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Table 1. Third party free-softwar e packages

Softwar e/Copyright Website

License

ANTLR http://www.antlr2.org/ Public Domain
Batik http://xmlgraphi cs.apache.org/batik/ Apachev2.0
Copyright © 1999-2007 The Apache Software Foundation.

BLAS http://www.netlib.org/blas BSD Style
Copyright © 1992-2009 The University of Tennessee.

Boost http://www.boost.org/ Boost
Copyright © 1999-2007 The A pache Software Foundation.

Castor http://www.castor.org/ Apachev2.0
Copyright © 2004-2005 Werner Guttmann

CommonsCLI http://commons.apache.org/cli/ Apachev2.0
Copyright © 2002-2004 The Apache Software Foundation.

Commons Collections http://commons.apache.org/collections/ |Apache v2.0
Copyright © 2002-2004 The Apache Software Foundation.

CommonsLang http://commons.apache.org/lang/ Apachev2.0
Copyright © 1999-2008 The A pache Software Foundation.

Commons L ogging http://commons.apache.org/logging/ Apachevl.l

Copyright © 1999-2001 The Apache Software Foundation.

Cryptot++ (AES/Rijndael http://www.cryptopp.com/ Public Domain

and SHA-256)

Copyright © 1995-2009 Wei Dai and contributors.

Fast MD5 http://www.twmacinta.com/myjava/ LGPL v2.1
fast_md5.php

Copyright © 2002-2005 Timothy W Macinta.

HQP http://hgp.sourceforge.net/ LGPL v2

Copyright © 1994-2002 Ruediger Franke.

Jakarta Regexp http://jakarta.apache.org/regexp/ Apachevl.l

Copyright © 1999-2002 The Apache Software Foundation.

JavaHelp http://javahel p.java.net/ GPL v2 with

classpath exception

Copyright © 2011, Oracle and/or its affiliates.

JXButtonPanel http://swinghel per.dev.java.net/

LGPL v2.1 (or
later)

Copyright © 2011, Oracle and/or its affiliates.

LAPACK http://www.netlib.org/lapack/

BSD Style

libodbc++

http://libodbcxx.sourceforge.net/

LGPL v2




Softwar e/Copyright Website License
Copyright © 1999-2000 Manush Dodunekov <manush@stendahls.net>

Copyright © 1994-2008 Free Software Foundation, Inc.

|p_solve http://Ipsolve.sourceforge.net/ LGPL v2.1
Copyright © 1998-2001 by the University of Florida.

Copyright © 1991, 2009 Free Software Foundation, Inc.

MiGL ayout http://www.miglayout.com/ BSD
Copyright © 2007 MiG InfoCom AB.

Netbeans http://www.netbeans.org/ SPL
Copyright © 1997-2007 Sun Microsystems, Inc.

omniORB http://omniorb.sourceforge.net/ LGPL v2

Copyright © 1996-2001 AT& T Laboratories Cambridge.
Copyright © 1997-2006 Free Software Foundation, Inc.

TimingFramewor k http://timingframework.dev.java.net/ BSD

Copyright © 1997-2008 Sun Microsystems, Inc.

VecMath http://vecmath.dev.java.net/ GPL v2 with
classpath exception

Copyright © 1997-2008 Sun Microsystems, Inc.

Wizard Framework http://wizard-framework.dev.java.net/  |LGPL

Copyright © 2004-2005 Andrew Pietsch.

Xalan http://xml.apache.org/xalan-j/ Apachev2.0

Copyright © 1999-2006 The Apache Software Foundation.

Xerces-C http://xerces.apache.org/xerces-c/ Apachev2.0

Copyright © 1994-2008 The A pache Software Foundation.

Xerces-J http://xerces.apache.org/xerces2-j/ Apachev2.0

Copyright © 1999-2005 The Apache Software Foundation.

This product includes software developed by the Apache Software Foundation, http://
www.apache.org/.
gPROMS also uses the following third party commercial packages:

* FLEXnet Publisher software licensing management from Acresso Software Inc., http://
WWW.acresso.cormy/.

» JClassDesktopViewshby Quest Software, Inc., http://www.quest.com/jclass-desktopviews/.

» JGraph by JGraph Ltd., http://www.jgraph.com/.
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Chapter 1. Overview

gPROM S can be used to optimise the steady-state and/or the dynamic behaviour of acontinuous or batch process.
Both plant design and operational optimisation can be carried out. The form of the objective function and the
constraints can be quite general. Moreover, the optimisation decision variables can be either functions of time
("controls") or time-invariant quantities.




Chapter 2. Dynamic Optimisation in
gPROMS

Introduction

This chapter describes how gPROMS can be used to perform (dynamic) optimisation calculations.

* A dynamic optimisation problem is described using asmall example. We use this exampl e throughout thisguide
to illustrate the dynamic optimisation facilities provided by gPROMS.

A dynamic optimisation problem is described mathematically.

A definition of what constitutes a solution to the dynamic optimisation problem is given.

* A description of how to specify dynamic optimisation problemsin gPROMS is given.

* A description of how to specify point (including steady-state) optimisation problemsin gPROMS is given.
* A description of how optimisation problems are executed in gPROMS is given.

» An explanation of the contents of the various output files that are generated is given.

A discussion of various other features of the optimisation capabilities of gPROMS is made.

The optimisation capabilitiesin gPROMS have evolved significantly in recent versions of the software.

Some basic familiarity with the gPROM S language and concepts is assumed.

What is dynamic optimisation?

In order to introduce the various elements of the definition of the problem of dynamic optimisation, we consider
the semi-batch reactor shown in the figure below. Two exothermic reactions are taking place:

A+B — C
B+C — D

where A and B are the raw materials, C the desirable product, and D the unwanted by-product.

Figure2.1. Batch Reactor

Feed A Feed B
TA+B—~C —
_B+C—D

Cooling
‘Water

The reactor receives two independent inputs of pure A and B, and is cooled with cooling water circulating through
acoil. Starting with an empty reactor, we are free to vary the in-flows of A and B, as well as the cooling water
flowrate.
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For agiven reactor design, our operational objective may beto determinethe duration of the operation, and thetime
variation of the various material and energy flowrates over this duration, so asto maximise the fina concentration
of C. Of course, equipment design and resource availability usually impose certain limits within which our control
mani pul ations must be maintained---for instance, thereisan upper limit on the available flowrate of cooling water.

In general, the design of processes operating in the transient domain also leads to problems that are similar to
operational optimisation problems, but may have additional degrees of freedom. For instance, we may wish to
determine the optimal geometry of the reactor in addition to the optimal way of operating it over time.

Because of the transient nature of the underlying process, both the operational and design problems considered
above are applications of dynamic optimisation®

and serve to introduce some of the important features of this problem in its most basic form. Some other
complications that often arise in practical applicationswill be introduced later.

What is the mathematical problem?

In this section we provide a mathematical statement of the class of dynamic optimisation problems solved by
gPROMS.

The process model

We consider processes described by mixed differential and algebraic equations of the form:
f(z(2), 2(2), y(t), u(t),v) = 0.

Herex(t) and y(t) are the differential and algebraic variablesin the model whileZ(%) arethe time derivatives of the

x(t) (i.e., z =dz/ dt). u(t) are the control variables and v the time invariant parameters to be determined by the
optimisation. In the context of the batch reactor example considered earlier, the differential variableswill typically
correspond to fundamental conserved quantities (such as molar component holdups and internal energy), whiley
will include various quantities related to them (e.g. component molar concentrations and temperature). The input
flowrates of A, B and cooling water are the control variables u while, in the design case, the volume of the reactor
acts asatimeinvariant parameter v.

Note

For simplicity, the mathematical description in this document assumes that the system behaviour is
defined in terms of ordinary(with respect to time) differential and algebraic equations. However, the
optimisation capabilities of gPROMS are equally applicable to mixed lumped and distributed systems
described by general integral, partial differential and algebraic equations in time and one or more space
dimensions.

The initial conditions

In general, gJPROM S assumes that the initial t=0 condition of the system is described in terms of a set of general
non-linear relations of the form:

1(z(0), 2(0), y(0), w(0), v) = 0.

It is important to note that, once we fix the time variation of the controls, u(t) and the values of any time
invariant parameters, v, the modelling equations together with the initial conditions completely determine the
transient response of the system. In practice, we could determine this response by performing agPROM S dynamic
simulation.

Toften, the term "optimal control” is also used, especially for problems that involve control variables but no time-invariant parameters (see
also: What is the mathematical model ?).
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The objective function

Dynamic optimisation in gPROM S seeks to determine
 thetime horizon, t;,

* thevalues of the time invariant parameters, v, and

* thetime variation of the control variables, u(t), over the entire time horizon t€0,tf ],

S0 as to minimise (or maximise) the final value of a single variable z. This can be written mathematically as:
Ming ;. 4 u(t), te(ot] 2(tf)

Here the objective function variable, z is one of either the differential variables x or the algebraic variables y.

In the context of the batch reactor example, ts would be the duration of the batch reaction while z would be the
concentration of component C (either a differential or an algebraic variable, depending on the model used).

The above form of the objective function is not as restrictive as might appear at first. In particular, it is worth
noting that:

» Maximisation can be carried out as well as minimisation.

* If we wish to optimise a function ¢(z(tr), 2(tr), y(ts), u(ts), v) of several variables instead of asingle
variable, we can simply add an extra algebraic equation to the model:

z = ¢($, i:: y) u) 'U)
The additional computational cost incurred because of this model extension is usually negligible.

* If we wish to minimise or maximise the integral of a function ¥(z, 2,9, %, V) over the entire time horizon,
we can simply add the differential equation:

z = "//(-'Ey x.) y: 'LL, 'U)
together with the initial condition:
z2(0)=0

We can easily verify that thisis equivalent to:

2(t7) = Jy' ¥(a(t), 2(1), y(t), u(t), v) dt
Again, very little additional computational cost isincurred in doing this.

» Minimising the time horizon itself can be achieved by adding the equation:
z=1

together with the initial condition above.

Bounds on the optimisation decision variables

In practice, the time horizon ts will often be subject to certain lower and upper bounds:

trfnin S tf S tI}’laX




Dynamic Optimisation in gPROMS

*
In some cases, t; will, in fact, be fixed at a given value, tf. This can be achieved simply by setting
t;nin — t;nax — t;

As we have aready seen in the batch reactor example, it is likely that the control variables and time invariant
parameters will aso be subject to lower and upper bounds:

min < y(t) < u™X, Vit € [0,ty]

min <wv< pmax
Other constraint types

End-point constraints

In some applications, it is hecessary to impose certain conditions that the system must satisfy at the end of the
operation. These are called end-point constraints. For instance, in the batch reactor example, we may require:

« thefinal amount of material in the reactor to be at certain prescribed value;

and also

* thefina temperatureto lie within given limits.

