELECTOR sections are also part of a Process and that
there are both advantages and disadvantages in using these sections in aModel. Thisis discussed at the example
of Parameter settings for composite Models.

PARAMETER
Par anmet er declarations ...
DI STRI BUTI ON_ DOVAI N # For distributed Mdels
Di stribution domain declarations ...
UNIT
Sub- Mbdel decl arations ...
PORT
PORT decl arations ...
PORTSET
PORTSET decl arations ...
Vari abl e

Vari abl e declarations ...
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SET
PARAMETER val ue settings ...
BOUNDARY  # For distributed Mdels
Boundary conditions for partial differential equations ...
TOPOLOGY
Equati ons defining the connection of sub-Mdels ...
EQUATI ON
Equati on decl arations ...
ASSI GN
Degrees of freedom assi gnment
PRESET
PRESET specifications ...
I NI TI ALSELECTOR
Initial SELECTOR specifications ...
I NI TI AL

Initial conditions specifications ...

Tasks

See also: Defining a Task

A Task isaModel of an operating procedure. An operating procedure can be considered as a recipe that defines
periods of undisturbed operation along with specified or conditional external disturbances to the system.

A Process Entity defines an operating procedure for aprocess model; thisis done either with explicit statementsin
the Process entity or by invoking one or more generic Tasks (or indeed some combination of thetwo). So typically,
a Task defines part of the operating procedure for awhole Process.

A Task
* can bere-used multiple times during a dynamic simulation

* isassociated with one or more Models and thus can be used on different Model instances (Units) based on the
same Model

 caninvoke other Tasks and thus complex operating procedures can be defined in a hierarchical manner.

gPROMS language declaration for Tasks

A Task is defined by three sections: Task Parameter declarations, (optional) Task Variable declarations and a
Schedule where the Task's operating procedure is expressed in terms of the Task Parameters and Variables.

Overdl, the structure of a Task definition is the following:
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PARANVETER
Par anet er decl arations ...

VARI ABLE
Local Variable declarations ...

SCHEDULE
Schedul e declaration ...

Task Parameters may be of any of the following types:

* INTEGER, REAL or LOGICAL constants. These are used to Parameterise a Task with respect to, for instance,
controller tuning Parameters, event durations etc.

* INTEGER_EXPRESSION, REAL_EXPRESSION or LOGICAL_EXPRESSION. These are used to
parameterise a Task with respect to, for instance, logical conditions for the conditional and iterative structures
€etc.

» Model. These are used to parameterise a Task with respect to the actual Models on which it acts.

The purpose of Parameters in a Task is to defines the number and type of arguments that a Task accepts as
arguments and enables one to write generic reusable tasks. All Task Parameters must be given a value whenever
the Task isinvoked.

Task Variablesarethe equivalent of local subroutine Variables and as such are cal cul ated by the Task. They should
not be confused with Model Variables and are NOT associated with Variable Types instead they are declared to
be of type INTEGER or REAL.

The Schedule section defines the part of the operating procedure implemented by the Task. It is similar to the
Schedule section in Processes, the only difference being that it has access to the local Variables declared in the
Variable section. The values of the latter can be manipulated by using assignment statements.

Figure 1.3. An example Task used to define changein heat input to
the Flash drum M odel from the g°PROM S ProcessModel Library

)| 1 PARAMETER
1 2 rDrum AZ MODEL Flash drum
3 Raup Time AZ REAL
4  New_Heat TInput A5 REAL
£
&
7 SCHELULE
g SEQUENCE
9 RESET
10 Drum. input_energy_rate = OLD({Drum.input_energy_rate!
11 + (Hew_Heat Input - OLD(Drum.input_energy_rate))
1z * (TIME-OLD (TIME} ) /Pamp Time ;
13 END
14 CONTINUE FOR Ramp Time
15 RESET
1 Drum. input_energy_rate = OLD({Drum.input_energy_rate);
17 END
1s END
4 | ©
z:35 || |
| gPROMS language | Properties |

Processes

See also: Defining a gPROMS Process

A Model can usualy be used to study the behaviour of the system under many different circumstances. Each
such specific situation is called a simulation activity. The coupling of Models with the particulars of a dynamic
simulation activity is donein a Process Entity. A Process performs two key roles
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* to instantiate a generic Model: this is done by providing specifications for all the Model's Parameters, Input
Variables (degrees of freedom), Selectors and Initial Conditions that have not been given values directly in the
Model. Any specifications given in Specification dialogs from the topology of a flowsheet Model will appear
as un-editable text in the Process Entity

 to define an operating procedure [5] for a process model in the form of a Schedule; a Schedule may
simply specify the execution of an undisturbed simulation for a period of time to a more complex scenario such
as Modelling the start-up of a complex Process with multiple external disturbances to the system. Complex
operating policies will usually make use of Tasks. Seady-Sate simulations require no Schedule.

Solver configuration information for all Model based activitiesis also specified in Process entities.

gPROMS language for Processes

gPROMS Language declaration for Processes

A gPROMS Project may contain multiple Processes, each corresponding to a different simulation activity (e.g.
simulation of system startup, simulation of system shutdown, steady state operation, etc.). A Processis partitioned
into sections, each containing information required to define the corresponding dynamic simulation activity:
UNI T
Decl aration of Mbdel instances ....
MONI TOR
Vari abl e path patterns ....
SET
Par amet er val ue settings ...
ASSI GN
Degrees of freedom assi gnment
PRESET
PRESET specifications ...
I NI TI ALSELECTOR
Initial SELECTOR specifications ...
I NI TI AL
Initial conditions specifications ...
SOLUTI ONPARMETERS
Model based activity sol ver specifications ...

SCHEDULE

Operating procedure specifications ...
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Saved Variable Sets

Thevalues of all Model Variable and Selectors at a particular simulation time can be saved for later re-use; these
values are stored in Saved Variable Sets.

Saved Variable Sets are used

* to provide good initial guesses for initialisation calculations (over-riding the default values for the Variables
taken from their Variable Type). Thisisdonein the PRESET section.

» during asimulation to change the values of the V ariables and Sel ectorsto those stored in the Saved Variable Set.
Saved Variable Sets are created from a simulation activity either
 using the SAVE elementary task in a Schedule

* right clicking on the Execution Window and selecting Create Saved Variable Set ..... from the short-cut menu.
Note that thisisonly possible if alicense was retained following the execution of the simulation activity:

Copy
Expand all
Collapse all

Stop execution, release model
Stop execution, retain model

Query variable...
Query block...
Query equation...
Query unit...

Create model repart...

Crea ariable Set...

F| Create a saved vaniable set

Float window
Dock window

Detach window

Any new Saved Variable Set created during a simulation activity will be stored in the Results folder of the
Execution Case. In order to useit in any subsequent activity the Saved Variable Set must be copied into theworking
project where it will appear in the Saved Variable Sets entity group.
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Figure 1.4. An example of a Saved Variable Set

&, SAVED VARIABLE SET column_start (PKL D

# PROCESS DISTILLATION COLUMN saved at simulation time 0.000 ﬂ
# The total number of wvariables in the process
2520

# Note: all wariahles are saved
# Index : PathName : Value : LowerBound : UpperBound : Type : Units
1 : PLANT.EOTTOM PRODUCT.IN.MASS FRACTIOMN({l) : 1.883279201264309E-001 : -1_00000E-010 : 1.00
PLANT.EOTTOM PRODUCT.IN.MASS FRACTIOM(Z) : 8.116720798735690E-001 : -1_00000E-010 : 1.00
PLANT.EOTTOM PRODUCT.IN.MASS FLOWEATE : 0.000000000000000E+000 : -1_00000E+02Z0 : 1.00000
PLANT.EOTTOM PRODUCT.IN.INFO PRESSURE : £.000000000000000E+005 : 1.00000E+000 : 1.00000E
PLANT.EOTTOM PRODUCT.IN.INFO MASS SPECIFIC ENTHALPY : -Z_204967486751637E+006 : -1.00000
PLANT.EOTTOM PRODUCT.IN.MASS SPECIFIC ENTHALPY : -2_40620343230782Z23E+00&6 : -1_00000E+020
PLANT.EOTTOM PRODUCT.IN.INFO MASS FRACTION(l; : 9.999933333333333E-002Z : -1_00000E-010
: PLANT_EOTTOM PRODUCT. IN.INFO_MASS FRACTION(Z) : §_.999599999999223E-001 : -1.00000E-010
9 : PLANT.EOTTOM PRODUCT.MASS FRACTION(l; : 1.000000000000000E-001 : -1.00000E-010 : 1.00010
10 : PLANT.EOTTOM PRODUCT.MASS FRACTIOMN(Z) : 5.000000000000000E-001 : -1.00000E-010 : 1.00010
11 : PLANT.EOTTOM PRODUCT.PRESSURE : £._000000000000000E+005 : 1_00000E+000 : 1.00000E+02Z0 : P
12 : PLANT.EOTTOM PRODUCT.MASS SPECIFIC ENTHALPY : -Z2_204967486751637E+006 : -1_00000E+0Z0
13 : PLANT.EOTTOM PRODUCT. NORMALISED MASS FRACTION(l) : 9.9939333333333333E-002Z : -1_00000E-01
14 : PLANT.EOTTOM PRODUCT. NORMALISED MASS FRACTION(Z) : £.9993933333333333E-001 : -1_00000E-01
15 : PLANT.EOTTOM PRODUCT. TEMPERATURE : 3.000000000000000E+00Z : 1.00000E+001 : 5_00000E+004
16 : PLANT.COLUMHN. TOP PRODUCT PUMP.IN.MASS FRACTION({l; : 7.500000000000000E-001 : -1.00000E-O
17 : PLANT.COLUMN.TOP_ PRODUCT PUMP.IN.MASS FRACTION(Z); : Z._500000000000000E-001 : -1.00000E-O
18 : PLANT.COLUMN.TOP_ PRODUCT PUMP.IN.MASS FLOWEATE : 0.000000000000000E+000 : -1_00000E+0Z0
19 : PLANT.COLUMHN. TOP_ PRODUCT PUMP.IN.INFO PRESSURE : £.000000000000000E+005 : 1.00000E+000
20 : PLANT.COLUMN.TOP PRODUCT PUMP.IN.INFO MASS SPECIFIC ENTHALPY : -1.386242243136098E+006
21 : PLANT.COLUMHN.TOP PRODUCT PUMP.IN.MASS SPECIFIC ENTHALPY : -1.386242243136098E4+006 : -1.0
22 : PLANT.COLUMN.TOP_ PRODUCT PUMP.IN.INFO MASS FRACTION(l; : 7.500000000000000E-001 : -1.000
23 : PLANT.COLUMN.TOP_ PRODUCT PUMP.IN.INFO MASS FRACTIOMN(Z; : Z._500000000000000E-001 : -1.000
24 - PLANT.COLUMN. TOP_ PRODUCT PUMP.FLOW.SIGNAL : 0.000000000000000E+000 : -1_00000E+2Z00 : 1.0
25 : PLANT.COLUMN. TOP_ PRODUCT PUMP.OUT.MASS FRACTION(l; : 7.500000000000000E-001 : -1.00000E-
26 : PLANT.COLUMHN. TOP_ PRODUCT PUMP.OUT.MASS FRACTION(Z) : Z._500000000000000E-001 : -1.00000E-
27 : PLANT.COLUMHN. TOP_ PRODUCT PUMP.OUT.MASS FLOWEATE : 0.000000000000000E+000 : -1_00000E+0Z0
IZS : PLANT.COLUMN.TOP_PRODUCT PUMP.OUT.INFO_ PRESSURE : £_000000000000000E+005 - l-DDDDDE+DDiILI
4 3

[ I R, T S

gPROMS language | Properties |




Chapter 2. Declaring Variable and
Connection types

Variable Typesare an essential requirement for all gJPROM S process modelsas all VariablesinagPROMS Model
must be associated with a Variable Type.

Inasimilar way all Model Ports must be associated with a Connection Type.

When devel oping gPROM S Models you can either use existing Variable or Connection Types, such as those that
are found in the gPROM S Process Model Library (PML), or you can define your own:

» Declaring new Variable Types

 Declaring new Connection Types

Declaring Variable Types

Variable Types appear under thefirst entry in the Project tree. In order to create your own Variable Types; you can
either select New entity.... from the Entity menu - choosing Variable Type as the Entity type (see also: Entities)
or if you open an existing Variable Typeit is possible to edit the Variable Types table, shown below, by typing
the name in the <new> row and pressing enter.

Once the Variable Type has been introduced to the table the following information should be provided

» A default value for Variables of thistype. Thisvaluewill be used asan initial guessfor any iterative calculation
involving Variables of thistype, unlessit is overridden for individual Variables or a better guess is available
from a previous calculation.

 Upper and lower boundson the values of Variables of thistype. Any calculationinvolving Variables of thistype
must giveresultsthat lie within these bounds. These bounds can be used to ensure that the results of acalculation
are physically meaningful. Again, these bounds may be overridden*for individual Variables of this type.

» An optional unit of measurement. Users are encouraged to provide thisin order to aid Model readability.

Figure2.1. An example Variable Typestable

[Em Variable Types [Buffer tank] !E b

Mame Lower bound Default value Upper bound Units
Length 0.0 1.5 100.0|m
Mass 0.0 1.0 100000.0 kg
0.0 0.1 1000000 ks

Type definitions | Properties |

The values of the lower bounds, initial values and upper bounds are checked for consistency (i.e. you cannot enter
an initial value outside the bounds or enter alower bounds greater than the upper bound).

Declaring Connection Types

Connection Types are declared using a multi-tab forms-based editor. Each of the four principal tabs allows you
to declare different aspects of the Connection Type:

Yt is possible to override the bounds on certain Variables. Thisis done using in PRESET section of the Process entity.

10



Declaring Variable
and Connection types

e Parameters & Variablestab

Graphical representation tab
* Port categoriestab

» Display templatestab

The Parameters and Variables tab

To declare quantities for a Connection Type simply double click on the cells labeled <new> and enter the name
of the quantity. Y ou can then enter information pertaining to Parameters, Distribution Domains and Variables -
these areidentical to those that are declared in Models.

Figure 2.2. The PMLMaterial Connection type - the Parametersand Variables Tab.

4 CONNECTION TYPE PMLMaterial (PML Basics =1ol=l
Conneckion parameters
Mame Type Foreign Object class Default
no_components IMTEGER <Mot applicable =
phys_prop FOREIGN OBJECT PhysProp

Distribution domains

Domain name Lower bound Upper bound

Connection variables

Marme Type Dimensions
info_mass_fraction mass_fraction no_components
info_mass_specific_enthalpy  |mass_specific_enthalpy <scalar=
info_pressure pressure <scalar=
mass_flowrate mass_flowrate <scalar=
mass_fraction mass_fraction no_components
mass_specific_enthalpy mass_specific_enthalpy <scalar=

 For Parameter declarations, a Type - Integer, Real or ForeignObject - must be provided.
« |If ForeignObject is selected then aclass can a'so be provided.
 For Integer and Real Parametersit is also possible to provide a default value.

« For Distribution Domain declarations, lower and upper bounds must be provided.

 For Variable declarations, a Variable Type must be provided; this should be selected from a drop-down list
of all Variable Types declared in this Project (or cross-referenced Projects). The Connection Type can include
scalar and Array Variables:

» To define the dimensionality of the Array click on the <scalar > cell to access the Dimension Editor.

* Inthe Add New Dimension box either select an Integer Parameter that has been declared in this Connection
Typeor typein aliteral value (e.g. 7).

It is possible to declare multiple dimensioned Variables by Adding more than one Dimension - multiple
dimensions can be ordered using the Move Up and Move Down buttons

11



Declaring Variable
and Connection types

Tl Dimension Editor

A Delete |
4 Moven |
3 [fave davin |

Add Mew Dimension

}wo_components LI A Add |
Ok | Cancel |

The Graphical representation tab

Connections between different Units in a flowsheet Model are associated with a Connection Type. Such
connections are displayed graphically on the flowsheet Model's topology tab - the graphical representation of such
connectionsis determined by its Connection Type.

The information provided on the graphical representation tab determines the colour of the Ports and of the
connectivity line, aswell asthe line thickness.

Figure 2.3. Connection Type - Graphical Representation tab

4 CONNECTION TYPE PMLMater =1ol=l
Port colour I. blue - I |

Connection calour I. blue - I |
Connection thickness |2 vl

Parameters & variables .. Graphical representation

Port cateqgaries | Display Templates FOpErties

To change colours of Ports or Connectivity lines, the user has the option of selecting a predefined colour from a
drop-down list (as shown below).

12



Declaring Variable
and Connection types

Figure 2.4. Choosing predefined coloursfor Ports (or Connections).

_ioix]
Part colour .blue LI |

Connection calour

Connection thickness

lightGray

. magenta

orange  w | .

Parameters & variables Graphical representation
Port cateqgaries | Display templates | Froperties

Alternatively, the user is able to define custom colours by doing the following:
1. Click onthe... button
2. Use either Swatches, HGB or RGB to define the exact colour you want

3. When finished, click OK to select the chosen colour.

Figure 2.5. Defining custom colour for portsor connections.

CONNECTION TYPE PMLMaterial (P =101
Part calour I. blue - I

Recent:

Previe

n - . Sample Text Sample Text
|
Sample Text Sample Text
|
[8]4 I Cancel | Reset |

The Port categories tab and Connectivity rules

gPROMS enforces a number of rules to ensure that only valid connections can be made when building flowsheet
Models, and as such all Ports must be defined as an Inlet, an Outlet or a Bi-directional Port. When defining a
Model Port the developer must specify which of these categories the Port belongs to and gPROM S enforces the
rules shown in the following table (e.g. it is possible to connect an Outlet Port to an Inlet Port but not an outlet
to an outlet):

13
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and Connection types

Table 2.1. Enforced connectivity rules

Inlet Outlet Bi-directional
Inlet Disallowed Allowed Allowed
Outlet Allowed Disallowed Allowed
Bi-directional Allowed Allowed Allowed

In addition, for a particular Connection Type, it is possible to define an additional set of rules by defining new
user-specified categories. The gPROMS Process Model Library (PML) makes use of this capability: in the PML
a Port must be either a Node or a Connector with Node-to-Node connections forbidden (see also: Understanding
the PML):

Figure 2.6. The PMLMaterial Connection typein theg°PROMSPML - Port categories

CONNECTION TYPE PMLMaterial (PM =181x]
Mew port category I add

Allowable connections

MNodePart: ConnectarPort

| ModePot |
ConnectorPort W W

Delete port category |

Port cateqgaries |
Parameters & varianles

Display templates | Properties
| Graphical representation |

To define new connectivity rules; simply enter each of the categories by providing each with aname and clicking
Add. Then specify whether a particular connection is valid by checking the appropiate box in the Allowable
connectionstable: leaving the box unchecked means that the connection is not valid.

If you wish to delete a particular Port category, then simply click on its name in the Allowable connections table
and then click on the Delete port category button at the bottom of the window.

The Display templates tab

The Display templates tab enables you to define which of the Variables carried by the Connection Type should
appear in results stream tables.

On this tab you provide a label for each of the Variables that should be displayed in the stream table and the
order in which the quantities should appear in the table. Note that only those quantities that appear on the Display
templates tab will appear in stream tables.

Figure 2.7. Connection Type - Display templates tab

CONMECTION TYPE PMLMaterial (PML Basics =1ol=l

Display template for connection type

Label I Variable I

Mass Flowrate

Mass Fraction

Mass specific enthalpy
Pressure

e

mass_flowrate
mass_fraction
mass_specific_enthalpy

info_pressure

4

_I * Delete |
4+ Maveup |
_I 3 [Move dovin |

KK

4

To enter information, simply click on the relevant cells that contain <new> and then select a Variable from the
drop-down list. Re-order the table as desired using the Move up and Move down buttons.

14



Chapter 3. Defining Models and
Processes

The development of a basic gPROMS process model is explained by reference to the gPROMS Project Buffer
Tank.gPJ that can be found in the installation.Y ou can access this by clicking on the Browse Examples button on
the gPROM S Toolbar and then navigating to "General capabilities\Other examples\Buffer Tank.gPJ".

File Edit Wiew Tools Window Help

D H Tp s 2R o A FEB 9

=
Browse the example projects that come with gPROMS

Anillustrative buffer tank example is used to demonstrate the following:
» Defining Models
 the gPROMS language to enter Model Equations
* how to declare the Parameters and Variables that appear in these Equations
 Defining Processes
* how to set values for Model Parameters
* how to specify the values of Model Variablesto satisfy the degrees of freedom
« how to provide initial values for the state (differential) Variables

Note: to create your own Model and Process Entites; select New entity....from the Entity menu - choosing Model
or Process as the Entity type (see also: Entities).

Figure 3.1. The Buffer Tank Model entity

x|

1  PARAMETER =

2 Density 4% FEAL

] Crossiectionalidrea 43 REAL

4 Alpha 4% REAL|

5]

6 VARTARLE

7 HoldlUp 4% Mass

g FlowIn, FlowOut 4% MassFlowrate

9 Height 4% Length

10

11 EQUATION

1z

13 # Mass balance

14 §HoldUp = FlowIn - Flowlut ;

15

16 # Relation between liguid level and holdup

17 Holdup = CrossSectionaldrea * Height * Density ;

15

19 # Relation between pressure drop and flow

Z0 Flowlut = Alpha * Z0RT [ Height ) ; s
21 LI

2:32_ ||m3 u

Interfacel Topology  gPROMS language | Propertiesl
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Defining Models and Processes

Figure 3.2. The Buffer Tank Process entity.
x|

1 #
2 # Process Description
3 #
4

5 UNIT # Equipment items

& Tl01 4% BufferTank

71

8 SET # larameter values

9 Tl0l.Crossiectionaldrea := 1 ;o omE
10 T10l.Density = 1000 ; # kosmy
11 Tl0l.4lpha =10
1z

13 ASSIGN # Degrees of freedom

14 T10l.FlowIn := 20 ;

15

16  INITIAL # Imitial conditicons

17 Tl0l.Height = 2.1 ;

15

19 SOLUTIONPARAMETERS

20 REPORTINGINTERVAL := 60 ;

Z1

Z2

23 SCHEDULE # Operating procedure
Z4 CONTINUE FOR 1500

]

7:1 | u
" gPROMS language | Properties |

An illustrative buffer tank example

Buffer Tank.gPJ describes a simple buffer tank with gravity-driven outflow (see the figure below). It is a good
choice for illustrating the main features of the gPROMS language because it comprises only one simple unit
operation, for which a primitive model can be constructed. Primitive models are mathematical models that are
completely specified in terms of explicitly declared variables and equations. They usually correspond to ssimple
unit operations or parts thereof. Primitive models form the building blocks for the construction of higher-level,
composite model of complex unit operations or entire process flowsheets.

Figure 3.3. Buffer tank with gravity-driven outflow.

k,
o

M —— F,

The dynamic mathematical model of the buffer tank process takes the following form:

Equation 3.1. Mass balance

aM
aF Fin — Fout

Equation 3.2. Relation between liquid level and holdup
pAh = M

16



Defining Models and Processes

Equation 3.3. Characterisation of the output flowrate
Fout = O(\/E

Here, M and h are the mass and level of liquid in the tank, and Fin and Fout are the inlet and outlet flowrates
respectively. 2, A and o denote the density of the liquid material, the cross-sectional area of the tank and the outlet
valve constant, respectively. For the purposes of this example, these last three quantities are assumed to be known
constants.

Defining a gPROMS Model

In gPROMS, Model Entities are the central part any process model. A working gPROM S Project will contain (or
reference) at least one Moddl:

A Model isdefined as a set of quantities and mathematical equations that, when coupled with a
set of specifications, describe the behaviour of a given system.

The gPROMS language declaration for abasic Model will typically consist of three partsl:
» PARAMETER declarations
* VARIABLE declarations

» EQUATION declarations

Figure 3.4. gPROM S L anguage definition for a Buffer Tank M odel.

x|
1  PARAMETER =
2 Density 4% FEAL
] Crossiectionalidrea 43 REAL
4 Alpha 4% REAL|
5]
6 VARTARLE
7 HoldlUp 4% Mass
g FlowIn, FlowOut 4% MassFlowrate
9 Height 4% Length

11 EQUATION

13 # Mass balance

14 §HoldUp = FlowIn - Flowlut ;

15

16 # Relation between liguid level and holdup

17 Holdup = CrossSectionaldrea * Height * Density ;

15

19 # Relation between pressure drop and flow

Z0 Flowlut = Alpha * Z0RT [ Height ) ; zl
2:32_ ||m3 u

Interfacel Topology  gPROMS language | Propertiesl

The PARAMETER section

The Parameter section is used to declare the parameters of a Model. Parameters are time-invariant quantities that
will not, under any circumstances, be the result of a calculation. Quantities such as physical constants (pi, R, etc.),
Arrhenius coefficients and stoichiometric coefficients usualy fall into this category. In the buffer tank process,
rho, A and alpha were assumed constant and are thus declared as parameters of the Buffer Tank Model:

PARAMETER

A Model may contain more parts. A comprehensive overview can be found in gPROMS Language declaration for Models..

17
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Rho AS REAL
CrossSecti onal Area AS REAL
Al pha AS REAL

Each parameter has a unique name (identifier) by which it can be referenced (for example, in expressions).
Identifiers in the gPROMSS language start with a letter (a- z and A- Z) and may comprise letters, numbers (1- 9)
and underscores (_). The gPROMS language is not case sensitive, i.e. Tenp and TEMP are considered to be
identical.

Each parameter isalso declared to be of acertaintype(e.g. | NTEGER, LOQ CAL or REAL). All three parameters
of the Buffer Tank Model are of type REAL.

Parameter declarations may optionally include the assignment of default values. For instance:

PARAMETER
NoConp AS | NTECER
NoReacti ons AS | NTEGER DEFAULT 1

Finally, note that the categorisation of certain quantities as Parameters is sometimes tenuous. Designating a
guantity as a Parameter has the advantage of reducing the total number of Variables in a model. However, this
guantity can no longer be treated as an unknown in any future use of the model. Consider, for instance, the
guantitiesthat characterise the size and geometry of avessel. From the point of view of dynamic simulation, these
can be viewed as Parameters. However, from the point of view of steady-state design cal culations performed with
the same model, these quantities may be considered unknowns under certain circumstances. It may, therefore, be
better to classify them as Variables.

The VARIABLE section

The VARI ABLE section is used to declare the Variables of a Model. All quantities that are calculated in Model

Equations must be declared as Model Variables. For instance, in the example process, M, h, Fin and Fout are
variables of the Buffer Tank Model:

VARI ABLE
Hol dUp AS Mass
Fl om n, Fl owQut AS MassFl ow at e
Hei ght AS Length

Like Parameters, Variables are aways Real continuous numbers. All Variables must be given a type, however,
Variable Types are user-defined (see also: Declaring Variable Types).

The EQUATION section

The EQUATI ONsection isused to declarethe equationsthat determinethetime trajectories of thevariables already
declared in the VARI ABLE section.

The gPROMS language is purely declarative. That is, the order in which the equations are declared is of no
importance. Simple equations are equalities between two real expressions (seethefigurebelow). These expressions
may comprise:

* Integer or real constants (e.g. 2, 3.14159, etc.).

» Parameters that have been declared in the PARAMETER section (e.g. Rho, Al pha, PI , etc.).

» Variables that have been declared in the VARI ABLE section (e.g. Hol dUp, Hei ght , Fl owQut , etc.). The

special symbol $ preceding a variable name denotes the derivative with respect to time of that variable (e.g.
$Hol dUp etc.).

18
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Figure 3.5. Buffer tank M odel

x|

1  PARAMETER =

2 Density 4% FEAL

] Crossiectionalidrea 43 REAL

4 Alpha 4% REAL|

5]

6 VARTARLE

7 HoldlUp 4% Mass

g FlowIn, FlowOut 4% MassFlowrate

9 Height 4% Length

10

11 EQUATION

1z

13 # Mass balance

14 §HoldUp = FlowIn - Flowlut ;

15

16 # Relation between liguid level and holdup

17 Holdup = CrossSectionaldrea * Height * Density ;

15

19 # Relation between pressure drop and flow

Z0 Flowlut = Alpha * Z0RT [ Height ) ; s
21 LI

2:32_ ||m3 u

Interfacel Topology  gPROMS language | Propertiesl

Similarly to most programming languages, expressions are formed by combining the above operands with the
arithmetic operators + (addition), - (subtraction), * (multiplication), / (division) and  (exponentiation), as well
as built-in intrinsic functions (e.g. square root: SQRT() ). The latter are described in greater detail in Intrinsic
Functionsin gPROMS.

Intrinsic functions have the highest precedence priority, followed by the ~ operator and then the division
and multiplication operators. The addition and subtraction operators have the lowest precedence. Naturally,
parentheses may be used to alter these precedence rules as required.

Finally, note that comments can be added to clarify the contents of the Model where needed. As shown in the
figure above, g°PROM S accepts two types of comments. One type begins with # and extends to the end of the

current line. The other type starts with { and ends with } and may span multiple lines. Moreover, comments of
this type may be nested within one another.

Defining a gPROMS Process

In the gPROMS language a Model is used to define the physical behaviour of a system and it usually contains
PARAMETER, VARI ABLE and EQUATI ON declarations. A model can usually be used to study the behaviour of
the system under many different circumstances. Each such specific situation is called a simulation activity. The
coupling of Models with the particulars of adynamic simulation activity is donein a Process.

A gPROMSS Project may contain multiple PROCESSes, each corresponding to adifferent simulation activity (e.g.
simulation of plant startup, simulation of plant shutdown, etc.). Each such PROCESS must be given a different
name and these will be automatically placed in aphabetical order in the gPROMS Project tree. A PROCESS is
partitioned into the following key sections:

* The UNIT section

» The SET section

* The ASSIGN section

» ThelINITIAL section

» The SOLUTIONPARAMETERS section

e The SCHEDULE section

19



Defining Models and Processes

The gPROMSS Language definition for the entire PROCESS (named Si nul at eTank) for adynamic simulation
activity involving the buffer tank processis shown in the figure below.

Figure 3.6. An example Process for the buffer tank.

™ PROCESS SimulateTank (Buffer tank) =

1 #
2 # Process Description
3 #
4

5 UNIT # Equipment items

& Tl01 4% BufferTank

71

8 SET # larameter values

9 Tl0l.Crossiectionaldrea :
10 T10l.Density

11 Tl0l.4lpha

1z

13 ASSIGN # Degrees of freedom
14 T10l.FlowIn := 20 ;

15

16  INITIAL # Imitial conditicons
17 Tl0l.Height = 2.1 ;

15

19 SOLUTIONPARAMETERS

20 REPORTINGINTERVAL := 60 ;
Z1

Z2

23 SCHEDULE # Operating procedure
Z4 CONTINUE FOR 1500

]

1 ;o omE
o0 & kosms
10

7:1 | u
" gPROMS language | Properties |

The UNIT section

The first item of information required to set up a dynamic simulation activity is the process equipment under
investigation. Thisis declared in the UNI T section of a PROCESS.

Equipment items are declared as instances of Model s. For example

UNI T
T101 AS Buf fer Tank

createsaninstance of MODEL Buf f er Tank, named T101. T101 isdescribed by the variables declared within the
Buf f er Tank Mbdel and itstime-dependent behaviour is partially determined by the corresponding equations.

The SET section

Before an instance of a Model can actually be used in a simulation, all its parameters must be specified (unless
they have been given default values). Thisis donein the SET section of a PROCESS. 2For example,

SET
T101. Rho .= 1000 ; # kg/nB
T101. CrossSectional Area : =1 - 0%
T101. Al pha := 10 ;

sets the parameters of T101 to appropriate values. Note that:

* inorder to refer to parameter Rho of instance T101 of Model Buf f er Tank, we use the pathname notation
T101. Rho

2The specification of parameter values can also be performed within Mbdel s, using a SET section that is completely equivalent to the one
described here. However, it is generally advisable that parameters be set at the PROCESS level. This practice maximises the reusability of the
underlying Mbdel s and minimises the probability of error.

20



Defining Models and Processes

e It is recommended that you use pathname completion to help construct full and valid pathnames
correctly; thisisavailable within all entitiesin gPROM S. Semantic errors, such as referencing a quantity
in alower-level Model that doesn't exist, are only detected when a Model based activity is executed.

* Itisaso common, particularly for composite Models, to use the WITHIN construct to complete pathnames

» Parameter valuesare set using the assignment operator (: =). In other words, the arithmetic expression appearing
ontheright hand sideisfirst evaluated; its valueis then given to the parameter appearing on the left hand side.
Thisis another genera rule of the gPROMS language:

A General Rule of the gPROM S Language

gPROMS always usesthe symbol : = to assign avalue or expression appearing on the right hand sideto the single
identifier appearing on the left hand side. gJPROM S always uses the symbol = to declare the equality of the two
general expressions appearing on either side of this symbol.

The ASSIGN section

The set of equations resulting from the instantiation of Models declared in the UNI T section is typically under-
determined. This simply means that there are more variables than equations. The number of degrees of freedom
in the smulation activity is given by:

Number of degrees of freedom (Npor) = Number of variables - Number of equations.

For the simulation activity to be fully defined, Npor variables must be specified as either constant values or given
functions of time. Variables specified in this way are the input variables (or "inputs') of this simulation activity.
The remainder of the variables are the unknown variables, the time variation of which will be determined by the
solution of the system equations. Clearly, the number of unknowns is equal to the number of available equations
- we therefore have a "square” system of equations.

The specification of input variablesis provided in the ASSI GN section of the PROCESS®. For instance,

ASSI GN
T101.Fin := 20 ;

designates the inlet flowrate as an input and assigns it a constant value of 20. Again, in order to emphasise the
assignment form of these specifications, input specifications use the assignment operator (; =).

Theinlet flowrate may not be constant but may vary with the simulation time, for instance by linearly increasing

ASSI GN
T101.Fin := 20 + 1.2*TI ME ;

In this example, the built-in function T ME is used to reference the value of the ssimulation time. Please note that
the value of the simulation time depends on the chosen units of measurement.

TI ME can be used with any of gPROMS built-in functions, for instance in order to create asinosoidal oscillation:

ASSI GN
T101.Fin := 20 + SIN(TI ME) ;

The INITIAL section

Before dynamic simulation can commence, consistent valuesfor the system variablesat t = 0 must be determined.
Tothisend, anumber of additional specifications are needed. These augment the system of equationsthat describe

3The specification of degrees of freedom can also be performed within Mbdel s, using an ASSI GN section that is completely equivalent to the
onedescribed here. However, it isgenerally advisable that variables be assigned at the PROCESS level. This practice maximisesthe reusability
of the underlying Model s and minimises the probability of error.
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the behaviour of the system and result in a square system of equations at t = 0. The solution of the latter provides
the condition of the system at t = 0.

Traditionally, the term "initial condition” refersto a set of values for the differential variables at t = 0. However,
gPROMS follows a more general approach where the initial conditions are regarded as additional equations that
hold at t = 0 and can take any form. This, of course, alows for the traditional specification of "initial values"
for the differential variables or, indeed, for any appropriate subset of system variables; however, it also makes
possible the specification of much more general initial conditions as equations of arbitrary complexity.

The I NI Tl AL section is used to declare the initial condition information pertaining to a dynamic simulation
activity. For instance,

I NI TI AL
T101. Height = 2.1 ;

specifies an initial condition for the buffer tank system by stating that the height of liquid inthetank at t = O is
2.1m. Note that, in contrast to the SET and ASSI GN sections, the equality operator (=) is used here to emphasise
the fact that initial conditions are general equations.*

Aninitial condition that is frequently employed for the dynamic simulation of process systemsis the assumption
of steady-state, constraining the time derivatives of the differential variables to zero. In gPROMS, this can be
achieved by manually specifying all derivativesto be zero:

I NI TI AL
T101. $Hol dup = O ;

However, this would be tedious for models with large numbers of differential variables, so the keyword
STEADY_STATE may be utilised to specify thisinitial condition, as shown below:

I NI TI AL STEADY_STATE

In thislatter case, no further specifications are required.

The SOLUTIONPARAMETER section

The user also has the option to control various aspects of model-based activities carried out in gPROMS such as
solver settings and output specifications. The SOLUTI ONPARAMETERS section isused for this purpose. Detailed
information regarding this topic will be covered in more detail in Numerical Solver Parameters.

For example,

SOLUTI ONPARAVETERS
REPORTI NG NTERVAL : = 60;

The REPORTI NG NTERVAL istheinterval at which result valueswill be collected during the dynamic simulation
(notethat it does not effect the accuracy of the subsequent integration in any way). For thisexample, an interval of
60 isareasonable choice. The REPORTI NG NTERVAL may be over-ridden from the simulation execution dial og.

The user does not need give any settings in this section. In such a case the user will be prompted to enter a
REPORTI NG NTERVAL in adialog box.

The SCHEDULE section

Information on the external manipulations (e.g. known disturbances) that are to be simulated is provided in the
SCHEDULE section of the PROCESS. We restrict our attention to the simplest possible case, allowing the system
to operate without any external disturbance over a specified period of time. Thisis achieved viathe:

“The specification of initial conditions can also be performed within Models, using an | NI TI AL section that is completely equivalent to the
one described here. However, it is generally advisable that initial conditions be specified at the PROCESS level. This practice maximises the
reusability of the underlying Models and minimises the probability of error.
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Defining Models and Processes

CONTI NUE FOR Ti nePeri od
construct in the SCHEDULE section of the PROCESS.

gPROMS can be used to simulate much more complex cases, including detailed operating procedures of entire
plants: see Defining Schedules and Defining Tasks.
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Chapter 4. Arrays

The gPROM S language provides some advanced mechanisms for the declaration of complex equation structures
in Models.

In many cases, anumber of Parameters, Variablesor Equationsthat appear inaModel are closely related. Examples
include:

* the stoichiometric coefficients, ¥4j, of a set of components i=1,..,NoComp participating in a set of reactions
j=1,..,NoReact;

* the concentrations, C;, of componentsi=1,..,NoComp in a multi-component system;

* the equations expressing the conservation of componentsi=1,..,NoComp in a multi-component system.

In such cases, we need effective mechanisms for declaring and handling these entities as a group rather than
individually. In amanner similar to most high-level programming languages, gPROMS achieves this aim viathe
use of arrays.

We must consider

» Declaring arrays of Parameters, Variables, Selectors and Units

» Rulesfor referring to array elements and array expressions

e Using arraysin equations

Declaring arrays in Models

Arrays are used in many places during Model construction

» Declaring arrays of Parameters

» Declaring arrays of Variables

» Declaring arrays of Selectors

* Declaring arrays of Unitsin Composite Models

In all these cases

» Arrays can have any number of dimensions.

» The size of each dimension can be a general integer expression involving a combination of:
* integer constants;
» scalar integer Model Parameters;
« individual elements of arrays of integer Model Parameters;

* integer arithmetic operators - these include the usual arithmetic operators+, - ,* and*, aswell astheinteger
division operator DI V and the division remainder operator MOD.

» Theindex of each dimension ranges from 1 to the size of dimension, with the exception of zero-length Arrays.

24



Arrays

Declaring arrays of Parameters in Models

Model Parametersare declared in the Parameter section of gPROM S M odel sto belong to the basic types| NTEGER
or REAL. Such Parameters may be scalars or arrays of one, two or more dimensions. Consider, for instance,
the Parameter section in amodel of a liquid-phase continuous stirred tank reactor (CSTR). Thisis shown in the
gPROMS code below.

Example 4.1. Parameter section of a liquid-phase CSTR Mode
# MODEL Li qui dPhaseCSTR
PARAVETER

# Number of conponents
NoConp AS | NTEGER

# Number of reactions
NoReact AS | NTEGER

# Conponent nol ar densities

Rho AS ARRAY( NoConp) OF REAL

# Stoichiometric coefficient of component i in reaction |j
Nu AS ARRAY( NoConp, NoReact) OF REAL DEFAULT O

# Order of conponent i in reaction j

Order  AS ARRAY(NoConp, NoReact) OF REAL  DEFAULT 0
Here, NoConp and NoReact denote the numbers of chemical components and chemical reactions occurring in
this system. Each of these isa simple (scalar) | NTEGER Parameter. On the other hand, the densities of the pure
components form a vector of real quantities declared as an array of length NoConp:

Rho AS ARRAY(NoConp) OF REAL

For the purposes of this example, the pure component densities are assumed to be constant but different to each
other.

Similarly, Nu and Or der are two-dimensional arrays of REAL Parameters. The number of elements in the first

dimensionis NoCornp; the number of elementsinthe second dimensionisNoReact . Wenotethat, if aDEFAULT
value is specified for an array Parameter, thisis taken to refer to all elements of that array.

Declaring arrays of Variables in Models

Arrays of Model Variables are declared in a manner very similar to that used for Parameters. For example, the
Variable section of the liquid-phase CSTR Model entity is shown in the gPROMSS code below.
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Example 4.2. Variable section of aliquid-phase CSTR M odel
# MODEL Li qui dPhaseCSTR

PARAMETER

VARI ABLE

# I nput and output nolar flow ates
Flow In, Flow Qut AS Mol arFl ow ate

# Liquid phase vol une
\Y, AS Vol ure

# Component nol ar hol dups
Hol dUp AS ARRAY(NoConmp) OF Mol es

# I nput and out put conponent nole fractions
X I'n, X CQut AS ARRAY( NoConp) OF Mbl eFraction

# Component concentrati ons
C AS ARRAY( NoConp) OF Concentration

# Reaction rates
Rat e AS ARRAY( NoReact) OF ReactionRate

Arrays of Parameters and Variables may have any number of dimensions. The number of elements in each

dimension is specified in terms of an integer expression (e.g. Hol dUp AS ARRAY( NoConp+1) OF REAL is
acceptable). Thetotal number of elementsin an array isthe product of the number of elementsin each dimension.

Declaring arrays of Selectors in Models

As with Variables and Parameters, arrays of Selectors may also be defined (see The Case conditional construct
for an introduction to Selectors), as shown in the example below.

Example 4.3. Arrays of Selectors
# MODEL Li qui dPhaseCSTR

PARAMETER
NoDi scs AS | NTEGER

VARI ABLE

SELECTOR
Di scFl ag AS ARRAY(NoDi scs) OF (Intact, Burst) DEFAULT Intact

Declaring arrays of Units in Composite Models

Aswith Variables and Parameters, arrays of Units may also be defined (see Composite Models). The figure below
illustrates a potential use of this feature in the definition of aModel for a series of distillation column trays.
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Figure4.1. Model for a seriesof linked trays.

# MODEL Li nkedTrays
PARAMETER
NoTrays AS | NTEGER

UNI'T
St age AS ARRAY(NoTrays) OF Tray

Linked

Trays TRAY
TRAY
TRAY

Here, the higher-level Model Li nkedTr ays contains an array, called St age, of instances of Model Tr ay.
The Parameters and Variables within these instances can be referenced by combining the pathname and array
notations. For instance, an equation within the Li nkedTr ays model may refer to the Variable:

St age(1). Li qui dHol dup
Also, an equation may employ the Variable:
St age(TopSection. NoTrays DIV 2).T

referring to the temperature at the middle tray of the top section of the column.

Referring to array elements

The contents of an array may be referenced in several different ways (consider the declarations given below:)

 Entire arrays can be referenced by using their names aone. For instance, Rho denotes the entire array of
component molar densities.

 Individual elements can be referenced by using the name of the array and an index to the element in
question enclosed in brackets. For one-dimensiona arrays, this index should be an integer expression. For
instance, the second element of array Rho is Rho(2) while the element of array Hol dUp before the last is
Hol dUp( NoConp- 1) . For multi-dimensional arrays, the index is a list of such expressions, one for each
dimension. Thus, Nu( 2, 4) refersto the element on the second row and fourth column of array Nu.

» A subset of the elements in one or more dimensions can be referenced through the use of 'dlice' notation. For
instance, Hol dup( 2: 4) refersto the 2nd, 3rd and 4th elements of array Hol dup. Nu( 2: 4, 3: 5) refersto
the dlice of array Hol dUp included between rows 2 to 4 and columns 3to 5 (a3 x 3 array initself). Naturally,
Nu( 1: NoComp, 1: NoReac) isequivalent to Nu. Similarly, Nu(1: 1, 3: 3) isequivalenttoNu( 1, 3) .

» Anentiredimension of an array can bereferenced by leaving ablank. For instance, Nu( 2, ) referstotheentire
second row of array Nu, while Nu(, 1: 3) refersto columns 1 to 3. Naturally, Nu(, ) isequivaent to Nu.

27



Arrays

PARAMETER
# Number of components
NoConmp AS | NTEGER

# Nunber of reactions

NoReact AS | NTEGER

# Component nol ar densities

Rho AS ARRAY(NoConp) OF REAL

# Stoichionmetric coefficient of conponent i in reaction j

Nu AS ARRAY( NoConp, NoReact) OF REAL DEFAULT O
VARI ABLE

# Component nol ar hol dups

Hol dUp AS ARRAY(NoConmp) OF Mol es

General rules for array expressions

A powerful concept in gPROM S isthat of array expressions. Consider, for example, the algebraic expression:
X*y +w?* z

If X, y,wand z are scalar Variables, then the above also corresponds to a scalar. However, in gPROMS, the
expressonx * y + w * zisvaidevenif x,y and z are arrays provided they have the same dimensionality
and size. For example, if we have the declarations:

PARAMETER
n, m AS | NTEGER

VARI ABLE
X, Y, z AS ARRAY (n,m OF SormeQuantity
w AS SonmeQuantity

thentheexpressonx * y + w * z alsorepresents atwo-dimensiona array of sizen x m, the (i,j)th element
of which isequal to Z4j¥i; + WZij fori=1,..,nandj=1,..m.

Although in the above examples, the gPROMS interpretation of the array expression coincided with the standard
mathematical one, thisis not aways the case. For example, the expressionsx * y / zandw / x + z 7
y arealso valid in gPROMS, representing two-dimensional arrays of sizen x m, the (i,j)th elements of which are
ot g Yij .

equal to Ti5Yi5/ %5 and w/zij + Zij respectively.

In general, consider an expression X ; y where x and y are scalar or array expressions, and  isabinary arithmetic
operator (+,-,*,/,”). Thisisavalid gPROMS expression if and only if it conforms to one of the four cases
listed below:

Case X y Dimensionality I nter pretation
of xpy of xpgy
1 Scalar Scalar Scalar Xgy
2 Array Scalar Same as X Xijk.. (1Y
3 Scalar Array Sameasy X 7 Yiik...
4 Array Array Sameasxand y Xijk... [ Yiik...

Clearly, case 4 isvalid only if both x and y have exactly the same dimensionality and size.
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The above rules can be applied recursively to check the validity and to interpret expressions of arbitrary
complexity. At the lowest level, x and y will be (scalar) constants, scalar Parameters or Variables, or arrays of
Parameters or Variables, or slices of arrays of Parameters or Variables. For example, it can be verified that the
following isavalid two-dimensional expression of size 3 x 2:

3.23 / x(1:3, 4:5)

Using arrays in equations

Elements of arrays (both Parameters and Variables) can be used in Equations asif they wereindividual Parameters
or Variables. For example, the equation that defines the concentration of component 2 in the liquid-phase CSTR
can be written asfollows:

= d2)

However, arrays can be used more effectively to declare several equations simultaneously (i.e. for al components).
This can be done in two different ways:

* 2(5:7, 1:2) + w(10:12, 2:3) + 4.13

Hol dUp( 2) * Vo

 implicitly :gPROM S automatically expands the equation

 explicitly :using the FOR construct
Writing implicit array equations

We have seen how array expressions can be formed by combining arrays of Parameters or Variables, or elements
or dices of these. By analogy, gPROMS allows the definition of array equations of the form:

Expressi on E = Expression F;

that are valid provided they conform to one of the following four cases:

Case E F Dimensionality I nter pretation
of E=F of E=F
1 Scalar Scalar Scalar E=F
2 Array Scalar Same as E Ejk.=F
3 Scalar Array Same as F E = Fijk...
4 Array Array SameasEand F Eijk.. = Fijk..

Thus, in view of the following Variable definitions:

PARAMETER
VARI ABLE
# Liquid phase vol une
\Y, AS Vol ure
# Conponent nol ar hol dups
Hol dUp AS ARRAY( NoConp) OF Mol es

# Conponent concentrations

C

the following isavalid equation:

HoldUp = C * V ;

AS ARRAY( NoConp) OF Concentration
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gPROMS automatically expands such equations into an set of equations. For example, if NoConp = 5, the
above will expand to:

Hol dUp(1) = O(1) * V
Hol dUp(2) = O(2) * V
Hol dUp(5) = C(5) * V :

Writing explicit array equations using the FOR
construct

We have seen how array equations can be written in an implicit manner by exploiting the array expression
capability of gJPROMS. An alternativeisto write array equations explicitly using aFOR construct that issimilar to
that provided by most high-level programming languages. Thus, consider the equation describing the conservation
of component i in a multi-component buffer tank. This can be written mathematically as:

—dgfi = Fingin _ pouly,  §=1,.,NoComp

In gPROMS, this can be written in two completely equivalent ways, namely implicitly, in the form:
$M = Fin*Xin - Fout*X ;

or explicitly, in the form:

FORi := 1 TO NoConp DO
$Mi) = Fin*Xin(i) - Fout*X(i) ;
END

The above are compl etely equivalent: which one you use depends entirely on your preference. However, situations
do exist in which the required equations cannot be described viaimplicit declaration, and the use of explicit FOR
constructsis essential.

The counter of a FOR construct (e.g. i in the above example) is an integer quantity that may be referenced only
by equations enclosed within the construct. The range of this counter must be specified in terms of any arithmetic
expressions involving integer constants, integer Parameters and/or integer arithmetic operators. Moreover, a step
increment may be specified. For instance,

FOR i := NoConp+l TO 2*NoConp STEP 2 DO
END

will start by assigni avalues of NoConp+1 and then will increment it by 2 until it exceeds 2* NoConp. If no
increment is specified, its value defaults to 1. A FOR construct may enclose an arbitrary number of equations of
any type -- including other For constructs. This allows nesting of For constructs to arbitrary depth; in such cases:

» each FOR construct must use a different name for its counter variable;

* any expression that appears within each For construct (including those defining its range and increment) may
involve the counters of any enclosing For constructs.

Zero-Length Arrays

For dynamic Arrays (i.e. Arrays whose bounds are set by an expression involving other Parameters), it is possible
to set the length of the Array to zero®. Thisis useful for two reasons:

» Greater modelling power and flexibility

YIn principle, one could also set the length to zero explicity, but this would be pointless!
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Suppose we wish to create asimulation of aflowsheet containing areactor and amixer. The ability to set Arrays
to zero length means that we may use the same model for both the reactor and mixer. The NoReact Parameter
can be set to zero for the mixer instance, causing the model to revert to amixer. Thisis because any equations
indexed over an Array of zero length are completely omitted from the Model instance, as are any termsindexed
over the Array. Thismeansthat the equations defining the rates of reaction, reaction constants and the rate terms
in the material and energy balance equations are all omitted, resulting in a smaller, more efficient formulation.

More flexibility when defining flowsheet Topologies

Zero lengh Arrays mean that Models with dynamic Ports can be used without having to have at least one
connection.
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Chapter 5. Intrinsic gPROMS
functions

Intrinsic gPROM S functions are used in equations to perform mathematical operations that would be difficult or
even impossible to declare using normal language operators. The gPROMS language contains two categories of
intrinsic functions, namely:

» Vectorintrinsic functions- that take asingle argument (scalar or array) and return aresult of samedimensionality
astheinput.

» Scalar intrinsic functions - that take multiple arguments (scalar or array) and return a scalar result.

Vector intrinsic functions

All vector intrinsic functions have the following characteristics:
* they take a single argument representing a scalar or array expression;
« they return aresult of dimensionality and size identical to those of their argument.

The table below lists al vector functions that are recognised by gPROMS.

Tableb5.1. Vector intrinsic functions

Identifier Function
ACCS The arccosine (in radians) of the argument
ASI N The arcsine (in radians) of the argument
ATAN The arctangent (in radians) of the argument
ABS The absolute value of the argument
Cos The cosine of the argument (in radians)
COsH The hyperbolic cosine of the argument
EXP The exponentia of the argument
I NT The largest integer that does not exceed the argument
LOG The natural logarithm of the argument
LOGLO The logarithm to base 10 of the argument
SGN The sign of the argument
SI'N The sine of the argument (in radians)
SI NH The hyperbolic sine of the argument
SQRT The square root of the argument
TAN The tangent of the argument (in radians)
TANH The hyperbolic tangent of the argument

Theresult of each of the above functionsis obtained by applying the corresponding operation to each element of
the argument. For example, consider the declarations:

PARAMETER
n, m AS | NTEGER
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VARI ABLE
X, Y, z AS ARRAY (n,m OF SormeQuantity
w AS SonmeQuantity

Then, x * SQRT(y+w) / SIN(2) is a valid expression representing an n x m array, the (i,j)th element of which is
equal to:

Tij4/Yij+w

sin z;;

fori=1,.,nandj=1,..m.

Scalar intrinsic functions

All scalar intrinsic functions have the following characteristics:
« they take an arbitrary number of arguments, each representing a scalar or array expression;
* they return ascalar result.

The table below lists al scalar functions that are recognised by gPROMS.

Table5.2. Scalar intrinsic functions

Identifier Function
SI GVA The sum of all elements of all arguments
PRODUCT The product of al elements of all arguments
M N The smallest of all elements of al arguments
MAX The largest of al elements of all arguments

Theuseof scalar intrinsic functions provides apowerful mechanism for writing complex mathematical expressions
in gPROMS. However, some careis necessary intheir use with array equationswritten using automatic expansion.
Consider, for instance, a mixing tank receiving a number of multi-component input streams. The conservation
equation for component i can be written mathematically as:

, Nolnput in, :
dgfl = Ftzy’ — Foutts, 1=1,., NoComp

In gPROMS, this can be written as:

FORi := 1 TO NoConp DO
$Mi) = SIGVA(Fi n*Xi n(1: Nolnput,i)) - Fout*X(i) ;
END

Note that the 'alternative’ formulation using automatic expansions:
$M = SIGVA(Fin*Xin) - Fout*X ;
isactually incorrect since:
* theexpression Fi n* Xi n violates the conformance rules for array expressions,
 the expression SI GVIA( Fi n* Xi n) isascaar, not avector of length NoConp.

A complete model for the mixing tank, illustrating many of the important points highlighted above, is given in
the gPROMSS code below.
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Example 5.1. Multi-component mixing tank Model entity
# MODEL M xi ngTank
PARAVETER

NoConp, Nol nput AS | NTEGER
CrossSecti onal Area AS REAL

Rho AS ARRAY(NoConp) OF REAL
Val vePosi tion AS REAL
VARI ABLE
Fin AS ARRAY( Nol nput) OF Flowrate
Xin AS ARRAY( Nol nput, NoConp) OF MassFraction
Fout AS Fl owr at e
X AS ARRAY( NoConp) OF MassFraction
M AS ARRAY(NoComp) OF Mass
Tot al Hol dup AS Mass
Tot al Vol une AS Vol umne
Hei ght AS Length
EQUATI ON
# Mass bal ance
FORi := 1 TO NoComp DO
$Mi) = SIGVA(Fin*Xin(,i)) - Fout*X(i) ;
END

# Mass fractions
Tot al Hol dup = SIGVA(M ;

M= X * Total Hol dup ;

# Calculation of liquid I evel from hol dup
Tot al Vol une = SI GVA(M Density) ;

Tot al Vol une = CrossSectional Area * Hei ght ;
Fout = Val vePosition * SQRT ( Height ) ;

As an additional example, the gPROMS code below illustrates the use of nested FOR constructs to implement the
matrix-matrix multiplication operation between matrices A (n x m) and B (m x @), resulting in amatrix C (n x q).
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Example 5.2. Matrix multiplication M odel entity
MODEL MatrixMiltiplication

PARAMVETER
n, m q  AS |NTEGER

VARI ABLE
A AS ARRAY (n, n) OF SoneQuantity
B AS ARRAY (m q) OF SoneQuantity
C AS ARRAY (n, q) OF SoneQuantity

EQUATI ON
FORi :=1 TO n DO
FORj :=1 TO g DO
Cli,j) = SIGVA(A(I,)*B(,j))
END
END
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Chapter 6. Conditional Equations

The physical behaviour of many process operationsis described in terms of discontinuous equations, the form of
which depends on the current variable values and, in certain cases (e.g. involving hysteresis effects), also some
aspects of the past history of the system.

gPROMS provides two powerful facilities for describing discontinuous equations in Model Entities. As
background it helps to understand State-Transition Networks (STNs which form a general basis for modelling
discontinuities:

» The CASE construct: this providesadirect description of general STNsin the g°PROM Slanguage. For example:

# An exanpl e of the CASE conditional construct - for flow over a weir.
SELECTOR
WeirFl ag AS (Above, Bel ow)

EQUATI ON
CASE Wi rFlag OF
VWHEN Above : FlowQut = 1.84 * (Rho/ Ml ecul ar Wi ght)
* WeirLength * ABS(Hei ght-WeirHeight)*1.5 ;
SWTCH TO Bel ow | F Hei ght < Weir Hei ght ;
WHEN Bel ow : FlowQut = 0 ;

SWTCH TO Above | F Hei ght > WeirHeight ;
END # Case

e The IF construct may be used to described a special form of reversible symmetric STNs that occur very
frequently in practical applications. For example:

# An exanple of the |IF conditional construct - for flow over a weir.
| F Hei ght > WeirHeight THEN
FlowQut = 1.84 * (Rho/ Ml ecul ar Wi ght)
* WeirLength * ABS(Hei ght-WirHeight)*1.5 ;
ELSE
FlowQut = 0 ;
END # I f
It should be noted that, in Model entites, we are interested in discontinuities that arise because of the intrinsic
behaviour of the system and not as aresult of external discrete actions imposed on the system by its environment
or its operators (e.g. the opening and closing of manual valves).See: Defining Schedules .

Using State-Transition Networks to model
discontinuities

Discontinuitiesin the description of the physical behaviour of process systemsmay arisein different ways such as:
* transitions from laminar to turbulent flow;

* reversa of thedirection of flow;

* appearance and disappearance of thermodynamic phases;

* equipment failure;

and many others.
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Sate-Transition Networks (STNs) provide a general way of describing discontinuous systems. This concept is
best introduced via an example. Consider the vessel depicted in the figure below. When the level of liquid in the

vessel, h, is below the height of the weir, 2w, no outflow is observed. When, on the other hand, the liquid level
exceeds the weir height, the rate of outflow is assumed to be proportional to 2 — A,

Figure6.1. Vessel with overflow welr

The mathematical model of the transient behaviour of this system can be written as follows:

Mass balance

aM
at = Fin — Fout

Calculation of liquid level in the tank
M = pAh

Characterisation of the output flowrate

r.o_l0 if B < hy
U (k- hy), ifh> hy

We note that two different sets of equations are needed to describe the behaviour of this system depending on
whether the level of the liquid is above or below the weir. Thus, the system may exist in two distinct states, Flow
and NoFlow, that correspond respectively to whether or not liquid flows over the weir. At any particular time, the
systemisin exactly one of these states. However, transitions from one state to the other will occur instantaneously
if certain conditions are met. For example, if, while the system in state NoFlow, the height of the liquid exceeds
that of the weir, the system will instantaneously jump to state Flow. Conversely, if, while the system in state Flow,
the height of the liquid drops below that of the weir, the system will instantaneously jump to state NoFlow.

The above situation can be represented graphically in terms of an STN as shown in the figure below. The two
circles (or ellipses) denote the two possible system states; for convenience, the form of the discontinuous equation
(involving the characterisation of the output flowrate) in each of these statesis also shown within these circles.

On the other hand, the mass balance and liquid level equations do not appear in this figure as their form is
independent of the state the system isin. The transitions between the two states are also shown in figure as arrows
connecting the corresponding circles. Again for convenience, each arrow islabelled with the logical condition that
triggers the corresponding transition.
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Figure 6.2. STN representation of vessel with overflow weir
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The STN represents areversible, symmetric discontinuity because:
* the system may jump from either of the two states to the other and,
* thelogical condition for one the two transitionsis the exact negation of that for the other.

An example of adifferent type of discontinuity isshown inthefigure below. Here, avessel isfitted with abursting
disc. The disc can either be intact (with no gas flow from the vessel) or burst (with gas venting from the disc to
the flare stack). This givesrise to two distinct system states (I ntact and Bur st). Asin the previous example, some
of the equations that describe the system take a different form in each of these states while some others remain
unchanged. A transition from I ntact to Bur st occurswhen the pressurein the vessel risesabovethe set pressureand
the disc shatters. The resulting outflow of gaswill then cause an reduction of the pressure which, eventualy, may
drop below its set value. However, the system cannot return to its | ntact state once the disc has shattered - unless
itisrepaired as aresult of an external action. Consequently, thisis an example of an irreversible discontinuity.

