
Lithium ELNES with WIEN2k

September 20, 2018

Contents

1 Tools 1

2 Setup 2

3 Convergence 6
3.1 Cell parameters: . 6
3.2 K point and RKMax convergence . 8

4 TELNES3 9
4.1 Monopole effects . 10

5 Core Hole 11

6 Density Calculations 14
6.1 Xcrysden . 14
6.2 Critic2 . 14

7 Common Errors/Issues Encountered in Wien2k 16
7.1 Setting RMT/RKMax . 16
7.2 Ghostbands . 17
7.3 NN in Optimization . 18
7.4 NR and NT . 18
7.5 GMax Value less than Gmin . 19
7.6 Ordering . 19

1 Tools

Here’s a list of software I use to run simulations. I’ve put some installation instructions for
linux as needed.

• Wien2k - If you are reading this guide, you either already have it installed somewhere,
or should figure out how to do that before buying a license. Otherwise, read the
userguide where the installation process is well explained.

1

• VESTA: http://jp-minerals.org/vesta/en/download.html. Download the .rpm
file, install it with your package manager in the directory it was downloaded to, eg.
“sudo apt-get vesta...rpm”

• Xcrysden: http://www.xcrysden.org/Download.html. Download the appropriate
tar for your operating system, and make sure to select the semishared version. Unzip
it, and just run “$./xcrysden”. Add the executable to your path in .bashrc to be able
to run it anywhere.

• Critic2: https://github.com/aoterodelaroza/critic2. Download the zip from
GitHub, unzip where you want to install it eg ∼/Programs or something), use your
package manager (dnf/apt-get) to install autoconf, automake, and your favourite flavour
of fortran (if unsure, it is probably gfortran). Then run the 4 commands from the
readme: “autoreconf -i”, “./configure”, “make”, and “(sudo) make install”. You may
or may not need the sudo for the last one.

2 Setup

There a couple things required to start ELNES simulations. Foremost is a crystal struc-
ture. This can be obtained from the literature, XRD, or alternatively Materials Project:
https://materialsproject.org/. Download a cif (the primative cell typically) or enter
the coordinates directly into the wien2k struct gen tool.

Make a new Wien2k session:

Create/change a working directory, and change the session information for parallel cal-
culation.

2

http://jp-minerals.org/vesta/en/download.html
http://www.xcrysden.org/Download.html
https://github.com/aoterodelaroza/critic2
https://materialsproject.org/

You will also need to make a “.machines” file which you can either steal from one of my
directories, look in the user guide and make your own, cut and paste the one from below, or
wait for w2web to automatically generate one at some point after it inevitably crashes on
something. Sample .machines file:

#=======================================
#This i s a v a l i d . machines f i l e
#
g r a n u l a r i t y : 1
1 : l o c a l h o s t #as many o f the se l i n e s as you want cpu co r e s running
1 : l o c a l h o s t #i d e a l l y p ick a mul t ip l e o f kpoint number
1 : l o c a l h o s t #so something l i k e 5 co r e s f o r 10 k po in t s .
1 : l o c a l h o s t
1 : l o c a l h o s t
1 : l o c a l h o s t

Next, go make a struct file, with struct gen, either by importing the cif, or entering
the positions manually. Use VESTA (drag n’ drop the .struct file) to make sure that the
structure is what you’d expect. In the Li2CO3 case this looks like:

3

The next step is initialization. This is best done via the command line as it give a little
more flexibility and intuition than in w2web, and will need to be run multiple times. Run
init lapw and go through the following steps:

• setrmt. Sets the muffin tin size on the atoms. Reduce the sphere size by 0% using
either old or new scheme and accept, it doesn’t matter much as these will be reset
properly later.

• nn. Checks for overlapping muffin tins. Enter “2.0”, close the first file and use the
new NN file if suggested, run nn with 2.0 again, look at how much “wiggle room” you
have on the spheres, by comparing the “sums to” and the “nn-dist” for every atom,
see below:

4

• sgroup. Verifies the space group. Again, accept any changes the program makes, this
first run is all about reducing the cell to the smallest unit cell. Again, the files can be
largely ignored at this point, unless there is an indication of a Bravais lattice change, in
which case, accept the new struct file. If so, nn and sgroup will run again with “nice”
results.