In the first case, we have an equality end-point constraint of the type:

w(ty) = w*

where w is one of the system variables (x or y). In the second case, we have an inequality end-point constraint:

min S 'w(tf) S max

Interior-point constraints

We can a'so have constraints that hold at one or more distinct timest; during the time horizon (e.g. at the middle
of the horizon). These are called interior-point constraints. These may be represented mathematically as.

Wit < w(ty) < wp
where w isasystem variable, and t; isagiven time.
We note that both interior and end-point constraints are special cases of point constraints. However, for

convenience, gPROMSS treats them separately. It also treats any constraints that have to be satisfied at the initial
time t=0 asinterior-point constraints

Path constraints

We may also have certain constraints that must be satisfied at all times during the system operation. If these path
constraints are equalities, then often they can simply be added to the system model effectively converting one of
the control variables u(t) into an algebraic variable y. More often, they are inequalities of the form:

min < w(t) < wmax YVt € [O,tf]

For instance, in our batch reactor example, we may require that the temperature never exceed a certain value so
as to avoid some unwanted side-reactions that are not explicitly considered by our model.
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Although we have assumed in equati ons representing end-point, interior-point and path constraintsthat the various
constraints are imposed on asingle variable w, thisis not really restrictive. If we wanted to constrain afunction ¢

of several variables, we could simply define a new variable w through an additional equation:

w = ¢($’ i:’ y) u’ v)

and then impose the required constraints on w.

What is a "solution" of a dynamic
optimisation problem?

Let us start by summarising the mathematical statement of the dynamic optimisation problem as defined in: What
is the mathematical model?:

Table2.1. Mathematical statement of the dynamic optimisation problem

Objective function displaystyle ming, o (1), te[o,¢/] z(ty) subject to
Process model f(z(t),z(t), y(¢),u(t),v) =0t € [0, tf]
Initial conditions I(z(0),2(0),y(0),u(0),v) =0
Time horizon bounds tI}lin <tp < t;nax
Control variable bounds min <y (t) < umat € [0,tf]
Timeinvariant parameter bounds min < 4 < ymax
End-point constraints w(ty) = w*
min < gp(¢7) < e
Interior-point constraints wIInin < w(t]) < wP
Path constraints min < () < wm*t € [0, tf]

Clearly, a"solution" to this problem comprises three key elements:

» Thevaue of the time horizon, t;.

» Thevalues of the timeinvariant parameters, v.

» Thevariation of the control variables u(t) over the time horizon fromt=0tot = t;.

As has already been mentioned, if these are specified, we can solve the model equations to determine how the

system behaves over the time horizon of interest, obtaining values of x(t) and y(t) for all teo, ty ]. We can then
evaluate the objective function, and also check whether the various end-point and path constraints are satisfied.

Normally, there will be more than one combination of t;, v and u(t) that satisfies the bounds and the constraints---
and this, of course, is what gives rise to the optimisation problem. The latter aims to find the combination that
produces the best value of the objective function while satisfying all the constraints.

Classes of control variable profile

For the above dynamic optimisation problem to be well defined, we need to be rather more specific regarding the
type of the variation of the control variables over timethat we arewilling to consider. For instance, we could have:
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Figure 2.2. Different types of control variable profile
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* Piecewise-constant controls---these remain constant at a certain value over a certain part of the time horizon
before jumping discretely to a different value over the next interval: see subfigure (a) above.

* Piecewise-linear controls---thesetake acertain linear time variation over acertain part of thetimehorizon before
jumping discretely to a different linear variation over the next interval: see subfigure (b) above.

 Piecewise-linear continuous controls---these are similar to the piecewise-linear controls described above, with
the additional requirement that their values be continuous at the interval boundaries: see subfigure (c) above.

 Controlsthat vary smoothly over time---perhaps as polynomials of a given degree: see subfigure (d) above.

It isimportant to appreciate that, in most cases, the choice of the form of the control variables is an engineering
rather than a mathematical issue: it very much depends on the capabilities of the actual control system (automatic
or manual!) that we will eventually use to implement these controls on the real plant. For instance, piecewise-
constant controls may often be preferable to other types as they are much easier to implement.
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Control variable profiles in gPROMS

Figure 2.3. Different types of control variable profile

AN

(&) Placawise constare cordrols {B) Pizcewiss linear controls

Control Variahle
Control Varlable

Control Varlable
Control Varlable

Thne, t Thne, t
—_— —_—
fe) P Ite lnear A L (dl Polvomied controls

The dynamic optimisation facilitiesin gPROM S support piecewise-constant and piecewise-linear controls of the
types shown in subfigures (a) and (b) respectively. These are by far the most commonly encountered in practical
applications. However, if necessary, it isrelatively straightforward to introduce several other types of control. For
instance, a piecewise-linear continuous control of the type shown in subfigure (c) can be defined by adding the
equations:

- U (1)

z

U = z+aoa

where:

» zisanew differentia variable with initial condition z(0)=0;

» U isanew piecewise-constant control variable (cf. subfigure (a)) to be determined by the optimisation;

* aisanew timeinvariant parameter representing the initial value of u (i.e. (0) = @), to be determined by the
optimisation.

We note that thisis equivalent to:
(t)=a+ [fU(T)dr

which expresses the fact that the time gradient of a piecewise-linear continuous control is a piecewise-constant
function of time.

Also acubic polynomial control variation of the form:
(t) = a + Bt +t* + 6t
can be introduced by adding the following to the model equations:

z=1
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Together with theinitial condition z(0)=0, this equation effectively defines zastime.
u=a+Bz+y22+62°

By virtue of this equation, the variable u becomes one of the algebraic variables y to be determined by solving
the model equations.

The actual control variation is determined by the values of B, Y and § which should now be treated as time
invariant parameters v.

Specifying dynamic optimisation problems in
gPROMS

Most of the information needed for specifying dynamic optimisation problemsin gPROM S will be present in the
various entities used for dynamic simulation of the process. Some additional information will have to be specified
in separate entities.

We consider each of these sources of information in turn.

Process entities for optimisation

Just like a dynamic simulation experiment, a dynamic optimisation problem in gPROMS is defined in a Process
entity. In fact, there is no difference in syntax between a simulation and an optimisation Process. Thus, the latter
specifies most of the information required for defining mathematically the optimisation problem to be solved:

» The Unit specification, together with parameter Setting, effectively determine the set of model equationsf(.)=0.

e The Assign specifications mark certain system variables as fixed for the purposes of dynamic simulation. As
far as optimisation is concerned, some of these variables will be either controls or time invariant parameters
(see also: Optimisation Entity).

The Initial specifications provide the initial conditions 1(.)=0.

» Anoptional Preset specification may be used to override the default initial guesses and bounds for any system
variable. In particular, the bounds on the controlsand timeinvariant parametersto be used for the purposes of the
dynamic optimisation are either those specified here or the default values specified in the Variable Type entities.

» Therearetwo standard mathematical solversavailablein gPROM S for solving dynamic optimisation problems.
The first (default) implements a control vector parameterisation algorithm based via single-shooting. This can
be specified in the Solutionparameters section of a Process entity through the syntax:

SCLUTI ONPARAMETERS
DOSol ver : = "CVP_SS"

The second solver is an implementation of control vector parameterisation via multiple-shooting. This is
specified in the Sol utionparameters using:

SOLUTI ONPARAMETERS
DOSol ver := "CVP_M5" ;

In general, CVP_MS is more suited than CVP_SS for solving dynamic optimisation problems with relatively
few differential variables but alarge number of control variables and/or control intervals. A detailed description
of the two solvers and the various parameters that can be used for configuring their precise behaviour is given
in: standard solvers for optimisation.

» Any Schedule specification in the Processisignored for the purposes of dynamic optimisation. This aso means
that any Intrinsic Tasks? used by your Models will not be executed.

2see the section "Defining Tasks" in the Model Developer Guide
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Experience indicates that most of the effort in defining a dynamic optimisation problem is, in fact, incurred in
the construction of a robust model of your process. This will probably be exactly the same model as that used
for dynamic simulations within gPROMS. However, it is worth investing some effort in ensuring that it behaves
properly for the entire range of possible values of the control variablesand timeinvariant parameters. In particular,
you should check that the differential and algebraic variables x and y remain within any specified bounds even
for extreme values of uand v.

The various Variable Type, Model and Process entities for the batch reactor example in this chapter are shown
within a project called "ReactorOpt.gPJ" (see the dynamic optimisation example).

The Optimisation entity

The complete specification of a dynamic optimisation problem requires some additional information which is not
provided in the gPROM S Process entity. Thisincludesinformation on the time horizon and the objective function,
the form of the control variable profiles, and any end-point and path constraints that have to be imposed on the
process.

All of the above information has to be specified in a separate entity which appears under the Optimisations entry
in the gPROMS project tree. In order to create such an entity:

1. Pull-down the Entity menu from the top pane in gPROM S Model Builder.
2. Click on New Entity. A dialog box will appear.

3. Choose Optimisation for the Entity type and fill in the Name field. The name of the Optimisation entity must
be the name of the relevant Process entity in the gPROM S project.

The structure of the Optimisation entity is shown in the table below, with keywords having their first letter
capitalised. Most of the information presented is adequately explained by the comments in the second column.
However, it is worth clarifying some points regarding the selection of control variables and time invariant
parameters, and also the specification of interior-point constraints and path constraints.

An example of such an entity is shown in the dynamic optimisation example for the batch reactor.

Note

* To omit any lower bound from the optimisation, specify it as-1E30.

» To omit any upper bound from the optimisation, specify it as 1E30.

Table 2.2. Syntax of a g°PROM S Optimisation entity

Specification Comments

# Lines starting with hash (#)
symbols are treated as comments

PROCESS { name of Process} name of Process must correspond to the name
of one of the Processes in the Project. This
specification alows one to have more severa
Optimisation entitiesin agPROMS Project all
referring to the same Process: e.g. to perform different
optimisation experiments on the same system.

OPTIMISATION_TYPE The optimisation type can be one of the following
values: POINT, STEADY_STATE and DYNAMIC

{ optimisation type}
Optional—If omitted, dynamic or point
optimisation will be used, depending on
whether or not a horizon is specified.
HORIZON Time horizon specification

{IV} : {LB} : {UB}
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Specification Comments
o tmin
Initial guessfor t; followed by “f
$max Lo
and“f  (cf. constraint in: Bounds on
the optimisation decision variables).
INTERVALS Intervalsin control variable profiles.