Figure 6.3. Vessel with bursting disc

~_

INTACT

A final exampleisthat of avessel fitted with asafety relief valve (see figure below). The valve can be either open
or closed, which again gives rise to two system states (Open and Closed). A transition from the Closed to the
Open state occurs when the pressure in the vessel rises above the set pressure, while a transition from the Open
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to the Closed state occurs when the pressure falls below a (lower) reset pressure. Thisis areversible, asymmetric
discontinuity because, although there are possible transitions in both directions, the two transition conditions are
not the exact negation of each other.

Figure 6.4. Vessel with safety relief valve

~_

P>Pset

P < Pf'eseat

We note that, in all three examples, only a subset of the model equations are directly related to the discontinuity
and change from one state to another. Therest of the equati ons remain unchanged regardl ess of the state the system
isin. Summarising, adiscontinuity in the physical behaviour of asystem gives riseto anumber of possible system
states. Naturally, at any given time, the system can be in exactly one of these states. Some of the equations that
determine the behaviour of the system hold irrespective of the system state. However, some others take adifferent
formin each state. Transitions between the different states take place when certain logical conditions are satisfied.
A system may exhibit more than one physical discontinuity described by multiple STNs and/or more than two
states within the same STN. For instance, a more detailed model of the weir vessel would seek to characterise the
nature of the fluid flow in the outlet pipe. This would give rise to three system states, i.e. Laminar, Turbulent
and Choked. A complex STN for ahypothetical system is depicted in the figure below. Here, the system exhibits
two separate physical discontinuities involving three and two possible states respectively.

» Equations 1, 2 and 3 remain unaffected by the discontinuities and are valid throughout.

» Equation 4 is affected by the first discontinuity and is written as 4a, 4b or 4c, depending on the state of the
system.

» Equations 5 and 6 are affected by the second discontinuity and are written as 5a, 5b and 6a, 6b in each of the
two states respectively.
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Figure 6.5. Hypothetical system model.

The Case conditional construct

The gPROM S example below illustrates the use of the CASE construct in aModel of avessel with abursting disc.
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Example 6.1. Model entity for a vessel equipped with a bursting disc

# MODEL Vessel WthDi sc

PARAMETER
R AS REAL DEFAULT 8.314 # J/ K nol
Vessel Vol une AS REAL
Bur st Pressure AS REAL
At nPressure AS REAL
Di scConst ant AS REAL
VARI ABLE
Fl ow n, Fl owQut AS Mol ar Fl owr at e
Rel i ef Fl ow AS Mol ar Fl owr at e
Hol dUp AS Mol es
T AS Tenperature
Pressure AS Pressure
SELECTOR
Di scFl ag AS (I ntact, Burst) DEFAULT Intact
EQUATI ON

# Mass bal ance
$Hol dUp = Flowln - FlowQut - ReliefFlow ;

# ldeal gas |aw
Pressure * Vessel Volune = Holdup * R* T ;

CASE Di scFlag OF
WHEN I ntact : ReliefFlow = 0 ;
SWTCH TO Burst | F Pressure > BurstPressure ;
WHEN Burst : ReliefFlow = DiscConstant * SQRT(R*T) ;
END # Case

# Energy bal ance

We note that this Model presents two features of interest:
1. A SELECTORsection isused for the declaration of the system states that arise from the discontinuity:

SELECTOR
Di scFlag AS (Intact, Burst) DEFAULT Intact

declares an enumerated ("selector") variable, Di scFl ag that can take only two values, namely | nt act
or Bur st , with the former being the default value at the start of the simulation (see below). The default
specification is optional and may be omitted.

2. TheMode equationsinclude the CASE equation:

CASE Di scFl ag OF
WHEN Intact : ReliefFlow = 0 ;
SWTCH TO Burst | F Pressure > BurstPressure ;
VWHEN Burst : ReliefFlow = DiscConstant * SQRT(R*T) ;
END # Case

that defines

« the equation(s) that hold in each state, and
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« thelogical condition(s) that trigger transitions between states.
More precisely, the above CASE construct states that:

e When the system isin the | nt act state, the relief flow is zero. The system remains in this state as long as
the pressure in the vessel islower than the bursting pressure of the disc. When it exceeds that limit, atransition
tothe Bur st stateisinitiated.

* WhenthesystemisintheBur st state, therelief flow is calculated from a sonic flow relationship. The form of
the equation presented hereisonly for illustration purposes. A more detailed form would take account of various
other effects, including the transition from sonic to sub-sonic flow as the pressure in the vessel decreases. As
thisis an irreversible discontinuity, there is no transition going back tothe | nt act state.

Some general considerations when using the Case
construct

In general, a Case equation comprises two or more clauses, one for each possible value of the corresponding
Selector variable. Each of the clauses comprises a list of equations, followed by an optiona list of Switch
statementsthat definetransitionsfrom the current clause to other clauses of the Case equation. Thelist of equations
may include any combination of simple, array and even conditional equations - including not only Case constructs
but also If constructs. The latter feature allows nesting of conditional equations to arbitrary depth. It isimportant,
however, to observe the following restrictions:

» The number of equationsin each clause of a Case construct must be the same.
» Each Selector variable may be used in only one Case construct.

The reason for the first restriction is obvious if one considers that the number of variables in the Model remains
unaffected by the occurrence of transitions. Consequently, any change in the number of equations would lead to
an over- or under-specified problem. The second restriction isimposed to avoid inconsistencies that might arise
from different Case attempting to force the same Selector variable to switch to different values at the same time.

Initial values of Selector variables

Another important consideration concerning the use of Case equationsisthat, in order for asimulation experiment
to commence, the initial (i.e. at time t=0) value of the corresponding Selector variable has to be specified. Thus,
in our example the user must specify whether or not the disc isinitially intact or not. This information cannot be
inferred automatically by gPROMS: the mere fact that the initial system pressure is below the bursting value does
not necessarily mean that the disc is intact - it may well have burst as a result of earlier operation! If a default
value has been specified for the Selector variable in the Model, then this will be used as its initial value for the
simulation. More generally, thisvalue can be set or overridden for individual simulation experiments. Thisisdone
inthel NI TI ALSELECTOR section of the Process (or Model). For instance:

UNIT T101 AS Vessel Wt hDi sc

I NI TI ALSELECTOR

T101. DiscFlag := T101.Burst ; # Disc is initially burst
I NI TI AL

T101. Pressure - T101. BurstPressure = -1E5 ;

Thus, in this example, we specify the disc as being burst despite the fact that the initial pressure of the system is
specified to be 1 bar below the bursting pressure. From the syntactical point of view, it isimportant to note the use
of the full pathname T101. Bur st to denote the value of the SELECTOR variable. A specification of the form:

UNI T T101 AS Vessel Wt hDi sc

SELECTOR
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T101.DiscFlag := Burst ; # Disc is initially burst

would be meaningless as the identifier Bur st is not known directly to the Process section - it is defined only
within the context of MODEL Vessel Wt hDi sc of which T101 isan instance.

The If conditional construct

Case constructs provide a general way in which STNs of arbitrary complexity can be described in the gPROM S
language. However, reversible and symmetric discontinuities are by the far the most commonly encountered
discontinuities in industrial processing systems. Although such discontinuities can be declared using Case
constructs, g°PROM S provides the aternative | F conditional construct specifically as a convenient shorthand for
the declaration of this common type of discontinuity.

Example 6.2. Model entity for a vessel equipped with an over flow weir

# MODEL Vessel Wt hWeir

PARAMETER
Rho AS REAL
Mol ecul ar Wei ght AS REAL
CrossSectional Area AS REAL
Wi r Hei ght AS REAL
Wei rLengt h AS REAL
VARI ABLE
Hol dUp AS Mass
Fl oM n, Fl owCut AS MassFl owr at e
Hei ght AS Length
EQUATI ON

# Mass bal ance
$Hol dUp = Flow n - Fl owQut ;

# Calculation of liquid Ievel from hol dup
Hol dup = CrossSectional Area * Height * Rho ;

| F Hei ght > WeirHeight THEN
# Francis fornula for fl ow over a weir

Fl owQut 1.84 * (Rho/ Mol ecul ar Wi ght)
* WeirLength * ABS(Hei ght-WirHeight)*1.5 ;
ELSE
FlowQut = 0 ;
END # | f

The gPROMS example above demonstrates the use of an | F equation in the declaration of a Model for a vessel
fitted with an overflow weir.

| F Hei ght > Wi rHei ght THEN
# Francis formula for flow over a weir

Fl owCut 1.84 * (Rho/ Mol ecul ar Wi ght)
* WeirLength * ABS(Hei ght-WirHeight)*1.5 ;
ELSE
Fl onQut = 0 ;
END # I f

A logica condition (inthiscase, Li qui d_Level > Weir Hei ght) isused to choose between two clauses,
each comprising alist of equations. If thelogical conditionis satisfied, the equations declared in thefirst clause are
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included in the system model, otherwise the equations of the second clause areincluded. Aswith Case equations,
the number of equations in each clause must be the same. As If equations are a specia case of Case equations,
there is always a Case equation that achieves the same result. For instance, the | F equation for the overflow weir
is equivalent to the following CASE equation:

SELECTOR
WeirFl ag AS (Above, Bel ow)

EQUATI ON
CASE Wi rFlag OF
WHEN Above : FlowQut = 1.84 * (Rho/ Mol ecul ar Wi ght)
* WeirLength * ABS(Hei ght-WirHeight)"1.5 ;
SWTCH TO Bel ow | F Hei ght < Wi rHei ght ;
VWHEN Bel ow : FlowQut = 0 ;

SW TCH TO Above | F Hei ght > WeirHei ght ;
END # Case

A subtle difference between If and Case equations is that, in If equations, the initially active state of the system
cannot be specified explicitly by the user. Instead, it is determined automatically by the initialisation calculation,
which ensures that the consistent initial values obtained satisfy both the logical condition and the equations in
this state. However, the solution of non-linear systems involving such conditional equations is far from trivial.
Moreover, it is possible that a valid solutions exists in either clause of an If equation; in such cases, the solution
found will depend on the initial guesses and the numerical method employed during the initialisation procedure.
In view of these factors, it may sometimes be preferable to use a Case equation instead, especialy if the initial
state of the system is known a priori.




Chapter 7. Distributed Models

A significant number of unit operationsin chemical or biochemical processestake place in distributed systemsin
which properties vary with respect to one or more spatial dimensionsaswell astime. For instance, atubular reactor
is described in terms of parameters and variables that, in addition to time, depend on the axial and radial position
within the reactor (e.g. T(zr,t) etc). Other common examples of distributed unit operations include packed bed
absorption, adsorption and distillation columns and chromatographic columns. In other unit operations, material
properties are characterised by probability density functions instead of single scalar values. Examples include
crystallisation units and polymerisation reactors, in which the size of the crystals and the length of the polymer
chains respectively are described in terms of distribution functions. The form of the latter may also vary with both
time and spatial position. In fact, most complex processes involve a combination of distributed and lumped unit
operations. The equations that determine the behaviour of such unit operations are typically systems of integral,
partial differential, ordinary differential and algebraic equations (IPDAES).

To develop a process model that considers distributed quantities we need to consider
» The definition of distributed Model entites
 Declaring Distribution domains
 Declaring Distributed Variables
* Defining Distributed Equations
* Introducing Partial Differential Equations
* Introducing Integral Expressions
» Explicit and implicit Distributed Equations
* Providing Boundary conditions
* Requirements for specifying discretisation methods and non-uniform grids in Process entites.
Distributed modelling is explained by reference to the gPROMS Project tubular.gPJ that can be found in the
installation. Y ou can access this by clicking on the Browse Examples button on the gPROMS Toolbar and then

navigating to "General capabilities\Other examples\tubular.gPJ".

File Edit Wiew Tools Window Help

D H Tp s 2R o A FEB 9
|

Browse the example projects that come with gPROMS

The tubular modd is illustrated in the figure below; which shows a tubular reactor used to carry out a liquid-
phase exothermic chemical reaction. The intensive properties of the fluid in the tube vary with both axial and
radial position aswell as with time. The reactor is surrounded by awell-mixed cooling jacket. Thus, theintensive
properties of the cooling medium are assumed to be uniform throughout the jacket but may still vary with time.
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Figure 7.1. Tubular flow reactor

\b

v

Declaring Distribution Domains

The temperature in the reactor varies with time, axial and radial position (T(zr,t)). Although all Variables that
are declared within aModel are automatically assumed to be functions of time, variations over other distribution
domains (inthis casethe axial and radial domains, zand r respectively) haveto be specified explicitly. Distribution
domainsaredeclaredintheDl STRI BUTI ON_DOMAI N section of aModel. The gPROM S code bel ow shows how
two such domains called Axi al and Radi al are declared in aModel of atubular reactor. The extents of both
domains are specified in terms of two Model Parameters, namely React or Lengt h and React or Radi us,

respectively.
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Example 7.1. Parameter and DISTRIBUTION_DOMAIN
sectionsfor a Model of atubular reactor

# MODEL Tubul ar React or
PARANVETER

# Number of components
NoConp AS | NTEGER

# Ceonetrical paraneters
React or Radi us,
React orLength AS REAL

# Transport properties

# Axial and radial mass diffusivities
Dz, Dr AS REAL

# Axial and radial thernal conductivities
Kz, Kr AS REAL

# Reaction

# Stoichionetric coefficients
Nu AS ARRAY(NoConp) OF | NTEGER

DI STRI BUTI ON_DQOVAI N
Axial AS [ O : ReactorlLength ]
Radial AS [ 0 : ReactorRadius ]

In general, the lower and upper bounds of the range of each Distribution Domain can be specified in terms of
real expressions involving real constants and/or real parameters. Thus, the following are also valid Distribution
Domain declarations:

# Normal i sed axial and radial domains
DI STRI BUTI ON_DOVAI N

z AS[ 0: 1]

rAS[ 0: 1]

# Axi al domai n enconpassi ng the second hal f of the reactor
DI STRI BUTI ON_DQOVAI N
Hal f Axi al AS [ ReactorlLength/2 : ReactorlLength ]

Declaring Distributed Variables

A Model may involve Variableswith different degrees of distribution. For instance, in the tubular reactor example,
the temperature of the fluid and the concentrations of the various chemical components within the tube are indeed
functions of both the radial and axial positions. However, the wall temperature isafunction only of axial position,
whilethe temperaturein the cooling jacket does not vary with spatial position at al. Notethat all of these variables
are aso functions of time, asis aways the case with Variablesin gPROMS.
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Example 7.2. Variable section for a Model of a tubular reactor

# MODEL Tubul ar React or

PARAMETER
DI STRI BUTI ON_DQOVAI N

VARI ABLE

# Reactor tenperature
T AS DI STRI BUTI ON( Axi al , Radi al ) OF Tenper ature

# Concentrations
C AS DI STRI BUTI ON( NoComp, Axi al , Radi al ) OF Concentration

# Feed conposition
G n AS ARRAY(NoConp) OF Concentration

# Cool i ng jacket tenperature
Tc AS Tenperat ure

e Variable T, which represents the temperature in the reactor, is declared as a DI STRI BUTI ON over the two
continuous domains, Axi al and Radi al .

» Variable C, representing the concentrations of the various components in the reactor, is clearly an array of
variablesdistributed over both theradial and axial domains. IngPROM S, an array of distributionsisrepresented
by adding one or more extra domains to a Distribution. These domains are discrete in nature and they do not
need to be declared explicitly in the DI STRI BUTI ON_DOMAI N section - a simple integer expression in the
VARI ABLE declaration suffices.

 For example, the concentration variable Crangesfrom 1 to NoConp, the number of componentsin the system),
aswell as over the two continuous domains, Axi al and Radi al .

» Variable G n, representing the concentrations of the various components in the feed, is distributed over the
discrete domain of components only. Although this could be written as:

Cin AS DI STRI BUTI ON( NoConp) OF Concentration
here we prefer to use the Array concept asit is more natural.
» Variable Tc, representing the temperature in the cooling jacket, is solely afunction of time.

In essence, then, Distribution is a generalisation of the Array concept that allows a Variable to vary over both
continuous and discrete domains. Conversely, an Array is a special case of a Distribution that is used to declare
Variablesthat are distributed over discrete domains only. Although Distributions can also be used for that purpose,
the Array construct is retained for compatibility with other programming languages. Note that it is not permitted
to declare a Variable that is distributed over two domains of the same type. For instance, atemperature field over
asquare domain cannot be declared as:

T AS DI STRI BUTI ON( XDorai n, XDonmai n) OF Tenper at ure

Thereason for thisrestriction isthat amore complex syntax would then be required in order to distinguish between
partial derivatives of the Variable T with respect to the first and the second independent Variables. This does not
actually lead to any real restriction in functionality: Variable T could easily be declared as:

T AS DI STRI BUTI ON( XDormai n, YDonmai n) OF Tenper at ure
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where XDonai n and YDonmi n are declared to be identical:

DI STRI BUTI ON_DQOVAI N
XDomai n, YDomain AS|[ 0.0 : Length ]

This aso has the advantage of allowing different discretisation methods to be applied to each of the two domains.

Defining Distributed Equations

Aswith lumped models, Distributed Variablesin Models are related through sets of equations that are declared in
the Equation section. For example, consider the following declarations within a Model of atubular reactor:

# MODEL Tubul ar React or
PARANVETER

# Ceonetrical paraneters
React or Radi us,
React orLength AS REAL

# Heat transfer paraneters
U S AS REAL

DI STRI BUTI ON_DQOVAI N
Axial AS [ 0 : ReactorlLength ]
Radial AS [ 0 : ReactorRadius ]

VARI ABLES
Vz, Vr AS DI STRIBUTION (Axial, Radial) OF Velocity
T AS DI STRIBUTI ON (Axial, Radial) OF Tenperature
Twal I AS DI STRI BUTI ON ( Axi al ) OF Tenmperature
Tc AS Tenperat ure

Inthiscase, V2 * T isavalid expression that is distributed over the entire Axi al and Radi al domains.
Similarly,

U* S* ( T(,ReactorRadius) - Tc )

is also avalid expression distributed over the entire Axi al domain. In some cases, it may be desired to define
an expression over part of a particular domain. This can be achieved by using slices of distributions, very similar
to the slice concept for arrays. For example, the expression:

Vz(0: ReactorlLength/2, ) * T(0:ReactorLength/2, )

isdistributed over thefirst half of the Axi al domainandtheentireRadi al domain. The mathematical modelling
of distributed systems often requires arather subtle distinction between the entire domain including its boundaries,
and the domain excluding all or part of its boundaries. In standard mathematical terminology, these two kinds of
domain are referred to as 'closed' and 'open'’ respectively. One major reason for introducing this distinction is that
some of the equations (e.g. conservation laws) may hold only in the interior of adomain while being replaced by
appropriate boundary conditions on the domain boundaries. To allow the modellers to make the above distinction,
gPROM S employs the notation shown in the table below.

Table 7.1. Closed and open domain notation

Mathematical notation I nterpretation gPROM S notation
[ab] z€[a,b)&a<z<b a: b
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Mathematical notation I nterpretation gPROM S notation
(ab] z€(a,blea<z<b aj+: b
[ab) z€a,b)ea<z<b a: b|-
(ab) z€(a,b)sa<z<b al+ : b|-

Thus, the VariablesliceVz( 0| +: React or Lengt h, 0| +: React or Radi us| -) denotesthevauesVz(zr)
for the values of zand r satisfying 0 <z <= React or Lengt h and 0 <r < React or Radi us. We conclude by
formally defining the validity of expressionsinvolving distributed Variables. Consider an expression x ?y where
x and y are scalar or distributed expressions, and ? is a binary arithmetic operator (+, -, *,/, ). Then thisisa
valid gPROMS expression if and only if it conforms to one of the four cases listed below:

Case X y Dimensionality I nterpretation
of x?y of x?y
1 Scalar Scalar Scalar X?y
2. Array Scaar Same as X x{..} ?y
3. Scalar Distribution Sameasy x?y {..}
4, Distribution Distribution Sameasx andy x{.}?y {..}

Clearly, case 4 isvalid only if both x and y are distributed over exactly the same domains, also taking account of
whether each of theseis open or closed. For example, the following is avalid expression:

Vz( 0| +: React or Lengt h, React or Radi us|-) * Twal | (0| +: React or Lengt h)

that is distributed over the Axi al domain which is open on (i.e does not include) the left boundary (z=0) but
closed on (i.e includes) the right boundary (z=React or Lengt h). On the other hand, the expression:

Vz( 0| +: React or Lengt h, React or Radi us) * T(0: React or Lengt h, React or Radi us)

isinvalid because thefirst operand VVz isdistributed over adomain that is open on the left and closed on the right,
while the second operand T is distributed over a domain that is closed on both ends.

Introducing Partial Differential Equations

Partial differentiation of a distributed Variable or expression with respect to adomain over which it is distributed
is achieved with the PARTI AL operator. Its syntax is of the form:

PARTI AL ( Expression, DistributionDomain )

where Expressionisagenera expression and DistributionDomain is one of the distribution domainsin the system.
Normally, at least one of the Variables involved in the differentiated expression will be distributed over the
specified domain, otherwise the result of the differentiation will be zero. Partial operators may also be nested. The
result of a Partial operator is generally a distributed expression that has exactly the same degree of distribution
as the Expression being differentiated.

In the gPROM S language it is possible to write expressions involving both
* First order partial derivatives

 Higher order partial derivatives

First order partial derivatives

Considering the example presented in Distributed Equations, the following are examples of valid first order partial
derivative expressions:
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oT PARTI AL( T, Axi al
a0 ZE[O,L],TE[O,R] ( )
0z
(v, T) PARTI AL(Vz(0| +:L, ReactorRadius) *
oy @ %€ (0,L],r=R T(O| +: L, React or Radi us) , Radi al )
0 orT PARTI AL(Kr (0, O] +: React or Radi us| -) *
o (krar> , 2=0,7€(0,R) PARTI AL(T(0, |
+: React or Radi us| -), Radi al ), Radi al )

Note that the partial differentiation operator with respect to time is denoted by symbol $ rather than the operator
PARTI AL. Thus:

oT $T
ot

There are two reasons for this:
* Theuseof $ isconsistent with the time derivative operator in lumped systems.

e The numerical solution methods in gPROMS treat the time domain quite differently to the explicitly declared
distribution domains.

Higher-order partial derivatives

PARTI AL operators may be nested to express higher order derivatives as follows:

PARTI AL( Expression, PARTIAL( Expression, DistributionDomain ), DistributionDonain )
Alternatively, the following abbreviated form may be used:

PARTI AL ( Expression, DistributionDomain, DistributionDomain )

Here differentiation first takes place with respect to the first domain, then with respect to the second etc. For
example:

o°T
ﬁx YAS (O)L))T € (O,R)

PARTI AL( T( 0| +: React or Lengt h| -, O] +: React or Radi us| -, Axi al , Axi al )

Conservative discretisation formulae for partial
derivatives

There are two main approaches to discretise a partial derivative of an expression (for a given numerical method):

1. Apply thechainruleto reduce theterm to a series of derivatives of asingle variable and apply the discretisation
scheme to each simple derivative

2. Apply the discretisation scheme directly to the complex derivative

A very common example of thisisthe convection term in conservation equations. The product of some conserved
guantity, ¢, ismultiplied by a bulk velocity v and the partial derivative with respect to position, X, is required. If
the first approach above is applied, asillustrated below, then the numerical solution may contain errors resulting
in the quantity ¢ not being conserved.

d(vc)
Oz

_ ., 0c OV ~ Ck—Ck—1 Ve —Vk—1
=Vgg T Coz = Uk oz +Ck oz
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For thisreason, gPROM S always applies the second "conservative" formulation to complex derivatives, as shown
below for the simple convection term.

A(ve) . VkCk—Vk—1Ck—1
oz oz

For this reason, therefore, conserved quantities are always conserved in the numerical solutions that gPROM S
provides.

Introducing Integral Expressions

Integrals occur frequently in equations arising in a number of branches of physics and engineering. In process
engineering applications, they often occur in population balance models describing, for instance, crystal
size distributions, activity distributions of recycled catalyst particles, and the age and size distribution of
microbiological cultures. They also appear when average values of distributed Variables need be calculated.
Integration of adistributed Variable with respect to adomain is achieved with the | NTEGRAL operator. Its syntax
is of the form:

| NTEGRAL ( Integral Range ; Expression )
where Expression is a general expression involving Variables that are distributed over one or more distribution
domains and Integral Range represents the range of integration. The result of a Integral operator is generally an
expression that is distributed over one less domain than the Expression being integrated.
In the gPROMS language it is possible to evaluate
» Singleintegrals

e Multipleintegrals

Single integrals

The following are examples of single integrals:

o, I NTEGRAL(z := 0:1 ; z"2)
/ z¢dzx

0

L | NTEGRAL(z : = 0: ReactorLength ; T(z, 0|
/o (T(2,7) —T:)dz r € (0,R) +: React or Radi us| -) - Tc)

Note that an integration variable (e.g. z in the above examples) is introduced to define the range of integration.
Theintegrand isgenerally an expression that may involve the Model V ariables and/or the integration variable. The
numerical method used to evaluate the integral depends on whether or not a distributed Model Variable appears
in the integrand and the numerical methods specified (see Specifying Discretisation Methods).

Also note that, in the first example above, the result of the Integral isjust ascalar quantity. On the other hand, the
second example results in an expression that is distributed over the open domain (0, R)

Multiple integrals

Multipleintegrals can be defined viaashorthand notation. For example, the mean temperaturein the entire tubular
reactor is given by:

T = 1% [} [FrT(z,r)drdz

which, in gPROMS, can be written as:
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2 | (ReactorLengt h*React or Radi us™"2) *
I NTEGRAL(z := 0: ReactorLength , r := 0:ReactorRadius ; r*Temp(z,r))

Relationship between the Integral and Sigma
Operators

The Distribution concept can be considered as a generalisation of an Array, so the Integral operator can aso be
used for the integration of a given expression over discrete domains that define Array sizes. Thus, Integral can
itself be viewed as a generalisation of the Sigmaintrinsic function for carrying out discrete domain summations.
For instance, the molar fractions of the reactants at the tubular reactor entrance are defined as:

Cq

Ti= Dk Ck

This equation can be represented in terms of either the SI GVA function or the | NTEGRAL function, as shown
below:

# Using SIGVA function
X(,0) = ,0) / SIGW(C(,0)) ;

# Using | NTEGRAL oper at or
X(,0) = C(,0) / INTEGRAL(i := 1:NoComp ; C(i,0)) ;

However, the Integral operator is more general than the Sigma function; whereas Sigma aways resultsin ascalar
by summing all dimensions of its argument, Integral can have a more narrowly specified summation domain. For
instance, consider atwo-dimensional array Variable A( 5, 10) . Then

SIGVA ( A(2:4, ) )

4 10 B
isthe scalar 2 =2 Zj:l AU, whereas

INTEGRAL (i := 2:4 ; A(i, ) )
. . S A
isavector of length 10, the jth element of which is2i—2 Adj.

Explicit and Implicit Distributed Equations

Asin the case of array equations, there are two different ways of writing distributed equations in gPROMS: in
an implicit manner or an explicit manner.

Implicit specification

The first exploits the concept of distributed expressions to define equations in an implicit manner. For example,
the following equation sets the temperature throughout the interior of the reactor to a uniform value of 298K:

T(O| +: React or Lengt h| -, 0| +: React or Radi us|-) = 298 ;
This compact form of the equation will be automatically expanded by gPROMS.
Explicit specification
An alternative way of writing the same equation isin an explicit form by making use of For constructs:
FOR z := 0| + TO ReactorLength|- DO

FOR r := 0|+ TO React or Radi us| - DO
T(z,r) := 298 ;
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END
END

The two forms are completely equivalent, from the points of view of both the definition of the equation and its
numerical solution. Thus, which one you use depends on preference. However, the definition of some distributed
equations require the extra flexibility afforded by the use of the FOR construct. One such case involves equations
which involve the independent Variables directly. Another case arises with equations involving SI GVA and/or
| NTEGRAL operators that need to be applied only to some of the domains of their arguments. For example,
consider the chemical species conservation equations within the tubular reactor. These are of the form:

acC; oC; 8%C; Dr 8 oC; NR ;
o = Vo TDz%a + T (” a#) +2=1vTs @ = LLNC, z €

(O) L)) r e (O) R)
These can be written in gPROMS as follows:

FORi := 1 TO NoConp DO
FOR z := 0]+ TO ReactorLength|- DO
FOR r := 0]+ TO React or Radi us| - DO
$Concentration(i,z,r) =
- Velocity * PARTIAL(C(i,z,r), Axi al)
+ Dz * PARTIAL(C(i,z,r),Axial, Axi al)
+ (Dr/r) * PARTIAL(r*PARTIAL(C(i,z,r), Radial), Radial)
+ SIGVA(Nu(i,)*r(,z,r)) ;
END
END
END

Note how the range of application of each FOR construct is defined so as to ensure that the equation is enforced
only at the interior of the domain of interest. As a second example consider the energy conservation equation for
the cooling jacket. Thisleadsto alumped equation that is related to the reactor energy balance through an integral
term describing the heat flux over the entire length of the reactor:

pccp,cvc% = fccp,c(Tc,in - Tc) +US foL(T(zy R) - Tc) dz

This can be written in gPROM S as follows:

Rhoc * Cpc * Vc * $Tc = Fc * Cpc * ( Tcln - Tc )
+ U* S* INTEGRAL( z := 0:ReactorLength ; T(z, ReactorRadi us)-Tc) ;

Providing Boundary Conditions

In contrast toinitial conditions, which may differ from one simul ation experiment to the next, boundary conditions
are part of the description of the physical system behaviour itself. In gPROMS, they are therefore specified
within Models. Boundary conditions can be viewed simply as additional equations relating the Model Variables,
consequently, they may be included in the Equation section, together with all other model equations. However,
for the sake of clarity, the user is encouraged to include the boundary conditions in a separate section, under the
keyword Boundary. For instance, the boundary condition for heat transfer at the tubular reactor wall,

oT
—kror

= Uh(T - Twall) S (0’ L)
r=R

can be written as follows:
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# Heat transfer relation at tube wall
FOR z := 0] + TO ReactorLength|- DO
- Kr * PARTIAL(T(z, React or Radi us), Radi al ) =
Uh * ( T(z,ReactorRadius) - Twall(z) )
END

EQUATI ON

In any case, g°PROMS currently treats the BOUNDARY and EQUATI ON sections in exactly the same way for the
purposes of numerical solution.

Specifying Discretisation Methods

The solution of systems of IPDAEs s generally adifficult problem. Changing the value of a parameter or one of
the boundary conditions may lead to completely different behaviour from that originally anticipated. Furthermore,
although some numerical methods can accurately solve a given system, other numerical methods may be totally
unable to do so.

The systems of |PDAEs defined within g°PROM S M odel s are solved using the method-of -linesfamily of numerical
methods. Thisinvolvesdiscretisation of the distributed equationswith respect to al spatial domains, which reduces
the problem to the solution of a set of DAESs.

A number of different techniques fall within the method-of-lines family of methods, depending on the
discretisation scheme used for discretising the spatial domains. Ideally, this discretisation scheme should be
selected automatically — or, indeed, a single discretisation method that can deal efficiently with all forms of
equations and boundary conditions would be desirable. However, this is not technically feasible at the moment
and therefore gPROMS relies on the user to specify the preferred discretisation method. Three specifications are
necessary to completely determine most discretisation methods:

» Typeof spatial discretisation method. The proper choi ce of the discretisation method isoften the critical decision
for solving a system of IPDAEs. Aswe mentioned earlier, because no method isreliable for all problems, the
incorrect choice of method may lead to physically unrealistic solutions, or even fail to obtain any results.

» Order of approximation. The order of approximation for partial derivatives and integrals in finite difference
methods, and the degree of polynomials used in finite element methods has a great influence on the accuracy
of the solution. Thisis especially trueif coarse grids or only a small number of elements are used.

» Number of discretisation intervals/elements. The number of discretisation intervalsin finite difference methods
and the number of elements in finite element methods are also of great significance in determining the
solution trgjectory. A coarse grid or a small number of elements for a steep gradient problem may result in
an unacceptably inaccurate solution. On the other hand, too fine a grid or too many elements will increase the
required computational efforts drastically, leading to an inefficient solution procedure.

The gPROM S language allows users to specify all three characteristics. DISTRIBUTION_DOMAINs are treated
as Parameters and can be Set to the desired discretisation method, order and granularity of approximation. The
table below liststhe currently available numerical methods, their corresponding keywords in the language and the
currently supported orders of approximation for each.

Table 7.2. Numerical methodsfor distributed systemsin g°PROM S

Numerical method Keyword Order(s)
Centered finite difference method CFDM 2,4,6
Backward finite difference method BFDM 1,2
Forward finite difference method FFDM 1,2
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Numerical method Keyword Order(s)

Orthogonal collocation OCFEM 2,3,4
on finite elements method

Aswas mentioned earlier, the numerical methods applied to integrals depend on the nature of the integrand. If the
integrand is an expression involving only theintegration variable, then the integration method is fixed (since there
is no way to specify the method). These implicit integrals are all evaluated using 5th order Gaussian Quadrature.
If the integrand involves one or more distributed Model Variables, then the method of the integration is explicitly
specified (because al distributed Variables must be defined over a Distribution Domain, which must be set avalue
as described in the table above). The following procedure below is applied to any integrals of this nature.

1. First, if theintegral isdefined over more than one domain, it isdecomposed into anested set of 1-D integrations.
Theinnermost integrals are evaluated first, which provide termsin the integrands at the next level, which now
become ordinary 1-D integrals themselves. This procedure is repeated until the outermost integral (i.e. the one
with the highest dimension) has been evaluated.

2. Each of the 1-D integrals that must be evaluated in step 1 are first decomposed into a sum of integrals over a
set of subintervals. Thisis based on the range of the Distribution Domain and number of intervals specified in
its numerical method. This gives a number of interval boundaries, Zi. An integral of the form

2 pde

then becomes

[Z¢de+ [T pde -+ [T pdn+ ) pde

Ti4+m—1

So, if theintegral is specified over theinterval [a,b] within aDistribution Domain defined to be over theinterval
[O,L] with a numerical method using N intervals, the number of subintervals used for the integration will be
roughly (b-a)N/L.

3. Each of the subintegralsin step 2 isintegrated using a polynomial approximation consistent with the numerical
method specified for the Distribution Domain.

Overadl, the numerical methods for evaluating integrals do not in general correspond to any well-known methods.
In some cases, the methods may reduce to trapezoidal or Simpson's rules; but not always. However, and most
importantly, the method that is applied is always consistent with the numerical method used to approximate the
partial derivatives over the same Distribution Domain.

The numerical methods applied to the various integrals that may be encountered in gPROMS Models are
summarised in the table below.

Table 7.3. Numerical methodsfor integralsin gPROM S

Type of integral Numerical method used Number of intervals

Implicit 5th order, six point —
Gaussian Quadrature

Explicit approximation is consistent depends on the Distribution
with numerical method usedto | Domain and the integration interval
approximate partial derivatives

Clearly, the numerical methods used in evaluating integrals have a direct effect on the accuracy of the solution.
There are some situations where the Gaussian Quadradure used in evalulating implicit integrals results in
significant errors. One exampleisthe power functionz™. Whenn < 1, theresults of the numerical integration can
be quite poor. Of course, when the integral can be solved analytically, it is always better to include the analytical
expression rather than the integral, as in this case. However, should numerical integration be required, greater
accuracy can sometimes be achieved by defining a distributed V ariable (over anewly specified domain), equating
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it to the integrand and then integrating the Variable. Then, the number of elements can be specified such that the
accuracy of theintegral is as required. An example of thisis shown below.

DI STRI BUTI ON_DQOVAI N
Myl nt egrati onDomain AS [ 1: 100]

VARI ABLE
Integrand AS DI STRI BUTI ON( Myl nt egr ati onDomai n) OF NoType
Implicit AS NoType
Explicit AS NoType
SET

Myl ntegrati onDomain := [ BFDM 1, 200 ] ;

EQUATI ON
FOR x := 1 TO 100 DO
Integrand(x) = 1/x ;

END
Implicit = INTEGRAL( x := 1:100; 1/x ) ;
Explicit = INTEGRAL( x := 1:100; Integrand(x) ) ;

Here, the same integration is performed using the two methods. The implicit method will be quite inaccurate,
whereas the explicit one will be much better (depending on the order and number of elements specified for
MylntegrationDomain).

Example 7.3. Setting the discretisation methods, ordersand granularities
# PROCESS StartUpSi nul ati on

UNIT
R101 IS Tubul ar React or

SET
R101. Axi al =[ CFDM 2, 150] ;
R101. Radial :=[ OCFEM 3, 4]

An excerpt from a Process entity involving an instance RL01 of a 2D tubular reactor Model.
The Axi al domain within thisinstance is to be discretised using centered finite differences
of second order over auniform grid of 150 intervals. On the other hand, the Radi al domain
isto be handled using third order orthogonal collocation over four finite elements. Note that
the specification of discretisation methods is done separately for each distribution domain in
each instance of the corresponding Model, thus allowing maximal flexibility in this respect.

Similarly to other Parameters, although it is possible to specify numerical solution method
information within the Models themselves, in the interests of model reusability and generality, is
often better to associate these with the specific instances of Models that are included in Processes.

Non-uniform grids

The discretisation methods described so far have all been based on a uniform grid. For finite-difference methods,
all elements are the same size: the length of the Distribution_Domain divided by the number of elements. The
same is true of Orthogonal Collocation on Finite Elements (although within each element, the collocation points
are placed according to the order of the method and may be non-uniform, though always symmetrically placed).

For many problems, uniform grids are unsuitable because there may be regions where there are large gradients
and other regions where the gradients are small. Applying a uniform grid to the whole domain would therefore
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result in aloss of accuracy where the gradients are too high, because the grid would be too coarse, and would be
inefficient in the low-gradient regions, where the grid would be too fine. Thisisillustrated in the figure below.

Figure 7.2. Example of a problem requiring non-uniform grids

4
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Grid too coarse Grid too fine
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There are two main approaches to this problem. If the behaviour of the system is roughly known a priori, then
anon-uniform grid may be specified to account for the spacial variation of the gradients. If the behaviour it not
know sufficiently well, then adaptive non-uniform grids must be employed. Here, the solution procedure places
the grid pointsin order to minimise the error.

gPROM S supports the use of a number of user-specified non-uniform grids. A non-uniform grid can be specified
through two mechanisms:

1. Manualy specifying the grid points
2. Specifying agrid transformation

Examples demonstrating the use of the concepts can befound inthe gPROM S Project nonuni f or ngri ds. gPJ
in the examples sub-directory. It allows to compare the results of differently sized equidistant grids against each
other and also against non-uniform grids. In particular it can be seen that the same precision can be achieved with
alower number of discretisation points using a non-uniform grid when compared against an equidistant grid.

Manually specifying grid points

Thefirst approach to specifying anon-uniform grid isfor the user to specify thelocation of all the grid nodes. This
isdoneinthe SET section when Setting the Distribution Domain Parameter. Rather than specifying the number of
elements, ssimply enter the normalised positions of each of theinternal grid nodes. The outer two nodes are fixed at
0 and 1 automatically, representing the lower and upper bounds of the domain, respectively. Below isan example
specification for a second-order centred finite-difference scheme with 10 non-uniform elements.

DI STRI BUTI ON_DQOVAI N
Axial AS [0 : Reactorlength]

SET
Axial := [CFDM 2, (0.356, 0.524, 0.635,
0.719, 0.785, 0.841,

0.888, 0.930, 0.967)] ;

Specifying a grid transformation

An easier (but less general) way to specify the grid nodes is by use of atranformation. If the problem is expected
to exhibit large gradients at the start of the domain, which reduce towards the end of the domain, a logarithmic
transformation can be used to place more nodes near the lower bound of the domain. This can be represented by
the following equation, the effect of which isillustrated in the figure below.

In(az+1)
In(a+1)?

zZ =
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where Z is the transformed coordinate and z the original coordinate. Below it can be seen that a uniform grid in
the transformed domain leads to the desired non-uniform grid in the original domain.

Figure7.3. A logarithmic transformation
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Conversely, should one desire more grid points at the end of the domain, an exponentia transformation may be
used. The form of the transformation is:

exp(az)—1

2= exp(a)—1"

To specify a transformed domain, enter the type of transformation with its parameter () in parentheses to the
specification of the Distribution Domain. For the logarithmic transformation, with o = 4, this would be specified
asfollows.

DI STRI BUTI ON_DQOVAI N
Axial AS [0 : Reactorlength]

SET
Axial := [CFDM 2, 10, TRANSFORMLOG, 4.0)] ;

Other numerical methods are specified in exactly the same way. A list of the available transformations, their
keywords and arguments is given below.

Table 7.4. Domain transformations availablein g°PROM S

Domain transformation Keyword Parameter(s)
Logarithmic TRANSFORM( LOG,o) alarger than or equal to zero
Exponential TRANSFORM( EXP, o) acan take any real value

Please note that for the exponential transormation a negative value will be the inverse transformation of the
corresponding positive value.
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Chapter 8. Composite Models

A composite Model is one that contains one or more other Model entities as a sub-Model. Composite Models can
either be constructed graphically on the topology tab of a flowsheet model or using the gPROMS language; or
even some combination of these two approaches.
In the case of graphical model construction, Connections between sub-Models can only be made to Model Ports
(see: Constructing flowsheet Models). Whereas in the gPROM S language, Connections can be made via Model
Ports and also by writing equations that directly access the Model Variables and Parameters. It should be note
that graphical connections between Model Ports are automatically represented in the g°PROM S language tab and
vice-versa
» Motivation for Model decomposition: the benefits of building reusable Model components.
* How to build composite Modelsin gPROM S

 Declaring instances of lower-level Modelsin the UNIT Section

« Topology connectionsin the gPROMS Language
* Theuse WITHIN construct for simplifying notation when referring to quantities within sub-Models,
» Making specifications for composite Models

* Model specifications

o Setting Parameter values in composite Models

Motivation for Model Decomposition

Certain complex unit operations may involve many tens of thousands of Variables and equations. Although in
principleall of these could be writtenin asingle Model entity, in practice such an undertaking would be extremely
tedious and error-prone. The g°PROM S language provides tools for managing such complexity.

The key principle involved is called hierarchical sub-Model decomposition, whereby the Model for a complex
unit operation is constructed progressively in anumber of hierarchical levels. Thisismuch easier than constructing
avery large primitive Model (see also: Defining Models and Processes ) for the unit operation because at each
level in the hierarchy you can concentrate on only a small fraction of the modelling task. As a result, the Models
are easier to construct and less likely to contain errors.

Moreover, this strategy promotes Model reusability and efficient Model development practices, since suitably
Parameterised sub-Models can be used several times, but only be constructed and tested once. The gPROMS
language encourages hierarchical sub-Model decomposition by offering mechanisms that support:

« the declaration of high-level Models that contain instances of lower-level Models

« the connection of the above instances using Equations and topology connections.

Instances of lower-level Models: Units

In gPROMS, an instance of aModél is called a Unit. Consequently, if we wish to insert one or more instances of
one or more Models within another (higher-level) Model, we have to introduce a Unit section within the latter.

Consider, for instance, the declaration of a distillation column Model that is outlined in the figure below.
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Figure 8.1. Distillation Column M odel

# MODEL DistillationColumm

PARAVETER
# Nunber of trays
NoTr ays AS | NTEGER
# Feed tray position
FeedPosi tion AS | NTEGER

UNI T
Condenser AS Tot al Condenser
Reboi | er AS Parti al Reboil er
TopSecti on AS Li nkedTrays
Bot t onSect i on AS Li nkedTrays
Feed AS FeedTray

VARI ABLE

Col umEner gyRequi rement AS Energy_ Fl ow ate
EQUATI ON

#Def i nition of columm energy requirenment
Reboi | er. Heati ngLoad - Condenser. Cool i ngLoad = Col utmEner gyRequi r errent

The PARAMETER and VARIABLE sections of this composite Model are very similar to those of simple
(primitive) Models — see Defining Models. However, the UNIT section, above specifies that the Model also
comprises a number of instances of other Models, namely:

» Condenser. Thisis an instance of Model Total Condenser.

+ Reboiler. Thisis an instance of Model PartialReboiler.

» TopSection, BottomSection. These are both instances of Model LinkedTrays.
* Feed. Thisisan instance of Model FeedTray.

Each of the lower-level Models may either be primitive or include a UNIT section themselves. For instance,
TotalCondenser, PartialReboiler and FeedTray are likely to be primitive Models. In contrast, LinkedTrays is
most probably a composite Model. In any case, there is no limitation with respect to the number of levelsin this
hierarchical decomposition.

Finally, the EQUATION section introduces an Equation that determines the net energy requirement for the entire
column:

Reboi | er. Heati ngLoad - Condenser. Cool i ngLoad = Col umEner gyRequi renment ;

The equation involves three Variables. One of these (ColumnEnergyRequirement) belongs directly to the
DidtillationColumn Model having been declared explicitly in its Variable section. The other two Variables
(Reboiler.HeatingL oad and Condenser.CoolingL oad) belong to the Units Reboiler and Condenser , respectively.
Of course, for this to be correct, Models PartialReboiler and TotalCondenser must contain Variables
Reboiler.HeatingL oad and Condenser.CoolingL oad respectively.

The above equation illustrates a general property of higher-level Models. This is their ability to refer to entities
(e.g. Parameters and Variables) that are declared within the Units that they contain - as well, of course, as their
own entities. Furthermore, as we have seen, this reference is done using a pathname construct. The latter can be
arbitrarily long. For example, suppose that the Total Condenser Model is not primitive but comprises instances of
several lower-level Models; then the following may be avalid pathname:
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Condenser. Ref | uxDrum Level Control |l er. Gain
referring to the gain of the controller used to control the liquid level in the reflux drum of the condenser.

Finally note that the DistillationColumn Model does not yet express how the flows of material and energy between
the sub-units are equated; this could be done directly with Equations. For example:

EQUATI ON

#Def i nition of colunm energy requirenment
Reboi | er. Heati ngLoad - Condenser. Cool i ngLoad = Col utmEner gyRequi r errent

# Connectivity for rebolier/Bottom Section

Reboi | er . Vapour _out Bot t onBect i on. Vapour _i n;
Reboi | er.y_vapour _out Bot t onBecti on. y_vapour _i n;
Reboi | er. T_vapour _out Bot t onBecti on. T_vapour _i n;

Of course, Equations need to be provided for all the connections between al of the Units.

However, in practice it is usually more convenient to connect Units using topology connections to Model Ports
(assuming that they have been defined of course) — see Topology connectivity using the gPROMS Language.

Topology connectivity using the gPROMS
Language
Connections made between a Model's Ports (see: Defining Ports), whether created graphically (see: Constructing

flowsheet Models) on the composite Model's topology tab or directly in the gPROM S language, should be placed
inthe TOPOLOGY section; the general syntax for thisis shown below

TOPOLOGY
Uni t Namre. Por t Nane Uni t Name. Por t Nane # for scal ar PORTs
Uni t Namre. Por t Nane( Por t Nunber) Uni t Name. Por t Nane # for array PORTs

Uni t Namre. Por t Nane( Por t Nunber)
Uni t Name. Por t Nane

Uni t Namre. Por t Nane( Port Nunber) # for array PORTs
Uni t Namre. Por t Nane( Port Nunber) # for array PORTs

EQUATI ON
Model equations ...

The following should be noted:

 Graphical connections are automatically represented in the gPROMSIanguage tab and likewise any connections
added directly in the gPROMS language will be shown on the composite Model's topology tab (following a
syntax check). Similarly connections deleted from either location will be synchronised.

» The TOPOLOGY section comesjust before the EQUATION sectionin agPROMS Model entity.

» When connecting Units via Ports the user must ensure that the Connection Types are the same and that all
Connectivity rules are satisfied.

» When a Connection is made all Parameters, Distributions and Variables in the Ports are equated.

Arrays of Units

Recalling the Di sti | | ati onCol urm Model used to introduce lower-level Model instances, one of its sub-
ModelsisaModel of acolumn section, called Li nkedTr ays:

62



Composite Models

# MODEL DistillationCol um

PARAMETER

UNI'T
Condenser AS Tot al Condenser
Reboi | er AS Partial Reboil er
TopSecti on AS Li nkedTrays
Bott onSect i on AS Li nkedTrays
Feed AS FeedTray

Asitsname implies, Li nkedTr ays could contain a number of instances of a Tray Model. Clearly it would be
convenient to define an Array of Tray Modédl instances, and this can be done as follows.

# Model LinkedTrays

PARAMETER
NoTrays AS | NTEGER

UNI'T
Trays AS ARRAY(NoTrays) OF Tray

See also Declaring arrays of Unitsin Models.

Referring to arrays of Units is done in a similar manner to Parameters and Variables (see Referring to array
elements). For example, one would refer to the liquid mole fraction of component 2 in the 5th tray of the top
section of the column using the following path name;

Col umm. TopSecti on. Trays(5) . x(2)

Variable pathnames and WITHIN

As the number of intermediate hierarchical levels increases, so does the length of the pathnames required to
reference Parameters and Variables at or close to the bottom of the hierarchy. Pathnames of the form:

Separ ati onSecti on. Col um(2). TopSection. Stage(1).T
are quite common when dealing with complex processes.

It isrecommended that you use pathname completion to help construct full and valid pathnames corr ectly;
thisisavailablewithin all entitiesin gPROM . Semantic errors, such as referencing a quantity in alower-level
Model that doesn't exist, are only detected when a Model based activity is executed.

Nevertheless, writing equations with long pathnames can become tedious and make code difficult to read,
especidly if alarge part of the pathname is common to many of the Parameters or Variables referenced by an
equation. The WITHIN construct helps relieve some of this burden.

A WITHIN construct encloses alist of equations and defines a prefix to be used for all Parameters and Variables
referenced by the enclosed equations. Suppose, for instance, that Model Tray has a Variable Q that determines
the heat loss from the tray to the environment. However, it contains no equation that actually determinesthis heat
loss. Consider now using this tray Model within the top and bottom sections of a column. We wish to specify a
simple heat transfer equation for determining the heat loss in the top section; however, the bottom section is well
insulated. One way we can achieve thisis asfollows:
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MODEL DistillationCol um

PARAMETER
TAMbi ent AS REAL
UA AS REAL

NoTrays AS | NTEGER

UNI'T
TopSecti on, BottonBection AS LinkedTrays

EQUATI ON
W THI N TopSecti on DO
FOR k := 1 TO NoTrays DO
WTH N Stage(k) DO
Q=UA* (T - TAnbient) ;
END # Wt hin Stage(k)
END # For k
END # Wthin TopSection

W THI N Bot t onSecti on DO
FOR k := 1 TO NoTrays DO
WTH N Stage(k) DO

Q=20
END # Wthin Stage (k)
END # For k

END # Wthin BottonSection
In trying to interpret the equation:
Q=UA* (T - TAnbient) ;

gPROM Swill need to identify (resolve) the symbols Q, UA, T and TAbi ent . It starts doing this by searching the
Model corresponding to the UNIT mentioned in the innermost WITHIN statement. In this case, thisisModel Tray
which does, indeed, contain Variables Qand T. However, symbols UA and TAnbi ent still remain unresolved.
Therefore, gPROM S considers the next enclosing WITHIN statement; this indicates that it should search Model
LinkedTrays (of which TopSection is an instance). However, this Model does not contain the missing identifiers.
So gPROMS now has to consider Model DistillationColumn itself — which does indeed alow it to resolve UA
and TAbi ent .

It is interesting to note that both the Di sti |l | ati onCol um and the Li nkedTr ays Models contain the
Parameter NoTr ays. However, this does not result in any ambiguity in resolving this Parameter when it appears
in each of thetwo FOR constructs: gPROM S aways tries to resolve symbols by searching the innermost WITHIN
first. Thus, NoTr ays in:

W THI N TopSecti on DO
FOR k : =1 TO NoTrays DO

END
END # wi t hin TopSection

clearly refersto TopSect i on. NoTr ays and not to Parameter NoTr ays inDi sti | | ati onCol um.

Expressions involving arrays of Units

Occasionaly, it will be necessary to write expressions involving of arrays of units and/or slices of arrays of units
(i.e. a subset of the elements of an array — see Referring to array elements). The rules governing expressions
involving arrays of units are similar to those governing array expressions involving only Variables. However,
there are some additional complications with arrays of units, so one should be familiar with the General rulesfor
array expressions and Using arrays in eguations before continuing.
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There are two situations to consider when writing expressions of arrays of units. The simplest caseis when slices
are specified for al dimensions of all arrays; the other is when at least one dimension of an array is unspecified
(eg.-A(2:3,)).

In the examples to come, the following conventions are used.
» Variable names always begin with the letter V; al other entities are Units.

» Whole arrays are aways indicated using parentheses and their dimensionality is indicated using commas to
delimit the indices. For example, atwo-dimensional array will bewrittenasV( , ) rather than V() or V, which
are equally valid in gPROMSS but could be confused with a one-dimensional array and a scalar respectively.

The first, and simplest, case to consider is when all dimensions of all arrays are specified (either by giving a
specific element or a dlice of elements). The expression below is an example of such an expression.

UA(1:2).UB.P(1:3).Vl + UC. UD(1:2).P(1:3).V2 = 3 :

Thiscaseis quite simple. It is clear that this expression should be expanded to give:

UA(1).UB.P(1).V1 + UC. UD(1).P(1).V2 = 3 ;
UA(1).UB.P(2).V1 + UC. UD(1).P(2).V2 = 3 ;
UA(1).UB.P(3).V1 + UC. UD(1).P(3).V2 = 3 ;
UA(1).UB.P(1).V1 + UC. UD(1).P(1).V2 = 3 ;
UA(2).UB.P(2).V1 + UC. UD(2).P(2).V2 = 3 ;
UA(2).UB.P(3).V1l + UC. UD(2).P(3).V2 = 3 ;

The rules governing expressions like these are the same as those for ordinary arrays. Each of the terms on the | eft-
hand side of the expression can be thought of as 2x3 arrays. The presence and location of any scalar elements
do not affect this behaviour: UB and UC are in different places in the paths but neither their location nor their
existence changes the dimensionality of the two terms. So the whole expression can be considered dimensionally
equivalent to:

VA(1:2,1:3) + VB(1:2,1:3) = 3 ;
and thisisalegal array expression, because VA and VB have exactly the same dimensions.

Even the dimensionality of thevariablesisunimportant to the validity of expressions of thistype. The next example
demonstrates this.

UA(3:3,1:2).UB. P(1:4).V1l + UC. P(1,5:6).V2(1:4) = 3

Now the dimensions of UA and UC. P areidentical (1x2) and the dimensions of UB. P areidentical to UC. P. V2,
so each term is equivalent to a 1x2x4 array and the expression is equivalent to:

VA(3:3,1:2,1:4) + VB(1,5:6,1:4) = 3

Sowhenal indicesof all arrays are specified completely, therulesareidentical to ordinary arrays: each term must
be ascalar or of the same dimensionality.

When it is necessary to refer to whole arrays, the situation becomes a little more complicated. Consider the first
example again, but now writing the expression for the whole range of array elements:

UA().UB.P().Vl + UC.UX).P().V2 = 3 :

At first glance, this might look the same. Certainly, the number of elements in UA() must be the same as the
number of elementsin UC. UD( ) . However, the dimensionality of P() is harder to define in a simple way: the
problemisthat P() may have different number of elementsfor each element of UA() . UB or UC. UD( ) . A more
relevant example of thisis given below.

COLUMN_A(, ). TRAY().V = COLUMN B(,). TRAY().V ;
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Here, we have two 2-dimensional arrays of distillation-column units, perhaps forming a separation network. There
is no guarantee that each column will have the same number of trays: in fact it is extremely unlikely. So it is not
possible to consider this expression, or the one before, as a simple array expression. What must be done instead
isto consider the dimensions in each term of the expression more carefully.

First, it is clear that COLUMN_A(, ) and COLUWN _B(,) must have the same dimensionality. Next, for each
element of COLUVMN_A(, ) and COLUWMN_B(, ), the number of trays must also be equal, so that the following
condition is met:

The dimensionality of COLUMN_A(i,j ). TRAY() must be equa to the dimensionality of
COLUWN B(i,j).TRAY() foralli andj .

This must be true for the whole path of each term in the expression (unlessthe term is scalar). We can now define
adimension tree for each term, which describes completely the dimensionality of the term.

The dimension trees for both terms in the example:
UA(3:3,1:2).UB.P(1:4).Vl + UC. P(1,5:6).V2(1:4) = 3
are:
« (1.2
. 4
. 4
If we were to write the expression as.
UA(,).UB.P().Vl + UC.P(,).V2() = 3
withUA(, ) andUC. P(, ) bothbeing 1x2 arrays; UA( 1, 1) . UB. P having 3 elements; UA( 1, 2) . UB. P having
4 elements; UC. P( 1, 1) . V2 having 4 elements and UC. P( 1, 2) . V2 having 3 elements, then the dimension
trees would be:
* (1L2)[UA(,)]
3
. 4
and:
* (1L2)[UC. P(,)]
. 4
3
Asthese two trees are not identical, the two terms will not be compatible and the expression will beillegal.

The general rulefor expressionsinvolving arrays of unitsistherefore an extension of therule for array Variables.
If we have an expression of the form:

Expressi on E = Expression F;

it will be valid provided is conforms to one of the following four cases:

Case E F Dimensiontreeof E=F
1 Scalar Scalar Scalar
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Case E F Dimensiontreeof E=F
2 Dimension tree Scalar SameasE
Scalar Dimension tree SameasF
Dimension tree Dimension tree SameasE and F

In case 4, the dimension trees of E and F must be identical. Either expression may comprise binary operations of
the form x 7 y, for which the following rules must al'so apply:

Case X y Dimensiontreeof x y
1 Scaar Scaar Scaar
2 Dimension tree Scaar Same as x
3 Scalar Dimension tree Same asy
4 Dimension tree Dimension tree Sameasxandy

Again, in case 4, the dimension trees of x and y must be identical.

Model specifications

It is usually recommended that the values of all unknown Model quantities are provided in Process entities (See
also: Defining Process Entities), where:

o Parameter values are fixed in the SET section

» Variables are specified in the ASSIGN section

Initial conditions are provided inthe INITIAL section

Theinitia values of Selectors are provided in the INITIALSELECTOR section

However, the same sections exist in Model entities. So it is equally possibly to provide a specification directly in
the Model that declares the quantity to be specified or any composite Model that includes the Model. See also:
gPROMS language for Models.

Care should be taken to remember that making a specification in aModel can greatly reduce the generality of such
aModel. In general aquantity may be given avalue at most once and it is not possible to overwrite a specification
given at alower level. However, giving a Parameter the exactly same value more than once does not cause an error.

Consider, for instance, the following situation:

* Model X declares a Parameter Sto be of type REAL.

* Model Y contains aunit XX which isan instance of X.

* Model Z containsaunit YY whichisaninstanceof Y.

* Process P contains a unit ZZ which is an instance of Z.

Then, the value of Parameter S can be explicitly set in of the following ways:
1 InX:

SET
S:=1.5;

2.InY:

SET
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XX.S := 1.5 ;
3. InZ:

SET
YY. XX.S := 1.5 ;

4. InP:

SET
ZZ.YY.XX.S := 1.5 ;

If a Parameter is explicitly SET in a Modél, it will have that value in all instances of that Model. For example,
if we use option 2 above, XX.Swill have avalue of 1.5in all subsequent instances of Model Y anywhere in the
problem. It is usually advisable that Parameters be explicitly set at the Process level. This practice maximises the
reusability of the underlying Models and minimises the probability of error.

Setting Parameter values in Composite
Models

Before any Model based activity is executed in gPROMS the values of all Parameters (even if not used) must be
resolved. A Parameter's value must have been determined in one of the following ways:

» Explicit Parameter specification: to Set a Parameter to either to aliteral value or to another Parameter value (or
even some expression involving the two)

» From topology connections : for Connection Type Parameters only

» From implicit Parameter Propagation in Composite Models: top down propagation from higher level Models
to lower level models

» From a Default specification: only if the Parameter is not given a value directly by any of the three previous
approaches

Any Parameter that does not have a value following the above four steps will result in an error that causes the
Model based activity to fail. Giving a Parameter the exactly same value more than once does not cause an error;
however, clearly, giving a Parameter different valuesis an error.

Setting Connection Type Parameters

The Parameters included in Connection Types can be set explicitly like regular Model Parameters. However, their
values are usually obtained from topology connections and Port Sets:

» Topology connections. when a connection between two Ports is made the equival ent Parametersin these Ports
are equated.

