
lab_hash
Hellish Hash Tables

Due: Mar 31, 23-59 PM

Doxygen Lab handout Lab slides

Assignment Description
In this lab you will be implementing functions on hash tables with three different collision resolution strategies
— separate chaining, linear probing, and double hashing. These hash tables serve an implementation of the
dictionary abstract data type.

Lab Insight
Hashing is very powerful as it enables us to build data structure like hash tables and maps. On top of which,
there are variations of hashing that can be used to help encrypt data. If you are interested in learning more
about the applications of hashing, you can take CS 498 Applied Cryptography, CS 461 Computer Security I,
and CS 463 Computer Security II.

Getting Set Up
From your CS 225 git directory, run the following on EWS:

git fetch release
git merge release/lab_hash -m "Merging initial lab_hash files"

If youʼre on your own machine, you may need to run:

git fetch release
git merge --allow-unrelated-histories release/lab_hash -m "Merging initial lab_hash files"

Upon a successful merge, your lab_hash files are now in your lab_hash directory.

The code for this activity resides in the lab_hash/ directory. Get there by typing this in your working directory:

cd lab_hash/

Notes About list Iterators
When you are working with the Separate Chaining Hash Table, you will need to iterate over the linked list of a
given bucket. Since the hash tables are templatized, however, this causes us a slight headache syntactically in
C++. To define a list iterator on a given bucket, you will need to declare it as follows:

typename list< pair<K,V> >::iterator it = table[i].begin();

! If you want to speed up compile time on a make, try using make -j <target>, ie make -j test

Assignment
Description

Lab Insight

Getting Set Up

Notes About
list Iterators

Separate
Chaining Hash
Table

Linear Probing
Hash Table

Double
Hashing Hash
Table

Committing
Your Code

Grading
Information

https://courses.engr.illinois.edu/cs225/sp2019/doxygen/lab_hash/files.html
https://courses.engr.illinois.edu/cs225/sp2019/assets/assignments/labs/hash/cs225sp19-lab_hash-handout.pdf
https://docs.google.com/presentation/d/1ALOR2thpcgm2Qku_9nPKqkeNrRnPMiPoDX9v3B0CTPs/edit?usp=sharing

Separate Chaining Hash Table
Open your schashtable.cpp. In this file, several functions have not been implemented—your job is to
implement them.

insert
insert, given a key and a value, should insert the (key, value) pair into the hash table.
You do not need to concern yourself with duplicate keys. When in client code and using our hash tables,
the proper procedure for updating a key is to first remove the key, then re-insert the key with the new
data value.
Here is the Doxygen for insert.

find
given a key, should return the corresponding value associated with that key
Here is the Doxygen for find.

remove
Given a key, remove it from the hash table.
If the given key is not in the hash table, do nothing.
You may find the Doxygen for remove helpful.

resizeTable
This is called when the load factor for our table is .
It should resize the internal array for the hash table. Use the return value of findPrime with a parameter
of double the current size to set the size. See other calls to resize for reference.
Here is the Doxygen for resizeTable.

Linear Probing Hash Table
Open your lphashtable.cpp. In this file, you will be implementing the following functions.

insert
insert, given a key and a value, should insert the (key, value) pair into the hash table.
Remember the collision handling strategy for linear probing! (To maintain compatibility with our outputs,
you should probe by moving forwards through the internal array, not backwards).
You do not need to concern yourself with duplicate keys. When in client code and using our hash tables,
the proper procedure for updating a key is to first remove the key, then re-insert the key with the new
data value.
Here is the Doxygen for insert.
You MUST handle collisions in your insert function, or your hash table will be broken!

" If you use the list::erase() function, be advised that if you erase the element pointed to by an
iterator that the parameter iterator is no longer valid. For instance:

typename list< pair<K,V> >::iterator it = table[i].begin();
table[i].erase(it);
it++;

is invalid because it is invalidated after the call to erase(). So, if you are looping with an iterator,
remember a break statement after you call erase()!

ge0.7

https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classHashTable.html#a58911ead3da7cc3c897268e9ee5e54f9
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classHashTable.html#a2c27ff59f5b5659cc267ef2dc42e227e
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classSCHashTable.html#a51dde58e1f013e3d5f1bc37c2ee3bd9b
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classHashTable.html#ac9898f4d45a60bf92f0ee0e42ef5d31e
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classLPHashTable.html#ab4d706c5322930f06fbd20342cb16adf

findIndex
given a key, should return the corresponding index associated with that key
Here is the Doxygen for findIndex.

remove
Given a key, remove it from the hash table.
If the given key is not in the hash table, do nothing.
You may find the Doxygen for remove helpful.

resizeTable
This is called when the load factor for our table is .
It should resize the internal array for the hash table. Use the return value of findPrime with a parameter
of double the current size to set the size. See other calls to resize for reference.
Here is the Doxygen for resizeTable.

Double Hashing Hash Table
Open your dhhashtable.cpp. In this file, you will be implementing the following functions.

insert
insert, given a key and a value, should insert the (key, value) pair into the hash table.
Remember the collision handling strategy for double hashing! (To maintain compatibility with our
outputs, you should probe by moving forwards through the internal array, not backwards).
You do not need to concern yourself with duplicate keys. When in client code and using our hash tables,
the proper procedure for updating a key is to first remove the key, then re-insert the key with the new
data value.
Here is the Doxygen for insert.
You MUST handle collisions in your insert function, or your hash table will be broken!

findIndex
given a key, should return the corresponding index associated with that key
Here is the Doxygen for findIndex.

remove
Given a key, remove it from the hash table.
If the given key is not in the hash table, do nothing.
You may find the Doxygen for remove helpful.

Committing Your Code
Guide: How to submit CS 225 work using git

Grading Information
The following files (and ONLY those files!!) are used for grading this lab:

dhhashtable.cpp
lphashtable.cpp
schashtable.cpp

If you modify any other files, they will not be grabbed for grading and you may end up with a “stupid zero.”

ge0.7

https://courses.engr.illinois.edu/cs225/sp2019/guides/course-git/
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classLPHashTable.html#a28b44abf12ea34ae0f0c38edf4e316dc
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classLPHashTable.html#ae4ec845e61ecbad02e31e71882322966
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classLPHashTable.html#a8b36021f715197716ed0ec109a686e45
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classDHHashTable.html#a6bd2e4cac55edd1ce9266726a6ab14e2
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classDHHashTable.html#a0165b3c73e57d0d7a96035366eba1fda
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_hash/classDHHashTable.html#a0f1d9b9fc9bc93c53f5cc3e6d244f704