{ number of intervals}

{IV} : {LB} : {UB}

{IV} : {LB} : {UB}

There follows oneline per interval.

Initial guess, lower bound and upper
bound for the length of each interval.

PIECEWISE_CONSTANT
{variable name}

{initial profile specification}

Specification of a piecewise-constant control variable.
Its full gPROMSS path name.

Optional—see also: control variables
and time invariant parameters.

PIECEWISE_LINEAR
{variable name}

{initial profile specification}

Specification of a piecewise-linear control variable.
Its full gPROMSS path name.

Optional—see also: control variables
and time invariant parameters.

TIME_INVARIANT
{variable name}

{initial value specification}

Specification of atime-invariant parameter.
Its full gPROMS path name.

Optional—see also: control variables
and time invariant parameters.

ENDPOINT_EQUALITY
{variable name}

{value}

Specification of avariable on which an
equality end-point constraint isto be imposed.

Its full gPROMS path name.

The valuex in the constraint in: end-point constraints.

ENDPOINT_INEQUALITY
{variable name}

{LB} : {UB}

Specification of avariable on which an
inequality end-point constraint isto be imposed.

Its full gPROMS path name.

The values min and max in the
constraint in: end-point constraints.

INTERIORPOINT

{variable name}

Specification of avariable on which an
interior-point constraint isto be imposed.

Its full gPROMS path name.

{LB} : {UB}
The values min and max in the
constraint in: interior-point constraints.
Note: an aternate syntax for specifying varying
interior-point constraints will be presented later.
MAXIMISE or MINIMISE

11
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Specification Comments

{variable name) The objective function variable z
(see objective function equation)

Specifications of control variables and time-invariant parameters

All of the variables specified as PIECEWISE_CONSTANT, PIECEWISE LINEAR and TIME_INVARIANT
must be Assigned in the gjPROM S Process entity. Any variablesthat are Assigned in the Process entity but are not
included here will retain the value(s) which are assigned to them: these may be constants or functions of TIME.
Effectively, these variables are removed from the optimisation problem.

By default, the initial control-variable profiles are taken to be constant (at the Assigned value) throughout the
time horizon. Similarly, the initial guesses for time-invariant parameters are aso taken to be the corresponding
Assigned values. In both cases, if the Assigned value is a function of TIME, then the initial value of thiswill be
used. Also the upper and lower bounds are taken, by default, to be the values specified in Variable Type entities
or in the Preset section of the Process entity (see aso: Process entities for optimisation).

The defaultsfor initial control-variable profiles may be overridden by an INITIAL_PROFILE specification of the
following type:

I NI TI AL_PROFI LE
{Initial Value} : {LowerBound} : {UpperBound}

{Initial Value} : {LowerBound} : {UpperBound}

where Initial Value, LowerBound and UpperBound are real constants. For piecewise-constant controls, one such
line must be included for each of the timeintervals specified in Intervals earlier in thefile, with each specification
referring to the value of the control over the corresponding interval. For piecewise-linear controls, there must be
two such lines for each interval, corresponding to the value of the control at the beginning and at the end of the
interval respectively.

Thedefault initial guessesfor time-invariant parameters may be overridden by an INITIAL_VALUE specification
of the type:

I NI TI AL_VALUE
{Initial Value} : {LowerBound} : {UpperBound}

where | nitial Value, LowerBound and UpperBound are real constants.

Interior-point constraints

The INTERIORPOINT specifications force the named variable to lie within the specified lower and upper bounds
at a set of discrete times, namely the time-interval boundaries®*The most frequent use of such specificationsis as
an approximate way of enforcing path constraints—the latter are not handled directly by gPROMS.

In some applications, it can be useful to specify different bounds at each of the time-interval boundaries—for
example, a batch reaction procedure might require the temperature to lie in anarrower range in the final stages of
reaction than in the earlier stages. This can be achieved in gPROMS through the use of an alternative syntax for
the INTERIORPOINT segment of the input file as shown in the table below.

Table 2.3. Alternative syntax for Interiorpoint constraints

Specification Comments

INTERIORPOINT Specification of avariable on which an
interior-point constraint isto be imposed.

3This includes the initial point but not the final one. An ENDPOINT_INEQUALITY specification should be used to enforce a final-time
constraint, if necessary.
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Specification Comments
{variable name} Its full gPROMSS path name.
VARYING Keyword to indicate distinct

bounds at each interval boundary

{lower bound} : {upper bound} Bounds at start of first interval.

Bounds at start of last interval.
{lower bound} : { upper bound}

Inequality path constraints

It isworth noting that enforcing a path constraint at the interval boundaries does not automatically guarantee that
the constraints are not violated within the intervals. For many applications, this is not a major problem as path
constraintstend to be "soft" and minor violations can betolerated. However, if thisisnot the case, amore stringent
way of enforcing the constraint isto define aviolation variable zwithin the relevant Model entity in the gPROMS
project through the equation:

z= (maX(O, WP, w — 111““‘5"‘))2

with initial condition,

2(0)=0

and then impose the additional end-point equality constraint:
z(tf) =0

It can be verified that this end-point equality constraint can be satisfied if and only if the original path constraint
is satisfied. In many cases, it is still worthwhile retaining the Interiorpoint constraints on w as this often leads to
improved numerical performance. It may also be better to relax the end-point equality constraint to an inequality
constraint:

(tr) <e

where € is a small positive tolerance. An implementation of path constraints is shown for the batch reactor
example in the Reactor Model entity, the Initial section of the OPTIMISE REACTOR Process entity, and the
OPTIMISE_REACTOR Optimisation entity.

Point Optimisation

By default, gJPROMS treats optimisation problems as dynamic ones, optimising the behaviour of a system over
a finite non-negative time horizon. However, in some cases, it is desired to optimise a system at a single time
point—performing a so-called "point" optimisation. From the mathematical point of view, thisis equivalent to
solving a purely algebraic problem in which a generally nonlinear objective function is maximised or minimised
subject to generally nonlinear constraints by manipulating a set of optimisation decision variables that may be
either continuous or discrete.

Specification of point Optimisation Entities

The specification of a point optimisation problem in gPROMS is achieved simply by omitting the HORI ZON part
of the corresponding Optimisation Entity. One can also use the following language to specify apoint optimisation:

OPTI M SATI ON_TYPE
PO NT
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It isworth noting that point Optimisation Entities:

e may contain TIME INVARIANT controls as well as ENDPOINT_INEQUALITY and
ENDPOINT_EQUALITY constraints, such constraints are interpreted as smple algebraic constraints to be
satisfied by the optimal solution;

 must not contain time-varying controls PIECEWISE_CONSTANT or PIECEWISE LINEAR ones or
constraints, or specifications of control Intervals, all of which are meaninglessin this context.

Moreover,

* the value of the global TIME variable used in any Assignments in the corresponding Process Entity is taken
to be zero;

» any Initial conditions specified in corresponding Process Entity are taken as additional equality constraints to
be satisfied by the optimisation.

Note that, for the purposes of point optimisation, any time derivative terms of the form $x, that may occur in
gPROMS Model Entities, are treated as distinct to the variables x.

Specification of steady-state optimisation problems

A steady-state optimisation problem is a special case of a point optimisation one. As such, its specification must
obey all the rules outlined in: point optimisation entities.

If the underlying model is a dynamic one (i.e. its Model Entities contain one or more time derivative terms of
the form $x) , then the initial-condition of the system must be specified as STEADY_STATE in the Initial section
of the Process Entity.

It may be considerably easier to initialise complex models from a given set of initial conditions and to integrate
until steady state is obtained (rather than initialising using the STEADY_STATE initial condition). In these cases,
aspecial type of optimisation can be performed by using the SSOptTR solver and specifying:

OPTI M SATI ON_TYPE
STEADY_STATE

in the Optimisation entity (and omitting the HORI ZON and | NTERVALS sections).
The SSOptTR solver is selected in one of two ways, depending on the type of problem being solved:
 Continuous variables only
« use the Solution Parameters tab to specify the value of the MINLPSolver Parameter to be SSOptTR; or
« gpecify the following in the SOLUTI ONPARAMETERS section of the Process

DCOsol ver : = "CVP_SS" [
"M NLPSol ver" := "SSOpt TR’

]
* Mixed integer optimisation

* usethe Solution Parameters tab to specify the value of the MINL PSolver Parameter to be OAERAP and the
value of its NLPSolver Parameter to be SSOptTR; or

* specify the following in the SOLUTI ONPARANMETERS section of the Process

DCSol ver = "CVP_SS" |
"M NLPSol ver" := "QAERAP" |
"NLPSol ver" := "SSOpt TR

]
]
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Finally, the time horizon needsto be specified. A simulation experiment can be performed to identify how long is
required for steady state to be established. This value isthen specified using the TimeRel axationHorizon Solution
Parameter for SSOptTR. This can be done using the Solution Parameters tab or by specifying the following in
gPROMS language (for a continuous problem):

SCLUTI ONPARAMETERS

DCSol ver : = "CVP_SS" |
"M NLPSol ver" := "SSOpt TR' |
"Ti meRel axati onHori zon" := 20000.0

]
]

The default value is 20000, but can be anything from 10°%° to 10%° depending on the problem.

The SSOptTR solver takes advantage of nature of the steady-state optimisation problem to increase the
performance of the optimisation relative to afull dynamic optimisation. One of the largest computation overheads
associated with dynamic optimisation is the integration of the sensitivity equations, which provide the optimiser
with the gradients of the constraints and objective function with respect to the decision variables. For steady-state
optimisations, SSOptTR need not perform these expensive sensitivity integrations until the steady-state solution
has been found, thus significantly reducing the computational effort.

Another feature of the steady-state optimisation problem that can be exploited relates to reinitialisation. In a
dynamic optimisation problem, the system needs to be reinitialised for every minor optimisation iteration (where
the decision variables are optimised along a fixed search direction) and this means reinitialising using the initial
conditions and performing afull sensitivity integration each time. The SSOptTR solver can simply use the steady-
state solution from the last minor iteration to reinitialise the problem and then perform the sensitivity evaluation,
thus avoiding the more complex initialisation and sensitivity integration. This behaviour can be controlled using
the following Solution Parameter:

"M NLPSol ver" := "SSOpt TR' [
"Ti meRel axationlnitial Conditions" := "NMAJOR"

]

The three possible values are

e | NI TI AL: al reinitialisations are performed using theinitial conditions and initial values (PRESET) specified
in the Process;

* MAJOR (default): reinitialisations are performed using the solution of the last successful major iteration as the
initial guess (each major iteration determines a new search direction for the decision variables);

* M NOR: reinitialisations are performed using the solution of the last successful minor iteration as the initial
guess.