» Port sets: These are configured when the Ports for any component Model entity are configured (also see:
Defining Model Ports). For all Ports belonging to the same set (i.e. those in the same Port set): the equivalent
Connection Type Parameters are equated. This mechanism is often used by component Model developers to
equate the Parameters in an Outlet Port to those in an Inlet Port.

Thesetwo mechanisms (if Port setsareimplemented) mean that information corresponding to the propertiescarried
by the Connection are automatically propagated along the stream path. In the gPROMS Process Model Library
thisis used so that the Parameter corresponding to physical properties only needsto be set in the Source Model.

Itisof course possible within the component Model to access the Port Parameters and use them directly in Model
Equations declarations, or indeed, to Set Model Parameters equal to the Parameters declared by the Port definition.
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Example of Parameter Propagation with Port Sets

As an example of the use of Port Sets, consider the PML Flowsheet shown below.
Figure 8.2. Reactor Flowsheet

M..

Walve_gas

Sink_gas

P_controller

Source_gas E

Flow_gas

(o)

Level_contraller
Walve_liquid Sink_liquid
[
\°

T_controller

Source_liquid

Flowe_liguid Reactor

Each of the connector Modelsin this Flowsheet (pumps, reactor and valves) have common Port Sets linking their
inputs to their outputs. Thisis shown for the reactor Model below.

Figure 8.3. Reactor Port Sets

Select icon | Icon size when added ko topology diagrams: ILarge - l

Remave icon |

Edit specification. .. | o

Preview specification | K

L
Ports:
Fart Connection bype Dimensions Direction x i Port set
energy_input PrLControl {ControlPort) Inlet 0.013 0,837
inlet PrLMaterial (ModePort) no_inlets Inlet 0.0 Dmflow )]
level_measurement PrLControl {ControlPort) Outlet 1.0 0,337
out_liq PrLMaterial (ModePort) Outlet 0.5 1 .Fﬂow\
out_vap PrLMaterial (ModePort) Outlet 0.5 D.kﬂow}
.

pressure_measurement  |PMLControl (ControlPort) Outlet 1.0 0.115
temperature_measurement PMLControl (ControlPort) Outlet 1.0 0.5

This means that once the properties of the Source_gas Model instance are specified, they automatically propagate
along the direction of flow: i.e. to Fl ow_gas, React or, Val ve_gas, Si nk_gas, Val ve_I| i qui d and
Si nk_1i qui d. More specifically, because the properties of Sour ce_gas define the inlet properties of
Fl ow_gas and the inlet of FI ow_gas shares the same Port Set as its outlet (" f | ow"), the properties are
propagated along. Similarly, the inlet of the Reactor islinked to both of its outlets by the same Port Set.

Note, however, that the Parameters are not propagated backwards, so Source _liquid must be specified as well. Of
course, some of its properties cannot be specified independently and care must be taken to make surethat there are
no conflicts. If, for example, one wereto specify adifferent set of componentsfor Source liquid, gJPROM Swould
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report aconflict between the two sets of specifications propagated to theinlet of React or . Below are shown two
examples of inconsistent component specifications.

Figure 8.4. Inconsistent Parameter s propagated
through Port Sets: inconsistent components specified

El1 error(s) occurred constructing the system
Then performing Identity Elimination:
FOR j := 1 TO no_inlets LO
FOR i IN Components DO
Error in MODEL Reactor_drum kinetic at line 145 (506):
inlet(j).mass_fraction(i) = in mass_fraction(j, i) :
Name "HYDROGEN™ not found in enumerated domain. Walid wvalues are:
["NITROGEN" {1}, "PHENOL"{2}, "BENZENE"{3}, "CYCLOHEXANE"{[4}, "WATER"{5}, "N_HEXADECANE"{6}]
Performing Foreign Object termination: "IPPFO::mass:<HYDROGEN,PHENOL,EENZENE,CYCLOHEXANE ,WATER N HEXADECANE-"
Foreign Object termination completed successfully.
Performing Foreign Object termination: "IPPFO::mass:<NITROGEN,PHENOL,EENZENE,CYCLOHEXANE ,WATER N HEXADECANE-"
Foreign Object termination completed successfully.

Figure 8.5. Inconsistent Parameter s propagated
through Port Sets: extra component specified

El1 error(s) occurred constructing the system
Creating EQUATION in Plant.Reactor:
FOR j := 1 TO no_inlets LO
Error in MODEL Reactor_ drum kinetic at line 130 (4388):
inleti]).info_mass_fraction = mass_fraction ;
Incompatible dimensionalities: LH3: (7), BH3: (&)
Performing Foreign Object termination: "IPPFO::mass:<HYDROGEN,PHENOL,EENZENE,CYCLOHEXANE ,WATER N HEXADECANE-"
Foreign Object termination completed successfully.
Performing Foreign Object termination: "IPPFO::mass:<NITROGEN,HYDROGEN,PHENOL,BENZENE,CYCLOHEXANE , WATER,N HEXADECANE-"
Foreign Object termination completed successfully.

Implicit Parameter Propagation

As well as the propagation of Connection Type Parameters along stream paths the values of Model Parameters
can propagate from higher- to lower-level Models.

For example, aParameter that correspondsto the number of components (e.g. NoComp) may well be present inthe
higher-level Model of adistillation column and in all of its constituent Model instances. Ideally, we would like to
be ableto set the value of this Parameter at the highest level only and rely on an automatic mechanism to propagate
it through the hierarchy towards the lower levels. This not only saves effort in specifying the Model but also
reduces the possibility of errors arising due to inconsistent specifications, especially during Model development
(e.g. specifying NoComp=5 in some parts of the column and NoComp=4 in others).

If a Parameter appearing in an instance of a Model is not SET explicitly, gPROMS will automaticaly search
hierarchically the higher-level Models containing it for a Parameter of the same name and type which has been
given an explicit value. If thisis found, the Parameter in the lower-level Model will adopt the value assigned to
the Parameter with the same name in the higher-level Model.

Another way of looking at this is that an explicit SET specification for a Parameter in a higher-level Model X
propagates downwards and covers all Parameters of the same name and type in any lower-level Models, instances
of which are contained in X. This establishes an automatic Parameter propagation mechanism.

For instance, consider the hierarchy of Models X, Y and Z (which all contain a declaration of a Parameter
NoComp) : such that

* Model X .

* Model Y containsaunit XX which isan instance of X.
* Model Z containsaunit YY whichisaninstance of Y.
» Process P contains aunit ZZ which is an instance of Z.
We then have various possihilities:

1. Set Parameter in P;
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SET
ZZ.NoComp := 5 ;

Although nothing issaid explicitly about Parameters ZZ.Y'Y .NoComp and ZZ.Y'Y .X X.NoComp, the automatic
Parameter propagation will ensure that these also take the value of 5.
2. Set Parameter in P

SET
ZZ.NoComp := 5 ;

butasoinY:

SET
NoComp : = 3 ;

Thisisequivalent to:

ZZ. NoConp =5,
ZZ.YY. NoConp =3 ;
ZZ.YY. XX. NoComp : = 3 ;

Note that the value of the Parameter in Y'Y is set explicitly and automatically propagates downwards, setting
the value of the Parameter in XX. Therefore, when gPROMS automatically propagates the assignment in P,
it cannot override the existing value.

We also recall that the specification of discretisation methods for distribution domains is treated exactly as that
for Parameters - hence, it also undergoes automatic propagation. For instance, if:

SET
ZZ. Axial := [OCFEM 3, 10] ;

appearsinaProcess, all Model instanceswithin ZZ which declare an Axial domain will use the same discretisation
method - unless, of course, their Axial specification is explicitly SET to adifferent value.
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Y ou should be familiar with the use of Arrays before proceeding further.

gPROM S alowsthe use of Ordered Setsas array indices, in addition to simpleinteger indices. These substantially
increase the descriptive power of the modeling language because they allow the user to use strings to reference
array elements rather than integers. For example: instead of mole fractions being defined as x( 1) , x(2) and
X(3);x("H2"), x('CH4') and even x(' Et hane') can be used instead. The importance for ease and
correctness of model building should be evident. Ordered Sets can be used for

* Parameters

» Variables

+ Units

Each of these entities can be defined as Arrays or Distributions over Ordered Sets.
Developing modelsinvolving Ordered Sets requires the following:

* Declaring Ordered Sets

» Declaring Arrays of Parameters, Variables and Units using Ordered Sets

* Ordered Set operations and referencing rules

A set of examples and the gPROMS Project or der edset s. gPJ illustrate more complex use of Ordered Sets.

Declaring Ordered Sets

The Ordered Set isatype of Parameter and is therefore declared in the PARAMETER section of your gPROMS
Model.

They are declared as follows:

PARANVETER
Gases, Liquids, Species AS ORDERED SET

Aswith other Parameters, the values are defined in the set section. In the case of Ordered Sets, it isthe set elements
that must be defined.

SET
Gases =['"H2, 'CH4', 'Ethane'] ;
Liquids := ['Cctane', 'Decane'] ;
Species := Gases + Liquids ;

Note that the + operator is the set union operator in this case. More information on operators may be found here.

Each element of the Ordered Set is a user-defined string. Strings are delimeted by single quotes (as shown above)
or by double quotes (") and can contain any character apart from the same character used to delimit the string.
Also, each element of the Ordered Set must be unique: if any duplicate elements are defined, these are ignored
by gPROMS. The following example specification produces an Ordered Set containing just three elements: 1",
"2"and "3", in that order.

SET
Nunbers :=[ "1', '2', '3, '2'" 1 ;
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Some examples of legal and illegal element specifications are shown below:

SET
Legal =[ "1, '2"", "3'" 1 ; # all legal
Illegal :=[ "1, "2"" ] ; # all illegal
# \ \ this element is delimeted by " so the string
# \ may include any character apart from™
# \ this one is delimted by ' so it cannot contain '

Ordered Sets are aso compatible with physical-property interfaces. In this next example, the elements of the
Ordered Set are specified by a physical-property Foreign Object.

PARAVETER
Speci es AS ORDERED_SET
PhysProp AS FOREI GN_OBJECT " PhysProp”
NoConp  AS | NTEGER

SET
NoConp = PhysProp. Nunmber O Component s ;
Speci es = PhysProp. Component s ;

Declaring Arrays of Parameters, Variables
and Units

Each of these types of entity are declared in avery similar way to Arrays over integer domains. So for Parameters
the declarationis:

PARAMETER
For mul aWei ght AS ARRAY( Speci es) OF REAL

Aswith Arrays generally, multiple dimensions are possible. For example, if an Ordered Set React i ons had also
been defined, then the parameter Nu, representing stoi chiometric coefficients could be declared by:

PARAVETER
Nu AS ARRAY( Speci es, Reactions) OF | NTEGER

For Variables, the declaration is:

VARI ABLE
X AS ARRAY( Speci es) OF MassFraction

Referencing of Parameters and Variables defined in thisway (i.e. to specify themina SET or ASSIGN statement
or to refer to them in in Equations) is discussed here.

Similarly, Arrays of Units (Model instances) are declared by:

UNI'T
React ors AS ARRAY( React or Nanmes) OF Li qui dPhaseCSTR

And the properties of each element of the Unit may be specified by:
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SET
W THI N React or s(' LowTenpReactor') DO

END
# Etc.

Finaly, it is aso possible to declare Selector variables as Arrays of Ordered Sets. The syntax follows the above
rules and those for declaring Arrays of Selector variables over integer domains. enter the name of the Ordered Set
rather than an integer bound for the Array size.

Ordered Set Operations and Referencing
Rules

The following features may be used when developing aModel containing Ordered Sets:
» Set Operations

» Referencing Rules

* Built-in Functions

* Intrinsic Functions

Set Operations

The allowed set operations are:
 Union, defined by +
example:
Species := Gases + Liquids ;
* Intersection, defined by *
example:
Internediates := Gases * Liquids ;
» Set difference, defined by -
example:
NonCondensi bl es : = Gases — Liquids ;
For Union and Intersection, there are variants that takean arbitrary number of arguments:
« UNI ON()
examples:
Al | Coponents : = UNI ON(I nput Connecti ons() . Conponents);

(InputConnections() is an array of nl nputs Connections, each carrying an Ordered Set parameter
Conponent s.)

Slices can be used as well:
Conponents : = UN ON( I nput Connecti ons(2: nl nput s-1). Conmponents) ;
* | NTERSECTI O\()
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example:
ConmonConponents : = | NTERSECTI ON( | nput Connecti ons() . Conponent s) ;

Note that because the sets are ordered, the operations are non-commutative, i.e. Gases + Liquids <>
Li qui ds + Gases (the order of the species will be different in the two cases).

Also, standard arithmetic operator precedence applies to Ordered Set operations: that is, intersections are
performed before unions and differences. The order in which these operations are performed may, however, be
modified using parentheses.

Ordered Set Referencing Rules

In Parameter specifications, Equations and Assign statements, one may refer to individual elements, slices or the
whole Array, asin the case of integer domains. Of course, rather than using integersto refer to individual elements
or define slices, the names of the elements in the Ordered Sets are used. The two examples below illustrate the
specification of asingle element of a Parameter and an Assignment of adlice of aVariable.

SET
Formul aweight (" H2') := 2 ;

ASSI GN
Flowate('CH4' : ' C4H10') := 0.0 ;

In the second example above, the flowrates of al the Array elements in the Ordered Set from 'CH4' to 'C4H10'
will be set to 0.

In this next example, amaterial balance Equation is written (implicitly) for all Species:
$M = Fin*Xin — Fout*X ;
where M Xi n and X are Arrays over the domain 'Species.

Aswith Integer domains, FOR loops can be used instead of implicit declarations of Array Equations:

FOR i I N Species DO
$Mi) = Fin*Xin(i) - Fout*X(i) ;
END

Multiple domains are handled quite easily. The example below isamaterial balancefor all Specieswith generation
terms summed over the Reactions domain:

$M = Fin*Xin — Fout*Xout + SIGVA( (Nu(, Reactions)*Rat e(Reactions) )
(For clarity, this may also have been declared explicitly.)

M ore sophisticated expressionsinvol ving set operationsand slicesare al so possible; some examplesare given here.

Built-in Functions

The summation operator, SIGMA, is defined over the Ordered Set, e.g.

SI GVA( x(Species)) =1 ;

Theintegral operator, INTEGRAL, is aso defined over an Ordered Set, e.g.:
| NTEGRAL(s OVER QuadPoints ; x(s)*y(s)) = 100.0 ;

where QuadPoints is the Ordered Set.
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Slices and set operations within built-in functions are also allowed, e.g.:
SI GVA(x("' H20 : ' Et hane'))

| NTEGRAL(s OVER S1*S2 ; x(s)*y(s))

where S1 and S2 are Ordered Sets.

Ordered Set Intrinsic Functions

A number of intrinsic functions are defined for Ordered Set Parameters.
Thefirst element of an Ordered Set is returned as a string by:

O der edSet Par am Fi r st

The last element of an Ordered Set is returned as a string by:

O der edSet Par am Last

The Cardinality (i.e. the size) of an Ordered Set is returned as an integer by:
O der edSet Par am Car d

The ith Element of an Ordered Set isreturned as a string by:

Or der edSet Par am El enment (i)

(wherei = 1 isthefirst element) .

One area where this might be useful isin defining material balance equations for all but one of the speciesin the
model. One possibility is as follows.

EQUATI ON

FOR i I N Species - Species. Last

SMi) = Fin*Xin(i) - Fout*X(i)

END

SI GVA( X( Species)) =1 ;
Theindex of a specific element is returned as an integer by:
O der edSet Par am | ndex( El enent Nane)
A boolean value indicating whether or not an Ordered Set contains a specific element is returned by:
O der edSet Par am Cont ai ns( El enent Nane)
A subset over acertain range is returned by:

Or der edSet Par am Subset (m n) - a subset fromindex mto n inclusive
O der edSet Par am Subset (m) - a subset fromindex mto the last el enment inclusive

Theindex can be given as a string argument as well asintegers.

Examples of the Use of Ordered Sets

Here, we have a database of molecular weights from which we will copy someinto a smaller list of components:

PARAVETER
Reagent Speci es, ProcessSpeci es, All Speci es AS ORDERED_ SET

VARI ABLE
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MV AS ARRAY( Al | Speci es) OF Mol W
MAsub AS ARRAY( Reagent Speci es) OF Ml W
SET

Reagent Speci es
Pr ocessSpeci es
Al | Speci es

["HNG3', "H20, 'NaOH, 'tbp/ok'] ;
["HNG3', 'H20, 'Uranium] ;
Reagent Speci es + ProcessSpeci es ;

EQUATI ON
MA(" HNGB') = 1 + 14 + 3*16 ;
MA(' 2O ) = 2*1 + 16 ;
MA(* NaOH ) = 23 + 16 + 1 ;
MA(" tbp/ok') = 10*12 + 22 ; # approx
MAC" Urani um) = 238 ;

FOR i | N Reagent Speci es DO

MAsub(i) = MA(T)
END

(Notethat it would not belegal to shorten the names of the Ordered Setsto Reagent , Pr ocess and Al | because
Processis areserved word in gPROMS.)

Equations can be written that use streams with identical specieslists:

VARI ABLE
Massl n AS ARRAY( ProcessSpeci es) OF MassFl ow
Mas s Qut AS ARRAY( ProcessSpeci es) OF MassFl ow
Losses AS ARRAY( ProcessSpeci es) OF MassFl ow
SET

ProcessSpecies := ['HNG3', 'H20, 'Uranium] ;

EQUATI ON
FOR i I N ProcessSpeci es DO
MassQut (i) = Massln(i) - Losses(i) ;
END

The equation can aso be written as
MassQut = Massln - Losses;

Care needs to be taken when combining streams with different specieslists:

VARI ABLE
Massl nR AS ARRAY( Reagent Speci es) OF MassFl ow
Mass| nP AS ARRAY( ProcessSpeci es) OF MassFl ow
Mas s Qut AS ARRAY( Al | Speci es) OF MassFl ow
SET

Reagent Speci es :
Pr ocessSpeci es :
Al | Speci es

["HNGB', "H2O, 'NaOH, 'tbp/ok'] ;
["HNGB', '"H20, 'Uranium] ;
Reagent Speci es + ProcessSpeci es ;

EQUATI ON
#...for the species common to all streans
FOR i | N Reagent Speci es*ProcessSpeci es DO
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MassQut (i) = MasslInR(i) + MasslnP(i);

END

#...for the species only in the Reagent stream

FOR i I N Reagent Speci es - ProcessSpeci es DO
MassQut (i) = MasslInR(i);

END

#...for the species only in the Process stream

FOR i I N ProcessSpeci es - Reagent Speci es DO
MassQut (i) = MasslnP(i);

END

A mixer might mix streams with different speciesinto a single output. This therefore combines three specieslists
that may be digoint sets. Care needs to be taken in writing the material-balance equations:

VARI ABLE
Massl nR AS ARRAY( Reagents) OF MassFl ow
Massl nl AS ARRAY(I nerts) OF MassFl ow
Massl nS AS ARRAY( Sol i ds) OF MassFl ow
MassQut AS ARRAY( Al'l Speci es) OF MassFl ow
SET
Reagent Species := ['HNO3', 'H20 ] ;
I nerts = ['tbp/ok'] ;
Sol i ds = ["Uranium ] ;
Al | Speci es = Reagents + Ilnerts + Solids ;
EQUATI ON

FOR i I N Reagents DO
MassQut (i) = MassInR(i) ;

END

FORi IN Inerts DO
MassQut (i) = Masslinl (i) ;

END

FOR i IN Solids DO
MassQut (i) = MassInS(i) ;

END

Combining three species lists with common entries

VARI ABLE
Massl nR AS ARRAY( ProcessSpeci es) OF MassFl ow
Massl nl AS ARRAY( I nerts) OF MassFl ow
Massl| nS AS ARRAY( Sol i ds) OF MassFl ow
Mas s Qut AS ARRAY( Al | Speci es) OF MassFl ow
SET
ProcessSpecies := ['HNG3',' H2O , ' Uraniunm , 't bp/ ok'] ;
Inerts = ["tbp/ok', 'Unknown'] ;
Sol i ds = ['"Uranium, 'Unknown'] ;
Al | Speci es = ProcessSpecies + Inerts + Solids ;
EQUATI ON

#..for the conponents conmon to all streans
FOR i I N ProcessSpeci es*l nerts*Solids DO
MassQut (i) = MassInP(i) + Masslnl(i) + MasslInS(i) ;
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END

#..for the conponets in Process and Inert streans only

FOR i I N ProcessSpeci es*lnerts - ProcessSpeci es*lnerts*Solids DO
MassQut (i) = MasslnP(i) + Masslnl (i)

END

#..for the conponents in Process and Solids streans only

FOR i I N ProcessSpeci es*Solids - ProcessSpeci es*lnerts*Solids DO
MassQut (i) = MasslnP(i) + MasslnS(i)

END

#..for the conponents in the Solids and Inert streans only

FOR i IN Solids*lnerts - ProcessSpecies*lnerts*Solids DO
MassQut (i) = MassInS(i) + Masslnl (i)

END

#... and so on

Summation over a subset of an Ordered Set

VARI ABLE
Massl n AS ARRAY( Reagent Speci es) OF MassFl ow
Tot al ProcessFlow AS MassFl ow
SET

[ HNGB' ' NaOH , ' tbp/ok',  H2O] ;
[ HNGB' |, ' H20 | :

Reagent Speci es
Pr ocessSpeci es

EQUATI ON
Tot al ProcessFl ow = SI GVA( Massl n( ProcessSpeci es)) ;

Aswith other Arrays, we can have multiple dimensions. For example, a solid liquid separation process described
by arecovery factor (RF) might be modelled as:

VARI ABLE
I nFl ow AS ARRAY( Speci es, Phase) OF MassFl ow
Qut Fl ow  AS ARRAY( Speci es, Phase) OF MassFl ow

RF AS ARRAY( Speci es, Phase) OF MassFl ow
SET

Speci es = ['Cs134', 'Cs137', "'Sr90'] ;

Phase = ['Liquid, "Solid] ;
EQUATI ON

FOR i I N Species DO
QutFlow(i,"'Liquid') = InFlow(i,"'Liquid )*(1 - RF(i,"'Liquid))
+ InFlow(i,"Solid )*RF(i,"'Solid) ;
QutFlow(i, ' Solid') = InFlowi, " Solid )*(1 - RF(i,"Solid"))
+ InFlow(i,"Liquid )*RF(i,"'Liquid) ;
END

Ordered Sets in Model Specification Dialogs

Ordered Sets can be specified in Model specification dialogs just as any other Parameter. The elements of the
Ordered Set can be entered by the user and these will then affect the input tables of any Parameters or Variables
that depend on the Ordered Set. In the example below, we have model of areactor with an Ordered Set of reactions
and stoichiometric parameters that are indexed over the set of reactions and components.
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Figure 9.1. Reaction Data Tables L abelled with Elements from Ordered Sets

W Reactor {(Reactor_drum_kinetic) ﬂ

Specification mode

Heat input IControlled LI
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The elements of the Ordered Set of reactions (labelled Reaction names) can be specified using gPROM S language,
as shown above, or by editing each element individually in amatrix. In order to do this, left click on the £l button
next to the text box. In the image below, another reaction has been entered in this fashion. Notice that the tables
for the stoichiometric parameters are automatically updated once the new reaction has been entered (or an existing
one deleted — simply by editing the entry and deleting it).
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Figure 9.2. Entering a New Reaction: the Data Tables are Automatically Updated

QReactor {Reactor_drum_kinetic) ﬂ
Specification mode IStandard LI
Heat input IControlled LI

Initial conditions specifications IDynamic: T, P and all but one 1M LI

| v

Specify

[¥ Reaction phase

[¥ Reaction names

[¥  Reaction stoichiometry (" Uniform For entire array (% Per element
cormponents
HYDROGEMN PHEMOL BEMZEME CHCLOHEX, .. WATER M_HE®ADE. ..
E dehydn [-1 -1 1 0 1 0 «| —
T |reduxn |-3 0 -1 1 0 0
£ | anather
B
= Ad
A 0
[¥ Reaction order (" Uniform For entire array (% Per element
cormponents
HYDROGEMN PHEMOL BEMZEME CHCLOHEX, .. WATER M_HE®ADE. ..
8 | detredn [0 1 0 0 0 0 «|
Elerhioen In 1 n n n n LI

] Configuration Reaction data | Initial Conditionsl

OF | Cancel | Reset All | Help |

It is also apparent from the above figures, that the components are also represented by an Ordered Set. This can
be specified in exactly the same way, but in this example, it is given by a physical property Foreign Object. Just
as when changing, adding or removing an element of the reactions Ordered Set, the data-entry tables for any
Parameters or Variablesthat areindexed over the set of components will automatically change. The figure below
shows the format for entering component data using the Ideal Physical Property Foreign Object (see the Physical
Properies Guide): the Ordered Set of componentsis automatically updated by the physical-propery Foreign Object
whenever the specification is changed, and this then updates the table of mass fractions below and the reaction-
data tables in the figure above.

Figure 9.3. Ordered Set being defined by a Physical Property Foreign Object

QSource_gas {Source) ﬂ
Specification mode IStandard - l

Property calculation Gas -

Composition specification IMass basis - l

Specify

[  Physical properties IIPPFO: imass: <HYDROGEM, PHEN!

[ Pressure I 71ES Fa
[¥  Temperature I 298,16 K

[  Mass fraction (" Uniform for entire array (% Per element  kgfkg

HYDROGEN 1 «|

PHEMOL 0

BEMZEME 0

CHCLOHEXAME [0
0
0

components

WATER
M_HEXADECANE

=]

OF I Cancel Reset All | Help |
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Chapter 10. Defining a Public Model
Interface

Providing aModel with aPublic Interface allowsit to be used quickly and easily on the topology tab of flowshest
Models.

I=EY
Select icon Icon size when added ko topology diagrams: -
Remave icon |
Edit specification. .. |
Preview specification |

Ports:

Port Conneckion type Dimensions Direction £ i Port set
inlet PrLMaterial {Con... Inlet 0.0 0.5 |Flow
outlet PrLMaterial {Con... Outlet 1.0 0.5 |Flow

e =

I Interface | Topologyl gPROMS Ianguagel Propertiesl

The Mode Interface has four key facets:

» A Modé icon which determines how the Model is displayed on the topology tab of flowsheet Models.
* Model Portsto alow connections to other component Models.

» A Specifications dialog to enable easy specification of Model inputs and initial conditions.

* A Modd report to present key resultsin a clear format following a Smulation activity.

Defining a Model icon

The Model icon determines how an instance of the Model is displayed on the topology tab of a flowsheet Model.
It is possible to associate any icon of your choice with a particular Model. To do so, you need to do the following:

» On the interface tab the Model entity click on the Select icon button (see figure (a) below). This will open a
dialog box that allows you to browse and select your desired image.

» Use the browser to select your image file and press the OK button (see figure (b) below).
* ModelBuilder supports the following image formats: .svg, .gif, .jpg (or .jpeg) and .png.

* You have the option of selecting a default size for the icon size (see figure (c) below).
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Figure 10.1. Defining an icon - (a) the Select icon button on the interface tab

ODEL Reactor_tubular (PML Reaction)

Select icon [!
Remave icon |

Edit specification. .. |
Preview specification |

Icon size when added ko topology diagrams:

Ports:

Port Conneckion type Dimensions Direction i Port set
inlet PrLMaterial {Con... Inlet 0.0 0.5 |Flow
outlet PrLMaterial {Con... Outlet 1.0 0.5 |Flow

e =

I Interface | Topologyl gPROMS Ianguagel Propertiesl

Figure 10.2. Defining an icon - (b) selecting the desired imagefile

JMODEL Reactor_tubular {PML Reaction}

=10l

Select icon | Icon size when added ko topology diagrams: ILarge - l

x
Laok in: IE] examples LI e =

IC5) General capabilities

IC5) PML flowshests
IC5) PML w31 flowshests

IC5) 90 Product examples

File name: I

Select: |

Files of type: IImage file (*.5vg, *.bmp, *.gif, *.jpeg, *.jpa, *.png, *.wh... LI Cancel |

ODEL Reactor_tubular (PML Reaction)

=10l

Select icon |
Remave icon |
Edit specification. .. |
Preview specification |

Icon size when added to topology diagrams:  |Large - l

Def ault

Ports:

Port Conneckion type Dimensions

outlet PrLMaterial {Con...

add.. | Ede

a0 | Delete

I Interface | Topologyl gPROMS Ianguagel Propertiesl
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Defining Model Ports

Topology connections to and from a Unit are made from its Ports. These are configured from the Port table in
the lower pane of the Interface tab:

Figure 10.4. The Port table

I=EY
Select icon | Icon size when added ko topology diagrams: -
Remave icon |
Edit specification. .. |
Preview specification |

x i Port set
0.0 0.5

1.0 0.5 Flow

Add... D\sj Edt.. |  Dekte |

I Interface | Topologyl gPROMS Ianguagel Propertiesl

The Port table shows the following information:
* Port name: the name by which the Port will be referenced in the gPROM S language.

» Connection Type: the Connection Type which the Port is associated with (see a so: Declaring new Connection
Types). Only topology connections of this type can be connected to this Port.

» Dimensions: the dimensionality of the Port — both scalar and Array Ports are supported.
 Array Ports of Fixed size(s) and of Dynamic size are supported. For dynamically-sized Ports, the size of the

Array is specified by the number of connections made to that Port. If no connections are made, the size of
the Array will be set to zero, the benefits of which are discussed here.

Direction: The Port direction — Inlet, Outlet or Bi-directional. gPROMS enforces the following rules

Inlet Outlet Bi-directional
Inlet Disallowed Allowed Allowed
Outlet Allowed Disallowed Allowed
Bi-directional Allowed Allowed Allowed

* X & Y co-ordinates: the location of the Port on the Model's icon.

* Port set: The set to which the Port belongs.

 For al Ports belonging to the same set (i.e. those in the same Port set): the equivalent Connection Type
Parameters will be equated. For example; in a device with two flow paths such as a heat exchanger, with a
hot stream and a cold stream, the hot inlet and outlet Ports would bein a hot set and the cold inlet and outlet
Ports would be in a cold set. (see also: Setting Connection Type Parameters).

» Portsin the same set are indicated graphically on the Model's icon by a dotted connectivity line; indicating
(material or information) flow paths.

From the interface tab, click on the Add button to Create a new Port.
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When you declare a Port in aModel, it is associated with a Connection Type. All the quantities declared by the
Connection Type (Variables, Parameters and Distribution Domains) are automatically included in the Model that
declares the Port. So an equivalent number of Equations should be provided in the Model entity to make use of
the additional Variables. Thisis done in the gPROM S language declaration for the Model.

Create a new Port

Click on the Add button to define anew Port, or click the Edit button to modify an existing Port. Thiswill activate
a Create Port (or Edit Port) dialog box:

Figure 10.5. Creating a new Port

x|
Part name IExampIe
Conneckion type LI
PrLContral
Port category T —
Direction IInIet LI
Dimensionality IScaIar LI
Size of dimensionis) I <nfaz
Part set I LI
0 A connection bype is required
0] 4 I Cancel

* Port name: enter the name of the Port
» Connection type: choose the Connection Type from adrop down menu or manually enter the name.

* Port category: if the Connection Type enforces connectivity rules a Port category must be provided; select this
from the drop-down menu.

* The category of a Port determines which other Ports a connection may be made to (see aso: The Port
categories tab and Connectivity rules).

 Direction: choose an Inlet, Outlet or a Bi-directional Port.
» Dimensionality: you can select a Scalar Port, an Array Port of Fixed size(s) or an Array Port of Dynamic size.
« If you select Scalar, then no further specification is required.

 If an Array Port of Fixed size(s) is selected, then under Size of dimension(s) enter the size(s) aseither aliteral
value (e.g. 7) or using an Integer Parameter whose value is provided el sewhere.

 If an Array Port of Dynamic size is selected, then select an Integer Parameter from the Model declarations.
This Parameter will be set automatically to avalue equal to the number of connections made to the Port.

* If there are no connections made to the port, the Parameter will be set to zero. Thiswill result in an Array
of zero length, the benefits of which are discussed here.

* Port set: you can add a name for a new set or select a name of an existing set (see also: Port set and Setting
Connection Type Parameters).

Thelocations of Portson the Model icon are specified directly on the Interface tab. Thelocation of aPort is stored
in terms of an X co-ordinate and a'Y co-ordinate [0 to 1], with (0,0) being in the top left corner of theicon. To
determine the location of the Port:
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« Either (i) move the Port to the appropriate place on the icon by dragging it using the mouse;

« or (ii) enter aco-ordinate: to do this simply click on the relevant cell and type in the number.

Ports and the g°PROMS Language

All Ports defined using the Interface tab, are reflected on the Model's gPROMS Language tab with the following
syntax:

PORT
Port Nanme AS ConnectionType
Port Nanme AS ARRAY (Size <,>) OF ConnectionType.

Port sets are also reflected on the Model's gPROMS Language tab with the following syntax (though in read-
only text):

PORTSET
[PortNane, ..., PortNane] {PortsetNane} ;

An example of Ports and Port sets for the Reactor_tubular Model from the gPROMS Process Model Library is
shown below

PORT
in AS PM_Mat eri al
out AS PM_Mat eri al
PORTSET

# Start Port Sets

[in, out] {flow ;
# End Port Sets

All the quantities declared for this Connection Type (Variables, Parameters and Distribution Domains) are
automatically included in the Model. As with the development of composite Models, these are referenced using
a pathname construct:

Therefore, to equate the Connection Type Parameters carried by the inlet Port to equivalent Model Parameters;
one could write:

SET
no_conponents : = in.no_conponents,
phys_prop = in. phys_prop;

Similarly, the Connection Type Variables are used directly in Model Equations (you may note from this that the
Reactor_tubular Model is a distributed Model):

EQUATI ON
# Using Port Variables in a Mddel as Boundary conditions for a distributed nodel
mass_fl owr at e(0) i n.mass_fl ow at e/ nunber _of tubes ;
mass_fraction(, 0) in.mass_fraction = in.info_mass _fraction ;
mass_speci fi c_ent hal py(0) in.mass_specific_enthal py = in.info_nass_specific_entha
pressure(0) in.info_pressure ;

mass_fl owr at e(1)
mass_fraction(, 1)

out . mass_fl owr at e/ nunber _of tubes ;
out.mass _fraction ;
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mass_speci fi c_ent hal py(1) = out. mass_specific_enthal py ;

Defining a Specification dialog and Model
Reports

A Moded is defined both by its Equations and the specifications that must be provided to satisfy its degrees of
freedom. In gPROMSS, the required set of specifications and theinitial conditions for a Model can be stored with
that Model. These are then accessed via its Specification dialog, as shown below.

x|

Initial Conditions |eEyElT

Specify
¥ Mumber of tubes I !
¥  Tube length I 1 m
[ Mumber of discretisation points I i
¥ Tube inner diameter I 0} m
¥ Tube outer diametsr I 015 m

(" Uniform For entire array (% Per element

Flow coefficient

=l

ol

HH

| Configuration | Heat transfer data | Reaction data | Initial Conditions |

OF I Cancel | Reset All | Help |

The Specification dialog makes it easy to share the Model with other users and makes it faster and easier to re-
use the Model:

» Specification dialogs are accessed from a flowsheet Model's topology tab. (see also: Constructing flowsheet
Models).

 Specification dialogs allow:
» Parameters to be Set values,
* Variablesto be Assigned values,
* Selectorsto be giveninitia values,
 and Initial conditions to be defined.

 The specifications made using Specification dialogs in aflowsheet Model are displayed as read-only text in the
Process entity that includes the flowsheet Model.

* Inthe associated Process entity the user has the option to include unit dialog specifications or not. This option
is accessed

« either from the Entity menu when the Process entity is selected
« or from the short-cut menu accessed by right-clicking on the appropriate Process entity.

When removing dialog specifications; the existing specifications can be left for manual modification or
removed completely.

Specification dialogs are configured from aModel'sinterface tab by clicking the Edit specification ... button. This
will also give you the opportunity to define aModel report. Model reports are used to present key resultsin aclear
format following a Smulation activity (see also: Viewing Model reports).
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After clicking the Edit specification ... button you are guided through the following five steps:

Public Model Attributes
Definetabsin Dialog
Configure Specification Dialog
Define Model Help

Configure report

To move between the steps use the Next and Previous buttons; when the Specification is complete click the Finish
button. At any point it is possible to Preview the specification dialog and the Model reports using the Preview
specification and Preview report buttons:

Defining Public Model Attributes

Sepl

The first step is to specify from the full set of Parameters, Variables and Selectors declared by the Model (the
Model symbols) a sub-set which shall be exported as Public Model Attributes (PMA). These are essentialy those
that will either appear on a Specification dialog or appear on a Model report.

When compared against other Model symbols, Public Model Attributes have the following additional information

Name: A display namefor the PMA not necessarily the same asits 1D (i.e. how it isreferred to in the gPROMS
language)

Default : The default value for the PMA when it appears on the Specification dialog
L ower and Upper bounds: These are used to guide the Model user to provide sensible valuesfor the specification

* Itisstill possible for a user to provide a value outside these bounds but the value enter will be highlighted
with awarning message

» For Variablesit is anticipated that these bounds would be much tighter than those provided by its Variable
Type which are usually relatively loose.

Units: The engineering units are displayed wherever the PMA appears on the Model's Specification dialog and
report

Field width and Field alignment: The size and alignment of the space provided to give the PMAs value.

Description: In the description, additional information about the PMA can be given; this is displayed to the
Model user as atool-tip when the mouse hovers over the PMA on the Specifications dialog.
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Figure 10.6. Public Moddl Attributes page

3 public Model Interface Builder x|

Overview Public Model Attributes

1. Public Model Attributes Specify which MODEL attributes (parameters, variables, selectors and Initialisation Procedure) should be exported

2. Define tabs in dialog as Public Model Attributes.

3. Configure specification dialog (n/a)

4. Define model help ~Model symbols ~Public Model Attributes
~{W|[1  reb_mole_fraction ;

5. Configure report Smis reb_press_ure :I D Default |Lowe...| Up...|Units

6. Custom graphics -l reb:temperature bubble_pn 1 N
V| reb vap_enthalpy energy_input 0 -100.0 |1.0... k3/hr
-V| [~ reboiler_flowrate feed_location
V]I scaling_override_var INITIALISATION_PROCEDURE | DEFAULT ||
V| side liq_molar_flowrate lig_molar_flowrate 0.0 1.0E7|km...
V= side_vaT) molar flowrate lig_mole_fraction 0.5 -0.1 1.1 |km...
V= temaerat_ure - liquid_volume_fraction_init 0.1 0.0 1.0
IV|I™ thermo_check molar_fraction_scale 1
V]I total_malor_fowrate no_stages o | [ I+
-\V|I” vap_enthalpy :
-V vap_fraction PMA settings
AV lar_flowrat
V] II; ::3_mler?racv:§ne Name |Initia|isati0n Procedure 1=
~|5] " Energybalance_type Field width I 8=] Field alignment ILeft Vl
-S| init_override i
-S| Massbalance_type Description
% E :;?ahrnn%)mgl:l:?jaﬁon Initialisation Procedure

= |

IEBINITIALISATION _PROCEDURE Jlih E
‘ | hd|

Preview specification | Preview reports | 4 Previous Next ¥ Finish Cancel |

To define the Public Model Attributes:

» Select the Public Model Attributes from the Model symbols pane. Do this by clicking on the check box to select
the desired Model attribute; all the checked symbols will appear in the Public Model Attributes table.

» Thedefault value, the lower bound, the upper bound and the units for the PMA are entered directly in the PMA
table.

« Note that the bounds and units are only meaningful if the attribute is a Parameter or a Variable. The bounds
for PMA Variables areinitially taken from their Variable Types but it is highly recommended that these are
refined to bounds that prevent the Model being used in operating regions for which it is not valid.

» The PMA's name, description and the width of its value field and the alignment for thisfield are specified in a
separate pane and are accessed by selecting the PMA in the PMA table.

As can be seen in theimage above, Initialisation Procedures can be included in a Public Model Interface. A name
and description can be given for the Initialisation Procedure and the default value must be set to DEFAULT. At
present, the Model user will only have the option of selecting whether or not Initialisation Procedures are used; if
they are to be used, they must be the default Initialisation Procedure. Non-default Initialisation Procedures must
be specified using the gPROM S language tab of the Process.

Specifications dialog tabs

Sep 2

The Specification dialog can have any number of tabs (including zero); these can be given appropriate names.
Tabsaretypically used to group similar PM Astogether and, equally, to separate dissimilar quantities. For example,

it is common to put Variable Assignments on one tab, Configuration, and Initial condition specifications on
another, Initial conditions.
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Figure 10.7. Defining the tabs for the Specification dialog

{3 Public Model Interface Builder =
Overview Define tabs in dialog
1. Public Model Attributes Specify the tabs to be shown in the unit specification dialog,

2. Define tabs in dialog
3. Configure specification dialog

4, Define madel help Configuration I
5. Configure repart Heat transfer data A
) Reaction data
6, Custom graphics -2 "
Initial Conditions e |

i Preview specification Preview reports 4 Brevious et b Finish Cancel

To define atab:
» Typethetab namein the field on the righ-hand-side and click Add

« If multiple tabs are present these can be ordered using the up and down arrow buttons

Configure specification dialog
Sep 3

Model specifications are given in terms of the Public Model Attributes (PMAS); these are accessed by the Model
user from the Specification dialog. Following the identification of the PMAs in Sep 1, the following additional
information must be provided to configure the behaviour of the dialog:

 which of the PMAs should appear on the dialog
» on which dialog tab the PMAs should appear
« thetype of specification required for the PMA
» Obligatory - the Model user must provide this specification

e Optional (on) - the Model user can provide this specification; the default is that the specification should be
given

¢ Optional (off) - the Model user can provide this specification; the default is that the specification is not given

Furthermore, whilst Parameter PM A specificationswill automatically appear inthe SET section and Selector PMA
specifications will automatically appear in the INITIALSELECTOR section, we must specify whether aVariable
PMA corresponds to an Initial condition equation (INITIAL section), a Model input (ASSIGN section) or even
aPreset value (PRESET section).

Initial conditions
Two types of initial condition specification are possible using a Specification dialog:
» Dynamic: these are of the form:
PMA_Vari abl e = val ue;
 Steady-state: the equations for steady-state Initial conditions must be provided by the Model devel oper

Both specifications types can be enabled for a Specifications dialog and, if so, these should be separated into
different specification groups. If the steady-state group is selected then the Model user need not give any further
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specification regarding the Initial conditions. On the other hand, if the dynamic group is selected then the Initial
values of the PMA Variables must be provided in the Specification dialog

Figure 10.8. Configuring the specification dialog
x|

Overview Configure specification dialog

1. Public Model Attributes Specifies which Public Model Attribukes should be included in & unit specification dialog, and how they should be presented,
2, Define tabs in dialog

3. Configure specification dialog

4, Define madel help -Fields in dislog
5, Configure report Included PIa Section Tab Required i | E |
6. Custom graphics o rurnber_of _tubes  |assign Configuration Cptional {on) -
= tube_length assign Configuration Optional {on)
= nio_grids sek Configuration Obligatory
= inner_tube_diam. .. |assign Configuration Optional {on)
= outer_tube_diam. .. [assign Configuration Optional {on)
= Flows_coefficient assign Configuration Optional {on)
= HTC _coefficient initialselectar Heat transfer data |Optional {on)
= design_heat_tra... |assign Heat transfer data |Optional {on)
= design_mass_flo... |assign Heat transfer data |Optional {on)
= external_heat_in... [assign Heat transfer data |Optional {on) LI
[l L T I ———— LTy T P

[ Include steady-state initial conditions

[™ Separate dymamic and steady-state initial conditions into groups

~gPROMS language for steady-state initialisation

i Preview specification Preview reports | 4 Brevious | et b | Finish | Cancel |

To specify which of the Public Model Attributes (PMAS) should be included in the Specification dialog and the
appearance of the Specification dialog:

» Select the PMAsthat you wish to include in the Specifications dialog by checking the box next to the PMAL

« If you have selected aPMA Variable: choose the section of the Process entity that the PMA will appear in when
given avalue: ASSIGN, INITIAL or PRESET.

« If multiple tabs have been selected:- specify which tab of the Specification dialog the PMA should appear on
» Choose the type of specification required for the PMA - Obligatory; Optional (on) or Optional (off).
* |If steady-state initial conditions are required -

« check the Include steady-state initial conditions box

« if dynamicinitial conditions have also been provided (i.e. PMA Variableswith INITIAL asthe section) then
also check the Separate dynamic and steady-state initial conditionsinto groups box

« If the Include steady-state initial conditions box is checked: the gPROMS language for the steady-state initial
conditions for thisModel must be entered in the space provided. For example, the steady-state initial conditions
for adistributed tubular reactor (where volume_specific_internal_energy and mass_conc arethe state Variabl es)
can be written:

FORz := 0]+ TO1 DO

LY ou may have chosen some PMAs because they are useful output variables.
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$vol une_specific_internal _energy(z) = 0;

FORi := 1 TO no_components DO
$mass_conc(i,z) = 0;
END # For
END # For

For Initialisation Procedures, the type of specification must be set to Optional (on). An example of Initialisation
Procedure specification in a Model specification dialog is shown below. (To activate the Model specification
dialog, double click on the Unit.)

Figure 10.9. Modd Specification Dialog including I nitialisation Procedure

} Condenser

R2 MeOH_Distillate

il

Initial guess mode ILiquid Volume FractionLI
Physical property source IFeed LI
Specify

¥ Flash calculation IExternaI Vl
¥ Initialisation Procedure IDEFAULT Vl

[¥ 1nitial liquid volume fraction I 0.1

Feed

& Uniform for entire array ¢ Per element

[ mole fraction scaling I—
1

] Mainl Side operations Numericsl
OK I Cancel Reset All

Bottom_product

Reboiler

The Model user is able to check or uncheck the Initialisation Procedure in order to enable or disable it. However,
the combobox to the right contains only DEFAULT and cannot be changed, since the choice of Initiaisation
Procedure cannot be made in aModel specification dialog at present.

Defining Model help
Sep 4

A Help button can be added to the public Model interface. Help can be provided in two different ways or disabled
according to the selection made using the listbox in step 4 of the Public Model Interface Builder dialog:

{3 Public Model Interface Builder

Overview Define model help

1, Public Model Attributes Provide brief guidance for users of the model,
2, Define tabs in dialog

3. Configure specification dialog
4, Define model help The help button: | Is hidden LI
5. Configure report Is hidden

6, Custom graphics Opens a help window
Launches an external document
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When Opens a help window is selected, the dialog changes to include a text box and a preview pane. The help
page must be defined using XHTML and can include links to external web pages and documents, as shown below.

{3 Public Model Interface Builder

Overview Define model help

1. Public Model Attributes Provide brief guidance for users of the model,

2, Define tabs in dialog

3. Configure specification dialog

4, Define model help The help button: I Opens a help window LI

. Configure report Help text: (Basic HTML-4 is supported, Links will open in an external browser .,

6, Custom graphics
Refer to <a href="§(Installlir)/doc/PHL/PHML Basics.pdf">PHL Basics<al>
documentation.
<br/>

More information asbout gPROMI and other products and services is available
at <a href="http://wuw.psenterprise.com’ ">Proceas 3ystems Enterprise</as.

Previgw: Insert macro *

Refer to PML Basics documentation,
More information about gPROMS and other products and services is available at Process Systems Enterprise,

Preview specification | Preview reports | 4 Previous | Mexk b | Finish | Cancel

The preview pane is updated in real time, asthe XHTML is edited above. Any links in the help page are active
in the preview pane and can be followed by left clicking on them. Links to external web sites will open a new
browser window or tab (depending on your browser settings); linksto files will launch the appropriate reader.

When providing links to documents, the | nsert macro button provides a quick way to refer to common directories:

Insert macro * |

$(ProjectDir) - The directory containing the gPROMS Project
£ ${InstallDir) - The gPROMS installation directary (GPROMSHOME)

${Libraries) - The libraries directory
I

When typing in the path to an external document, selecting one of the options from the list box above will result
in the macro being inserted into the text. See the previous screen shot for an example.

The simplest way to provide Model help is to link directly to an external document. This is done by selecting
Launches an external document from the Help button: list box. The Public Model Interface Builder dialog will
then change to:

x
Overview Define model help
1, Public Model Attributes Provide brief guidance for users of the model,
2, Define tabs in dialog
3. Configure specification dialog
4, Define model help The help button:
5. Configure report
6. Custom graphics LRL: I Insert macro * Browse for file...
|

There are two ways to specify the location of the external document:

» Typethelocation into the URL: text box
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» The Insert macro button can be used as before
* Locate the document using the Browse for file... button

When using the file browser, navigate to the desired document and press Select:

¥ Select the external help document... =
Lookin: [ PL 2 [ =

L gPROMS PML Orverview . pdf
Bl ML Basics. pdf
","_.. PML Control. pdf

","_.. PML Flow Transportation,pdf
","_.. PML Heat Exchange., pdf

","_.. PML Reaction,pdf

","_.. PML Separation.pdf

File name: IPML Basics,pdf Select

Files of bype: I,q|| Files LI Cancel |

If the document is contained in the same directory as the project file (or is contained in one of its sub directories),
then another dialog will appear. This allows you to choose whether to specify the location of the document as an
absolute path or arelative one.

Select external document =

9 | Store the path relative to the Project directory?
-

Selecting Selecting Mo’ will store an absolute path, which will stop working if
the project's directory is moved,

If documentation is always kept in the same location, then select an absolute path: thisway, the project file can be
moved to a different location without breaking the link. This would be useful if, for example, a Model developer
released a project file to anumber of different users but wanted to keep one copy of the documentationin asingle
public directory. If the documentation is to be kept in the same folder as the project file (or one of its subfolders),
then select arelative path so that the project folder can be moved to a different location without breaking the link.

Defining custom reports
Sage5

Model reports are used to present key resultsin a clear format following a Smulation activity (see also: Viewing
Model reports).

There are three ways to configure the reports for aModel. These are:
* None— no report for the Model will be generated.
» Basic— abasic tabular report for the Model will be generated automatically using a simple configuration tool.

e Advanced — the user can fully specify the format of the report, including tables and plots, using xml. This
method gives the most control over the reports but is the most complicated to use.

To select the method for specifying reports, left click on the drop-down menu and select the desired option.
Selecting Basic enables a GUI in the bottom pane of the window, where you can select the Variables that should
be included in the report. Selecting Advanced enables a text editor in the bottom pane, where you may enter xml
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to define the report. There may aready be some xml present if you have already defined a report using the Basic
method.

Once you have finished, press the Finish button at the bottom of the window.

Basic Report Configuration

The basic tool for configuring model reports enables you to select variables for inclusion in the report in tabular
form only. Check the boxes of all the variables you wish to appear in the report and then click Finish to complete

the configuration.

If you want to include any plotsin the report, then you must select Advanced from the drop-down menu.

Figure 10.10. Example M odel Report configuration
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Advanced Report Configuration

Advanced report configurationisachieved using xml. In additionto standard HTML tags, so that headings, images2
and hyperlinks to external documents and URLs may be included to enhance the report, there are three custom
tags that define five types of Model report. These are:

» Simple Tags — to present basic model attributes.

» Tables— to present tabulated data.

» 2D Plots— to present Variable data graphically as afunction of one of the independent domains.

* Xx-y Plots— to plot values of one Variable as a function of another Variable. (Thisis a special case of the 2D
Plot, so read about 2D Plotsfirst.)

» 3D Plots— to display a surface plot of one Variable as a function of 2 independent domains.

Contour Plots — to display a contour plot of one Variable as a function of 2 independent domains.

2The following image formats are supported in Model reports: .gif, .jpg (and .jpeg) and .png. They can be inserted into model reports using
the standard <img src=""/> tag, e.g.:

<img src="file:///c:/templtest.gif"/> <img src="http://www.psenterprise.com/css/psebutton.png"/>.
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As with the Basic configuration utility, once you have finished editing the xml, simply press the Finish button
at the bottom of the window.

Notethat a<br / > tag isrequired between any of the entities above in order to ensure they are correctly displayed
vertically on the page. To place entities side-by-side, use atable:

<t abl e>
<tr>
<td><Plot3D ...></td>
<td><Plot3D ...></td>
</[tr>
</tabl e>

Simple Tags
The following simple tags may be used when developing Model Reports.

e <PMA UNI T> displaysthe unit name.

« <PMA NAME id="...">displaysthe PMA name of the PMA specified by thei d attribute.

« <PMA UOM id="...">displaysthe units of measurement for the PMA specified by thei d attribute.
« <PMA VALUE id="...">displaysthevaue(s) of the PMA specified by thei d attribute.

Tables

Tables can be included in a Model report using two xml tags. The first, <PMA_TABLE>, creates the table; the
second, <At t ri but e/ >, specifiesavariable for inclusion in the table. There may be multiple<At t r i but e/

> tags within a<PMA_TABLE> tag to form atable containing as many variables as desired. An exampleis given
below.

<PMA_TABLE>
<Attribute id="a_ Variable"/>
</ PMA_TABLE>

The xml above creates a table within the report that displays the values associated with the Variable called
a_Vari abl e. If the Variable specified in the i d attribute is distributed over any number of domains, then all
of the values will be tabulated automatically.

Toinclude morethan onevariable, simply add further <At t r i but e/ > tagswithinthe<PMA TABLE> construct.

The number format for each variable can be set by specifying the nunber For mat attribute of the
<Attri bute/>tag:

<PMA_TABLE>
<Attribute id="a_Variable" numberFor mat="% pS"/>
</ PMA_TABLE>

where p (the precision) is an integer from 0 to 9 and S (the specifier) is one of "G", "f" and "E", respectively
representing the General, Fixed and Scientific number formats. If the general format is chosen, then pis restricted
to integers from 1 to 6 and represents the number of significant figures; the fixed number format allows integers
from O to 9, which represent the number of decimal places; the scientific format allows beteen 0 and 5 decimal
places. Some examples are given below.

<PMA_TABLE>
<Attribute id="Variablel" nunberFormat="%4G'/> <!--General with 4 s.f.-->
<Attribute id="Variabl e2" nunberFormat="%6f"/> <!--Fixed with 6 d.p.-->
<Attribute id="Variabl e3" nunberFormat="% 3G'/> <!--Scientific with 3 d.p.-->
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</ PMA_TABLE>

The <PVA TABLE> tag may also contain a nunber For mat Attribute. This specifies the number format
for any <Attri but e> tags that do not contain a nunber For nat Attribute. This is a more compact and
convenient method for setting the same number format for several Variables. If there is no nunber For nat

Attribute specified for the <PMA TABLE> tag and there are <Attri but e> tags that do not contain a
nunber For mat Attribute, then the number format for these <At t r i but e> tagsistaken from the specification
in the ModelBuilder preferences, in the Results section of the Activity execution preferences.

Note that all of the tags and attributes described above are case senstitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

Thefull list of available number formatsis given in the table below.

Format name Format string
General, 1 sf. "% 1G'
General, 2 sf. "% 2G'
General, 3 sf. "% 3G’
General, 4 sf. "% 4G’
General, 5sf. "% 5G'
General, 6 sf. "% 6G'
Fixed, 0 d.p. "0 Of "
Fixed, 1 d.p. "0 1f "
Fixed, 2 d.p. "0p 2f"
Fixed, 3 d.p. "0 3f "
Fixed, 4 d.p. "0 Af "
Fixed, 5d.p. "0p 5F "
Fixed, 6 d.p. "% 6f "
Fixed, 7 d.p. "0 7"
Fixed, 8 d.p. "0 8f "
Fixed, 9d.p. "0p Of "
Scientific, 0 d.p. "% OE"
Scientific, 1 d.p. "% 1E"
Scientific, 2 d.p. "0 2E"
Scientific, 3d.p. "% 3E"
Scientific, 4 d.p. " 0% AE"
Scientific, 5 d.p. "% SE"

2D Plots
2D Plots are created using the <Pl ot 2D> tag and lines specified with the <Line/> tag. The basic format is:
<Pl ot 2D versi on="1">
<Li ne idy=""/>
</ Pl ot 2D>
Thever si on attribute of the <Pl ot 2D> tag is mandatory and must be equal to 1.

Each <Li ne/ > tag specifies which Variable is to be plotted against which independent domain, using thei dY
attribute. Theformat of the attribute isa string comprising the name of the Variabl e to be plotted and a specification
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indicating which domain should be free and plotted on the abscissa and the values of any domains that need to
be fixed®. Thisis best illustrated with an example.

<Pl ot 2D versi on="1">
<Line idY="A(TIME=#)"/>
</ Pl ot 2D>

Here we have just one line specified for this 2D Plot (which will be 600 pixels wide and 400 pixels high).

Thei dY attributeof the<Li ne/ > tag specifyiesthat the Variable A should be plotted with time asthe independent
variable on the abscissa. Here, we see two features of the specification format: the first domain is always time and
isindicated by the string " TI ME=" , followed by either a number or the # symbol. The # symbol indicates that the
domain should be free and will be plotted on the abscissa. Since there are no other domain specifications, A must
be defined either as a scalar or asavector. If Aisdefined asascalar, then the <Li ne/ > tag simply produces one
line in the 2D Plot. However, if A is defined as a vector (i.e. distributed over just one domain, either discrete or
continuous), then the <Li ne/ > tag produces one line for every element of the domain.

To clarify the above, if the Variable A is defined in the Model by:

VARI ABLE
A AS NoType

Then only one line will be plotted in the graph. However, A may also be defined by:

VARI ABLE
A AS ARRAY(NoConp) OF NoType
or
VARI ABLE
A AS ARRAY( Conponents) OF NoType
or
VARI ABLE
A AS DI STRI BUTI ON( X_Domai n) OF NoType

where NoConp is an integer, Conponent s is an Ordered Set and X_Dormrai n is a DistributionDomain. In any
of these cases, a series of lines will be plotted in the graph, one for each element of A.

If, inthis second case, you want to plot only asingleline, corresponding to afixed value of the domain over which
Ais defined, then this can be achieved by (for example):

<Pl ot 2D versi on="1">
<Line idY="A(TI VE=#, 1)"/ >
</ Pl ot 2D>

Another aternative isto plot the variable against the domain for some fixed value of time. This is done with the
following commands.

<Pl ot 2D versi on="1">
<Line idY="A(TIMVE=0, #)"/ >
</ Pl ot 2D>

The same rules apply to Variables defined over more than one domain, as shown in this next example.

<Pl ot 2D versi on="1">
<Line idY="A(TI ME=#)"/>

30f course, there can only be one free domain in a 2D Plot and all other domains need to be fixed.
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<Line idY="B(TI ME=#, 1)"/ >

<Line idY="C(TI ME=5, 2, #)"/ >

<Line idY="C(TI ME=#, 1,0)"/ >
</ Pl ot 2D>

Here, we have 4 <Li ne/ > tags, which will produce 4 lines in the graph, assuming the following variable
definitions.

VARI ABLE
A AS NoType
B AS ARRAY( NoConp) OF NoType
C AS DI STRI BUTI ON( NoConp, X_Domai n) OF NoType

So, thefirst <Li ne/ > tag produces a plot of A against time; the second gives B( 1) versustime; the third gives
the second component of C plotted against the x domain at timet = 5; and finally the last <Li ne/ > specifiesthe
first component of Cto be plotted agains time with the x domain fixed at 0.

Notice that the abscissa of the graph may be used to represent more than one independent domain. Although this
practiceisallowed, it may result in confusing graphs, so it would be best to produce two separate graphs: one with
time on the abscissa and the other with the x domain.

Note that all of the tags and attributes described above are case sendtitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

x-y Plots

x-y plots are essentially a special case of the 2D Plot. The difference is simply that a 2D Plot displays the values
of one or more Variables against one of the independent domains; whereas an x-y plot displays the values of one
Variable against another Variable. (Aswith 2D plots, you could display more than one relationship per graph, but
this might be rather confusing.)

Anx-y plot iseasily defined by using an appropriate <Li ne/ > taginanormal <Pl ot 2D> construct. Thisisbest
illustrated with an example. Consider the following Variable definitions.

VARI ABLE
Vapour Mol eFraction AS DI STRI BUTI ON( NoConp, X Donmai n) OF Mol eFraction
Li qui dMol eFracti on AS DI STRI BUTI ON( NoConp, X Donain) OF Mol eFraction

Inanormal 2D plot, we could plot either (or both) of these variables as functions of time, the x domain or indeed
the number of components; but it may be useful to be able to plot the vapour mole fraction as a function of the
liquid mole fraction, to produce an equilibrium diagram. This is achieved with the following xml commands.

