
lab_huffman
Hazardous Huffman Codes

Due: Mar 03, 23-59 PM

Doxygen Lab handout

Assignment Description
In this lab, you will be exploring a different tree application (Huffman Trees), which allow for efficient lossless

compression of files. There are a lot of files in this lab, but you will only be modifying huffman_tree.cpp.

Lab Insight
Huffman encoding is a fundamental compression algorithms for data. Compressing data is a very powerful

tool that can represent a given set of information in less space, thus allowing the data to be transferred more

efficiently. Different types of compression can be seen within images formats like JPG(lossy) or PNG(lossless).

It can also be seen in ZIP files for compressing multiple files. The concept of encoding data can be seen in

future courses CS 438, Communication Networks, dealing with transferring large amounts of data, and CS

461, Computer Security, which deals with encoding data for a layer of privacy.

Getting Set Up
From your CS 225 git directory, run the following on EWS:

git fetch release
git merge release/lab_huffman -m "Merging initial lab_huffman files"

If youʼre on your own machine, you may need to run:

git fetch release
git merge --allow-unrelated-histories release/lab_huffman -m "Merging initial lab_huffman
files"

Upon a successful merge, your lab_huffman files are now in your lab_huffman directory.

The code for this activity resides in the lab_huffman/ directory. Get there by typing this in your working

directory:

cd lab_huffman/

Video Intro

There is a video introduction for this lab! If you are interested in seeing a step-by-step execution of the

Huffman Tree algorithms, please watch it:

! The following is meant to help you understand the task for this lab. It is strongly recommended that

you watch the video to understand the motivation for why weʼre talking about Huffman Encoding as well

as how the algorithm works.

Assignment
Description

Lab Insight

Getting Set Up

Video Intro

The Huffman
Encoding

Implement
buildTree()
and
removeSmallest()

Implement
decode()

Implement
writeTree()
and readTree()

Testing Your
Code!

Submitting
Your Work

Good luck!

https://courses.engr.illinois.edu/cs225/sp2019/doxygen/lab_huffman/files.html
https://courses.engr.illinois.edu/cs225/sp2019/assets/assignments/labs/huffman/cs225fa18-lab_huffman-handout.pdf
https://en.wikipedia.org/wiki/Huffman_coding

CS 225 Huffman Encoding

The Huffman Encoding
In 1951, while taking an Information Theory class as a student at MIT, David A. Huffman and his classmates

were given a choice by the professor Robert M. Fano: they can either take the final exam, or if they want to opt

out of it they need to find the most efficient binary code. Huffman took the road less traveled and the rest

they say is history.

Put simply, Huffman encoding takes in a text input and generates a binary code (a string of 0 s̓ and 1 s̓) that

represents that text. Let s̓ look at an example: Input message: “feed me more food”

Building the Huffman tree
Input: “feed me more food”

Step 1: Calculate frequency of every character in the text, and order by increasing frequency. Store in a

queue.

r : 1 | d : 2 | f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

Step 2: Build the tree from the bottom up. Start by taking the two least frequent characters and merging them

(create a parent node for them). Store the merged characters in a new queue:

rd:3

r:1 d:2

SINGLE: f : 2 | m : 2 | o : 3 | 'SPACE' : 3 | e : 4

MERGED: rd : 3

Step 3: Repeat Step 2 this time also considering the elements in the new queue. ‘fʼ and ‘mʼ this time are the

two elements with the least frequency, so we merge them:

https://www.youtube.com/watch?v=fWk6Y8Rd6bs

rd:3

r:1 d:2

fm:4

f:2 m:2

SINGLE: o : 3 | 'SPACE' : 3 | e : 4

MERGED: rd : 3 | fm : 4

Step 4: Repeat Step 3 until there are no more elements in the SINGLE queue, and only one element in the

MERGED queue:

rd:3

r:1 d:2

fm:4

f:2 m:2

o+SPACE:6

o:3 SPACE:3

SINGLE: e : 4

MERGED: rd : 3 | fm : 4 | o+SPACE : 6

rd:3

r:1 d:2

fm:4

f:2 m:2

o+SPACE:6

o:3 SPACE:3

rde:7

e:4

SINGLE:

MERGED: fm : 4 | o+SPACE : 6 | rde: 7

rd:3

r:1 d:2

fm:4

f:2 m:2

o+SPACE:6

o:3 SPACE:3

rde:7

e:4

fmo+SPACE:10

SINGLE:

MERGED: rde: 7 | fmo+SPACE: 10

rd:3

r:1 d:2

fm:4

f:2 m:2

o+SPACE:6

o:3 SPACE:3

rde:7

e:4

fmo+SPACE:10

rdefmo+SPACE:17

SINGLE:

MERGED: rdefmo+SPACE: 17

From Text to Binary
Now that we built our Huffman tree, its time to see how to encode our original message “feed me more food”

into binary code.

Step 1: Label the branches of the Huffman tree with a ‘0ʼ or ‘1.̓ BE CONSISTENT: in this example we chose to

label all left branches with ‘0ʼ and all right branches with ‘1.̓

Step 2: Taking one character at a time from our message, traverse the Huffman tree to find the leaf node for

that character. The binary code for the character is the string of 0 s̓ and 1 s̓ in the path from the root to the

leaf node for that character. For example: ‘fʼ has the binary code: 100

So our message “feed me more food” becomes 10000000111111010011110111001000111100110110011

From Binary Code to Text
We can also decode strings of 0 s̓ and 1 s̓ into text using our Huffman tree. What word does the code

01000011 translate to?