Although the reinitialisation strategies outlined above can significantly reduce the solution time of steady-state
optimisation problems, there may be cases where the integration to obtain steady-state during the initial iteration
is difficult and time consuming. This behaviour can occur if there are Selector Variables in the Model and these
switch many times during the integration from theinitial condition to the steady state. In such cases, the expensive
initial integration can be bypassed by using Saved Variable Sets to specify the steady-state solution, thus further
reducing the solution time. A Saved Variables Set can be specified for use in the optimisation by including the
following command:

RESTORE "Fi | ename"

whereFi | ename isthe name of a Saved Variable Set. It isalso possible to specify more than one Saved Variable
Set: this can be done by including several RESTORE commands and/or by providing alist of Saved Variable Sets
to asingle RESTORE command. For example:

RESTORE "Fil enanel", "Fil enane2", "Fil ename3"

The Saved Variable Sets may also be specified using a ComboBox in the Optimisation entity. Thiswill contain all
of the Saved Variable Setsin the Project and one can select one of them for use in the steady-state optimisation.
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Figure 2.4. Selecting a Saved Variable Set for usein a steady-state optimisation
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The Saved Variable Set can be selected by using the mouse or by typing in the name in the ComboBox (where
CTRL +space may be used to autocomplete the selection).

During initial iteration, the SSOptTR solver will first initialise the system using the initial conditions specified in
the Process. Once compl ete, the RESTORE will be performed: al differential and Selector Variablesin the system
that are present in the SavedV ariableSet will be restored and the system reinitialised. Thiswill be used astheinitial
point of the time trajectory used for the steady-state optimisation. When performing mixed integer optimisation,
this procedureis applied only to theinitia relaxed NLP problem.
To summarise, there are two ways to perform a steady-state optimisation:
« If the model solves quickly and is robust using the STEADY _STATE initial condition, then

« perform a Point optimisation by specifying

OPTI M SATI ON_TYPE
PO NT

in the Optimisation entity, omitting the HORI ZON and | NTERVALS sections and do not use the SSOptTR
solver;

» otherwise,
« perform a Steady-State optimisation by specifying

OPTI M SATI ON_TYPE
STEADY_STATE

in the Optimisation entity, omitting the HORI ZONand | NTERVALS sections and using the SSOptTR solver.
Specify the horizon required for steady state to bereached usingthe Ti meRel axat i onHor i zon Solution
Parameter of the SSOptTR solver.
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Running optimisation problems in gPROMS

As explained in: specifying dynamic optimisation problems, before an optimisation problem can be executed, it
must be specified completely in agPROMS project that contains:

* oneor more Model entities;
¢ aProcess entity named, for example, ppp; and
¢ an Optimisation entity named ppp.
In order to run the optimisation problem:
1. Select the Optimisation entity in the g°PROM S project tree.
2. Either:
a. pull down the Activities menu from the top toolbar and select Optimise;
b. left click on the optimise button on the toolbar below.
3. If there are any syntactical, cross-referencing mistakes etc. these will be detected. Otherwise, the gRMS and

execution windows are opened by g°PROMS, the optimisation run starts and output is directed to the screen
of the execution window.

Figure 2.5. Executing an optimisation run via the Activities menu.
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Figure 2.6. Executing an optimisation run via the Optimisation button.
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Results of the optimisation run

The execution of an optimisation run will generate five filesin the Results folder of the Case:
* PPP

e PPP.out

PPP.SCHEDULE

PPP_SVS
* PPP.point

where PPP isthe name (in capitals) of the optimisation entity that has been executed to produce these results (cf.
running optimisation problems).

The comprehensive optimisation report file

Double-clicking on the report entry, PPP, in the Case tree causes a report window to appear in the main window,
see the figure below. The report, presented in HTML format, includes:

* atable of contents that allows quick access to the information listed below via "hyperlinks";

 genera information such as the date and time of the execution of the activity, its final status and the value of
the objective function;

« information on the various optimisation decision variables (time horizon, control interval durations, and time-
invariant and time-varying controls), including the values of:

* theinitial guess used,

« thefina value obtained,
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« thelower and upper bounds,
« the Lagrange multipliers corresponding to the above bounds.

All active bounds are automatically highlighted.

Figure 2.7. Comprehensive optimisation report.
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The optimisation report file

The PPP.out file contains a summary report on the optimisation run in a simple text format, including:
* the outcome of the optimisation run;

« thefinal value of the objective function;

« thefinal value of the time horizon and the lengths of the time intervals;

« the final values of the time-invariant parameters, and the control-variable profiles; the latter are specified in
terms of a single value per interval for piecewise-constant controls, and a pair of values for piecewise-linear
controls (as usual, corresponding to the value of the control at the start and end of each interval); and

* thevaluesof variables onwhich end-point and/or interior-point constraintswhere specified, at the corresponding
final and/or interior-points.

Thefile also contains computational statistics on the performance of the numerical method.

A sample PPP.out fileislisted in the dynamic optimisation example at the end of this guide.

The SCHEDULE file and the Saved Variable Set

The PPP.Schedule presents the most recent optimisation solution point in the form of a gPROMS Schedule. A
sample PPP.SCHEDULE fileis listed in the dynamic optimisation example at the end of this guide.

The Schedule file can be used to reproduce the detailed results of the optimisation by carrying out a simulation
activity within gPROMS. This provides you access to the full facilities of the gPROM S Results Management.

Once the final solution of an optimisation problem is obtained, gPROMS creates a Saved Variable Set from the
initialisation of this point. The Saved Variable Set is called PPP_SVS and is used in the SCHEDULE to restore
the exact conditions at the final point.
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In order to do this:
1. Paste the contents of the Schedule file into the relevant Process entity of your gPROMS project.
2. Copy the generated Saved Variable Set from the result Case into the gPROMS project.

A optimal Process entity that contains these changes is shown for the batch reactor example. It is useful for you
to compare it with the original Process entity and the Schedule results file.

Note

The contents of the Schedule file does not always represent an optimal or even afeasible solution to the
problem: if the optimisation runisinterrupted by the user, or ends without finding a satisfactory solution,
the file will simply show the point last considered by gPROMS. Only if acomment at the top of the file
states the following:

# Final Optinmnisation Status : Opti mal Sol ution Found

should the results be relied upon as a (locally) optimal solution.

The point file

The PPP.point fileis generated at every iteration of the optimisation calculation. It contains the same information
asthe Schedule file, but in the format of an Optimisation entity (except that constraints are not reproduced). This
isuseful if thereisaneed to restart an optimisation after a system crash or other catastrophic event, or, following
a successful solution, to provide agood ‘initial guess for adightly altered optimisation problem.

A sample PPP.point file islisted in the dynamic optimisation example at the end of this guide.

Other features

The following apply to the current version of gPROMS:
» Theinitial conditions specified in the Process entity must be:
 equations of the form:
VariableName = Value ;

where VariableName is the full gPROMS pathname of a differential or algebraic variable, and Value is a
numerical value;

 or equations of the form:
$VariableName = Value;
* or the steady-state specification:

I NI TI AL
STEADY_STATE

» Many applications involve the optimisation of the initial values of some of the system variables. For instance,
it may bethat you want to determine the optimal initial amount of catalyst to be charged to a batch reactor. This
kind of requirement can easily be accommodated as follows:

« Inthe Modd entity containing the variable, z, whose initial value is to be optimised, introduce:

 an additional variable,z, of the sametypeas z

* an additional variable, ¢ z, of type NoType;
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« the additional equation:
0z =2z — 2
 Inthe Process entity,
 assign 7o to adefault value:

ASS| GN
Z0 := 1.0 ;

* et theinitial value of § z to zero:

I NI TI AL
\DeltaZz = 0.0 ;

« Inthe Optimisation entity, declare zy as atime-invariant parameter, specifying an initial guess and lower and
upper bounds for it.

Standard solvers for optimisation

There are two standard mathematical solvers for optimisation in gPROMS, namely CVP_SS and CVP_MS.
CVP_SS can solve optimisation problems with both discrete and continuous decision variables ("mixed integer
optimisation"). Both steady-state and dynamic problems are supported. CVP_MS can solve dynamic optimisation
problems with continuous decision variables.

For dynamic optimisation problems, both CVP_SS and CVP_MS are based on a control vector parameterisation
(CVP) approach which assumes that the time-varying control variables are piecewise-constant (or piecewise-
linear) functions of time over a specified number of control intervals. The precise values of the controls over
each interval, as well as the duration of the latter, are generally determined by the optimisation algorithm®*. As
the number of control variables is usually a small fraction of the total number of variables in the problem, the
optimisation agorithm has to deal only with a relatively small number of decisions, which makes the CVP
approach applicable to large problems.

Figure 2.8. Single-shooting algorithm
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The CVP_SS solver implements a"single-shooting" dynamic optimisation algorithm. Thisinvolvesthe following
steps (see the figure above):

1. the optimiser chooses the duration of each control interval, and the values of the control variables over it;

2. starting from theinitial point at timet=0 (shown asacrosson the vertical axisin the figure, the dynamic system
model is solved over the entire time horizon to determine the time-variation of all variables x(t) in the system,;

3. the above information is used to determine the values of>:

“In addition, as explained earlier in this guide, many dynamic optimisation problems involve time-invariant parameters that also have to be
chosen by the optimiser.

5In practice, the solution of the model also needs to determine the values of the partial derivatives (sensitivities) of the objective function and
constraints with respect to all the quantities specified by the optimiser.
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« the objective function to be optimised;
 any constraints that have to be satisfied by the optimisation;

4. based on the above, the optimiser revises the choices it made at the first step, and the procedure is repeated
until convergence to the optimum is achieved.

The term "single-shooting" arises from the second step in the above a gorithm which involves a single integration
of the dynamic model over the entire horizon.