<Pl ot 2D versi on="1">
<Li ne idY="Vapour Mol eFracti on( Tl ME=#, 1, 0)" i dX="Li qui dMbl eFracti on(TlI ME=#,1,0)"/>
</ Pl ot 2D>

This essentialy produces a plot of vapour mole fraction against liquid mole fraction of component 1 at x = 0,
parameterised by time. One could equally parameterise using the x domain:

<Pl ot 2D versi on="1">
<Li ne idY="Vapour Mol eFracti on(TI ME=0, 1, #)" i dX="Li qui dvbl eFracti on(TlI ME=0, 1,#)"/>
</ Pl ot 2D>

One may parameterise using any of the independent domains, with the only restriction being that the same domain
must befreein both of thei d attributesin each <Li ne/ > tag. Of course, havingtofix all of the other independent
domains can be a bit restrictive, but one can include more points in the x-y plot by including more <Li ne/ >
tags, for example:

<Pl ot 2D versi on="1">
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<Li ne idY="Vapour Mol eFracti on( Tl ME=#, 1, 0)" i dX="Li qui dvbl eFracti on(TlI ME=#,1,0)"/>

<Li ne idY="Vapour Mol eFracti on( Tl ME=#, 1, 1)" i dX="Li qui dvbl eFracti on(TlI ME=#,1,1)"/>

<Li ne idY="Vapour Mol eFracti on( TI ME=0, 1, #)" i dX="Li qui dwbl eFracti on(TlI ME=0, 1, #)"/>

<Li ne idY="Vapour Mol eFracti on( Tl ME=10, 1, #)" i dX="Li qui dMbl eFraction(TI ME=10,1,#)"/>
</ Pl ot 2D>

Similarly, we may want to generate a phase diagram by plotting, say, Tenper at ur e as a function of both the
liquid and vapour mole fractions. Assuming the appropriate definition of Tenper at ur e, this can be done by:

<Pl ot 2D versi on="1">
<Li ne idY="Tenperature(TlI VE=#, 0)" i dX="Li qui dMol eFraction(TI Me=#,1,0)"/>
<Li ne idY="Tenperature(TlI VE=#, 0)" i dX="Vapour Mol eFraction(TI ME=#,1,0)"/>
</ Pl ot 2D>

Note that it is not necessary that the variables have the same number of dimensions; only that they are defined
over the same domain that is specified to be free in the <Li ne/ > tag. That is, the # symbol should specify the
same domain in each <Li ne/ > tag.

Note aso that gJPROM S does not check that the values of the fixed domains are identical in each <Line/> tag. If
they are specified different values, it isalmost certain that the graph produced will be physically meaningless.

Note that all of the tags and attributes described above are case senstitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

3D Plots

For Variablesthat are defined over two or more independent domains (including time), 3D plots may be generated
using the <Pl ot 3D> construct and its associated <Sur f ace/ > tag. The basic format is:

<Pl ot 3D versi on="1">
<Surface id=""/>
</ Pl ot 3D>

where the string specified in the id attribute defines the variable to be plotted (in this case, only one variable is
allowed per plot), against which domains it should be plotted on which axes, and the values to which all other
domains should be fixed. Like 2D plots, thewi dt h and hei ght attributes are mandatory and specify the width
and height of the plot in pixels. As an example, consider the following Variable definition.

VARI ABLE
Tenperature AS DI STRI BUTI ON( Axi al , Radial) OF Absol uteTenperature

This Variable therefore has 3 independent domains: time (even in a steady-state simulation), axial and radial. To
define a 3D plot, we must select two of the domains to be free and fix the third. For the two free domains, we
may also choose which of the cartesian-coordinate axeswill be used: x or y. The surface will then be plotted using
a standard right-handed cartesian-coordinate system with the x axis horizontally in the plane of the screen/page
and the z axis vertically in the plane of the screen/page. The y axis therefore points into the screen/page and is
perpendicular to it. Variable values will be plotted on the z axis, with the two free domains on the x and y axes,
as specified in the <Sur f ace/ > tag.

For the above Variable definition, one possible plot is generated with the following xml.

<Pl ot 3D versi on="1">
<Surface id="Tenperature(Tl ME=#x, #y, 0)"/ >
</ Pl ot 3D>

Here, the time domain has been specifed to be represented by the x axis and the axial domain by the y axis. The
values of Temperature plotted are to correspond r = 0 in the radial domain. The #x string specifies which free
domain is represented by the x axis, and the #y string behaves similarly.

100



Defining a Public Model Interface

If the Variable defined above were used in a steady-state simulation, the surface can only be defined in one of
two ways:

<Pl ot 3D version="1">
<Surface id="Tenperature(Tl ME=O0, #x, #y)"/ >
</ Pl ot 3D>

the only other possibility being to swap which axes represent the axial and radial domains.

Note that all of the tags and attributes described above are case sendtitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

3D Plot Orientation

It is often necessary to adjust the orientation of a 3D plot to show the shape of the surface more clearly. This can
be achieved using the <Rot at i on/ > tag within the <Pl ot 3D> construct. This allows the user to specify the
orientation of the plot by using standard rotations about each of the cartesian-coordinate axes. The basic syntax
isasfollows (using the example presented before).

<Pl ot 3D versi on="1">
<Surface id="Tenperature(Tl ME=0, #x, #y)"/ >
<Rot ation x="0" y="0" z="0"/>

</ Pl ot 3D>

Each attribute defines the rotation in degrees about its corresponding axis. The values may be positive or negative.
Thevaluesabove (i.e. norotation) produce acoordinate system with the x and z axesin the plane of the screen/page,
with the x axis horizonal. By defintion, the y axis therefore points into the screen/page. Thisis not a particularly
useful view, so the default view isto rotate the coordinates 45 degrees about both the x and z axes. In other words,
omitting the <Rot at i on/ > tag altogether is the same as specifying:

<Pl ot 3D versi on="1">
<Surface id="Tenperature(Tl ME=0, #x, #y)"/ >
<Rot ati on x="45" y="0" z="45"/>

</ Pl ot 3D>

Of course, any other values may be specified to suit the Variable being plotted. Thefigure below shows the default
rotation on the left and no rotation on the right (along with an indication of the positive direction of rotation for
each axis). The plot on the left has time assigned to the x axis and NoConp to they axis.

Figure 10.11. Default Orientation of 3D Plots (left)
and Definition of Coordinateswith no Rotation (right)

Note that all of the tags and attributes described above are case senstitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

Contour plots

Contour plots are a special case of 3D plots in which no 3-dimensional surface is plotted but where the contour
lines are projected onto the x-y-area. The example below shows the temperature at the exit of atubular reactor.
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Figure 10.12. Example of a contour plot
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The xml code for defining this plot looks asfollows. Theimportant Surface attributesto set arenresh and shade,
both require the valuef al se.

<Pl ot 3D wi dt h="600" hei ght ="400" version="1" border="true">
<Header | abel ="Reactor tenperature">
<Font nanme="Ti mes" size="20" style="italic"/>
</ Header >
<Legend show="true" border="true" anchor="right" orientation="vertical" style="contin
<Font nanme="Arial" size="12"/>
</ Legend>
<Axes>
<Label Font nanme="Arial" size="50"/>
<Nunber Font nane="Arial" size="50"/>
<Axis orientation="x" show="true"/>
<Axis orientation="y" show="true"/>
<Axis orientation="z" show="true"/>
</ Axes>
<Surface id="Reactor. T(TlI ME=5, #y, #x)" nmesh="fal se" shade="fal se"
contours="true" zones="true"/>
<Rot ation x="90" y="0" z="0"/>
</ Pl ot 3D>

Note that all of the tags and attributes described above are case sendtitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

Formatting Options

Each of the environments for creating different types of Model Report have a number of tags for specifying how
they should be formatted.

» Formatting options for <PMA_TABLE>
» Formatting options for <Pl ot 2D>
» Formatting options for <Pl ot 3D>

Tags can be used in two ways, depending on whether they may contain other tags. If atag may not contain any
other tags, then it can only be used in the "simple tag" form:

<TagNane attributel="" attribute2="" ... attributeN=""/>
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However, when other tags need to be included, then the full tag form must be used:

<TagNanme attributel="" attribute2="" ... attributeN="">
<l-- contained tags go here -->
</ TagNane>

Unless otherwise stated, attributes and tags are optionally specified and there can be at most one of each tag.
Formatting options for <PMA_TABLE>

The <PMA_TABLE> tag has a number of attributes that specify how the table will look in the report. These are
described in the table below. Where there are only a certain number of allowable values for the attribute, these
are listed inside brackets, separated by pipes. E.g. [trueffalse] means that an attribute may only take the values
true or f al se (of course, when specifying the values of attributes, they must always be enclosed in quotes,
eg.attr="true").

Note that all of the tags and attributes described here are case senstitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

Table 10.1. Attributes of the<PMA_TABLE> tag

Attribute Name Description Default Value Notes
pmas Determines which specified [al]variables]
Public Model parameters, specified]
Attributes are shown. specified means...
border The border 1 Only non-negative
width in pixels. integers allowed.
lineThickness The thickness of the lines 0 Only non-negative
between the cellsin pixels. integers allowed.
cellspacing The cell spacing in pixels. 1 Only non-negative
integers allowed.
units Specifies whether or true [trueffal se]
not to display the units.
tableAlign Alignment of table left [left|center|right]
relative to the page.
headerAlign Alignment of center [left|center|right]
table headings.
pmaNamesAlign Alignment of left [left|center|right]
PMA names.
pmaVauesAlign Alignment of left [left|center|right]
PMA values.
unitsAlign Alignment of units. left [left|center|right]
altBGColorMode Alternate the true [truejfal se]
background colour
for each PMA name?
altBGColor Alternating #DEEFEE Takes a string defining the
background colour. colour either as a name
or in hexadecimal RGB
format preceded by a#
character. The allowable
names (case insensitve)
are: Black (#000000),
Green (#008000),
Silver (#C0CO0CO0),
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Attribute Name Description Default Value Notes

Lime (#00FF00),
Gray (#808080),
Olive (#808000),
White (#FFFFFF),
Y ellow (#FFFF00),
Maroon (#300000),
Navy (#000080),
Red (#FF0000),
Blue (#0000FF),
Purple (#800080),
Teal (#008080),
Fuchsia (#FFOOFF),
Aqua (#00FFFF).

pmaColTitle Titlefor PMA column. Name

valueTitle Title for value column. Value at time $t $t isreplaced by the
time selected using

the slider at the top of
the reports window.

unitsTitle Title for units column. Units

numberFormat Specifies the formatting N/A See Tables.
of numbersin the table.

The<At tri but e>tagisasimpletag that specifieswhich Public Model Attributeto includeinthe PMA Table.
Onetagisused for each Variableto beincluded, which is specified using the mandatory i d attribute. For example,
asingle Variable would be tabul ated thus:

<PMA TABLE>
<Attribute id="..."/>
</ PVA _TABLE>

Theformat for thei d attribute is similar for each type of Model Report.

In addition to the <Attribute/> tag, two tags provide formatting options for the header and body font. These are
<Header Font > and <BodyFont >, both of which take the following attributes.

Table 10.2. Attributes of the <Header Font > and <BodyFont > tags

Attribute Name Description Default Value Notes
name The name of the font. Automatically chosen
size The size of the Automatically chosen Only positive
font in points. integers allowed.
style Thefont style. Automatically chosen Can be a combination

of bold, italic, underline

and strikeout, separated
by commas. E.g.
style=bold, italic.

Formatting options for <Pl ot 2D>

The <Plot2D> tag has anumber of attributesthat specify how the graph will look in the report. These are described
inthetable below. Wherethere are only acertain number of allowablevaluesfor the attribute, these arelistedinside
brackets, separated by pipes. E.g. [truelfalse] means that an attribute may only take the valuest r ue or f al se.

Note that all of the tags and attributes described here are case senstitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.
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Table 10.3. Attributes of the <Pl ot 2D> tag

Attribute Name Description Default Value Notes
width The width of the 500 Only positive
graphin pixels. integers allowed.
height The height of the 300 Only positive
graphin pixels. integers allowed.
border Definesin aborder false [trueffal se]
should be drawn
around the graph.
version The version of the — This attribute is mandatory
XML plot format. and must be set to 1.

The remainder of the formatting for 2D plotsis done using embedded tags within the <Pl ot 2D> tag. These are:

* <Header >
* <Footer>
* <Legend>
+ <Axes>
e <Gid>

e <Line>

The <Header > and <Foot er > tags define the text at the head and foot of the graph. They both contain one
attribute and one <Font > tag. The Label attribute is a mandatory attribute and is the string defining the text
used for the header/footer. The <Font > tag defines the font used for the text. It has the following attributes.

Table 10.4. Attributes of the <Font > tag

Attribute Name Description Default Value Notes
name The name of the font. Automatically chosen
size The size of the Automatically chosen Only positive
font in points. integers allowed.
style Thefont style. Automatically chosen Can be a combination

of bold, italic, underline
and strikeout, separated
by commas. E.g.
style="bold, italic".

For example, the header might be specified like this:

<Pl ot 2D versi on="1">

<Header

<Font

</ Header >
</ Pl ot 2D>

| abel ="Sone text to use at the head of the graph.">
name="Arial" size="12" style="bold"/>

Or if the font were to be determined automatically, one could specify the header more simply like this:

<Pl ot 2D versi on="1">
<Header
</ Pl ot 2D>

| abel =" Sonme text to use at the head of the graph."/>
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The <Legend> tag defines the properties of the graph legend, including whether or not it is displayed. It may
contain a<Font > tag, which defines the font used for the text, and it has the following attributes.

Table 10.5. Attributes of the<Legend> tag

Attribute Name Description Default Value Notes

show Defines whether or not true [trueffal se]
thelegend isvisible.

border Specifiesif aborder false [truelfalse]
should be drawn
around the legend.

anchor The position right [topltopRight|right|
relative to the graph. bottomRight|bottom|
bottomL eft|l eft|topL eft]
orientation Whether the labels vertical [horizontal [vertical]
are listed horizontally
or vertically.
fixSymbol Size Whether the symbols false [trueffal se]

have afixed size.

The <Axes> tag isafull-form tag that contains just 3 sub-tags. These are;

» <Label Font > specifiesthe font attributes for the axis label. This tag has the same attributes as the <Font >
tag.

» <Nunber Font > specifies the font attributes for the numbers on the axis. This tag has the same attributes as
the <Font > tag.

e <AXi s> defines each of the axes on the graph. There may be up to 3 <Axi s> tags used: one for each of the
possible axes x, y and y2. If none are used, all of the axes will take default properties.

The <Axis> tag isasimple tag that contains the following attributes.

Table 10.6. Attributes of the <Axi s> tag

Attribute Name Description Default Value Notes
orientation The axis to which the — Mandatory. [x|yly2]
attributes will apply.
label The text used to Either "Time" or the
label the axis. id of thefirst line
associated with this axis.
show Boolean specifying true [trueffal se]
that the axisisvisible.
min The minimum — Any real number.
extent of the axis.
max The maximum — Any real number.
extent of the axis.
transform Appliesatransform to — Any simple expression
the numbers on the axis. containing numbers and

the +, -, * and / operators.
Operations are performed
in sequence; thereis no
operator precidence and
bracketed expressions are
not allowed. A typical
use of this functionality
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Attribute Name Description Default Value Notes

would be to change the
units of measurement
onaplot. eg. If you
had Temperature (K)
vs. Time (sec) data but
you wanted to plot it
as Temperature (F) vs.
Time (hr) then you would
enter /3600 (or /60/60) as
the transformation for the
X-axis-273.15*1.8+32
asthe transformation

for they-axis
log Defines alogarithmic axis. false [trueffal se]

origin The value at the origin. Automatically chosen Any real number.

numbering The frequency of Automatically chosen Any real number.
numbers on the axis.

ticks The frequency of numbering/2 Any real number.

ticks on the axis.
precision The number of 0 Only non-negative

decimal places of the integers allowed.

numbers on the axis.
label Rotation The rotation of 0 [0]90]180J270] Rotation
the axislabel. isanticlockwise

and in degrees.

The <G i d> tag defines the properties of any gridlines shown on the graph. There may beup to 2 <G i d> tags
within the <Pl ot 2D> tag, each one defining the horizontal and vertical grid lines. The horizontal grid lines may
be associated with either the primary (left) or secondary (right) y axis. It is a simple tag that contains only the
following attributes.

Table 10.7. Attributes of the<G'i d> tag

Attribute Name Description Default Value Notes
orientation The axisto which the grid — Mandatory. [X]yly2]
lineswill be associated.
increment Theinterval Automatically chosen Only positive rea
between grid lines. numbers allowed.
pattern The style of solid [nonejsolid|longDash|
the line drawn. dotted|shortDash|
IsiDash|dashDot]
color The colour of black Takes a string defining the

the line drawn. colour either asaname

or in hexadecimal RGB

format preceded by a#

character. The allowable
names (case insensitve)
are: Black (#000000),
Green (#008000),
Silver (#C0C0CO),
Lime (#00FF00),
Gray (#808080),
Olive (#808000),
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Attribute Name

Description

Default Value

Notes

White (#FFFFFF),
Y ellow (#FFFF00),
Maroon (#300000),
Navy (#000080),
Red (#FF0000),
Blue (#0000FF),
Purple (#800080),
Teal (#008080),
Fuchsia (#FFOOFF),
Aqua (#00FFFF).

width

The width of
theline drawn.

Only positive
integers allowed.

The <Li ne> tag isresponsible for specifying which Variables are plotted in the graph. One <Li ne> tag is used
for each V ariabl e plotted and there can be as many tags as needed. It isasimpletag that containsonly thefollowing

attributes.

Table 10.8. Attributes of the<Li ne> tag

Attribute Name

Description

Default Value

Notes

idY

Variableid for y axis.

Mandatory. A string
defining the Variable to
be plotted on the y axis.

idX

Variableid for x
axis (only required
for x-y plots).

A string defining the
Variableto be plotted
onthex axis. Only
used for x-y plots.

label

A namefor thislineto
appear in the legend.

The name of the Variable

Fl o

The default value uses
only the Variable name
and not the full path:
e.g. if thefull pathis
wsheet . Col urm. m WAg
then the default value
will be"m_Waste".

axis

Which of they axes
are used primary (y)
or secondary (y2).

[yly2]

pattern

The style of
the line drawn.

solid

[nonejsolid|longDash|
dotted|shortDash|
IsiDash|dashDot]

color

The colour of
the line drawn.

Automatically chosen

Takes a string defining the
colour either as aname
or in hexadecimal RGB
format preceded by a#
character. The allowable
names (case insensitve)
are: Black (#000000),
Green (#008000),
Silver (#C0C0CO),
Lime (#00FF00),
Gray (#808080),
Olive (#808000),
White (#FFFFFF),

Yellow (#FFFFO0),
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Attribute Name

Description

Default Value

Notes

Maroon (#300000),
Navy (#000080),
Red (#FF0000),
Blue (#0000FF),
Purple (#800080),
Teal (#008080),
Fuchsia (#FFOOFF),
Aqua (#00FFFF).

width

The width of
theline drawn.

Only positive
integers allowed.

symbol Shape

The shape of the symbols
drawn for each data
point on the line.

Automatically chosen

[none|dot|box|triangl €]
diamond|star|verticalLine|
horizontalLine|
crossjcirclejsquare]

symbol Color

The colour of the
symbols drawn for each
data point on theline.

Automatically chosen

Takes a string defining the
colour either as aname
or in hexadecima RGB
format preceded by a#

character. The allowable
names (case insensitve)
are: Black (#000000),
Green (#008000),
Silver (#C0C0CO),
Lime (#00FF00),
Gray (#808080),
Olive (#808000),
White (#FFFFFF),

Y ellow (#FFFFQ0),
Maroon (#300000),
Navy (#000080),
Red (#FF0000),
Blue (#0000FF),
Purple (#800080),
Teal (#008080),
Fuchsia (#FFOOFF),
Aqua (#O0FFFF).

symbolSize

The size of the
symbol at each point
plotted for thisline.

Only positive
integers allowed.

Formatting options for <Pl ot 3D>

The <Pl ot 3D> tag has a number of attributes that specify how the graph will look in the report. These are
described in the table below. Where there are only a certain number of allowable values for the attribute, these
are listed inside brackets, separated by pipes. E.g. [trueffalse] means that an attribute may only take the values

trueorfal se.

Note that all of the tags and attributes described above are case senstitive: if they are not typed exactly as shown
above, then the report will not be generated and an error message will be displayed instead.

Table 10.9. Attributes of the <Pl ot 3D> tag

Attribute Name Description Default Value Notes
width The width of the 600 Only positive
graphin pixels. integers allowed.
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Attribute Name Description Default Value Notes
height The height of the 400 Only positive
graph in pixels. integers allowed.
border Definesin aborder false [trueffal se]

should be drawn

around the graph.

version The version of the — This attribute is mandatory
XML plot format. and must be set to 1.

The remainder of the formatting for 3D plotsis done using embedded tags withing the <Pl ot 3D> tag. These are:
* <Header >

* <Footer>

* <Legend>

¢ <Axes>

» <Surface>

* <Rotation>

The <Header > and <Foot er > tags define the text at the head and foot of the graph. They both contain one

attribute and one tag. Thel abel attribute is a mandatory attribute and is the string defining the text used for the
header/footer. The <Font> tag defines the font used for the text. It has the following attributes.

Table 10.10. Attributes of the <Font > tag

Attribute Name Description Default Value Notes
name The name of the font. Automatically chosen
size The size of the Automatically chosen Only positive
font in points. integers allowed.
style Thefont style. Automatically chosen Can be a combination

of bold, italic, underline
and strikeout, separated
by commas. E.g.
style="bold, italic".

For example, the header might be specified like this:

<Pl ot 3D versi on="1">
<Header | abel ="Sonme text to use at the head of the graph.">
<Font name="Arial" size="12" style="bold"/>
</ Header >
</ Pl ot 3D>

Or if the font were to be determined automatically, one could specify the header more simply like this:
<Pl ot 3D versi on="1">
<Header | abel ="Sone text to use at the head of the graph."/>

</ Pl ot 3D>

The <Legend> tag defines the properties of the graph legend, including whether or not it is displayed. It may
contain a<Font > tag, which defines the font used for the text, and it has the following attributes.

110



Defining a Public Model Interface

Table 10.11. Attributes of the<Legend> tag

Attribute Name Description Default Value Notes
show Defines whether or not true [truejfal se]
thelegend isvisible.
border Specifiesif aborder false [trueffalse]
should be drawn
around the legend.
anchor The position right [top[topRight|right|
relative to the graph. bottomRight|bottom|
bottomL eft|left|topL eft]
orientation Whether the labels vertical [horizontal [vertical]
are listed horizontally
or vertically.
style Determinesthe continuous [continuous|stepped)]
type of legend.

The <Axes> tag isafull-form tag that contains just 3 sub-tags. These are:

» <Label Font > specifies the font attributes for the axis |abel. This tag has the same attributes as the <Font >

tag.

» <Nunber Font > specifies the font attributes for the numbers on the axis. This tag has the same attributes as

the <Font > tag.

* <AXi s> defines each of the axes on the graph. There may be up to 3 <Axi s> tags used: one for each of the
possible axes x, y and z. If none are used, all of the axes will take default properties.

The <Axis> tag isasimple tag that contains the following attributes.

Table 10.12. Attributes of the <Axi s> tag

Attribute Name

Description

Default Value

Notes

orientation The axis to which the — Mandatory. [x|y|Z]
attributes will apply.
label The text used to Either "Time" or the
label the axis. id of thefirst line
associated with this axis.
show Boolean specifying true [trueffal se]
that the axisisvisible.
min The minimum — Any real number.
extent of the axis.
max The maximum — Any real number.
extent of the axis.
transform Appliesatransform to —

the numbers on the axis.

Any simple expression
containing numbers and
the +, -, * and / operators.
Operations are performed
in sequence; thereis no
operator precidence and
bracketed expressions are
not allowed. A typical
use of this functionality
would be to change the
units of measurement
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Attribute Name Description Default Value Notes

onaplot. eg. If you
had Temperature (K)
vs. Time (sec) data but
you wanted to plot it
as Temperature (F) vs.
Time (hr) then you would
enter /3600 (or /60/60) as
the transformation for the
X-axis-273.15*1.8+32
asthe transformation

for they-axis
scale Scales the axis by 1.0 Only positive real
acertain amount. numbers are allowed.

The <Sur f ace> tag is responsible for specifying which Variable will be plotted in the graph. There must be
exactly one <Sur f ace> tag in each 3D plot. It isasimple tag that contains only the following attributes.

Table 10.13. Attributes of the <Sur f ace> tag

Attribute Name Description Default Value Notes

id Variableid. — Mandatory. A string
defining the Variable to
be plotted (on the z axis)

and the free domainsto be
used on the x and y axes.

mesh Display awire mess true [truejfal se]
effect on the surface.
shade Include colours true [trueffal se]
on the surface.
contours Inlcude contour true [trueffal se]
lines on the surface.
zones Divide the surface up into true [trueffal se]

different zones (colours).

The final tag specifies the orientation of the 3D graph. This is done by giving rotations about each of the axes,
relative to a starting orientation, where the x axis is horizontal and in the plane of the screen/paper, the z axisis
vertical and in the plane of the screen/paper, and the y axisis perpendicular to and pointing into the screen/paper.
The simpletag <Rot at i on> isused to specify these rotations, and if omitted the default rotations will be used.
The<Rot at i on> tag hasjust 3 optional attributes:

Table 10.14. Attributes of the <Rot at i on> tag

Attribute Name Description Default Value Notes
X Rotation about the 45 Any real number.
X axis, in degrees.
y Rotation about the 0 Any real number.
y axis, in degrees.
z Rotation about the 45 Any real number.
Z axis, in degrees.

Format of the i d,i dXand i dY attributes

Theid, i dXandi dY attributes effectively define a set of data. A valid id consists of a valid variable name
followed by parameters (comma delimited within parenthases) with the first parameter beginning "TI ME=". For a
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2D or x-y plot, "#" denotes the independent domain. For a 3D plot, "#x" and "#y" denote the independent x and
independent y domains respectively. For PMA tables, "#" denotes the time specified by the user (using the slider
bar at the top of the report window). If the TI ME parameter is omitted, it will be assumed to be "TI ME=#", e.g.
"q(a, b) " ="q( TI ME=#, a, b) ". Wildcards (*) are permitted in PMA tables, 2D plots and x-y plots to avoid
using multiple tags to define arange of variablesto plot. Some examples are given below.
e Example Variable definitions
* VARI ABLE
g AS DI STRI BUTI ON( NoConmp, Axial) OF NoType
r AS DI STRI BUTI ON( NoConp, Axial) OF NoType
* PMA tables
e <Attribute id="q(TIME=#,4a,b)"/>
The value of q at the specified time with NoConp=a, Axi al =hb.
e <Attribute id="q(TIME=#,*,b)"/>
the value of q at the specified time with Axi al =b, for each element NoConp.
e 2D plots
e <Line idY="q(TlI ME=#,a,b)"/>
A singleline of g vs TI ME with NoConp=a, Axi al =h.
e <Line idY="q(TI ME=a, #, b)"/>
A singleline of g vs NoConp with TI ME=a, Axi al =h.
e <Line idY="q(TIME=a, *, #)"/ >
A number of lines of g vs Axi al with TI ME=a: one for each element of NoConp.
e X-y plots

o <Line idx="q(TI ME=#, a, b)" idY="r(TI ME=#, c, d)"/>

A single line of how g (with NoConp=aand Axi al =b) varies against r (with NoConp=c and Axi al =d)
over thewhole Tl ME domain.

» 3D plots
« <Surface id="q(TlIVE=#x, a, #y)"/>

A surface of g vs Tl ME (x axis) and Axi al (y axis) with NoConp=a.

Defining custom graphics

Custom graphics allow placing images at the top and the bottom of a dialog, for instance in order to provide them
with a company's branding. The following image formats are supported: .gif, .jpg (and .jpeg), .png and .svg.

The controls in this part of the interface builder allow adding or removing images, choosing the alignment and
also to set a background colour in RGB format.
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Figure 10.13. Example custom graphic specification

¥ Public Model Interface Builder =

Overview Custom graphics
1, Public Model Attributes Specify custom graphics o be shown in the unit specification dialog,
2, Define tabs in dialog

3. Configure specification dialog {nfa)
4, Define model help

5. Configure report

6, Custom graphics

Import and arrange images

Image Panel Position

Bottom Panel Top-centre

Remove image

Irnpork image. ..

~Top panel previe

[~ Use custom background

W - - |

~Bottom panel preyvies

pseBProvs

[~ Use custom background

Reset all | oF | Canice! | I.blaCk vl |

Preview specification | Preview reports | 4 Previous | [ext b | Finish | Cancel |

In the exampl e above, two images have been imported and assigned to the bottom panel. The top and bottom panel
preview panes show how the images will be aligned on the dialog. Here, both images are set to Top-centre and
their position is shown relative to the buttons that will appear at the bottom of the configuration dialog. Of course,
any image can be assigned to either the top or bottom panel and aligned using the following options.

Table 10.15. Alginment options

Alignment Position in panel
Left Flush left, level with the controls
Top-left Flush |eft, above the controls
Top-centre Centred, above the controls
Top-right Flush right, above the controls
Right Flush right, level with the controls

Clicking on the Preview specification button activates a preview dialog. The dialog for the example above is
shown below.
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Figure 10.14. Test specification dialog
x|

Initial Conditions

Specify
¥ Mumber of tubes I !
¥  Tube length I 1 m
[ Mumber of discretisation points I i
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Cancel Reset All Help |
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Chapter 11. Defining Schedules

Schedules are used in gPROMS to define operating procedures. An operating procedure can be considered as a
recipe that defines periods of undisturbed operation along with specified or conditional external disturbances to
the system. The Schedule section is the last part of the Process entity (for defining a simulation activity).

Schedules can be generated (and modified) by entering gPROMS language, by using a graphical interface or by
using a combination of the two. Both methods are entirely equivalent and interchangeable: when a schedule is
modified using the graphical interface, the equivalent change is automatically made to the language and, similarly,
changes made to the gPROM S language are automatically applied to the graphical representation of the Schedule.

The Scheduleis stored in either a Process or a Task entity and can be viewed by selecting either the Schedule tab
or the gPROM S language tab from the Process window. The Schedule tab displays the graphical representation
of the Schedule and the gPROM S language tab displays all of the language associated with the Process (i.e. Unit,
Set, Assign etc.); the Schedule is located at the end, so one may need to scroll the window to see the Schedule.
These two views are shown below for a Process.

Figure 11.1. Graphical Schedule Editor
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Figure 11.2. Schedule L anguage Editor
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Schedules are specified using:

» Elementary tasks, which are used to specify external disturbances to the systems (e.g. changing the values of
simulation input variables, specifying periods of undisturbed operation etc);

e Timing structures, which combine elementary tasks and specify the manner in which they are executed
(sequentially, concurrently, conditionally or iteratively);

» Results-control elementary tasks, which control the way the results are displayed (but do not affect the results

themselves); and

» Tasksfor creating and using Saved Variable Sets.

The Schedule may also include user-specified Tasks, which are re-usable parts of the operating procedure. Tasks
are associated with one or more Maodels and can be used multiple times within a Schedule and by other Tasks.

See: Defining Tasks.

Before considering the above elements in detail, one must first be familiar with the procedure of Building a

Schedule.

Building a Schedule

There are two main ways to build a Schedule: using the graphical interface or by entering g°PROMSS language.
The former is by far the most convenient and is described here. The gPROM S language for Schedulesis covered
in the following sections, describing the Tasks in detail.

To begin building a Schedule, one must first create a Process. Let's assume one already exists, which contains all
of the specifications for the simulation apart from the Schedule; that is:

* Units are defined,

» Parameters have all been Set,

» Variables have been Assigned to take up any degrees of freedom and

« Initial conditions have been specified
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so that the simulation can be initialised. All that remains is to define what should happen during the simulation
and when. For example, one can fill areactor, heat it up, keep the temperature constant while the reactions take
place, cool it down and finally empty it. These actions are defined by specifying changes in Assigned Variables
and periods of uninterrupted simulation, all by using elementary Tasks.

Before these Tasks can be placed into the Schedule, we must first create a Schedule. To do so, double-click on the
Process to open it in the gPROMSS editor window. There are four tabs in the Process window: Schedule, Solution
parameters, gPROMS language and properties. The gPROMSS language tab contains all of the code that defines
the elements of the Process listed above. The code for the Schedule will be placed at the end, in a SCHEDULE
section. The graphical interface is shown in the Schedule tab. These two views are shown below.

Figure 11.3. g°PROM S language tab with no Schedule
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Figure 11.4. Schedule tab with no Schedule
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To create the Schedule using the graphical interface, a Task needs to be dragged from the Task Palette onto the
Schedule window. Therefore, one must first click on the Palette tab in the Project tree. If the Palette tab is not
visible, then it can be enabled by selecting Palette from the View menu or by pressing CTRL+F11. The Task
Palette is shown below.

Figure 11.5. Task Palette
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The Task Palette is divided into two panes: the top pane contains all of the available Tasks (arranged in four
categories) and the bottom pane contains an explanation of the currently-selected Task. The four cetegories of
Task are:

e Composite Tasks, which combine elementary tasks and specify the manner in which they are executed
(sequentially, concurrently, conditionally or iteratively);

» Elementary Tasks, which are used to specify external disturbances to the systems (e.g. changing the values of
simulation input variables, specifying periods of undisturbed operation etc);

 Foreign Process Tasks, which control theway the resultsare displayed (but do not affect the resultsthemselves);
and

» Predefined Tasks, which are user-defined reusable Tasks that contain a segment of an operating procedure.

To expand a category, simply left click on itstitle or on the & symbol next to it. All of the available Tasks will
then be shown. Left clicking on atask will display further information about it in the window at the bottom of the

palette. Left clicking on the category title again or on the @ symbol will collapse the category.

To create the Schedule, l€eft click on a Task and, while holding the left mouse button down, drag the Task onto the

Schedule window. Before the mouse button is released, the mouse pointer will change to 5‘ to indicate that the
task will be copied into the Schedule. When the mouse button is released, the Scheduleis created and the Task is
placed into the Schedule. Most Tasks, however, need to be configured before they can be added to the Schedule;
in these cases, a configuration dialog will appear and it must be completed before the Task is added.

Thisis demonstrated in the following example. Suppose we only want to simulate the Process for a given amount
of time, without changing any of the input specifications. Thisis done with the Continue Task. Since the Continue
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Task instructs gPROM Sto simul ate the Processfor agiven amount of time (or until acertain conditionissatisfied),
this time (or condition) must be specified before the Task can be added to the Schedule. The figure below shows
the Schedule and Task configuration dialog just after the Task had been dragged onto the Schedule window and

the left mouse button rel eased.

Figure 11.6. Continue Task configuration dialog
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Configuration dialogs automatically check syntax, so this one initially states that the configuration will only be
complete when atime valueis entered in the first text box or alogical condition is entered in the second one. It is
also possible to enter values in both boxes and the two conditions will be combined with an AND or OR logical
operator, which can be selected using the radio button. In this case, it is disabled because both text boxes are
empty. Once the configuration is complete, the OK button will be enabled and left clicking on thiswill complete
the addition of the Task to the Schedule. This is shown in the figure below. (Left clicking on the Cancel button
will cancel the addition of the Task, but will leave a blank Schedule in the Schedule window (visible just above
the configuration dialog).)
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Figure 11.7. Continue Task in a Schedule
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Notice also that by left clicking on the Continue Task, the bottom pane of the Task Palette has been populated
with an overview of the Continue Task. The scroll bar on the right can be used to scroll through the text and the
size of the pane can be adjusted by dragging the divider up or down.

When aTask isadded to the Schedule using the graphical interface, the g°PROM S language is automatically added
to the Process, as can be seen in the language tab below. The Schedule could have been created by typing this
code into the Process and the same graphical Schedule would have been generated automatically.

Figure 11.8. Continue Task in a Schedule (gPROM S language tab)
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Returning to the Schedule tab, it can be seen that the Schedule itself is represented in the graphical interface. It
contains a black vertical line above and below the Continue Task. These lines are "hot spots' where additional
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Tasks can be added. In ablank Schedule (as seen in the screen shot showing the Task configuration dialog), there
isjust one black line and therefore only one place where anew task can be added. Once a Task has been added, a
new one can be added before or after the first one, by dragging a new Task onto one of the lines.

The Continue Task displays the gPROMS language resulting from the specification made in the configuration
diaog. In this case, the number 10 was entered in the first text box, specifying that gPROM S should simulate the
Process for 10 units of time and then stop. It is possible to hide the details of any Task by left clicking on the =
symbol on the left (the details can be shown again by pressing on the = symbol). This allows the user to customise
how much detail is shown in the graphical view: as can be seen in the screen shot above, Tasks can be nested
within other Tasks such that a complex hierarchy can be built up and it may not be desirable to see al of this detail
all of thetime. For this screen shot, the details of the Parallel Tasks were hidden so that the whole of the Schedule
was visible in the editor. To save space, gJPROM S will also only show the first 4 lines of code associated with a
Task. An élipsis (...) is used to indicate that some information is not being shown. There are three ways to see
the details: 1. double click on the Task to bring up the configuration dialog; 2. view the Task language by right
clicking on the Task and selecting Go to language from the context menu; or 3. move the mouse pointer over the
Task and hold it there until atool tip appears showing the details. Y ou can a so adjust the width of the Task boxes
by pressing one of the four buttons shown below (see a so the Schedule Tab Toolbar).

Figure 11.9. Width Controls

Thefirst three limit the width of the Task boxesto small, medium and large. The last one removesthe limit so that
the Task boxes will be as wide as the longest visible line of language. The currently-selected option is indicated
by the depressed button (the second one in the case above). In the screen shot above, it can be seen that the boxes
are too narrow to show all of the lines for some of the tasks and thisis indicated by the ellipsis at the end of the
line (in the While and Parallel tasks).

Any Task can be selected by left clicking on it. Once selected, a Task can be deleted by pressing the DEL key or
by right clicking and selecting Delete from the context menu. The Task can also be copied or cut using the context
menu. It may be pasted into the Schedule by right clicking on one of the black lines and selecting Paste. Note that
if you delete a Composite Task, then all of the Tasks that it contains will also be deleted. Pressing the =¥ button

or CTRL+z will undo any changes made to the Schedule, including the deleting of Tasks. (Pressing the £ button
or CTRL +y will redo any changes that have been undone.)

Tasks can al so be reconfigured by double-clicking onthem. Thiswill openthe Task Configuration dialog, allowing
the details of the Task to be modified.

The context menu also provides another way of adding a new Task to an existing Schedule. Right clicking on
a black line activates the context menu, which contains sub menus for each of the built-in Tasks: Composite,
Elementary and Foreign Process. So to add a new Task using this method, right click on a black line, open the
appropriate menu and left click on the Task you want to insert. The result isidentical to dragging from the Task
Palette: if necessary, a configuration dialog will appear and then the Task will be inserted in the chosen place.

So far, the Schedule we have created is very simple. Most Schedules will be more complex than this, and they
may include many Tasks, some occurring after others have finished, some occurring concurrently with others and
some Tasks may need to be performed iteratively or only if some condition is met. These structures can be created
by using the Composite Tasks that have been mentioned briefly before. The Composite Tasks section of the Task
Pal ette contains the four Tasks that allow Schedules of arbitrary complexity to be built. These are:

Composite Tasks

| (O IF - perform an action c...

PARALLEL - start a set of |
actions

E

actions

SEQUENCE - inserk a seque]

[ o WHILE - repeat a set of ac
a loop while an expression
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Each of these Tasks can be dragged onto a hot spot in the Schedul e and they then provide locations for more Tasks
to be added. These Tasks will be described in more detail later (see: Composite tasks). For now, we shall focus
on the Sequence Task as the principles covered here apply to all of the above.

L et us proceed with the example given so far. We currently have just one Task in the Schedule; a Continue Task.
Suppose that after the 10 units of time, we want to change the value of one of the input Variables. This can be
done with the Reassign Task, and so all that need be doneisto drag a Reassign Task onto the hot spot below the
Continue Task. (Alternatively, we could right-click on the hot spot and choose Reassign from the Add elementary
task context menu.

The result of the insertion is shown below (after the Reassign task has been configured — how to do this will be
described in the Reassign section).

Figure 11.10. Schedule after a Reassign task wasinserted
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Thefirst thing to notice is that a Sequence Task has automatically been inserted into the Schedule. Thisis because
if two or more Tasks are to be performed in series, they must be enclosed in a Sequence Task. To save adways
having to insert the Sequence Task before adding elementary Tasks (such as the Continue and Reassign Tasks
here) gPROM S will always insert a Sequence Task if one is needed. This means that you can drag any Task onto
any hot spot and the resulting Schedule will always be valid.

Next, we have changed to width of the Task boxes to show all of the details of the Reassign Task. Here, the
Reassign Task changes the value of the Pl ant . React or. STR. f | ow_Li n Variableto 50.

The automatically-generated g°PROM S language now |ooks like this:

SCHEDULE
SEQUENCE
CONTI NUE FOR 10
REASSI GN
Pl ant . Reactor. STR. flow Lin : = 50;
END
END

It would have been easy to type this into the gPROM S language tab, but larger more complex Schedules (with all
four types of Composite Task being nested in complex arrangements) become harder to follow in thisview and this
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method is therefore more prone to error. The graphical view is much easier to follow and to modify, particularly
if one wantsto move or copy Tasks from one place to another, as we shall demonstrate now.

The Schedule currently does nothing new: although the FI ow_Li n variable changes value, gPROMS stops the
simulation immediately afterwards. To see the effect of the change in flowrate, we must add another Continue
Task. If we add one after the Reassign Task and set it to simulate for 20 time units, we will have the following.
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Now suppose that we want to see what would happen if we started the simulation by Continuing for 20 units,
Reassigning the FI ow_Li n Variable and then Continuing for 10 units of time. We could just double click on the
first Task and change its value to 20 and then do the same for the third task, but a quicker and easier way to swap
these Tasks over isto move them. To move a Task, left click on it and, while holding the left mouse button down,

drag it to another hot spot. Before the left mouse button is released, the mouse pointer will changeto %; toindicate
that the Task is being moved. Note, thisis similar to the pointer when a Task is being added, but without the "+"
sign. When the left mouse button is released, the Task will be moved to the new location (note that Tasks cannot
be moved if the new location requires the addition of a new Sequence Task — in this case, one must either insert
anew Seguence and then move the Task or copy the Task and then delete the original one). Using this method,
itisvery quick and easy to move Tasks around.

It is also possible to copy Tasks. This is done in a similar way to moving Tasks but by also holding down the
CTRL key. To copy aTask, drag it to a new hot spot exactly asif it were being moved. The mouse pointer will

change to %; to show that it is being moved. Now, before releasing the left mouse button, hold down the CTRL

key. The mouse pointer will now change to *= to indicate that the Task is being copied. Keeping the CTRL key
down, release the left mouse button and the duplicate Task will be added to the Schedule. gPROMS will insert a
new Sequence Task if necessary. You can change a copy to a move or vice versa at any time during a drag: al
that mattersis the state of the CTRL key when the left mouse button is release.

If you prefer not to drag Tasks around, it is aso possible to move or copy Tasks using the Cut, Copy and
Paste commands in the Edit and context menus or their keyboard shortcuts (CTRL+x, CTRL+c and CTRL +v
respectively). Simply right click on the Task, select Cut or Copy from the context menu, then right click on the
desired hot spot and select Paste. To usethe keyboard shortcuts, lft click onthe Task, pressCTRL +x or CTRL +c,
left click on the desired hot spot and press CTRL +v. (The currently-selected hot spot is shown as a blue line
instead of ablack one.)

It is possible to move, copy or delete multiple Tasks simultaneously. Thisis done by making multiple selections.
To make a multiple selection, select the first Task as usua (by left clicking on it), then hold down the CTRL
key and select another Task. Aslong asthe CTRL key is held down, more Tasks can be added to the selection
by left clicking on them. (Note that Tasks cannot be removed from the selection by left clicking on them again.)
There is one restriction when making multiple selections. once the first Task is selected, you can only add more
Tasks to the selection if those Tasks belong to the same Composite Task as the first one and at the same level in
the Task hierarchy. The Schedule below (which is a modified version of the Batch Plant example) will be used
toillustrate this.
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Figure 11.11. Schedule with example multiple selections

SCHEDULE
1
[=] SEQUENCE
1
[=] CONTINUEF...
1
= PARALLEL

1 1
[=] WHILE Plant.Reactor.counter < Plant.Reactor, NOCYCLE DO [=] WHILE Plant.Reactor.counter < Plant.Reactor, NOCYCLE DO
1 1
[=] SEQUENCE [=] SEQUENCE
1 1
=] REASSIGN ... =] REASSIGN ...
1 1
[= PARALLEL [= PARALLEL
1 1 1 1 1 1
= Monitorwast ... = ReplenishFee,.. = SEQUENCE = MonitorProdu... = MonitorByPro... = SEQUENCE
1 1
= Fillkeactor ... = FillBoilerPotts ...
1 1
[=] StartReactio ... = ProduceFirst ...
1 1
= OperateReac... =l TakeOffInter ...
1 1
1 1
1 1
1 1
1 1

The Continue Task at the top and the large Parallel Task can both be part of the same multiple selection because
they are both part of the first Sequence Task. All of the other Tasks are also within the main Sequence Task, but
because they are deeper in the hierarchy, they cannot be selected along with the first Continue Task.

The two While Tasks can form a multiple sel ection because they both belong to the large Parallel Task.

The two small Parallel Tasks cannot form a multiple selection because, even though they are at the samelevel in
the hierarchy, they belong to different Sequence Tasks.

Finally, if weselect theMbni t or WAst .. Task, wecanasoselecttheRepl eni shFee.. Task and the Sequence
next toit, but neither theFi | | React or ...Task (wrong level) nor the Moni t or Pr odu.. Task (not in the same
Parallel).

Once a multiple selection has been made, it can be moved, copied or deleted just like asingle Task. To delete all
of the Tasks in a multiple selection (including any Tasks contained within them), simply press the DEL key or
right click and select Delete from the context menu. To move or copy, make surethe CTRL key isheld down and
then left click and drag one of the Tasks to its new location. Releasing the left mouse button while CTRL is till
held down will result in acopy; releasing the CTRL key first will resultin amove. Releasing CTRL and pressing
ESC while the Tasks are being dragged cancels the move/copy and retains the multiple selection.

When the Tasks in the multiple selection have been moved or copied, they will be pasted into the new locationin
aspecific order. Firgt, if they are not copied or moved to a Sequence Task, then one will be inserted automatically
and they will be inserted into that. Next, they will be inserted into the Sequence Task in the order that they had
in their origina Composite Task. That is: if they were originally in a Sequence Task, then their time order will
remain the same; if they were in a Parallel Task then the order from left to right in the Parallel Task will become
the order from first to last in the Sequence; finally, if they werein an If Task then the Task in the TRUE branch
will be inserted before the Task in the ELSE branch.

Just aswith any other edit made to the Schedule, a completed move or copy of a multiple selection can be undone
by pressing CTRL +z or the undo button.

We have seen that when most Tasks are added to the Schedule, a configuration dialog appears. This is because
most Tasks need some information to function. In the case of the Continue Task, we needed to specify an amount
of time and/or a condition. We also saw that the Reassign Task needs to know which Variables to Reassign and
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the new valuesthat they should take. Since different Tasks require different data, each configuration dialog will be
different. These are discussed in detail in the sections that describe the Tasks. There are, however, some common
features that can be described first.

The two features that are common to a lot of Task configuration dialogs are real-time syntax checking and the
Advanced view.

All Task configuration dialogs constantly check for errors in the input data. Whenever the data would prevent
the Task from working correctly, the OK button is disabled forcing the user to correct the error (or provide the
minimum amount of data) before the Task can be inserted or amended.

The Reassign Task requiresalist of Variables and values to assign to them. When first inserted into the Schedule,
thelist is empty as is shown in the screen shot below.

Figure 11.12. Initial configuration dialog

x
‘ariable I = I Expression I

<new [ |
Delete |

[8]4 | Cancel |

The Reassign Task is allowed to contain an empty list of Variables, so there is no error shown and the OK button
isenabled. To add anew Variable, click on the <new> text, enter the path of aVariable and pressRETURN. The
path will be checked to make sure it isvalid, as shown below.

Figure 11.13. Configuration dialog with illegal Variable path
x|

Expression

Variable

Delete |
€ variable not found: P
Advanced = | (64 I Cancel |

As the path is incorrect, the dialog reports an error and disables the OK button. If a syntactically valid path is
entered, but the Variable does not exist, gJPROMS gives a warning instead and enables the OK button. Thisis
because one might want to define this Variable after adding the Task.
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Figure 11.14. Configuration dialog with legal but undefined Variable path
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Thiswarning is also shown in the graphical Schedule:

Figure 11.15. Warnings ar e shown on the graphical Schedule

SCHEDULE
1
[=] SEQUENCE
1
[=] CONTINUE FOR 10
1

El REASSIGN Iy
Plant.a :=0;
END

1
[=] CONTINUE FOR 20
1
1

If the Scheduleis entered using g°PROM S language tab, then syntax errors can occur and they will also be shown
in the graphical Schedule (using a @ symbol). Double click on the Task (or go back to the gPROMS language

tab) to see the error message(s).
Once alegal Variable path has been entered, an expression for the new value must be entered. By default, this

is zero but when a new expression is entered, gJPROMSS checks its syntax and displays the message below if itis
illegal. Note also that warnings are highlighted in orange and errorsin red.

Figure 11.16. Configuration dialog with illegal expression
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127



Defining Schedules

When all of the input data are correctly entered, the Advanced button is enabled. This allows you to see the
gPROMS language of the Task, as shown below.

Figure 11.17. Configuration dialog showing advanced view
x|

REASSIGN
Plant.Reactor. 3TR. flow_Lin := 50;
END

[8]4 Cancel

Pressing the Simple button returns to the tabular view.
In summary:
 Schedules can be created using gPROM S language or the graphical interface

« Both methods are equivalent and can be used interchangeably on the same Schedule
* To create a Schedule

1. Click on the Schedule tab of a Process

2. Openthe Task Palette

* if not visible, select Palette from the View menu or press CTRL+F11
3. Drag aTask from the Task Palette onto the Schedule

» Additional Tasks can be dragged from the Task Palette into the Schedule using the hot spots (vertical black
lines in the Schedule) or by right clicking on a hot spot and using the context menu to insert a new Task

» For most Tasks, a configuration dialog will appear and need to be completed before the Task isinserted
e The simple view allows the Task to be configured using text boxes and buttons
» The advanced view allowsthe Task to be configured using gPROM S language
« Both views have rea-time syntax checking
» Double click on existing Tasks in the Schedule to bring up their configuration dialogs
» Composite Tasks allow complex structures to be built up
* Sequence, Parallel, While and If allow sequential, concurrent, iterative and conditional execution of Tasks
* A Seguence Task isautomatically inserted if needed

» Task information is shown on the Schedule and the level of detail shown is controlled by:

* Setting the width of Task boxes, using the - -l puttons
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« Hiding or showing the details using the = or = buttons (or by using the Schedule Tab Toolbar)
» Tasks never show more than four lines of language in the graphical Schedule; to see the full details:
« Move the mouse pointer over the Task to bring up atool tip that shows all of the language;
» Double click on the Task and select the Advanced view; or
 Right click on the Task and select Go to language from the context menu
 Tasks can be selected by left clicking on them
« multiple selections can be made by holding the CTRL key and left clicking on Tasks
» multiple selections may only comprise Tasks belonging directly to the same Composite Task
 Tasks can be moved by dragging them to anew hot spot and copied by dragging with the CTRL key held down
» Works with multiple selections as long asthe CTRL key isheld down
» Theoriginal order isretained and a Sequenceis added if necessary
» TheCut, Copy, Paste and Delete context menu items can be used for moving, copying or deleting selected Tasks

 All of the gPROMS language for Schedules is contained in the gPROMS language tab of the Process, within
a SCHEDULE section at the end

The next subsection briefly describes the Schedule Tab Toolbar.

The subsequent sections describe in more detail (including how to write gPROMSS language):
» Elementary tasks (what to do),

e Timing structures (when to do it),

 Results-control elementary tasks, and

» Tasksfor creating and using Saved Variable Sets.

Predefined Tasks are described afterwards. See: Defining Tasks.
The Schedule Tab Toolbar
When the Schedule tab is selected, the toolbar below will be visible.
Figure 11.18. Schedule Tab Toolbar

EE R

| = | =
+ - +

This contains 3 sets of controls.

The first is the overview control. When this button is pressed, an additional pane will be inserted between the
Project tree (or Task palette, if this is selected instead) and the Schedule. This pane shows an overview of the
Schedule and is useful when the Schedule is so complicated that it takes up more more space than can be shown
in the Schedule tab. An example of thisis shown below (where the Project tree and Palette have been hidden in
order to show more detail).
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Figure 11.19. Overview pane
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The black box on the overview indicates the view shown in the main, right-hand pane. This box automatically
moves as you adjust the view in the right-hand pane by dragging the scroll bars. Y ou can also move the black box
directly by left clicking on it and dragging it to a new position in the overview (asis being done in the screenshot
above). This then automatically changes the view in the large right-hand pane.

The next four buttons, shown below, allow one to adjust the width of the Task boxes shown in the Schedul e tab.
Figure 11.20. Width Controls

H+ =
Thefirst threelimit the width of the Task boxesto small, medium and large. The last one removes the limit so that
the Task boxes will be as wide as the longest visible line of language. The currently-selected option is indicated
by the depressed button (the second one in the screenshot above).

The final set of four controls allow one to expand or collapse the information shown in the task boxes (the
equivalent of pressing the ® and = buttons of a particular task).

To expand or collapse an individual Task, left click on it (to select it) and then press either J or J on the
toolbar respectively.

To expand all Tasksin the Schedule, press =) And to collapse all Tasks, press =

Elementary tasks

The following elementary tasks that can be used to define "what to do" during a gPROM S simulation:
» Reassign
» Switch

* Replace
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* Reinital

e Continue

The Reassign (Reset) elementary task

Model Variables can be Assigned values which can be either fixed or dependent on the simulation time using
expressions containing the Time statement. Up to now, Assignments could be changed using the Reset elementary
Task. With gPROMS v3.3, the Reassign elementary Task has been introduced and it serves exactly the same
purpose as Reset but has a better link to Assign.

Usersare encouraged to adapt the Reassign statement in their model s to use the more clearly related pair of Assign
and Reassign.

Full backward compatibility is maintained and all existing and new models using the Reset elementary Task will
continue working as before; they are also properly displayed in the new editor for Graphical Schedulesand Tasks.

The syntax for the Reassign task is:

REASSI GN
Vari abl ePath : = Expression ;
END

where Var i abl ePat h is the full path to any Variable in the Process and Expr essi on is any expression
involving constant numerical quantitiesand thekeyword TI ME (which representsthe simulationtime). Thismeans
that the expression may involve numbers and Parameters (or functions thereof) but not Variables because they are
not inherrently constant. When gPROMS refers to a Variable, it refers to the whole trajectory of it, so in order
to include Variables in a Reassign statement, the OLD( ) function must be used. This function can only be used
in a Schedule and it returns the value of a Variable (or a function involving Variables) at the time immediately
before it is used; it has no meaning within Models, because no well-defined values for the variables exist before
the simulation commences.

Within statements can be used inside a Reassign task in order to avoid repeating long pathnames.

The examples below demonstrate some applications of the Reassign task.

Example 11.1. Applications of the Reassign task

REASSI GN
V101. Position := 1.0 ;
END
REASSI GN
W THI N C101 DO
Signal := OLD( Bias + Gain * ( Error + Integral Error/ResetTime ) )
END
END
REASSI GN
T101.Flowmn := OLD(T101l.Flowin) + 0.1 ;
END

Inthefirst example, aReassi gn task isused to model the instantaneous opening of amanual valve by aprocess
operator. The Model that corresponds to unit V101 contains a variable called Posi t i on, which represents the
position of the valve stem, and an equation that relates the flowrate through the valve to the pressure drop acrossit
according to the position of the stem and the inherent characteristics of the valve. The initial position of the valve
stem is specified in the Assign section of the corresponding Process. During the simulation, the Reassign task
'reaches’ into the model and changes the value of thisinput variable, just as an operator would walk into the plant
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and manipulate the valve. The action is considered to occur in such asmall time interval relative to the length of
the entire simulation, that it can be modelled as an instantaneous change.

The second example demonstrates how the action of adigital controller at the end of its sampling interval might
be modelled. Here, the expression on the right hand side of the assignment is evaluated at the time of execution
of the Reassign task. The value of the expression is used to update the value of the control signal instantaneously
and according to a proportional-integral control law. This example illustrates the use of the OLD built-in function
to refer to the value of the Variables immediately before the execution of the Reassign task.

Finally, in the third example the Reassign task is used to impose a step change of magnitude 0.1 on variable
T101. Fl ow n, representing theinput flowrate to avessel. The OLD function must be used here because thetime
at which the Reassign Task occurs may not be known a priori, sothe Valueof T101. FI ow n may not be known
and cannot be replaced with aliteral value.

Using the TI ME function in a Reassign

In the Assign section of a Process a Variable value can be made dependent on the simulation time by using the
TI ME function

ASSI GN
T101.Fin := 20 + 1.2*TI ME ;

The Reassign elementary task can be used to change this Assignment in a Schedule in the same way as for all
other Assignments. In particular, the built-in function OLD can also be used with TI ME whichisuseful in order to
avoid discontinuities in input variables. In the following example, aVariable has been Assigned a constant value
which is subsequently changed in the Schedule to form aramp

ASSI GN
T101.Fin : = 20;

SCHEDULE

REASSI GN
T101.Fin := OLD(T101.Fin) + 1.2*(TIME - OLD(TIME));
END

It is important to note the difference between using TI ME and OLD( Tl ME) . In the example below, the value
of Variable Awill vary with the simulation time after the Reassign whereas the value of B will remain constant at
the value of the simulation time immediately before the Reassign task.

REASSI GN

A = TI Mg

B := OLD(TIME);
END

CONTI NUE FOR 100

The Reassign Task configuration dialog

When inserting or modifying a Reassign Task using the graphica Schedule interface, the following Task
configuration dialog is used.
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Figure 11.21. Reassign Task configuration dialog
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This dialog contains alist of al of the Variables that are to be Reassign by the Task. To add a new Variable to
the ligt, left click on the cell containing <new> and enter the full path of a Variable. Pathname completion can
be used at this stage, just as when typing g°PROMS language into a Model or a Process. Once the Variable path
has been entered press RETURN and the associated Expression cell will be set by default to zero. To modify this
value, left click on the cell and enter any valid gPROM S expression: as in the examples shown before, this may
contain other Variable paths, built-in functions (including OLD( ) ) and the Tl ME keyword. As many Variables
arerequired can be added in this way.

To delete a Variable from the Reassign Task, simply select it by left clicking on its row and then press the Delete
button.

Once complete, press the OK button.

The Cancel button will close the dialog and discard any changes made to the Task. If the dialog was activated due
to the addition of a new Task, then no Task will be added.

The Advanced button can be used to enter gPROM S language. For anew Task, the dialog will contain an empty
REASSI GN statement:

REASSI GN
END

The W THI N statement may be used in the Advanced view (just as it can be in the gPROMS language tab) if
many Variables within the same Unit are to be Reset. The Advanced view also supports pathname completion
and copy/paste functionality.

The Switch elementary task

Similar to the Reassign task, the Switch task may be used to alter the value of Selector Variables. Manipulation
of a Selector state by a Switch task forces the underlying model to change state as a result of an external action
as opposed to a physico-chemical mechanism. Applications include the switching of a pump on or off as shown
below, the replacement of a shattered bursting disc by an operator etc.
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Example 11.2. Manipulating selector variables using the Switch task

# MODEL Punp

VARI ABLE
Fl owl n, Fl owQut AS Fl owr at e
Pressin, PressQut AS Pressure

PressRi se AS Pressure
SELECTOR

PunpSt at us AS (PunmpOn, PunpOf )
EQUATI ON

Fl owQut = Flow n ;
PressCQut = Pressln + PressRise ;

CASE PumpSt atus OF
VWHEN PumpOn  : FlowQut = f(PressRise) ;
WHEN PumpOff @ PressRise = 0 ;

END # Case

# in the SCHEDULE of a Process
SW TCH
P101. PumpSt atus : = P101. PunpOn
END # Switch

In thisexample Model Pump hastwo states, PunpOn and Punp O f , designated by the selector variable St at us
and representing whether the pump is on or off. When the pump is switched on, the pump characteristic relates the
pressure rise across the pump to the flowrate through the pump (note that f ( Pr essRi se) isnot valid gPROMS
language: inthiscaseit is short-hand for some function of the Variable Pr essRi se). When the pump isswitched
off, the pressureriseis set to zero. Note that no SW TCH statements are present in the CASE statement because no
physico-chemical transitions link these two states. Whether the pump isinitially switched on or off forms part of
theinitial condition of each simulation experiment. Thisinformation is specified in the SELECTOR section of the
corresponding Process. On the other hand, external actions during the simulation are modelled by Switch tasks
and cause dynamic changes to this status.

