GRAPH THEORY PACKAGE FOR Giac/Xcas

Reference manual

June 2018

DRAFT

Table of contents

1. Introduction 7
1.1. Overview 7
1.2. Notations used in this manual 7
2. Constructing graphs 9
2.1. General graphs 9
2.1.1. Creating undirected graphs 9
2.1.2. Creating directed graphs 10
2.1.3. Creating vertices 10
2.1.4. Creating edges and arcs 10
2.1.5. Creating paths and trails 11
2.1.6. Specifying adjacency or weight matrix 11
2.2. Promoting to directed and undirected graphs 12
2.2.1. Converting edges to pairs of arcs 12
2.2.2. Assigning weight matrix to an unweighted graph 12
2.3. Cycle and path graphs 12
2.3.1. Cycle graphs 12
2.3.2. Path graphs 13
2.3.3. Trails of edges 13
2.4. Complete graphs 13
2.4.1. Complete graphs with multiple vertex partitions 13
2.4.2. Complete trees 14
2.5. Sequence graphs 15
2.5.1. Creating graphs from degree sequences 15
2.5.2. Validating graphic sequences 15
2.6. Intersection graphs 15
2.6.1. Interval graphs 15
2.6.2. Kneser graphs 15
2.7. Special graphs 16
2.7.1. Hypercube graphs 16
2.7.2. Star graphs 17
2.7.3. Wheel graphs 17
2.7.4. Web graphs 17
2.7.5. Prism graphs 18
2.7.6. Antiprism graphs 18
2.7.7. Grid graphs 18
2.7.8. Sierpiński graphs 20
2.7.9. Generalized Petersen graphs 20
2.7.10. LCF graphs 21
2.8. Isomorphic copies of graphs 22
2.8.1. Creating an isomorphic copy of a graph 22
2.8.2. Permuting graph vertices 22
2.8.3. Relabeling graph vertices 22
2.9. Subgraphs 23
2.9.1. Extracting subgraphs 23
2.9.2. Induced subgraphs 23
2.9.3. Underlying graphs 24
2.10. Operations on graphs 24
2.10.1. Graph complement 24
2.10.2. Seidel switching 24
2.10.3. Transposing graphs 25
2.10.4. Union of graphs 25
2.10.5. Disjoint union of graphs 26
2.10.6. Joining two graphs 26
2.10.7. Power graphs 26
2.10.8. Graph products 27
2.10.9. Transitive closure graph 28
2.10.10. Line graph 30
2.10.11. Plane dual graph 30
2.11. Random graphs 31
2.11.1. Random general graphs 31
2.11.2. Random bipartite graphs 32
2.11.3. Random trees 32
2.11.4. Random planar graphs 33
2.11.5. Random regular graphs 34
2.11.6. Random tournaments 35
2.11.7. Random flow networks 35
2.11.8. Randomizing edge weights 35
3. Modifying graphs 37
3.1. Modifying vertices of a graph 37
3.1.1. Adding and removing single vertices 37
3.2. Modifying edges of a graph 37
3.2.1. Adding and removing single edges 37
3.2.2. Accessing and modifying edge weights 38
3.2.3. Contracting edges 38
3.2.4. Subdividing edges 39
3.3. Using attributes 40
3.3.1. Graph attributes 40
3.3.2. Vertex attributes 40
3.3.3. Edge attributes 41
4. IMPORT AND EXPORT 43
4.1. Importing graphs 43
4.1.1. Loading graphs from dot files 43
4.1.2. The dot file format overview 43
4.2. Exporting graphs 44
4.2.1. Saving graphs in dot format 44
4.2.2. Saving graph drawings in $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ format 44
5. Graph properties 47
5.1. Basic properties 47
5.1.1. Listing vertices and edges 47
5.1.2. Vertex degrees 47
5.1.3. Vertex adjacency 48
5.1.4. Edge incidence 49
5.2. Algebraic properties 50
5.2.1. Adjacency matrix 50
5.2.2. Weight matrix 51
5.2.3. Incidence matrix 51
5.2.4. Characteristic polynomial 52
5.2.5. Graph spectrum 53
5.2.6. Seidel spectrum 53
5.2.7. Integer graphs 54
5.3. Connectivity 54
5.3.1. Vertex connectivity 54
5.3.2. Connected and biconnected components 55
5.3.3. Graph rank 56
5.3.4. Articulation points 56
5.3.5. Strongly connected components 56
5.3.6. Edge connectivity 57
5.4. Trees 57
5.4.1. Tree graphs 57
5.4.2. Forest graphs 58
5.4.3. Height of a tree 58
5.4.4. Lowest common ancestor of a pair of nodes 58
5.5. Distance 59
5.5.1. Vertex distance 59
5.5.2. All-pairs vertex distance 59
5.5.3. Diameter of a graph 59
5.5.4. Girth of a graph 59
5.6. Acyclic graphs 60
5.6.1. Checking if a graph is acyclic 60
5.6.2. Topological sorting 60
5.6.3. st ordering 61
5.7. Vertex matching 61
5.7.1. Maximum matching 61
5.7.2. Maximum matching in bipartite graphs 62
5.8. Cliques 63
5.8.1. Clique graphs 63
5.8.2. Triangle-free graphs 63
5.8.3. Maximal cliques 63
5.8.4. Maximum clique 64
5.8.5. Minimum clique cover 65
5.9. Vertex coloring 66
5.9.1. Greedy coloring 66
5.9.2. Minimal coloring 66
5.9.3. Chromatic number 68
5.9.4. k-coloring 69
5.10. Edge coloring 70
6. Traversing graphs 71
6.1. Walks and tours 71
6.1.1. Eulerian graphs 71
6.1.2. Hamiltonian graphs 71
6.2. Optimal routing 71
6.2.1. Shortest paths in unweighted graphs 71
6.2.2. Cheapest paths in weighted graphs 72
6.2.3. Traveling salesman problem 72
6.3. Spanning trees 72
6.3.1. Constructing a spanning tree 72
6.3.2. Minimal spanning tree 72
6.3.3. Counting all spanning trees 72
7. Visualizing graphs 75
7.1. Drawing graphs by using various methods 75
7.1.1. Overview 75
7.1.2. Drawing disconnected graphs 75
7.1.3. Spring method 76
7.1.4. Drawing trees 78
7.1.5. Drawing planar graphs 79
7.1.6. Circular graph drawings 80
7.2. Custom vertex positions 81
7.2.1. Setting vertex positions 81
7.2.2. Generating vertex positions 81
7.3. Highlighting parts of a graph 82
7.3.1. Highlighting vertices 82
7.3.2. Highlighting edges and trails 83
7.3.3. Highlighting subgraphs 84
BIBLIOGRAPHY 85
Command Index 87

Chapter 1

InTRODUCTION

1.1. Overview

This document contains an overview of the graph theory commands built in the Giac/Xcas software, including the syntax, the detailed description and practical examples for each command.

1.2. Notations used in this manual

Chapter 2

Constructing graphs

2.1. GENERAL GRAPHS

The commands graph and digraph are used for constructing general graphs.

2.1.1. Creating undirected graphs

The command graph accepts between one and three mandatory arguments, each of them being one of the following structural elements of the resulting graph:

- the number or list of vertices (a vertex may be any atomic object, such as an integer, a symbol or a string); it must be the first argument if used,
- the set of edges (each edge is a list containing two vertices), a permutation, a trail of edges or a sequence of trails; it can be either the first or the second argument if used,
- the adjacency or weight matrix.

Additionally, some of the following options may be appended to the sequence of arguments:

- directed $=$ true or false,
- weighted $=$ true or false,
- color $=$ an integer or a list of integers representing color(s) of the vertices,
- coordinates $=$ a list of vertex 2 D or 3 D coordinates.

The graph command may also be called by passing a string, representing the name of a special graph, as its only argument. In that case the corresponding graph will be constructed and returned. The supported graphs and their names are listed below.

1. Clebsch graph: clebsch
2. Coxeter graph: coxeter
3. Desargues graph: desargues
4. Dodecahedral graph: dodecahedron
5. Dürer graph: durer
6. Dyck graph: dyck
7. Grinberg graph: grinberg
8. Grotzsch graph: grotzsch
9. Harries graph: harries
10. Harries-Wong graph: harries-wong
11. Heawood graph: heawood
12. Herschel graph: herschel
13. Icosahedral graph: icosahedron
14. Levi graph: levi
15. Ljubljana graph: ljubljana
16. McGee graph: mcgee
17. Möbius-Kantor graph: mobius-kantor
18. Nauru graph: nauru
19. Octahedral graph: octahedron
20. Pappus graph: pappus
21. Petersen graph: petersen
22. Robertson graph: robertson
23. Truncated icosahedral graph: soccerball
24. Shrikhande graph: shrikhande
25. Tetrahedral graph: tehtrahedron

2.1.2. Creating directed graphs

The digraph command is used for creating directed graphs, although it is also possible with the graph command by specifying the option directed=true. Actually, calling digraph is the same as calling graph with that option appended to the sequence of arguments. However, creating special graphs is not supported by digraph since they are all undirected. Edges in directed graphs are called arcs. Edges and arcs are different structures: an edge is represented by a two-element set containing its endpoints, while an arc is represented by the ordered pairs of its endpoints.

The following series of examples demonstrates the various possibilities when using graph and digraph commands.

2.1.3. Creating vertices

A graph consisting only of vertices and no edges can be created simply by providing the number of vertices or the list of vertex labels.

```
> graph(5)
```

an undirected unweighted graph with 5 vertices and 0 edges

```
> graph([a,b,c])
```

an undirected unweighted graph with 3 vertices and 0 edges

2.1.4. Creating edges and arcs

Edges/arcs must be specified inside a set so that it can be distinguished from a (adjacency or weight) matrix. If only a set of edges/arcs is specified, the vertices needed to establish these will be created automatically. Note that, when constructing a directed graph, the order of the vertices in an arc matters; in undirected graphs it is not meaningful.

```
> graph(%{[a,b],[b,c],[a,c]%})
```

an undirected unweighted graph with 3 vertices and 3 edges
Edge weights may also be specified.

```
> graph(%{[[a,b],2],[[b,c],2.3],[[c,a],3/2]%})
```

an undirected weighted graph with 3 vertices and 3 edges
If the graph contains isolated vertices (not connected to any other vertex) or a particular order of vertices is desired, the list of vertices has to be specified first.

```
> graph([d,b,c,a],%{[a,b],[b,c],[a,c]%})
```

an undirected unweighted graph with 4 vertices and 3 edges

2.1.5. Creating paths and trails

A directed graph can also be created from a list of n vertices and a permutation of order n. The resulting graph consists of a single directed path with the vertices ordered according to the permutation.

```
> graph([a,b,c,d],[1,2,3,0])
```

a directed unweighted graph with 4 vertices and 3 arcs
Alternatively, one may specify edges as a trail.

```
> digraph([a,b,c,d],trail(b,c,d,a))
```

a directed unweighted graph with 4 vertices and 3 arcs
Using trails is also possible when creating undirected graphs. Also, some vertices in a trail may be repeated, which is not allowed in a path.

```
> graph([a,b,c,d],trail(b,c,d,a,c))
```

an undirected unweighted graph with 4 vertices and 4 edges
There is also the possibility of specifying several trails in a sequence, which is useful for designing more complex graphs.

```
> graph(trail(1,2,3,4,2),trail(3,5,6,7,5,4))
```

an undirected unweighted graph with 7 vertices and 9 edges

2.1.6. Specifying adjacency or weight matrix

A graph can be created from a single square matrix $A=\left[a_{i j}\right]_{n}$ of order n. If it contains only ones and zeros and has zeros on its diagonal, it is assumed to be the adjacency matrix for the desired graph. Otherwise, if an element outside the set $\{0,1\}$ is encountered, it is assumed that the matrix of edge weights is passed as input, causing the resulting graph to be weighted accordingly. In each case, exactly n vertices will be created and i-th and j-th vertex will be connected iff $a_{i j} \neq 0$. If the matrix is symmetric, the resulting graph will be undirected, otherwise it will be directed.

```
> graph([[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]])
```

an undirected unweighted graph with 4 vertices and 3 edges

```
> graph([[0,1.0,2.3,0],[4,0,0,3.1],[0,0,0,0],[0,0,0,0]])
```

a directed weighted graph with 4 vertices and 4 arcs

List of vertex labels can be specified before the matrix.

```
> graph([a,b,c,d],[[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]])
```

an undirected unweighted graph with 4 vertices and 3 edges
When creating a weighted graph, one can first specify the list of n vertices and the set of edges, followed by a square matrix A of order n. Then for every edge $\{i, j\}$ or arc (i, j) the element $a_{i j}$ of A is assigned as its weight. Other elements of A are ignored.

```
> digraph([a,b,c],%{[a,b],[b,c],[a,c]%}, [[0,1,2], [3,0,4], [5,6,0]])
```

a directed weighted graph with 3 vertices and 3 arcs
When a special graph is desired, one just needs to pass its name to the graph command. An undirected unweighted graph will be returned.

```
> graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

2.2. Promoting to directed and undirected graphs

2.2.1. Converting edges to pairs of arcs

To promote an existing undirected graph to a directed one or an unweighted graph to a weighted one, use the commands make_directed and make_weighted, respectively.

The command make_directed is called with one or two arguments, an undirected graph $G(V$, $E)$ and optionally a square matrix of order $|V|$. Every edge $\{i, j\} \in E$ is replaced with the pair of arcs (i, j) and (j, i). If matrix A is specified, $a_{i j}$ and $a_{j i}$ are assigned as weights of these arcs, respectively. Thus a directed (and possibly weighted) graph is created and returned.

```
make_directed(cycle_graph(4))
```

C4: a directed unweighted graph with 4 vertices and 8 arcs

```
make_directed(cycle_graph(4), [[0, 0, 0, 1], [2,0,1,3], [0, 1, 0, 4], [5, 0, 4, 0]])
```

C4: a directed weighted graph with 4 vertices and 8 arcs

2.2.2. Assigning weight matrix to an unweighted graph

The command make_weighted accepts one or two arguments, an unweighted graph $G(V, E)$ and optionally a square matrix A of order $|V|$. If the matrix specification is omitted, a square matrix of ones is assumed. Then a copy of G is returned where each edge/arc $(i, j) \in E$ gets $a_{i j}$ assigned as its weight. If G is an undirected graph, it is assumed that A is symmetric.

```
> make_weighted(graph(%{[1,2],[2,3],[3,1]%}), [[0,2,3],[2,0,1],[3,1,0]])
```

an undirected weighted graph with 3 vertices and 3 edges

2.3. CyCle and path graphs

2.3.1. Cycle graphs

The command cycle_graph is used for constructing a cycle graph of arbitrary order.
cycle_graph accepts a positive integer n or a list of distinct vertices as its only argument and returns the graph consisting of a single cycle through the specified vertices in the given order. If n is specified it is assumed to be the desired number of vertices, in which case they will be created and labeled with the first n integers (starting from 0 in Xcas mode and from 1 in Maple mode). The resulting graph will be given the name Cn , for example C 4 for $n=4$.
> C5:=cycle_graph (5)
C5: an undirected unweighted graph with 5 vertices and 5 edges

```
> draw_graph(C5)
```



```
> cycle_graph(["a","b","c","d","e"])
```

C5: an undirected unweighted graph with 5 vertices and 5 edges

2.3.2. Path graphs

The command path_graph is used for constructing a path graph of arbitrary length.
path_graph accepts a positive integer n or a list of distinct vertices as its only argument and returns a graph consisting of a single path through the specified vertices in the given order. If n is specified it is assumed to be the desired number of vertices, in which case they will be created and labeled with the first n integers (starting from 0 in Xcas mode resp. from 1 in Maple mode).
Note that a path cannot intersect itself. Paths that are allowed to cross themselves are called trails (see the command trail).

```
> path_graph(5)
```

an undirected unweighted graph with 5 vertices and 4 edges

```
> path_graph(["a","b","c","d","e"])
```

an undirected unweighted graph with 5 vertices and 4 edges

2.3.3. Trails of edges

If the dummy command trail is called with a sequence of vertices as arguments, it returns the symbolic expression representing the trail of edges through the specified vertices. The resulting symbolic object is recognizable by graph and digraph commands. Note that a trail may cross itself (some vertices may be repeated in the given sequence).

```
> T:=trail(1, 2, 3,4,2):; graph(T)
```

Done, an undirected unweighted graph with 4 vertices and 4 edges

2.4. COMPLETE GRAPHS

2.4.1. Complete graphs with multiple vertex partitions

The command complete_graph is used for construction of complete (multipartite) graphs.

If complete_graph is called with a single argument, a positive integer n or a list of distinct vertices, it returns the complete graph with the specified vertices. If integer n is specified, it is assumed that it is the desired number of vertices and they will be created and labeled with the first n integers (starting from 0 in Xcas mode and from 1 in Maple mode).

If a sequence of positive integers $n_{1}, n_{2}, \ldots, n_{k}$ is passed as argument, complete_graph returns the complete multipartite graph with partitions of size $n_{1}, n_{2}, \ldots, n_{k}$.

```
> K5:=complete_graph(5)
```

an undirected unweighted graph with 5 vertices and 10 edges

```
draw_graph(K5)
```



```
> K3:=complete_graph([a,b,c])
```

an undirected unweighted graph with 3 vertices and 3 edges

```
> edges(K3)
```

$\{[a, b],[a, c],[b, c]\}$

```
> K33:=complete_graph(3,3)
```

an undirected unweighted graph with 6 vertices and 9 edges

```
> draw_graph(K33)
```


2.4.2. Complete trees

To construct the complete binary tree of depth n, use the command complete_binary_tree which accepts n (a positive integer) as its only argument.

```
> complete_binary_tree(2)
```

an undirected unweighted graph with 7 vertices and 6 edges
To construct the complete k-ary tree of the specified depth use the command complete_kary_tree. complete_kary_tree accepts k and n (positive integers) as its arguments and returns the complete k-ary tree of depth n. For example, to get a ternary tree with two levels, input:

```
> complete_kary_tree(3,2)
```

an undirected unweighted graph with 13 vertices and 12 edges

2.5. SEQUENCE GRAPHS

2.5.1. Creating graphs from degree sequences

The command sequence_graph is used for constructing the graph from its degree sequence.
sequence_graph accepts a list L of positive integers as its only argument and, if L represents a graphic sequence, the corresponding graph G with $|L|$ vertices is returned. If the argument is not a graphic sequence, an error is returned.