Figure 2.9. Multiple-shooting algorithm
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The CVP_MS solver implements a "multiple-shooting” dynamic optimisation algorithm with the following steps
(see the figure above):

1. the optimiser chooses the duration of each control interval, the values of the control variables over it, and,
additionally, the values of the differential variables x(t) at the start of each control interval other than the first
one (shown as solid circlesin the figure);

2. for each control interval, starting from the initial point that is either known (for the first interval) or is chosen
by the optimiser (for all subseguent intervals), the dynamic system model is solved over this control interval
to determine the time-variation of all variables x(t) in the system;

3. the above information is used to determine the values of:
* the objective function to be optimised;
» any constraints that have to be satisfied by the optimisation;

« the discrepancies between the computed values of the variables x(t) at the end of each interval and the
corresponding values chosen by the optimiser at the start of the next interval;

4. based on the above, the optimiser revises the choices it made at the first step, and repeats the above procedure
until it obtains a point that:

* optimises the objective function;
» satisfiesal constraints;
» ensuresthat al differential variables x(t) are continuous at the control interval boundaries.

The "multiple-shooting” term reflects the fact that each control interval istreated independently at the second step
above.

Both solvers, by default, employ the DASOLV code (details in the Model Developer Guide) for the solution of
the underlying DAE problem and the computation of its sensitivities. In principle, this can be replaced by athird-
party solver with similar capabilities.

The choice between the CVP_SS and CVP_MS solvers for any dynamic optimisation problem depends primarily
on the number of optimisation decision parametersthat the algorithm hasto deal with in computing the sensitivities
of the model variables. In principle:
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e CVP_MS should normally be preferred for problems with many time-varying control variables and/or many
control intervals, but with relatively few differential ("state") variables;

» CVP_SSshould normally be preferred for large problems (potentially involving several hundreds or thousands
of differential ("state") variables) but with relatively few time-varying control variables and control intervals.

In practice, some experimentation may be required to determine the better algorithm for any particular application.

The DOsolver solution parameter may be used to change and/or configure the solver used for optimisation
activities. If this parameter is not specified, then the CVP_SS solver is used, with the default configuration. See
also: CVP_SS solver.

The CVP_SS solver

CVP_SScan solve steady-state and dynami ¢ optimi sati on problemswith both continuous and di screte optimisation
decision variables. The algorithmic parameters used by CVP_SSaong with their default values are shown below.
Thisisfollowed by a detailed description of each parameter.

"CVP_SSs* [ "DASol ver"
"M NLPSol ver"

" DASOLV";
" OAERAP" ] ;

DASolver - A quoted string specifying a differential-algebraic equation solver.

» The solver to be used for integrations of the model equations and their sensitivity equations at each iteration of
the optimisation. This can be either the standard DASOLYV solver or athird-party differential-algebraic equation
solver (see the gPROMS System Programmer Guide). The default isDASOLV.

This parameter can be followed by further specifications aimed at configuring the particular solver by setting
valuesto its own agorithmic parameters (see also: specifying solver-type algorithmic parametersin the Model
Developer Guide).

MINLPSolver - A quoted string specifying a mixed integer optimisation solver.

» The solver to be used for mixed integer optimisation problems. This can be either the standard OAERAP
solver or a third-party mixed integer optimisation solver (see the gPROMS System Programmer Guide).
For optimisation problems that do not involve any discrete decision variables, this can be any CAPE-OPEN
compliant solver that is capable of solving NLPs but not MINLPs, e.g. the standard NLP solver SRQPD. The
default is OAERAP.

This parameter can be followed by further specifications aimed at configuring the particular solver by setting
values to its own agorithmic parameters (see also: specifying solver-type algorithmic parameters in the Model
Developer Guide).

The OAERAP solver

The OAERAP solver employs an outer approximation (OA) algorithm for the solution of the MINLP. Asoutlined
in the algorithm below, this involves solving a sequence of simpler optimisation problems, including nonlinear
programs (NLPs) at steps 1 and 3 and mixed integer linear programs (MILPs) at step 2. The OAERAP code has
been designed so that it can make direct use of any CAPE-OPEN compliant NLP and MILP solvers (see the
gPROMS System Programmer Guide) without the need for any additional interfacing or modification.

Outline of the OAERAP algorithm for the solution of a MINLP problem (minimisation case)
Given initial guesses for all optimisation decision variables, both discrete (y) and continuous (x):

Step O: Initialisation
* Set the objective function of the best solution that is currently available, $°¢* := 00,

* Set the objective function of the best solution that may be obtained, ¢P == +oo
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Step 1: Solvefully relaxed problem

* Solve acontinuous optimisation problem (NLP) treating all discrete variables as continuous (i.e. allow them to
take any value between their lower and upper bounds) to determine optimal values® FR, Y FR of the optimisation
decision variables and of the objective function, ¢* .

« If above problemisinfeasible, terminate: original problem isinfeasible as posed.

« If al discrete optimisation decision variables have discrete values at the solution of the above problem, then
terminate: optimal solution of original problemis® FRy FR) with an objective function value of ¢FR.

Step 2: Solve master problem

» Construct amixed integer linear programming (MILP) problem which:

* involves appropriate linearisations of the objective function and the constraints carried out at the solutions
of al continuous optimisation problems solved so far,

« excludes al combinations of discrete variable values that have been considered at step 2 so far.

» Solve the above MILP problem to determine optimal values of both the continuous and discrete variables

zMP, yMP, and the corresponding value of the objective function ¢MP.

If the above problem isinfeasible or if ¢beSt - ¢MP < e max(1, |¢b63t|), then terminate: there are no more
combinations of discrete variables that can be usefully considered.
* 1f @ = +00, then original problem wasinfeasible.

best best)
b

* Otherwise, the optimal solution isZ " ¥°***) with a corresponding objective function value of $**.

e The MILP provides an improved bound on the best solution that may be obtained; therefore, update
¢LB — ¢MP

Step 3: Solve primal optimisation problem

 Fix al discrete optimisation decision variablesto their current values.

* Solve continuous optimisation problem (NLP) to determine:

* optimal value of objective function, ¢PR;

optimal values of continuous optimisation decision variables, 2.

* If the above NLP is feasible and T < #”*** then an improved solution to the original problem has been

found; record its details by setting 97t := ¢ F; zbest .= gPR; yhest .— PR

Step 4: Iterate

* Set the next set of values of the discrete optimisation decision variables to be considered yPR = yMP,

* Repeat from step 2.

The OAERAP solver also includes an equality relaxation (ER) scheme for handling equality constraints. It should
be emphasised that, in the case of optimisation problems defined in gPROMS, this relaxation is applied only to
any ENDPOINT_EQUALITY constraints that may appear in the Optimisation Entity.

The algorithm described above is guaranteed to obtain the globally optimal solution to the optimisation problem
posed only if the latter is convex. This is unlikely to be the case in many problems of engineering interest.
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An augmented penalty (AP) strategy is employed in order to increase the probability of a global solution being
obtained.

The algorithmic parameters used by OAERAP aong with their default values are shown below. Thisis followed
by a detailed description of each parameter.

" QAERAP" ["M LPSol ver" = "LPSCOLVE",
"NLPSol ver" = " SRQPD',
"Maxlterations" = 10000,
"NLPSubPr obl enl ni ti al Guesses" := "M LPMast er Probl enf',
"Optim sationTol erance” = 1. OE- 4,
" Qut put Level " = 0]

MILPSolver - A quoted string specifying a mixed integer linear programming solver.

» Specifiesa CAPE-OPEN compliant solver to be used for the solution of the mixed integer linear programming
(MILP) problems at step 2 of the algorithm described above.

NLPSolver - A quoted string specifying a nonlinear programming solver.

» Specifies a CAPE-OPEN compliant solver to be used for the solution of the nonlinear programming (NLP)
problems at steps 1 and 3 of the algorithm described above.

Maxlterations - An integer in the range [1, 100000].

* The maximum number of iterations involving step 2-4 of the algorithm described above. Thisis essentialy the
maximum number of distinct alternatives to be considered by the algorithm

NL PSubProblemlnitial Guesses - either "MILPMasterProblem™ or "FullyRelaxedNLP"
» Determines the source of initial guesses for the NLP Primal Optimisation.

The OAERAP agorithm employs two methods of obtaining initial guesses for the NLP Primal Problems (step
3 above).

The first is to use the solution of the fully-relaxed problem (step 1) as initial guesses for the solution of the
primal problem (step 3) at each iteration. To use this method, specify "NLPSubProbleminitial Guesses® :=
"FullyRelaxedNLP".

An alternative approach is to use the solution of the MILP master problem, at the current iteration, to
provide the initial guesses for the NLP primal problem. This is the default method, specified by setting
"NLPSubProblemlnitial Guesses" := "MILPMasterProblem".

The method that will be most effective will depend on the problem being solved. One advantage of obtaining
initial guesses from the MILP master problem is that because the discrete variables in the NLP problem will
be set to the values in the solution of the MILP, the values of the continuous variables will be consistent with
the discrete ones and so should provide a good initial guess for the NLP problem. A common example of this
behaviour is process synthesis problems, where binary variables can be used to represent the existance of a
processin aflowsheet. If the solution of an MILP impliesthat aunit does not exist, then the MILP of step 2 will
force some related continuous variables (e.g. the flows through these units) to be zero and these are, of course,
excellent initial guesses for the NLP problem (by contrast, these might not be zero in the solution of the fully-
relaxed NLP). However, if the problem is highly non-linear, then the solution of the linearised equationsin the
MILP may not be such a good initial guess for the NLP. In these cases, it may be better to use the solution of
the relaxed NLP as the initial guess for each NLP primal problem.

OptimisationTolerance - A real number in the range [0.0, 1.0].
» The optimisation tolerance € used in the termination criterion at step 2 of the algorithm described above.
OutputLevel - An integer in therange [-1, O].

» The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:
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-1 (None)
0 Solution of fully relaxed point,

solution of master problem,
solution of primal optimisation problem,

final solution

The SRQPD solver

The SRQPD solver employs a sequential quadratic programming (SQP) method for the solution of the nonlinear
programming (NLP) problem. The algorithmic parameters used by SRQPD aong with their default values are
shown below. Thisisfollowed by a detailed description of each parameter.