The Switch Task configuration dialog

When inserting or modifying a Switch Task using the graphica Schedule interface, the following Task
configuration dialog is used.
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Figure 11.22. Switch Task configuration dialog
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Thisdialog containsalist of al of the Selector Variablesthat are to be Switched by the Task. To add anew Selector
Variabletothelist, left click on the cell containing <new> and enter the full path of a Selector Variable. Pathname
completion can be used at this stage, just as when typing gPROMS language into a Model or a Process. Once the
Selector Variable path has been entered press RETURN. If avalid Selector Variable path has been entered, the
New value cell will now contain alist of possible values one of which must be selected from thelist box (otherwise
asyntax error will be reported — see below). As many Selector Variables are required can be added in this way.

Figure 11.23. Switch Task configuration dialog: selecting a value
x|
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Delete |
€ Enter a selector value
adyanced = | 0] 4 I Cancel |

To delete a Selector Variable from the Switch Task, simply select it by left clicking on its row and then press
the Delete button.

Once complete, press the OK button.

The Cancedl button will close the dialog and discard any changes made to the Task. If the dialog was activated due
to the addition of a new Task, then no Task will be added.

The Advanced button can be used to enter gPROM S language. For anew Task, the dialog will contain an empty
SW TCH statement:

SW TCH
END

The W THI N statement may be used in the Advanced view (just as it can be in the gPROMS language tab) if
many V ariables within the same Unit are to be Switched. The Advanced view al so supports pathname completion
and copy/paste functionality.
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The Replace elementary task

The Replace elementary task 'unAssigns an input variable (leaving it free to vary) and Assigns a different onein
its place. An interesting application of the Replace task is the automatic calculation of the steady-state bias of a
controller. In order to determine the bias, a steady-state cal culation is performed in which the controller error is set
to zero by an input equation, while the biasisfreeto vary. The bias value obtained by this cal culation corresponds
to the correct steady-state bias for the controller. Therefore, before dynamic simulation begins, the Replace task
shown below can beused to "unAssign” the error variableand Assign the biasvariableto its steady-state value. The
controller error isthen freeto fluctuate as disturbances are introduced and the controller attempts corrective action.

Example 11.3. Automatic calculation of controller bias using a Replace task

REPLACE

Pl 101. Error
W TH

Pl 101. Bias := OLD(PI 101. Bi as) ;
END

The Replace Task configuration dialog

When inserting or modifying a Replace Task using the graphical Schedule interface, the following Task
configuration dialog is used.

Figure 11.24. Replace Task configuration dialog
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This diaog contains a list of al of the Assigned Variables that are to be Replaced by the Task and a list of
replacement Assignments. To add a new Assigned Variable to the list, |eft click on the cell in the top half of the
dialog containing <new> and enter the full path of an already-Assigned Variable. Pathname completion can be
used at this stage, just as when typing g°PROM S language into aModel or a Process. Press RETURN when done.
Add more Variables by repeating this process until all of the Variables that need to be Replaced have been entered.

The bottom half of the dialog contains alist of Variables that are to be Assigned in replacement of the Variables
listed above. This part of the dialog behaves exactly the same as the Reassign dialog. The only restriction is that
this part of the dialog must contain exactly the same number of Variable Assignments as Variables listed in the
top half (otherwise the problem will be under or over specified, and gPROM S will report an error.).

To delete a Variable from the either of the lists, simply select it by left clicking on its row and then press the
appropriate Delete button.

Once complete, press the OK button.

The Cancedl button will close the dialog and discard any changes made to the Task. If the dialog was activated due
to the addition of a new Task, then no Task will be added.
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The Advanced button can be used to enter gPROM S language. For anew Task, the dialog will contain an empty
REPLACE statement:

REPLACE
W TH
END

The W THI N statement may be used in the Advanced view (just as it can be in the gPROMS language tab) if
many V ariables within the same Unit are to be Switched. The Advanced view a so supports pathname completion
and copy/paste functionality.

The Reinitial elementary task

Both the Reassign and Replace elementary tasks introduce discontinuities in the simulation. Although these
discontinuities may affect the values of input and/or algebraic variables, they do not normally affect the values of
differential variables. The latter usually represent quantities that are conserved according to the laws of physics
(e.g. mass, energy, momentum etc.) and are therefore continuous across such discontinuities; gPROMS follows
thisassumption and normally expectsthe values of the differential variables before the discontinuity to bethe same
as those just after the discontinuity. The Reinitial elementary task makes it possible to introduce discontinuities
in the differential variables themselves. Of course, once we drop the continuity assumption, we need to provide
some other information to replace it.

Example 11.4. Applications of the Reinitial task

REI NI TI AL

Pl 101. | nt egral Error
W TH

Pl 101. I ntegral Error = 0 ;
END

REI NI TI AL
R101. Hol dUp( 1),
R101. Hol dUp( 2)

W TH
R101. Hol dUp(1) = 2 * OLD(R101. Hol dup(1)) ;
R101.X(2) = 0.3 ;

END

Two examples of the application of the REI NI Tl AL task are shown in the gPROMS code above. In the
first example, the integral error of a Pl controller is reset to zero. The execution of this task will result in
a reinitialisation calculation in which the usual assumption concerning the continuity of differential variable
Pl 101. I nt egr al Err or will be replaced by the equation in the second clause of the REI NI Tl AL task. The
latter simply states that the value of Pl 101. | nt egr al Er r or after the discontinuity is zero. Note that thisisa
general equation and not just an assignment, which is why we do not write:

Pl 101.Integral Error := 0 ;

Thisis consistent with the treatment of general initial conditionsin gPROMS. In the second example, the holdups
of components A and B in a chemical reactor change by instantaneous additions of material. The amounts added
are such that, in the final mixture, the holdup of A is doubled while the mass fraction of B is 0.3. Note again that
the condition specified is a general equation involving any variablesin the problem and not just the ones that are
reinitialised. Naturally, the number of differential variablesin the first clause of a REI NI TI AL task must match
the number of equationsin the second clause.

The Reinitial Task configuration dialog

When inserting or modifying a Reinitial Task using the graphical Schedule interface, the following Task
configuration dialog is used.
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Figure 11.25. Reinitial Task configuration dialog
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This dialog contains alist of al of the differential Variables that are to be Reinitialised by the Task and alist of
new initial conditions. To add a new differential Variable to the list, left click on the cell in the top half of the
dialog containing <new> and enter the full path of aVariable. Pathname completion can be used at this stage, just
as when typing gPROMS language into a Model or a Process. Press RETURN when done. Add more Variables
by repeating this process until all of the Variables that need to be Reinitialised have been entered.

The bottom half of the dialog contains a list of initial conditions that are to be used to reinitialise the system.
This part of the dialog behaves exactly the same as the Reassign dialog, although its function is fundamentally
different: these are additional equationsto be used for reinitialisation; not assignments of degrees of freedom. This
part of the dialog must contain exactly the same number of equations as Variableslisted in the top half (otherwise
the initialisation problem will be under or over specified, and gPROMS will report an error.). When using the
Simple view of the dialog, these initial conditions must be of the form <Variable> = <Expression>. Use the
Advanced view or the gPROMS language tab of the Process to enter more general initial conditions (of the form
<Expression> = <Expression>).

To delete a Variable from the either of the lists, smply select it by left clicking on its row and then press the
appropriate Delete button.

Once complete, press the OK button.

The Cancedl button will close the dialog and discard any changes made to the Task. If the dialog was activated due
to the addition of a new Task, then no Task will be added.

The Advanced button can be used to enter gPROM S language. For anew Task, the dialog will contain an empty
REI NI TI AL statement:

REI NI Tl AL
W TH
END

The W THI N statement may be used in the Advanced view (just as it can be in the gPROMS language tab) if
many V ariables within the same Unit are to be Switched. The Advanced view a so supports pathname completion
and copy/paste functionality.

The Continue elementary task

The execution of all elementary tasks described so far takes place instantaneously with respect to the simulation
clock. The Continue elementary task provides the mechanism by which periods of undisturbed operation between
discrete actions can be specified. We have aready used the CONTI NUE task in its ssimplest form:
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CONTI NUE FOR Ti nePeri od
This specifies aperiod of undisturbed process operation, starting from when the Continue task is encountered and
extending until the ssimulation clock has advanced TimePeriod time units. In fact, aswell as being area number,
TimePeriod may alternatively be areal expression involving any quantities that the schedule has access to. For
example:

# Continue for 100 tinme units
CONTI NUE FOR 100

# Continue for period equal to the sanpling interval
CONTI NUE FOR C101. Sanpl i ngl nt er val

Alternatively, the period of undisturbed process operation can be specified implicitly, in terms of a logical
condition:

CONTI NUE UNTI L Logi cal Condition

In this case, smulation continues until LogicalCondition becomes true. Again, LogicalCondition can be of
arbitrary complexity and can involve any quantities that the schedule has access to. For example:

# Continue until required conversion has been achieved
CONTI NUE UNTIL R101. Conversion > 0.95

# Continue until reactant hol dups have been exhaust ed
CONTI NUE UNTIL R101. Hol dUp(1) < Epsilon AND R101. Hol dUp(2) < Epsilon

The two forms described above may also be combined in a single CONTI NUE task through the use of AND and
OR operators:

CONTI NUE FOR Ti nePeriod AND UNTIL Logical Condition
CONTI NUE FOR Ti nePeriod OR UNTIL Logical Condition

Here, the period of undisturbed operation extends until the simulation clock has advanced TimePeriod time units
and/or until Logical Condition becomes true, respectively. For instance,

CONTI NUE FOR 100 OR UNTIL R101. Conversion > 0.95

advances the ssmulation for at most 100 time units even if the reactor conversion never reachesthe required value,
while

CONTI NUE FOR 100 AND UNTI L R101. Conversion > 0.95

advances the simulation for a minimum of 100 time units and then waits for the reactor conversion to reach the
required value.

The Continue Task configuration dialog

When inserting or modifying a Continue Task using the graphical Schedule interface, the following Task
configuration dialog is used.
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Figure 11.26. Continue Task configuration dialog
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This dialog contains two text boxes, at least one of which must contain avalid entry.

Thefirst box may contain a number or an expression that resultsin a number . Thisis used to provide the amount
of simulation time the Continue Task will use to advance the simulation. The gPROMS language produced is:

CONTI NUE FOR contents of first box
The second box may contain any logical expression and is the equivalent of:

CONTI NUE UNTIL contents of second box
which causes the simulation to advance until the value of the expression becomes FAL SE.
If both boxes contain valid expressions, then they will be combined into one statement using the val ue determined
by the radio button in the middle (which is only enabled when both boxes are complete). If the AND button is
selected, the following language is generated.

CONTI NUE FOR contents of first box AND UNTIL contents of second box

Thereisno Advanced view for the Continue Task. To enter gJ°PROM Slanguagedirectly, usethe gPROM Slanguage
tab for the Process or right click on the Continue Task and select Go to language from the context menu.

The Stop elementary task

Stop isasimple elementary tasks that may be used to halt a simulation (perhaps in conjunction with a conditional
statement) The syntax for STOP is:

STCP

There is no configuration dialog for the Stop Task as no further information is required.

Specifying the relative timing of multiple
tasks

Having discussed the elementary tasksthat define "what to do", we now introduce the following timing statements
that describe "how/when™ to do something:

* Sequence
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* Perallel
o If
* While

These are combined with the elementary tasks to create complex operating procedures.

Sequential execution — Sequence

Sequentia execution begins with the first task and only proceeds to the next task when execution of the preceding
task has terminated. Sequential execution of a series of tasks is specified by enclosing them within a Sequence
structure. The execution of a Sequence structure is complete when the execution of the last task in the structure has
terminated. The gPROM S code bel ow shows a Process for a simulation experiment involving a multi-component
mixing tank. Unit T101 is atank with two input streams, containing a mixture of components A, B and C. The
values of the flowrates and component mole fractions of the inlet streams are specified in the Assign section. The
outlet valve is closed. Initialy, the tank contains 1000kg of component A, with additional components B and C
to make up a volume of 1.5m°>. The initial amount of component C is twice that of component B. The schedule
of operation in the gPROMS code below contains only a Continue task, thus defining a period of continuous
operation with aduration of 120 time units.

Example 11.5. Mixing tank Process
# PROCESS Si npl eSi m

UNI'T
T101 AS M xi ngTank

SET # Paraneter val ues
WTH N T101 DO

NoConmp := 3 ;
Nol nput := 2 ;
Val veConst ant := 10 ;

CrossSectional Area := 1 ; # nP
Density := [ 950, 1000, 900 ] ; # kg/nB
END # Wthin

ASSI GN # Degrees of freedom
WTHI N T101 DO
# First inlet stream
Fin(l) :=5;
Xin(l,) :=[ 0.12, 0.21, 0.67 ] ;
# Second inlet stream
Fin(2) := 15 ;
Xin(2,) :=[ 0.98, 0.01, 0.017] ;
# Qutlet streamvalve fully closed
Val vePosition := 0.0 ;
END # Wthin

INFTIAL # Initial conditions
WTH N T101 DO
Hol dUp(1) = 1000 ;
2 * Hol dup(2) = HoldUp(3) ;
Total Volune = 1.5 ;
END # Wthin

SCHEDULE
CONTI NUE FOR 120
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The gPROMS code below illustrates how a more complicated operating procedure may be defined by using a
SEQUENCE structure in the SCHEDULE section. The execution of this simulation experiment will result in the

following:

1. Simulation begins. Based on the input equations specified in the ASSI GN section and the initial conditions
specified inthe | NI TI AL section, consistent initial values are determined for al variablesin the system.

2. Thefirst CONTI NUE UNTI L task is executed. Simulation proceeds until the volume of liquid in the tank
exceeds 3.5m°.

3. Thefirst REASSI GN task is executed. The flowrate of the first inlet stream is set to zero, while that of the
second inlet stream isincreased by 50%.

4. Thesecond CONTI NUE UNTI L task isexecuted. Simulation proceeds until the volume of liquid in the tank
exceeds 5m°.

5.  Thesecond REASSI GNtask isexecuted. The flowrates of both inlet streams are set to zero. The outlet valve
is opened completely.

6. Thethird CONTI NUE UNTI L task is executed. Simulation proceeds until the tank drains.

Example 11.6. Mixing tank Process — tasksin Sequence
# PROCESS SeqSi m

SCHEDULE
SEQUENCE

# Fill up tank to 3.5 nB
CONTI NUE UNTIL T101. Total Vol unme > 3.5

# Turn off first inlet stream and
# increase the flowate of the second by 50%

REASSI GN
WTHI N T101 DO
Fin(1) :=0 ;

Fin(2) := 1.5 * OLD(Fin(2)) ;
END # Wthin
END # Reassign

# Fill up tank to 5 nB
CONTI NUE UNTIL T101. Total Volune > 5.0

# Turn off second inlet stream and
# open the outlet valve conpletely

REASSI GN
WTH N T101 DO
Fin(2) :=0 ;
Val vePosition := 1 ;

END # Wthin
END # Reassign

# Drain tank
CONTI NUE UNTIL T101. Tot al Vol unme < 0.01

END # Sequence
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The equivalent graphical representation is shown below.

Figure 11.27. Mixing tank Process — graphical representation of tasksin Sequence

SCHEDULE
1
[=] SEQUENCE
1
[=] CONTINUE UNTIL T101,Totalvolume > 3.5
1
= REASSIGN
WITHIN T101 DO
Fin{1):=1;
Fin(z) 1= 1.5 * OLDFIn(ZY ;

1
[=] CONTINUE UNTIL T101,Totalvolume > 5.0
1
= REASSIGN
WITHIN T101 DO
Fin{Zi:=0;
WalvePosition i=1 ;

1
[=] CONTINUE UNTIL T101.TotalVolume < 0,01
1

There is no configuration dialog for the Sequence Task as al of the information about the order of its constituent
Tasksis contained in the graphical representation.

Concurrent execution — Parallel

Tasks to be executed in parallel are enclosed within a Parallel structure. Execution of all tasks begins
simultaneously and proceeds concurrently. The execution of a Parallel structure is completed when all tasks have
terminated. The gPROM S code below demonstrates the use of concurrent tasks in specifying an operating policy
for the mixing tank example. The operating policy isin fact the same as in the gPROMS code above. However,
here, the operating policies for the two inlet and the outlet streams are specified separately with three SEQUENCE
structures. These are then enclosed in a PARALLEL structure, so that the three policies are executed concurrently.
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Example 11.7. Mixing tank Schedule — tasksin Parallel
SCHEDULE
PARALLEL

# Qperating policy for first inlet stream
SEQUENCE
# Fill up tank to 3.5 n8
CONTI NUE UNTIL T101. Total Volunme > 3.5
# Turn off first inlet stream
REASSI GN
T101.Fin(1) := 0 ;
END # Reassign
END # Sequence

# Operating policy for second inlet stream
SEQUENCE
# Fill up tank to 3.5 n8
CONTI NUE UNTIL T101. Total Volunme > 3.5
# Increase the flowate of the second inlet stream by 50%
REASSI GN
T101.Fin(2) := 1.5 * OLD(T101. Fin(2))
END # Reassign
# Fill up tank to 5 n8
CONTI NUE UNTIL T101. Total Volunme > 5.0
# Turn of f second inlet stream and
REASSI GN
T101.Fin(2) := 0 ;
END # Reassign
END # Sequence

# QOperating policy for outlet stream
SEQUENCE
# Wait until both inlet streans have been turned off
CONTINUE UNTIL ( T101.Fin(1) < 0.01 ) AND ( T10l1l.Fin(2) < 0.01)
# Open the outlet valve conpletely
REASSI GN
T101. Val vePosition := 1 ;
END # Reassign
# Drain tank
CONTI NUE UNTIL T101. Total Vol ume < 0.01
END # Sequence

END # Parall el

The equivalent graphical representation is shown below.
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Figure 11.28. Mixing tank Process — graphical representation of Tasksin Parallel

SCHEDULE
1
= PARALLEL
1 1 1

[=] SEQUENCE [=] SEQUENCE [=] SEQUENCE

1 1 1
[=] CONTINUE UNTIL T10... [=] CONTINUE UNTIL T10... [=] CONTINUE UNTIL{ T1...

1 1 1

= REASSIGN = REASSIGN = REASSIGN
TI01.Finfl) :=0; TI01.Fini2):=1.5% .., T101.YalvePosition : ...

END END END

1 1 1
[=] CONTINUE UNTIL T10... [=] CONTINUE UNTIL T10...

1 1

= REASSIGN
TI01.Fin(2) =0
END
1
1

There is no configuration dialog for the Parallel Task as al of the information about its constituent Tasks is
contained in the graphical representation.

The black vertical line on the far right is the hot spot for inserting a new Task to be performed in Parallel with
the existing 3 Sequences.

Conditional execution — If

In many circumstances, the correct external actions to apply to a system cannot be fully determined a priori and
must be established from decisionsthat can only be madewhilethe simulation isin progress. For instance, consider
a batch operation involving a series of elementary processing steps applied to a batch of material. Once all steps
are completed adecision is made as to whether the batch is acceptable, should receive further processing or should
be discarded. This decision depends only on the quality of the batch, so the result can only be established after
the preceding steps have been compl eted.

The If conditional structure enables selection between aternative actions based on the current status of a system.
In common with most programming languages, it comprises an If clause, an optional Else clause and a logical
condition. If the logical condition is true when the If structure is encountered, the contents of the If clause are
executed; otherwise, the contents of the Else clause are executed. As with all other timing structures, conditional
structures can be nested in arbitrary manner. The gPROMS code below shows the application of the If structure
to 'clipping' adigital control signal before sending it off to a control valve. If, at the time of execution, the signal
proves to be greater than 1.0 or less that 0.0, the stem position is set to 1.0 and 0.0 respectively. Otherwise, the
stem position is set to the value indicated by the control signal.

Example 11.8. Application of the If conditional structure

SCHEDULE

o

| F C101. Control Signal > 1.0 THEN
REASSI GN V101. Position := 1.0 ; END
ELSE

| F C101. Control Signal < 0.0 THEN
REASSI GN V101. Position := 0.0 ; END
ELSE
REASSI GN V101. Position := OLD(Cl01. Control Signal) ; END
END # I f
END # I f
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When using the graphical interface, inserting an If Task will activate the following Task configuration dialog.

Figure 11.29. If Task configuration dialog
x|

IF this condition is krue

C101.Control$ignal > L.0f

[8]4 I Cancel |

Enter avalid logical expression inthetext box (e.g. CL01. Cont r ol Si gnal > 1. 0) and pressthe OK button.
gPROMS checks the syntax of the expression and only enables the OK button when it is valid.

Thereis no Advanced view of the configuration dialog for the If Task.

Once avalid expression has been provided, the If Task will be inserted and will look like this:

Figure 11.30. A new If Task

SCHEDULE
1
[= IF C101.ControlSignal = 1.0
THEN  ELSE

Drag new Tasks onto the THEN hot spot to provide the operating policy to be performed if the condition is TRUE.
The EL SE branch contains the optional operating policy when then if condition is FALSE.

The graphical representation of the example above is shown below.

Figure 11.31. Graphical representation of the If Task

SCHEDULE
1
[= IF C101.ControlSignal = 1.0
THEN ELSE
1 1

[= REASSIGN Y101, Position := 1.0 ; END = IF C101.ControlSignal < 0.0
THEN ELSE
1 1

[=] REASSIGN Y101, Position := 0.0 ; END =] REASSIGN V101, Position := OLD{C101.Con...
1 1
|

lterative execution — While

Many processing systems are characterised by the repetitive nature of external actions required to achieve the
desired operation. For example, periodic processes, such as pressure swing or temperature swing adsorption,
are usually brought to and maintained at a 'cyclic steady-state' by a sequence of external actions that is applied
repeatedly. Also, the action of adigital control system on a process can be considered to consist of aregular cycle
between continuous operation, sampling and implementation of discrete actions.

TheWhileiterative structure permitsthe repeated execution of thetasksit enclosesfor aslong asalogical condition
is satisfied. When the While structure is first encountered, the logical condition is examined. If it is satisfied, the
enclosed tasks are executed. The condition is then examined again and, if till satisfied, the enclosed tasks are
executed once more. This process continues until the condition is no longer satisfied, at which point the execution
of the While structure is completed. Note that, if the condition is not satisfied initially, the execution of the While
structure terminatesimmediately. The gPROMSS code below illustrates the use of aWHI LE structurein specifying
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the operation of adigital Pl controller. While the conversion in the reactor is below 0.95, the controller repeatedly
goes through an inactive step of 5 time units (CONTI NUE task), followed by a sampling and calculation step
(REASSI GNtask), followed by a clipping and implementation step (I F structure).

Example 11.9. Application of the Whileiterative structure

SCHEDULE

VWHI LE R101. Conversion < 0.95 DO
SEQUENCE

# Conti nuous operation

CONTI NUE FCOR 5

# Sanmpling and cal cul ati on

REASSI GN
Cl101. Error := 150.0 - Sensor101. Measurenent
Cl101. I ntegral Error
C101. Cont r ol Si gnal

Cl01.Integral Error + 5.0*C101. Error
0.5 + 1.2*(Cl01. Error +
Cl01.Integral Error/20.0) ;

END # Reassign
# Cipping and inplenmentation
| F C101. Control Signal > 1.0 THEN
REASSI GN
V101. Position := 1.0 ;
END
ELSE
| F C101. Control Signal < 0.0 THEN
REASSI GN
V101. Position := 0.0 ;
END
ELSE
REASSI GN
V101. Position :
END
END # I f
END # I f
END # Sequence
END # Wil e

OLD( C101. Control Signal) ;

When using the graphical interface, inserting a While Task will activate the following Task configuration dial og.

Figure 11.32. While Task configuration dialog
x|

WHILE this condition is true

R101.Conversion < 0.95

[8]4 I Cancel |

Enter avalid logical expression in the text box (e.g. RLO1. Conver si on < 0. 95) and press the OK button.
gPROMS checks the syntax of the expression and only enables the OK button when it isvalid.
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There is no Advanced view of the configuration dialog for the While Task.

Once avalid expression has been provided, the While Task will be inserted and will look like this:

Figure11.33. A new If Task

SCHEDULE
1
[=] WHILE R.101.Conversion < 0,95 DO

The While Task may only contain a single Task. Any Task can be dragged onto the hot spot for the While Task.
To include more Tasks, they must be contained in one of the other Composite Tasks, so drag a Sequence, Parallel
or If Task into the While Task and then drag new Tasks into the Composite Task. (A quicker way to include a
Sequence Task is to drag the first Elementary Task into the While Task and then to drag the second Elementary
Task into it after the first: gPROM S will then automatically insert the required Sequence Task.

The graphical representation of the example above is shown below.

Figure 11.34. Graphical representation of the While Task

SCHEDULE
1
[=] WHILE R.101.Conversion < 0,95 DO
1
[=] SEQUENCE
1
[=] CONTINUE FOR &
1
= REASSIGN
C101.Error := 150.0 - Sensor101.Measurement ;
C101.IntegralError ;= C101.IntegralError + 5.0%C101,.Errar ;
C101.ControlSignal := 0.5 + 1.2%{C101.Errar +

1
[= IF C101.ControlSignal = 1.0

THEN ELSE
1 1
= REASSIGN [= IF €101, ControlSignal < 0.0
W101,Position :=1.0; THEN ELSE
END 1 1
= REASSIGN = REASSIGN
W101,Position := 0.0 ; W101,Position := OLD{C101.ControlSignal) ;
END END

Result control elementary tasks

The "what to do" elementary tasks influence the numerical results of a simulation (e.g. Reassign changes the
value of a degree of freedom, thereby changing the results of the simulation). We now consider the following
useful "result control" elementary tasks that influence the generation of results of a simulation, and not the results
themselves:

* Message
* Monitor

» Resetresults

The message elementary task

Messageis asimple el ementary tasks that may be used to write amessage to the screen. The syntax for MESSACGE
is:

148



Defining Schedules

MESSAGE "t ext"

When using the graphical interface, the Task configuration dialog for the Message Task is used to specify the
message text:

Figure 11.35. M essage Task configuration dialog

x
Message Texk: IA message!| J_
[8]4 I Cancel |

Simply enter the desired text (without the quotes) in the text box and press the OK button.

The Monitor elementary task

Normally, during agPROM S simulation the values of all variables at each reporting interval are sent to the Output
Channel in order to be plotted. The Monitor task may be used to restrict the amount of data that is sent, and may
be useful for a number of reasons:

* For large distributed models, which may consist of tens of thousands of variables, only asmall proportion may
be of particular importance and it may sometimes useful to prevent gPROM Sfrom sending all of thesevariables.
One such exampleis chromatographic processes, where only the effluent profiles may be of importance. In this
case, many of the variables are of secondary importance and could be suppressed from the gPROMSS output.

* Redtricting the output from gPROMS may be useful in other circumstances: for example, periodic adsorption
processes require many cycles of operation before a periodic steady state is achieved. If the modeller is only
interested in the steady-state conditions, then the output from gPROM S may be disabled until the final cycle.

» Finaly, restricting the data that are sent results in much smaller files (large distributed models may require
several Megabytes of storage).

The above situations can be dealt with in two ways, depending on whether variables should be suppressed
permanently or only at certain times. The Monitor section of the Process is used to specify which variables are
to be monitored during the simulation; those that are not specified are permanently suppressed. If the Monitor
section is omitted, then all variables are monitored. The syntax for the MONI TOR section is as follows:

UNIT

MONI TOR
Vari abl ePat hPattern ;

SET

where VariablePathPattern is the full pathname of the variable to be monitored. Asterisks (*) and percent signs
(%) can be used as a wild cards to specify ranges of Variables that are to be monitored. Asterisks match any
sequence of characters and percent signs match any single character. Any Variable paths that match the string
expressions in the MONITOR section are included in the results. Some examples of VariablePathPattern are:

MONI TOR
* ; # nmonitor everything! (same as not including a MONI TOR section
aaa. * ; # nmonitor all Variables and Units in aaa
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aa% ; # monitor all Variables and Units begining with aa and ending
# in any other character, e.g. aaa, aab, aac, aa0, aa_ etc.

2

aaa. v* ; # monitor all Variables and Units in aaa that begin with a v
aaa.*.y(*,2) ; # nonitor all Variables y that belong to any Unit of aaa

# (or any subunits thereof), provided that they are arrays of

# dimension > 1; nmonitor only the elenents with the | ast
*X* ; # all variables starting with x would be nmonitored in all

# also, any units starting with x would also be nmonitored entirely

Note that for distributed variables (i.e. those that depend on a DISTRIBUTION_DOMAIN), the indices must be
integers and depend on the numerical method applied to the domain. For each distributed variable, gPROM S will
generate an indexed variable with the same number of dimensions asthe number of DISTRIBUTION_DOMAINSs
that the variable depends on. The length of each dimension is equal to NE x O + 1 for OCFEMand NE+1 for
finite difference methods, where NE is the number of elements and O is the order of the method. For example,
if the variable DV1 is defined by:

Dvi AS DI STRI BUTI ON( x, y) OF NoType
wherethe DI STRI BUTI ON_DOMAI Nsx and y are Set to the following methods:

X
y .

[ OCFEM 3, 5] ;
[ BFDM 2, 20 ] ;

then the maximum values for the indices of DV1 are 16 (5 x 3+ 1) and 21 (20+ 1) respectively.

During the simulation, the output of all variables that are specified in the Monitor section can be toggled using
the Monitor task. The syntax for thisis:

MONI TOR ON
to enable monitoring, and:
MONI TOR OFF

to disable monitoring. Note that thisis a Task that can only appear in the Schedule of a Process and is distinct
from the MONI TOR section of the Process.

Onefinal use of the MONI TOR Task isto change the frequency at which results are sent to the Output Channel(s).
Thisis done by:

MONI TOR FREQUENCY Nureri cal Val ue
where Numrer i cal Val ue isanumber or an expression that results in a number.

An example of the MONI TORtask isshown inthe gPROM S code below, wherethetask DoSomeCycl es operates
the process until cyclic steady stage is achieved, then DoOneCycl e operates the process for a single cycle after
monitoring has been enabled.

Example 11.10. Example of the MONITOR task

SCHEDULE
SEQUENCE
MONI TOR OFF
DoSonmeCycl es ;
MONI TOR ON
DoOneCycl e ;
END
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Another example of the MONI TOR task, illustrating the FREQUENCY keyword, is shown next. In this example,
the first Task manipulates the inputs of the system slowly so that a reporting interval of 10 is more than enough
to observe the dynamics. Then, the Fast Oper at i on Task creates much faster dynamics, which are too fast
to be seen clearly with areporting interval of 10. The MONI TOR task changes the reporting interval to a more
suitable value. The benefit of this approach, compared with ssmply setting the Reporti ngl nterval tolin
the SOLUTI ONPARANETERS section, isthat the resulting Case is much smaller.

SOLUTI ONPARAMETERS
Reportinglnterval := 10 ;
SCHEDULE
SEQUENCE
Sl owOper ati on ;
MONI TOR FREQUENCY 1
Fast Operation ;
END

where SlowOperation and FastOperation are Tasks that respectively produce slow and fast dynamics in the
simulation.

Exactly when the reporting interval is updated depends on when the MONITOR Task is encountered. gPROM S

will always continue to the end of the current reporting interval before updating. The example below illustrates
precisely what happens.

SOLUTI ONPARAMETERS
Reportinglnterval := 10;

SCHEDULE
SEQUENCE
CONTI NUE FOR 7
MONI TOR FREQUENCY 1
CONTI NUE FOR 8
END

Figure 11.36. Output from the example Scheduleillustrating MONITOR FREQUENCY

:!"'.Execution DOutput {Monitor_Frequency_Example_: ;|g|5|
Show messages ko level IE
EPerfarming initialisation calculation at Time: O ;I

Attempting solution with the currently active IF and CASE hranches
Initialisation calculation completed.
SEQUENCE entered at O
CONTINUE UNTIL Flowsheet.x »= 10 executed at @

EHPeriod of integration heginning at time: O
Integrating from O to 10

State event Flowsheet.x »= 10 satisfied at 7.76438

MONITOR FREQUENCY 1 executed at 7.76438
CONTINUE FOR 8 executed at 7.76438

EPeriod of integration beginning at time: 7.76438
Integrating from 7.76438 to 10
Integrating from 10 to 11
Integrating from 11 to 12
Integrating from 12 to 13
Integrating from 13 to 14
Integrating from 14 to 15
Integrating from 15 to 16

Time event occurs at 15,7644 _J
END # SEQUENCE
Execution of Monitor_Freguency_Example completed successfully. _J:J
1| | »

Properties |

As can be seen, gPROMS starts at time, t = 0 and begins integration with the reporting interval equal to 10, so
gPROMS outputs data at t = 0 and the next set of data are due at t = 10. At t = 7.76, the Continue Task ends, so
aset of datais sent to the output channel at this time (because data are always sent when a discontinuity occurs).
Thereporting interval is updated to every 1 unit of time but thiswill not change until the next scheduled reporting
time, t = 10, so gPROM S then integrates from 7.76 to 10. At t = 10 another set of datais sent to the output channel
and the new reporting interval takes effect: gPROMS now integrates from 10 to 11, and so on.
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The reason for this behaviour is clear: if gPROMS were to update the reporting interval immediately, then data
would be sent to the output channel at times 0, 7.76, 8.76, 9.76 etc., which is not very elegant.

The Monitor Task configuration dialog

When inserting or modifying a Monitor Task using the graphical Schedule interface, the following Task
configuration dialog is used.

Figure 11.37. Monitor Task configuration dialog
x|

" Results monitaring OFF

(" Change results monitaring FREQUENCY to I

€3 select an option.

0] 4 I Cancel |

The Monitor Task configuration dialog allows one to turn monitoring off or on, or to specify a monitoring
frequency. Only one option can be selected. To turn on monitoring and set a new value for the monitoring
frequency, simply insert two Monitor Tasks.

The Resetresults elementary task

The RESETRESUL TS may be used in the Schedul e section of Processes or Tasksto discard all previous data that
was transmitted to a particular output channel. It may be called using one of the following commands:

RESETRESULTS gRMS
RESETRESULTS gPLOT
RESETRESULTS gExcel Qut put
RESETRESULTS gUser Qut put
RESETRESULTS ALL

When using the graphical interface, the Task configuration dialog for the Resetresults Task is used to specify one
of the above options:

Figure 11.38. Message Task configuration dialog

(Y RESETRESULTS task editor x|
Reset resuls outputchernl; [ - |
[8]4 I Cancel |

Simply select the desired option using the list box and press the OK button.

The Save and Restore elementary tasks

Occasionally, it may be necessary to use the solution of one simulation in another. gPROMS provides afacility to
Save the current values of al or some of the variablesin asimulation and to Restore them in (the same) or another
simulation through the use of Saved Variable Sets. The syntax of the SAVE and RESTORE tasks are;

SAVE <Var Type> "V_Set _Nane"

and
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RESTORE <Var Type> "V_Set _Nanme"

where the optional argument VarType can be one of STATE, ALGEBRAI C and | NPUT (or any combination of
these, separated by commas), and V_Set Name is the name of the Saved Variable Set that the variables will be
savedin (or restored from). If the Var Type argument is omitted, then gPROM Swill savethevaluesof al variables;
whereas arguments STATE, ALGEBRAI C and | NPUT instruct gPROMS to save only the values of the state,
algebraic or input variables respectively. The Var Type optiona argument works similarly with the Restore task.

Any new Variable Set created during a simulation activity using the Save elementary task will be stored in the
Results Entity group within the Execution Case. So that the Variable Set can be used in conjunction with the
Restore elementary task, the Variable Set must then be copied into the working project where it will appear in
the Saved Variable Sets Entity group.

Itisalso possibleto over-write (or modify) an existing Variable Set by using the Save elementary task onaVariable
Set already present in the source project. In thisinstance, two Saved Variable Sets with the same name will appear
in the Execution Case: the original (from the working project) will appear in the Original Entities and the new
entity created by the Save elementary task will be stored under Results.

ModelBuilder can be configured so that the Saved Variable Set in the Project isautomatically updated. Thisisdone
by checking the auto update source project option in the execution dialog that can a so be seen in the figure below.

Figure 11.39. Auto Update Sour ce Project Option

Case name Gimulabe_BatchPlant_20100425_121637

V¥ Delete previous Cases Fram the same Activity Entity

[~ Petform Initialisation Procedure only

[~ Petform Initialisation Procedure as part of the main activity

™ Use steady-state initial conditions

" Ignore schedule

[V Include results trajectory in Case

™ send results trajectory to gRMS

Reporting interval |100.0

¥ Include entities

[V Include complete problem description

Qutput level Mormal diagnostics LI

¥ Release license after execution

™ Retain execution directory

V' Run activity with low pricrity

[V, auto-update saved variable sets in source project

I gwitch to topology view in execution output

OF I Cancel |

Variables may also be Restored from multiple sets, separated by commas:
RESTORE "v_set1", "v_set2"

Note that, unlike in the PRESET section, when using the Restore Task to restore state Variables, the values of all
Selector Variables will be restored as well.

The gPROMS code below illustrates how the SAVE and RESTORE tasks could have been used in the example
problem presented in the Monitor section. Rather than solving the problem in one Process, with Monitor used to
show only thelast cycle of operation, here we can use two Processes: oneto establish the cyclic steady state and to
save the variables, and the second to simulate a single cycle using as initial conditions the values of the variables
at the end of the simulation of the first Process. One advantage of this approach isthat the variables can be plotted
against the local time for the cycle (i.e. the cycle starts at time = 0) as opposed to the global time of the whole
simulation (where the start of the cycle will be at some arbitrary time).
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Example 11.11. Application of the Save and Restore Tasks.

# the Schedul e of one Process or Task
SCHEDULE
SEQUENCE
MONI TOR OFF
DoSonmeCycl es ;
SAVE STATE "CyclicSteadySt ate"

END
# the Schedul e of another Process or Task
SCHEDULE

SEQUENCE
MONI TOR OFF
RESTORE STATE "CyclicSteadySt ate"
MONI TOR ON
DoOneCycl e ;

END

When Save or Restore Tasks are inserted into the Schedule using the graphical editor, the following configuration
dialogs are used.

Figure 11.40. Save Task configuration dialog
x|

Saved variable set name ISavel|

Save variables of type
¥ input:

v algebraic

¥ state (differential)

Figure 11.41. Restore Task configuration dialog

x
Saved variable set name LI
Restaore variables of tym
¥ input:
v algebraic

¥ state (differential)

€ Enter a Filename

When configuring a Save Task, the name of the Saved Variable Set must be entered in the text box. The types of
Variables stored in the Saved Variable Set are specified by checking or unchecking the boxes next to the Variable
types:. input, algebraic and state (differential). These can be set in any combination.

The Restore Task is configured similarly to the Save Task. The only exception is that the name of the Saved
Variable Set must be specified by choosing an option from the list box. The list box will only contain the names
of the Saved Variable Sets present in the Project.




Chapter 12. Defining Tasks

A Task forms a re-usable part of the operating procedure; it is associated with one or more Models and can be
used multiple times within a Schedule and by other Tasks.

A Task entity is defined by three sections: Task Parameter declarations, (optional) Task Variable declarations and
a Schedule where the Task's operating procedure is expressed in terms of the Task Parameters and Variables.

Overall, the structure of a Task definition is the following:

PARAMETER
Par anmet er decl arations ...

VARI ABLE
Local variable declarations ...

SCHEDULE
Schedul e declaration ...

The Variable and Schedule sections of a Task

The Variable section is used to declare local variables. They can only be used within the Task in which they are
declared. Task Variables are the equivalent of local subroutine Variables and as such are calculated by the Task.
They should not be confused with Model Variables and are NOT associated with Variable Typesinstead they are
declared to be of type | NTEGER or REAL.

The Schedul e section defines the operating policy implemented by the Task. It is based on the same language used
to define the Schedul e section in Process Entities, the only difference being that a Task Schedule has accessto the
local variables declared in the Variable section. The values of the latter can be manipulated by using assignment
statements.

IChanging the value of a Task Variable does not require a RESET statement; this only appliesto Model Variables.
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Example 12.1. Task for adigital Pl control law

# TASK Digital Pl

VARI ABLE
Error, Integral Error, Control Signal AS REAL

SCHEDULE
SEQUENCE
Integral Error := 0 ;
VWHI LE TI ME < 1000 DO
SEQUENCE

CONTI NUE FOR 5.0
Error := 150.0 Sensor 101. Measur enent ;
Integral Error := Integral Error + 5.0*Error ;
Control Signal := 0.5+ 1.2 * ( Error + Integral Error/20.0 )
I F Control Signal > 1.0 THEN

RESET Val ve201. Position := 1.0 ; END
ELSE
| F Control Signal < 0.0 THEN
RESET Val ve201. Position := 0.0 ; END
ELSE
RESET Val ve201. Position := OLD(Control Signal) ; END
END # | f
END # | f
END # Sequence
END # Wil e

END # Sequence

This example shows a TASK that models the action of adigital Pl controller. Three local variables are declared in
the VARI ABLE section, namely Err or , I nt egr al Err or and Cont r ol Si gnal . Inthe SCHEDULE section,
an assignment statement initialises | nt egr al Err or to zero. Then, the repeated action of the controller is
specified within a WHI LE structure. This is executed until a termination condition is satisfied (in this case,
when 1000 time units have passed on the simulation clock). The action of the controller is itself a sequence of
elementary Tasks. First, a CONTI NUE task is used to enforce a period of undisturbed operation (5 time units).
After this, sampling takes place. The signal of a temperature sensor is used to update the controller Er r or and
I nt egral Error andaContr ol Si gnal iscaculated. Anl F structureisused to clip the signal which isthen
implemented it through a RESET task.

In essence, Tasks are user-defined tasks. Once declared, they are equivaent to elementary tasks and can be used
in Process Schedules or even within the Schedules of other Tasks. For instance,

SCHEDULE
PARALLEL
Di gital PI
CONTI NUE FOR 1000
END # Parall el

executes the digital control law in parallel with the operation of the rest of the process.

The Parameter section of a Task

The Digital Pl control example, although useful for grouping a series of elementary tasks together, has a big
disadvantage: it is extremely specific. First of all, it refers to a unique sensor/valve pair, Sensor 101 and
Val ve201 respectively. Moreover, the sampling interval (5 time units) and controller tuning parameters (150.0,
0.5, 1.2, 20.0) are expressed as constant values. Finaly, the task always terminates after 1000 time units have
elapsed and isthus appropriate for asimulation of that length only. If it were necessary to apply the same operating
procedure to adifferent sensor/valve pair possibly using different tuning parametersfor the controller, anew Task
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would have to be declared. Thisis clearly unsatisfactory. In most instances, we want to be able to declare Tasks
that are independent of the details of an individual simulation.

For instance, we want to be able to define a Task that switches 'a pump on and another that switches'a pump off.
'A' is used to indicate that the actual pump on which the Tasks act remains unspecified until the moment they are
used in a particular simulation experiment. Similarly, we want to be able to define a Task for 'a digita controller
and only specify the sensor/valve pair it uses and the values for its tuning parameters when the Task is actually
used in asimulation experiment.

This is achieved by using Task parameters. Upon declaration, a Task can be parameterised with respect to an
arbitrary number of parameters. The actual values of these parameters have to be specified only when the Task
isactually used in a specific simulation experiment.

Task parameters are declared in the Parameter section. Declared parameters may be of any of the following types:

» | NTECER, REAL or LOG CAL constants. These are used to parameterise a TASK with respect to, for instance,
controller tuning parameters, event durations etc.

* | NTEGER _EXPRESSI ON, REAL_EXPRESSI ON or LOGQ CAL_EXPRESS| ON. These are used to
parameterise a TASK with respect to, for instance, logical conditions for the conditional and iterative structures
€etc.

» MODEL. These are used to parameterise a TASK with respect to the actual Models on which it acts.

Example 12.2. Task to switch on a pump
# TASK Swi t chPunpOn

PARAMETER
Punp AS MODEL Generi cPunp

SCHEDULE
RESET
Pump. Status : = Punp. Open ;
END # Reset

This example shows atask that switches a pump on. Once this Task has been defined, it can be used in a Schedule
section. For instance,

SCHEDULE

Swi t chPumpOn(Punp |I'S Pl ant. P201)

will switch on pump Plant.P201, while

SCHEDULE
SEQUENCE
Swi t chPunmpOn(Punp |'S Pl ant. P205)
Swi t chPunmpOn(Punp |'S Pl ant. P206)

Swi t chPunmpOn(Punp |'S Pl ant. P207)
END # Sequence

will, in sequence, switch on pumps Pl ant . P205, Pl ant . P206 and Pl ant . P207.

Note that, when executing a Task that contains parameters, the proper list of arguments must be given aong
with the name of the Task. Tasks that contain parameters can be thought of as the equivalent of subroutines or
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functions in high-level programming languages. Variables declared in the Variable section are the equivalent of
local subroutine variables. On the other hand, the Parameter section is the equivalent of a function prototype. It
defines the number and type of arguments that a Task accepts as arguments. A 'call’ to the Task then includes a
list of al the Parameters declared in the Task and vaues for each of them.

Example 12.3. Parameterised Task for a digital PI control law

# TASK Digital Pl

PARAVETER
SetPoint, Bias, Gin, Integral Time AS REAL
Sanpl i ngl nt er val AS REAL
Term nati onCondi tion AS LOd CAL_EXPRESSI ON
Sensor AS MODEL Generi cSensor
Val ve AS MODEL Generi cVal ve
VARI ABLE
Error, Integral Error, Control Signal AS REAL
SCHEDULE
SEQUENCE
Integral Error := 0 ;
VWHI LE NOT Termi nati onCondition DO
SEQUENCE
CONTI NUE FOR Sanpl i ngl nt erval
Error := SetPoint - Sensor.Measurenent ;
Integral Error := Integral Error + Sanplinglnterval *Error ;
Control Signal := Bias + Gain*( Error +

Integral Error/Integral Tinme ) ;
| F Control Signal > 1.0 THEN
RESET Val ve. Position := 1.0 ; END
ELSE
| F Control Signal < 0.0 THEN
RESET Val ve. Position := 0.0 ; END
ELSE
RESET Val ve. Position := OLD(Control Signal) ; END
END # | f
END # | f
END # Sequence
END # Wil e
END # Sequence

This example presents the correct version of the digital controller Task. The Parameters include real constants
that determine the various tuning parameters and the sampling interval, alogical expression that determines the
termination of control, and model parameters that determine the sensor/valve pair on which the controller is used.

This Task ismuch more reusable. It can be used for any sensor/valve pair in asimulation experiment and different
tuning parameters for the controller can be specified without rewriting the Task. For instance,

SCHEDULE
PARALLEL
Digital Pl
( Set Poi nt IS 150. 0,
Bi as IS 0.5,
Gai n IS 1.2,
Integral Ti ne IS 20.0,
Sanpl i ngl nt er val IS 5.0,
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Term nationCondition IS Plant. T101. Tot al Vol une > 5.0,

Sensor I'S Pl ant. Sensor 101,
Val ve I'S Plant. Val ve205 )
Di gital PI

( Set Poi nt IS 10.0,
Bi as IS 0.8,
Gai n IS 2.6,
I ntegral Ti me I'S 50.0,
Sanpl i ngl nt er val IS 1.0,
Term nationCondition IS Plant. R101. Tenperature > 80.0,
Sensor I'S Pl ant. Sensor 103,
Val ve I'S Plant. Val ve207 )

END # Parall el

will initiate two digital control procedures in paralel, acting on two different sensor/valve pairs. The two
procedures al so have different controller tuning characteristics and adifferent logical expression determining their
termination.

Hierarchical Task Construction

A complex operation on one or more items of process equipment can usually be decomposed into lower-
level, simpler operations. Each of the lower-level operations may in turn be decomposed in other, more
primitive operations, the decomposition continuing until al operations can be described in terms of elementary
mani pulations of the underlying models made possible by elementary tasks. Similarly to hierarchical sub-model
decomposition, this hierarchical sub-task decomposition defeats complexity by restricting the scope of the
problem considered at any point to a manageable level.

Hierarchical sub-task decomposition in gPROMS is possible because previously declared Tasks may be used

within other, higher-level Tasks and is greatly facilitated by the fact that suitably parameterised Tasks may be
reused severa timesin different parts of an operation.

Example 12.4. L ow-level Task to operate areactor

# TASK Oper at eReact or

PARAMETER
React or AS MODEL StirredReact or
SR AS REAL
Start Tenperature AS REAL
Term nati oncondition AS LOG CAL_EXPRESSI ON
SCHEDULE
SEQUENCE
RESET
Reactor. SteanRate : = SR ;
END
CONTI NUE UNTI L Reactor. Tenperature > Start Tenperature
RESET
Reactor. SteanRate := 0 ;
END

CONTI NUE UNTIL Term nati onCondition
END # Sequence

Consider, for instance, the gPROMS code above containing the Oper at eReact or TASK. It specifies an
operating procedure for performing a reaction in a reactor of type StirredReact or (a parameter of the
TASK). The operating procedure is simple, involving the execution of four elementary tasks in sequence. First,
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the steam supply rate to the reactor is set to a value SR. Operation then continues until the temperature in the
reactor has exceeded a predefined limit St ar t Tenper at ur e. Finaly, the steam supply is cut off and operation
continues until a TerminationCondition is satisfied. In addition to the reactor unit, SR, St art Tenper at ure
and Ter m nat i onCondi ti on are also parameters of the TASK, of type REAL, REAL_EXPRESSI ON and
LOG CAL_EXPRESSI ONrespectively.

Example 12.5. High-level Task to operate a reactor train
# TASK Oper at eReact or Trai n

PARANVETER
Pl ant AS MODEL ReactorTrain

SCHEDULE
PARALLEL
Per f or nReact i on
( Reactor IS Plant. R1,
SR IS 35. 3,
Start Tenperature IS 70.0,

Term nationCondition IS Plant.Rl. Conversion(1) > 0.95 )
Per f or nReact i on

( Reactor IS Plant. R2,
SR I'S 10. 0,
Start Tenperature I'S 40. 0,

Term nationCondition IS Plant. R2. Tenperature > 120.0 )
END # Paral |l el

The gPROMS code above illustrates how the Oper at eReact or TASK is used to define a higher-level Task,
namely Oper at eReacti onTrai n. Two Oper at eReact or tasks are invoked in paralel to model the

operation of two reactors. Parameterisation also permits the specification of different values for the operating
parameters of the two reactors.

Building Tasks using the graphical interface

Just as it is possible to construct a Schedule of a Process using a graphical interface, it is also possible to build
new user-defined Tasks graphically. The following tabs provide a graphical interface for building (or modifying)
user-defined Tasks and are entirely equivalent to typing in g°PROM S language.

* Interface, which is equivalent to the PARAMETER section

» Variables, which is equivalent to the VARIABLE section

 Schedule, which is equivalent to the Schedul e section

Either or both methods can be used interchangeably: modifications made using one of the three tabs above will
automatically result in the same changes to the appropriate section of the gPROM S language tab and vice versa.

These three tabs are described next. You should be familiar with Defining Schedules (in particular, using the
graphical interface) before reading the documentation on the Schedule tab.

Using the Interface tab

After inserting a new Task in the Project (right click on Tasks in the Project tree, select New entity..., provide a
name and click OK), left click on the Interface tab and the following will be shown.
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Figure 12.1. New Task Interfacetab
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The Interface tab contains a list of all of the Parameters in the Task. To add a new Parameter, left click on the
<new> cell and enter anamefor the new Parameter. Then thetype can be chosen from thelist box, asshown below.

Figure 12.2. Adding a new Parameter
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MODEL Parameters require a further specification: left click in the model cell and type the name of aModel. A

list box containing all existing Modelsin the Project can be activated by pressing CTRL+SPACE. Thisis shown
below.
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Figure 12.3. Adding a MODEL Parameter
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The order of the Parameters can be changed by selecting the Parameter and pressing the Move up or Move down
buttons. Parameters can be removed from the Task by selecting a Parameter and pressing the Delete button.

For this example, the gPROMS language tab now contains:
PARAMETER

A AS REAL

B AS MODEL Reactor _drumkinetic

Once al of the Parameters have been specified, the Variables tab can be selected in order to define any
local Variablesfor the Task.

Using the Variables tab

The Variablestab contains alist of all of thelocal Variablesin the Task. To add anew loca Variable, click onthe
<new> cell and enter aname for the new Variable. Then the type can be chosen from the list box, as shown below.
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Figure 12.4. Adding a new local Variable
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The order of thelocal Variables can be changed by selecting the Variable and pressing the Move up or Move down
buttons. Local Variables can be removed from the Task by selecting a Variable and pressing the Delete button.

For this example (including the Parameters defined before), the gPROM S language tab now contains:

PARAMETER

A AS REAL

B AS MODEL Reactor _drumkinetic
VARI ABLE

x AS REAL

Onceall of thelocal Variables have been specified, the Schedul e tab can be sel ected in order to define the operating
policy for the Task.

Using the Schedule tab

Task Schedules are constructed in exactly the same way as Process Schedules (see Defining Schedules), with one
additional feature: when the Schedule tab of a Task is open, the Task palette will contain one extra elementary
Task for assigning the value of alocal Variable (and thiswill also be added to the context menu).

The use of user-defined Tasksin Schedulesis also described here. Thiswas deferred from the section on Defining
Schedul es because user-defined Tasks had not been described at that point.

The screen shot below shows the Simulate user-defined Task from the PLM Batch Reactor example, along with
the Task palette.
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Figure 12.5. Simulate user-defined Task
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Thefirst three Tasks in the outer Sequence are local Variable assignment Tasks.

Toinsert anew Assign local variable Task, left click on the Task in the Task palette and drag it onto ahot spot in
the Schedule. Alternatively, right click on ahot spot and select L ocal variable assignment from the Add elementary
task context menu. When thisis done, a Task configuration dialog will appear.

To configure the Task, select alocal Variable from the list box and then enter an expression for its new valuein
the text box below. Pressing the OK button compl etes the addition of the Task.

The Advanced view shows the equivalent g°PROM S language.

The screenshot below shows the configuration dialog for the third Task in the Schedule above.

Figure 12.6. L ocal variable assignment Task configuration dialog

“¥Local variable assignment editor =
Local variable I RunStatus| LI

ew value -1

.

Cancel |

Advanced = |

The next Task in the Schedule (the GET Task) is a Foreign Process Task. These are described in Using Foreign
Processes.
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The two Tasks following the GET Task are user-defined Tasks that have been inserted into the Schedule. User-
defined Tasks can be inserted into a Schedule using the Task palette or the context menu. The Predefined Tasks
section of the Task palette contains alist of all predefined Tasks, as shown below.

Figure 12.7. Task Palette for user-defined Tasks
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Predefined Tasks are inserted into the Schedule by dragging them from the palette to the Schedule.? When this
is done, a configuration dialog will appear allowing the Parameters of the Task to be specified. The dialog for
our new Task is shown below.

Figure 12.8. Completing the Task configuration dialog for a predefined Task
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- Parameters

I Parameter I Type I Walue

& REAL 3.1416
Plant
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=
=

Onceall of the Parameters have been specified correctly, you can pressthe OK button and the Task will beinserted.
The Advanced view shows the g°PROM S language:

NewTask(A IS 3.1416, B IS Pl ant. Reactor)

2Unlike built-in Tasks, predefined Tasks cannot be inserted into the Schedule using the context menu.
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Intrinsic Tasks

When discussing the Parameter section within a Task, we considered an example where there were two digital Pl
controllers. The Task for each controller must be called in the Process section in order to activate the controller
and specify itstuning parameters. This small example of just two controllers requires a reasonable amount of code
to be written in the Schedule section of the Process. More complex Models, where there might be tens or even
hundreds of controllers, may lead to a large schedule section with much repeated code. Specifying al of these
tasks is not only time consuming but also prone to error. Since these Tasks must be enabled for each and every
controller, it is possible to automate the specification of these Tasks in the Schedule of a Process. More generally,
one can associate a number of Tasks with any Model, so that each instantiation of the Model automatically (and
invisibly) adds the Tasks to the Schedule section. These are called Intrinsic Tasks and are nothing more than a
declaration in the Model of which (already defined) Tasks should be automatically included in the Schedule, thus
automating the laborious manual procedure.

Asan example of the use of Intrinsic Tasks, |et us assume that we want to model aplant with three reactorsthat are
structurally identical but are used for different duties. This means that the plant Model will contain three instances
of the same reactor Model but with different properties. Now if the reactor Model contains three control loops,
e.g. for pressure, temperature and level, the following Schedule would be required to model the controllers using
ordinary Tasks. (For brevity, some parameters have been omitted.)

SCHEDULE
PARALLEL
# Controllers for Reactorl
Digital Pl
( Set Poi nt IS 373.0,
Bi as IS 0.5,
Gain IS 1.2,
Sensor I S Pl ant. React or 1. Tenper at ur eSensor,
Val ve I S Pl ant. React or 1. Cool i ngWat er Val ve )
Digital Pl
( Set Poi nt IS 10.0,
Bi as IS 0.8,
Gain IS 2.6,
Sensor I S Pl ant. React or 1. Pressur eSensor,
Val ve I'S Pl ant. Reactor 1. PressureRel i ef Val ve )
Digital Pl
( Set Poi nt IS 1.0,
Bi as IS 0,
Gain IS 2,
Sensor I'S Pl ant. Reactor 1. Level Sensor,
Val ve I'S Pl ant. Reactor 1. Li qui dQut | et Val ve )
# Controllers for Reactor?2
Digital Pl
( Set Poi nt IS 425. 0,
Bi as IS 1,
Gain IS 3,
Sensor I S Pl ant. React or 2. Tenper at ur eSensor,
Val ve I S Pl ant. React or 2. Cool i ng\Wat er Val ve )
Digital Pl
( ...
Sensor I S Pl ant. React or 2. Pressur eSensor,
Val ve I'S Pl ant. React or 2. PressureRel i ef Val ve )
Digital Pl
( ...
Sensor I S Pl ant. React or 2. Level Sensor,
Val ve I'S Pl ant. React or 2. Li qui dQut | et Val ve )
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# Controllers for Reactor3

END # Parall el

Clearly, thereis alot of repeated code that is mostly unnecessary apart from the need to specify different tuning
parameters. The use of Intrinsic Tasksisideal in thistype of situation. To implement Intrinsic Task, one first has
to define them in the Model itself, which isillustrated below for the reactor example.

# MODEL React or

PARAMETER
Tenper at ur eSet poi nt AS REAL
Tenper at ureGai n AS REAL
EQUATI ON

I NTRI NSI C_TASK

Digital PI
( Set Poi nt I S Tenper at ur eSet Poi nt ,
Bi as I S Tenper at ur eBi as,
Gain I S Tenper at ur eGai n,
Sensor I'S Tenper at ureSensor,
Val ve I S Cool i ngWat er Val ve )
Digital PI
( Set Poi nt I S PressureSet Poi nt,
Bi as I S PressureBias,
Gai n IS PressureGain,
Sensor I S PressureSensor,
Val ve IS PressureReliefVal ve )
Digital PI
( Set Poi nt I'S Level Set Poi nt,
Bi as I S Level Bi as,
Gin IS Level Gai n,
Sensor I S Level Sensor,
Val ve I'S Li quidQutl etVal ve )

# END of Mbdel Reactor

Now, each instance of the Model Reactor will automatically have Digital Pl Tasks enabled in the Schedule section
of the Process without the user needing to provide them. Of course, the set points and tuning parameters will need
to be specified (unless defaults are provided and are suitable) but these would have to be specified in any case.
So the Schedule section could be asimple as:

SCHEDULE
CONTI NUE FOR 100

and the controller Taskswill be added, in parallel with the user-defined Schedule, by g°PROM S when the Process
is executed.

Note that since ordinary Tasks are only active in dynamic Simulation activities, Intrinsic Tasksare also limited to
dynamic Simulation activities. In other words, if a Process contains dynamic Modelswith Intrinsic Tasks, they will
beignored if thereis no Schedule section defined in the Process or if the Ignore schedule option of the Execution
Dialog is checked.
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In the above examples, the names of a number of Units within the Model were passed to the Model Parameters of
the Task. It may also be necessary to passthe Model itself asan argument to the Task. The Thi s_Uni t keyword
isused for this purpose, asillustrated below.