```
> sequence_graph([3,2,4,2,3,4,5,7])
```

an undirected unweighted graph with 8 vertices and 15 edges
The graph G is constructed in $O\left(|L|^{2} \log |L|\right)$ time by using the algorithm of Havel and Hakimi.

2.5.2. Validating graphic sequences

The command is_graphic_sequence is used to check whether a list of integers represents the degree sequence of some graph or not.
is_graphic_sequence accepts a list L of positive integers as its only argument and returns true if there exists a graph $G(V, E)$ with degree sequence $\{\operatorname{deg} v: v \in V\}$ equal to L and false otherwise. The algorithm, which has the complexity $O\left(|L|^{2}\right)$, is based on the theorem of Erdôs and Gallai.

```
> is_graphic_sequence([3,2,4,2,3,4,5,7])
```

true

2.6. INTERSECTION GRAPHS

2.6.1. Interval graphs

The command interval_graph is used for construction of interval graphs.
interval_graph accepts a sequence or list of real-line intervals as its argument and returns an undirected unweighted graph with these intervals as vertices (the string representations of the intervals are used as labels), each two of them being connected with an edge if and only if the corresponding intervals intersect.

```
G:=interval_graph(0..8,1..pi,exp(1)..20,7..18,11..14,17..24,23..25)
```

an undirected unweighted graph with 7 vertices and 10 edges

```
draw_graph(G)
```


2.6.2. Kneser graphs

The commands kneser_graph and odd_graph are used for construction of Kneser graphs.
kneser_graph accepts two positive integers $n \leq 20$ and k as its arguments and returns the Kneser graph $K(n, k)$. The latter is obtained by setting all k-subsets of a set of n elements as vertices and connecting each two of them if and only if the corresponding sets are disjoint. Therefore each Kneser graph is the complement of a certain intersection graph.

Kneser graphs can get exceedingly complex even for relatively small values of n and k. Note that the number of vertices in $K(n, k)$ is equal to $\binom{n}{k}$.

```
kneser_graph(5,2)
```

an undirected unweighted graph with 10 vertices and 15 edges

```
G:=kneser_graph (8,1)
```

an undirected unweighted graph with 8 vertices and 28 edges

```
draw_graph(G,spring,labels=false)
```


The command odd_graph is used for creating so-called odd graphs, which are Kneser graphs with parameters $n=2 d+1$ and $k=d$ for $d \geqslant 1$.
odd_graph accepts a positive integer $d \leq 8$ as its only argument and returns d-th odd graph $K(2 d+1, d)$. Note that the odd graphs with $d>8$ will not be constructed as they are too big to handle.

```
> odd_graph(3)
```

an undirected unweighted graph with 10 vertices and 15 edges

2.7. Special graphs

2.7.1. Hypercube graphs

The command hypercube_graph is used for creating hypercube graphs.
hypercube_graph accepts a positive integer n as its only argument and returns the hypercube graph of dimension n on 2^{n} vertices. The vertex labels are strings of binary digits of length n. Two vertices are joined by an edge if and only if their labels differ in exactly one character. The hypercube graph for $n=2$ is a square and for $n=3$ it is a cube.

```
> H:=hypercube_graph (3)
```

an undirected unweighted graph with 8 vertices and 12 edges

```
> draw_graph(H,planar)
```



```
> H:=hypercube_graph(5)
```

an undirected unweighted graph with 32 vertices and 80 edges

2.7.2. Star graphs

The command star_graph is used for creating star graphs.
star_graph accepts a positive integer n as its only argument and returns the star graph with $n+1$ vertices, which is equal to the complete bipartite graph complete_graph(1,n) i.e. a n-ary tree with one level.

```
> G:=star_graph(5)
```

an undirected unweighted graph with 6 vertices and 5 edges
> draw_graph (G)

2.7.3. Wheel graphs

The command wheel_graph is used for creating wheel graphs.
wheel_graph accepts a positive integer n as its only argument and returns the wheel graph with $n+1$ vertices.

```
> G:=wheel_graph (5)
```

an undirected unweighted graph with 6 vertices and 10 edges

```
> draw_graph(G)
```


2.7.4. Web graphs

The command web_graph is used for creating web graphs.
web_graph accepts two positive integers a and b as its arguments and returns the web graph with parameters a and b, namely the Cartesian product of cycle_graph(a) and path_graph(b).

```
> G:=web_graph (7,3)
```

an undirected unweighted graph with 21 vertices and 35 edges

```
draw_graph(G,labels=false)
```


2.7.5. Prism graphs

The command prism_graph is used for creating prism graphs.
prism_graph accepts a positive integer n as its only argument and returns the prism graph with parameter n, namely petersen_graph ($\mathrm{n}, 1$).

```
> G:=prism_graph(5)
```

an undirected unweighted graph with 10 vertices and 15 edges

```
draw_graph(G)
```


2.7.6. Antiprism graphs

The command antiprism_graph is used for creating antiprism graphs.
antiprism_graph accepts a positive integer n as its only argument and returns the antiprism graph with parameter n, which is constructed from two concentric cycles of n vertices by joining each vertex of the inner to two adjacent nodes of the outer cycle.

```
> G:=antiprism_graph(7)
```

an undirected unweighted graph with 14 vertices and 28 edges

```
> draw_graph(G)
```


2.7.7. Grid graphs

The command grid_graph resp. torus_grid_graph is used for creating rectangular resp. torus grid graphs.
grid_graph accepts two positive integers m and n as its arguments and returns the m by n grid on $m \cdot n$ vertices, namely the Cartesian product of path_graph (m) and path_graph (n).

```
> G:=grid_graph(15,20)
```

an undirected unweighted graph with 300 vertices and 565 edges

```
> draw_graph(G,spring)
```


Connecting vertices in the opposite corners of the generated grid yields an interesting new graph.

```
> G:=add_edge(G,[["14:0","0:19"],["0:0","14:19"]])
```

an undirected unweighted graph with 300 vertices and 567 edges

```
> draw_graph(G,plot3d)
```


In the following example, the Möbius strip is constructed by connecting the vertices in the oppposite sides of a narrow grid graph.

```
> G:=grid_graph(20,3)
```

an undirected unweighted graph with 60 vertices and 97 edges

```
> G:=add_edge(G,[["0:0","19:2"],["0:1","19:1"],["0:2", "19:0"]])
```

an undirected unweighted graph with 60 vertices and 100 edges

```
> draw_graph(G,plot3d,labels=false)
```


torus_grid_graph accepts two positive integers m and n as its arguments and returns the m by n torus grid on $m n$ vertices, namely the Cartesian product of cycle_graph(m) and cycle_graph(n).

```
> G:=torus_grid_graph (8,3)
```

an undirected unweighted graph with 24 vertices and 48 edges

```
> draw_graph(G,spring,labels=false)
```


2.7.8. Sierpiński graphs

The command sierpinski_graph is used for creating Sierpiński-type graphs S_{k}^{n} and $S T_{k}^{n}$ [9]. sierpinski_graph accepts two positive integers n and k as its arguments (and optionally the symbol triangle as the third argument) and returns the Sierpiński (triangle) graph with parameters n and k.

The Sierpiński triangle graph $S T_{k}^{n}$ is obtained by contracting all non-clique edges in S_{k}^{n}. To detect such edges the variant of the algorithm by Bron and Kerbosch, developed by Tomita et al. in [20], is used, which can be time consuming for $n>6$.

In particular, $S T_{3}^{n}$ is the well-known Sierpiński sieve ${ }^{2.1}$ graph of order n.

```
> S:=sierpinski_graph(4,3)
```

an undirected unweighted graph with 81 vertices and 120 edges

```
> draw_graph(S,spring)
```



```
> sierpinski_graph(4,3,triangle)
```

an undirected unweighted graph with 42 vertices and 81 edges

```
> sierpinski_graph(5,3,triangle)
```

an undirected unweighted graph with 123 vertices and 243 edges
A drawing of the graph produced by the last command line is shown in Figure 4.1.

2.7.9. Generalized Petersen graphs

The command petersen_graph is used for creating generalized Petersen graphs $P(n, k)$.
petersen_graph accepts two arguments, n and k (positive integers). The second argument may be omitted, in which case $k=2$ is assumed. The graph $P(n, k)$, which is returned, is a connected cubic graph consisting of -in Schläfli notation-an inner star polygon $\{n, k\}$ and an outer regular polygon $\{n\}$ such that the n pairs of corresponding vertices in inner and outer polygons are connected with edges. For $k=1$ the prism graph of order n is obtained.
The well-known Petersen graph is equal to the generalized Petersen graph $P(5,2)$. It can also be constructed by calling graph("petersen").

[^0]```
> draw_graph(graph("petersen"))
```



To obtain the dodecahedral graph $P(10,2)$, input:

```
> petersen_graph(10)
```

an undirected unweighted graph with 20 vertices and 30 edges
To obtain Möbius-Kantor graph $P(8,3)$, input:

```
> G:=petersen_graph (8,3)
```

an undirected unweighted graph with 16 vertices and 24 edges

```
draw_graph(G)
```



Note that Desargues, Dürer and Nauru graphs are also generalized Petersen graphs $P(10,3), P(6$, $2)$ and $P(12,5)$, respectively.

### 2.7.10. LCF graphs

The command lcf_graph is used for constructing a cubic Hamiltonian graph from its LCF notation ${ }^{2.2}$.
lcf_graph takes one or two arguments, a list $L$ of nonzero integers, called jumps, and optionally a positive integer $n$, called exponent (by default, $n=1$ ). The command returns the graph on $n|L|$ vertices obtained by iterating the sequence of jumps $n$ times.
For example, the following command line creates the Frucht graph.

```
> F:=lcf_graph([-5,-2, -4,2,5,-2,2,5,-2, -5,4,2])
```

an undirected unweighted graph with 12 vertices and 18 edges

```
> draw_graph(F,planar)
```



[^1]The following command line constructs the truncated octahedral graph.

```
> G:=lcf_graph([3,-7,7, -3],6)
```

an undirected unweighted graph with 24 vertices and 36 edges

```
> draw_graph(G,planar,labels=false)
```



### 2.8. ISOMORPHIC COPIES OF GRAPHS

The commands isomorphic_copy, permute_vertices and relabel_vertices are used for constructing isomorphic copies of existing graphs.

### 2.8.1. Creating an isomorphic copy of a graph

The command isomorphic_copy accepts two arguments, a graph $G(V, E)$ and a permutation $\sigma$ of order $|V|$, and returns the copy of graph $G$ with vertices rearranged according to $\sigma$.

```
> G:=isomorphic_copy(path_graph([1,2,3,4,5]),randperm(5))
```

an undirected unweighted graph with 5 vertices and 4 edges

```
> vertices(G)
```

$$
[2,5,3,4,1]
$$

### 2.8.2. Permuting graph vertices

The command permute_vertices accepts two arguments, a graph $G(V, E)$ and a list $L$ of length $|V|$ containing all vertices from $V$ in a certain order, and returns a copy of $G$ with vertices rearranged as specified by $L$.

```
> G:=permute_vertices(path_graph([a,b,c,d]),[b,d,a,c])
```

an undirected unweighted graph with 4 vertices and 3 edges

```
> vertices(G)
```

$$
[b, d, a, c]
$$

### 2.8.3. Relabeling graph vertices

The command relabel_vertices accepts two arguments, a graph $G(V, E)$ and a list $L$ of vertex labels, and returns the copy of $G$ with vertices relabeled with labels from $L$.

```
> P:=path_graph([1, 2, 3, 4])
```

an undirected unweighted graph with 4 vertices and 3 edges

```
> edges(P)
```

$$
\{[1,2],[2,3],[3,4]\}
$$

```
> G:=relabel_vertices(P,[a,b,c,d])
```

an undirected unweighted graph with 4 vertices and 3 edges

```
> edges(G)
```

$$
\{[a, b],[b, c],[c, d]\}
$$

### 2.9. SUBGRAPHS

### 2.9.1. Extracting subgraphs

To extract the subgraph of $G(V, E)$ formed by edges from $L \subset E$, use the command subgraph which accepts two arguments: $G$ and $L$.

```
> K5:=complete_graph(5)
```

an undirected unweighted graph with 5 vertices and 10 edges

```
> S:=subgraph(K5,[[1,2],[2,3],[3,4],[4,1]])
```

an undirected unweighted graph with 4 vertices and 4 edges

```
> draw_graph(highlight_subgraph(K5,S))
```



### 2.9.2. Induced subgraphs

To obtain the subgraph of $G$ induced by set of vertices $L \subset V$, use the command induced_subgraph.
induced_subgraph accepts two arguments $G$ and $L$ and returns the subgraph of $G$ formed by all edges in $E$ which have endpoints in $L$.

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> S:=induced_subgraph(G, [5,6,7,8,9])
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> draw_graph(highlight_subgraph(G,S))
```



### 2.9.3. Underlying graphs

For every graph $G(V, E)$ there is an undirected and unweighted graph $U\left(V, E^{\prime}\right)$, called the underlying graph of $G$, where $E^{\prime}$ is obtained from $E$ by dropping edge directions.
To construct $U$ use the command underlying_graph which accepts $G$ as its only argument. The result is obtained by copying $G$ and "forgetting" the directions of edges as well as their weights.

```
> G:=digraph(%{[[1, 2],6],[[2,3],4],[[3,1],5],[[3,2],7]%})
```

a directed weighted graph with 3 vertices and 4 arcs

```
> U:=underlying_graph(G)
```

an undirected unweighted graph with 3 vertices and 3 edges

```
> edges(U)
```

$\{[1,2],[1,3],[2,3]\}$

### 2.10. Operations on graphs

### 2.10.1. Graph complement

The command graph_complement is used for constructing complements of graphs. graph_complement accepts a graph $G(V, E)$ as its only argument and returns the complement $G^{c}\left(V, E^{c}\right)$ of $G$, where $E^{c}$ is the largest set containing only edges/arcs not present in $G$.

```
> C5:=cycle_graph(5)
```

C5: an undirected unweighted graph with 5 vertices and 5 edges

```
> draw_graph(C5)
```



```
> G:=graph_complement(C5)
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> draw_graph(G)
```



### 2.10.2. Seidel switching

The command seidel_switch is used for Seidel switching in graphs.
seidel_switch accepts two arguments, an undirected and unweighted graph $G(V, E)$ and a list of vertices $L \subset V$. The result is a copy of $G$ in which, for each vertex $v \in L$, its neighbors become its non-neighbors and vice versa.

```
> S:=seidel_switch(cycle_graph(5),[1,2])
```

an undirected unweighted graph with 5 vertices and 7 edges

```
> draw_graph(S)
```



### 2.10.3. Transposing graphs

The command reverse_graph is used for reversing arc directions in digraphs.
reverse_graph accepts a graph $G(V, E)$ as its only argument and returns the reverse graph $G^{T}(V$, $\left.E^{\prime}\right)$ of $G$ where $E^{\prime}=\{(j, i):(i, j) \in E\}$, i.e. returns the copy of $G$ with the directions of all edges reversed.
Note that reverse_graph is defined for both directed and undirected graphs, but gives meaningful results only for directed graphs.
$G^{T}$ is also called the transpose graph of $G$ because adjacency matrices of $G$ and $G^{T}$ are transposes of each other (hence the notation).

```
> G:=digraph(6, %{[1,2],[2,3],[2,4],[4,5]%})
```

a directed unweighted graph with 6 vertices and 4 arcs

```
> GT:=reverse_graph(G)
```

a directed unweighted graph with 6 vertices and 4 arcs

```
> edges(GT)
```

$$
\{[2,1],[3,2],[4,2],[5,4]\}
$$

### 2.10.4. Union of graphs

The command graph_union is used for constructing union of two or more graphs.
graph_union accepts a sequence of graphs $G_{k}\left(V_{k}, E_{k}\right)$ for $k=1,2, \ldots, n$ as its argument and returns the graph $G(V, E)$ where $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ and $E=E_{1} \cup E_{2} \cup \cdots \cup E_{k}$.

```
> G1:=graph([1, 2,3],%{[1,2],[2,3]%})
```

an undirected unweighted graph with 3 vertices and 2 edges

```
> G2:=graph([1,2,3],%{[3,1],[2,3]%})
```

an undirected unweighted graph with 3 vertices and 2 edges

```
> G:=graph_union(G1,G2)
```

an undirected unweighted graph with 3 vertices and 3 edges

```
> edges(G)
```

$$
\{[1,2],[1,3],[2,3]\}
$$

### 2.10.5. Disjoint union of graphs

To construct disjoint union of graphs use the command disjoint_union.
disjoint_union accepts a sequence of graphs $G_{k}\left(V_{k}, E_{k}\right)$ for $k=1,2, \ldots, n$ as its argument and returns the graph obtained by labeling all vertices with strings $\mathrm{k}: \mathrm{v}$ where $v \in V_{k}$ and all edges with strings $\mathrm{k}: \mathrm{e}$ where $e \in E_{k}$ and calling the graph_union command subsequently. As all vertices and edges are labeled differently, it follows $|V|=\sum_{k=1}^{n}\left|V_{k}\right|$ and $|E|=\sum_{k=1}^{n}\left|E_{k}\right|$.

```
> G:=disjoint_union(cycle_graph([1,2,3]),path_graph([1,2,3]))
```

an undirected unweighted graph with 6 vertices and 5 edges

```
> draw_graph(G)
```



### 2.10.6. Joining two graphs

The command graph_join is used for joining graphs.
graph_join accepts two graphs $G$ and $H$ as its arguments and returns the graph which is obtained by connecting all the vertices of $G$ to all vertices of $H$. The vertex labels in the resulting graph are strings of the form 1:u and 2:v where $u$ is a vertex in $G$ and $v$ is a vertex in $H$.

```
> G:=graph_join(path_graph(2),graph(3))
```

an undirected unweighted graph with 5 vertices and 7 edges

```
> draw_graph(G,spring)
```



### 2.10.7. Power graphs

The command graph_power is used for constructing the powers of a graph.
graph_power accepts two arguments, a graph $G(V, E)$ and a positive integer $k$, and returns the $k$-th power $G^{k}$ of $G$ with vertices $V$ such that $v, w \in V$ are connected with an edge if and only if there exists a path of length at most $k$ in $G$.
The graph $G^{k}$ is constructed from its adjacency matrix $A_{k}$ which is obtained by adding powers of the adjacency matrix $A$ of $G$ :

$$
A_{k}=\sum_{i=1}^{k} A^{k}
$$

The above sum is obtained by assigning $A_{k} \leftarrow A$ and repeating the instruction $A_{k} \leftarrow\left(A_{k}+I\right) A$ for $k-1$ times, so exactly $k$ matrix multiplications are required.