What About the Rest of the Alphabet?
Notice that in our example above, the Huffman tree that we built does not have all the alphabet s̓ letters; so

while we can encode our message and some other words like “door” or “deer”, it wonʼt help us if we need to

send a message containing a letter that s̓ not in the tree. For our Huffman encoding to be applicable in the real

world we need to build a huffman tree that contains all the letters of the alphabet; which means instead of

" Efficiency of Huffman Encoding Notice that in our Huffman tree, the more frequent a character is,

the closer it is to the root, and as a result the shorter its binary code is. Can you see how this will result

in compressing the encoded text?

using “feed me more food” to build our tree, we should use a text document that contains all letters of the

alphabet to build our Huffman tree. As a fun example, here is the Huffman tree that results when we use the

text of the Declaration of Independence to build it.

Here is the Doxygen generated list of files and their uses.

Implement buildTree() and removeSmallest()
Your first task will be to implement the buildTree() function on a HuffmanTree. This function builds a

HuffmanTree based on a collection of sorted Frequency objects. Please see the Doxygen for buildTree() for

details on the algorithm. You also will probably want to consult the list of constructors for TreeNodes.

You should implement removeSmallest() first as it will help you in writing buildTree()!

Implement decode()
Your next task will be using an existing HuffmanTree to decode a given binary file. You should start at the root

and traverse the tree using the description given in the Doxygen. Here is the Doxygen for decode().

You will probably find the Doxygen for BinaryFileReader useful here.

Weʼre using a standard stringstream here to build up our output. To append characters to it, use the

following syntax:

ss << myChar;

Implement writeTree() and readTree()
Finally, you will write a function used for writing HuffmanTrees to files in an efficient way, and a function to

read this efficiently stored file-based representation of a HuffmanTree.

Here is the Doxygen for writeTree() and the Doxygen for readTree().

You will probably find the Doxygen for BinaryFileWriter useful here.

Testing Your Code!
Weʼve provided you with a collection of data files to help you explore Huffman encoding. Run the following

command to download and extract the files. They will be in a newly-created data directory.

" Static Keyword The static keyword means that the variable or function is shared by all instances of

the class. This means that if a static function is used that inside the function, no references to the

functions member variables may be used (no access to this pointer). Static functions can be beneficial

when it is inconvient to make a new instance of a class, but it would be nice to use the member function.

For example, if youʼre inside a member function and want to call a static function of that class you can

do myStaticHelper(args) the same way youʼd call another member function.

" Tie Breaking To facilitate grading, make sure that when building internal nodes, the left child has the

smallest frequency.

In removeSmallest(), break ties by taking the front of the singleQueue!

https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/files.html
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classHuffmanTree.html#a228b8105e30834541031e93815579bd7
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classHuffmanTree_1_1TreeNode.html#aed6adfe9e0595b046986a2bcf57c87d7
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classHuffmanTree.html#a7187cc0001a39bd17848a2dfe3bd1d8b
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classHuffmanTree.html#a88b1d0fb9cc2462db265703e4fe57c59
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classBinaryFileReader.html
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classHuffmanTree.html#a1ace4e9949877f75f0d57411e325f941
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classHuffmanTree.html#a0e4caab284b358a648d1f1f0835e8055
https://courses.engr.illinois.edu/cs225/sp2019//doxygen//lab_huffman/classBinaryFileWriter.html

wget
https://courses.engr.illinois.edu/cs225/sp2019/assets/assignments/labs/huffman/lab_huffman_data.tar
 && tar -xf lab_huffman_data.tar && rm lab_huffman_data.tar

When you run make, two programs should be generated: encoder and decoder, with the following usages:

$./encoder
Usage:
 ./encoder input output treefile
 input: file to be encoded
 output: encoded output
 treefile: compressed huffman tree for decoding

$./decoder
Usage:
 ./decoder input treefile output
 input: file to be decoded
 treefile: compressed huffman tree to use for decoding
 output: decompressed file

Use your encoder to encode a file in the data directory, and then use your compressed file an the huffman

tree it built to decode it again using the decoder. If diff-ing the files produces no output, your HuffmanTree
should be working!

When testing, try using small files at first such as data/small.txt. Open it up and look inside. Imagine what

the tree should look like, and see what s̓ happening when you run your code.

Now try running your code:

$./encoder data/small.txt output.dat treefile.tree
Printing generated HuffmanTree...
 ______________ 28 _____________
 ______________/ ______________
 ______ 11 _____ ______ 17 _____
 ______/ ______ ______/

s:5 __ 6 __ __ 8 __
__ 9 __
 __/ __ __/ __
__/ __
 y:3 3 l:4 i:4 4
:5
 / \ /
\
 h:1 t:2 2
2
 / \
/ \
 \n:1 r:1
o:1 a:1
Saving HuffmanTree to file...

" Differing Output It is possible to get different output than this tree and still pass catch. Use the
provided test cases on catch to see if your code is passing.

You can also test under catch as usual by running:

make test && ./test

Submitting Your Work
The following files are used to grade this assignment:

huffman_tree.cpp
huffman_tree.h
partners.txt

All other files including any testing files you have added will not be used for grading.

Good luck!
Guide: How to submit CS 225 work using git

https://courses.engr.illinois.edu/cs225/sp2019/guides/course-git/