# MODEL A _rodel

| NTRI NSI C_TASK
Task1(
t heModel IS This_Unit,
aParameter IS 10 )

Inthisexample, any instancesof A_nodel will automatically have their names passed asargumentstothe Task 1
Tasks (which are automatically generated in parallel with the user-defined Schedule).

Viewing the Schedule Generated by Intrinsic Tasks

Thefinal Scheduleisreported by g°PROM S in the execution output, so that you can check that the Intrinsic Tasks
are behaving as intended. After the simulation has completed, scroll the Execution Output window up until you
find theline"Thefollowing SCHEDULE of PARALLEL Tasksisgenerated for Intrinsic Tasks'. Thiswill be just
after the initiation has been completed. Below this line, the Intrinsic Tasks that were added to the Schedule will
be displayed. To see the detailed Schedule, simply click on the"+" symbols to expand the various elements of the
Tasks. These two views are shown in the figures below (for a different example).

Figure 12.9. Execution Output Indicating the Inclusion of Intrinsic Tasks

Show messages ko level IE

|

gPM3: Comnecting to localhost:1710 ...

ElPerforming initialisation calculation at time: 0
Initialisation calculation completed.
ElThe following SCHEDULE of PARALLEL Tasks is generated for Intrinsic Tasks
Please note that the original 3CHEDULE iz present in the final SEQUENCE
PARALLEL
Task Produced Reels(Reel IS Flowsheet.3irius, Desired Output IS 3, Paper per_FReel I3 Z0000)
Task (Obserwve_ TankLevel(Chest I3 Flowsheet.WW_Chest, Terminate_Task I3 FALZE)
SEQUENCE
END # PARALLEL
Initialising Foreigm Process Interface...
Initialisation of Foreigm Process Interface completed successfully.
PARALLEL entered at O
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Figure 12.10. Execution Output Showing the Detailed Schedule for Intrinsic Tasks

Show messages ko level IE

gPM3: Comnecting to localhost:1710 ... ;I

ElPerforming initialisation calculation at time: 0
Initialisation calculation completed.

ElThe following SCHEDULE of PARALLEL Tasks is generated for Intrinsic Tasks
Please note that the original 3CHEDULE iz present in the final SEQUENCE
= PARALLEL
= Task Produced Feels(Reel I3 Flowsheet.3irius, Desired Output IS 3, Paper_per_ Reel I3 20000
—E  SEQUENCE
=  WHILE (Reel.Produced Feels < Desired Output) DO
—E  SEQUENCE
CONTINUE UNTIL Reel.Paper_on FReel »>= Paper_per Reel
FEINITIAL

Feel.Paper_on Reel
WITH

Reel.Paper_on Reel = 0.0 ;
END

RESET
Reel.Produced Reels := 0OLD(Reel.Produced Feels) + 1.0 ;
END
L END # SEQUENCE
END' # WHILE
STOP
L L END # SEQUENCE
£ Task Observe_TankLewvel (Chest I3 Flowsheet.WW_Chest, Terminate_Task IS FALSE)
PARALLEL
—E  SEQUENCE
—E  SEQUENCE
CONTINUE FOR 100
RESET
Flowsheet.WW_Pump.Dialog Input Flow := 3 ;
END
CONTINUE UNTIL Flowsheet.WW_Pump.Inlet.Protected Dowmstream > 0.5
RESET
Flowsheet.WW_Pump.Dialog Input Flow := 0.5 ;
END
CONTINUE FOE 1000
RESET
Flowsheet.ModuleJet.5lice_Opening := 0.0058 ;
END
END # SEQUENCE
STOP

L END # SEOUENCE T
1| | »

Thefirst Sequence shown was defined in the Produced Reels Task that was specified as an Intrinsic Task: hence,
it was automatically placed in the final Schedule. The Sequence nested inside the second Sequence is the whole
Schedul e from the Process, so everything el se was generated automatically. Note that, since much of the Schedule
isautomatically created, there is no guarantee that these Schedules will terminate, so gPROM S adds a Stop Task
to the end of the user-defined Schedule.

Controlling the Use of Intrinsic Tasks

So far, the examples on Intrinsic Tasks have assumed that these Tasks should always be enabled for every instance
of aModel containing Intrinsic Tasks. Although this is the default behaviour, one can easily select which Model
instances should have their Intrinsic Tasks enabled. There are anumber of waysto achieve this.

First, al Intrinsic Tasks can be switched off by editing the process properties. In this case, no matter what
specifications are made in the Models and Process, no Intrinsic Taskswill be used and the user will haveto specify
the use of Tasks manually. To do this, open the Process entity and | eft click on the Solution Parameterstab. Double
click on (or click on the "+" symbol next to) the Intrinsic Tasks folder. Now you can change the setting from ON
to OFF by clicking on ON and selecting OFF from the list.

169



Defining Tasks

{DPROCESS ponon {ReactorOpt) x|

Parameter I Value I

1|7 Qukput generation

1|7 Mumerical solvers

11| =) Mathematical Formulation 2 validation
1+]|.7) Foreign Process

1+]|7) Foreign Object validation & diagnostics
=) Intrinsic Tasks

IntrinsicTasks

Flag to enablefdisable the execution of all Intrinsic Tasks,
Type: enumerated string

Default walus: OM

Allowed values: O, OFF

¥ Show only activity solvers at the top level
[~ show only explicit specifications

¥ Hide deprecated settings

Reset ko default | Reset all ko default |

Schedule  Splution parameters | gPROMS Ianguagel Propertiesl

Finer control over the use of Intrinsic Tasks can be achieved by defining their usewhenever aModel isinstantiated.
To do this, the Intrinsic Tasks solution parameter of the Process must be ON. Then, there are three options for
instantiating a Model (A isthe name of aModel defined in the gPROMS project):

UNIT
A AS A
A of f AS A I NTRI NSI C_TASKS OFF
A on AS A | NTRI NSI C_TASKS ON

These three specifications work as follows.

Instantiating a model with the INTRINSIC_TASKS OFF option forces gPROMS not to use any of the Intrinsic
Tasks defined for that Model instance.

In contrast, instantiating a Model with the INTRINSIC_TASKS ON option turns on al Intrinsic Tasks for the
Model instance.

Finaly, if no specification is made (the first example above), then the behaviour of the Model instance will be
the same as the Model instance within which it is contained. If it is a top-level model instance, then the default
behaviour isfor the Intrinsic Tasksto be enabled. So, the behaviour of a particular Model instance will be passed
down the Model hierarchy until an explicit instantiation takes place, which will then override the behaviour of
the parent Model.

Toillustrate the behaviour of Models (and sub Models) instantiated in thisway, let us assume that the three Model
instances of Model A are made in a Process. Model A then contains three instances of a Model B:

UNIT
B AS B
B_off AS B I NTRI NSI C_TASKS OFF
B on AS B I NTRI NSI C_TASKS ON

Finally, Model B aso contains three different instances of Model C:
UNIT

C AS C

C off AS C I NTRINSI C_TASKS OFF

C on AS C INTRINSI C TASKS ON

This then produces the following Model -instance hierarchy.
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Figure 12.11. lllustration of Intrinsic Task control

A, A on v A off *
| |

| v | v | * | * | v | *

E B_m B_off B B_m B_off

| | | | | |
[ e N e N B [ e N e N B
C Con Coff C Com C off C C_om C_off C Con Coff C Com C off C C_om C_off
O v ok ®x v o ® v o v ok ® ®

Theticksand crosses next to each Model instance indicate whether or not intrinsic tasks are enabled for that Model
instance. Since the default behaviour for top-level Modelsis for Intrinsic Tasks to be enabled, A and A_on both
have their tasks enabled. Therefore, each of the Model instances within A will have the same properties as those
within A_on. The main feature isthat the* _on instances always have Intrinsic Tasks enabled, * _of f instances
are aways disabled and the instances with the default specification always behave as the Model instance above.

ModelBuilder also alowsthe these specificationsto be made viathe graphical interface. Click on the Topology tab
and then right click on the Unit you want to specify. The context menu contains an item called Intrinsic Tasks....
Moving the mouse over this item, enables a list containing the three possible settings for the Unit. Left clicking
on one of these options sets the value for this Unit. Units with disabled Intrinsic Tasks are indicated by ared cog
image on the Unit; those with enabled Intrinsic Tasks by a green cog; and if the default specification is made, no
cog is shown. If you then switch back to the gPROMS language view, you will see that the code has changed to
reflect the choice made. An example of a Unit with enabled Intrinsic Tasks is shown below.

Figure 12.12. Example of a Unit with enabled Intrinsic Tasks

il

To reiterate, control over which Model instances use Intrinsic Tasks can occur only when the Process solution
parameter Intrinsic TasksisON; if it is OFF, then none of the Intrinsic Tasks are enabled and they must beincluded
explicitly in the Schedule.
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Chapter 13. Stochastic Simulation In
gPROMS

gPROMS can be used to perform stochastic simulations. The prime reason for considering stochastic simulation
is to determine how the distributions of key output Variables are influenced by the distributions of the input
Variables. In order to do so, you will learn how to do the following:

» Assign random numbers to Parameters and Variables

 Perform multiple simulations and plot their results in the form of probability density functions

An example of the output that can be achieved from a stochastic simulation in gPROMS is shown below

Figure 13.1. Values assigned to the temperatur e for each scenario.
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Figure 13.2. Probability density function for the product mole fraction.
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Figure 13.3. Standard deviation of the product mole fraction
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Stochastic Simulation in gPROMS

Assigning random numbers to Parameters
and Variables

Parameters and Variables can be given random values in the Set and Assign sections, respectively, of a Process
Entity in the same way that they are given deterministic values. Instead of assigning aliteral value or expression to
the parameter or variable, specia functions are used that return values sampled from the distribution. The syntax
is shown below.

SET

Identifier := DistributionFunction( ArgList ) ;
ASSI GN

Identifier = DistributionFunction( ArgList ) ;

The functions DistributionFunction each require a different set of arguments ArgList. The available functions are
described in table below.

Table 13.1. Probability distribution functions available in gPROM S,

Function Arguments Example

Uniform lower, upper UNIFORM(0,1) returns a
uniformly distributed number in
therange [0,1]. lower < upper.

Triangular lower, mode, upper TRIANGULAR(1,2,4) returns
anumber sampled from a
triangular distribution with
mode 2, lower limit 1 and upper
limit 4. lower < mode < upper.

Normal mean, stddev NORMAL(3,0.25) returns a
value sampled from anormal
distribution with mean 3 and

standard deviation 0.25. stddev > 0.

Gamma alpha, beta GAMMA(3,1) returns a
value from the Gamma
distribution. alpha, beta > 0.
Beta alpha, beta, lower, upper BETA(1.5,5,0,1) returns avalue

from the Beta distribution.
alpha, beta > 0; lower < upper.

Weibull alpha, beta WEIBULL (4,1) returns
avalue from the Weibull
distribution. alpha, beta > 0.

Once Parameters and Variables have been given stochastic values, they behave exactly as though they had been
assigned deterministic values: i.e. Parameters remain constant and are not calculated by a simulation and the
Variablesremain at their Assigned values unless re-assigned in a Reset statement. Any Variable may be Reset, as
usual, using aliteral or an expression (using the Old operator if thisinvolves other Variables or by assigning anew
random number. Note that V ariables and Parameters can only ever be assigned 'point' values; they are not assigned
distributions. Furthermore, each time avariable is Reset to avalue from adistribution, it isgiven adifferent value,
even if the distribution function's arguments are the same. For example, in the following segment of a Schedule
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section, the variable Random is assigned two different values from the Normal distribution: one time it may be
assigned 0.23 then 0.07; another time it may be assigned 0.01 then 0.36.

SCHEDULE
SEQUENCE

RESET
Random : = NORMAL(O, 1) ;

END

RESET
Random :

END

NORMAL( 0, 1) ;

END

One further issue that should be noted is that gPROMS will always seed the random number generator with
the same number each time a simulation is started. This means that the results of a stochastic simulation are
reproducible.

Plotting results of multiple stochastic
simulations

In order to examine how the distributions of key output Variables are influenced by the distributions of the input
Variables, we will describe how you can combine multiple simulationsin asingle process and then use the results
to evaluate metrics (such as the mean, variance, etc.) of the output Variables. Thereafter, we will outline amethod
that allows you to plot the probability density functions of the output Variables.

Combining multiple simulations

Given a model with some uncertain inputs, a series of simulations can be combined into a single process by
introducing a new higher-level Model. The origina model is included in the new one as an array of Units, as
shown below.

# MODEL Mbdel Uncertain

VARI ABLE
| nput AS | nput Var Type # uncertain input variable
Qut put AS Qut put Var Type # inportant output variable

# MODEL Conbi ned

PARAVETER
NoScenari os AS | NTEGER
| nput Mean AS REAL
| nput St dDev ~ AS REAL
UNI T
Scenari os AS ARRAY( NoScenari os) OF Model Uncertain
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Theinput Variables for each scenario of Model Uncertain then need to be specified as follows.

# PROCESS St ochSi m

UNIT
StSim AS Conbi ned

ASSI GN
WTHI N StSim DO
FOR i := 1 TO NoScenarios DO
Scenarios(i). | nput := NORMAL(I nput Mean, | nput St dDev) ;
END
END

Note that each input Variableis Assigned a different value from the same distribution. This could also have been
done with Parameters, but parameter propagation cannot be used in this way: this would result in all Parameters
being set the same value, because the parameter in the higher-level model will be assigned randomly and then that
particular value will be propagated to the scenarios. Of course, any inputs that are common to the system (such as
design constants or precisely known operating Parameters) can be included in the higher-level model along with
equations linking them to the scenarios. This reduces the complexity of the Schedule section.

Plotting probability density functions

Now all of the scenarios are together in one Process, but it is not easy to plot them together in one graph. Rather
than having to select each Variable from each scenario instance, it would be much easier to be able to select the
whole distribution. This can easily be done as follows.

# MODEL Conbi ned

PARAVETER
NoScenari os AS | NTEGER
| nput Mean AS REAL
| nput St dDev ~ AS REAL
UNIT
Scenari os AS ARRAY(NoScenari os) OF Moddel Uncertain
VARI ABLE
I nput AS ARRAY( NoScenari os) OF | nputVar Type
Qut put AS ARRAY( NoScenari os) OF Cutput Var Type
OPnean AS NoType # mean of CQut put
OPvari ance AS NoType # variance of Qutput
EQUATI ON
FOR i := 1 TO NoScenarios DO

Input (i) = Scenarios(i).Ilnput ;
Qutput (i) = Scenarios(i).CQutput ;
END

OPnmean = S| GVA( Qut put )/ NoScenari os ;
OPvari ance = SIGVA( (CQutput - OPmrean)”™2 )/ NoScenarios ;

Now, all of the scenarios can be plotted on asingle graph by selecting asingle Variablein gRMS. Notice also that
the mean and variance of the output can easily be calculated.
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Finally, it is often useful to be able to plot the probability density function (pdf) of the output. In general, for each
Variable this requires two new Variables a distribution domain and three Parameters. However, if two Variables
arein the same interval they can share the same distribution domain and Parameters. This is shown below.

# MODEL Conbi ned

PARAMETER
NoScenari os AS | NTEGER
| nput Mean AS REAL
I nput St dDev AS REAL
Nol nt _OP AS | NTEGER DEFAULT 20 # nunber of intervals for distribution
Upper _OP AS REAL DEFAULT 3 # upper bound on distribution
Lower OP AS REAL DEFAULT 1 # | ower bound on distribution

DI STRI BUTI ON_DQOVAI N
Dist_OP AS (Lower _OP: Upper_OP) # distribution over which
# Qutput will be plotted

UNI'T
Scenari os AS ARRAY( NoScenari os) OF Model Uncertain
VARI ABLE
I nput AS ARRAY( NoScenari os) OF | nputVar Type
Qut put AS ARRAY( NoScenari os) OF Cutput Var Type
OPnean AS NoType # mean of CQut put
OPvari ance AS NoType # variance of Qutput
# tenp variable to count occurrences of Qutput in a particular interval:
OPacc AS DI STRI BUTI ON( Di st _OP, NoScenari os) OF NoType
# pdf function for Qutput:
OP_pdf AS DI STRI BUTI ON(Di st _OP) OF NoType
EQUATI ON
FOR i := 1 TO NoScenarios DO

Input (i) = Scenarios(i).lnput ;
Qutput (i) = Scenarios(i).CQutput ;
END

OPnmean = Sl GVA( Qut put )/ NoScenari os ;
OPvari ance = SIGVA( (CQutput - OPmrean)”™2 )/ NoScenarios ;

FOR i := Lower_OP TO Upper_OP DO
FORj := 1 TO NoScenarios DO
IF i - (Upper_OP-Lower_OP)/Nolnt_OP/2 <= Qutput(j) AND
Qutput(j) < i + (Upper_OP-Lower_ OP)/Nolnt_OP/2 THEN
OPacc(i,j) =1 ;
ELSE
OPacc(i,j) =0 ;
END
END
OP_pdf (i) = SI GVA(OPacc(i,))/ NoScenarios ;
END

The three new Parameters introduced are Nolnt_OP, Lower_OP and Upper_OP. These Parameters define the
distribution over which the output Variable will be plotted. Nolnt_OP is the number of intervals used for the
distribution Dist_ OP. Thiswill obviously be used to set Dist_ OP:
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# PROCESS St Sim

SET
Dist OP := [BFDM 1, Nolnt_OP] ;

The first order, backward finite difference method is al that is required because the distribution domain is
essentially behaving asan array. The ParametersLower OP and Upper_ OP are simply the lower and upper bounds
on thedomain Dist_OP. The Variable being plotted, Output in this case, must liein the interval [lower, upper] for
each scenario; otherwise, the pdf will become distorted. If the lower and upper bounds are set so that a number of
Variablesliein thisinterval, then all of these Variables can be plotted using the same distribution. The number of
intervals should be set appropriately so that the distribution is not too coarse. Finally, thetwo Variablesintroduced
are OPacc and OP_pdf. Each Variable being plotted will need its own pair of Variables. OPacc(i,j) isset to 1 if
the value of Output(j) (the value in scenario ) liesin interval i of the distribution domain. OP_pdf(i) therefore
represents the number of scenarios in which Output has avalue in interval i. This is divided by the number of
scenarios to normalise the pdf. Plotting the pdf of a state Variable can slow down the simulation significantly
(due to the many discontinuities, and therefore re-initialisations, encountered as the values of the Variables switch
between intervals). This can be remedied by introducing one further Variable, asillustrated below for the example
already considered:

# MODEL Conbi ned

VARI ABLE

# tenmporary CQutput variable = 0 until end of sinulation, then = CQutput

Qut put End AS ARRAY( NoScenari os) OF Cutput Var Type
EQUATI ON
FOR i := 1 TO NoScenarios DO

Input (i) = Scenarios(i).lnput ;
Qutput (i) = Scenarios(i).CQutput ;

END
FOR i := Lower_OP TO Upper_OP DO
FORj := 1 TO NoScenarios DO
IF i - (Upper_OP-Lower_ OP)/Nolnt_OP/2 <= CQutputEnd(j) AND
Qut putEnd(j) < i + (Upper_OP-Lower_OP)/Nolnt_OP/2 THEN
OPacc(i,j) =1 ;
ELSE
OPacc(i,j) =0 ;
END
END
OP_pdf (i) = SI GVA(OPacc(i,))/ NoScenarios ;
END

# PROCESS St ochSim
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MONI TOR
StSim Qut put (*) ;
StSimlnput(*) ;
St Si m OPnean
St Sim OPvari ance ;
St Sim OP_pdf ;

ASSI GN
WTHI N St Sim DO
Qut putEnd := 0 ;

END

SCHEDULE
SEQUENCE
RESET
StSim Qut put End : = OLD(St Si m Cut put) ;

END
END

So, OutputEnd is 0 throughout the simulation and the If conditions are only evaluated at initialisation. Only at the
end of the simulation is OutputEnd changed, at which point all of the If statements are re-evaluated and OP_pdf
recalculated. Finally, note that the output has been restricted to only those Variables of importance by using the
Monitor section. This reduces the amount of data sent to the output channel (e.g. gRMS). Although this is not
necessary, it recommended for moderate to large problems (even small problems output large quantities of data
when the number of scenariosislarge).

Stochastic Simulation Example

In this section we illustrate the important techniques of stochastic simulation in gPROMS using a simple model
of an isothermal batch reaction. The following reactions occur in the reactor, D being the desired product.

A+B—-C—=D

Thereactor initially contains 10m° of an equimolar mixture of A and B. The temperature is held constant at 353K
and the reaction is allowed to progress for 1 hour. The reaction rates are assumed to follow Arrhenius's law.

Stochastic gPROMS process model

A simple, generic model for an isothermal liquid-phase CSTR is used to model the process

# MODEL Li qui dPhaseCSTR

PARAMETER
# Nunber of conponents
NoConp AS | NTEGER
# Nunber of reactions
NoReac AS | NTEGER
Density AS ARRAY( NoComp) OF REAL
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# Reaction data (Arrhenius | aw)

Arr hConst ant AS ARRAY( NoReac) OF REAL
Act i vat i onEner gy AS ARRAY( NoReac) OF REAL
# Reaction orders
O der AS ARRAY( NoConp, NoReac) OF | NTEGER
# Component stoichionmetric coefficients
Nu AS ARRAY( NoConp, NoReac) OF | NTEGER
# (Gas constant
R AS REAL
VARI ABLE
Fin AS Mol ar Fl owr at e
Xin AS ARRAY( NoConp) OF Mol ar Fracti on
Fout AS Mol ar Fl owr at e
X AS ARRAY( NoConp) OF Mol ar Fracti on
Hol dUp AS ARRAY(NoConp) OF Mol es
C AS ARRAY( NoConp) OF Mol ar Concentrati on
T AS Tenperature
Tot al Hol dup AS Mol es
Tot al Vol une AS Vol une
React i onConst ant AS ARRAY( NoReac) OF NoType
Rat e AS ARRAY( NoReac) OF NoType
EQUATI ON
# Material bal ance
FORi := 1 TO NoConp DO
$Hol dUp(i) = Fin*Xin(i) - Fout*X(i) + Total Vol ume*SI GVA(Nu(i,)*Rate) ;
END

# Reaction rates

FORj := 1 TO NoReac DO
ReactionConstant(j) = ArrhConstant(j) * EXP(-ActivationEnergy(j)/RT) ;
Rate(j) = ReactionConstant(j) * PRODUCT(CrOrder(,j)) ;

END

# Total volunme and total hol dup
Tot al Vol une = SI GVA( Hol dup/ Density) ;

Tot al Hol dup = SI GVA( Hol dUp) ;

# Mol ar fractions and concentrations
Hol dup = X * Tot al Hol dup ;

Hol dup = C * Tot al Vol une ;
Now we assume the that temperature of the reaction may change from batch to batch. This can be modelled using
anormal distribution with a mean of 353K and a standard deviation of 2K. To see the effect of this, we need to
introduce a new composite Model to include a number of scenarios:
# MODEL St ochastic_Li qui dPhaseCSTR
PARAVETER

# define common PARAMETERs here so their val ues can be propagated
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# to each scenario

=
NoConp AS | NTEGER
NoReac AS | NTEGER
Density AS ARRAY(NoComp) OF REAL
Arr hConst ant AS ARRAY( NoReac) OF REAL
Act i vat i onEner gy AS ARRAY( NoReac) OF REAL
O der AS ARRAY( NoConp, NoReac) OF | NTEGER
Nu AS ARRAY( NoConp, NoReac) OF | NTEGER
R AS REAL
=
NoScenar i os AS | NTEGER
Nol nt _PMF AS | NTEGER DEFAULT 20
Upper _PMF AS REAL DEFAULT 1
Lower _PMF AS REAL DEFAULT 0. 8

DI STRI BUTI ON_DOVAI N

Di st _PMF AS (Lower PM-: Upper _PMF)
UNIT
Scenari os AS ARRAY( NoScenari os) OF Li qui dPhaseCSTR
VARI ABLE
T AS ARRAY( NoScenari os) OF Tenperature
Pr odMbl Fr ac AS ARRAY( NoScenari os) OF Mol arFraction
PMFmean AS NoType
PMFvar i ance AS NoType
PMFst ddev AS NoType
# tenp variable to count occurrences of Qutput in a particular interval:
PMFacc AS DI STRI BUTI ON( Di st _PM~, NoScenari os) OF NoType
# pdf function for Qutput:
PMF_pdf AS DI STRI BUTI ON( Di st _PMF) OF NoType
EQUATI ON
FOR i 1 TO NoScenari os DO

T(i)
END

Scenarios(i). T ;

PMFmean = Sl GVIA( Pr odMWbl Frac)/ NoScenari os ;
PMFvari ance = SI GVA( (Prodwol Frac - PMFnean)”2 )/ NoScenari os ;

FOR i := Lower_PM- TO Upper_PM- DO
FORj := 1 TO NoScenarios DO
IF i - (Upper_PM-Lower_ PM)/Nolnt_PM/2 <= ProdMl Frac(j) AND

ProdMol Frac(j) < i + (Upper_PM--Lower PM-)/ Nol nt _PM~/ 2 THEN
PMFacc(i,j) =1 ;

ELSE
PMFacc(i,j) = 0 ;
END
END
PMF_pdf (i) = SI GVA(PMFacc(i,))/ NoScenari os ;

END
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Wehave defined new distributed V ariablesto contain the values of the Variables of interest in each scenario. These
are T for the temperature and ProdM ol Frac for the molefraction of the product D (i.e. x_4). Again, Parametersare
defined that describe the upper and lower limitsof the distribution and itscoarseness. Finally, Variablesare defined
for the mean, variance and standard deviation of the product mole fraction. The equations are the same as were
described before, except that there is no equation for the standard deviation or to relate the variable ProdMol Frac
to the X(4) Variables in each scenario. While we could include the equation for the standard deviation in this
model, by using the equation:

PMFst ddev”2 = PMFvari ance ;

this tends to slow the simulation down. The alternative used here isto Assign PMFstddev to atemporary valuein
the Process section and to Reset it at the end of the simulation using:

SCHEDULE
SEQUENCE
RESET
xxX. PMFst ddev : = SQRT(OLD(xxx. PMFvari ance)) ;

END
END

The final difference is the missing equation relating ProdMolFrac to Scenarios().X(4). This is because we are
plotting a pdf of a dynamic variable and want to avoid slowing the simulation but are demonstrating a different
approach to the one described before (where the additional 'End' variable was used). Here, we can avoid this
additional variable ssmply by Assigning ProdMolFrac itself and then Resetting at the end of the simulation. The
disadvantage with this approach is that you cannot plot the mean of the distribution over time; it only containsthe
correct value at the end of the simulation, when ProdMolFrac gets assigned the correct values. In this example,
we were not concerned with plotting the mean, etc., over time and so this approach is an appropriate alternative.
Thefinal extract of the gPROMS project, the Process entity, is shown below.

# PROCESS St ochastic

UNI'T
R101 AS Stochasti c_Li qui dPhaseCSTR

SET
W TH N R101 DO
NoScenari os = 1000 ;
Upper _PMF = 0.95 ;
Lower _PMF = 0.92 ;
Nol nt _PMF = 20 ;
Di st _PMF = [ BFDM 1, Nolnt_PM ] ;
I\DCDI’T'p = 4 :
NoReac =2 ;
Nu =[ -1, O,
-1, O,
1, -1,
0, 1 ] ;
Or der =11, 0,
1, O,
0, 1,
Ol O ] il
R = 8.31441 ; # kJ/ kmol / K
Ar r hConst ant = [ 8E3, 1E-2 ] ; # nB/knol s
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Act i vat i onEner gy = [ 8000, 6000 ] ; # kJ/ knol
Density = [ 17.48, 17.15, 10.24, 55.56 ] ; # knol / nB
END
ASSI GN
W THI N R101 DO
PMFst ddev =0 ;
FOR i := 1 TO NoScenarios DO
Pr odMol Frac(i) =0 ;
W THI N Scenarios(i) DO
Fin =0 ;
Fout =0 ;
Xin =[ 0.5, 0.5 0, 01 ;
T = NORMAL( 353, 2) ;
END
END
END
I NI TI AL
W THI N R101 DO
FORi := 1 TO NoScenarios DO
W THI N Scenarios(i) DO
X(2) = X1
X(3) =0 ;
X(4) =0 ;
Tot al Vol une = 10 ;
END
END
END
SCHEDULE
SEQUENCE
CONTI NUE FOR 3600
RESET
FOR i := 1 TO R101. NoScenari os DO
R101. ProdMol Frac(i) := OLD(R101. Scenarios(i).X(4)) ;
END
END
RESET
R101. PMFst ddev : = SQRT(OLD(R101. PMFvari ance)) ;
END
CONTI NUE FOR . 01
END

Below are some comments on the PROCESS.

o SET: This section illustrates a couple of useful features in gPROMS. The first is that some of the Parameters
are having their default values overridden. The second is that all of the Parameters in the lower-level model
(LiquidPhaseCSTR) are being propagated.

* ASSIGN: In this section we assign the dummy values to ProdMolFrac and PMFstddev. Also, some of the
degrees of freedom of the LiquidPhaseCSTR model are set, e.g. the inlet and outlet flowrates, which are set to
zero. Finally, the temperature for each scenario is set arandom value from the normal distribution, N(353,2).

* INITIAL: A typical set of initial conditions are used here.

e SCHEDULE: This sections illustrates the Resetting of the Variables ProdMolFrac and PM Fstddev. Note that
because PM Fstddev depends on ProdM ol Frac, the latter must be RESET before the former in a separate RESET
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task. If they are RESET in the same task, then PMFstddev will be RESET based on the valuesin ProdMolFrac
from before the RESET task.

Finally, on some systems gRM S may not be able to plot the pdf Variables correctly (sometimes the value after
the Reset is ignored by gRMS). A simple solution is to include a short Continue at the end of the Schedule.
Thisis not an issue with the Excel output channel, although sending the values of alarge number of Variables
to Excel takes a considerable length of time. It is therefore recommended that you Monitor only the Variables
that are necessary.

Stochastic simulation results

The results of the stochastic simulation are shown in the figures below. The last one aso illustrates that in this
model, the value of the standard deviation is only correct at the end of the simulation.

Figure 13.4. Values assigned to the temperatur e for each scenario.
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Figure 13.5. Probability density function for the product mole fraction X(4).
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Figure 13.6. Standard deviation of the product mole fraction X(4).
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Chapter 14. Controlling the Execution
of Model-based Activities

The Process entity is used to describe a simulation activity that is to be carried out by gPROMS using instances
of one or more Model entities. The execution of model-based activities involves the solution of different types
of mathematical problems. Typically, these are complex problems due to both their size and their nonlinearity.
gPROMS provides a number of state-of-the-art mathematical solvers that employ a combination of symboalic,
structural and numerical manipulations for the solution of these problems.

There are anumber of important features of the Process entity that are related with the solution of the underlying
mathematical problems and the handling of the results produced by it:

» The PRESET section describes how you can provideinitial guesses for the variables that occur in your model;
» The SOLUTIONPARAMETERS section describes how you can:

« choose appropriate solvers for different kinds of problems,

 gpecify the destination of any results that the solution may produce.

In addition, a detailed description of the mathematical solvers provided as standard within gPROMS. These fall
into the following categories:

» solversfor sets of linear algebraic equations;
» solversfor sets of nonlinear algebraic equations;
« solversfor mixed sets of nonlinear algebraic and differential equations;

Thedescription of each solver includesalist of all the parametersthat you can useto configureits precise behaviour
when applying it to a particular problem.

The PRESET section

At the start of each simulation, gPROM S hasto solve a problem known asinitialisation. For both steady-state and
dynamic simulations, gJPROM S must first solve a system of algebraic equations (usually nonlinear). Thisnaturally
requires initial guesses for al of the variables in order to provide the solution algorithm with a starting point.
Theseinitial guesses (and appropriate bounds on the variables) are specified in the Variable Type entities. Usually,
specifying theinitial guessesin this manner i.e. the sameinitial guess and bounds for variables of the sametype) is
sufficient for jPROM S to solve the initialisation problem. Larger, more complex problems, however, may not be
suited to this approach and therefore amore flexible method is needed specifying theinitial guesses. Thisiscatered
for through the Preset section, which allows the default initial guess and bounds of a variable to be overridden.

The syntax for the Preset section is:

PRESET Var i abl ePat h Initial Val ue ;

or
PRESET Variabl ePath := InitialValue : LowerBound : UpperBound ;

Within and For statements may also be used in the PRESET section. The PRESET section is usually found within
the Process entity, but it may also be included inside amodel entity.

Even once a set of suitable initial guesses are found, some problems may take a considerable length of time to
solve. This can often be greatly reduced if the solution of the initialisation problem is used to provide the initial
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guesses. This can be donein gPROMS using Saved Variable Sets by SAVEing the values of all variables after the
initialisation and restoring them in the Preset section as shown in the gPROMSS code below. In the first Process, a
set of initial guessesis used that is sufficient for the initialisation to be solved. The second Process then uses the
datainthe savefileto solvetheinitialisation more quickly. Note that the second Process may also save theresult of
theinitialisation problem, so that changes can be made to the problem without having to run thefirst Process again.

Example 14.1. Process used to solve theinitialisation problem only

# PROCESS InitSiml

PRESET
W TH N aaa
x(1)
x(2)
x(3:10)
y()
z

'8

T T T TR T
B U0IOR Rk

o
(6]

100 ;

END

SCHEDULE
SAVE "I nitialisationData"

Example 14.2. Full Processrestoring data from the successful initialisation

# PROCESS Ful | Sim

PRESET
RESTORE "I nitialisationData"

SCHEDULE
SEQUENCE
SAVE "I nitialisationData"

END # sequence

Note that Saved Variable Sets restored in a RESTORE section do not overwrite the values of any Selector
Variables. This is because their values, specified in the INITIALSELECTOR section, are part of the problem
definition and therefore must not be modified by a RESTORE.

Multiple Saved Variable Sets can be Restored in the PRESET section, along with manually specified initial
guesses, as shown in the example below. In all cases, any initial guess provided for a particular variable, either
viaan explicit specification or viaa Restore, will override all earlier initial guesses for the same variable. Please
note that bounds defined by a variable type will not be overwritten by the bounds in a Saved Variable Set. This
means that any Variables that are not included in the Saved Variable Sets will have initial guesses and bounds
specified by their Variable Types.

PRESET
RESTORE "v_set1", "v_set2" ;
RESTORE "v_set 3" ;
VariablePath := InitialValue ;
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Variabl ePath := InitialValue : LowerBound : UpperBound ;
RESTORE "v_set4", "v_set5" ;
RESTORE "v_set6" ;

The SOLUTIONPARAMETERS section

The SOLUTIONPARAMETERS section allows the specification of parameters that affect:
« theresults generated by the execution of a model-based activity;

* the mathematical solversto be used for the execution of a model-based activity;

the validation and diagnosis of the mathematical models;

the use of Foreign Processesin asimulation activityl;

the behaviour of Foreign Objects associated with a model-based activity;
« the behaviour of Intrinsic Tasks’.

The basic syntax for the SOLUTIONPARAMETERS section, along with the default values of the parameters,
is shown below:

SOLUTI ONPARAMETERS
# paraneters concerned with out put generation

gExcel Qut put = OFF ;
gPLOT = OFF ;
gRVB = OFF ;
gUser Qut put = OFF ;
Moni t or = ON ;
Qut put Level =1 ;
Reporti ngl nt erval =0.0 ;
Schedul eAnnot ations : = OFF ;

# paraneters concerned wi th numerical solvers

DASol ver = "DASOLV"
DCsol ver = "CVP_SS"
EDSol ver = "EXPDES" ;
PESol ver = "NMAXLKHD" ;

# parameters concerned with mathematical fornulation and validation

I dentityElimnation = ON
| gnor eDAEI ndexAnal ysi s = OFF ;
| ndexReducti on = OFF ;
Perfornttrict DAESt ruct ur al Checks : = OFF ;

# parameters concerned with Fore| gn (bj ect behavi our

FOSt ati sticsLevel =0 ;
| gnoreAl | FODeri vati ves = OFF ;
LogAl | FQDeri vati ves = OFF ;
LogAl | FOWet hods = OFF ;
Test Al | FODeri vati ves = OFF ;

Thereis only one FPI Solution Parameter, which specifies the location of the FPI implementation. See Using Foreign Processes for details
on how to create an FPI and specify its use in the Solution Parameters.

2The IntrisicTasks Solution Parameter controlswhether or not Intrinsic Tasks are enabled during a simulation activity. See Intrinsic Tasks for
details on how to create and use Intrinsic Tasks.
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# paranmeters concerned with intrinsic tasks
IntrinsicTasks := ON ;

Normally, the above default values are sufficient to solve most problems. However, they may be overridden in the
SOLUTIONPARAMETERS section (of the gPROMSS language tab) if and when necessary.

Controlling result generation and destination

Thefollowing Solution Parameters allow the user to control the generation of results by the execution of amodel-
based activity, as well as the destination of these resullts.

» gExcelOutput: Enables or disables the Microsoft Excel output channel.

By default, this parameter is switched off. When set to on, output is sent to a file whose stem is the Process
entity name plus an index in square brackets to represent the number of times the process has been executed. For
example, if the process name was MyProcess thefirst output file generated would be called MYPROCESS. x| s;
the second would be MYPROCESS] 2] . x| s; and so on. A different file name can be specified directly in the
SOLUTIONPARAMETERS section using the syntax:

gExcel Qutput := "Fil eNane" ;

Note that this specification automatically switches on the output channel: i.e. gExcelOutput := ON ;. See
Microsoft Excel Output Channel for more details and for some additional options.

» gPLOT: Enables or disables the generation of text results files.
By default, this parameter is switched off. When set to on, output is sent to afile whose nameisthe Process entity
name followed by gPLOT. A different file name can be specified directly in the SOLUTION PARAMETERS
section using the syntax:
gPLOT := "Fil eNanme" ;
Note that this automatically implies that the gPLOT parameter is switched on.

* gRMS: Enables or disables the gRM S output channel.

By default this parameter is switched on. When set to on, output is sent to gRMS, the gPROMS Results
Management Service.

Note: Thissetting isoverridden by the settingsin the execution control dialog and only applieswhen an activity
is executed outside ModelBuilder, for instance in gO:RUN.

e gUserOutput: Enables or disables a user-defined output channel.

The construction of such output channelsis described in detail in the gPROM S System Programmer Guide. By
default, this parameter is switched off.

» Monitor: Setstheinitial state for monitoring of variables.

By default, this parameter is switched on. If set to off, no results will be collected during the execution of the
model-based activity. However, for dynamic simulation activities, monitoring can be enabled at alater stage by
inserting the Monitor elementary task in the simulation Schedule.

» OutputLevel: Aninteger [-1,9] that specifies the diagnostics level reported in the output.

If specified, the OutputLevel defines the initial setting in the Execution Control dialog; otherwise the dialog
will beinitialised with the default value of Normal diagnostics. Currently used values are -1 (Silent), O (Solver
diagnostics only) and 1 (Normal diagnostics), with higher values reserved for future use (values greater than
1 behave identically to 1). The effects of this parameter on execution diagnostics are summarised in the table
below.

189



Controlling the Execution
of Model-based Activities

 Reportinglnterval: Specifies the reporting interval for results.

This is the frequency at which variable values are transmitted to the output channel(s) during a dynamic
simulation activity. This parameter does not have a default value. When a simulation activity is initiated, the
Reportinglnterval can be entered in a dialog box that appears before the simulation activity is performed. The
text box will aready contain a value for the Reportinglnterval, which will be equal to the value specified by
the Reportinglnterval Parameter in the Process. If this specification is omitted, then the value will be equal to
the default value specified in the Model Builder preferences. In either case, the value in the dialog box can be
modified by the user before the simulation activity is started.

ScheduleAnnotations: Displays unique identifying annotations on each Task in the Schedule.

Allowed values are ON and OFF (default).

Table 14.1. Effects of Output level on execution diagnostics

Output Level -1 (Silent) 0 (Solver >1 (Normal diagnostics,
diagnostics only) Extra—level n)
Diagnostics for system Off Off On
construction, index
reduction and structural
info, schedule execution,
STN switching etc.
Diagnostics of Off On — according to the On — according to the
individua solvers individual solver settings | individual solver settings

Controlling the behaviour of Foreign Objects

Thefollowing Solution Parameters allow the user to control the behaviour of Foreign Objects associated with the
execution of amodel-based activity:

» FOStatisticsLevel: Aninteger in the range [0, 2]

No statistics

Cumulative statistics on the CPU usage of all Foreign
Object methods and derivatives executed during any
activity
2 Detailed statistics on the CPU usage of al Foreign
Objects methods and derivatives executed during any
activity

IgnoreAllFODerivatives: ON or OFF

If ON, ignores the analytical derivatives calculated by all Foreign Objects associated with a model-based
activity. gPROMS uses numerical perturbations instead.

LogAllIFODerivatives. ON or OFF

If ON, details of both input and output arguments to all Foreign Object derivative calls will be written to the
Execution Output.

LogAllIFOMethods: ON or OFF

If ON, details of both input and output arguments to all Foreign Object method calls will be written to the
Execution Output.

TestAlIFODerivatives: ON or OFF
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If ON, compares the analytical derivatives calculated by all Foreign Objects associated with a model-based
activity against those calculated from numerical perturbations. Details of which comparisons fail this test are
written to the file DerivativeFailure.txt which will be present in the Results folder of the Execution Case after
execution.

Choosing mathematical solvers for model-based
activities

gPROM S supports four main types of model-based activity, namely:

* Simulation

* Optimisation - refer to the gPROM S Optimisation Guide.

» Parameter Estimation - refer to the gPROMS Model Validation Guide

» Experiment Design - refer to the gPROMS Model Validation Guide

Each one of these activities can be based on either steady-state or dynamic models.

gPROMS provides a range of state-of-the-art proprietary solvers for the execution of different types of activity.
Albeit sufficiently general to handle the dynamic case, these solversare designed to automatically detect whether a
particular problemis, in fact, a steady-state one and to take thisinto account in its solution. g°PROM S al so supports
an open software architecture regarding mathematical solvers. This basically means that third-party solvers can
be used within gPROM S without any modifications either to the gPROM S software or to the modelswrittenin it.
Detailed information on this topic can be found in the gPROM S System Programmer Guide. The configuration of
the solver for al activity typesis entered in the SOLUTION PARAMETERS section of the Process entity:

« DASolver specifies the solver to be used for Simulation activities®;

. DOSolxer specifies the solver to be used for Optimisation activities - refer to the gPROMS Advanced Users
Guide.™;

» PESolver specifies the solver to be used for Parameter Estimation activities
» EDSolver specifies the solver to be used for Experiment Design activities

Note that a Process entity may contain specificationsfor all four types of solver irrespective of the kind of activity
for which it is actually used.

The value of each of the above four parameters is actually a string identifying the solver to be used, enclosed in
double quotes. For example, the syntax:

DASol ver
DCSol ver

" SRADAU' ;
" DYNOPT";

would be used to indicate that:

* dynamic simulation is to be performed with the SRADAU solver, one of the standard gPROMS dynamic
simulation solvers;

* dynamic optimisation should use a (hypothetical) third-party dynamic optimisation solver called DY NOPT.

Note that the name of the solver is always enclosed in double quotes.

The 'DA' in DASolver stands for 'differential-algebraic; this reflects the fact that the main mathematical operation involved in performing
dynamic simulation activities is the solution of mixed sets of differential and algebraic equations.

“The'DO' in DOSolver stands for 'dynamic optimisation’; this reflects the fact that all standard optimisation solversin gPROMS are designed
for the general case of optimisation of systems under transient conditions.
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Configuring model validation and diagnosis

Before executing a model-based activity, gPROMS can perform various checks on and modifications to the
mathematical formulation of the problem. These are summarised below.

e |dentityElimination: ON (default) or OFF

If set to ON, the solver will attempt to reduce the size of the problem internally by removing equations of
the form T = Y, and substituting all occurrences of one of these variables with the other. Such equations are
often introduced in gPROM S models by stream connectivity equations. This may result in faster solution time
athough at the current stage of development the costs of creating and using the reduced system sometimes
outweigh the benefits, particularly when many IF and CASE conditions are present.

* IgnoreDAEIndexAnalysis. ON or OFF (default)

Determines whether or not gPROMSS attempts to (re)initialise a system if the index is determined to be greater
than 1.

* IndexReduction: ON or OFF (default)

Specifieswhether or not gPROM Swill perform automatic index reduction for high-index models. This Solution
Parameter appliesto al four activities. See High-Index DAE systems for more details.

» PerformStrictDAEStructural Checks: ON or OFF (default)

If ON, gPROMS to perform a check of the structure of the DAE system following the first initialisation and
following each reinitialisation.

This option is useful because unchecked structural errors can lead to different symptoms (such as an error
reported by the Linear Algebra solver) which can be hard to diagnose. It can be switched on during Model
development in order to detect Modelling errors before they result in (harder to diagnose) numerical errors. It
is particularly useful for Models containing |F or CASE statements.

Once the Model has been well tested, this option can be turned off, asit may have some computational overhead
for complex models, particularly those that contain IF or CASE statements that change branch frequently
during simulation. When a (re)initialisation fails a strict DAE structural check will be performed even if
PerformStrictDAEStructural Checks := OFF.

Configuring the mathematical solvers

A mathematical solver for amodel-based activity, such asdynamic simulation or optimisation, isusually acomplex
piece of software. Its precise behaviour and performance in solving any particular problem is controlled by a
number of algorithmic parameters. For example, the quality of the results produced by a dynamic simulation
solver (and aso the computational effort required) can be controlled by adjusting one or more error tolerances.
Each algorithmic parameter will normally have a default value which is chosen to lead to good (if not optimal)
performance for a wide range of problems; this default will be used unless the user specifies a different value.
The set of algorithmic parameters recognised by two different solvers -- even of the same type -- will generally
be different. gPROMS provides a general mechanism for specifying algorithmic parameter values of five distinct

types:
* integer algorithmic parameters (e.g. the maximum permitted number of iterations);

« real agorithmic parameters (e.g. the error tolerances);

logical agorithmic parameters (e.g. whether a certain feature of the solver isto be used or not);
* string algorithmic parameters (e.g. the name of afile to receive special output generated by the solver);

» enumerated algorithmic parameters; these are strings (enclosed in double quotes) that can take only certain
values(e.g. " OFF"," MEDI UM', " HI GH") which are recognised by the solver;
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« solver algorithmic parameters; these are strings (enclosed in double quotes) that specify sub-solvers to be used
by the solver, as explained in detail below.

For exampl e the following syntax would be used to specify that a dynamic simulation should be performed using
the SRADAU solver with an output level of 2, an absolute error tolerance of 108 and with the generation of a
specia diagnostics output file switched on:

DASol ver := "SRADAU' ["CutputLevel" = 2;
" Absol ut eTol erance" := 1E-8;
nu agn - TRUE] ’

A complete list of all the parameters associated with the SRADAU solver is given. The important things to note
here are;

« the name of the algorithmic parameter is always enclosed in double quotes, as is the name of the solver itself;

« the values of algorithmic parameters of type string, enumerated and solver (not shown in the above example)
must be enclosed in double quotes;

« any agorithmic parameters not specified here will retain their default values.

Specifying solver-type algorithmic parameters

Some of the algorithmic parameters used to configure solvers may be solvers themselves. For example, solving a
set of differential and algebrai c equationstypically requiresthe solution of anumber of mathematical sub-problems
involving sets of either nonlinear or linear algebraic equations. Thus, a differential-algebraic equation solver will
normally need to make use of both anonlinear equation solver and alinear equation solver. Wewill refer to these as
the 'sub-solvers associated with this solver. Some mathematical solvers have built in sub-solversthat they always
use for their operation. On the other hand, more advanced solvers may allow their users to specify the sub-solver
to be used. This can be done via an algorithmic parameter. For instance, consider the following extended form of
the exampl e specification of the dynamic simulation solver:

DASol ver := "SRADAU' ["CQutputLevel" = 2;
" Absol ut eTol er ance" = 1E-8§;
"Di ag" = TRUE;
"LASol ver" = "MA28";
“Initialisati onNLSol ver" = " SPARSE";
"ReinitialisationNLSol ver" := "SPARSE"] ;

This specifiesthat the SRADAU solver should use the MA28 solver for the solution of any sets of linear algebraic
equations that it needs to perform.

In addition to a sub-solver for linear equations, the SRADAU solver also needs two sub-solvers for nonlinear
algebraic equations. One of these is used for the initialisation of the dynamic simulation and the other one for re-
initialisation following discontinuities. In the above example, we are specifying that the SPARSE solver should
be used for both of these tasks. SPARSE is one of the nonlinear algebraic equation solvers provided as standard
within gPROMS.

In al cases, note that the value of a solver-type algorithmic parameter (i.e. the name of the sub-solver to be used)
needs to be enclosed in double quotes. Of course, a sub-solver isitself a solver and may have its own agorithmic
parameters that the user may specify. In the above example, we may wish to specify atight convergence tolerance
for the initialisation solver and a dlightly less tight one for re-initialisation. This can be done using the syntax:

DASol ver := "SRADAU' ["Cutput Level " = 2;
" Absol ut eTol er ance" = 1E-8§;
"Di ag" = TRUE;
"LASol ver" = "MA28";
"Initialisati onNLSol ver" = " SPARSE"
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[ " Conver genceTol er ance”
"ReinitialisationNLSol ver" := "SPARSE"
[ " Conver genceTol er ance”

In fact, some of the sub-solvers may themselves have solver-type parameters. For example, nonlinear equation
solvers, such as SPARSE, often need to solve sub-problems that involve sets of linear algebraic equations. Again,
this can be accommodated within the general syntax presented above. For example:

DASol ver := "SRADAU' ["CQutputLevel" = 2;
" Absol ut eTol er ance” = 1E- §;
"Di ag" = TRUE;
"LASol ver " = "MA28";
"InitialisationNLSol ver" = " SPARSE"
[" Conver genceTol erance"
"LASol ver "
"ReinitialisationNLSol ver" := "SPARSE"
[" Conver genceTol erance"
"LASol ver "

specifies that the SPARSE solver used for initialisation should make use of the MA48 linear algebra solver, while
that used for re-initialisation should employ the MA28 solver. Moreover, MA28 will be used by SRADAU to
solve any linear equations systems arising outside the initialisation and re-initialisation stages of its operation.
The above syntax for specifying and configuring sub-solvers within solversis recursive and can be used to define
solver hierarchies with any number of levels. For example, a dynamic optimisation solver can use a differential-
algebraic equation solver, which in turn can make use of a nonlinear equation solver, which can employ alinear
equation solver.

Specifying default linear and nonlinear equation
solvers

Most mathematical solversfor simulation, optimisation and parameter estimation need to make use of sub-solvers
for the solution of setsof linear and nonlinear algebraic equations. In order to avoid having to specify and configure
these low level solvers repeatedly within the same SOLUTION PARAMETERS section, gPROMS provides two
solution parameters that can be used to specify and configure default linear and nonlinear algebraic equation
solvers. Thus, in addition to the four main solver parameters DASolver, DOSolver , EDSolver and PESolver
described in section on DAE solvers, gPROM S recogni ses the following two parameters:

» LASolver specifies the default sub-solver for sets of linear algebraic equations;
» NLSolver specifies the default sub-solver for sets of nonlinear algebraic equations.
Consider, for example, the specification:

# default l|inear al gebraic equation solver configuration

LASol ver := "MA28" ["PivotStabilityFactor" = 0.2
"Expansi onFact or" = 3;
"MaxStruct ures” = 4] ;
# default nonlinear al gebraic equation solver configuration
NLSol ver := "SPARSE" [ "CQutputLevel" 1= 3
"MaxFuncs" = 1000;
"Maxl t er Nol npr ove" = 5;
" NSt epReduct i ons" = 10;
“Maxl terations" = 1000;
"Conver genceTol erance" := 1E-8] ;
DASol ver := "DASOLV" ["CutputLevel" = 1;
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" Absol ut eTol er ance”™ := 1E- 8]
DCsol ver : = "CVP_M5";

This specifies that, whenever the DASOLV solver needs to solve sets of linear or nonlinear algebraic equations,
it should use, respectively, the MA28 and SPARSE solvers configured as shown above. Also, whenever SPARSE
itself requires the solution of a set of linear equations, it should also use MA28 in the same configuration. The
above a so specifiesthat the CVP_MS solver should be used for the execution of dynamic optimisation activities.
This solver will also make use of the specified sub-solver choices and configurations for linear and nonlinear
algebraic equations. Interestingly, CVP_MS also requires adifferential-algebraic equation solver for its operation.
This could be achieved by specifying the value of a solver-type agorithmic parameter called DASol ver, eg.
DOSol ver := "CVP_MS" ["DASol ver" := "SuperDAE"]; where Super DAE is a (hypothetical)
third-party solver for differential-al gebrai c equations. However, since no such explicit specificationismade above,
CVP_NMB will actualy use the DASol ver choice and configuration shown above for this purpose. In conclusion,
specifying the DASol ver parameter in Solutionparameters fulfils adual function asit defines:

» the mathematical solver to be used for simulation activities;

* the default sub-solver to be used by the optimisation and parameter estimation activity solvers whenever they
need to solve sets of differential and algebraic equations.

Standard solvers for linear algebraic
equations

There are two standard mathematical solvers for the solution of sets of linear algebraic equations in gPROMS,
namely MA28 and MA48. Both of these employ direct LU-factorisation algorithms, designed for large, sparse,
asymmetric systems of linear equations. MA48 is the newer of the two codes. The LASolver solution parameter
may be used to change and/or configure the default linear algebra sub-solver used by all higher-level solvers. If
this parameter is not specified, then the MA48 solver is used, with the default configuration shown at the start
of section below.

The MA28 solver

The agorithmic parameters used by MA28 aong with their default values are shown below. Thisis followed by
adetailed description of each parameter.

"MA28" [ "Qutput Level " = 0;
"PivotStabilityFactor" := 0.1;
"Expansi onFact or" = 4;
"MaxSt ructures” = 6,
"MaxStruct ureshMenory” = 100000 ] ;

» OutputLevel: Aninteger intherange[-1, 3].

The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

-1 (None)
Errors and important warnings. Workspace increases.

Structure analysis messages

Location of singularities

WIN| PP, O

Informative messages. Creation and deletion of
systems. Usage statistics on deletion.

» PivotStabilityFactor: A real number in the range [0.0, 1.0].
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Controls the balance between minimising the creation of new non-zero elements during the matrix
factorisationS(PivotStabiIityFactor = 0) and numerical stability (PivotStabilityFactor = 1).

» ExpansionFactor: An integer of value 1 or higher.
Theamount of spacethat gJPROM S all ocates for the matrix factorisation at the start of acomputation isgiven by:
ExpansionFactor x (Number of Nonzero Elements in Matrix)
gPROM Swill automatically expand this storage at alater stage during the computation if the original allocation
is found to be insufficient. However, if the amount of storage needed by a particular computation is known
a priorie, it will usually be more efficient to allocate it from the start by specifying an appropriate value for
ExpansionFactor.

e MaxStructures: Aninteger of value 0 or higher.
The execution of amodel-based activity in gPROM Stypically involvesthe factorisation of anumber of matrices
of several different structures. The gPROM Simplementation of MA28 allows the option of storing information
on one or more structures encountered for possible re-use at alater stage of the execution if it is required again
to factorise a matrix with one of those structures. This may significantly improve the efficiency of handling
discontinuities at the expense of higher memory requirements. The parameter MaxStructures is an upper limit
on the number of distinct structures that may be stored during any one simulation.

» MaxStructureMemory: An integer of value O or higher.

Thisis an upper bound on the number of integer variable locations that may be used as part of the structure
storage scheme described above.

The MA48 solver

The agorithmic parameters used by MA48 along with their default values are shown below. Thisisfollowed by
adetailed description of each parameter.

"MA48" [ "QutputLevel " 1= 0;
"PivotStabilityFactor" := 0.1;
"Expansi onFact or" = b;
"Ful | Swi t chFactor" = 0. 5;
" Pi vot Sear chDept h" = 3;
"BLASLevel " = 32;
"M nBIl ock" =11] ;

» OutputLevel: An integer in therange[-1, 4].

The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

(None)

Creation and deletion of systems, usage statistics
including CPU, workspace increases, numerical
singularity

2 Warning messages, e.g. for duplicate entries, which
can be ignored

3 Information from the internal Fortran calls. a few
entries of the matrix to be factorised and the result

5And consequently, the amount of storage required by the factorisation.
SFor example, from experience from earlier similar computations.
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4 More information, including all entries in the
factorised matrices, and the right-hand-side and
solutions vectors.

PivotStabilityFactor: A real number in the range [0.0, 1.0].

Controls the balance between minimising the creation of new non-zero elements during the matrix
factorisation’(PivotStabilityFactor = 0) and numerical stability (PivotStabilityFactor = 1).

ExpansionFactor: An integer of value 1 or higher.
Theamount of spacethat gJPROM S all ocates for the matrix factorisation at the start of acomputationisgiven by:
ExpansionFactor x (Number of Nonzero Elements in Matrix)

gPROM S will automatically expand this storage at alater stage during the computation if the original alocation
is found to be insufficient. However, if the amount of storage needed by a particular computation is known
a priori8, it will usually be more efficient to allocate it from the start by specifying an appropriate value for
ExpansionFactor.

FullSwitchFactor: A real number in the range [0.0, 1.0].

TheMAA48 linear solver hasan option of switching to full-matrix linear algebracomputations at any stage during
the matrix factorisation process if the proportion of non-zero elements in the matrix remaining to be factorised
exceeds a specified threshold. The latter can be adjusted by the parameter Full SwitchFactor.

PivotSearchDepth: An integer of value O or higher.

The number of columns within which the search for an appropriate pivot element during a factorisation is
limited. Generally, a higher number will result in a more numerically stable pivot selection, at the expense of
higher computation time. If PivotSearchDepth is set to zero, MA48 will use a special technique for finding the
best pivot. Although thismay result in reduced fill-in, pivot searchin this caseisusually slower and occasionally
very slow.

BLASLevel: Aninteger of value 0 or more.

MA48 makes use of the Basic Linear Algebra System (BLAS) for vector and matrix operations. BLAS is
organised in three different levels, in ascending order of sophistication of the services offered. The BLASL evel
parameter specifies that BLAS level BLASlevel+1 should be used by MA48. Additionally, if the value is 2
or more, it is used to set the block column size, a parameter only applicable to level 3. For this reason, the
default is 32.

MinBlock: An integer of value 1 or higher.

MA48 makes use of block triangularisation as a means of accelerating the factorisation and solution of linear
systems. This parameter specifies the minimum block size to be considered in this context.

Standard solvers for nonlinear algebraic
equations

There are two standard mathematical solversfor the solution of sets of nonlinear algebraic equationsin gPROMS,
namely BDNLSOL and SPARSE:

BDNLSOL standsfor 'Block Decomposition NonLinear SOLver'. It isanew implementation of ageneral solver
for solving setsof nonlinear equationsrearranged to block triangular form, and employsanovel algorithm for the
handling of equationswith reversible symmetric discontinuities (I F equations). Asamodular solver component,
BDNLSOL can in principle make use of any other nonlinear solver component to solveitsindividual blocks.

"And consequently, minimising the amount of storage required by the factorisation.
8For example, from experience from earlier similar computations.
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e SPARSE isatrue solver component for solution of nonlinear algebraic systems without block decomposition.
It provides a sophisticated implementation of a Newton-type method.

The above solvers are designed to deal with large, sparse systems of equations in which the variable values are
restricted to lie within specified lower and upper bounds. Moreover, they can handle situations in which some of
the partia derivatives of the equations with respect to the variables are available analytically while the rest have
to approximated. In g°PROM S models, almost all partial derivatives are computed analytically from expressions
derived using symbolic manipulations. The main exception is partial derivatives of equations involving any
Foreign Object methods that are not capable of returning partia derivatives.

An efficient combination of finite difference approximations and |east-change secant updates is used for the latter
purpose.

The NL Solver solution parameter may be used to change and/or configure the default nonlinear algebra sub-solver
used by all higher-level solvers. If this parameter is not specified, then all activities make use of the BDNL SOL
solver with the default configuration shown in the corresponding section

e simulation;

e optimisation and parameter estimation activities make use of the BDNLSOL solver with the default
configuration shown in the corresponding section.

Note that NLSOL is no longer available as its functionality has been entirely been replaced by BDNLSOL.

The BDNLSOL solver

The algorithmic parameters used by BDNL SOL along with their default values are shown below. Thisisfollowed
by a detailed description of each parameter.