```
> G:=graph(trail(1,2,3,4,5))
```

an undirected unweighted graph with 5 vertices and 4 edges

```
> draw_graph(G,circle)
```


> P2:=graph_power (G,2)
an undirected unweighted graph with 5 vertices and 7 edges

```
> draw_graph(P2,circle)
```


> P3:=graph_power (G,3)
an undirected unweighted graph with 5 vertices and 9 edges

```
> draw_graph(P3,circle)
```



### 2.10.8. Graph products

There are two distinct operations for computing the product of two graphs: Cartesian product and tensor product. These operations are available in Giac as the commands cartesian_product and tensor_product, respectively.
The command cartesian_product accepts a sequence of graphs $G_{k}\left(V_{k}, E_{k}\right)$ for $k=1,2, \ldots, n$ as its argument and returns the Cartesian product $G_{1} \times G_{2} \times \cdots \times G_{n}$ of the input graphs. The Cartesian product $G(V, E)=G_{1} \times G_{2}$ is the graph with list of vertices $V=V_{1} \times V_{2}$, labeled with strings v1: v2 where $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, such that ( $\left.\mathrm{u} 1: \mathrm{v} 1, \mathrm{u} 2: \mathrm{v} 2\right) \in E$ if and only if $u_{1}$ is adjacent to $u_{2}$ and $v_{1}=v_{2}$ or $u_{1}=u_{2}$ and $v_{1}$ is adjacent to $v_{2}$.

```
> G1:=graph(trail(1,2,3,4,1,5))
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> draw_graph(G1,circle)
```



```
> G2:=star_graph(3)
```

an undirected unweighted graph with 4 vertices and 3 edges

```
> draw_graph(G2,circle=[1,2,3])
```



```
> G:=cartesian_product(G1,G2)
```

an undirected unweighted graph with 20 vertices and 35 edges

```
> draw_graph(G)
```



The command tensor_product accepts a sequence of graphs $G_{k}\left(V_{k}, E_{k}\right)$ for $k=1,2, \ldots, n$ as its argument and returns the tensor product $G_{1} \times G_{2} \times \cdots \times G_{n}$ of the input graphs. The tensor product $G(V, E)=G_{1} \times G_{2}$ is the graph with list of vertices $V=V_{1} \times V_{2}$, labeled with strings v1:v2 where $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, such that ( $\mathrm{u} 1: \mathrm{v} 1, \mathrm{u} 2: \mathrm{v} 2$ ) $\in E$ if and only if $u_{1}$ is adjacent to $u_{2}$ and $v_{1}$ is adjacent to $v_{2}$.

```
> T:=tensor_product(G1,G2)
```

an undirected unweighted graph with 20 vertices and 30 edges

```
draw_graph(T)
```



### 2.10.9. Transitive closure graph

The command transitive_closure is used for constructing the transitive closure graph of the given graph. Transitive closure of a (directed) graph $G(V, E)$ is the graph $T\left(V, E^{\prime}\right)$ in which two vertices $v, w \in V$ are connected by an edge (arc) $e=v w \in E^{\prime}$ if and only if there exists a (directed) path from $v$ to $w$ in $G$.
transitive_closure accepts one or two arguments, the input graph $G$ and optionally the option weighted=true (or simply weighted) or the option weighted=false (which is the default). The command returns the transitive closure $T$ of the input graph $G$. If $G$ is a digraph, then $T$ is also a digraph. When weighted=true is specified, the graph $T$ is weighted such that the weight of edge $v w \in E^{\prime}$ is equal to the length (or weight, if $G$ is weighted) of the shortest path from $v$ to $w$ in $G$.

The lengths/weights of the shortest paths are obtained by the command allpairs_distance if $G$ is weighted resp. the command vertex_distance if $G$ is unweighted. Therefore $T$ is constructed in at most $O\left(|V|^{3}\right)$ time if weighted=true resp. $O(|V||E|)$ time if weighted=false.

```
> G:=digraph([1,2,3,4,5,6],%{[1,2],[2,3],[2,4],[4,5],[3,5]%})
```

a directed unweighted graph with 6 vertices and 5 arcs

```
> draw_graph(G)
```


.6

## > T:=transitive_closure(G,weighted)

a directed weighted graph with 6 vertices and $9 \operatorname{arcs}$

```
> draw_graph(T)
```



6

## > G:=assign_edge_weights(G,1,99)

a directed weighted graph with 6 vertices and 5 arcs

```
> draw_graph(G)
```



6

```
> draw_graph(transitive_closure(G,weighted=true))
```



### 2.10.10. Line graph

The command line_graph is used for constructing the line graph of an undirected graph $G(V, E)$. line_graph accepts the input graph $G$ as its only argument and returns the line graph $L(G)$ with $|E|$ distinct vertices, one vertex for each edge in $E$. Two vertices $v_{1}$ and $v_{2}$ in $L(G)$ are adjacent if and only if the corresponding edges $e_{1}, e_{2} \in E$ have a common endpoint. The vertices in $L(G)$ are labeled with strings in form $\mathrm{v}-\mathrm{w}$, where $e=v w \in E$.
> K4:=complete_graph ([1, 2, 3, 4] )
an undirected unweighted graph with 4 vertices and 6 edges

```
> L:=line_graph(K4)
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(L,spring)
```



### 2.10.11. Plane dual graph

The command plane_dual is used for constructing the plane dual graph of an undirected biconnected planar graph.
plane_dual accepts one argument, the input graph $G(V, E)$ or the list $F$ of faces of a planar embedding of $G$, and returns the graph $H$ with faces of $G$ as its vertices in which two vertices are adjacent if and only if they share an edge as faces of $G$.
Note that the concept of dual graph is usually defined for multigraphs ${ }^{2.3}$. By the strict definition, every planar multigraph has the corresponding dual multigraph; moreover, the dual of the latter is equal to the former. Since Giac does not support multigraphs, a simplified definition suitable for simple graphs is used.
The algorithm runs in $O\left(|V|^{2}\right)$ time.

```
> H:=hypercube_graph(3)
```

an undirected unweighted graph with 8 vertices and 12 edges

```
draw_graph(H,spring)
```



The cube has six faces, hence its plane dual graph $D$ has six vertices. Also, every face obviously shares an edge with exactly four other faces, so the degree of each vertex in $D$ is equal to 4 .

```
> D:=plane_dual(H)
```

[^2]an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(D,spring)
```



A graph isomorphic to $D$ is obtained when passing a list of faces of $H$ to the plane_dual command. The order of vertices is determined by the order of faces.

```
> is_planar(H,F)
```


## Done, true

```
> plane_dual(F)
```

an undirected unweighted graph with 6 vertices and 12 edges

### 2.11. RANDOM GRAPHS

### 2.11.1. Random general graphs

The commands random_graph and random_digraph are used for generating general graphs at random.
random_graph and random_digraph both accept two arguments. The first argument is a positive integer $n$ or a list of labels $L$ of length $n$. The second argument is a positive real number $p<1$ or a positive integer $m$. The command returns a random (di)graph on $n$ vertices (using elements of $L$ as vertex labels) in which each edge/arc is inserted with probability $p$ or which contains exactly $m$ edges/arcs chosen at random.

```
> G:=random_digraph(10,0.2)
```

a directed unweighted graph with 10 vertices and 15 arcs

```
> draw_graph(G,spring,labels=false)
```



```
> G:=random_graph(1000,0.01)
```

an undirected unweighted graph with 1000 vertices and 4922 edges

```
> is_connected(G)
```

true
> is_biconnected (G)

## false

```
> G:=random_graph(100,99)
```

    an undirected unweighted graph with 100 vertices and 99 edges
    > is_tree (G)
false

```
> draw_graph(G,spring)
```



### 2.11.2. Random bipartite graphs

The command random_bipartite_graph is used for generating bipartite graphs at random.
random_bipartite_graph accepts two arguments. The first argument is either a positive integer $n$ or a list of two positive integers $a$ and $b$. The second argument is either a positive real number $p<1$ or a positive integer $m$. The command returns a random bipartite graph on $n$ vertices (or with two partitions of sizes $a$ and $b$ ) in which each possible edge is present with probability $p$ (or $m$ edges are inserted at random).

```
> G:=random_bipartite_graph([3,4],0.5)
```

an undirected unweighted graph with 7 vertices and 8 edges

```
> draw_graph(G)
```



```
G:=random_bipartite_graph (30,60)
```

an undirected unweighted graph with 30 vertices and 60 edges

### 2.11.3. Random trees

The command random_tree is used for generating tree graphs uniformly at random. random_tree accepts a positive integer $n$ as its only argument and returns a random tree generated on $n$ nodes (i.e. inserts $n-1$ edges in the initially empty graph).

```
> T:=random_tree(30)
```

an undirected unweighted graph with 30 vertices and 29 edges

```
draw_graph(T,labels=false)
```



### 2.11.4. Random planar graphs

The command random_planar_graph is used for generating random planar graphs, controlling edge density and vertex connectivity.
random_planar_graph accepts two or three arguments, a positive integer $n$ (or a list $L$ of length $n$ ), a positive real number $p<1$ and optionally an integer $k \in\{0,1,2,3\}$ (by default, $k=1$ ). The command returns a random $k$-connected planar graph on $n$ vertices (using elements of $L$ as vertex labels).
The result is obtained by first generating a random maximal planar graph and then attempting to remove each edge with probability $p$, maintaining the $k$-connectivity of the graph (if $k=0$, the graph may be disconnected). The running time is $O(|V|)$ if $k=0, O\left(|V|^{2}\right)$ if $k \in\{1,2\}$ and $O\left(|V|^{3}\right)$ if $k=3$.

The following command line generates a biconnected planar graph.

```
> G:=random_planar_graph(20,0.8,2)
```

an undirected unweighted graph with 20 vertices and 25 edges

```
> draw_graph(G,planar,labels=false)
```



The command line below generates a triconnected planar graph.

```
> G:=random_planar_graph(15,0.9,3)
```

an undirected unweighted graph with 15 vertices and 25 edges

```
> draw_graph(G,planar,labels=false)
```



The next command line generates a disconnected planar graph with high probability.

```
> G:=random_planar_graph (30,0.9,0)
```

an undirected unweighted graph with 30 vertices and 23 edges

```
> is_forest(G)
```

true

```
> draw_graph(G,spring,labels=false)
```



By default, a connected planar graph is generated, like in the following example.

```
> G:=random_planar_graph(15,0.618)
an undirected unweighted graph with 15 vertices and 19 edges
```

```
> is connected(G)
```

> is connected(G)
> is_biconnected(G)
false
> articulation_points(G)

```
\[
[1,2,4,10,11]
\]
```

> draw_graph(G,planar)

```


\subsection*{2.11.5. Random regular graphs}

The command random_regular_graph is used for generating random \(d\)-regular graphs on a certain set of vertices, using the algorithm presented in [17] \({ }^{2.4}\).
random_regular_graph accepts two mandatory arguments, a positive integer \(n\) (or a list \(L\) of length \(n\)) and a nonnegative integer \(d\). Optionally, the option connected may be specified as the third argument, indicating that the generated graph must be 1-connected (by default no restriction is made). The command creates \(n\) vertices (using elements of \(L\) as vertex labels) and returns a random \(d\)-regular (connected) graph on these vertices.

Note that a \(d\)-regular graph on \(n\) vertices exists if and only if \(n>d+1\) and \(n d\) is even. If these conditions are not met, random_regular_graph returns an error.

This algorithm generates regular graphs with approximately uniform probability. It means that for \(n \rightarrow \infty\) and \(d\) not growing so quickly with \(n\) the probability distribution converges to uniformity.
The runtime of the algorithm is negligible for \(n \leqslant 100\). For \(n>200\) the algorithm is considerably slower.
```

> G:=random_regular_graph(16,3)

```
an undirected unweighted graph with 16 vertices and 24 edges

\footnotetext{
2.4. See Algorithm 2 on page 2.
}
```

> is_regular(G)

```
\begin{tabular}{|l|l|}
& true \\
\hline
\end{tabular}
\[
[3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]
\]
```

> draw_graph(G,spring)

```


\subsection*{2.11.6. Random tournaments}

The command random_tournament is used for generating random tournaments. A tournament of order \(n\) is a graph obtained by assigning a direction to each edge in a complete graph \(K_{n}\) (for each edge there are two possible directions).
random_tournament accepts a positive integer \(n\) (or a list \(L\) of length \(n\)) as its only argument and returns a random tournament on \(n\) vertices. If \(L\) is specified, its elements are used to label the vertices.
```

G:=random_tournament([1, 2, 3,4])

```
a directed unweighted graph with 4 vertices and 6 arcs
```

> is_tournament(G)

```
 true
 draw_graph (G)

\subsection*{2.11.7. Random flow networks}
```

Giac]

```

\subsection*{2.11.8. Randomizing edge weights}

The command assign_edge_weights is used for assigning weights to edges of a graph at random. assign_edge_weights accepts two or three arguments. The first argument is always the input graph \(G(V, E)\). If only two arguments are given, the second one is an interval a. . b of real numbers. Otherwise, if three arguments are given, the second resp. the third argument is a positive integer \(m\) resp. \(n\). The command operates such that for each edge \(e \in E\), its weight is chosen uniformly from the real interval \([a, b)\) or from the set of integers lying between \(m\) and \(n\), including both \(m\) and \(n\). After assigning weights to all edges, the modified copy of \(G\) is returned.
```

> G:=assign_edge_weights(grid_graph(5,3),1,99)

```
an undirected weighted graph with 15 vertices and 22 edges
draw_graph(G,spring)

> G:=assign_edge_weights(graph_complement(complete_graph(2,3,4)),e..pi)
an undirected weighted graph with 9 vertices and 10 edges
> draw_graph(G)

\section*{Chapter 3 \\ Modifying graphs}

\subsection*{3.1. Modifying vertices of a graph}

\subsection*{3.1.1. Adding and removing single vertices}

For adding and removing vertices to/from graphs use the commands add_vertex and delete_vertex, respectively.
The command add_vertex accepts two arguments, a graph \(G(V, E)\) and a single label \(v\) or a list of labels \(L\), and returns the graph \(G^{\prime}(V \cup\{v\}, E)\) or \(G^{\prime \prime}(V \cup L, E)\) if a list \(L\) is given.
> K5:=complete_graph ([1, 2, 3, 4,5])
an undirected unweighted graph with 5 vertices and 10 edges
```

add_vertex(K5,6)

```
an undirected unweighted graph with 6 vertices and 10 edges
```

> add_vertex(K5, [a,b,c])

```
an undirected unweighted graph with 8 vertices and 10 edges
Note that vertices already present in \(G\) won't be added. For example:
```

> add_vertex(K5,[4,5,6])

```
an undirected unweighted graph with 6 vertices and 10 edges
The command delete_vertex accepts two arguments, a graph \(G(V, E)\) and a single label \(v\) or a list of labels \(L\), and returns the graph
\[
G^{\prime}(V \backslash\{v\},\{e \in E: e \text { is not incident to } v\})
\]
or, if \(L\) is given,
\[
G^{\prime \prime}(V \backslash L,\{e \in E: e \text { is not incident to any } v \in L\}) .
\]

If any of the specified vertices does not belong to \(G\), an error is returned.
```

> delete_vertex(K5,2)

```
an undirected unweighted graph with 4 vertices and 6 edges
```

> delete_vertex(K5,[2,3])

```
an undirected unweighted graph with 3 vertices and 3 edges

\subsection*{3.2. Modifying edges of A graph}

\subsection*{3.2.1. Adding and removing single edges}

For adding and removing edges or arcs to/from graphs use the commands add_edge or add_arc and delete_edge and delete_arc, respectively.

The command add_edge accepts two arguments, an undirected graph \(G(V, E)\) and an edge or a list of edges or a trail of edges (entered as a list of vertices), and returns the copy of \(G\) with the specified edges inserted. Edge insertion implies creation of its endpoints if they are not already present.
```

> C4:=cycle_graph(4)

```

C4: an undirected unweighted graph with 4 vertices and 4 edges
```

> add_edge(C4,[1,3])

```

C4: an undirected unweighted graph with 4 vertices and 5 edges
```

> add_edge(C4,[1,3,5,7])

```

C4: an undirected unweighted graph with 6 vertices and 7 edges
The command add_arc works similarly to add_edge but applies only to directed graphs. Note that the order of endpoints in an arc matters.
```

> add_arc(digraph(trail(a,b,c,d,a)),[[a,c],[b,d]])

```
a directed unweighted graph with 4 vertices and 6 arcs
When adding edge/arc to a weighted graph, its weight should be specified alongside its endpoints, or it will be assumed that it equals to 1 .
```

> add_edge(graph(%{[[1, 2],5],[[3,4],6]%}),[[2,3],7])

```
an undirected weighted graph with 4 vertices and 3 edges

\subsection*{3.2.2. Accessing and modifying edge weights}

The commands get_edge_weight and set_edge_weight are used to access and modify the weight of an edge/arc in a weighted graph, respectively.
set_edge_weight accepts three arguments: a weighted graph \(G(V, E)\), edge/arc \(e \in E\) and the new weight \(w\), which may be any number. It returns the modified copy of \(G\).

The command get_edge_weight accepts two arguments, a weighted graph \(G(V, E)\) and an edge or arc \(e \in E\). It returns the weight of \(e\).
```

> G:=set_edge_weight(graph(%{[[1, 2],4],[[2, 3],5]%}),[1, 2],6)

```
an undirected weighted graph with 3 vertices and 2 edges
```

> get_edge_weight(G,[1,2])

```

\subsection*{3.2.3. Contracting edges}

The command contract_edge is used for contracting (collapsing) edges in a graph.
contract_edge accepts two arguments, a graph \(G(V, E)\) and an edge/arc \(e=(v, w) \in E\), and merges \(w\) and \(v\) into a single vertex, deleting the edge \(e\). The resulting vertex inherits the label of \(v\). The command returns the modified graph \(G^{\prime}\left(V \backslash\{w\}, E^{\prime}\right)\).
```

> K5:=complete_graph(5)

```
an undirected unweighted graph with 5 vertices and 10 edges
```

> contract_edge(K5,[1,2])

```
an undirected unweighted graph with 4 vertices and 6 edges
To contract a set \(\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \subset E\) of edges in \(G\), none two of which are incident (i.e. when the given set is a matching in \(G\)), one can use the foldl command. In the following example, the complete graph \(K_{5}\) is obtained from Petersen graph by edge contraction.
```