"SRQPD' [
"ConvergenceCriterion” = "I nmprovedEsti nat eBased",
"Handl eDi screteVari abl es” = FALSE,
"I nitial Hessi an” = 0,
"Initial Li neSearchSt epLength” := 1.0,
" MaxFun" = 10000,
" Maxi munii neSear chSt eps” = 20,
"MaxLi neSear chSt epLengt h" = 1.0,
"M ni nunii neSear chSt epLength" : = 1. 0E-5,
"Nol nmpr ovenent Tol er ance" = 1. 0E- 12,
"OptinisationTol erance” = 0. 0010,
" CQut put Level " = 0,
" Scal i ng" =0
]
ConvergenceCriterion - Either "ImprovedEstimateBased" or "OptimalityBased"; default
"ImprovedEstimateBased".
» The"ImprovedEstimateBased" convergence criterion is:
b
a-+ 1 <eé&g
where;
meq m n
a= Z |ci| + Z max(0, —¢;) + Z max (0, (mf —z;)(z; — m?))
=1 i=meq+1 7=1 ;

m n
b= |VofTd| + Z | Aici| + Z |pi| max (O, (m]L —zj)(z; — mgj))

i=1 i=1 ;
#, is the optimisation tolerance given by the Solution Parameter OptimisationTolerance;
f isthe objective function;

cisthe constraint vector (right-hand side);

meq is the number of equality constraints;

misthe total number of constraints;

nisthe size of the variable vector x (i.e. the number of variables);
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ok U .
7 and™J arethelower and upper bounds of variable x;;

d isthe vector of correctionsto x (i.e. the change in x during the current step);
Ajisthe Lagrange multiplier that corresponds to the equality constraint imposed on variable x;;

K3 isthe Lagrange multiplier that corresponds to the bound constraints imposed on variable X;.

» The"OptimalityBased" convergence criterion uses two tolerances: #,, specified by the OptimisationTolerance
Solution Parameter and #;, specified by Nolmprovement Tolerance. Given the following definitions:

meq m n
T = Z lei| + Z max(0, —c¢;) + Z max (0, (33][’ —z;)(z; — mgj))
1=1 i=meg+1 7=1 ;

k k—1 . . .
T2a = |f —f | where k is the current iteration number;

Top = max(dz;) _ _ _
J , Where dx; isthe step calculated for x; in the latest line-search step;

T3 = max |6L|
3= 7 3:12]' .

m n
=Y |Ncil + Y il max (0, (& — 25)(z; — <))

m n
L(z) = f(z) + > Aiki(z) + > pd (x5 — 2¥) + ph(af — z;)
=1 3=1 is the Lagrange
function,

Ai the Lagrange multipliers for the equality and inequality constraints
hi(x) and and the Lagrange multipliers for the upper and lower bound constraints;
the following tests are applied:

At the end of each mgjor iteration: | 71 + 73 + 74 < €o, t hen terminate due to optimality;

Else if T2a <€ and 71 < €, then terminate due to no-
improvement in the objective function.

Attheend of each line-search step: | f #2 < # and #; < #,, t hen terminate due to no-improvement in the
optimisation variables;

El se if #x < #,t hen terminate dueto failureto find afeasible point
within the non-improvement tolerance.

HandleDiscreteVariables - TRUE or FALSE; default FALSE.

e This parameter determines whether the solver handles mixed-integer non-linear optimisation problems by
transforming discrete controls into continuous ones.

InitialHessian - An integer in the range [0, 2]; default O.
» By default, theinitial hessian matrix is assumed to be the identity matrix (InitialHessian := 0).

At present no other options are available but may be introduced in the future.
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Initial LineSearchStepLength - A real number in the range [10°°, 1.0]; default 1.0.

» Thelength of the line search step for the first optimisation iteration. An initial line search step length less than
1 is recommended when the initial approximation of the Hessian (i.e. identity matrix) is very different to the
actual valuesin the Hessian. This could result in avery large initial step and therefore several line search trials
before the optimiser finds a better point.

MaxFun - An integer in the range [0, 100000]; default 10000.

» Themaximum number of optimiser function evaluations(i.e. solutions of the underlying steady-state or dynamic
model) to perform before halting the solution process (if ho optimum has been found by that point).

MaximumLineSearchSteps - An integer in the range [1, 100]; default 20.

» The maximum number of line search steps in one optimisation iteration.
MaxLineSearchStepL ength - A real number in the range [10'10, 1.0]; default 1.

e The maximum length of aline search step.

MinimumLineSearchStepLength - A real number in the range [102°, 1.0]; default 10°°,
e The minimum length of aline search step.

NolmprovementTolerance - A real number in the range [10°, 1.0]; default 102,

* The solution tolerance for non-improving objective function or optimisation variables. Only used when
ConvergenceCriterion := "OptimalityBased" (see above).

OptimisationTolerance - A real number in the range[lO'zo, 1.0]; default 0.001.

» The solution tolerance for the optimisation. Convergence is deemed to occur when alinear combination of the
gradients of the Lagrangian function on one hand, and the violation of the constraints on the other, drops below
this tolerance. The convergence criterion used is specified by the ConvergenceCriterion parameter described
above.

OutputLevel - An integer in the range [-1, 4]; default O.

e The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

-1 (None)
0 Failed integrations and initialisations, optimisation
failure,

summary information from the SRQPD nonlinear
programming code,

final solution point and constraint values,

best available point after failure

1 Values of optimisation decision variables, objective
function and constraints in each major optimisation
iteration

2 Start and end times of each interval of integration,

optimisation decision variables and objective function
at each line search trial

3 Derivatives of abjective function and constraints

Scaling - An integer in the range [0, 3]; default O.
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e The form of scaling to be applied to the optimisation decision variables, including control variables, time-
invariant parameters, the length of the time horizon and the lengths of individua control intervals. These
decision variables may vary significantly in magnitude, which may adversely affect the performance of the
optimisation algorithms. Consequently, appropriate scaling of the optimisation decision variables is strongly
recommended®

The scaling performed is of the general mathematical form:

L — qj—C]'
q; = d;

where g isthe jth original optimisation decision variable and djisthe corresponding scaled decision variable.
The constants ¢j and d; are determined automatically depending on the value of Scaling, as described below:

» Scaling = 0: No scaling (default).
d; = 1,
¢; = 0.

» Scaling = 1: Scaling according to the ranges of the optimisation decision variables so that the scaled variables
vary between -1 and 1.

(q;_nax _ q;nin) ’

N~ N

( q;nax + q;rlin)
e Scaling = 2: Scaling according to the initial guesses of the optimisation variables.

{ g5 if |¢7| > e,

% (q;nax — q;-nin) otherwise

CjZO

0
where %7 istheinitial guess for the jth optimisation variable and € isa small constant (currently set at 10'8).

» Scaling = 3: Scaling according to the value and the gradients of the objective function $ at the initial guess.

1+]2(¢°) |82
, | 0% i 15g, g0 > &
oq;
d; = 7 140
% (q;-nax — q;-nin) otherwise

¢cg = 0

whereoisthevector of initial guesses of the optimisation decision variablesand € isasmall constant (currently
set at 10°9).

The CVP_MS solver

The agorithmic parameters used by CV P_I;/I S along with their default values are shown below. Thisis followed
W!Mﬁtmmm{@%f?&lg %ﬁg‘?@h@@% is the condition number estimate that is printed out at each iteration of the optimisation

calculation. It is recommended that scaling be undertaken for problems with condition numbers exceeding 10°.
“For full details, please consult the information at http://www.systemtechnik. tu-il menau.de/fg_opt/omuses/omuses. html
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" CVP_MB" [ "QutputLevel" = 0;
" MaxFun" = 10000;
" SQPM nAl pha" = 1E- 10;
" SQPHeLa" = "BFGS";
" SQPHeLaEps" = 1E- 10;
" SQPHeLaScal e" = TRUE;
" SQPHeLaEi genCtrl " = TRUE;
" SQPMaxIters” = 500;
" SQPMaxI nflters” = 10;
" SQ@Wat chdogSt art ™ = 10;
" SQ@PWat chdogCredi t™ = 0;
" SQ@Wat chdogLoggi ng” = FALSE;
" SQPSol ver ™ = "Powel | ";
" SQPQPSol ver ™ = "Franke";
" QPEps” = 1E- 10;
" QPMat Sol ver" = "RedSpBKP";
"QPMaxlters” = 250;
" Opt Tol " = 1E- 3;
“I nf Defaul t" = 1E10;
" NumSen" = FALSE;
" Set Bounds" = FALSE;
"NeedLagrangeMul tipliers" := FALSE;
" DASol ver" = "DASOLV'];

OutputLevel - Aninteger in the range [0, 4].

» The amount of information generated by the solver. The following table indicates the lowest level at which
different types of information are produced:

0 Failed integrations and initialisations, optimisation
failure,

summary information from the HQP nonlinear
programming code,

final solution point and constraint values,

best available point after failure

1 Vaues of optimisation decision variables, objective
function and constraints in each major optimisation
iteration

2 For each multiple-shooting interval in each major

optimisation iteration:
the values of the optimisation decision variables,

the values and derivatives of the matching conditions,
the constraints and the objective function.

MaxFun - An integer in the range [0, 100000].

» The maximum number of optimiser function evaluations (i.e. solutions of the underlying dynamic model) to
perform before halting the solution process (if no optimum has been found by that point).

SQPMinAlpha- A rea number in the range [0, 105].
» Lower limit for the step length in the line search of the sequential quadratic programming (SQP) sub-solver.

SQPHelLa- A quoted string.
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» The method to be used for constructing the approximation of the Hessian matrix of the Lagrangian. Permitted
values are;

* "BFGS": partitioned BFGS update with Powell's damping
» "DScale": numerical approximation with adiagonal matrix
SQPHeL aEps - A real number in the range [0, 10°].
€ parameter used in SQP algorithm, see the Omuses document.
SQPHel aScale - A boolean value.
» Use"DScale" approach to initialise Hessian rather than setting it to the identity matrix.
SQPHel aEigenCitrl - A boolean value.
» Control of positive definite Hessian blocks based on eigenvalues (only used with the BFGS method).
SQPMaxlters - Aninteger in the range [0, 100000].
» Total number of SQP iterations allowed.
SQPMaxInflters - An integer in the range [0, 200000].
* Number of infeasible SQP iterations (i.e. points where the integration fails) allowed before failure.
SQPWatchdogStart - An integer in the range [0, 200000].
* Iteration at which to start watchdog algorithm if using "Powell" algorithm (see SQPSolver parameter below).
SQPWatchdogCredit - An integer in the range [0, 100000].
» Number of "bad" iterations until backtracking and regular step are performed (0 means disable watchdog).
SQPWatchdogL ogging - A boolean vaue.
» Specifies whether watchdog log output should be produced.
SQPSolver - A quoted string.

* The type of sequential quadratic programming (SQP) algorithm to be used for the optimisation. Permitted
values:

* "Powell"
* "Schittkowski"
SQPQPSolver - A quoted string.

» Thetypeof quadratic programming (QP) solver to be used at each iteration of the optimisation. Permitted values
are.