"BDNLSOL" ["Bl ockSol ver" = " SPARSE";
"LASol ver" = "MA48";
" Qut put Level " = 0;
"MaxStructureSwi tches" = 100;
"Usel FSuper st ruct ure” = FALSE] ;

» BlockSolver: A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of the nonlinear systems representing each block. This can be either
SPARSE or a third-party nonlinear algebraic equation solver (see the gPROMS System Programmer Guide).
This parameter can be followed by further specifications aimed at configuring the particular solver by setting
values to its own algorithmic parameters.

e LASolver: A quoted string specifying alinear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations. This can be either one of the standard
gPROMS linear algebraic equation solvers or a third-party linear algebraic eguation solver (see the gPROMS
System Programmer Guide). The default is MA48. This parameter can be followed by further specifications
aimed at configuring the particular solver by setting values to its own algorithmic parameters.

e OutputLevel: Aninteger in therange[-1, 5].

The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

0 (None)

1 Numbers of equations in each block in the main block
decomposition Failures to solve linear blocks

2 Result of the block decomposition: equation and
variable numbers in each block 'Solving block n'
message
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3 Changed/unchanged variables due to solving single
linear equations Final variable values after solving
nontrivial blocks

5 Table of equation names necessary to interpret
information from main block decomposition step

» MaxStructureSwitches: An integer in the range [0, 2000000]
The maximum number of successive switches of conditional equations before the solution iterations will stop.
» UselFSuperstructure. A boolean value.
If set to TRUE, the solver will attempt to take account of the occurrence of variables in both branches of IF
conditions when performing block decomposition, which will allow it to proceed through the blocks even when

the need to change IF branches is detected after solution of a given block. For problems with a large number
of IF conditions this can improve solution time considerably.

The SPARSE solver

The algorithmic parameters used by SPARSE along with their default values are shown below. Thisis followed
by a detailed description of each parameter.

" SPARSE" ["LASol ver" = "MA48";
" BoundsTi ght eni ng" = 0;
"Conver genceTol erance" = 1E-5;
"Ef fectiveZero" = 1E-5;

" FDPert ur bati on" = 1E-5;
"Iterati onsWthout NewJacobi an" := 0;

" MaxFuncs" = 1000000;
“Maxlterations” = 1000;

" MaxI t er Nol npr ove” = 10;
"MaxStructureSw t ches" = 100;

" NSt epReduct i ons" = 10;

"Qut put Level " = 0;

"Si ngPert Fact or™ = 1E- 2;
"SLRFact or " = 50;] ;

» LASolver: A quoted string specifying alinear algebraic equation solver.

The solver to be used for the solution of linear algebraic equations at every iteration. This can be either one of
the standard gPROMS linear algebraic equation solvers or a third-party linear algebraic equation solver (see
the gPROMSS System Programmer Guide). The default is MA48. This parameter can be followed by further
specifications aimed at configuring the particular solver by setting values to its own algorithmic parameters.

» BoundsTightening: A real number in the range[0.0, 1.0].
If this parameter is set to anon-zero value, then at each iteration, after applying itsusual logic toimposethetrue
variable bounds on the step taken, SPARSE will impose "tightened bounds'. The exact value of the bounds used
is dependent on the previous guess for each variable: if the ith variable has true lower bound x;;, and previous

guess xi(k), the tightened lower bound will be x;+ p (xi(k) - X1), where p is the value of this parameter. Similar
logic is applied to the tightened upper bound.

« ConvergenceTolerance: A real number in the range [10°%°, 10%9].

The tolerance used in testing for convergence of the nonlinear system f(xX)=0 being solved. A system of n
equations f(x) in n unknowns x is assumed to have converged when the norm of the equations:

|17(2)]] = maxicp ) | fi(2)]
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falls below the ConvergenceTolerance. This is equivalent to the absolute value of the difference between the
left and right hand sides of each and every equation in the system being below this tolerance. Note that no
automatic scaling is applied by the solver.

EffectiveZero: A real number in the range [10°%°, 10%9].

The magnitude of a variable below which absolute rather than relative perturbations are used -- see parameters
FDPerturbation, SingPertFactor and SL RFactor below.

FDPerturbation: A real number in the range[lO'ZO, 1010].

Finite difference perturbation factor. If finite difference calculation of partial derivatives with respect to a
variable x isrequired, x is perturbed by:

FDPer t ur bati on x [X|

unless FDPer t ur bat i on x [x| is less than EffectiveZero (see above), in which case it is perturbed by
FDPerturbation.

IterationsWithoutNewJacobian: An integer in the range [0, 1000000].

If set to 0 SPARSE computes the Jacobian at every iteration. Otherwise, SPARSE will use a simple form of
Modified Newton keeping the Jacobian for a set number of iterations. In some cases this can be used to speed
up the solution.

Maxlterations: An integer in the range [1, 12000000].

The maximum number of iterations that the solver is alowed to take. Note that, unlike MaxFuncs (see above),
this does not include any evaluations of the equations for the purpose of estimating elements of the Jacobian
matrix using finite difference perturbations.

MaxFuncs: An integer in the range [1, 1000000].

The maximum number of evaluations of the vector of equations f(x) that is permitted during solution. This
includes the equation evaluations required for approximating any elements of the Jacobian matrix 5f/5x that are
not available analytically, using finite difference perturbations.

MaxIterNolmprove: An integer in the range [1, 1000000].

The maximum number of iterations without a reduction in the norm of the equation vector (see above) before
the solver takes corrective action. For convergence to be achieved, this norm must eventually decrease to below
the ConvergenceTolerance. However, it may actually increase between two consecutive iterations.

The solver monitors the norm at each iteration. It also keeps arecord of the best (i.e. lowest) norm obtained so
far in the solution, the values of the unknowns x*® at this point, and the step Axbeg taken from this point x*<.
If no improvement over this best norm is observed within MaxlIterNolmprove consecutive iterations, then the
solver attempts to take corrective action, as follows:

+ the unknowns are reset to x** + Ax**%/2;

« the Jacobian matrix is recomputed, using finite differences for any elements not available anaytically.
MaxStructureSwitches: An integer in the range [0, 2000000]

The maximum number of successive switches of conditional equations before the solution iterations will stop.

NStepReductions: Aninteger in the range [1, 1000000].

The maximum number of consecutive corrective actions that the solver is alowed to attempt. As explained
in the context of parameter MaxIterNolmprove above, the solver attempts to take certain corrective actions if
no improvement in the equation norm is achieved within a certain number of consecutive iterations. If such
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corrective action is attempted more than NStepReductionstimesin arow (i.e. having to return to the same xPest

in all cases), then the solver terminates its operation unsuccessfully.
» OutputLevel: An integer in the range [-1, 10].

The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

-1 (None)

0 Halving of step due to unsatisfactory progress, initial
point out of bounds

1 Solution parameters on first use, variables hitting
bounds

2 Method and scaling information, residual and call

number on convergence, falure to improve in
MaxIterNolmprove iterations, residual and worst
equation number at each call to driver, variables stuck
on bounds, number of variables reset to bounds

3 Variable and equation names of each nonlinear system,
call number and condition on each call to driver, step
reduction factors, various measures of the largest steps
taken at each iteration

4 Residuals at every evauation, variables at each
iteration, lists of variables being perturbed

5 Variable values before solution, workspace
information, solutions of linear systems (i.e. steps)

6 Complete Jacobian at each factorisation

10 Solution parameters on every use

« SingPertFactor: A real number in the range [10%°, 1019,

The perturbation factor used for escaping from local singularities. If, at a certain iteration, the Jacobian matrix
is found to be singular (with arank r that is less than the size of the system n), the solver attempts to escape
from such a point by applying a perturbation to n-r of the system variables. For a variable x, the size of this
perturbation is:

Si ngPert Fact or x [X|
unless |x| is less than EffectiveZero (see above), in which caseiit is perturbed by SingPertFactor.
» SLRFactor: A real number in the range [10'20, 1010].

The step length restriction factor, #. In the interests of improving convergence from poor initial guesses, the
solver automatically limits the step taken in any iteration by afraction # # (0,1] so that the magnitude of the
change in any variable x does not exceed:

o #x| if xisequal to, or exceeds the EffectiveZero (see above);

* # otherwise.

Standard solvers for differential-algebraic
equations

There are two standard mathematical solversfor the solution of mixed sets of differential and algebraic equations
in gPROMS, namely DASOLYV and SRADAU:
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e DASOLYV is based on variable time step/variable order Backward Differentiation Formulae (BDF). This has
been proved to be efficient for a wide range of problems. However, BDF solvers suffer from loss of stability
for certain types of problems (e.g. highly oscillatory ones) and they are not very efficient for problems with
frequent discontinuities.

» SRADAU implementsavariabletime step, fully-implicit Runge-Kuttamethod. It hasbeen proved to be efficient
for the solution of problems arising from the discretisation of PDAEswith strongly advective terms (in general,
highly oscillatory ODES), and models with frequent discontinuities.

Both of the above solvers are designed to deal with large, sparse systems of equationsin which the variable values
arerestricted to lie within specified lower and upper bounds. Moreover, they can handle situationsin which some
of the partial derivatives of the equations with respect to the variables are available analytically while the rest
have to approximaiedg. Efficient finite difference approximations are used for the latter purpose. Both solvers
automatically adjust each time step taken so that the following criterion is satisfied:

a2 (aty) <1
where;
* nqisthe number of differential variablesin the problem (i.e. those that appear as $x in the gPROMS model);
« € isthe solver's estimate for the local error in the i differential variable;
« x; isthe current value the it differential variable;
* aisan absolute error tolerance;
* risarelatve error tolerance.

In rough terms, this means that the error €; incurred in a particular variable x; over asingletime step is not allowed
to exceed @ + 7|Z:|, The default values for a and r (10”° in both cases) are usually adequate since:

« they control the error in variables x; of size 0.01 or higher to within acceptable ranges;
« smaller variable values are often not important from an engineering point of view™°,

However, for problems in which small variable values may have an important effect on system behaviour, it is
advisable to specify asmaller absolute tolerance'?.

At the end of each simulation, if an estimate of the error committed in any variable at any time step exceeds a
threshold, thisis reported. See the Large residual warnings section for details.

The DA Solver solution parameter may be used to change and/or configure the solver used for simulation activities,

aswell as the default DAE sub-solver used by all higher-level solvers. If this parameter is not specified, then the
DASOLYV solver is used, with the default configuration shown at the start of the section below.

The DASOLYV solver

The algorithmic parameters used by DASOLYV along with their default values are shown below. Thisis followed
by adetailed description of each parameter.

“DASCLV* ["InitialisationNLSol ver" := " BDNLSOL";

%In gPROMS models, almost all partial derivatives are computed analytically from expressions derived using symbolic manipulations. The
main exception is partial derivatives of equations involving any Foreign Object methods that are not capable of returning partial derivatives.
Oror example, aliquid level in aprocessing vessel of 10°“m is practically indistinguishable from one of 10°m.

For example, in aproblem involving free radicals or ions, it may be important to distinguish between mole fraction of 10 and 10”.
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"LASol ver" = "MA48";
"ReinitialisationNLSol ver" = "BDNLSOL"
" Absol ut elst Ti neDeri vati veThreshol d" := 0.0;

" Absol ut ePerturbati onFactor"” = 1.0E-7;
" Absol ut eTol er ance" = 1E-5;
"Di ag" = FALSE;
"Ef fectiveZero" = 1E-5;
"Event Tol er ance" = 1E-5;
"FDPert urbation" = 1E-6;
"FiniteD fferences" = FALSE;
"Hi gher Or der Bi asFact or ™ = 1;
"MaxCorrectorlterations” = b;
"MaxSuccessi veCorrector Fai | ures" = 12;

"M ni nunRat i oFor Or der Decr ease” = 1000;

" Qut put Level " = 0;

"Rel ati velst Ti neDerivativeThreshold" := 0.0;
"Rel ati ve2ndTi neDerivati veThreshol d" := 0.0;
"Rel ati vePerturbationFactor"” = 1E-4;
"Rel ati veTol erance" = 1E-5;
"SenErr" = FALSE;
"Vari abl esWt hLar gest Corrector Steps” := 0]

However, BDNLSOL is used asthe default InitialisationNL Solver and ReinitialisationNL Solver when DASOLV
isused for simulation activities.

* InitialisationNL Solver: A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of nonlinear algebraic equations occurring at the initialisation stage of the
integration. Thiscan be either one of the standard gPROM S nonlinear algebrai ¢ equation solversor athird-party
nonlinear algebraic equation solver (see the gPROMS System Programmer Guide). The default is BDNLSOL.
This parameter can be followed by further specifications aimed at configuring the particular solver by setting
values to its own algorithmic parameters.

* LASolver: A guoted string specifying alinear algebraic equation solver.
The solver to be used for the solution of linear algebraic equations at each step of the integration. This can be
either one of the standard gPROM S linear algebraic equation solvers or a third-party linear algebraic equation
solver (see the gPROMS System Programmer Guide). The default is MA48. This parameter can be followed
by further specifications aimed at configuring the particular solver by setting values to its own algorithmic
parameters.

» ReinitiaisationNL Solver: A quoted string specifying a nonlinear algebraic equation solver.
The solver to be used for the solution of nonlinear algebraic equations that is necessary for re-initialisation
following discontinuities. This can be either one of the standard g°PROM S nonlinear algebraic equation solvers
or athird-party nonlinear algebraic equation solver (see the gPROM S System Programmer Guide). The default
is BDNLSOL. This parameter can be followed by further specifications aimed at configuring the particular
solver by setting values to its own algorithmic parameters.

« AbsolutelstTimeDerivativeThreshold: A real number in the range [0, 10'9).

Unless this parameter has the value zero, it represents the value £ 4 in the condition used to determine reporting
of potential 'runaway' derivatives.

If it is zero (the default), no runaway derivatives will be reported.
« AbsolutePerturbationFactor: A real number in the range [10%°, 10'°]; default = 107,

Absolute perturbation factor for varied trajectories and second-order sensitivities.
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AbsoluteTolerance: A real number in the range [10°%°, 10'].

The absolute integration tolerance. Together with the parameter RelativeTolerance (see below), they determine
whether or not atime step taken by the solver is sufficiently accurate.

» Diag: A boolean value.

Specifies whether very detailed diagnostic information is to be generated during integration.

EffectiveZero: A real number in the range [10°%°, 10%9].

The magnitude of a variable below which absolute rather than relative finite difference perturbation is used --
see parameter FDPerturbation below.

EventTolerance: A real number in the range [10°%°, 10%9].

The event tolerance, i.e. the maximum time interval within which discontinuities during integration are located.

FDPerturbation: A real number in the range [10%°, 109).

Finite difference perturbation factor. If finite difference calculation of partial derivatives with respect to a
variable Xisrequired, X is perturbed by:

FDPerturbation x | X|

unless|X |islessthan EffectiveZero, in which case it is perturbed by FDPerturbation.
* FiniteDifferences: A boolean value; default = FALSE.

Controlswhether second-order sensitivities are cal culated viafinite differences (TRUE) or within the BDF code
(FALSE).

» HigherOrderBiasFactor: A real number in the range [0.001, 1000].
The factor B used in the tests which the integrator makes periodically to determine whether to change the
order of integration within DASOLV. Giving this factor a value greater than 1 will "bias' the integrator
towards using higher order steps. This has been found to result in quicker solution for many problems (see also
MinimumRatioForOrderDecrease).
Thistest is of the form
IFr up*B >r_smAND r_up*B > r_dn THEN
Rai se integration order
END
Where:
e r_up istheratio which DASOLV will apply to the step if it increases the order by 1,
e r_smistheratio which DASOLV will apply to the step if it keeps the order the same,
e r_dn istheratio which DASOLV will apply to the step if it decreases the order by 1.

» MaxCorrectorlterations: An integer number in the range [1,50].

The maximum number of corrector iterationsto allow on asingle attempt to solve the system (i.e. before cutting
the step).

* MaxSuccessiveCorrectorFailures: An integer number in the range [1,100].
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The maximum number of successive corrector failuresto allow before declaring an integration failure.
MinimumRatioForOrderDecrease: A real number in the range [0.0, 109].
The factor F used in the tests which the integrator makes periodicaly to determine whether to reduce the
order of integration within DASOLV. Giving this factor a value greater than zero will "bias" the integrator
against reducing the step. This has been found to result in quicker solution for many problems (see also
HigherOrderBiasFactor) - in particular, setting the value to 1.0 will ensure that the order is not reduced unless
the step itself is being reduced, which often proves beneficial.
Thistest is of the form
IFr_dn >r_smANDr_dn >r_up AND r_sm > F THEN

Reduce integration order
END
Where:
e r_up istheratio which DASOLV will apply to the step if it increases the order by 1,
e r_smistheratio which DASOLV will apply to the step if it keeps the order the same,
e r_dn istheratio which DASOLV will apply to the step if it decreases the order by 1.

OutputLevel: Aninteger intherange[-1, 7].

The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

(None)

1 (Re-)initialisation times, projection of predictor onto
bounds, variables hitting bounds

2 Successful initialisation, change of branch in IF

conditional equations, location of discontinuities,
step failures, repeated convergence failures, predictor
outside bounds, predictor step reduction, variables
stuck on bounds

3 Detail of convergence failures, values of derivatives
on commencing integration, number of perturbation
groups, step length reduction due to bounds violation

4 Variable causing discontinuity, detail of perturbation
groups
5 Entry to main integrator routines, all error test values,

nonfatal singularities during integration, greatest
changes in variables at each corrector iteration

6 Convergence values at every corrector iteration, step
change factors
7 Time, step, variables, derivativesand residualsat every

corrector iteration

When OutputLevel is 3 or more, gPROM S reports the norms for differential and algebraic Variables, as shown
in the example below.

Nor m val ues
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differential and al gebraic variables: 2.19219E-005
al gebrai c variables only: 2. 19607E- 005

These norms are calculated using the following equations.

2
T4
1 ( a+rz; ) !

M=

norm = C(ng)4/
3

where:

* C(ng) are constants depending on the on the order of the step
¢ Nisthe number of equations

* X; arethe current values of the variables

e aandr arethe absolute and relative tolerances

For algebraic Variables only, the norm is calculated by:

2
1 ! i

NnoTMalg = C(nQ) Naig Ez (af’rmi> )

where Nyg is the number of algebraic variables and the summation is performed over only the Na g algebraic

variables.

RelativelstTimeDerivativeThreshold: A real number in the range [0, 1010].

Represents the value @& in the condition used to determine reporting of potential *“runaway" derivatives.

Relative2ndTimeDerivativeThreshold: A real number in the range [0, 1019).

Represents the value 62 in the conditions used to determine reporting of potential *“runaway" derivatives.
RelativePerturbationFactor: A real number in the range [10'20, 1010]; default = 104,

Relative perturbation factor for varied trajectories and second-order sensitivities.

RelativeTolerance: A real number in the range [10°%°, 10'%); default = 107,

The relative integration tolerance. Together with the parameter AbsoluteTolerance (see above), they determine
whether or not atime step taken by the solver is sufficiently accurate.

SenErr: A boolean value.

For optimisation type activities: specifies whether the sensitivity error test is to be applied at each step of the
integration.

VariablesWithLargestCorrectorSteps: An integer between 0 and 1000; default = 0.

Onrareoccasions, DASOLYV failswith a"corrector step failure" message. Thisindicatesthat the codeis unable
to establish a set of variable values that satisfy the system equations at a particular point. It is often caused by
errors or bad scaling in some modelling equations which results in the corrector iterations taking excessively
large steps in some of the variables. To help with the diagnosis of such problems, DASOLV can report the
variables with the largest relative change at each corrector iteration. The relative change for a variable X is
defined as:

0X
a+r|X|

where;
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* § X isthe step in the variable at this corrector iteration;
* aisthe absolute tolerance;
» ristherelative tolerance.

The parameter VariablesWithLargestCorrectorSteps specifies the number of variables to be reported in this
manner. Note that such reporting takes place only if the parameter OutputLevel is set to avalue of 0 or higher.

An example of the output is shown below:
Variables with | argest (weighted) corrector steps follow...

Differential and al gebraic variables (norm = 227.542):

| 1| Pl ant . Reactor. STR rho_L | | 548. 071 |
| 2 | Pl ant . Reactor. STR c(5) | 12126 | 548. 071 |
| 3| Pl ant. Reactor. STR vol _L | 0. 000824675 | -3.72737E-05 |
| 4 | Pl ant . Reactor. STR g_Loss | 0. 00692394 | -6. 05969E- 06 |
| 5] Plant.Reactor.STR ThermoHL. hli (2) | -5.12137E-10 | -1.41695E- 06 |

| 1| Pl ant . Reactor. STR rho_L | | 548. 071 |
| 2 | Pl ant . Reactor. STR c(5) | 12126 | 548. 071 |
| 3| Pl ant. Reactor. STR vol _L | 0. 000824675 | -3.72737E-05 |
| 4 | Pl ant . Reactor. STR g_Loss | 0. 00692394 | -6. 05969E- 06 |
| 5] Plant.Reactor.STR ThermoHL. hli (2) | -5.12137E-10 | -1.41695E- 06 |

The output is grouped in terms of differential and algebraic Variables and only algebraic Variables. In each
case, anorm value is also reported. For differential and algebraic variables, thisis defined by:

N 2
_ 1 X;
norm = \/N '21 (a+er¢) )

1=

where N is the number of  eguations. Subsequent lines list the  largest
Vari abl esWt hLar gest Cor r ect or St eps Variables and their relative changes.

For algebraic Variables only, then norm is similarly defined:

2
— 1 ! X
normalg = A/ §: i (a-{—'rXi) ,

where Ny 4 is the number of algebraic Variables and the summation is over only the algebraic Variables. Again,
alist of the algebraic variables with the largest corrector steps then follows.

If asubset of the system being solved by DASOLYV becomes unstable, then DASOLV may fail, issuing a"repeated
error test failure" message. This indicates that the code is no longer able to control the error of integration. The
variables associated with such instabilities often exhibit excessively large values of their first and second time
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derivatives immediately preceding the instability. DASOLV exploits this fact to help in the diagnosis of such
problems. More specifically, DASOLV will report any variable X which satisfies all three of the following tests:

1 Minimum magnitude: The value of | X | must be greater than 10°

2. First derivative:

 EITHER

|X| > 6a

(specified with the AbsoluteDerivativeThreshold parameter)
+ OR

X
%>QR

(specified with the RelativeDerivativeThreshold parameter)

3.  Second derivative:

(specified with the RelativeSecondDerivativeT hreshold parameter)

Large residual warnings

At the end of every time step, DASOLV examines the equation which has the largest residua in magnitude, and
records an estimate of the error committed in each variable x; in this equation. To do this it uses the value of the
Jacobian element with respect to that variable (i.e. the partial derivative of the equation w.r.t. x;), to estimate the
change delta i that would be needed in that variablein isolation to bring the residual to zero. The specific measure
used is |delta_i[/max(]x_i|, [x_i+delta i[), i.e. the size of the change relative to either the actua value or the value
which would remove the residual, whichever is greater. Thisisreferred to as the error measure for that variable.

The most important consideration for a given equation is then the smallest error measure. The reason for thisis
that if theresidual can be brought to zero by avery small changein any variable, alarger error measure for another
variableisrelatively meaningless.

At the end of the integration, when the smallest error measure in the equation with the largest residual on any
singletime step exceedsthe threshold convtol* 10, thissingle equationis reportedlz. All suchresidualsarereported
asfollows:

* First the residual and time are indicated.
» The smallest error measure and the variable concerned are displayed in parentheses.
» Theequation itself isthen displayed.

» Thisisfollowed by atable containing arow for each variable in the equation, indicating its name, value at the
time, Jacobian element value at the time, the value of delta i as described above, and the error measure in the
form of a percentage.

Note that if one or more singular Jacobians were observed during the solution, all equations where the smallest
error measure exceeds convtol/10 (i.e. 100 times more sensitive than the normal case) are reported, since this
situation has been found to lead to problems with variable values.

2Note that the tolerance used in the test, convtol, is taken from DASOLV's ReinitialisationNL Solver. Thisis done in order to relate the error
acceptable at an integration step to the error that might be committed when reinitialising the system at a discontinuity.
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Also, if the DASOLYV solution parameter Diag is set to true, the threshold used for thistest is 10

In these cases where more than one residual is reported, the list is displayed in descending order of error measure,
so that the first entries are likely to be the most significant.

The SRADAU solver

The algorithmic parameters used by SRADAU along with their default values are shown below. Thisis followed
by a detailed description of each parameter.

"SRADAU' ["InitialisationNLSol ver" = "BDNLSCOL";
"LASol ver" = "MA48";
"ReinitialisationNLSol ver" = "BDNLSOL";
" Absol ut eTol er ance" = 1E-5;

"Di ag" = FALSE;
"Max St epSi ze" = 1. OE10;
"Event Tol er ance" = 1E-5;

" Qut put Level " = 0;

"Rel ati veTol erance" = 1E-5;
"Vari abl esWt hLar gest Corrector Steps” := 0]

* InitialisationNL Solver: A quoted string specifying a nonlinear algebraic equation solver.

The solver to be used for the solution of nonlinear algebraic equations occurring at the initialisation stage of the
integration. This can be either one of the standard gPROM S nonlinear algebraic equation solver or athird-party
nonlinear algebraic equation solver (see the gPROMS System Programmer Guide). The default is BDNLSOL.
This parameter can be followed by further specifications aimed at configuring the particular solver by setting
values to its own algorithmic parameters.

» LASolver: A quoted string specifying alinear algebraic equation solver.
The solver to be used for the solution of linear algebraic equations at each step of the integration. This can be
either one of the standard gPROMS linear algebraic equation solvers or athird-party linear algebraic equation
solver (see the gPROMS System Programmer Guide). The default is MA48. This parameter can be followed
by further specifications aimed at configuring the particular solver by setting values to its own agorithmic
parameters.

» ReinitiaisationNL Solver: A quoted string specifying a nonlinear algebraic equation solver.
The solver to be used for the solution of nonlinear algebraic equations that is necessary for re-initialisation
following discontinuities. This can be either one of the standard g°PROM S nonlinear algebraic equation solvers
or athird-party nonlinear algebraic equation solver (see the gPROM S System Programmer Guide). The default
is SPARSE. This parameter can be followed by further specifications aimed at configuring the particular solver
by setting values to its own algorithmic parameters.

« AbsoluteTolerance: A real number in the range [10°%°, 10%].

The absolute integration tolerance. Together with the parameter RelativeT ol erance (see below), they determine
whether or not atime step taken by the solver is sufficiently accurate.

» Diag: A boolean value.
Specifies whether very detailed diagnostic information isto be generated during integration.
« EventTolerance: A real number in the range [10°%°, 10%9].
The event tolerance, i.e. the maximum time interval within which discontinuities during integration are located.

* MaxStepSize: A real number in the range[lO'zo, 10100]; default = 10°.

209



Controlling the Execution
of Model-based Activities

This Solution Parameter sets the maximum step size used by the integrator when advancing in time.
OutputLevel: Aninteger in therange [0, 4].

The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

0 (None)

(Re-)initialisation times, projection of predictor onto
bounds, variables hitting bounds

2 Successful initialisation, change of branch in IF
conditional equations, location of discontinuities,
step failures, repeated convergence failures, predictor
outside bounds, predictor step reduction, variables
stuck on bounds

3 Detail of convergence failures,values of derivatives
on commencing integration, number of perturbation
groups, step length reduction due to bounds violation

4 Variable causing discontinuity, detail of perturbation
groups

RelativeTolerance: A real number in the range [10°%°, 10%9].

Therelative integration tolerance. Together with the parameter AbsoluteT ol erance (see above), they determine
whether or not atime step taken by the solver is sufficiently accurate.

VariablesWithLargestCorrectorSteps: An integer between 0 and 1000; default = 0.

Onrareoccasions, SRADAU failswith a"corrector step failure" message. Thisindicates that the codeis unable
to establish a set of variable values that satisfy the system equations at a particular point. It is often caused by
errors or bad scaling in some modelling equations which results in the corrector iterations taking excessively
large steps in some of the variables. To help with the diagnosis of such problems, SRADAU can report the
variables with the largest relative change at each corrector iteration. The relative change for a variable X is
defined as:

0X
a+r|X|

where:

* 6 X isthe step in the variable at this corrector iteration;
* aisthe absolute tolerance;

* ristherelative tolerance.

The parameter VariablesWithLargestCorrectorSteps specifies the number of variables to be reported in this
manner. Note that such reporting takes place only if the parameter OutputLevel is set to avaue of 0 or higher.

An example of the output is shown below:

Variables with | argest (weighted) corrector steps follow...

Differential and al gebraic variables (norm = 227.542):

| Variable | Nanme | Current Value | Corrector Step | Wi
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| 1| Pl ant . Reactor. STR rho_L | 12126 | 548. 071 |
| 2 | Pl ant . Reactor. STR c(5) | 12126 | 548. 071 |
| 3| Pl ant. Reactor. STR vol _L | 0. 000824675 | -3.72737E-05 |
| 4 | Pl ant . Reactor. STR g_Loss | 0. 00692394 | -6. 05969E- 06 |
| 5] Plant.Reactor.STR ThermoHL. hli (2) | -5.12137E-10 | -1. 41695E- 06 |
Al gebraic variables only (norm = 250. 308):

| Variable | Nanme | Current Value | Corrector Step | Weic
| 1| Pl ant . Reactor. STR rho_L | 12126 | 548. 071 |
| 2 | Pl ant . Reactor. STR c(5) | 12126 | 548. 071 |
| 3| Pl ant. Reactor. STR vol _L | 0. 000824675 | -3.72737E-05 |
| 4 | Pl ant . Reactor. STR q_Loss | 0. 00692394 | -6. 05969E- 06 |
| 5] Plant.Reactor.STR ThermoHL. hli (2) | -5.12137E-10 | -1. 41695E- 06 |

The output is grouped in terms of differential and algebraic Variables and only algebraic Variables. In each
case, anorm value is also reported. For differential and algebraic variables, thisis defined by:

N 2
— (L Xi
norm = \/N Zl (a-l—rXi) )
1=

where N is the number of equations. Subsequent lines list the largest
Vari abl esW t hLar gest Cor r ect or St eps Variables and their relative changes.

For algebraic Variables only, then norm is similarly defined:

2
— 1 ! X
MoTMalg = \| Wy 2i <a+rXi) ,

where Ny g is the number of algebraic Variables and the summation is over only the algebraic Variables. Again,
alist of the algebraic variables with the largest corrector steps then follows.

211
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Diagnosis

At the start of each simulation, gPROM S analyses the mathematical model so as to assist the user in identifying
structural problems and errors in the modelling and/or the problem specification. In particular, gJPROM S attempts
to determine:

« if the model iswell-posed and whether alternative specifications are required for the degrees-of-freedom;
« if the underlying set of differential and algebraic equationsis of index exceeding 1; and
« if theinitial conditions are inconsistent.

These structural problems are considered in more detail in this section.

Well-posed models and degrees-of-freedom

In order for gPROM S to solve the underlying equation system associated with a given simulation, the model must
bewell-posed and all degrees-of-freedom must be specified correctly. If there aretoo many or too few assignments
for the degrees-of -freedom then gPROM S will issue an error upon instantiation and state that the equations system
is over-specified or under-specified respectively. As a user you should then analyse the suggestions regarding
specifications and take the necessary action to ensure the equation system is correctly specified.

Case I: over-specified systems

An over-specified system is one which either itself consists of more equati onsthan unknown variables, or involves
an over-specified sub-set of equations and unknowns. Mathematically, it can be shown that any over-specified
system will contain at least one sub-system involving k equations in only (k-1) distinct unknowns. gPROMS
identifies this sub-system and, where appropriate, offers informed suggestions on which Assignments may be
responsible for the over-specification. As a simple example of this, consider the gPROMS input shown in the
gPROMS code below:
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Example 15.1. lllustrative example: over-specified system

VARI ABLE
x1l, x2, yl, y2 AS NoType
EQUATI ON
$x1 = x1*y1 ;
$x2 = x1 + x2*yl + y2 ;
x1"2 = y2 ;
0 =yl - y2;
By yyrre

#PROCESS pr oc

UNI'T
nynod AS nodl

ASSI GN
W THI N nmynod DO
y2 := 3 ;
END #wi t hin

I NI TI AL
W THI N nmynod DO
x1

X2

END #wi t

0
0;
hi n
SCLUTI ONPARAMETERS
Reportinglnterval := 1 ;

SCHEDULE
CONTI NUE FOR 10

It is easy to see that MODEL nod1 consists of 4 equations in 4 variables, one of which, y2, is Assigned in the
PROCESS pr oc. Execution of the PROCESS pr oc leads to the following diagnostic message:

Executing process PRCC. ..
Al 4 variables will be nonitored during this sinulation!
Bui | di ng mat henmatical problem description took 0.014 seconds.

Loaded MAA8 library
Execution begins....

Vari abl es
Known
Unknown
Differential
Al gebraic

PN WPRE
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Model equati ons
Initial conditions

N B

Checki ng consi stency of nodel equations and ASSI GN specifications...

ERROR: Part of your problemis over-specified.
The following 3 equation(s) involve only 2 unknown vari abl e(s).

Model Equati on 1. MYMOD. $X1 = MYMOD. X1 * MYMOD. Y1 ;
Model Equati on 3: MYMOD. X172 = MYMOD. Y2 ;
Model Equati on 4: 0 = MYMOD. Y1 - MYMOD. Y2 ;

The 2 unknown(s) occuring in these 3 equations are:

MYMOD. Y1 ( ALGEBRAI C)
MYMOD. X1 ( STATE)

The probl em may have been caused because you ASSI GNed t he
foll owi ng variabl e(s):
MYMOD. Y2 (/1 NPUT)
Initialisation calculation failed.

Execution of PROC fails prematurely.

gPROMS identifies the over-specified sub-system of 3 equations in 2 unknown variables and suggests that the
Assignment of the variable y 2 is causing the problem. UnAssigning this variable leads to a working simulation.

Case Il: under-specified systems

An under-specified system has more unknown variables than equations. In this case, gPROMS diagnoses the
problem and provides alist of candidate variables for Assignment (while advising against Assigning differential
variables). Thisisillustrated by the gPROMS code below:
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Example 15.2. lllustrative example: under-specified system

VARI ABLE
x1, x2, y1, y2, y3 AS NoType
EQUATI ON
$x1 = x1*y1 ;
$x2 = x1 + x2*yl + y2 + 3*y3 ;
x1"2 = y2 ;
0 =yl - y2;
By yyrre

#PROCESS pr oc

UNI'T
nynod AS nodl

I NI TI AL
W THI N nmynod DO
x1

X2

END #wi t

0
0 ;
hin

SCLUTI ONPARAMETERS

Qut put Level := 2 ;

gRMS = OFF ;

Reportinglnterval := 1 ;
SCHEDULE

CONTI NUE FOR 10
gPROM S issues the following message upon execution of the PROCESS pr oc:
Executing process PRCC. ..
Al 5 variables will be nonitored during this sinulation!
Bui | di ng mat henmati cal problem description took 0.001 seconds.

Loaded MAA8 library
Execution begins....

Vari abl es
Known 0
Unknown 5
Differential 2
Al gebraic 3
Model equati ons 4
Initial conditions 2
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Checki ng consi stency of nodel equations and ASSI GN specifications...

ERROR: Your problemis underspecified.
You need to ASSIGN 1 of the follow ng unknown vari abl es:
MYMOD. X2 *** Not recommended ***
MYMOD. Y3
Initialisation calculation failed.

Execution of PROC fails prematurely.

Assigning the algebraic variable y 3 leads to a well-posed system.

High-index DAE systems

Consistent initialisation of DAE systemsisoften related to their index. Theindex of aDAE system isdefined asthe
minimum number of differentiations with respect to time that are necessary in order to obtain the time derivatives
of all variables, i.e. to reduce the system to a set of ordinary differential equations (ODES). Index-1 systems are
generaly very similar to ODEsin that the number of initial conditions that can be specified arbitrarily is equal to
the number of differential variablesin the system, all the differential variablesmay be given arbitrary initial values,
and similar numerical methods can be used for the solution of the system. On the other hand, in "high-index"
DAEs (index > 1), the number of initial conditions that can be specified arbitrarily may be less than the number
of differential variables, the differential variables are not independent and ODE-type numerical methods may fail.

This section comprises:
» an overview of the cause of indices higher than 1 and their potential complications;

« the diagnostics, structural analysis and model manipulation performed by gPROMS to identify, report and
rectify problems with high index; and

» amore detailed explanation of high index, with examples.

Origin of index and the initialisation of DAEsS

Most DAE systems follow the rule that the number of initial conditions specified must be equal to the number of
differential variablesin the system. Thisistrue for ODEsaswell. Although theinitial conditions do not need to be
specified directly in terms of the differential variables (e.g. theinternal energy may be adifferential variablein an
energy balance but the initial condition may be a temperature specification), they must be specified consistently
(more detailson specifying initial conditions can befound in theInitial section and how to ensurethey are specified
consistently).

However, for certain "high index" DAE systems, this is not the case. For example, if one or more algebraic
equations only include differential variables, this will reduce the number of degrees of freedom in the initial
conditions, since all of the initial values of the differential variables cannot be specified independently. Not only
does this make initialisation difficult, but it also causes problems for the DAE solver.

These high-index DAE systems can arrisein anumber of process-engineering applications. Sometypica examples
are:

» Constant-volume mixer
e Heater
» Chemical equilibrium

A more thorough description of theseis given here.
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To date, the only way around these problems has been to identify the algebraic equations that cause the
complications, differentiate them with respect to time to generate additional constraints on the initial conditions
and then specify a reduced number of initial conditions consistent with these constraints. The DAE system is
augmented with these additional differential equations and solved.

gPROMS performs the following analysis automatically:

« determine the index of the set of equations

identify the causes (if any) of high index

identify remedial modifications to the equations
* identify constraints on the initial conditions
These automatic index-reduction procedures are described next.

For the interested reader, more details on the causes of high index, its implications on the solution of the DAE
system and how it can be avoided or rectified are given here. However, it is not essential to read this section.

Constant-volume mixer example

This is an example where a simplification to an index-1 system results in a high-index system. The following is
the EQUATION section of agPROMS Model of a constant-volume mixing tank.

EQUATI ON
FORi := 1 TO NoConp DO
SMi) = SIGWA( F_in*x_in(i,) ) - F_out*x(i)
END

Mtotal = SIGVA(M

rho*V = Mtotal

rho = PhysProp. Density(T, P, Xx)
X = MMtotal

F out = al pha*(P - P_out)

where M i) is the molar holdup of component i ; M total the tota molar holdup; F i n(j) is the
flowrate of inlet j ; F_out the outlet flowrate; x(i) and x_i n(i,j) are the mole fractions in the mixer
and inlet j , respectively; rho is the density of fluid in the tank; V the volume of the tank (specified);
PhysProp. Density(T, P, x) isaphysica-property foreign-object method returning the density of a
mixture given its temperature, T, pressure, P, and mole fractions x; P_out is the exit pressure (specified); and
finally al pha isa constant.

The above model is a fairly straightforward index-1 system that can easily be solved. If, however, we
were to simplify the model by considering only liquid feeds and using a different physical property:
Li qui dDensi ty( T, x) , wewould find that the model could no longer be solved using standard codes.

Heater example

Thisexampleillustrates how avery simple model can still become high index, given thewrong input specification.
Thisisamodel of awell-stirred tank used to heat a single-component stream.

EQUATI ON
rho*v$u = F*(h_in - h) + Q;
u = PhysProp. I nternal Energy(T)
h = PhysProp. Ent hal py(T)

here, F isthe flowrate of material through the heater; r ho isthe density of the fluid; V the volume of the tank; u
and h are the internal energy and enthalpy, respectively, of the material in the tank; h_i n istheinlet enthalpy;
PhysProp. | nt er nal Ener gy(T) and PhysProp. Ent hal py(T) are physical-property foreign-object
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methods returning the internal energy and enthalpy of a single component given its temperature, T; and finaly Q
israte of heating. r ho, V, Fand h_i n areall given.

To complete the model, the variable Qmust be specified. If the heating was being provided by a steam jacket, then
Qcan be determined using a suitable heat-transfer law. Alternatively, electric heating can be modelled simply by
specifying the value of Qover time, e.g. Q = Q(t). In either of these cases, the model can be solved easily. Since
there isone differential variable, u, we can provide an initial condition for it, u( 0) . We can now calculate T( 0)
from the second equation and h( 0) from thethird. Now the first equation can be used, along with theinitial value
of Q to calculate u( 0) , completing the initialisation problem.

However, what if we wanted to know what heating profile would provide a given temperature profile? We may,
then, choose to release the specification on Q and provide one for T. Given the same initial specification, u( 0) ,
wecan still calculate T( 0) from the second equationand h( 0) from thethird. Immediately, we can seethat there
is a problem, because our calculated T( 0) may not be the same as the T( 0) specified. Another problem is that
there is only one equation left, in the two unknowns, $u( 0) and Q Thereis no way to solve the problem!

Chemical-equilibrium example

In this example, we have a batch-reactor model with reversible reactions at equilibrium. The general material
balance for this problem is:

FORi := 1 TO NoConp DO
$Mi) = VSIGVMA( r*nu(i,) ) ;
END

where, Mi ) isthe molar holdup of component i , V is the volume of the reaction mixture, r (j ) isthe rate of
reactionj andnu(i, j) isthe stoichiometric coefficient of componenti inreactionj .

Thereis no difficulty in solving this problem (with appropriate definitions of the new variables introduced) if the
rates of reaction are specified using an equation similar to the following:

FORj := 1 TO NoReac DO
r(j) = k(j)*PRODUCT( CrReactionPartial Order(,j) ) ;
END

where k(j) is the rate constant for reaction j, C(i) is the molar concentration of component j and
ReactionPartial Order(i,]j) isthepartial order of componenti inreactionj .

This model can be used for irreversible and reversible reactions where the rate expressions are known. E.g., for
reversible reactions, simply treat the forward and reverse reactions as entirely separate reactions, with their own
rate constants.

However, it is often not possible (nor useful) to measure the rates of fast reversible reactions; usually only an
equilibrium constant is known, and so we may have instead of a rate expression a relationship similar to the
following:

EgntConst (1) = C(2)/C(1)"2 ;

where the equilibrium constant, EqmConst , isgiven. Itis clear now that we have a problem, because some of the
r(j) variablesonly appear in the differential equation for the material balance. There is no way to calculate the
r (j ) associated with the reactions at equilibrium and so the problem cannot be solved. Thisisatypical cause of
high index: algebraic variables only occuring in differential equations.

Also of noteisthat the equation above introduces arel ationship between the concentrations of some of the species
inthe problem, and therefore al so the molar holdups. So it isclear that we cannot specify arbitrary initial conditions
for al of the components, as they are not all independent.

Automatic index reduction in gPROMS

gPROMS is able to reduce the index of problems automatically. However, it initially reports problems of high
index and informs the user how to turn on index reduction. Index reduction is off by default because it is usually
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better to develop index-1 models rather than rely on gPROMS to reduce the index automatically, since the index
reduction techniques can be quite computationally intensive.

To illustrate automatic index reduction, consider the following model of a heater.

EQUATI ON
$Hol dUp = Fin - Fout ;
$U = Fin*hin - Fout*h + Q;
U = Hol dup*h - P*Tot al Vol une ;
P * Total Volunme = Holdup * R* T ;
Fout = al pha * Hol dup ;
h =hr + Cp*(T - Tr) ;
hin = hr + Cp*(Tin - Tr) ;

When the following process is executed, gPROMS can solve the problem with no difficulty.

UNI T
T101 AS Heater

SET

W THI N T101 DO
Cp :=1.121 * 28.013 ;
hr 0.0 ;
Tr 298. 15 ;
R 0.082 ;
al pha : ;

END

ASS| G\
WTH N T101 DO
Fin :=
Tin :

P

Q
END

600 ;

L L |
[6)]

I NI TI AL
WTH N T101 DO
Hol dUp
Tot al Vol urne
END

0.5 ;
4 ;

However, if we replace the Assignment of Q with oneon T:

ASS| GN
WTH N T101 DO
Fin := 10 ;
Tin := 600 ;
P =5 ;
T .= 487.8049 ;
END
I NI TI AL
WTH N T101 DO
HoldUp = 0.5 ;
Tot al Vol une = 4 ;
END

we will get a high-index problem (see the Heater Example) and gPROM S will give the following output.
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Figure 15.1. gPROM S diagnostics for a high-index problem

[, Execution Output (N2Heater_20071001_152423) =

Show messages ko level IE

The following processes are available:
NiHeater
EWARNING: Check of initial conditions for the active brunch found an error:
L/ The nuwher of initial conditions iz larger than required:
Number of IC provided: 2
Number of IC required: 1

Initial conditions which can be remowed:

EFROR: Your initial conditions are inconsistent.

Fstructural analysis report
Original problem is well posed

Index of the problem: 2
Number of algebraic wariables: 5
Mumber of differential wariables: 2
Number of assigned wvariables: 4

L/ The nuwher of initial conditions iz larger than required:
Number of IC provided: 2
Number of IC required: 1
Initial conditions which can be remowed:

4 |

I CQutput | Propertiesl

mtt

Click on the"+" symbol to see which initial condition should be removed:

Figure 15.2. Theinitial condition that needsto beremoved

The mumber of initial conditions is larger than required:
Number of IC provided: 2
Number of IC required: 1

Initial conditions which can be remowed:
[2] Tl0l.TotalVolume - 4 = 0;

Now, by removing thisinitia condition, gPROMS reports that the correct number of conditions are specified but
that the index of the system is 2 and cannot be solved directly.
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Figure 15.3. gPROM S diagnostics for a high-index problem

[, Execution Output (N2Heater_20071001_152454) =

Show messages ko level IE

El
Visit WWW at http://ww.psenterprizse.con/ for more information.
E-mail support.gPROM3Epsenterprise.con for product support.

The following processes are available:
NiHeater
Fstructural analysis report
Original problem is well posed
Index of the problem: 2

Number of algebraic wariables: 5
Mumber of differential wariables: 2

Number of assigned wvariables: 4

Initial problem is well posed
Number of IC provided: 1
Number of IC required: 1

The problem cannot be solved directly as the index is greater than 1.

To enable automatic index-reduction set solution parameter:
IndexFeduction := ON

-

4 | _’I_

To enable the automatic index reduction, copy the suggested Solution Parameter into the Process as below.

ASS| GN
WTH N T101 DO
Fin := 10 ;
Tin := 600 ;
P =5 ;
T := 487.8049 ;
END
I NI TI AL
WTH N T101 DO
Hol dUp =0.5;
END

SOLUTI ONPARANVETERS
| ndexReduction := ON ;

Now, with index reduction enabled, g°PROMS is able to reduce the problem to index 1 and solve it. The
replacements made during the reduction are shown in the output:
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Figure 15.4. g°PROM S output after automatic index reduction

[, Execution Dutput (N2Heater_20071001_15250 =

Show messages ko level IE

-
Fstructural analysis report _I
Original problem is well posed
Index of the problem: 2
Number of algebraic wariables: 5
Mumber of differential wariables: 2
Number of assigned wvariables: 4
Initial problem is well posed
Number of IC provided: 1
Number of IC required: 1
[ Index reduction performed successfully
Index of the problem: 1
Number of algebraic wariables: 9
Mumber of differential wariables: 1 _—
Number of assigned wvariables: 4
- system of equation to solve after index reduction:
Derived from No diff.
Eqn original eqn  over time Full form of the equation
[1] [1] 0 T101.HoldUp' - (TlOl.Fin - T101.Fout) =
[2] [2] 0 $(T10L.T) - (T10l.Fin * T10l.hin - T10]
[3] [3] 0 T101.U - (T10l.HoldUp * T10l.h - T101.1
[4] [4] 0 T101.P * T10l.TotalVolume - T101.HoldlUp
[5] [5] 0 T10l.Fout - T101l.HoldUp = 0
[6] [6] 0 T10l.h - 31.4026 * (TLOL.T - 298.15) =
[7] [7] o Tl0l.hin - 31.4026 * (T10l.Tin - 295.1f
[8] [3] 1 §(TLOL.T) + ({0 - {Tl10l.h)}) * T10l.Ho]
[9] [4] 1 T101.P * Tl0l.TotalVolume' + ((0 - (0.C
[1o] [6] 1 T10l.h' = 0;
—Variables after index reduction:
Var Original Diff Name Type
[1] [1] 0 T101.Fin I (nput)
[2] [2] 0 T101. Fout A{lgebraic
[3] [3] 0 T101.Holdlp A
[4] [4] 0 T101.TotalValune A
[5] [5] 0 T101.P I
[6] [6] 0 T101.T I
[7] [7] 0 T101.Tin I
[8] [8] 0 T10l.h A
[9] [9] 0 T101.hin A
[1o] [1o] 0 T101.7 Differential
[11] [11] 0 T101.0Q A
[1z] [3] 1 T101.Holdlp' A
[13] [4] 1 T10l.TotalVolume' A
[14] [8] 1 T10l.h' A
L -
2 | _>l_I

After giving the above output, gPROM S continues to integrate the model as normal, since the index has now been
reduced to 1.

The above example can be found in the gPROMS Project hi ghi ndex N2 _heat er. gPJ in the examples
subdirectory. Please note that in the Project two Processes are present: one which specifiesthe temperature T asin
the explanation above. In the other Process, Speci fy_Q, the heat load is specified rather than the temperature.
This specification has been chose to demonstrate that the index does not only depend on the equations but also on
the chosen degrees of freedom. A more detailed explanation is given in the mathematical analysis of the heater
model.

Limitations

Currently, the following limitations exist for Models and Processes to which automatic index reduction can be
applied

» When the Index-Reduction code detects that an equation inside an |F or CASE block needsto be differentiated
to reducetheindex, gPROM Swill issue an error message and stop executing the simulation shortly after system
construction. Supporting such models in index reduction may be added in future releases.
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» Theindex may change during the execution of an activity when an IF or CASE branch switches. Thisiscurrently
not supported. When running a problem with | ndexReduct i on : = ON, this change (following any type
of switch) will be detected and will terminate the activity with an error message indicating the reason for the
termination.

Please note that it is possible to use solver settings for which the index analysis is ignored. In this case the
gPROM S solver may proceed with simulating a high-index problem without error messages but the results may
beincorrect.

High-index DAEs, initialisation and integration

This sectionisaimed at the interested reader who would like a more detailed mathematical analysis of the causes
of highindex and how it may be avoided or remedied. None of the content hereis required for an understanding of
how gPROM S reports and rectifies high-index problems, so it is safe to ignore this section. However, athorough
understanding of index is likely to be benefitial for any modeller of chemical (or of many other) processes.
Furthermore, although gPROMS can reformulate most high-index problems automatically, this can be quite
computationally intensive, so it is preferrable to reduce any high-index modelsto index 1 by hand.

The following are considered:
* A simple example of an index-1 DAE system

» Simple examples of high-index DAE systems

Index classification of DAE systems

* Integration of high-index DAE systems

» High-index DAESin process-engineering applications

A simple example of an index-1 DAE system

It can be shown that most DAE systems of the form:
f(m,i,y,u) = 0 (1a)
9(z,y,u) =0 (1b)

aresimilar to ODEsin severa ways. In particular, one can specify as many arbitrary initial conditions asthere are
differential variablesz in the system. Moreover, give values for z, we can solvelb for ¥ (usually numerically),
then substitute Y inla, essentially convertingla to aset of ODESinz.

These points can be illustrated with a simple example:

T1=x1+2T2— Yy (2a)
To =21 — 2o+ 2y (2b)
O=z1+2z2—y (2C)

Here we have two differential variables and one algebraic variable. We can clearly specify two arbitrary initial
conditions, e.g.:

£1(0) = 1; z2(0) = 1 (3)
from which we can calcul ate:
y(0) = 2; 2:(0) = 1; 22(0) =4 (4)

Infact, we can use2c to eliminatey from2a and2b, yielding:
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L1 =2
y:z1+:v2:>{,1 ? (5)
Ty = 31 + T2

which is simply a set of two ODEsin 1 and T2. Overall, then, the DAE system 2 behaves very similarly to an
ODE one.

Simple examples of high-index DAE systems
In this section, two examples of high-index systems are described.

Consider, for thisfirst example, a slightly modified version of the index-1 system (2) described previoudly:

1 =21 +2T3— Yy (6a)
To=T1— T+ 2y (6b)
0= T —+ To (6C)

the only difference being between 2c and 6c¢.

Weimmediately note that we can no longer specify arbitrary initial valuesfor the differential variables® 1(0) and

z2(0) since they have to satisfy 6¢. Furthermore, we cannot convert 6 to a set of ODEsin 1 and Z2 by using
6¢c toeliminatey from6a and6b since¥y does not even occur in 6¢!

It can be shown that initial conditions for DAE systems (1) do not necessarily have to be specified in terms of the

differential variablesz. This might seemto imply that, although we cannot specify both £1 (0) andz2 (0) perhaps
we could specify some other combination of two variables, for instance:

z1(0) =1; y(0)=0 (7)
Then from 6¢, we would get £2(0) = —1 and from 6a and 6bx
£1(0) = —1; £2(0) =2 (8)

This, however, is not correct. We note, in particular, that 6¢ isvalid at all timest > 0. We can therefore derive
avalid equation by differentiating 6¢ with respect to time:

0= + &, (9)
Now, 9 isvalidat al timest > 0, so, in particular, it should hold at ¢ = O:

0 = z1(0) + z5(0) (10)
which is not satisfied by our initial condition 8. Thus the latter is, in fact, inconsistent.

Infact,6 and9 form aset of 4 independent consistency relations that the initial variable values must satisfy:

21(0) = z1(0) + 222(0) + y(0)

2(0) = 21(0) — 22(0) + 2y(0)
0= $1(O)+(D2(0) (11)
0= $1(0) + i‘z(O)

Since these involve 5 variables, we can specify only 1 (=5-4) arbitrary initial condition, which is less than the
number of differential variables (2) in the system 6.

Now, for the second example, consider a slight modification of 6:
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T1=x1+2z2—y (12a)
To =21 — 2o+ 2y (12b)
0=2z1 + 2> (12C)

By differentiating 12c with respect to time, we get:

0=21 + 29 (13)

which, together with system12 yields 4 consistency relationsthat theintial variable values must satisfy. So, once
again, it appears that we can specify 1 (= 5 - 4) arbitrary initial condition. However, if we combine13 with12a

and 12b, we obtain:

0=3z1 + 3z (14)

which isalso valid at all times. We can therefore differentiate this with respect to time to obtain:

0= + iy (15)

We now have 5 consistency relations12,13 and 14 that the 5initial variable values must satisfy — in fact, there
is no freedom left with respect to the specification of initial conditions. The only possible initial condition for
the systemiis:

21(0) = z2(0) = y(0) = £1(0) = £2(0) = 0 (16)

Overadl, what we have seen is that the three example systems 2, 6 and 12, albeit ostensibly very similar, are, in
fact, quite different. Perhaps a natural question to ask at this point is:

Are there some further consistency relations also hidden within 2?

Of course, we can easily obtain avalid relation by differentiating 2c with respect to time:
0=2z1+22—Yy (17)
However, this does not impose any further restrictions on both £1(0) and £2(0) since it also involves a new
variable ¥(0).
Similarly, in the case of system 6, we could combine9 with 6a and 6b to yield:
0=2z1+z2+y (18)
and then differentiate this with respect to time to obtain:
0=2z1+22+7Yy (19)
but, once again, this does not actually restrict £1(0) and Z2(0).
Overall, our original conclusions regarding theinitial conditionsof 2 and 6 were correct.
We can summarise what we have seen so far with reference to the general DAE system 1, asfollows:
* A setofinitiad values{2(0), 2(0), ¥(0)} must always satisfy:

f(=(0),2(0),4(0),u(0)) =0

9(z(0),y(0),u(0)) =0
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* For some systems, the values {Z(0), Z(0), ¥(0)} may also have to satisfy additional relations obtained by
differentiatingl one or more times with respect to time.

Index classification of DAE systems

The issue of consistent initialisation of DAE systems is closely related to their classification according to their
index. The index of 1 can be defined as the minimum number of differentiations with respect to time that are

necessary to obtain the time derivatieve of all variables (i.e. both & and ¥) in termsof z and ¥ — i.e. to reduce
the system to a set of ODEs.

We can apply this definition to 2: to obtain Y, we differentiate 2c with respect to time; this yields 17 which,
together with 2a and 2D, leads to:

y=2z1+2z2+y (20)

We note that 2a, 2b and 20 form a set of 3 ODEsin Z1, T2 and ¥. Since one differentiation was sufficient to
reduce2 to an ODE system, we conclude that 2 is an index-1 system.

In the case of system 6, differentiating 6¢ with respect totimeled to9 which, combined with 6a and 6b, yielded
18. A second differentiation led to 19 which, when combined with6a and 6b yields:

Y = —3(z1 + 22) (21)

This, together with 6a and 6b, form a set of ODEs in Z1, T2 and ¥. Since two differentiations were needed to
reduce6 to an ODE system, we conclude that 6 isan index-2 system.

Finally, in the case of system 12, two differentiations with respect to time yielded 15. To obtain Y, we need to
combinelb with12a and12b and differentiate the result with respect to time to get:

y = —2T1 — Ty = —3(:121 + :Eg) (22)
Since three differentiations were necessary, 12 is an index-3 system.

By the definition of index, ODE systems are classified as "index-0". Usually, index-1 systems are very similar
to ODEs with respect to the number of initial conditions that can be specified arbitrarily and the behaviour of
numberical solution methods.

On the other hand, DAE systems of index 2 or higher are different. We have already seen the fact that their
consistent initialisation requires taking into account additional "hidden" relations that can be obtained from the
original equationsviadifferentiation— and hence the number of arbitrary initial conditionsisreduced accordingly.

Integration of high-index DAE systems

A further complication with DAE systems of high index is that the usual numerical agorithms are generaly
incapable of controlling the error of integration, and this very often leads to failure, or, even worse, spurious
solutions!

For these reasons, DAE systems of index higher than 1 are usualy solved by reducing their index to 1 via
differentiation with respect to time. For instance, the index-2 system 6 can be reduced to the index-1 system:

1 =21+ 223 — ¥y (23a)
To =21 — To+ 2y (23b)
0=1x1+ 29 (23C)

by differentiating 6¢ with respect to time. Note that it is not necessary to combine 23c with 23a and 23b to
obtain a purely algebraic equation. System 23 can then be solved using standard algorithms and codes.
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Of course, oneimmediate questionis: "Will the solution of 23 be the same asthe sol ution of 6? More specifically,
will the solution of 23 satisfy equation 6¢, which has now been replaced by itstimedifferential 23c?". The answer
is: "Yes, provided theinitial conditions satisfy the consistency relations11."; in this case,

* theinitial value of the quantity T1 + T2 iszero
* thetime gradient of Z1(t) + Z2(t) is zero for all timest > 0 (cf. equation 23c)

and, therefore, Z1(t) + 22(t) = 0 forall t > 0 — hence 6¢ is satisfied — at least in the exact mathematical
sense.

A complication arises from the fact that, if system 23 is solved numerically (rather than exactly), then equation
23c will be satisfied only within a certain specified accuracy and not exactly. Over long time horizons, this may

alowZ1(%) +Z2(%) to deviate significantly from its correct value of 0. A way of avoiding this"drift" istoinclude
both6¢c and23c inthe set of equations being integrated, thereby making sure that both of them are satisfied to the

required accuracy. However, this leads to redundancy since now we have 4 eguations in the 3 unknowns © 1(t),

2(t) and ¥(t). One way of resolving this redundancy is to treat £1 and Z1 as completely distinct variables —
effectively introducing an extravariable in the system:

Ty =21 +2T5—y (24a)
To=1T1 — Ty +2Y (24Db)
0=z + (24¢)
0=2Z; + oo (24d)

HereZ1 isanew variable bearing no relation to 1 as far as the numerical solution is concerned. Thisis now an
index-1 system that can be solved to arbitrary accuracy using standard codes.

High-index DAEs in process-engineering applications

This section is concerned with a detailed mathematical analysis of the following three examples of high-index
DAEsin process-engineering applications.

 Fixed Volume Mixing Tank

* Heater Tank

e Chemical Equilibrium

Some conclusions of the analysis are given here.
Fixed-volume mixing tank

We consider thewell-stirred tank, shown in the figure bel ow, used to mix two streams under i sothermal conditions.