> P:=graph("petersen")

```
an undirected unweighted graph with 10 vertices and 15 edges
```

> G:=foldl(contract_edge,P,[0,5],[1,6],[2,7],[3,8],[4, 9])

```
an undirected unweighted graph with 5 vertices and 10 edges
```

> draw_graph(G)

```


\subsection*{3.2.4. Subdividing edges}

The command subdivide_edges is used for subdividing edges of a graph.
subdivide_edges accepts two or three arguments, a graph \(G(V, E)\), a single edge/arc or a list of edges/arcs in \(E\) and optionally a positive integer \(r\) (which defaults to 1). Each of the specified edges/arcs will be subdivided with exactly \(r\) new vertices, labeled with the smallest available integers. The resulting graph, which is homeomorphic to \(G\), is returned.

If the endpoints of the edge being subdivided have valid coordinates, the coordinates of the inserted vertices will be computed accordingly.

\section*{> G:=graph("petersen")}
an undirected unweighted graph with 10 vertices and 15 edges
```

> G:=subdivide_edges(G,[2,3])

```
an undirected unweighted graph with 11 vertices and 16 edges
```

> G:=subdivide_edges(G,[[1,2],[3,4]])

```
an undirected unweighted graph with 13 vertices and 18 edges
```

> G:=subdivide_edges(G,[0,1],2)

```
an undirected unweighted graph with 15 vertices and 20 edges
```

> draw_graph(G)

```


\subsection*{3.3. Using attributes}

\subsection*{3.3.1. Graph attributes}

The graph structure maintains a set of attributes as tag-value pairs which can be accessed and modified by the user.
The command set_graph_attribute is used for modifying the existing graph attributes or adding new ones. It accepts two arguments, a graph \(G\) and a sequence or list of graph attributes in form tag=value where tag is any string. Alternatively, attributes may be specified as a sequence of two lists \([\operatorname{tag} 1, \operatorname{tag} 2, \ldots]\) and [value1, value2,...]. The command sets the specified values to the indicated attribute slots, which are meant to represent some global properties of the graph \(G\), and returns the modified copy of \(G\).
The previously set graph attribute values can be fetched with the command get_graph_attribute which accepts two arguments: a graph \(G\) and a sequence or list of tags. The corresponding values will be returned in a sequence or list, respectively. If some attribute is not set, undef is returned as its value.

To list all graph attributes of \(G\) for which the values are set, use the list_graph_attributes command which takes \(G\) as its only argument.
To discard a graph attribute, use the discard_graph_attribute command. It accepts two arguments: a graph \(G\) and a sequence or list of tags to be cleared, and returns the modified copy of \(G\).

Two tags are normally being used by the CAS commands: directed and weighted, so it is not advisable to overwrite their values using this command (instead, use make_directed, make_weighted and underlying_graph commands). Another attribute used internally is name, which holds the name of the respective graph (as a string).
```

G:=digraph(trail(1,2,3,1))

```
a directed unweighted graph with 3 vertices and 3 arcs
```

> G:=set_graph_attribute(G,"name"="C3","message"="this is some text")

```

C3: a directed unweighted graph with 3 vertices and 3 arcs
```

> get_graph_attribute(G,"message")

```
this is some text
```

> list_graph_attributes(G)

```
\[
[\text { directed }=\text { true }, \text { weighted }=\text { false }, \text { name }=C 3, \text { message }=\text { this is some text }]
\]
```

> G:=discard_graph_attribute(G,"message")

```

C3: a directed unweighted graph with 3 vertices and 3 arcs
```

> list_graph_attributes(G)

```
\([\) directed \(=\) true, weighted \(=\) false, name \(=C 3]\)

\subsection*{3.3.2. Vertex attributes}

For every vertex of a graph, the list of attributes in form of tag-value pairs is maintained, which can be accessed and modified by the user.

The command set_vertex_attribute is used for modifying the existing vertex attributes or adding new ones. It accepts three arguments, a graph \(G(V, E)\), a vertex \(v \in V\) and a sequence or list of attributes in form tag=value where tag is any string. Alternatively, attributes may be specified as a sequence of two lists \([\operatorname{tag} 1, \operatorname{tag} 2, \ldots\)] and [value1, value \(2, \ldots\)]. The command sets the specified values to the indicated attributes of the vertex \(v\) and returns the modified copy of \(G\).

The previously set attribute values for \(v\) can be fetched with the command get_vertex_attribute which accepts three arguments: \(G, v\) and a sequence or list of tags. The corresponding values will be returned in a sequence or list, respectively. If some attribute is not set, undef is returned as its value.

To list all attributes of \(v\) for which the values are set, use the list_vertex_attributes command which takes two arguments, \(G\) and \(v\).

The discard_vertex_attribute command is used for discarding attribute(s) assigned to some vertex \(v \in V\). It accepts three arguments: \(G, v\) and a sequence or list of tags to be cleared, and returns the modified copy of \(G\).

The attributes label, color, shape and pos are also used internally. These hold the vertex label, color, shape and coordinates in a drawing, respectively. If the color is not set for a vertex, the latter is drawn in yellow. The shape attribute may have one of the following values: square, triangle, diamond, star or plus. If the shape attribute is not set or has a different value, the circled shape is applied when drawing the vertex.

The following example shows how to change individual labels and colors.
T:=complete_binary_tree (3)
an undirected unweighted graph with 15 vertices and 14 edges
```

> T:=set_vertex_attribute(T,5,"label"="root","color"=red)

```
an undirected unweighted graph with 15 vertices and 14 edges
```

> draw_graph(T,tree="root")

```


A vertex may also hold custom attributes.
```

> T:=set_vertex_attribute(T,"root","depth"=3,"shape"="square")

```
an undirected unweighted graph with 15 vertices and 14 edges
```

> list_vertex_attributes(T,"root")
[label = root, color =red, shape = square, depth =3]
> T:=discard_vertex_attribute(T,"root","color")

```
an undirected unweighted graph with 15 vertices and 14 edges
```

> list_vertex_attributes(T,"root")

```
\([\) label \(=\) root, shape \(=\) square, depth \(=3]\)

\subsection*{3.3.3. Edge attributes}

For every edge of a graph, the list of attributes in form of key-value pairs is maintained, which can be accessed and modified by the user.
The command set_edge_attribute is used for modifying the existing edge attributes or adding new ones. It accepts three arguments, a graph \(G(V, E)\), an edge/arc \(e \in E\) and a sequence or list of attributes in form tag=value where tag is any string. Alternatively, attributes may be specified as a sequence of two lists \([\operatorname{tag} 1, \operatorname{tag} 2, \ldots]\) and [value1, value \(2, \ldots\). . The command sets the specified values to the indicated attributes of the edge/arc \(e\) and returns the modified copy of \(G\).

The previously set attribute values for \(e\) can be fetched with the command get_edge_attribute which accepts three arguments: \(G, e\) and a sequence or list of tags. The corresponding values will be returned in a sequence or list, respectively. If some attribute is not set, undef is returned as its value.

To list all attributes of \(e\) for which the values are set, use the list_edge_attributes command which takes two arguments, \(G\) and \(e\).

To discard attribute(s) assigned to \(e\) call the discard_edge_attribute command, which accepts three arguments: \(G, e\) and a sequence or list of tags to be cleared, and returns the modified copy of \(G\).

The attributes weight, color, style, pos and temp are also used internally. They hold the edge weight, color, line style, the coordinates of the weight label anchor (and also the coordinates of the arrow) and true if the edge is temporary. If the color attribute is not set for an edge, the latter is drawn in blue, unless it is a temporary edge, in which case it is drawn in light grey. The style attribute may have one of the following values: dashed, dotted or bold. If the style attribute is not set or has a different value, the solid line style is applied when drawing the edge.

The following example illustrates the possibilities of using edge attributes.
```

> T:=complete_binary_tree(3)

```
an undirected unweighted graph with 15 vertices and 14 edges
```

> T:=set_edge_attribute(T,[1,4],"cost"=12.8,"message"="this is some text")

```
an undirected unweighted graph with 15 vertices and 14 edges
```

> list_edge_attributes(T, [1,4])
[cost =12.8, message = this is some text]

```
> T:=discard_edge_attribute(T, [1, 4],"message")
an undirected unweighted graph with 15 vertices and 14 edges
```

> T:=set_edge_attribute(T,[1,4],"style"="dotted","color"=magenta)

```
an undirected unweighted graph with 15 vertices and 14 edges
```

> list_edge_attributes(T, [1,4])

```
 \([\) color \(=m\) a gent \(a\), style \(=\) dotted, cost \(=12.8]\)
> T:=set_edge_attribute(T, [5, 11],"temp"=true)
an undirected unweighted graph with 15 vertices and 14 edges
```

> draw_graph(T)

```


\title{
Chapter 4 \\ IMPORT AND EXPORT
}

\subsection*{4.1. IMPORTING GRAPHS}

\subsection*{4.1.1. Loading graphs from dot files}

The command import_graph is used for importing a graph from text file in dot format \({ }^{4.1}\).
import_graph accepts a string filename as its only argument and returns the graph constructed from instructions written in the file filename or undef on failure. The passed string should contain the path to a file in dot format. The file extension . dot may be omitted in the filename since dot is the only supported format. The alternative extension is \(. \mathrm{gv},{ }^{4.2}\) which must be explicitly specified.
If a relative path to the file is specified, i.e. if it does not contain a leading forward slash, the current working directory (which can be obtained by calling the pwd command) will be used as the reference. The working directory can be changed by using the command cd.

For example, assume that the file example.dot is saved in the directory Documents/dot/ with the following contents:
```

graph "Example graph" {
a [label="Foo"];
b [shape=diamond,color=red];
a -- b [style=bold];
b -- c [color=green];
b -- d [style=dotted];
}

```

To import the graph, input:
```

> G:=import_graph("Documents/dot/example.dot")

```

Example graph: an undirected unweighted graph with 4 vertices and 3 edges
```

draw_graph(G)

```


\subsection*{4.1.2. The dot file format overview}

Giac has some basic support for dot language \({ }^{4.3}\). Each dot file is used to hold exactly one graph and should consist of a single instance of the following environment:
```

strict? (graph | digraph) name? {
...
}

```

\footnotetext{
4.1. https://en.wikipedia.org/wiki/DOT_(graph_description_language)
4.2. Although it is recommended to use.gv as the extension for dot files to avoid a certain confusion between different file types, Giac uses the . dot extension because it coincides with the format name. This may change in the future. 4.3. For the complete syntax definition see https://www.graphviz.org/doc/info/lang.html.
}

The keyword strict may be omitted, as well as the name of the graph, as indicated by the question marks. The former is used to differentiate between simple graphs (strict) and multigraphs (nonstrict). Since Giac supports only simple graphs, strict is redundant.

For specifying undirected graphs the keyword graph is used, while the digraph keyword is used for undirected graphs.
The graph/digraph environment contains a series of instructions describing how the graph should be built. Each instruction ends with the semicolon (;) and has one of the following forms.
\begin{tabular}{lll}
syntax & creates \\
\hline vertex_name [attributes]? & & isolated vertices \\
V1 <edgeop> V2 <edgeop>... <edgeop> Vk [attributes]? & \begin{tabular}{l}
edges and trails \\
graph [attributes]
\end{tabular} & graph attributes
\end{tabular}

Here, attributes is a comma-separated list of tag-value pairs in form tag=value, <edgeop> is -- for undirected and -> for directed graphs. Each of V1, V2 etc. is either a vertex name or a set of vertex names in form \{vertex_name1 vertex_name2 ...\}. In the case a set is specified, each vertex from that set is connected to the neighbor operands. Every specified vertex will be created if it does not exist yet.

Any line beginning with \# is ignored. C-like line and block comments are recognized and skipped as well.

Using the dot syntax it is easy to specify a graph with adjacency lists. For example, the following is the contents of a file which defines the octahedral graph with 6 vertices and 12 edges.
```


# octahedral graph

graph "octahedron" {
1 -- {3 6 5 4};
2 -- {3 4 5 6};
3-- {5 6};
4 -- {5 6};
}

```

\subsection*{4.2. EXPORTING GRAPHS}

The command export_graph is used for saving graphs to disk in dot or \(\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) format.

\subsection*{4.2.1. Saving graphs in dot format}
export_graph accepts two mandatory arguments, a graph \(G\) and a string filename, and writes \(G\) to the file specified by filename, which must be a path to the file, either relative or absolute; in the former case the current working directory will be used as the reference. If only two arguments are given the graph is saved in dot format. The file name may be entered with or without . dot extension. The command returns 1 on success and 0 on failure.
```

> export_graph(G,"Documents/dot/copy_of_philosophers")

```

\subsection*{4.2.2. Saving graph drawings in \(\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) format}

When calling the export_graph command, an optional third argument in form latex [=<params>] may be given. In that case the drawing of \(G\) (obtained by calling the draw_graph command) will be saved to the \(\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) file indicated by filename (the extension .tex may be omitted). Optionally, one can specify a parameter or list of parameters params which will be passed to the draw_graph command.

For example, let us create a picture of the Sierpiński sieve graph of order \(n=5\), i.e. the graph \(S T_{3}^{5}\).
```

G:=sierpinski_graph(5,3,triangle)

```
an undirected unweighted graph with 123 vertices and 243 edges
```

> export_graph(G,"Documents/st53.tex",latex=[spring,labels=false])

```

1
The \(L^{A} T_{E} X\) file obtained by exporting a graph is easily converted into an EPS file, which can subsequently be inserted \({ }^{4.4}\) in a paper, report or some other document. A Linux user simply needs to launch a terminal emulator, navigate to the directory in which the exported file, in this case st53.tex, is stored and enter the following command:
```

latex st53.tex \&\& dvips st53.dvi \&\& ps2eps st53.ps

```

This will produce the (properly cropped) st53.eps file in the same directory. Afterwards, it is recommended to enter
```

rm st53.tex st53.aux st53.log st53.dvi st53.ps

```
to delete the intermediate files. The above two commands can be combined in a simple shell script which takes the name of the exported file (without the extension) as its input argument:
```

\#!/bin/bash

# convert LaTeX to EPS

latex \$1.tex
dvips \$1.dvi
ps2eps \$1.ps
rm \$1.tex \$1.aux \$1.log \$1.dvi \$1.ps

```

Assuming that the script is stored under the name latex2eps in the same directory as st53.tex, to do the conversion it is enough to input:
```

bash latex2eps st53

```

The drawing produced in our example is shown in Figure 4.1.

Fig. 4.1. drawing of the Sierpiński graph \(S T_{3}^{5}\) using \(\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) and PSTricks

\footnotetext{
4.4. Alternatively, a PSTricks picture from the body of the .tex file can be copied to some other \(\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) document.
}

\section*{Chapter 5}

\section*{Graph properties}

\subsection*{5.1. BASIC PROPERTIES}

\subsection*{5.1.1. Listing vertices and edges}

The command vertices or graph_vertices resp. edges is used for extracting set of vertices resp. set of edges from a graph.
vertices or graph_vertices accepts a graph \(G(V, E)\) as its only argument and returns the set of vertices \(V\) in the same order in which they were created.
edges accepts one or two arguments, a graph \(G(V, E)\) and optionally the identifier weights. The command returns the set of edges \(E\) (in a non-meaningful order). If weights is specified, each edge is paired with the corresponding weight (in this case \(G\) must be a weighted graph).
```

> G:=hypercube_graph(2)

```
an undirected unweighted graph with 4 vertices and 4 edges
```

> vertices(G)

```
\[
[00,01,10,11]
\]
```

> C:=graph("coxeter")

```
 an undirected unweighted graph with 28 vertices and 42 edges
> vertices (C)
 \([a 1, a 2, a 7, z 1, a 3, z 2, a 4, z 3, a 5, z 4, a 6, z 5, z 6, z 7, b 1, b 3, b 6, b 2, b 4, b 7, b 5, c 1, c 4, c 5, c 2, c 6, c 3, c 7]\)
> H: =digraph ([[0, 2. 32, 0, 0.25], [0, 0, 0, 1.32] , [0, 0.50, 0, 0] , [0.75, 0, 3. 34, 0]])
a directed weighted graph with 4 vertices and 6 arcs
```

> edges(H)

$$
\{[0,1],[0,3],[1,3],[2,1],[3,0],[3,2]\}
$$

```
```

> edges(H,weights)

```
\[
\{[[0,1], 2.32],[[0,3], 0.25],[[1,3], 1.32],[[2,1], 0.5],[[3,0], 0.75],[[3,2], 3.34]\}
\]

\subsection*{5.1.2. Vertex degrees}

The command vertex_degree is used for computing the degree of a vertex, i.e. counting the vertices adjacent to it.
vertex_degree accepts two arguments, a graph \(G(V, E)\) and a vertex \(v \in V\), and returns the cardinality of the set \(\{w \in V:(v, w) \in E\}\), i.e. the number of vertices in \(V\) which are adjacent to \(v\).
When dealing with directed graphs, one can also use the specialized command vertex_in_degree resp. vertex_out_degree which accepts the same arguments as vertex_degree but returns the number of \(\operatorname{arcs}(w, v) \in E\) resp. the number of \(\operatorname{arcs}(v, w) \in E\), where \(w \in V\).
```

> G:=graph(trail(1,2,3,4,1,5,6,7,1,8,9,4))

```
an undirected unweighted graph with 9 vertices and 11 edges

```

> vertex_degree(G,1)

```
```

> T:=random_tournament([1,2,3,4,5])

```
a directed unweighted graph with 5 vertices and 10 arcs
```

> draw_graph(T)

```

```

> vertex_out_degree(T,1)

```

3
```

> vertex_in_degree(T,5)

```

\section*{2}

To obtain the list of degrees of all vertices \(v \in V\), use the degree_sequence command.
degree_sequence accepts a graph \(G(V, E)\) as its only argument and returns the list of degrees of vertices from \(V\) in the same order as returned by the command vertices. If \(G\) is a digraph, arc directions are ignored.
```

> degree_sequence(G)

```
\([5,2,2,3,2,2,2,2,2]\)

\subsection*{5.1.3. Vertex adjacency}

The command has_edge is used for checking if two vertices in an undirected graph are adjacent or not.
has_edge accepts two arguments, the input graph \(G(V, E)\) and a list [u,v] where \(u, v \in V\). The command returns true if \(u v \in E\) and false otherwise.
For digraphs, there is the similar command has_arc with the same input syntax. Note, however, that the order of vertices \(u\) and \(v\) matters this time.
```

> G:=graph(trail(1,2,3,4,5,2))

```
an undirected unweighted graph with 5 vertices and 5 edges
```