* "Franke"
e "Mehrotra’
QPEps - A real number in the range [0, 10°].

» Thetolerance to which the quadratic programming sub-problems are to be solved.

31



Dynamic Optimisation in gPROMS

QPMatSolver - A quoted string.

e The matrix solver to use for the solution of the quadratic programming sub-problems in the optimisation.
Permitted values are (refer to Omuses document for details):

* "SpBKP'

* "RedSpBKP"
« "Spsc"

* "LQDOCP'

QPMaxlters - Aninteger in the range [0, 100000].

e Maximum number of QP iterationsto attempt.

OptToal - A real number intherange[0.0, 1.0].

» The solution tolerance for the optimisation.

InfDefault - A real number in the range [0, 10°7].

» Upper and lower bounds greater than this value in magnitude are treated as P00 (as appropriate).

NumSen - A boolean value.

* Specifies whether sensitivities should be calculated numerically -- i.e. by repeated "normal” integrations with
perturbed values-- rather than 'analytically', i.e. with aspecial sensitivity integration. Not recommended except
perhaps for large problems with very few parameters per interval.

DASolver - A quoted string specifying a differential-algebraic equation solver.

» The solver to be used for integrations of the model equations and their sensitivity equations at each stage and
each iteration of the optimisation. This can be either the standard DASOLYV solver or athird-party differential-
algebraic equation solver (see the gPROMS System Programmer Guide). The default is DASOLYV.

This parameter can be followed by further specifications aimed at configuring the particular solver by setting

values to its own algorithmic parameters (see also: specifying solver-type algorithmic parameters in the Model
Developer Guide).

Dynamic Optimisation Example

Here, an example of a dynamic optimisation is given using a batch-reactor Model.
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Project tree ReactorOpt.gPJ

Figure 2.10. Project treefor the dynamic optimisation example.
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E}ﬁ‘ ‘ariable Types
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- Holdup

- Mole_Fraction
(B NoType

- Pressure
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Variable Type entities in ReactorOpt.gPJ

Figure 2.11. Variable Type entitiesin the Reactor Opt project.
~loi x|

File Edit Wew Entity Activities Tools Window Help

UEE IO XEE9¢ L 63 Fb-0

E 4 Yariable Types (ReactorOpt) ;Iilll

Lower bound

Eﬁ‘ ReactorOpt
[H[5F Variable Types

Default value

Upper bound

W Enthalpy

{3 Enquilibrium 1.025

- Flow -1.0 0.14 10.0

% Holdup Haldup -10.0 100.0 1E7 | moles

(B Mole_Fraction Mole_Fraction -10.0 0.95 10.0|none

(B NoType MoType -1E3 100000.0 1E3

(B Pressure Pressure 1E-6 1.025 30000 mm_Hg

B SHoldup SHoldup -10.0 1000.0 1E7 | moles

@ Temperature Temperature 100.0 3810 &00.0| Celsius
=+ Madels snewz

Reactor

I'_—'}ﬁ‘ Processes

[ I} Optimize_Reactor
E}ﬁ‘ Optimisations

| Projects I Palettel Type defiritions | Properties |

Text contained within the Reactor Model entity

# Model of an externally cooled batch reactor: A+ B ->C+ D
#
# The reactor nodel takes into account mass and energy bal ances.
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a, b, rho AS ARRAY (NoConp) OF REAL
nu AS ARRAY (NoConp) OF REAL
A, E R DH AS REAL
Tr ef AS REAL

VARI ABLE
N, C h AS ARRAY (NoConp) OF NoType
HR Rate, V AS NoType
QR TR K, Fcw  AS NoType
Uacc, Tvi ol AS NoType
o] AS NoType

EQUATI ON

# Component material bal ance
$N = V * Rate * nu ;

# Definition of reaction rate
Rate = K* C(1)* C(2) ;

# Rat e constant
K=A *exp( - E/ (R*TR ) ;

# Energy bal ance
$HR = ( V* Rate * ( -DH) ) - @R ;

# Cooling load as a function of cooling water flowate
Q@R = 4200* 40 *Fcw ;

# Cumul ative cooling water consunption
$Uacc= Fcw ;

# Definition of total enthal py content of reactor
HR = sigma(N * h ) ;

# Pure component specific enthal pies

h=(a* (TR- Tref ) +( b* ( TR2 - Trefr2) 1/ 2) ) ;
# Relate nol ar concentrations Cto conponent hol dups N

V* C=N;

# Volunmetric holdup in reactor
V =sigm( N/ rho ) ;

# Path constraint
$Tviol = MAX(TR - 450,0)"2 ;

# Cbjective to be maxi m sed: value of product (3) - cooling water
hj = 2*N(3) - Uacc ;
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BatchReaction Model entity

Figure 2.12. BatchReaction Model entity for the dynamic optimisation example.

{2 gPROMS ModelBuilder 3.4.0 (ol ]

File Edit Wew Entity Activities Tools Window Help

ODE IQ XEEDE L e FP-0
= E I MODEL BatchReaction {ReactorDpt) =
E"%’__R-ia;wbplt : 1 PARAMETER
] e Trpes 2 NoComp A5 INTEGER
Enthalpry 3 a,b, rho, nu &5 ARRAY(NOConp) OF REAL
 Equilirium 4 Ai,E,R,DH A5 REAL
% Flow 5 Tref &5 REAL
% Holdup [
% Mole_Fraction 7 OUNIT
¥ MoType g Batch_Reactor A% Reactor
¥ Pressure g
¥ SHoldup 10 SET
% Temperature 11 MoComp := 4
Models 12 a 1= [150.0, 175.0, 200.0, 175.0 ]
(1 BatchReaction 13 b = [0.0, 0.0, 0.0, 0.0] :
.3 Reactor 14 rho = [10000.0,8000.0,11000.0,11000.0] ;
- 15 nu = [-1, -1, 1, 1] :
P » -1, 1, H
o) roresses 15 DH = -A0000.0
: [ﬁ& Optimize_Reactar
L 17 E 1= 19000.0
= Optimisations .
e 18 R = 8.314 |
----- {{E) OPTIMIZE_REACTOR g i e 7.oE-4
20 Tref = 296.0
21
18:24  |[INS]| u
| Prajects I Palettel Interfacel Topology  gPROMS language | Propertiesl

Text contained within the OPTIMISE_REACTOR
Process entity

UNIT
React AS Bat chReact i on

ASSI GN
# This will be overridden in the Optinisation entity
W THI N React . Bat ch_Reactor DO

FcW:= 0.0 ;
END
PRESET

REACT. BATCH_REACTOR. RATE = 7.28422E+00 ;
REACT. BATCH_REACTOR. HR = 6. 50000E+06 ;
REACT. BATCH_REACTOR. C(1) = 4. 44444E+03 ;
REACT. BATCH_REACTOR. C( 2) = 4. 44444E+03 ;
REACT. BATCH_REACTOR. C( 3) = 0. 00000E+00 ;
REACT. BATCH_REACTOR. C(4) = 0. 00000E+00 ;
REACT. BATCH_REACTOR. OBJ = 0. 00000E+00 ;
REACT. BATCH_REACTOR. H(1) = 6. 00000E+02 ;
REACT. BATCH_REACTOR. H( 2) = 7.00000E+02 ;
REACT. BATCH_REACTOR. H( 3) = 8. 00000E+02 ;
REACT. BATCH_REACTOR. H( 4) = 7.00000E+02 ;
REACT. BATCH_REACTOR. FCW = 0. 00000E+00 ;
REACT. BATCH_REACTOR. K = 3.68763E-07 ;
REACT. BATCH_REACTOR. QCR = 0. 00000E+00 ;
REACT. BATCH_REACTOR. V = 1. 12500E+00 ;

I NI TI AL
W THI N React . Bat ch_Reactor DO
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N(1) = 5000.0 ;
N( 2) = 5000.0 ;
N( 3) = 0.0 ;
N( 4) = 0.0 ;
TR = 300.0 ;
Uacc = 0.0 ;
Tviol = 0.0 ;
END
SCLUTI ONPARAMETERS
ABSCLUTEACCURACY := 1.0E-6 ;
REPORTI NG NTERVAL : = 100 ;
SCHEDULE
# This will be ignored by the dynam c optinisation
SEQUENCE
CONTI NUE FOR 2000
END

Optimisation entity (OPTIMISE_REACTOR)

Figure 2.13. Optimisation entity for the dynamic optimisation example.
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<@ Equilbrium 29 INTERWALS
< Flow 40 4
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W Mole_Fraction 42 250.0 : 50.0 : 350.0
(W NoType 43 250.0 : 50.0 : 350.0
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e SHoldup 45
(B Temperature 46 PIECEWISE_CONSTANT
557 Models 47 REACT. BATCH_REACTOR. FCW
(3 BatchReaction 48 INITIAL_PROFILE
..M Reactar 49 0.6 0.1 3.0
EH[J Processes g? gg : gi . gg
e b Optirize_Reactar =2 1.6 : 0'1 . 3'0
-7 Optimisations =5 T )

(@ oz ReACTOR 54 INTERIORPOINT

55 REACT.BATCH_REACTOR. TR

56 -1.0E30 : 400.0

57

58 ENDPOINT_INEQUALITY

58 REACT.BATCH_REACTOR. TR

60 310.0 @ 320.0

61

62 ENDPOINT_INEQUALTTY

63 REACT.BATCH_REACTOR. TWIOL
64 -1.0E30 @ 0.1

A5

A MAXIMISE

A7 REACT. BATCH_REACTOR. 0B] | |

i -
4 | 2
i1 Jng| |

| Projects I Palettel : Propertiesl

Sample optimisation report file
(OPTIMISE_REACTOR.out)

36



Dynamic Optimisation in gPROMS

gPROVS Dynamic Optim sation

gPROVS Process :
Final Optimsation Status :
nj ective Function Being Maxi m sed:

OPTI M ZE_REACTOR
Opt i mal Sol uti on Found
7642.78

Current Val ues of Optimsation Decision Variables
([*] denotes an active bound)