Figure 15.5. Constant-volume mixer tank

(1 |

in i,in
—_

F.x ...P
ey out  jout out
2y 2

in Lm

The mathematical model of the system is:
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dM: _ p() (1) L g (2)

dt in Ziin in Ziin — Fowtz;, 1=1,...,c (25)
c

My =" M; (26)
1=1

pV = Mt (27)

p=p(T, P, ) (28)
M

mi—M—;, i=1,...,c (29)

out f(P Pout) (30)

Thisis aset of (2¢ + 4) equations in the (2c + 4) variables M, x5, ¢ = 1,...,¢; My, Fout, P, P. The system
contains c differential equations (25) and ¢ differential variables, M;, 2 = 1,...,¢

We note that with this model, we can giveMi(O) arbitrary values: given M;(0) , wecan calculate MT(0) from

26; zi(0) from 29; p(0) from 27, P(0) from 28; Fout(0) from 30; and finaly M;(0) from 25. Hence, this
is an index-1 system.

The above equations are valid for both gas and liquid systems. Of course, areasonable simplifcation for liquidsis
to assume that they are incompressible. Therefore, equation 28 is simplified to:

o= o"(T, ) (28)

Once again, if we specify Mi(0), 7 = 1,.. ., ¢, we can calculate MT(0) from26,Zi(0) from29 and P(0) from
27. At thispoint, however, we hit a problem: both sides of equation 28’ are already known! Effectively, we cannot
specify Mi(o),i =1,..., ¢ independently. Therefore we have a high-index problem.

To see more clearly how the problem arises, consider combining 26, 27, 28’ and 29 into asingle equation:
M;
M; = Vp - T (31)
Z <EJ 1 M )

It is obvious that 31 only invovles the differential variables M , and, therefore, not al of them can be given
arbitrary initial values. For instance, for an ideal liquid mixture, 28 is of the form:

1 ‘Lz
g = (32)
P 1P

and 31 becomes:

V= Z (33)

11’0z

0 . . . . -
where P is the (constant) density of pure component ¢ . Thus, 33 is atotal volume constraint. Differentiating
33 with respect to time, we obtain:

0= 2% 34
z;p? dt (34

which, together with 25, lead to:
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1) ¢ m(l) @) ¢ $(2) C.
2,in 2,in A

Fp') —5 +Fa ) —5 =Fouw) 3 (35)
=1 p; =1 p; =1 Pi

which is equivalent to:

1 2
Fl(n) Fl(n) _ FOUt 36
o, (36)

Pin Pin

i.e. arelationship between the volumetric flowrates of the input and output streams. Note that thisis true for ideal
liquid mixtures only (i.e. those obeying 32), but in any case a similar restriction could be obtained from the more
general equation 31 with respect to time.

In any case, 33 is an additional constraint that must be satisfied by the initial condition of the system. We can
thereforegivearbitrary initial valuestoonly ¢ — 1 variables. For instance, ifwespecifyMi(O),i =1,...,c—-1
we can calculate Mc(0) from 33, then M1(0) from 26, 2(0) from 27, 2i(0), ¢ =1,..., ¢ from 29, Fout(0)
from 36, P(0) from30 and finally M:(0), i =1,..., ¢ from25.

No further equation differentiations are necessary, and therefore thisis an index-2 system.
Heater tank

Consider awell-stirred tank used to heat up a single-component stream:

m%%:me—m+Q (37)
u=u(T) (38)
h = A(T) (39)

To define this system fully, we need an additional relation characterising the heating rate @ . For instance, @
could be described by a heat-transfer mechanism from a steam jacket at a given temperature Zs :

Q=UA(T, —T) (40)

Overal, equations 37 to40 form aDAE systeminthe4 variablesu, h,@ andT. The system has one differential
variable, namely u . If we specify %(0) | then we can calculate T'(0) from 38, 2(0) from 39, @(0) from 40
and finally %(0) from 37. Thisis clearly anindex-1 DAE system.

Of course, 40 corresponds to only one permissible heat-transfer mechanism. If, for instance, we were using
electrical heating, then we could vary Q@ di rectly, so instead of 40 we could have:

Q=Q(t) (41)
where@*(?) is agiven function of time. Again, this does not change the nature (i.e. theindex) of the DAE system.

On the other hand, we could well be interested in determining the variation of Q@ that would produce a certain
desired variation in the exit temperature T'. In this case, we would replace 40 (or 41) with:

T = T*(¢) (42)

where T*(t) is agiven function of time.
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Of course, equations 37 to 39 are always true, so our DAE system now comprises 37, 38, 39, 42 and the same
set of variables (i.e. u, h, Q@ and T asbefore. It aso still has differentia variable u. If we specify u(0) , We can
still calculate T(0) from38 and7(0) from 39. However, when we come to consider 42, we encounter a problem

since the T(0) we calculated from 38 may not be the same as T7(0) . In any case, we cannot calculate @ (0)
from any one of the existing equations!

Again, thisis ahigh index problem. In fact, if we combine 38 and 42, we see that:
u = u(T*(t)) (43)

and, therefore, it is not possible to specify an arbitrary initial value for u . Furthermore, by differentiating 43
with respect to time, we get:

du daT™*
E = Cy E (4:4)

where¢v = (0v/0T)v | and this together with 37 yields:

a7

which isan additional restriction that the initial values of the variables must satisfy. Overall, we have 5 equations

in37 t039,42 and45 inSinitial values, i.e. ¥(0), 7(0), Q(0), T(0) and ©(0) — therefore no arbitrary initial
condition may be imposed on this system.

Systems of high-index DAEs in chemical equilibrium

Consider a constant-volume well-stirred reactor carrying out the gas-phase dimerisation reaction;
2A —- B

at agiven temperature, 7.

The mathematical model of this system comprises the equations:

dMa

dt = FinTAin — Foutza — 21V (463.)
dM,
dtB = I'inTB,in — Foutzg + 1V (46b)
Mt = Ma + Mp (46c¢)
Ma Mgy

=77 =T 46d

zA My zB Mo (46d)
PV = MtRT (466)
Fout = f(P - Pout) (46f)

Herewe have assumed perfect-gasbehaviour (equation46e) and that the exit flowrateisafunction of thedifference
between the pressure in the reactor and the downstream pressure, Fout (equation 46f).

To complete the above model, we need to characterise the reaction rate, r . Assume first, that the reaction is
irreversible with the rate given by:

=k <%>2 (47)
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We note that equations 46 and 47 form a set of 8 DAEs in the 8 unknowns Ma, Mg, Mt za, T8, P, Fout
and r. The system involves two differential variables (Ma and MB). If we specify arbitrary values of Ma(0)
and MB(O), then:

From Calculate

46¢ Mr(0)

46d z4(0) z5(0)
46e P(0)

46f Fout(0)

47 r(0)

46a, 46b M, (0) Mg(0)

Hence, thisis an index-1 system, which can be solved without much difficulty.

Consider, however, what happens if the dimerisation reaction takes place under conditions of chemical
equilibrium, i.e.;

2A+=B

For an ideal gas mixture, 47 will be replaced by an equilibrium relation of the form:

TB
K=—— 47
ZEiP ( )

where K isthe equilibrium constant. Since the temperature T" isfixed, K also has a constant value.

Once again, the DAE system 46 and 47’ comprises 8 equations in the same 8 unknowns as before. If we specify
Ma(0) and MB(0), we can again compute Mr(0) from 46¢c; ©a(0) and Z8(0) from 46d; £(0) from 46e
and Fout from 46f. However, we now note that all variablesin 47’ have aready been computed, and therefore
this equation is either redundant or inconsistent. Moreover, we cannot get unique values for 7"(0), Ma(0) and

Mg(0) from the remaini ng two equations46a and 46b.

As we have seen previously, the above are clear sympotoms of a high-index DAE system. In fact, by combining
47" with46¢ and 46e, we obtain:

KRT Mg

= — 48
v "M (48)

The left hand side of 48 isjust a constant. Therefore, MAa(0) and M&(0) are related to each other and cannot
be specified arbitrarily. Thisisthe underlying cause of the high index.

Equation 48 aso provides away of determining 7(0). We can writeis as:

gMﬁ = Mg (48")

which, upon differentiation with respect to time, yields:

oOKRT . dM, dMg
M = 49
v AT dt (49)
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We can then use 46a and 46b to diminate M (0) and M&(0). Solving the resulting equation for , we obtain:

r— 2-l:{-RT-lWA(FinxA,in - FoutxA) - V(Fint,in - Fouth)

V(V + 4K RTMp) (50)

A consistent set of initial variable values must satisfy 46, 47’ and 48’ at timet = 0. Thus we have 9 equations

in the 10 unknowns M (0), Mg (0), Mr(0), za(0), z5(0), P(0), Fout(0), 7(0), MA(O) and MB(O), which
leaves only one degree of freedom in the specification of the initial conditions.

Once we have a consistent set of initial values, we can solve the index-1 system 46 and 48’ using standard
algorithms.

Example of index reduction in chemical equilibrium

The handling of the high-index complications in the previous example was relatively straightforward. However,
in general, things may be much more conplicated, for instance, if we had non-ideal behaviour (with chemical
equilibrium expressed in terms of fugacitiesrather than partial pressures, asin47’); or if we had multiplereversible
reactions at equilibrium. We a so note that much of the effort in reformulating the prior system was expended in
deriving acomplex relation 50 for r — a quantity we need not know in the first place!

One approach to overcoming these difficultiesisto try to elimiater from the model. In particular, sincer occurs
only in 46a and 46b, we can eliminate is by combining these two equations. In this case, we have to multiply
46b by 2 and add it to 46a, which yields:

dM dM,
th + 2d—tB = Fin(zain + 22a) — Fout(za + 2zB) (51)

If we now define a new variable:
M = Ma +2Mg (52)

51 can be written as:

dM
w7 = Fin(:cA,in +2zp) — Fout(za + 22B) (83)

Now consider the DAE system formed by 46¢ to 46f, 47/, 52 and 53. This comprises 8 equations in the 8

unknowns M, Ma, Mg, Mt za 2B, P and Fout. Thereisonly onedifferential variable: I If we specify M(O)
we can:

* Caculate Ma(0), Mg(0), Mr(0) za(0), zB(0) and P(0) by solving 52, 46c to 46e and 47'
simultaneously. To understand this, remember that 46d, 46e and 47’ can be combined to yield 48 which,
together with 52 form aset of two simple equationsin Ma(0) and M5(0). Once we get these two values, we
can calculate MT(0) from 46¢; Za(0) and ZB(0) from 46d; and £(0) from 46e.

* Caculate Fout from 46f.

: CaIcuIatedM/dt(O) from 53.

This, then, is an index-1 system which again can be solved with standard algorithms. It is interesting to note
that this has been obtained from the original index-2 problem without any differentiations. This would appear to
contradict the definition of index (cf. index classification of DAES). However, the reduction has been possible
only because we did not insist on determining all the variables in the original system; in particular, we decided
that r was of no interest and we eliminated it using purely algebraic manipulations (i.e. no differentiations).
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In doing so, we have introduced the new variable M defined by equation 52. M has an interesti ng physical
interpretation: it is a quantity that remains unchanged by the reaction 2A — B, a so caled "reaction invariant”.
Equation 53 can be interpreted as a balance on this quantity; as might be expected this balance does not involve
areaction term.

The procedure described here can be generalised to systems that include multiple reversible reactions at

equilibrium, inlcuding additional reversible reactions where the rates of the forward and reverse reactions are
known, and additional irreversiblereactions. However, thisgeneral treatment isbeyond the scope of thisdocument.

Some general conclusions

The three examples presented in this section allow us to draw certain more general conclusions:

1. High-index DAEs often arise in process-engineering applications due to "simplifications’ that impose
additional constraints on the differential variables (or quantities directly related to them — cf. mixing-tank
example). For instance,

* Incompressibility _ Volume constraint.
* Phase equilibrium _ Vapour/liquid composition relation.
 Reaction equilibrium _ Relations between component concentrations.

2. High-index DAEs also arise from "perfect control” specifications on process outputs, i.e. specifying them as
given explicit functions of time (cf. heater-tank example).

3. In all cases, a high-index DAE implies that the differential variables in the model are not independent and
cannot all be assigned arbitrary initia values.

4. Another frequent symptom that can be useful in detecting high-index DAEs is that one or more algebraic
variables occur in differential equations only (cf. @ in the heater-tank example).

5. If we have a high-index DAE model, in general we can either:
a. change our assumptions ("simplifications") or specifications to develop a different, index-1 model or,

b. reduce the index by differentiating some of the equations a sufficient number of times.

Inconsistent initial conditions

Once gPROMS has checked that the system is well-posed, square and of index 1, it checks the consistency of the
initial conditions and identifies sub-systems that are over- or under-specified at t = 0. For example, consider the
system shown in the gJPROM S code below:
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Example 15.3. lllustrative example: system with inconsistent initial conditions

VARI ABLE

x1, x2, y1, y2, y3 AS NoType
EQUATI ON

$x1 = x1*y1l

$x2 = x1 + x2*yl + y2 + 3*y3

xX1n2 = y2 ;

x2 = x1 + yl + y2*y3 ;
Ny yyyysTs

#PROCESS pr oc

UNI' T
nynod AS nodl

ASSI GN
W THI N nmynod DO
y3 :=1;
END #wi t hin

I NI TI AL
W THI N nmynod DO
x1

y2

END #wi t

0 ;
1;
hin

SCLUTI ONPARAMETERS
Reportinglnterval :=1 ;

SCHEDULE
CONTI NUE FOR 10

Inthiscase, it isclear from inspection that theinitial conditions, 21(0) = 0 and¥2(0) = 1 areinconsistent due
to the relationship © 1 = ¥2. Thisis confirmed by the gPROM S output:

Executi ng process PRCC. ..
Al 5 variables will be nonitored during this sinulation!
Bui | di ng mat hemati cal probl em description took 0.001 seconds.

Loaded MAA8 library
Execution begins....

Vari abl es
Known
Unknown
Differential
Al gebraic

NN BB
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Model equati ons 4

Initial conditions 2
Checki ng consi stency of nodel equations and ASSI GN specifications... K
Checki ng index of differential-al gebraic equations (DAES)... X!

Checki ng consistency of initial conditions...

ERROR: Your initial conditions are inconsistent.
At tinme t=0, the following 3 equation(s) involve only 2 unknown
vari abl e(s) .

Model Equati on 3: MYMOD. X172 = MYMOD. Y2 ;
Initial Condition 1: MYMOD. X1 = 0 ;
Initial Condition 2: MYMOD. Y2 =1

The 2 unknown(s) occuring in these 3 equations are:

MYMOD. Y2 ( ALGEBRAI C)
MYMOD. X1 ( STATE)

Initialisation calculation fail ed.

Execution of PROC fails prematurely.
Note that using the initial conditions:

I NI TI AL
W THI N nmynod DO
$x1 = 0 ;
y2 =1 ;
END #wi t hin

for example, rectifies the problem.
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Initialisation proceduresare away to control more precisely how gPROM Sinitialisesmodels. For complex models,
this can substantialy reduce the time taken to initialise them and also increase the robustness of the models
(i.e. initialisation can be performed successfully for a wider set of initial conditions, variable specifications and
parameter values). As this is done transparently, the model user can concentrate on the physical problem being
solved and need not be concerned with the mathematical and numerical issues of getting a complex model to
initialise.

Initialisation procedures comprise a set of simplifications and changes to the model, which guarantee that the
model will initialise. These changes can then bereverted in a specified order so that the original problemis solved.
By moving from an easy problem to the complex, original problem in this sequence, the ease of initialisation of
complex models can be increased significantly, which means faster and more reliable initialisation over a wider
range of input specifications compared with trying to initialise the problem in one step.

Thisisaprocedure that good modellers tend to use: they begin modelling a process by using simplified equations
so that they have a working simple model. They then gradually add complexity until the model has the desired
fidelity. This sometimes requires using the solution of a simpler model as an initial guess for a more detailed
model. gPROMS Initialisation Procedures essentially mimic this process without the need to use Saved Variable
Setsand by permitting more than oneintermediate stage; hence complex models built in thisway are more flexible
and reusable.

Initialisation Procedures for Non-Composite
Models

To specify and use Initialisation Procedures for non-composite Models (i.e. Models that contain no Model
instances (UNITS)), you need to:

* Specify at least one Initialisation Procedure in the Model

» Specify which Initialisation Procedure to use in the Process

Specifying Initialisation Procedures in the Model

There are four basic techniques associated with Initialisation procedures. These are:

* Initialisation Procedures that change the value of a Parameter

* Initialisation Procedures that change the value of a Degree of Freedom (Specification)
* Initialisation Procedures that change the choice of a Degree of Freedom

* Initialisation Procedures that use simplified equations

All of the above can be combined into a single Initialisation Procedure. When more than one simplification is
applied, the order in which the simplifications are reverted can be important. The way in which these reversions
take place may also be important. These are described in:

» Specifying the order of reversions
» Specifying how the reversions are performed

Initialisation Procedures are defined using one or more INITIALISATION_PROCEDURE sections following
the PRESET section of the Model (if one exists — see gPROMS Language declaration for Models for more
information). The syntax (for non-composite Models) is:

I NI TI ALI SATI ON_PROCEDURE i pnanme DEFAULT
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START
# list of nodifications to the Mbdel or its specifications
END
NEXT # NEXT sections are optional, there nmay be nore than one
# list of Initialisation Procedure actions
END

An aternative spelling isINITIALIZATION_PROCEDURE.

The DEFAULT keyword defines the default Initialisation Procedure and makes specifying Initialisation
Procedures in Processes more convenient (this will become clearer |ater).

If only one Initialisation Procedure is specified, then the DEFAULT keyword compulsory. If there are more than
one Initialisation Procedures in a Model then exactly one must contain the DEFAULT keyword. If none or more
than one contain the DEFAULT keyword, then an error will be reported when executing the Process.

The START section of an Initialisation Procedure specifies which modifications should be made to the Model in
order to initialise it. Exactly how thisis done is described in the sections on changing the value of a Parameter,
changing thevalue of aDegree of Freedom, changing the choice of aDegree of Freedom and simplifying equations.

The (optional) NEXT sections then define a sequence of changes (that of course move the initialisation problem
closer to the one specified in the Process) to the Parameters or Variables listed in the START section. Changes
specifiedinthesame NEXT section are performed simultaneously and each NEXT section isexecuted in sequence.
For more details, see specifying the order of reversions.

The changes specified in each NEXT section must be contained within either aMOVE_TO or JUMP_TO section.
There can be only one of each in any NEXT section. Any changes specified within a MOVE_TO section are
performed gradually, using a continuation method; those within a JUMP_TO section are performed in a single
step. These sections are described in more detail in: specifying how reversions are performed.

After thefinal NEXT section has been executed, any modificationsthat are still in place are automatically reverted
tothe original problemin afinal step. Thisisalso described in: specifying the order of reversions. Parameters and
Variables can be reverted to their original values explicitly using the REVERT keyword. Thisisillustrated in the
following sections on changing the value of a Parameter, changing the value of a Degree of Freedom, changing
the choice of a Degree of Freedom and simplifying equations.

Changing the Value of a Parameter

gPROMS initialisation procedures alow the model developer to specify a set of Parameter values that will
guarantee successful initialisation. From this solution of the simplified problem the Parameter values are replaced
with the desired onesin such away that the model will alwaysinitialise. As an example, consider alumped model
of aCSTR in which the following energy balance occurs.

(fi_lt] = }?inhin - Fouth + szle TjAHRj + Q

The heats of reaction, AH Rj, are Parameters to be specified by the Model user. Users may want to model highly
energetic reactions, so that some of these Parameterswill take very large values and in some cases these can cause
difficulty or even failure during initialisation.

gPROM S Initialisation Procedures allow the Model devel oper to specify aset of Parameter valuesthat will be used
toinitialise the Model first and then to change these values back to the user-specified ones in a controlled manner
so that theinitialisation converges even for extreme values of the Parameters. In the above example, the first step

of the Initialisation Procedure might be to set al values of AHR; to zero and solve the initidisation problem.
Upon successful initialisation, the AHR; parameters are gradual Iyl returned to the user-specified values.

By default, gPROMS applies a continuation method when reverting Parameters (and any other changes in the Initialisation Procedure) to
the values specified in the Process: that is, their values are changed continuously and smoothly rather than in one discrete jump. See section
xxx for more details.
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If the A HRj Parameter is defined in the g)PROMS Model by:

PARAMETER

Ent hal pyOf Reacti on AS ARRAY(NoReac) OF REAL

Then the Initialisation Procedure would be defined by:

# end of EQUATI ON section

I NI TI ALI SATI ON_PROCEDURE | P_NoHeat Of Reacti on

START

Ent hal pl yOf Reaction := 0 ;
END
NEXT

MOVE_TO

REVERT Ent hal pyOf Reacti on

END

END

In other words, first solve the initialisation with Enthal pyOfReaction set to zero; then, once successful, gradually
change all of their values back to those specified in the Process.

Changing the Value of a Degree of Freedom

The previous section described how models can be made more robust during initialisation. The approach was to
use agPROMS Initialisation Procedure to specify a set of Parameter values that guarantees initialisation and how
these can be replaced by the desired valuesin away that ensures successful initialisation. A similar situation arises
with the specification of degrees of freedom: that is, any degrees of freedom need to be taken up by specifying
the values of some Variablesin the ASSIGN section.

Consider, once again, the energy balance equation for alumped CSTR model:
% - Finhin - outh + VZ;‘Vle TjAHRj + Q

Herefor example, therate of heat input to the system, Q may depend on aV ariable representing the steam flowrate,
Fst eam through the vessel jacket or a coil. For an open-loop simulation, this variable would be specified in the
ASSIGN section of the gPROMSS Process.

One possible initialisation procedure would then be to start the initialisation with Fst eamset to zero (which
would guarantee initialisation) and then move the value of Fst eamto the desired value.

Thiswould be defined in gPROMS using the following code.

# end of EQUATI ON section

I NI TI ALI SATI ON_PROCEDURE | P_NoSt eantl ow

START

F steam:= 0 ;
END
NEXT

MOVE_TO

REVERT F_steam ;

END

END

Note that REASSIGN or RESET tasks cannot be used to redefine the value of any ASSIGNed variables in the
context of an Initialisation Procedure.
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Changing the Choice of a Degree of Freedom

In some cases, simply changing the values of ASSIGNed variables may not be sufficient to guarantee successful
initialisation. The Model user may have chosen a particular set of Variablesto ASSIGN that could cause difficulty
or failure during initialisation. To avoid such possibilities, initialisation procedures can define which degrees of
freedom should be specified to guarantee initialisation. The initialisation procedure then also specifies how the
choice of degrees of freedom can be reverted to the one specified in the Process by the user.

One possible use of this feature can be seen in the following example. Consider a model of a tubular reactor in
which the length of the reaction is a variable, L, to be specified (a degree of freedom) and in which there is an

equation that defines the fractional conversion € of one of the reactants. £ might then be defined as follows.

6 — pfeedl/(RTfeed)_Cl(L)
Pfeedl/(RTfeed) !

where the perfect gas law has been used to calculate the inlet concentration of component 1, using the partial

pressure of component 1 in the feed and the feed temperature (Peed1 and Tteed, respectively) and Ci(2) is the
concentration of component i at axia position z in the reactor.

It isusual to specify the value of L and calculate the conversion €, butitisalso possible to specify as adegree
of freedom, which would then determine the value of L. The latter specification may present problems during
initialisation, however, so a suitable initialisation procedure for this model would be to replace any choice of
degree of freedom with a specification on the length of the reactor, L. This (maybe combined with asuitable value
for L) would then result in amore robust model.

This can be achieved in gPROM S using the following.

DI STRI BUTI ON_DQOVAI N

Axi al AS [0: 1]
# normal i sed as ReactorLength is a Variable ( PARTIAL(, Axi al)
# becomes 1/ ReactorlLength * PARTIAL(,Axial) etc. )

VARI ABLE
React or Length AS Length
C AS DI STRI BUTI ON( NoComp, Axi al ) OF Mol ar Concentrati on
Conver si on AS NoType

EQUATI ON

Conversion = (Pfeed(1) / (Rg * Tfeed) - O(1,1)) /
B e
(Pfeed(1) / (Rg * Tfeed)) ;

I NI TI ALI SATI ON_PROCEDURE | P_Repl aceConver si on
START
REPLACE
Conver si on
W TH
ReactorLength := 5 ;
# this value of L guarantees successful initialisation
END
END
NEXT
MOVE_TO
REVERT Conversion ;
END
END
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In this example, the conversion must be specified in the Process as follows.

ASS| G\
R101. Conversion := 0.95 ;

Simplifying Equations

When developing very detailed models, it is often better to start with a simple model and gradually add more
complexity. Thisis because initialising the fully-detailed model may be too difficult without good initial guesses.
With a much simpler model, one can obtain a solution from a poor initial guess and then use that as the initial
guess for a more detailed model. This process is repeated until the final model, with the desired level of detail,
can be solved.

gPROMS Initialisation Procedures enable the modeller to automate this process and are much more flexible and
reusable than manually initialising a complex model. This is because using the manual approach requires that
published models contain the saved variable set that is necessary to initialise the simulation. Apart from making the
published model large in size (due to the size of the saved variable set), the saved variable set will be suitable for
only anarrow range of problems: for example, if the model user wanted to change the number of chemical species
in the simulation, then the existing saved variable set may be useless and it would be impossible to initialise the
simulation. Thismight also happen evenif only afew specieswere changed (the number of components remaining
the same). Initialisation Procedures allow complex models to be initialised successfully without the use of saved
variable sets and for a very much wider range of problems.

To see how the initialisation procedures are defined, consider again the energy balance equation for a lumped
CSTR model:

YW = Fihin — Fouh+ V 1% r;AHR; + Q

One way to build up to the full energy balance from simplified ones would be to start with an isothermal model,
then switch to an adiabatic model and finally to arrive at the full non-isothermal, non-adiabatic model (the equation
above).

The problem would then first be initialised using

aT _
% =0

for the energy balance.

The solution of this would then be used as the initial guess to solve the next initialisation, using
% = Finhin - outh + VZ;'Vle TjAHRj

for the energy balance. Finally, the solution of the last problem would be used to initialise the model with the
desired energy balance:

(fi_lt] = }?inhin - Fouth + VZ;'Vle TjAHRj + Q

(Of course, thisexampleisquite simpleanditis probably not necessary to go to theselengthsin this case. However,
much more complicated models would require this treatment.)

This initialisation procedure can be defined in gPROMS first by specifying al of the equations within a CASE
statement and then using the Initialisation Procedure to SWITCH from the simplified equation(s) to the final
one(s). All of the following must be specified in the Model.

First the Selector Variable must be defined:

SELECTOR
Ener gyMode AS (Isothermal, Adiabatic, N NA) DEFAULT N NA

Then the equations can be defined using a CA SE statement:
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EQUATI ON

CASE Ener gyMbde OF
WHEN | sot her mal :
$T = 0 ;
WHEN Adi abati c:
$U = Fin*h_in — Fout*h + VSIGVA(rate()*DeltaH R()) ;
VWHEN NI NA:
$U = F_in*h_in — F_out*h + V*SIGVA(rate()*DeltaH R()) + Q;
END

Finally, the initialisation procedure is defined by:

I NI TI ALI SATI ON_PROCEDURE | P_Si npl eEner gyBal ance
START
Ener gyMode : = | sot hermal ;
END
NEXT
MOVE_TO
Ener gyMode :
END
END
NEXT
MOVE_TO
Ener gyMode :
END
END

Adi abatic ;

NI NA ;

Behaviour of CASE branches during initialisation

When gPROM S peforms astandard intialisation (i.e. without using any user-defined Initialisation Procedures) of a
Model containing CASE statements, the active branches of all CA SE statments are determined by the values of the
Selector Variables specified in the INITIAL_SELECTOR section of the Process. These Selector Variables must
remain fixed at these values throughout and at the end of the initialisation procedure (so that the CASE branches
are locked) because their values are considered part of the initial state for the simulation.

In the case of Initialisation Procedures, all CASESs that contain SWITCH TO statements are free to switch during
the Initialisation Procedure. The exception, of course, iswhen the I nitialisation Procedure specifically changesthe
values of one or more Selector Variables. However, at the end of the Initialisation Procedure, all manipulated and
implicitly-set Selector Variablesarereverted back to their specified val ues, consi stent with astandard initialisation.
In other words, Initialisation Procedures must always result in the same initial state as a standard initialisation.

Specifying the sequence of Actions in Initilisations Procedures

Initialisation Procedures for non-composite Models must contain at least one START section and then optionally
any number of NEXT sections.

The START section specifies which Parameters, Variables or Selector Variables are to be changed during
initialisation. The START section may contain any number of simplifications (as described in the sections on
changing the value of a Parameter, changing the value of a Degree of Freedom, changing the choice of a Degree
of Freedom and simplifying equations) in any order: they are al performed in parallel and together form the first
initialisation problem.

After thefirst initialisation is successful, gPROMS then needs to know in what order to relax the simplifications.
Thisisspecified by an optional sequence of NEXT sections, each of which containsalist of changes (either partial
or complete relaxations of some of the simplifications in the START section) that are to be made in paralldl. If
no NEXT section is present, then gPROM S will relax all simplifications simultaneously and try to reinitialise the
problem. If any NEXT sections are present, then each NEXT section is processed in sequence, reinitialising after
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each one. Any simplificationsthat have not been completely relaxed after the final NEXT section are then relaxed
simultaneously in an implicit final step.

Each NEXT section must contain a list of one or more changes to a Parameter or Variable listed in the START
section: they may be assigned anew value or reverted to the val ue specified in the Process by use of the REVERT
task. The syntax of the REVERT task is:

REVERT Par anet er Nane ;
REVERT Vari abl eName ;
REVERT Sel ect or Nane ;

All changes (including revertions) to a Parameter or a Variable must occur within either a MOVE_TO or
JUMP_TO section.

The examples below illustrate these ideas more clearly.

The START section may contain any number of actions:

START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdVariable := 0 ;
END
aSel ector := Sinmple ;
END

0 ;
0 ;

In this example, al four actions are included: changing a Parameter value, changing a Variable value (degree of
freedom), changing the choice of a degree of freedom and changing the value of a Selector variable (to change
the equations being used).

Explicitly reverting changes:

| NI TI ALI SATI ON_PROCEDURE | P_Exanpl el
START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdvariable := 0 ;
END
aSel ector := Sinple ;
END
NEXT
MOVE_TO
REVERT aPar anet er ;
REVERT aVari abl e ;
REVERT anot her Vari abl e ;
REVERT aSel ector ;
END
END

0;
0

Here, the NEXT section reverts all actions simultaneously and smoothly.

The implicit final step when no NEXT section is specified:

I NI TI ALI SATI ON_PROCEDURE | P_Exanpl el
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START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdVariable := 0 ;
END
aSelector := Sinple ;
END

0 ;
0 ;

Here, no NEXT sections are present, so al actions are reverted simultaneously after the first initiaisation is
successful. This example is identical to the previous one, where all actions were reverted explicitly in a NEXT
section.

Making more than one change to a Variable/Parameter before reverting it:

I NI TI ALI SATI ON_PROCEDURE | P_Exanpl e2
START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdvariable := 0 ;
END
aSel ector := Sinmple ;
END
NEXT
MOVE_TO
aParaneter := 1 ;
END
END

0 ;
0 ;

In this example, the value of aPar anet er is changed continuously from O to 1 (with aVari abl e and
aThi rdVari abl e till equal to 0, and aSel ect or till equal to Si npl e). The implicit final step then will
revert aPar anet er , the Variables and Selector Variable to their values specified in the Process. Implicit final
steps aways revert the changes smoothly (in an implicit MOVE_TO section).

Reverting some simplifications in parallel and some in sequence:

I NI TI ALI SATI ON_PROCEDURE | P_Exanpl e3
START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdVariable := 0 ;
END
aSel ector := Sinple ;
END
NEXT
MOVE_TO
REVERT aPar aneter ;
REVERT aVari abl e ;
END
END
NEXT

0 ;
0 ;
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MOVE_TO
REVERT anot her Vari abl e ;
REVERT aSel ector ;
END
END

Here, the Parameter and aVar i abl e arereverted simultaneously and the system is reinitialised. Then the other
two Variables are reverted. (This second NEXT section could have been omitted, as the reversions would have
taken place implicitly anyway.)

They can all be combined:

I NI TI ALI SATI ON_PROCEDURE | P_Exanpl e4
START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdVariable := 0 ;
END
aSel ector := Sinple ;
END
NEXT
MOVE_TO
REVERT aPar aneter ;
avVariable := 1 ;
MOVE_TO
END
NEXT
MOVE_TO
REVERT aVari abl e ;
aSel ector := Not SoSinple ;
END
END
NEXT
MOVE_TO
REVERT anot her Vari abl e ;
aSel ector := QuiteComplex ;
END
END

0 ;
0 ;

In this final example, the Parameter is reverted to its specified value at the same time as aVari abl e is
changed to 1. After reinitiaisation, aVar i abl e isreverted smultaneously with the change of equations to the
Not SoSi npl e CASE. In the final NEXT section, the specification on aThi r dVar i abl e isreverted to the
original specificationonanot her Var i abl e (notethat anot her Var i abl e isspecifiedinthe REVERT task)
while the equations are changed once more. Finally, theimplicit final step reverts the equations to their full form
(i.e. the value originally specified for the aSel ect or Variable)

Specifying how the reversions are performed

Earlier sections have described how to make changes to Parameters, Variables and Equations during initialisation
and in which order these changes should be reverted back to the original specifications. How these reversions are
performed has not yet been discussed fully.

There are two ways that changes specified in a NEXT section can take place: either by making discrete jumps or
by changing the value smoothly from one state to the next. Discrete changes are trivial to perform: simply change
the value and reinitialise. To make a smooth change, gPROM S employs a continuation algorithm. Clearly, if the
difference between the valuesislarge, then it will be harder to make a discrete jump and the continuation method
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will be more robust; however, when it is safe to make discrete jumps, this method will usualy result in faster
initialisation. In some cases, it isamatter of experimentation to determine which method is more robust and faster.

The JUMP_TO and MOVE_TO sections are used to specify which transitions are to be discrete and smooth
respectively. One MOVE_TO section and one JUMP_TO section can be placed in each NEXT section. The
example below illustrates the use of both discrete and continuous transitions.

I NI TI ALI SATI ON_PROCEDURE | P_Exanpl e3a
START
aPar anet er
aVari abl e
REPLACE
anot her Vari abl e
W TH
aThirdvariable := 0 ;
END
aSel ector := Sinple ;
END
NEXT
MOVE_TO
REVERT aVari abl e ;
REVERT anot her Vari abl e ;
END
END
NEXT
JUWP_TO
REVERT aPar anet er ;
END
MOVE_TO
REVERT aSel ector ;
END
END

0 ;
0 ;

In this example, the problem is first initialised with aParameter and aVariable equal to O, aThirdVariable is also
equal to 0 (replacing the specification of anotherVariable) and aSelector is set to Simple (specifying the use of
simplified equations).

Inthe first NEXT section, the two variables simultaneously make smooth transitions to their final values.

Finally, aParameter isreverted in adiscrete jump at the sametime asthe Selector Variableisreverted toitsoriginal
value in a smooth transition.

In this case, there are no implicit reversions to be made. Should there be an implicit final step, then all reversions
are performed in a smooth transition.

This example illustrates that even though changing a degree of freedom (REPLACE) or the equations that are

being solved (SWITCHing from one CA SE to another) isadiscrete change, gJPROM S can still perform thischange
smoothly.

Specifying which Initialisation Procedures to use in
the Process

Once one or more Initialisation Procedures have been specified for a Model, one can be selected for use in a
simulation by specifying it in the Process.

The syntax isvery simple:

I NI TI ALl SATI ON_PROCEDURE
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USE
uni tname : ipnane ;
END

where unitname is the name of the Model instance specified in the UNIT section and ipname is the name of the
Initialisation Procedure to use. Alternatively, the keyword NONE can be used in place of ipname to specify that
no Initialisation Procedure should be used, or DEFAULT can be used to specify that the default Initialisation
Procedure must be used. An alternative spelling, INITIALIZATION_PROCEDURE, is also allowed.

Performing a simulation activity using Initialisation
Procedures

One one or more I nitialisation Procedures have been defined in the Model s and a Process, as described previously,
gPROMS can then use them when performing asimulation activity. In order to do this, simply execute the Process
as usua and then when the Execution control dialog appears select one of:

» Perform Initialisation Procedure only: This method only performs the Initialisation Procedure to generate the
initial guesses but does not continue to initialise the problem or execute the Schedule. This is useful if you
only want to generate the initial guesses and save them in a Saved Variable Set . (The generation of the Saved
Variable Set is specified as part of the Initialisation Procedure.)

» Perform Initialisation Procedure as part of the main activity: This method generates the initial guesses using
the Initiaisation Procedure, then immediately performs an initialisation using them. If a Schedule is present,
and the Ignore schedul e option is unchecked, then gPROM S will complete the simulation according to what is
specified inthe Schedule. If the Initialisation Procedure specifiesthat a Saved Variable Set should be generated,
then thisis done too.

See Executing Simulations for afull description of the Execution control dialog.

Initialisation Procedures for Composite
Models

Specifying initialisation procedures for composite Models is very similar to that of non-composite Models but
with two additional complications:

« the sub Models within the composite model may also contain Initialisation Procedures, and there needs to be
some mechanism for choosing which of these to use in a particular Initialisation Procedure; and

« any Initialisation Proceduresin the sub Models may contain anumber of NEX T sections and some control needs
to be applied to ensure that these NEX T sections are processed at the right time relative to the NEXT sections
in the composite Model and the ones in the other sub Models.

In order to specify which sub Model Initialisation Procedures must be used, a USE section has to be included in
the composite Model’ s Initialisation Procedure. The syntax for the Initialisation Procedure in a composite Model
isasfollows.

I NI TI ALI SATI ON_PROCEDURE i pnane [ DEFAULT]

USE
# list of Unit and Model specifications

END

START
# list of nodifications to the Mbdel or its specifications

END

NEXT # NEXT sections are optional, there may be nore than one
# list of Initialisation Procedure actions

END
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See The USE Section for Composite Models for more details on the USE section.

The START section is treated identically to non-composite Models (see Specifying Initialisation Procedures in
the Model).

TheNEXT sectionissimilar to that for non-composite Models, but with additional Initialisation Procedure Actions
for Synchronising the Initialisation Procedures of sub Models.

The USE Section for Composite Models

The syntax of the USE section in composite Models is similar to that for Processes (see Specifying which
Initialisation Procedures to use in the Process). There are some additional features needed for composite Models
that contain more than one sub Model. In this case, the USE section may contain alist of specifications: one for
each instance. That is:

USE
uni tnanmel : ipnanmel ;
uni tname2 : ipnanme2 ;
uni tname3 : ipnanme3 ;
# etc.

END

If there are lots of Model instances (e.g. if there is an array), then there are some short cuts to save typing many
lines of specifications.

First, if all Model instances are to use the default Initialisation Procedure, then the following specification can
be made:

USE
DEFAULT ;
END

If al Model instances apart from a few are to use the default Initialisation Procedure, then it is usually more
efficient to specify the above and then to override it with specific Unit specifications:

USE
# Use default ip for all units
DEFAULT ;
# Override ip for Unit UL: use no ip
Ul : NONE ;
# Override ip for Unit U2: use specified ip
U2 : ipnane ;
END

Second, arrays and dlices of arrays can be used in place of single Unit names:

USE
# Specification for the whole array of Units
# (both lines are acceptabl e syntax)
ArrayUnitl : ipnanel ;
ArrayUnit2() : ipnanme2 ;
# Specification for a slice of an array of Units
ArrayUnit3(2:3) : ipname3 ;
END

Another useful option is to specify the Initialisation Procedure to be used by all Model instances (Units) of the
same Model. Thisis done by:

USE
[ rodel nane] : ipnane ;
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END

where modelname is the name of a Model and ipname is the name of one of its Initialisation Procedures (the
brackets are part of the syntax and must be typed — this distinguishes between a Model specification and a Unit
specification, since gPROMS allows the name of a Unit to be the same as a Model name). Just as with Unit
specifications, the NONE and DEFAULT keywords can be used.

Finally, one might want to specify a particular Initialisation Procedure for all Units of the same Model type
apart from a certain number of specific Units. This can be done by combining Model specifications with Unit
specifications as follows.

USE

uni tname : ipnane ;

[ rodel nane] : ipnane ;
END

In this case, al Unit specifications override the Model specifications, regardless of the order in which they are
made. As an example, consider aModel with 3 instances of Model Tank, called T101, T102 and T103. 1f T101
and T102 areto usethe default Initialisation Procedure, and T103 isto use none, then this can be done asfollows.

USE
[ Tank] : DEFAULT ;
T103 : NONE ;

END

Even if the T103 specification appears before the [ Tank] one, it will override the [ Tank] specification for
T103.

Lastly, gPROMS will issue a warning if there are duplicate Unit specifications but will continue with the
simulations using the last specification in the list to override all previous ones.

Synchronising the Initialisation Procedures of sub
Models

Synchronisation of the various Initialisations Procedures for non-composite Models is specified using NEXT
sections, as has been described before (Specifying the sequence of Actions in Initilisations Procedures). For
composite Models, the same procedures apply in addition to being able to control when a NEXT section of a sub
Model is processed. Thisis done using the ADVANCE and COMPLETE actions. The syntax of the ADVANCE
actionis:

ADVANCE uni t nane ;
or
ADVANCE [ nodel nane] ;

The first command causes the next unprocessed NEXT section within the Initialisation Procedure of the Unit
unitname to be processed in paralel with the actions specified in the NEXT section within which it resides.
unitname may also be an array of Units or aslice of an array of Units. The second command does the same, but
for all Units of Model type modelname (note that the brackets are part of the syntax).

Since the ADVANCE keyword specifies that a subsequent NEXT section of a sub Model should be exectuted,
and all changes specified in NEXT sections must be withinaMOVE_TO or JUMP_TO section, there must be no
ADVANCE commands placed insideaMOVE_TO or JUMP_TO section: doing so will result in an error.

The COMPLETE action is similar to ADVANCE but causes all of the Unit's NEXT sections to be executed in
sequence (beginning with the first unexecuted NEXT section of the Unit). The syntax is:

COVPLETE uni t name ;
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or

COVPLETE [ nodel nane]

When more than one COMPLETE action resides in the same NEXT section, then the first unprocessed NEXT
section of each Unit isexecuted in parallel, followed by the second set of NEXT sectionsand so on until all explicit
and implicit steps are compl ete.

To illustrate the ADVANCE action, suppose a composite Model contains instances of two sub-models, A and B:

UNIT
Al AS A
Bl AS B

Now, the Models A and B may have a number of Initialisation Procedures, such as:

# in Mdel A
I NI TI ALI SATI ON_PROCEDURE | P_Al

# in Mdel B
I NI TI ALI SATI ON_PRCCEDURE | P_B1

I NI TI ALI SATI ON_PRCCEDURE | P_A2 DEFAULIT NI Tl ALI SATI ON_PROCEDURE | P_B2 DEFAULT

The choice of Initialisation Procedure for the sub Models is made within the USE section of the Initialisation
Procedure of the composite Model:

I NI TI ALI SATI ON_PROCEDURE | P_conpositel

USE
Al : IPAL ;
BL: IPBL :
END

Now the Initialisation Procedures of the two sub models are defined as:

# in Mdel A # in Mdel B
I NI TI ALI SATI ONPROCEDURE | P_A1 I NI TI ALI SATI ONPRCCEDURE | P_B1
START START
P1 := P1 O ; P2 := P2 0 ;
END END
NEXT NEXT
MOVE_TO MOVE_TO
P1 := P11 ; P2 := P2 1 ;
END END
END END
NEXT
JUWP_TO
P1 := P1 2 ;
END
END

Notice that Model B’s Initialisation Procedure has one less NEXT section, each is defined in terms of changesto
a Parameter (P1 for Model A and P2 for Model B) and each has an implicit final step that reverts the Parameter
back toits original value.

The Initialisation Procedure for the composite model is:

| NI TI ALl SATI ONPROCEDURE conposite_ init_1
USE
Al : IPAL ;
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Bl : IP_B1 ;
END
START
PP := PP_O ;
END
# Stepl
NEXT
MOVE_TO
PP .= PP_1 ;
END
END
# Step2
NEXT
ADVANCE Al ;
END
# Step3
NEXT
ADVANCE Al ;
MOVE_TO
PP .= PP_2 ;
END
END
# Step 4
NEXT
ADVANCE Bl ;
END
# Step 5
NEXT
ADVANCE Al ;
ADVANCE Bl ;
MOVE_TO
REVERT PP ;
END
END

Now, during each step in the initialisation strategy of the composite Model, the following steps occur to each of
the Models:

Step PP AlPl B1.P2 Comments

START PP_O P10 P2 0 The first, simplest
initialisation.

1 PP 1 P1LO P2 0 The firss NEXT

section only changes
the value of PP.

2 PP 1 PL1 P2 0 The second NEXT
section advances
the Initialisation
Procedure for Al,
which changes its
valueof P1Lto P1 1.

3 PP 2 P12 P20 The third NEXT
section changes the
vaue of PP to
PP 2 and a the
same time advances
the Initialisation
Procedure for Al,
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Step PP AlP1 B1.P2 Comments

which changes the
valueof PLto P1 2.

4 PP 2 P12 P21 The fourth NEXT
section only
advances the
Initialisation

Procedure for B,
which changes its
value of P2to P2_1.

5 PP P1 P2 The fina NEXT
section reverts PP to
the value specified
in the Process
and simultaneously
advances Al and
Bl's Initialisation
Procedures. This
causes the implicit
fina steps to be
caled, which revert
P1 and P2 to ther
values specified in
the Process.

The example above is somewhat contrived, just to illustrate the processes occurring during initialisation. A more
useful application of sequence control in composite-Model initialisation is the convergence of flowsheets with
recycles. Thefigurebelow illustratesacomposite Model containing 4 instances of aflash-drum Model, and various
other connections and splitters. Of note are the two instances of a Stream-Cutter Model. These are models that
perform stream tears but using equation simplifications: the full equationslink the inlet of the Model to the outlet,
effectively connecting the stream; the simplified equations set the outlet to some given condition, tearing the
stream.
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Now the Initialisation Procedures for the St r eam Cut t er and FI ash_dr umModels are as follows.

# in Mdel Streamcutter # in Mdel Flash_drum
I NI TI ALI SATI ON_PROCEDURE | ni t I NI TI ALI SATI ON_PROCEDURE | ni t
START START
Connecti onEgns := Sinple ; REPLACE
END Pressure
NEXT W TH
MOVE_TO Vapour Fraction : = VapFracStart
REVERT Connecti onEgns ; END
END END
END NEXT
MOVE_TO
REVERT Pressure ;
END
END

The Selector Variable Connect i onEqns represents the connection of the stream into and out of the unit; when
Si npl e, the stream istorn. For the FI ash_dr umModel, one needs to specify the pressure, but it is difficult to
initialise the Model with this specification, so the degree of freedom specified during initialisation is the vapour
fraction: it isamuch easier to determine the pressure from the vapour fraction than the reverse.

Finally, the flowsheet initialisation strategy is:

I NI TI ALI SATI ON_PROCEDURE | ni t
USE
Fl ash_drunmD03 : Init;
Fl ash_drunmD04 : Init;

Stream cutter00l1 : Init;
Stream cutter002 : Init;
END
NEXT

ADVANCE Fl ash_drunD03;
ADVANCE Fl ash_dr unD04;
END
NEXT
ADVANCE Stream cutter001;
ADVANCE Stream cutter002;
END

The overall Initialisation Procedure is as follows. The problem isfirst initialised with the simpler specification on
the vapour fraction of two of the flash drumsand both recycle streamstorn. Switching back to thefull Model in one
step may still cause problems with convergence, so the next step isto revert the degree-of-freedom specifications
back to the flash-drum pressures; the vapour fractions now being determined from these. Finally, both stream tears
can be removed in parallel and the final solution is as desired: afully converged flowsheet with both recyclesin
place and the vapour fraction of each flash drum determined by the specified pressures.

Reference

The following conventions are used in describing the syntax of Initialisation Procedures.

» gPROMS language keywords are shown coloured in CAPITALS, even though the language is case-insensitive
* ldentifiers are shown in the italic font: identifier

» An optional language construct is enclosed in brackets, e.g.: [DEFAULT]

» A compulsory language construct is enclosed in angle brackets, e.g.: <USE section>
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 Choices are indicated by pipes separating each option, e.g.: identifier DEFAULT|NONE indicates the choice
between an identifier or one of the keywords DEFAULT and NONE.

» When multiplelanguage constructs are allowed, they areindicated by afollowing asterisk, e.g. [NEXT section]*

Specifying Initialisation Procedures in Models
The syntax for specifying an initialisation procedure in aModel is:

I NI TI ALI SATI ON_PROCEDURE i pnanme [ DEFAULT]
[ USE secti on]
[ START secti on]
[ NEXT section]*

A Model can have more than one initialisation procedure, each of which must have a uniquely defined name in
the same Model. The following rules are imposed on the specification of an initialisation procedure in aModd!:

e Thealternative keyword INITIALIZATION_PROCEDURE may be used.
» Thelnitiaisation Procedure must not be completely empty; a syntax error will be reported if it is.

e Theoptional DEFAULT keyword following the name of the Initialisation Procedure is used to specify that an
Initialisation Procedure is the default in a Model. Only one IP may be assigned as default. If a Model has only
one | P specification, it is automatically assigned as the default (no keyword is required).

» Theoptional USE section defineswhich I nitialisation Procedures are applied for any Units present in the Model.
Only one USE section is allowed in an Initialisation Procedure and it must not be empty.

» The optional START section contains a list of IP actions to perform prior to initialisation. Only one START
section isallowed in an Initialisation Procedure and it must not be empty.

 If thereisaUSE or START section in the IP, then one or more optional NEX T sections may be included. Each
NEXT section must contain at least one Initialisation Procedure action; all IP actionsin a NEXT section are
performed simultaneously.

* All modifications must be declared explicitly in the START section of an Initialisation Procedure. Elementary
IP tasks are only allowed for those Model elements which were modified in the START section. An error will
be reported otherwise.

e A Unit can only be ADVANCEd in a NEXT section if it is specified in the USE section; otherwise an error
will be reported.

Specifying Initialisation Procedures in Processes
The syntax for specifying an initialisation procedure in a Process is:

I NI TI ALI SATI ON_PROCEDURE i pnane [ DEFAULT]
<USE secti on>
[ SAVE fil enane; ]

Only one IP specification is allowed in a Process. The SAVE task is optional and the USE section is compulsory.

The USE section

The USE section defineswhich Initialisation Procedures are applied for any Units present in the Model or Process.
The USE section is compulsory for an IP in a Process but optional for IPs in a Model. The syntax of the USE
section is:

USE
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[: DEFAULT ;]

[unitnanme : ipname| DEFAULT| NONE ;] *

[ [ rodel nanme] : ipname| DEFAULT| NONE ;] *
END

The USE section must contain at least one specification. Specifications can be made for any Unit present in the
Model or Process, as indicated by the second line; for all Units in the Process, first line; or for all Units of the
same Model type, third line.

Unit I P Specifications are made by entering the name of aUnit (or anarray or dlice of anarray of Units) followed by
acolon and then either avalid | P namefor the Unit (i.e., the name of an IPin the Model of which the Unit isatype)
or one of the keywords DEFAULT or NONE. The DEFAULT keyword indicates that the default |P for the Unit
should beimplemented; NONE indicatesthat no | P should be implemented (thisisuseful for overriding aprevious
specification for aModel or an array of Units). Lastly, if all Unitsin the Process are to use the default 1P, then this
can be done by omitting the unithame identifier and using the DEFAULT keyword, asin thefirst line above.

Model | P Specifications are made by entering the name of aModel enclosed in brackets (thisis part of the syntax)
followed by a colon and then either avalid IP name for the Model or one of the keywords DEFAULT or NONE.
The DEFAULT keyword indicates that the default 1P for all Units declared as model name should be implemented;
NONE indicates that no | P should be implemented.

Order and Precedence Rules

» A Unit specification can appear an arbitrary number of times, with each new specification overriding any
previous one. Duplicated specifications of the same unit are reported as awarning

* An Initialisation Procedure specified explicitly for a Unit will override a setting arising from a Model
specification.

« The order of Model specifications and Unit specifications is insignificant: even if a Model specification is
placed after a Unit specification, the Unit specification will always override the Model specification.

The START section

The START section may only appear in Models. There may only be one START section and it must contain at
least one modification of the standard Initialisation Procedure. The syntax is:

START
<nodi fication of the standard |P>*
END
The modifications can be one of the following:

1. changesto the value of a Parameter

2. changes to the choice of a Degrees of Freedom (DoF) (i.e., changing the ASSIGNment of one Variable to an
ASSIGNment of another)

3. changesto the value of a DoF (i.e., changing the value of an ASSIGNed Variable)
4. changesto the value of a Selector Variable

For modifications of a gIP that involve Variables (cf. items 2 and 3 above), the Variables must be aready
ASSIGNed, otherwise they will be reported as specification errors.

The syntax for modifications of a gl P involving Parameters, Variable values and Selectors respectively is:

Par amet er Path : = expression ;
Vari abl ePath : = expression ;
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Sel ectorPath : = val ue ;
The syntax for changing the choice of aDoF is:

REPLACE

Var i abl ePat hl
W TH

Vari abl ePat h2 : = expression ;
END

where VariablePathl must be different to VariablePath2. VariablePath and VariablePathl must be ASSIGNed
in the Process; VariablePath2 must not have been ASSIGNed.

Themodificationsto the gl P are applied simultaneously before any initialisation takes place. Thefirst initialisation
problem that gJPROM S solvesiis the one specified in the START section.

Behaviour of CASE statements duringin Initialisation Procedures

During an Initialisation Procedure, CASE statements are free to change branches based on the values of the
Variables at each step of the Initialisation Procedure. However, the branches of any CASE specified in the
START section can, of course, be changed explicitly inaNEXT section. Thefina implicit step of an Initialisation
Procedure always reverts the values of Selector Variables to those specified in the INITIALSELECTOR section
so that the correct initialisation is solved.

The NEXT section

After thefirst initialisation problemissolved (that specified by the modificationsin the START section to the gl P),
a sequence of actions may be performed in order to restore these modifications back to the initialisation problem
specified in the SET, ASSIGN and INITIALSELECTOR sections of the Process. Each step in this sequence is
specifiedinaNEXT section. Theremay be asmany NEXT sectionsin the IP asrequired, including none (in which
case, all modifications to the glP are reverted in parallel). The syntax of the NEXT sectioniis:

NEXT
[ MOVE_TO section]*
[ JUMP_TO section]*
[ ADVANCE st atenent]*
[ COWPLETE st at enent]*
END

Each NEXT section may comprise any combination of MOVE_TO, JUMP_TO, ADVANCE and COMPLETE
statements (including multiple entries of each type). However, aNEXT section cannot be empty.

The syntax for the MOVE_TO and JUMP_TO sections are:

MOVE_TO
<Unit Initialisation Procedure action>*
END

JUWMP_TO
<Unit Initialisation Procedure action>*
END

At least one Elementary UIP action must be specified in each MOVE_TO or JUMP_TO section; they must not
contain any ADVANCE or COMPLETE actions.

All of the UIP actions specified in a NEXT section are executed in paralel. If COMPLETE actions are present
along side MOVE_TO, JUMP_TO and/or ADVANCE actions, then the first NEXT sections of the Units being
COMPLETEd that need to be processed are executed in parallel with al of the other actions; the second NEXT
sectionsin the Unitsthat are being COMPLETEd will then be executed in parallel, and so on until no more NEXT
sections are | eft to be processed.
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Elementary UIP actions

Elementary UIP tasks in a NEXT section declare the change of the UIP to be applied in the next step; they may
be one of the following:

1. changesto the value of a Parameter

2. changes to the choice of a Degrees of Freedom (DoF) (i.e., changing the ASSIGNment of one Variable to an
ASSIGNment of another)

3. changesto the value of a DoF (i.e., changing the value of an ASSIGNed Variable)
4. changesto the value of a Selector Variable
5. reversion of original value of a Parameter, DoF or Selector Variable.

Elementary UIP tasks are only allowed for those Model elements that were modified in the START section;
otherwise a syntax error will occur. For changesto the choice of DoF, the Variablesinvolved must be ASSIGNed
ones, i.e. they were not REPLACEd in an earlier step. Otherwise they will be reported as specification errors.

The syntax for items 1 to 4 above isidentical to the START section. The syntax for reverting the original value
of a Parameter, Variable or Selector Variableis, respectively:

REVERT Par anet er Pat h ;
REVERT Vari abl ePath ;
REVERT Sel ectorPath ;

Implicit Final Step

If, after the final NEXT section has been processed, one or more modifications of the glP have not been
REVERTed, a final implicit step will be performed where all remaining modifications are REVERTed to their
original valuesin paralldl.

Advancing Initialisation Procedures of Units

If aModel contains Units, then the I nitialisation Procedure may control the advancing of stepsfor any of the Units
Initialisation Procedures. The ADVANCE task is used to do this within any of the NEXT sections:

NEXT
ADVANCE uni t name ;
ADVANCE [ nodel nane] ;
END

Thefirst line advances the IP of the Unit unitname by one step, where unitname may be the path of asingle Unit,
an array of Unitsor aslice of an array of Units. TheP of unitname can only be advanced if unitname was specified
in the USE section.

The second line advances the I Ps of all Units declared as modelname (the brackets|[ ] are compulsory and are part
of the syntax — modelname is not an optional argument in this case).

When more than one Unit is ADVANCEd in a NEXT section, the appropriate NEXT sections within the Units
IPsareal processed in parallel. After the final NEXT section has been ADVANCEd , the next ADVANCE task
causestheimplicit final step to be performed (if necessary). Any further ADV ANCEs have no effect on any Units
that have completed their final step.

The COMPLETE task is used to advance all steps (in sequence) of a Unit or group of units and complete their
initialisation procedures; its syntax is:

NEXT
COVPLETE uni t name ;
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COVPLETE [ nodel nane] ;
END

Using COMPLETE is equivalent to calling ADVANCE on a Unit (or group of Units of the same Model type)
as many times as is necessary to complete the initialisation procedure. When more than one COMPLETE task is
used in the same NEXT section, the first NEXT section of each Unit that has not yet been executed is processed
in parallel, then the second and so on until all NEXT sections and explicit final steps have been completed. To
illustrate this, the following two Initialisation Procedures are equivalent (Unit_1 has one step, Unit_2 has two
and so on).

I NI TI ALI SATI ON_PROCEDURE | nitialise_flowsheet using conpl ete DEFAULT
USE
Stream Cutter : DEFAULT
Unit_1 : DEFAULT;
Unit_2 : DEFAULT;
Unit_3 : DEFAULT,;
Unit_4 : DEFAULT,;
END

NEXT # just do the first steps in parallel
ADVANCE Unit _1;
ADVANCE Uni t _2;
ADVANCE Uni t _3;
ADVANCE Uni t _4;
END

NEXT # finish themoff (2nd steps in parallel, 3rd and so on)
COVPLETE Unit _1;
COVPLETE Unit _2;
COVPLETE Unit_3;
COVPLETE Unit _4;
END

NEXT
COVWPLETE Stream Cutter;
END

I NI TI ALI SATI ON_PROCEDURE | nitialise_flowsheet w th _advances DEFAULT
USE
Stream Cutter : DEFAULT
Unit_1 : DEFAULT,;
Unit_2 : DEFAULT;
Unit_3 : DEFAULT,;
Unit_4 : DEFAULT,;

END

NEXT
ADVANCE Unit _1; # Step 1 of Unit_1
ADVANCE Unit 2; # Step 1 of Unit_2
ADVANCE Unit _3; # Step 1 of Unit_3
ADVANCE Unit _4; # Step 1 of Unit_4

END

NEXT
ADVANCE Unit 2; # Step 2 of Unit_2
ADVANCE Unit _3; # Step 2 of Unit_3
ADVANCE Unit _4; # Step 2 of Unit_4

END
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NEXT
ADVANCE Unit_3; # Step 3 of Unit_3
ADVANCE Unit_4; # Step 3 of Unit_4
END

NEXT
ADVANCE Unit_4; # Step 4 of Unit_4
END

NEXT
ADVANCE Stream Cutter; # Step 1 of Stream Cutter
END

UIP Algorithms

UIPs support discrete or continuous changes as advanced initialisation mechanisms. Algorithmically, discrete
changes will be solved by conventional algorithms for the solution of non-linear algebraic systems. Continuous
changes will be solved by a continuation method using DAE solvers.

In case of discrete changes, modifications are grouped via the following language construct:

JUWP_TO
<el enentary U P task>*
END

In case of a continuous change, modifications are grouped via the following language construct:

MOVE_TO
<el enentary U P task>*
END

The constructs above must contain at least one UIP task and cannot be nested. All UIP tasks must reside in either
aMOVE_TO or aJUMP_TO section. The only exception is the ADVANCE task, which must not appear in a
JUMP_TO or MOVE_TO section.
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