> has_edge(G,[1,2])

```
true
```

> has_edge(G, [2,1])
true
> has_edge(G,[1,3])
false
> D:=digraph(trail(1,2,3,4,5,2))
a directed unweighted graph with 5 vertices and 5 arcs
> has_arc(D,[1,2])
true
has_arc(D, [2,1])

```

\section*{false}

The command neighbors is used for obtaining the list of vertices in a graph that are adjacent to the particular vertex or the complete adjacency structure of the graph, in sparse form.
neighbors accepts one or two arguments. The first, mandatory argument is the input graph \(G(V, E)\). The second, optional argument is a vertex \(v \in V\). The command returns the list of neighbors of \(v\) in \(G\) if \(v\) is given and the list of lists of neighbors for all vertices in \(V\), in order of vertices(G), otherwise.
Note that neighbors works for undirected as well as for directed graphs, but ignores edge directions in the latter case.
```

> neighbors(G,3)
[2,4]
> neighbors(G)

```
\[
\{[2],[1,3,5],[2,4],[3,5],[2,4]\}
\]

The command departures resp. arrivals is used for determining all neighbors of a vertex \(v\) in a digraph which are the heads resp. the tails of the corresponding arcs.
departures resp. arrivals accepts one or two arguments, the input digraph \(G(V, E)\) and optionally a vertex \(v \in V\), and returns the list \(L_{v}\) containing all vertices \(w \in V\) for which \(v w \in E\) resp. \(w v \in E\). If \(v\) is omitted, the list of lists \(L_{v}\) for every \(v \in V\) is returned.
```

> G:=digraph(trail(1,2,3,4,2,5,1,6,7,8,4))

```
a directed unweighted graph with 8 vertices and 10 arcs
```

> draw_graph(G,spring)

```

> departures \((G, 2)\); arrivals(G,2); departures(G,1); arrivals(G,1)
\[
[3,5],[1,4],[2,6],[5]
\]

\subsection*{5.1.4. Edge incidence}

The command incident_edges is used for obtaining edges incident to the given vertex in a graph.
incident_edges accepts two argument, the input graph \(G(V, E)\) and a vertex \(v \in V\) or a list of vertices \(L \subset V\). The command returns the list of edges \(e_{1}, e_{2}, \ldots, e_{k} \in E\) which have \(v\) as one of its endpoints.

Note that edge directions are ignored when \(G\) is a digraph. To obtain only outgoing or incoming edges, use the commands departures and arrivals, respectively.
```

> G:=cycle_graph([1,2,3,4,5])

```

C5: an undirected unweighted graph with 5 vertices and 5 edges
```

> incident_edges(G,1)

```
\[
\{[1,2],[1,5]\}
\]
```

> incident_edges(G,[2,4,5])

```
\[
\{[1,2],[1,5],[2,3],[3,4],[4,5]\}
\]
```

> G:=random_tournament([1,2,3,4,5])

```
a directed unweighted graph with 5 vertices and 10 arcs
```

> incident_edges(G,2)

```
\(\{[2,1],[2,3],[2,5],[4,2]\}\)

\subsection*{5.2. Algebraic properties}

\subsection*{5.2.1. Adjacency matrix}

The command adjacency_matrix is used for obtaining the adjacency matrix of a graph \(G(V, E)\) where \(V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\).
adjacency_matrix accepts the input graph \(G\) as its only argument and returns the square matrix \(A=\left[a_{i j}\right]\) of order \(n\) such that, for \(i, j=1,2, \ldots, n\),
\[
a_{i j}= \begin{cases}1, & \text { if the set } E \text { contains edge } / \operatorname{arc} v_{i} v_{j} \\ 0, & \text { otherwise }\end{cases}
\]

Note that \(\operatorname{tr}(A)=0\). Also, the adjacency matrix of an undirected graph is always symmetrical.
```

> G:=graph("octahedron")

```
an undirected unweighted graph with 6 vertices and 12 edges
```

> A:=adjacency_matrix(G)

```
\(\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0\end{array}\right)\)
```

> transpose(A)==A

```
true
```

> D:=digraph(trail(1,2,3,4,5,2,6,7,3,8,1))

```
a directed unweighted graph with 8 vertices and 10 arcs
```

draw_graph(D)

```

```

> A:=adjacency_matrix(D)

```
\(\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)\)
```

> transpose(A)==A

```
false

\subsection*{5.2.2. Weight matrix}

The command weight_matrix is used for obtaining the weight matrix of a weighted graph \(G(V, E)\) where \(V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\).
weight_matrix accepts the input graph \(G\) as its only argument and returns the square matrix \(M=\left[m_{i j}\right]\) of order \(n\) such that \(m_{i j}\) equals zero if \(v_{i}\) and \(v_{j}\) are not adjacent and the weight of the edge/arc \(v_{i} v_{j}\) otherwise, for all \(i, j=1,2, \ldots, n\) (note that the weight of an edge/arc may be any real number).

Note that \(\operatorname{tr}(M)=0\). Also, the weight matrix of an undirected graph is always symmetrical.
```

> G:=graph(%{[[1,2],1],[[2,3],2], [[4,5],3], [[5,2] , 4]%})

```
an undirected weighted graph with 5 vertices and 4 edges
```

> weight_matrix(G)

```
\[
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 4 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 \\
0 & 4 & 0 & 3 & 0
\end{array}\right)
\]

\subsection*{5.2.3. Incidence matrix}

The command incidence_matrix is used for obtaining the incidence matrix of a graph.
incidence_matrix accepts the input graph \(G(V, E)\), where \(V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\) and \(E=\left\{e_{1}, e_{2}, \ldots\right.\), \(\left.e_{m}\right\}\), as its only argument and returns the \(n \times m\) matrix \(B=\left[b_{i j}\right]\) such that, for all \(i=1,2, \ldots, n\) and \(j=1,2, \ldots, m\),
\[
b_{i j}= \begin{cases}1, & \text { if the vertex } v_{i} \text { is incident to the edge } e_{j}, \\ 0, & \text { otherwise }\end{cases}
\]
if \(G\) is undirected resp.
\[
b_{i j}=\left\{\begin{aligned}
1, & \text { if the vertex } v_{i} \text { is the head of the } \operatorname{arc} e_{j}, \\
-1, & \text { if the vertex } v_{i} \text { is the tail of the arc } e_{j} \\
0, & \text { otherwise }
\end{aligned}\right.
\]
if \(G\) is directed.
```

> K4:=complete_graph([1, 2, 3,4])

```
an undirected unweighted graph with 4 vertices and 6 edges
```

> edges(K4)

```
\[
\{[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]\}
\]
```

> incidence_matrix(K4)

```
\[
\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
\]
```

> DG:=digraph(trail(1,2,3,4,5,3),trail(1,5,2,4,1))

```
a directed unweighted graph with 5 vertices and \(9 \operatorname{arcs}\)
```

> draw_graph(DG)

```

```

> edges(DG)

```
\[
\{[1,2],[1,5],[2,3],[2,4],[3,4],[4,1],[4,5],[5,2],[5,3]\}
\]
```

> incidence_matrix(DG)

```
\[
\left(\begin{array}{ccccccccc}
-1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & -1
\end{array}\right)
\]

\subsection*{5.2.4. Characteristic polynomial}

The command graph_charpoly or charpoly is used for obtaining the characteristic polynomial of an undirected graph.
graph_charpoly or charpoly accepts one or two arguments, the input graph \(G(V, E)\) and optionally a value or symbol \(x\). The command returns \(p(x)\), where \(p\) is the characteristic polynomial of the adjacency matrix of \(G\).
```

> G:=graph(%{[1,2],[2,3]%})

```
an undirected unweighted graph with 3 vertices and 2 edges
```

> charpoly(G,x)

```
```

x}-2
> charpoly(G,3)
21
> G:=graph("shrikhande")
an undirected unweighted graph with 16 vertices and 48 edges

```
```

> charpoly(G,x)

```
> charpoly(G,x)
\mp@subsup{x}{}{16}-48\mp@subsup{x}{}{14}-64\mp@subsup{x}{}{13}+768\mp@subsup{x}{}{12}+1536\mp@subsup{x}{}{11}-5888\mp@subsup{x}{}{10}-15360\mp@subsup{x}{}{9}+23040}\mp@subsup{x}{}{8}+81920\mp@subsup{x}{}{7}
\mp@subsup{x}{}{16}-48\mp@subsup{x}{}{14}-64\mp@subsup{x}{}{13}+768\mp@subsup{x}{}{12}+1536\mp@subsup{x}{}{11}-5888\mp@subsup{x}{}{10}-15360\mp@subsup{x}{}{9}+23040}\mp@subsup{x}{}{8}+81920\mp@subsup{x}{}{7}
36864 x 6 - 245760 x - 32768 x 4 + 393216 \mp@subsup{x}{}{3}+196608 \mp@subsup{x}{}{2}-262144 x - 196608
```

36864 x 6 - 245760 x - 32768 x 4 + 393216 \mp@subsup{x}{}{3}+196608 \mp@subsup{x}{}{2}-262144 x - 196608

```

\subsection*{5.2.5. Graph spectrum}

The command graph_spectrum is used for obtaining the spectrum of eigenvalues of a graph.
graph_spectrum accepts the input graph \(G\) as its only argument and returns the list in which every element is an eigenvalue of the adjacency matrix of \(G\) paired with its multiplicity.
```

> C5:=cycle_graph(5)

```

C5: an undirected unweighted graph with 5 vertices and 5 edges
```

> gs:=graph_spectrum(C5)

$$
\left(\begin{array}{cc}
2 & 1 \\
\frac{\sqrt{5}-1}{2} & 2 \\
\frac{-\sqrt{5}-1}{2} & 2
\end{array}\right)
$$

```
```

> p:=charpoly(C5,x)

```
> p:=charpoly(C5,x)
\[
x^{5}-5 x^{3}+5 x-2
\]
```

```
> expand(roots(p))==expand(gs)
```

```
> expand(roots(p))==expand(gs)
```

true
The last result indicates that gs and roots (p) are equal.

### 5.2.6. Seidel spectrum

The command seidel_spectrum is used for obtaining the Seidel spectrum of a graph.
seidel_spectrum accepts the input graph $G(V, E)$ as its only argument and returns the list in which every element is an eigenvalue of the matrix $J-I-2 A$ paired with its multiplicity. Here $J$ is all-one $n \times n$ matrix, $I$ is the identity matrix of order $n, A$ is the adjacency matrix of $G$ and $n=|V|$.

```
> G:=graph("clebsch")
```

an undirected unweighted graph with 16 vertices and 40 edges

```
> seidel_spectrum(G)
```

$$
\left(\begin{array}{cc}
-3 & 10 \\
5 & 6
\end{array}\right)
$$

```
> P:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> seidel_spectrum(P)
```

$$
\left(\begin{array}{cc}
-3 & 5 \\
3 & 5
\end{array}\right)
$$

### 5.2.7. Integer graphs

The command is_integer_graph is used for determining if a graph is an integer graph, i.e. if its spectrum consists only of integers.
is_integer_graph accepts the input graph $G$ as its only argument. The return value is true if $G$ is an integer graph and false otherwise.

```
> G:=graph("levi")
```

an undirected unweighted graph with 30 vertices and 45 edges

```
> is_integer_graph(G)
```

true

```
> factor(charpoly(G,x))
```

$$
x^{10}(x-3)(x-2)^{9}(x+2)^{9}(x+3)
$$

### 5.3. Connectivity

### 5.3.1. Vertex connectivity

The commands is_connected, is_biconnected and is_triconnected are used for determining if a graph is connected, biconnected or triconnected, respectively.
All three commands accept only one argument, the input graph $G(V, E)$. They return true if $G$ possesses the required type of connectivity and false otherwise.
$G$ is connected or 1 -connected if for every pair $v, w \in V$ there exists a path with endpoints $u$ and $v$ in $G$ or in the underlying graph of $G$ if the latter is directed.
$G$ is biconnected or 2-connected if it remains connected after removing a vertex from $G$.
$G$ is triconnected or 3-connected if it remains connected after removing a pair of distinct vertices from $G$.

The strategy for checking 1- and 2-connectivity is to use depth-first search (see [7] and [18]). Both algorithms run in $O(|V|+|E|)$ time. The algorithm for checking 3-connectivity is quite simple but less efficient: it works by choosing a vertex $v \in V$ and checking if the subgraph induced by $V \backslash\{v\}$ is biconnected, moving on to the next vertex if so, and repeating the process until all vertices are visited exactly once or a non-biconnected subgraph is found for some $v$. In the latter case the input graph is not triconnected. The complexity of this algorithm is $O(|V||E|)$.

```
> G:=graph_complement(complete_graph (2,3,4))
```

an undirected unweighted graph with 9 vertices and 10 edges

```
> is_connected(G)
```


## false

```
> C:=connected_components(G)
```

$$
\{[0,1],[2,3,4],[5,6,7,8]\}
$$

```
> H:=induced_subgraph(G,C[2])
```

an undirected unweighted graph with 4 vertices and 6 edges

```
> is_connected(H)
 true
> is_biconnected(path_graph(5))
 false
> is_biconnected(cycle_graph(5))
 true
> is_triconnected(graph("petersen"))
 true
> is_triconnected(cycle_graph(5))
```

false

### 5.3.2. Connected and biconnected components

The command connected_components resp. biconnected_components is used for decomposing a graph into connected resp. biconnected components.
connected_components resp. biconnected_components accept the input graph $G(V, E)$ as its only argument and returns the minimal partition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V$ such that the subgraph $G_{i} \subset G$ induced by $V_{i}$ is connected resp. biconnected for each $i=1,2, \ldots, k$. The partition is returned as a list of lists $V_{1}, V_{2}, \ldots, V_{k}$.
The connected components of $G$ are easily obtained by depth-first search in $O(|V|+|E|)$ time. To find the biconnected components of $G$, TARJAN's algorithm is used [18], which also runs in linear time.

```
> G:=graph_complement (complete_graph(3,5,7))
```

an undirected unweighted graph with 15 vertices and 34 edges

```
> is_connected(G)
```


## false

> C:=connected_components (G)
$\{[0,1,2],[3,4,5,6,7],[8,9,10,11,12,13,14]\}$

```
> G:=highlight_subgraph(G,induced_subgraph(G,C[1]))
```

an undirected unweighted graph with 15 vertices and 34 edges

```
> G:=highlight_subgraph(G,induced_subgraph(G,C[2]),magenta,cyan)
```

an undirected unweighted graph with 15 vertices and 34 edges

```
> draw_graph(G)
```



[^3]an undirected unweighted graph with 7 vertices and 8 edges
draw_graph(H)
draw_graph(H)

> is_biconnected(H)
> is_biconnected(H)
false
> biconnected_components(H)
> biconnected_components(H)
$$
\{[1,2],[2,3,4],[4,5],[5,6,7]\}
$$

### 5.3.3. Graph rank

The command graph_rank is used for computing the rank of a graph.
graph_rank accepts one or two arguments, the input graph $G(V, E)$ and optionally a set of edges $S \subset E$ (by default $S=E$ ), and returns $|V|-k$ where $k$ is the number of connected components of the spanning subgraph of $G$ with edge set $S$.

```
> G:=graph(%{[1,2],[3,4],[4,5]%})
```

an undirected unweighted graph with 5 vertices and 3 edges

```
 > graph_rank(G)
```

3

2

### 5.3.4. Articulation points

The command articulation_points is used for obtaining the articulation points of a graph, i.e. cut vertices, if any.
articulation_points accepts the input graph $G(V, E)$ as its only argument and returns the list of articulation points of $G$. A vertex $v \in V$ is an articulation point of $G$ if the subgraph $H \subset G$ induced by $V \backslash\{v\}$ is disconnected.
The articulation points of $G$ are found by depth-first serach in $O(|V|+|E|)$ time [7].

```
> articulation_points(path_graph([1,2,3,4]))
```

$[2,3]$

```
> articulation_points(cycle_graph(1,2,3,4))
```

[]

### 5.3.5. Strongly connected components

The command strongly_connected_components is used for decomposing a graph into strongly connected components. A (di)graph $H$ is strongly connected if for each pair $(v, w)$ of distinct vertices in $H$ there is a (directed) path from $v$ to $w$ in $H$.
strongly_connected_components accepts the input graph $G(V, E)$ as its only argument and returns the minimal partition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V$ such that the subgraph $G_{i} \subset G$ induced by $V_{i}$ is strongly connected for each $i=1,2, \ldots, k$. The result is returned as a list of lists $V_{1}, V_{2}, \ldots, V_{k}$.
The strategy is to use TARJAN's algorithm for strongly connected components [18], which runs in $O(|V|+|E|)$ time.

Note that an undirected graph is strongly connected if and only if it is connected.
The command is_strongly_connected can be used to determine if the given graph $G$ is strongly connected. It accepts $G$ as its only argument and returns true if $G$ has exactly one strongly connected component and false otherwise.

```
> G:=digraph([1,2,3],%{[1,2],[1,3], [2, 3], [3,2]%})
```

a directed unweighted graph with 3 vertices and 4 arcs

```
draw_graph(G)
```


> strongly_connected_components (G)
$\{[1],[2,3]\}$

### 5.3.6. Edge connectivity

### 5.4. Trees

### 5.4.1. Tree graphs

The command is_tree is used for determining if the particular graph is a tree. An undirected graph $G(V, E)$ is a tree if $|V|=|E|+1$ and $G$ is connected.
is_tree accepts the input graph $G$ as its only argument and returns true if $G$ is a tree and false otherwise.

The only expensive step in the algorithm is determining whether $G$ is connected. The condition $|V|=|E|+1$ is checked first, hence the algorithm runs in $O(|V|)$ time.

```
> is_tree(complete_binary_tree(3))
```

true

```
> is_tree(cycle_graph(5))
```


### 5.4.2. Forest graphs

The command is_forest is used for determining if the particular graph is a forest, i.e. if its connected components are all trees.
is_forest accepts the input graph $G$ as its only argument and returns true if $G$ is a forest and false otherwise.