Deci sion Variabl e Type Val ue Lower Bound Upper Bound
Ti me horizon 1000 1000[ *] 1000[ *]
Control Interval # 1 249.718 50 350
Control Interval # 2 159.781 50 350
Control Interval # 3 288.055 50 350
Control Interval # 4 302. 446 50 350
1. REACT. BATCH REACTOR FCW ( pi ecewi se const ant)
Contro
Interval Type Val ue Lower Bound Upper Bound
#1 Continuous 0.1 0. 1] *] 3
# 2 Conti nuous 1.84372 0.1 3
# 3 Conti nuous 0.554775 0.1 3
# 4 Conti nuous 3 0.1 3[*]
Current Val ues of Constrained Variabl es
([*] denotes violation of constraint)
Constrai ned Vari abl e Type Ti me Val ue Lower Bound Upper Bound
REACT. BATCH_REACTOR. TR Interior O 300 - 1E+030 400
REACT. BATCH_REACTOR. TR Interior 249.718 394.578 - 1E+030 400
REACT. BATCH_REACTOR. TR Interior 409.499 397.018 - 1E+030 400
REACT. BATCH_REACTOR. TR Interior 697.554 398.378 - 1E+030 400
REACT. BATCH_REACTOR. TR Endpoi nt 1000 320 310 320[ *]
REACT. BATCH_REACTOR. TVI OL  Endpoint 1000 0.100812 - 1E+030 0.1[*]
Conput ational Statistics
Total CPU Tine 6. 84375 seconds
CVP_SS Optimser Statistics
CPU Ti ne 0. 015625 seconds (0.228311 % of t
Nurmber of M NLP Iterations 0
Nurmber of NLP Iterations 61
Nunber of NLP Line Search Steps 72
DASOLV Integrator Statistics
CPU Ti ne 5.23438 seconds (76.484018 % of
CPU Time Spent on State Integration Only 1.9375 seconds (37.014925 % of
16292 steps, 30038 residuals 0. 546875 seconds
4140 Jacobi ans 0. 109375 seconds
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CPU Tinme Spent on Sensitivity Integration Only
13674 steps, 37422 residuals
17198 Jacobi ans

Mean (Sensitivity+State)/(State) CPU Ratio

Sample gPROMS schedule file
(OPTIMISE_ REACTOR.SCHEDULE)

3.29688 seconds (62.985075 % of
0. 328125 seconds

0.5 seconds

2.70161

Z Schedul e generated by gOPT for process OPTI M ZE REACTOR
Z Final Optimsation Status . Optimal Solution Found
# hj ective Function Being Maxim sed: 7642.78
ZCHEDULE
SEQUENCE
PARALLEL

RESTORE " OPTI M ZE_REACTOR_SVS"
RESET
REACT. BATCH_REACTOR FCW : = 0. 1,
END
END
CONTI NUE FOR 249. 718

RESET

REACT. BATCH_REACTOR. FCW : = 1. 84372,
END
CONTI NUE FOR 159. 781
RESET

REACT. BATCH_REACTOR. FCW : = 0. 554775,
END
CONTI NUE FOR 288. 055

RESET

REACT. BATCH_REACTOR. FCW :

I
W

END

CONTI NUE FOR 302. 446
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END

Sample point file (OPTIMISE_REACTOR.point)

# .gOPT segnent generated by gOPT for process OPTI M ZE REACTOR
# at final solution.

HORI ZON

1000 . 1000 . 1000
| NTERVALS

4

249.718 50 . 350
159. 781 50 . 350
288. 055 50 . 350
302. 446 50 . 350

Pl ECEW SE_CONSTANT
REACT. BATCH_REACTCOR. FCW
I NI TI AL_PRCFI LE

0.1 : 0.1 3
1. 84372 0.1 3
0. 554775 0.1 3
3 0.1 3

Simulating the optimal solution within a Process

UNIT
React AS Bat chReact i on

ASSI GN
{ This was the previous ASSI GN section
# This will be overridden in the Optinisation entity
W THI N React . Bat ch_Reactor DO
Fcw:= 0.0 ;
END
}

# This is the new one using the first RESET statenent
# fromthe SCHEDULE file
REACT. BATCH_REACTOR. FCW = 1. 00000E- 01;

PRESET
REACT. BATCH_REACTOR RATE := 7.28422E+00 ;
REACT. BATCH_REACTCR. HR = 6. 50000E+06 ;
REACT. BATCH_REACTOR. C( 1) = 4. 44444E+08 ;
REACT. BATCH_REACTOR. C( 2) = 4. 44444E+08 ;
REACT. BATCH_REACTOR. C( 3) = 0. O0O000E+00 ;
REACT. BATCH_REACTOR. C( 4) = 0. O0O000E+00 ;
REACT. BATCH_REACTOR. OBJ = 0. O0O000E+00 ;
REACT. BATCH_REACTOR. H( 1) = 6. 00000E+02 ;
REACT. BATCH_REACTOR. H( 2) = 7. 00000E+02 ;
REACT. BATCH_REACTOR. H( 3) = 8. 00000E+02 ;
REACT. BATCH_REACTOR. H( 4) = 7. 00000E+02 ;
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REACT. BATCH_REACTOR. FCW
REACT. BATCH_REACTCR. K
REACT. BATCH_REACTOR. QCR
REACT. BATCH_REACTCR. V

0. O00O00E+00 ;
3. 68763E-07 ;
0. O00O00E+00 ;
1. 12500E+00 ;

I NI TI AL
W THI N React . Bat ch_React or DO
N( 1) = 5000.0 ;
N( 2) = 5000.0 ;
N( 3) = 0.0 ;
N( 4) = 0.0 ;
TR = 300.0 ;
Uacc = 0.0 ;
Tviol = 0.0 ;
END
SOLUTI ONPARANVETERS
ABSOLUTEACCURACY := 1.0E-6 ;
REPORTI NG NTERVAL : = 100 ;

{ This is the previous SCHEDULE

SCHEDULE

# This will be ignored by the dynam c optinisation

SEQUENCE

CONTI NUE FOR 2000

END
}
# This is the new one taken fromthe SCHEDULE results file
# Final Optimsation Status : Optimal Solution Found
# nj ective Function Being Maxim sed: 7642.78
#
SCHEDULE

SEQUENCE
PARALLEL

RESTORE " OPTI M ZE_REACTOR_SVS"
RESET
REACT. BATCH_REACTOR FCW : = 0. 1,
END
END
CONTI NUE FOR 249. 718
RESET
REACT. BATCH_REACTOR. FCW : = 1. 84372;
END

CONTI NUE FOR 159. 781
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RESET
REACT. BATCH_REACTOR. FCW : = 0. 554775,
END
CONTI NUE FOR 288. 055
RESET

REACT. BATCH_REACTOR. FCW :

I
W

END
CONTI NUE FOR 302. 446

END

Interpretation of screen output

The purpose here is to explain the detailed meaning of the screen output produced by gPROMS during
optimisation, which can be of value in determining whether the problem is unsatisfactorily posed, for example.

This output is essentially of four kinds. We will review these together with a brief explanation of each. The
exampl es below refer to when the single-shooting algorithm CVP_SSis chosen. Thisoutput isvery similar to that
when the multiple-shooting algorithm CVP_MS isinvoked.

1. Display of the solution point

Thisisindicated by aline of the type:

After 73 cycles, the solution point is:

A report isthen given of values of:

 thetimeinvariant parameters,

 thetimeinterval lengths and control values,

for the current solution point.

Notethat the SCHEDULE and point filesare updated at the sametimethat these values are written to the screen.
2. Output from theintegration

During optimisation, gPROMS repeatedly carries out integrations for a different choices of time invariant

parameters and controls. This computation, similar to the execution of a conventional gPROM S simulation,

will produce some output if the method parameter IPRINT is not set to zero. This may be of use if there are
problems with these integrations.

3. Report on constraint residuals
Following asuccessful simulation, g°PROM S outputs both the objective function value and areport on the status
of the constraints. The latter are marked with [*] if they are violated (for equality constraints, a violation is
indicated if the actual value differs from the desired one by more than one millionth of its magnitude).

4. Optimiser reports

Following a gradient evaluation, the optimiser will produce a report of thistype:
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No. of No. of Step hj ective Current Constr ai nt
Iterations Functi ons Length Functi on Accur acy Vi ol ati ons
18 63 1.587E-03 -7.473E+03  8.493E-02 5.684E-14

These values have the following meanings:

No. of Iterations: this refersto the number of full optimiser iterations, i.e. the number of gradient evaluations
used to determine new search directions.

No. of Functions: the total number of simulations carried out so far. Since the optimiser works by selecting a
search direction and then carrying out aline search along that direction, it generally evaluates the objective
function considerably more often than it evaluates its gradient.

Step Length: thisprovidesameasure of how much the optimiser isaltering the optimisation decision variables
between simulations.

Objective Function: the present objective function value, negated if a maximisation isin progress.

Current Accuracy: this shows how close the optimiser considers the current point is to optimality. When
this value falls below 10 (or the value supplied with the ACC keyword in the PARAMETERS entity), the
optimisation will report that the solution has been found, and terminate (after its output integration).

Constraint Violations a measure of the total constraint violation of the current point --- zero (or very small)
if the point isfeasible.

Finally, hereisan example of oneiteration's output for the problem OPTIMISE_REACTOR. Again, awide screen
format is needed.

Optimsation Iteration 10

Val ues and gradi ents of objective function and constraints to be eval uated
at the follow ng point:

Ti me Hori zon: 1. 00000E+03

Current Control Profiles

Durati on Control 1
Interval 1 3. 50000E+02 3. 83448E-01
Interval 2 3. 26555E+02 1. 48681E+00
Interval 3 1. 23949E+02 1. 99611E+00
Interval 4 1. 99496E+02 3. 00000E+00

Control 1 = REACT. BATCH REACTOR FCW

Vari abl e Type Lower Bound Upper Bound

REACT. BATCH REACTOR. TR Endpoi nt 3. 10000E+02 3. 20000E+02

REACT. BATCH_REACTOR. TVI OL Endpoi nt N A 1. 00000E- 01
No. of No. of Step hj ective Cur rent Const r ai nt

oj ective function and constraint residuals:
oj ective Function to be Maxi m sed: 7.48409E+03

Constraint Residuals: ([*] denotes violation)
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Iterations Functi ons Length Functi on Accur acy Vi ol ati ons
9 27 3.490E-03 -7.484E+03  8.236E-02 5.684E-14
Searching Along Optimsation Step..... ( 28)

After 37 cycles, the solution point is:
Time Horizon: 1. 00000E+03

Current Control Profiles

Duration Control 1
Interval 1 3. 50000E+02 1. 00000E- 01
Interval 2 5. 00000E+01 1. 35623E+00
Interval 3 2. 50000E+02 3. 00000E+00
Interval 4 3. 50000E+02 3. 00000E+00

Control 1 = REACT. BATCH REACTOR FCW

About to performa function eval uation.
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