The only expensive step in the algorithm is the decomposition of $G$ to connected components. Therefore the algorithm runs in $O(|V|+|E|)$ time.
> L:= []:; for $k$ from 10 to 30 do L.append(random_tree(k)); od:;
Done, Done
> G:=disjoint_union(op(L))
an undirected unweighted graph with 420 vertices and 399 edges
> is_connected(G)
> is_connected(G)
false
> is_forest(G)
true

### 5.4.3. Height of a tree

The command tree_height is used for determining the height of a tree with respect to the specified root node. The height of a tree is the length of the longest path in that tree that has the root node as one of its endpoints.
tree_height accepts two arguments, the input tree graph $G(V, E)$ and a vertex $r \in V$, which is used as the root node. The command returns the height of $G$ with respect to $r$.
The strategy is to start a depth-first search from the root node and look for the deepest node. Therefore the algorithm runs in $O(|V|)$ time.

```
> G:=random_tree(1000)
```

an undirected unweighted graph with 1000 vertices and 999 edges

```
> r:=rand(1000)
```

    296
    > tree_height(G,r)

### 5.4.4. Lowest common ancestor of a pair of nodes

The command lowest_common_ancestor determines the lowest common ancestor (LCA) of a pair of nodes in a tree, or for every element of a list of such pairs.
lowest_common_ancestor accepts two mandatory arguments, the input tree graph $G(V, E)$ and the root node $r \in V$. There are two possibilities for specifying the nodes to operate on: either the nodes $u, v \in V$ are given as the third and the fourth argument, or a list of pairs of nodes in form $[[\mathrm{u} 1, \mathrm{v} 1],[\mathrm{u} 2, \mathrm{v} 2], \ldots,[\mathrm{uk}, \mathrm{vk}]]$, where $u_{i}, v_{i} \in V$ and $u_{i} \neq v_{i}$ for $i=1,2, \ldots, k$, is given as the third argument. The command returns the LCA of $u$ and $v$ or the list containing LCA of every pair of nodes $u_{i}, v_{i}$ for $i=1,2, \ldots, k$.
The strategy is to use TARJAN's offline LCA algorithm [19]. The implementation is simple and uses the disjoint-set (union-find) data structure. It runs in nearly linear time.

In the following example, the algorithm efficiency is tested on a large random tree with 10000 nodes. The lowest common ancestors for the list $L$ cotaining 100 pairs of vertices, chosen at random, need to be determined.

```
> G:=random_tree(10000)
 an undirected unweighted graph with 10000 vertices and 9999 edges
 3.562 sec
> V:=vertices(G):; L:=[]:; for k from 1 to 100 do L.append(rand(2,V)); od:;
 Done, Done, Done
> lowest_common_ancestor(G,0,L):;
```


### 5.5. Distance

### 5.5.1. Vertex distance

The command vertex_distance is used for computing the length of the shortest path between two vertices of a graph.
vertex_distance accepts three arguments, the input graph $G(V, E)$, a vertex $v \in V$ called the source and a vertex $w \in V$ called the target, or a list $L \subset V$ of target vertices. The command returns the distance between $v$ and $w$ as the number of edges in a shortest path from $v$ to $w$, or the list of distances if a list of target vertices is given.

```
> G:=graph("petersen") // Xcas mode
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> vertex_distance(G,1,3)
```

2
> vertex_distance (G, $1,[3,6,9]$ )
$[2,1,2]$

### 5.5.2. All-pairs vertex distance

### 5.5.3. Diameter of a graph

### 5.5.4. Girth of a graph

The commands girth and odd_girth are used for computing the (odd) girth of an undirected unweighted graph.
girth resp. odd_girth accepts the input graph $G(V, E)$ as its only argument and returns the girth resp. odd girth of $G$. The (odd) girth of $G$ is defined to be the length of the shortest (odd) cycle in $G$. If there is no (odd) cycle in $G$, the command returns $+\infty$.
The strategy is to apply breadth-first search from each vertex of the input graph. The runtime is therefore $O(|V||E|)$.

```
> G:=graph("petersen")
```

an undirected unweighted graph with 10 vertices and 15 edges

```
> girth(G)
```

```
> G:=hypercube_graph(3)
```

an undirected unweighted graph with 8 vertices and 12 edges

```
> G:=subdivide_edges(G,["000","001"])
```

an undirected unweighted graph with 9 vertices and 13 edges

```
> girth(G)
```

    4
    > odd_girth(G)

## 5

```
> G:=complete_binary_tree(2)
```

an undirected unweighted graph with 7 vertices and 6 edges

```
> girth(G)
```

$$
+\infty
$$

### 5.6. ACYCLIC GRAPHS

### 5.6.1. Checking if a graph is acyclic

The command is_acyclic is used for checking that the given digraph has no directed cycle. A directed graph with no directed cycle is said to be acyclic.
is_acyclic accepts the input digraph $G(V, E)$ as its only argument and returns true if $G$ is acyclic and false otherwise.
The algorithm attempts to find topological order for its vertices. If that succeeds, the graph is acyclic, otherwise not. The algorithm runs in $O(|V|+|E|)$ time.

```
> is_acyclic(digraph(trail(1,2,3,4,5)))
 true
> is_acyclic(digraph(trail(1,2,3,4,5,2)))
```

false

### 5.6.2. Topological sorting

The command topologic_sort or topological_sort is used for finding a linear ordering of vertices of an acyclic digraph which is consistent with the arcs of the digraph.
topologic_sort accepts the input graph $G(V, E)$ as its only argument and returns the list of vertices of $G$ in a particular order: a vertex $u$ precedes a vertex $v$ if $u v \in E$, i.e. if there is an arc from $u$ to $v$.
Note that topological sorting is possible only if the input graph is acyclic. If this condition is not met, topologic_sort returns an error. Otherwise, it finds the required ordering by applying KAHN's algorithm [13], which runs in $O(|V|+|E|)$ time.

```
> G:=digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})
```

a directed unweighted graph with 4 vertices and 6 arcs

```
> is_acyclic(G)
```

true

```
> topologic_sort(G)
```

$$
[c, a, b, d]
$$

### 5.6.3. st ordering

The command st_ordering is used for finding a st-orientation in an undirected biconnected graph with respect to the given source and sink nodes.
st_ordering accepts three or four arguments: the input graph $G(V, E)$, a vertex $s \in V$ called the source, a vertex $t \in V$ called the target or sink such that $s t \in E$ and optionally an unassigned identifier $D$. The command returns the permutation $\sigma$ which defines a particular order of vertices in $V$. That ordering defines the orientation for each edge $e \in E$, which causes $G$ to become acyclic with a single source $s$ and $\operatorname{sink} t$. The ordering defined by $\sigma$ is the topological ordering of the resulting digraph. If the optional argument $D$ is given, the digraph is stored to it.
The orientation of $e=u v \in E$ is determined by the ordinals $n$ and $m$ of its endpoints $u$ and $v$, respectively, which are assigned by the permutation $\sigma$. If $n<m$, then $u$ is the head and $v$ is the tail of the corresponding arc, and vice versa otherwise.
Note that the input graph $G$ has a st-orientation if and only if $G$ is biconnected. Furthermore, if the latter is true, a st-orientation can be computed for any pair $s, t \in V$ such that $s t \in E$.
If the input graph is not biconnected, st_ordering returns an error. Otherwise, it applies the algorithm of Even and Tarjan [5], which runs in $O(|V|+|E|)$ time, to find st-ordering for the given pair of vertices.

```
\(>\mathrm{G}:=\operatorname{graph}(\%\{[\mathrm{a}, \mathrm{b}],[\mathrm{a}, \mathrm{c}],[\mathrm{a}, \mathrm{d}],[\mathrm{b}, \mathrm{c}],[\mathrm{b}, \mathrm{d}],[\mathrm{c}, \mathrm{d}] \%\})\)
```

an undirected unweighted graph with 4 vertices and 6 edges

```
> vertices(G)
```

$$
[a, b, c, d]
$$

```
> st_ordering(G,a,d,D)
```

$$
[0,2,1,3]
$$

```
> draw_graph(D)
```



### 5.7. VERTEX MATCHING

### 5.7.1. Maximum matching

The command maximum_matching is used for finding maximum matching in undirected graphs. maximum_matching accepts the input graph $G(V, E)$ as its only argument and returns a list of edges $e_{1}, e_{2}, \ldots, e_{m} \in E$ such that $e_{i}$ and $e_{j}$ are not adjacent (i.e. have no common endpoints) for all $1 \leqslant i<j \leqslant m$, under condition that $m$ is maximal. Edges $e_{k}$ for $k=1, \ldots, m$ represent the matched pairs of vertices in $G$.

The command applies Edmonds' blossom algorithm ${ }^{5.1}$ [4], which finds maximum matching in $O\left(|V|^{2}|E|\right)$ time.

```
> G:=graph("octahedron")
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> maximum_matching(G)
```

$\{[1,3],[6,4],[5,2]\}$

```
> G:=graph("soccerball")
```

an undirected unweighted graph with 60 vertices and 90 edges

```
> draw_graph(highlight_edges(G,maximum_matching(G)),labels=false)
```



### 5.7.2. Maximum matching in bipartite graphs

If the input graph is bipartite, maximum matching can be found much faster by using the bipartite_matching command which applies the algorithm of Hopcroft and Karp [10].
bipartite_matching accepts an undirected, unweighted bipartite graph $G$ as its only argument and returns a sequence containing two elements: the size of the maximum matching and the list of edges connecting matched pairs of vertices. The algorithm runs in $O(\sqrt{|V|}|E|)$ time.

```
> G:=graph("desargues")
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> is_bipartite(G)
```

true

```
> n,M:=bipartite_matching(G)
```

    \(10,\{[0,1],[2,3],[4,5],[6,7],[8,9],[10,13],[11,18],[12,15],[14,17],[16,19]\}\)
    draw_graph(highlight_edges(G,M))


[^4]
### 5.8. Cliques

### 5.8.1. Clique graphs

The graph is a clique if it is complete, i.e. if each two of its vertices are adjacent to each other. To check if a graph is a clique one can use the is_clique command.
is_clique accepts a graph $G(V, E)$ as its only argument and returns true if $G$ is a complete graph; else the returned value is false.

```
> K5:=complete_graph(5)
```

an undirected unweighted graph with 5 vertices and 10 edges

```
> is_clique(K5)
 true
> G:=delete_edge(K5,[1, 2])
```

an undirected unweighted graph with 5 vertices and 9 edges

```
> is_clique(G)
```

false

### 5.8.2. Triangle-free graphs

The command is_triangle_free is used for determining is the particular graph triangle-free. A graph is triangle-free if it contains no clique of cardinality equal to 3 , and hence no cliques with cardinality greater than two.
triangle_free accepts the input graph $G$ as its only argument and returns true if $G$ is trianglefree and false otherwise.

The strategy is to check whether $\operatorname{tr}\left(A^{3}\right)=0$, where $A$ is the adjacency matrix of $G$. If the last equality holds, the graph is triangle-free. This method is very fast as just one matrix multiplication needs to be carried out completely. Additionally, the matrix $A$ is sparse, so a large number of vertices usually does not cause memory problems.

```
> is_triangle_free(graph("soccerball"))
 true
> is_triangle_free(graph("tetrahedron"))
```

false

### 5.8.3. Maximal cliques

Each subgraph of a graph $G(V, E)$ which is itself a complete graph is called a clique in $G$. A clique is maximal if it cannot be extended by adding more vertices from $V$ to it. To count all maximal cliques in a graph one can use the clique_stats command.
clique_stats accepts $G$ as the only mandatory argument. If it is the only argument given, the command returns a list of pairs, each pair consisting of two integers: clique cardinality $k$ (first) and the number $n_{k}>0$ of $k$-cliques in $G$ (second). Therefore, the sum of second members of all returned pairs is equal to the total count of all maximal cliques in $G$. As an optional second argument one may give a positive integer $k$ or an interval $m \ldots n$ with integer bounds. In the first case only the number of $k$-cliques for the given $k$ is returned; in the second case, only cliques with cardinality between $m$ and $n$ (inclusive) are counted.

The strategy used to find all maximal cliques is a variant of the algorithm of Bron and Kerbosch as described in [20]. Its worst-case running time is $O\left(3^{|V| / 3}\right)$. However, the performance is usually almost instantaneous for graphs with 100 vertices or less.

```
> G:=random_graph (50,0.5)
 an undirected unweighted graph with }50\mathrm{ vertices and }588\mathrm{ edges
> clique_stats(G)
(ccc}
> G:=random_graph(100,0.5)
 an undirected unweighted graph with 100 vertices and 2461 edges
> clique_stats(G,5)
 3124
> G:=random_graph(500,0.25)
 an undirected unweighted graph with 500 vertices and 31257 edges
> clique_stats(G,5..7)
(cc}\begin{array}{cc}{5}&{153444}\\{6}&{18486}\\{7}&{355}\end{array}

\subsection*{5.8.4. Maximum clique}

The largest maximal clique in the graph \(G(V, E)\) is called maximum clique. The command maximum_clique can be used to find one in the given graph.
maximum_clique accepts the graph \(G\) as its only argument and returns maximum clique in \(G\) as a list of vertices. The clique may subsequently be extracted from \(G\) using the command induced_subgraph.

The strategy used to find maximum clique is an improved variant of the classical algorithm by Carraghan and Pardalos developed by ÖstergÅd in [15].
In the following examples, the maximum cliques were obtained almost instantly.
```

> G:=sierpinski_graph (5,5)

```
an undirected unweighted graph with 3125 vertices and 7810 edges
```

> maximum_clique(G)

```
[1560, 1561, 1562, 1563, 1564]
```

> G:=random_graph(300,0.3)

```
an undirected unweighted graph with 300 vertices and 13380 edges
```

> maximum_clique(G)

```
[46, 64, 144, 183, 208, 241, 244, 261]
```

> G:=graph_complement(complete_graph(4,3))

```
an undirected unweighted graph with 7 vertices and 9 edges
```

> cliq:=maximum_clique(G)
[0, 1, 2, 3]

```
```

> draw_graph(highlight_subgraph(G,induced_subgraph(G,cliq)))

```
```

> draw_graph(highlight_subgraph(G,induced_subgraph(G,cliq)))

```


\subsection*{5.8.5. Minimum clique cover}

The minimum clique cover for the graph \(G(V, E)\) is the smallest set \(S=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}\) of cliques in \(G\) such that for every \(v \in V\) there exists \(i \leqslant k\) such that \(v \in C_{i}\). In Giac, such cover can be obtained by calling the clique_cover command.
clique_cover accepts graph \(G\) as its mandatory argument and returns the smallest possible cover. Optionally, a positive integer may be passed as the second argument. In that case the requirement that \(k\) is less or equal to the given integer is set. If no such cover is found, clique_cover returns empty list.

The strategy is to find the minimal vertex coloring in the complement \(G^{c}\) of \(G\) (note that these two graphs share the same set of vertices). Each set of equally colored vertices in \(G^{c}\) corresponds to a clique in \(G\). Therefore, the color classes of \(G^{c}\) map to the elements \(C_{1}, \ldots, C_{k}\) of the minimal clique cover in \(G\).

There is a special case in which \(G\) is triangle-free, which is treated separately. Such a graph \(G\) contains only 1- and 2-cliques; in fact, every clique cover in \(G\) consists of a matching \(M\) together with the singleton cliques (i.e. the isolated vertices which remain unmatched). The total number of cliques in the cover is equal to \(|V|-|M|\), hence to find the minimal cover one just needs to find maximum matching in \(G\), which can be done in polynomial time.
```

> G:=random_graph(30,0.2)

```
an undirected unweighted graph with 30 vertices and 88 edges
```

> clique_cover(G)

```
\(\{[0,2,7],[1,3],[4,10,13,14],[5,6],[8,15,26],[9,22,25],[11,16],[12,17,23],[18,20,24],[19,28]\),
[21, 27, 29]\}

To find minimal clique cover in the truncated icosahedral graph it suffices to find maximum matching, since it is triangle-free.
```

> clique_cover(graph("soccerball"))

```
\(\{[1,2],[3,16],[4,5],[6,7],[8,49],[9,10],[11,12],[13],[14,15],[17,18],[19,20],[21,22],[23],[24,25]\),
[26, 30], [27, 28], [29, 48], [31, 32], [33, 46], [34, 35], [36, 37], [38, 39], [40], [41, 42], [43, 44], [45, 47],
[50], [51, 52], [53, 54], [55, 57], [56, 60], [58, 59]\}

The vertices of Petersen graph can be covered with five, but not with three cliques.
```

> clique_cover(graph("petersen"),3)

```
```

> clique_cover(graph("petersen"),5)

```
\[
\{[0,1],[2,3],[4,9],[5,7],[6,8]\}
\]

\subsection*{5.9. Vertex coloring}

To color vertices of a graph \(G(V, E)\) means to assign to each vertex \(v \in V\) a positive integer. Each integer represents a distinct color. The key property of a graph coloring is that the colors of adjacent vertices must differ from one another. Two different colorings of \(G\) may use different number of colors.

\subsection*{5.9.1. Greedy coloring}

The command greedy_color is used for coloring vertices of a graph in a greedy fashion.
greedy_color accepts one mandatory argument, the input graph \(G\). Optionally, a permutation \(p\) of order \(|V|\) may be passed as the second argument. Vertices are colored one by one in the order specified by \(p\) (or in the default order if \(p\) is not given) such that each vertex gets the smallest available color. The list of vertex colors is returned in the order of vertices(G).
Generally, different choices of permutation \(p\) produce different colorings. The total number of different colors may not be the same each time. The complexity of the algorithm is \(O(|V|+|E|)\).
```

> G:=graph("petersen")

```
an undirected unweighted graph with 10 vertices and 15 edges
```

> greedy_color(G)

```
\[
[1,2,1,2,3,2,1,3,3,2]
\]
```

> L:=greedy_color(G,randperm(10))

```
\[
[1,2,1,4,3,4,1,3,2,2]
\]

Observe that a different number of colors is obtained by executing the last command line. To display the colored graph, input:
```

> draw_graph(highlight_vertex(G,vertices(G),L),labels=false)

```


The first six positive integers are always mapped to the standard Xcas colors, as indicated in Table 5.1. Note that the color 0 (black) and color 7 (white) are swapped; a vertex with color 0 is uncolored or white, and vertex with color 7 is black. Also note that Xcas will map the numbers greater than 7 to colors too, but the number of available colors is limited.

\subsection*{5.9.2. Minimal coloring}

The vertex coloring of \(G\) is minimal (or optimal) if the smallest possible number of colors is used. To obtain such a coloring use the command minimal_vertex_coloring.
minimal_vertex_coloring accepts one mandatory argument, the graph G. Optionally, a symbol sto may be passed as the second argument. The command returns the vertex colors in order of vertices (G) or, if the second argument is given, stores the colors as vertex attributes and returns the modified copy of \(G\).
\begin{tabular}{cl}
\multicolumn{2}{c}{ value } \\
\hline 1 & color \\
2 & red \\
3 & green \\
4 & bllow \\
5 & magenta \\
6 & cyan \\
7 & black
\end{tabular}

Table 5.1. interpretation of abstract vertex/edge colors in Xcas
Giac requires the GLPK library \({ }^{5.2}\) to solve the minimal vertex coloring problem (MVCP), which is converted to the equivalent integer linear programming problem and solved by using the branch-and-bound method with specific branch/backtrack techniques [3]. Lower and upper bounds for the number of colors \(n\) are obtained by finding a maximal clique (\(n\) cannot be lower than its cardinality) and by using the heuristic proposed by Brélaz in [1] (which will use at least \(n\) colors), respectively.
The algorithm is usually fast for graphs up to 40 vertices and for sparse graphs in general. For larger, denser graphs (e.g. with edge density around 0.5 , which are the most difficult ones) one may have to wait for several minutes, even hours, and sometimes for a practically infinite time. Note that MVCP is a NP-hard problem, which means that no polynomial (i.e. efficient) algorithm is known.
In the following example, the Grotzsch graph is colored with minimal number of colors by first finding the coloring and then assigning it to the graph by using the highlight_vertex command.
```

> G:=graph("grotzsch")

```
an undirected unweighted graph with 11 vertices and 20 edges
```

> coloring:=minimal_vertex_coloring(G)

```
\([4,2,3,1,1,4,1,3,2,1,2]\)
```

> draw_graph(highlight_vertex(G,vertices(G),coloring),labels=false)

```


To illustrate the combinatorial explosion which characterizes MVCP one can use the following example. Note that finding an optimal coloring in \(G\) is equivalent to finding the minimal clique cover in its complement \(G^{c}\).
First, a random graph \(G\) with 40 vertices and edge density 0.5 is generated. Such a graph is considered to be relatively small.
```

> G:=random_graph (40,0.5)

```
an undirected unweighted graph with 40 vertices and 393 edges
The chromatic number is computed by solving MVCP via minimal_vertex_coloring in less than a second.
```

> chromatic_number(G)

```

\footnotetext{
\(\overline{\text { 5.2. GNU Linear Programming Kit, https://www.gnu.org/software/glpk/ }}\)
}

Next, all maximal cliques in \(G^{c}\) are counted using the clique_stats command.
```

> S:=clique_stats(graph_complement(G))
$\left(\begin{array}{cc}3 & 5 \\ 4 & 66 \\ 5 & 238 \\ 6 & 89 \\ 7 & 3\end{array}\right)$

```
```

>n:=sum(col(S,1))

```

To obtain the minimal coloring, a naive algorithm must check if a combination of \(2,3, \ldots, 8\) maximal cliques forms a cover in \(G^{c}\). In the worst case it will check \(\sum_{k=2}^{8}\binom{n}{k}\) combinations, the number which is computed by the next command line.
```

> sum(comb (n,k),k=2..8)

```

\section*{15776262844602110}

The magnitude of the above result \(\left(\approx 1.6 \times 10^{17}\right)\) indicates that the algorithm would run practically forever. (In particular, assuming that the algorithm requires \(1 \mu s\) to test one combination of cliques, the runtime is about 5070 years.) The fact that chromatic_number required only quarter of a second to obtain minimal coloring indicates that the implemented algorithm is far more sophisticated than a simple brute-force approach.
Note that solving MVCP for different graphs of exactly the same size (but which do not share the same edge structure) may take quite different time in each instance. For example, the time required to color a graph with 50 vertices and edge density 0.5 may take any value between six seconds and six minutes. Also note that some graphs will take exponential time (that is, "forever") to obtain the coloring. Table 5.2 shows the runtimes (in seconds) of solving MVCP for random graphs with \(10 k\) vertices and edge density \(\frac{d}{10}\) for \(k=1,2, \ldots, 7\) and \(d=1,2, \ldots, 5\), using Intel i3-7130U processor at 2.70 GHz . For each pair \((k, d)\), ten graphs were generated and the average runtime was recorded in the table.

\subsection*{5.9.3. Chromatic number}

The command chromatic_number is used for exact computation and approximation of the chromatic number of a graph.
chromatic_number accepts one mandatory argument, the input graph \(G(V, E)\), and optionally a second argument. To obtain only upper and lower bound for the chromatic number (which is much faster than computing exactly) the option approx or interval should be passed as the second argument. Alternatively, an unassigned identifier is passed as the second argument; in that case the corresponding coloring will be stored to it in form of a list of colors of the individual vertices, ordered as in vertices (G).

The command returns the chromatic number \(\chi_{G}\) of the graph \(G\) in the case of exact computation. If the option approx or interval is given, an interval lb. . ub is returned, where lb is the best lower bound and ub the best upper bound for \(\chi_{G}\) found by the algorithm.
The strategy is call minimal_vertex_coloring in the case of exact computation. When approximating the chromatic number, the algorithm will establish the lower bound by searching for maximum clique. The timeout for this operation is set to 5 seconds as it can be time consuming. If the maximum clique is not found after that time, the largest clique found is used. Then, an upper bound is established by by using the heuristic proposed by Brélaz in [1]. Obtaining the bounds for \(\chi_{G}\) is usually very fast, but the difference between the bounds grows with \(|V|\).
Unless the input graph is sparse enough, the algorithm slows down considerably for \(|V|>40\).
\begin{tabular}{clllll}
\multirow{2}{*}{ number of vertices } & \multicolumn{5}{c}{ edge density } \\
\cline { 2 - 6 } & \multicolumn{1}{c}{\(\mathbf{0 . 1}\)} & \multicolumn{1}{c}{\(\mathbf{0 . 2}\)} & \(\mathbf{0 . 3}\) & \(\mathbf{0 . 4}\) & \(\mathbf{0 . 5}\) \\
\hline \(\mathbf{1 0}\) & 0.0008892 & 0.0010818 & 0.0006116 & 0.0005825 & 0.0006331 \\
\(\mathbf{2 0}\) & 0.0014682 & 0.00378 & 0.0038329 & 0.0077918 & 0.0067932 \\
\(\mathbf{3 0}\) & 0.0021163 & 0.0173315 & 0.0372468 & 0.111016 & 0.143657 \\
\(\mathbf{4 0}\) & 0.0252134 & 0.177707 & 0.626175 & 1.67746 & 2.31473 \\
\(\mathbf{5 0}\) & 0.130089 & 1.83819 & 17.3564 & 120.181 & 246.161 \\
\hline
\end{tabular}

Table 5.2. average runtime of the algorithm for minimal coloring (in seconds)
```

> chromatic_number(graph("grotzsch"),cols)
4
> cols
[4,2,3,1,1,4,1,3,2,1,2]
> G:=random_graph(30,0.75)
an undirected unweighted graph with 30 vertices and 313 edges

```
```

> chromatic_number(G)

```
> chromatic_number(G)
 1 0
> G:=random_graph (300,0.05)
 an undirected unweighted graph with 300 vertices and 2196 edges
> chromatic_number(G,approx)
 4..7
```


### 5.9.4. $k$-coloring

The command is_vertex_colorable is used for determining whether the vertices of a graph can be colored with at most $k$ colors.
is_vertex_colorable accepts two or three arguments: the input graph $G(V, E)$, a positive integer $k$ and optionally an unassigned identifier. The command returns true if $G$ can be colored using at most $k$ colors and false otherwise. If an identifier is given, a coloring using at most $k$ colors is stored to it as a list of vertex colors, in the order of vertices (G).

The strategy is to first apply a simple greedy coloring procedure which runs in linear time. If the number of required colors is greater than $k$, the heuristic proposed by Brélaz in [1] is used, which runs in quadratic time. If the number of required colors is still larger than $k$, the algorithm attempts to find the chromatic number $\chi_{G}$ using $k$ as the upper bound in the process.

```
> G:=graph("grotzsch")
```

an undirected unweighted graph with 11 vertices and 20 edges

```
> is_vertex_colorable(G,3)
 false
> is_vertex_colorable(G,4)
 true
> G:=random_graph (70,0.2)
an undirected unweighted graph with 70 vertices and 469 edges
```

```
> chromatic_number(G,approx)
```

```
> chromatic_number(G,approx)
```

$5 . .6$

```
is_vertex_colorable(G,5)
```

false

## 818 msec

From the results of the last two command lines it follows that $\chi_{G}=6$. Finding $\chi_{G}$ by utilizing the next command line is simpler, but requires much more time.

```
> chromatic_number(G)
```

6

### 5.10. Edge coloring

## Chapter 6

## TRAVERSING GRAPHS

### 6.1. WALKS AND TOURS

### 6.1.1. Eulerian graphs

The command is_eulerian is used for determining whether the given graph is an Eulerian graph and for finding Eulerian trails in such graphs.
is_eulerian accepts one or two arguments, the input graph $G(V, E)$ and optionally an unassigned identifier $T$, and returns true if $G$ is Eulerian and false otherwise. If $T$ is given, the corresponding Eulerian trail is stored to it.
The graph $G$ is Eulerian if it has a trail covering all its edges. Such a trail is called Eulerian trail. An Eulerian trail may be closed, in which case it is called Eulerian cycle. Note that every edge $e \in E$ must be visited, i.e. "strolled through", exactly once. However, the edge endpoints (i.e. the vertices in $G$ ) may be visited more than once.
The strategy is to apply Hierholzer's algorithm for finding an Eulerian path [8]. It works by covering one cycle at a time in the input graph. The required time is $O(|E|)$.

```
> is_eulerian(complete_graph(4))
```


## false

```
> purge(T):; is_eulerian(complete_graph([1,2,3,4,5]),T); T
```

Done, true, $[1,2,3,4,1,5,2,4,5,3,1]$

### 6.1.2. Hamiltonian graphs

### 6.2. OPTIMAL ROUTING

### 6.2.1. Shortest paths in unweighted graphs

The command shortest_path is used to find the shortest path between two vertices in an undirected unweighted graph.
shortest_path accepts three arguments: a graph $G(V, E)$, the source vertex $s \in V$ and the target vertex $t \in V$ or a list $T$ of target vertices. The shortest path from source to target is returned. If more targets are specified, the list of shortest paths from the source to each of these vertices is returned.
The strategy is to run breadth-first traversal on the graph $G$ starting from the source vertex $s$. The complexity of the algorithm is therefore $O(|V|+|E|)$.

```
> G:=graph("dodecahedron")
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> shortest_path(G,1,16)
```

$$
[1,6,11,16]
$$

```
> paths:=shortest_path (G,1, \([16,19])\)
 \(\{[1,6,11,16],[1,5,10,14,19]\}\)
> H:=highlight_trail(G,paths, [red,green])
 an undirected unweighted graph with 20 vertices and 30 edges
> draw_graph(H)
```



### 6.2.2. Cheapest paths in weighted graphs

The command dijkstra is used to find the cheapest path between two vertices of an undirected weighted graph.
dijkstra accepts two or three arguments: a weighted graph $G(V, E)$ with nonnegative weights, a vertex $s \in V$ and optionally a vertex $t \in V$ or list $T$ of vertices in $V$. It returns the cheapest path from $s$ to $t$ or, if more target vertices are given, the list of such paths to each target vertex $t \in T$, computed by Dijkstra's algorithm in $O\left(|V|^{2}\right)$ time. If no target vertex is specified, all vertices in $V \backslash\{s\}$ are assumed to be targets.
A cheapest path from $s$ to $t$ is represented with a list [ $[\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vk}], \mathrm{c}$ ] where the first element consists of path vertices with $v_{1}=s$ and $v_{k}=t$, while the second element $c$ is the weight (cost) of that path, equal to the sum of weights of its edges.

### 6.2.3. Traveling salesman problem

### 6.3. SPANNING TREES

### 6.3.1. Constructing a spanning tree

The command spanning_tree accepts one or two arguments, an undirected graph $G$ and optionally a vertex $r \in V$. It returns the spanning tree $T$ of $G$ rooted in $r$ or, if none is given, in the first vertex in the list $V$, obtained by depth-first traversal in $O(|V|+|E|)$ time.

### 6.3.2. Minimal spanning tree

The command minimal_spanning_tree accepts an undirected graph $G(V, E)$ as its only argument and returns its minimal spanning tree obtained by Kruskal's algorithm in $O(|E| \log |V|)$ time.

### 6.3.3. Counting all spanning trees

The command number_of_spanning_trees is used for counting all spanning trees in a graph. number_of_spanning_trees accepts the input graph $G(V, E)$ as its only argument and returns the total number $n$ of mutually different spanning trees in $G$.

The strategy is based on Theorem 2.2.12 (Matrix Tree Theorem) in [24], page 86. First the adjacency matrix $A$ and the degree sequence $\delta$ of $G$ are obtained. Then the matrix $B=\Delta-A$ is computed, where $\Delta$ is the diagonal matrix of order $|V|$ corresponding to $\delta$. The last row and the last column of $B$ are popped out, yielding the matrix $C$ of order $|V|-1$. Now $n=\operatorname{det} C$.

```
> number_of_spanning_trees(graph("octahedron"))
```

    384
    > number_of_spanning_trees(graph("dodecahedron"))

5184000
> number_of_spanning_trees(hypercube_graph(4))
42467328
number_of_spanning_trees(graph("soccerball"))
375291866372898816000

## Chapter 7 <br> Visualizing graphs

### 7.1. Drawing graphs by using various methods

To visualize a graph use the draw_graph command. It is capable to produce a drawing of the given graph using one of the several built-in methods.

### 7.1.1. Overview

draw_graph accepts one or two arguments, the mandatory first one being the graph $G(V, E)$. This command assigns 2D or 3D coordinates to each vertex $v \in V$ and produces a visual representation of $G$ based on these coordinates. The second (optional) argument is a sequence of options. Each option is one of the following:

- labels=true or false: controls the visibility of vertex labels and edge weights (by default true, i.e. the labels and weights are displayed)
- spring: draw the graph $G$ using a multilevel force-directed algorithm
- tree[=r or [r1,r2, ..]]: draw the tree or forest $G$, optionally specifying root nodes for each tree
- bipartite: draw the bipartite graph $G$ keeping the vertex partitions separated
- circle[=L] or convexhull [=L]: draw the graph $G$ by setting the hull vertices from list $L \subset V$ (assuming $L=V$ by default) on the unit circle and all other vertices in origin, subsequently applying a force-directed vertex placement algorithm to generate the layout while keeping the hull vertices fixed
- planar or plane: draw the planar graph $G$ using a force-directed algorithm
- plot3d: draw the connected graph $G$ as if the spring option was enabled, but with vertex positions in 3D instead of 2D
- any unassigned identifier $P$ : when given, the vertex coordinates will be stored to it in form of a list

The style options spring, tree, circle, planar and plot3d cannot be mixed, i.e. at most one can be specified. The option labels may be combined with any of the style options. Note that edge weights will not be displayed when using plot3d option when drawing a weighted graph.

When no style option is specified, the algorithm first checks if the graph $G$ is a tree or if it is bipartite, in which cases it is drawn accordingly. Otherwise, the graph is drawn as if the option circle was specified.

Tree, circle and bipartite drawings can be obtained in linear time with a very small overhead, allowing graphs to be drawn quickly no matter the size. The force-directed algorithms are more expensive and operating in the time which is quadratic in the number of vertices. Their performance is, nevertheless, practically instantaneous for graphs with several hundreds of vertices (or less).

### 7.1.2. Drawing disconnected graphs

When the input graph has two or more connected components, each component is drawn separately and the drawings are subsequently arranged such that the bounding box of the whole drawing has the smallest perimeter under condition that as little space as possible is wasted inside the box.

For example, the command lines below draw a sparse random planar graph.

```
> G:=random_planar_graph (100,0.9,0)
```

an undirected unweighted graph with 100 vertices and 74 edges

```
> draw_graph(G,planar)
```



### 7.1.3. Spring method

When the option spring is specified, the input graph is drawn using the force-directed algorithm described in [11] (for an example of such a drawing see Figure 4.1). The idea, originally due to Fruchterman and Reingold [6], is to simulate physical forces in a spring-electrical model where the vertices and edges represent equally charged particles and springs connecting them, respectively.
In a spring-electrical model, each vertex is being repulsed by every other vertex with a force inversely proportional to the distance between them. At the same time, it is attracted to each of its neighbors with a force proportional to the square of the distance. Assuming that $x_{v}$ is the vector representing the position of the vertex $v \in V$, the total force $F_{v}$ applied to $v$ is equal to

$$
F_{v}=\sum_{w \in V \backslash\{v\}}-\frac{C K^{2}}{\left\|x_{v}-x_{w}\right\|^{2}}\left(x_{v}-x_{w}\right)+\sum_{w \in N(v)} \frac{\left\|x_{v}-x_{w}\right\|}{K}\left(x_{v}-x_{w}\right),
$$

where $N(v)$ is the set of neighbors of $v$ and $C, K$ are certain positive real constants (actually, $K$ may be any positive number, it affects only the scaling of the entire layout). Applying the forces iteratively and updating vertex positions in each iteration (starting from a random layout) leads the system to the state of minimal energy. By applying a certain "cooling" scheme to the model which cuts down the force magnitude in each iteration. the layout "freezes" after a number of iterations large enough to achieve the minimal energy state.
The force-directed method is computationally expensive and for larger graphs the pleasing layout cannot be obtained most of the time since the algorithm, starting with a random initial layout, gets easily "stuck" in the local energy minimum (ideally, the vertex positions should settle in the global minimal energy constellation). To avoid this a multilevel scheme is applied. The input graph is iteratively coarsened, either by removing the vertices from a maximal independent vertex set or contracting the edges of a maximal matching in each iteration. Each coarsening level is then processed by the force-directed algorithm, starting from the deepest (coarsest) one and lifting the obtained layout to the first upper level, using it as the initial layout for that level. The lifting is achieved by using the prolongation matrix technique described in [12]. To support drawing of large graphs (with 1000 vertices or more), the matrices used in the lifting process are stored as sparse matrices. The multilevel algorithm is significantly faster than the original, single-level one and usually produces better results.

Graph layouts obtained by using force-directed method have a unique property of reflecting symmetries in the design of the input graph, if any. Thus the drawings become more appealing and illustrate the certain properties of the input graph better. To make the symmetry more prominent, the drawing is rotated such that the axis, with respect to which the layout exhibits the largest symmetry score, becomes vertical. As the symmetry detection is in general very computationally expensive - up to $O\left(|V|^{7}\right)$ when using the symmetry measure of Purchase [23], for example - the algorithm deals only with the convex hull and the barycenter of the layout, which may not always be enough to produce the optimal result. Nevertheless, this approach is very fast and seems to work most of the time for graphs with a high level of symmetry (for example the octahedral graph).

For example, the following command lines produce a drawing of the tensor product of two graphs using the force-directed algorithm.

```
> G1:=graph(trail(1,2,3,4,5,2))
```

an undirected unweighted graph with 5 vertices and 5 edges

```
> G2:=star_graph(3)
```

an undirected unweighted graph with 4 vertices and 3 edges

```
G:=tensor_product(G1,G2)
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> draw_graph(G,spring,labels=false)
```



The following command lines demonstrate drawing of a much larger graph.

```
> S:=sierpinski_graph (5,4)
```

an undirected unweighted graph with 1024 vertices and 2046 edges

```
> draw_graph(S,spring)
```



Note that vertex labels are automatically suppressed because of the large number of vertices. On our system, the algorithm took less than 2 seconds to produce the layout.
The spring method is also used for creating 3D graph layouts, which are obtained by passing the option plot3d to the draw_graph command.

```
> draw_graph(graph("soccerball"),plot3d,labels=false)
```



[^5]Done, Done

```
G1:=highlight_edges(G1,edges(G1),red)
```

an undirected unweighted graph with 12 vertices and 30 edges

```
> G2:=highlight_edges(G2,edges(G2),magenta)
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> G:=disjoint_union(G1,G2)
```

an undirected unweighted graph with 32 vertices and 60 edges

```
draw_graph(G,plot3d,labels=false)
```



### 7.1.4. Drawing trees

When the tree $[=r]$ option is specified and the input graph $G$ is a tree (and $r \in V$ ), it is drawn using a fast but simple node positioning algorithm inspired by the well-known algorithm of Walker [22], using the first vertex (or the vertex $r$ ) as the root node. When drawing a rooted tree, one usually requires the following aesthetic properties [2].

A1. The layout displays the hierarchical structure of the tree, i.e. the $y$-coordinate of a node is given by its level.

A2. The edges do not cross each other.
A3. The drawing of a sub-tree does not depend on its position in the tree, i.e. isomorphic subtrees are drawn identically up to translation.

A4. The order of the children of a node is displayed in the drawing.
A5. The algorithm works symmetrically, i.e. the drawing of the reflection of a tree is the reflected drawing of the original tree.

The algorithm implemented in Giac generally satisfies all the above properties but A3. Instead, it tries to spread the inner sub-trees evenly across the available horizontal space. It works by organizing the structure of the input tree into levels by using depth-first search and laying out each level subsequently, starting from the deepest one and climbing up to the root node. In the end, another depth-first traversal is made, shifting the sub-trees horizontally to avoid intersections between their edges. The algorithm runs in $O(|V|)$ time and uses the minimum of horizontal space to draw the tree with respect to the specified root node $r$.
For example, the following command line produces the drawing of a random tree on 100 nodes.

```
draw_graph(random_tree(100))
```



### 7.1.5. Drawing planar graphs

The algorithm implemented in Giac which draws planar graphs uses augmentation techniques to extend the input graph $G$ to a graph $G^{\prime}$, which is homeomorphic to some triconnected graph, by adding temporary edges. The augmented graph $G^{\prime}$ is then drawn using Tutte's barycentric method [21], a force-directed algorithm which puts each vertex in the barycenter of its neighbors. It is guaranteed that a (non-strict) convex drawing will be produced, without edge crossings. In the end, the duplicate of the outer face and the temporary edges inserted during the augmentation stage are removed.

Tutte's algorithm requires that the vertices of the chosen outer face are initially fixed somewhere the boundary of a convex polygon. In addition, to produce a more flexible layout, the outer face is duplicated such that the subgraph induced by the vertices on both the outer face and its duplicate is a prism graph. Then only the duplicates of the outer face vertices are fixed, allowing the outer face itself to take a more natural shape. The duplicate of the outer face is removed after a layout is produced.
The augmentation process consists of two parts. Firstly, the input graph $G$ is decomposed into biconnected components called blocks using the depth-first search (see [7], page 25). Each block is then decomposed into faces (represented by cycles of vertices) using Demoucron's algorithm (see [7], page 88, with a correction proposed in [14]). Embeddings obtained for each blocks are then combined by adding one temporary edge for each articulation point, joining the two corresponding blocks. Figure 7.1 shows the outer faces of two blocks $B_{1}$ and $B_{2}$, connected by an articulation point (cut vertex). The temporary edge (shown in blue) is added to join $B_{1}$ and $B_{2}$ into a single block. After "folding up" the tree of blocks, the algorithm picks the largest face in the resulting biconnected graph to be the outer face of the planar embedding.

The second part of the augmentation process consists of recursively decomposing each non-convex inner face into several convex polygons by adding temporary edges. An inner face $f=\left(v_{1}, \ldots, v_{n}\right)$ is non-convex if there exist $k$ and $l$ such that $1 \leqslant k<l-1<n$ and either $v_{k} v_{l} \in E$, in which case the edge $v_{k} v_{l}$ is a chord (see Figure 7.2 for an example) or there exists a face $g=\left(w_{1}, w_{2}, \ldots, v_{k}, \ldots\right.$, $v_{l}, \ldots, w_{m-1}, w_{m}$ ) such that the vertices $v_{k+1}, \ldots, v_{l-1}$ are not contained in $g$ (see Figure 7.3 for an example). In Figures 7.1, 7.2 and 7.3, the temporary edges added by the algorithm are drawn in green.


Fig. 7.1. joining two blocks


Fig. 7.2. a chorded face


Fig. 7.3. two adjacent faces

This method of drawing planar graphs operates in $O\left(|V|^{2}\right)$ time. Nevertheless, it is quite fast for graphs up to 1000 vertices, usually producing results in less than a second. The drawback of this method is that it sometimes creates clusters of vertices which are very close to each other, resulting in a very high ratio of the area of the largest inner face to the area of the smallest inner face. However, if the result is not satisfactory, one should simply redraw the graph and repeat the process until a better layout is found. The planar embedding will in general be different each time.

Another drawback of this method is that sparse planar graphs are sometimes drawn poorly.
The following example shows that the above described improvement of the barycentric method handles non-triconnected graphs well.

```
>G:=graph(trail (1, 2, 3, 4, 5,6,7,8,9,10,1),trail(11, 12, 6, 11, 1, 12))
```

an undirected unweighted graph with 12 vertices and 15 edges

```
> draw_graph(G,planar)
```



Note that the inner diamond-like shape in the above drawing would end up flattened-making the two triangular faces invisible - if the input graph was not augmented. It is so because the vertices with labels 11 and 12 are "attracted" to each other (namely, the two large faces are "inflating" themselves to become convex), causing them to merge eventually.
In the following example the input graph $G$ is connected but not biconnected (it has two articulation points). It is obtained by removing a vertex from the Sierpiński triangle graph $S T_{3}^{3}$. Note that the syntax mode is set to Xcas in this example, so the first vertex label is zero.

```
> G:=sierpinski_graph(3,3,triangle)
```

an undirected unweighted graph with 15 vertices and 27 edges

```
> G:=delete_vertex(G,3)
```

an undirected unweighted graph with 14 vertices and 23 edges

```
> draw_graph(G,planar,labels=false)
```



In the above example, several redraws were required to obtain a good planar embedding.

### 7.1.6. Circular graph drawings

The drawing method selected by specifying the option circle=L or convexhull=L when calling draw_graph on a triconnected graph $G(V, E)$, where $L \subset V$ is a set of vertices in $G$, uses the following strategy. First, positions of the vertices from $L$ are fixed so that they form a regular polygon on the unit circle. Other vertices, i.e. all vertices from $V \backslash L$, are placed in origin. Then an iterative force-directed algorithm [16], similar to TuTte's barycentric method, is applied to obtain the final layout.
This approach gives best results for symmetrical graphs such as generalized Petersen graphs. In addition, if the input graph is planar, the drawing will also be planar (there is a possibility, however, that some very short edges may cross each other as the number of force update iterations is limited).

In the following example the Sierpiński graph $S_{4}^{2}$ is drawn using the above method. Note that the command lines below are executed in Xcas mode.

```
> G:=sierpinski_graph (2,4)
```

an undirected unweighted graph with 16 vertices and 30 edges

```
> draw_graph(G,circle=[0,1,4,5,7,13,15,14,11,10,8,2])
```



### 7.2. CUSTOM VERTEX POSITIONS

### 7.2.1. Setting vertex positions

The command set_vertex_positions is used to assign custom coordinates to vertices of a graph to be used when drawing the graph.
set_vertex_positions accepts two arguments, the graph $G(V, E)$ and the list $L$ of positions to be assigned to vertices in order of vertices (G). The positions may be complex numbers, lists of coordinates or points (geometrical objects created with the command point). set_vertex_positions returns the copy $G^{\prime}$ of $G$ with the given layout stored in it.
Any subsequent call to draw_graph with $G^{\prime}$ as an argument and without specifying the drawing style will result in displaying vertices at the stored coordinates. However, if a drawing style is specified, the stored layout is ignored (although it stays stored in $G^{\prime}$ ).

```
> G:=digraph([1, 2, 3,4,5],%{[1,2],[2,3],[3,4], [2,5]%})
```

a directed unweighted graph with 5 vertices and 4 arcs

```
> draw_graph(G,circle)
```



```
> H:=set_vertex_positions(G,[[0,0],[0.5,0],[1.0,0],[1.5,0],[0.5,1]])
```

a directed unweighted graph with 5 vertices and 4 arcs

```
> draw_graph(H)
```



### 7.2.2. Generating vertex positions

Vertex positions can be generated for a particular graph $G$ by using the draw_graph command with the additional argument $P$ which should be an unassigned identifier. After the layout is obtained, it will be stored to $P$ as a list of positions (complex numbers for 2D drawings or points for 3D drawings) for each vertex in order of vertices (G).

This feature combines well with the set_vertex_positions command, as when one obtains the desired drawing of the graph $G$ by calling draw_graph, the layout coordinates can be easily stored to the graph for future reference. In particular, each subsequent call of draw_graph with $G$ as an argument will display the stored layout. The example below illustrates this property by setting a custom layout to the octahedral graph.

```
> G:=graph("octahedron")
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(G)
```



```
> draw_graph(G,P,spring):;
```

Now $P$ contains vertex coordinates, which can be permanently stored to $G$ :

```
> G:=set_vertex_positions(G,P)
```

an undirected unweighted graph with 6 vertices and 12 edges

```
> draw_graph(G)
```



It should be noted that, after a particular layout is fixed, it stays valid when some edges or vertices are removed or when an edge is contracted. The stored layout becomes invalid only if a new vertex is added to the graph (unless its position is specified by set_vertex_attribute upon the creation) or if the position attribute of an existing vertex is discarded.

### 7.3. Highlighting parts of a graph

### 7.3.1. Highlighting vertices

The command highlight_vertex is used for changing color of one or more vertices in a graph.
highlight_vertex accepts two or three arguments: the graph $G(V, E)$, a vertex $v \in V$ or a list $L \subset V$ of vertices and optionally the new color (or a list of colors) for the selected vertices (the default color is green). It returns a modified copy of $G$ in which the specified vertices are colored with the specified color.

```
> G:=graph("dodecahedron")
```

an undirected unweighted graph with 20 vertices and 30 edges

```
> L:=maximum_independent_set(G)
```

$[2,4,6,12,13,10,16,19]$

```
> draw_graph(highlight_vertex(G,L))
```



### 7.3.2. Highlighting edges and trails

To highlight an edge or a set of edges in a graph, use the highlight_edges command. If the edges form a trail, it is usually more convenient to use the highlight_trail command (see below).
highlight_edges accepts two or three arguments: the graph $G(V, E)$, an edge $e$ or a list of edges $L$ and optionally the new color (or a list of colors) for the selected edges (the default color is red). It returns a modified copy of $G$ in which the specified edges are colored with the specified color.

```
> M:=maximum_matching(G)
 {[1, 2], [5, 4], [6, 11], [3, 8], [7, 12], [9, 13], [10, 15], [14, 19], [16, 17]}
```

> draw_graph(highlight_edges (G, M) )


## > S:=spanning_tree (G)

an undirected unweighted graph with 20 vertices and 19 edges

```
> draw_graph(highlight_edges(G,edges(S),magenta))
```


highlight_trail accepts two or three arguments: the input graph $G(V, E)$, a list $L \subset V$ or a list [L1, L2, ..., Lk] of such lists (each list represents the vertices of the corresponding trail) and optionally a positive integer $c$ or a list of positive integers [ $c 1, c 2, \ldots, c k$ ]. The command returns the copy of $G$ in which edges between consecutive vertices in $L$ are highlighted with color $c$ (by default red) or the trail represented by $L_{i}$ is highlighted with color $c_{i}$ for $i=1,2, \ldots, k$.

Note that a trail can cross itself, which means that the elements of $L$ are not required to be unique.

```
> draw_graph(highlight_trail(G,[6,15,20,19,18,17,16,11,7,2,3,8,13,9,14,10]))
```



### 7.3.3. Highlighting subgraphs

The command highlight_subgraph is used for highlighting subgraph(s) of the given graph. highlight_subgraph accepts two or four arguments: the graph $G(V, E)$, a subgraph $S$ of $G$ or a list of subgraphs of $G$ and optionally the new colors for edges and vertices of the selected subgraph(s), respectively. It returns a modified copy of $G$ with the selected subgraph(s) colored as specified.

```
> G:=graph(%{[1,2],[2,3],[3,1], [3,4], [4,5], [5,6], [6,4]%})
```

an undirected unweighted graph with 6 vertices and 7 edges

```
> A:=articulation_points(G)
```

$$
[3,4]
$$

```
> B:=biconnected_components(G)
```

$$
[[4,6,5],[3,4],[1,3,2]]
$$

## > H:=highlight_vertex (G,A, magenta)

an undirected unweighted graph with 6 vertices and 7 edges

```
> draw_graph(H)
```


> S:=induced_subgraph (G, B[0])
an undirected unweighted graph with 3 vertices and 3 edges

```
> H:=highlight_subgraph(G,S)
```

an undirected unweighted graph with 6 vertices and 7 edges

```
> draw_graph(H,spring)
```



## Bibliography

[1] Daniel Brélaz. New Methods to Color the Vertices of a Graph. Communications of the ACM, 22:251-256, 1979.
[2] Cristoph Buchheim, Michael Jünger, and Sebastian Leipert. Improving Walker's Algorithm to Run in Linear Time. In M. T. Goodrich and S. G. Kobourov, editors, Graph Drawing 2002, Lecture Notes in Computer Science vol 2528, pages 344-353. Springer-Verlag Berlin Heidelberg, 2002.
[3] Isabel M. Díaz and Paula Zabala. A Branch-and-Cut Algorithm for Graph Coloring. Discrete Applied Mathematics, 154:826-847, 2006.
[4] Jack Edmonds. Paths, Trees, and Flowers. In Gessel I. and GC. Rota, editors, Classic Papers in Combinatorics, pages 361-379. Birkhäuser Boston, 2009. Modern Birkhäuser Classics.
[5] Shimon Even and Robert E. Tarjan. Computing an st-numbering. Theoretical Computer Science, 2:339-344, 1976.
[6] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-Directed Placement. Software: Practice and Experience, 21:1129-1164, 1991.
[7] Alan Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.
[8] Carl Hierholzer. Ueber die möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6:30-32, 1873.
[9] Andreas M. Hinz, Sandi Klavžar, and Sara S. Zemljič. A survey and classification of Sierpiński-type graphs. Discrete Applied Mathematics, 217:565-600, 2017.
[10] John E. Hopcroft and Richard M. Karp. An $n^{5 / 2}$ algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2:225-231, 1973.
[11] Yifan Hu. Efficient and High Quality Force-Directed Graph Drawing. Mathematica Journal, 10:37-71, 2005.
[12] Yifan Hu and Jennifer Scott. A Multilevel Algorithm for Wavefront Reduction. SIAM Journal on Scientific Computing, 23:1352-1375, 2001.
[13] Arthur B. Kahn. Topological sorting of large networks. Communications of the ACM, 5:558-562, 1962.
[14] Wendy Myrwold and Willian Kocay. Errors in graph embedding algorithms. Journal of Computer and System Sciences, 77:430-438, 2011.
[15] Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120:197-207, 2002.
[16] Bor Plestenjak. An Algorithm for Drawing Planar Graphs. Software: Practice and Experience, 29:973-984, 1999.
[17] Angelika Steger and Nicholas C. Wormald. Generating random regular graphs quickly. Combinatorics Probability and Computing, 8:377-396, 1999.
[18] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing, 1:146-160, 1972.
[19] Robert E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM, 26:690-715, 1979.
[20] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 363:28-42, 2006.
[21] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, s3-13:743-767, 1963.
[22] John Q. Walker II. A node-positioning algorithm for general trees. Software: Practice and Experience, 20:685-705, 1990.
[23] E. Welch and S. Kobourov. Measuring Symmetry in Drawings of Graphs. Computer Graphics Forum, 36:341-351, 2017.
[24] Douglas B. West. Introduction to Graph Theory. Pearson Education, 2002.

## Command Index

antiprism_graph . . . . . . . . . . . . . . . . . . 18 lcf_graph ..... 21
complete_binary_tree ..... 14
complete_graph ..... 13
complete_kary_tree ..... 14
cycle_graph ..... 12
digraph ..... 10
graph .....  9
grid_graph ..... 18
hypercube_graph ..... 16
interval_graph ..... 15
is_graphic_sequence ..... 15
kneser_graph ..... 15
odd_graph ..... 15
path_graph ..... 13
petersen_graph ..... 20
prism_graph ..... 18
sequence_graph ..... 15
sierpinski_graph ..... 20
star_graph ..... 17
torus_grid_graph ..... 18
trail ..... 13
web_graph ..... 17
wheel_graph ..... 17


[^0]:    $\overline{\text { 2.1. https://en.wikipedia.org/wiki/Sierpinski_triangle }}$

[^1]:    $\overline{\text { 2.2. For the details about LCF notation, see https://en.wikipedia.org/wiki/LCF notation. }}$

[^2]:    2.3. See https://en.wikipedia.org/wiki/Dual_graph for the strict definition of plane dual graph.

[^3]:    > H:=graph (trail $(1,2,3,4,2)$,trail $(4,5,6,7,5)$ )

[^4]:    5.1. For a good description of the blossom algorithm, see https://en.wikipedia.org/wiki/Blossom_algorithm.

[^5]:    > G1:=graph("icosahedron"):; G2:=graph("dodecahedron"):;