• symmery. Generates all the symmetry operations. Run it and continue (enter “c”)

• lstart. Sets the spin state, selects which XC kernel, and defines cutoff between core and
valence states. Accept default spins (up, the no spin case), unless there is a transition
metal involved. Select GGA PBE as the XC potential, again, unless there is reason
to suspect otherwise. Picking the energy is the most important part of this first run
init lapw: the aim is to get the Li 1s states to be treated as core states. They typically
have energies of ∼-3.8Ry, so try with -3.5 Ry to make sure they will be treated as core
states and look in case.outputst (the file that pops up), for the following lines for the
lithium atom and look at the 1S states:

E−up(Ry) E−dn(Ry) Occupancy q/ sphere core−s t a t e
1S −3.801947 −3.785288 1 .00 1 .00 0 .9859 T
1S −3.801947 −3.785288 1 .00 1 .00 0 .9859 T
2S −0.236699 −0.003313 1 .00 0 .00 0 .0468 F
2S −0.236699 −0.003313 1 .00 0 .00 0 .0468 F

These indicate the core states (T/F), their energy levels (in this case ∼ -3.8eV) and
how much the electrons in these states are contained in the muffin tins (0.9859). As
this is less than 1, it means that some 1S lithium electron is leaking out of the muffin
tins, which is why there should now be all kinds of warnings popping up. So go ahead
and “ctrl-c” out of init lapw.

To fix the leakage problem, the Lithium muffin tins need to be bigger. Ideally, they should
be just big enough to hold all of the 1S electrons, without making them too different from the
other muffin tins, as the larger this difference, the harder things get to calculate/converge.
In this case, try Li=1.8, C=1.2, O=1.22 and try init lapw again making sure to discard the
suggested muffin tins from setrmt. If that still didn’t work (lstart still has leakage errors),
keep going until it does, in this case RMT’s of Li=2.0, C=1.14, O=1.22. These RMT values
are too different (RMTLi ≈ 2RMTC) and will cause errors (ghostbands) further along. The
solution here is to try and minimize the leakage (and ignore the warnings) and acknowledge
that it might be unavoidably causing artifacts. For this case I chose Li=1.8, C = 1.17,
O=1.24. Alternatively, pick a nicer structure to analyze. Once the spheres are set in the
struct file, rerun init lapw:

• setrmt: Setrmt will try to reset the muffin tins to the defaults, make sure to discard
these (enter d)

• nn Make sure you don’t get errors, and that everything is as tight as it can be, in this
case the Oxygen-carbon spacing is the limiting factor.

• sgroup Should run fine.

5

• symmery Should run fine.

• lstart Now that the lithium 1S states are well contained, core states can be selected
based on containment instead of energy, meaning, the higher energy states (2S, P) of
other elements can still be treated as valence. Entering 0.99 should be sufficient here,
but make sure to verify that the lithium states are still core states.

• kgen Set the RkMax value in case.in1 st from 7 to the desired value:

and then pick a k point number. Both of these values should initially be taken for fast
convergence, in this case I chose RkMax=6.0, and 16 k points (Li2CO3 is an insulator,
for metals 1000 k points is a good starting point).

• Dstart: make sure to pick non spin polarized, unless there is reason to believe other-
wise (is there a transition metal in the sample?)

Assuming there were no warnings in the final run through init lapw, the case can begin
to be converged.

3 Convergence

Ideally, every variable should be converged regarding the simulation. Typically this is cell
parameters, k points and Rkmax. The first step is to just make sure the calculation converges,
running it with a small RKmax and few kpoints and making sure it finishes without error.
Once finished altering parameters in init lapw, run $ run lapw -p to start a calculation. If
errors occur, search for them in the userguide, or in the final chapter of this guide. Otherwise
proceed with convergence.

3.1 Cell parameters:

This process works best from W2Web, as described in the tutorials and using the muffin
tins from setrmt reduced by a healthy percentage (∼ 5-10%) to avoid nn errors (you may
need to rerun init lapw). As a number (5-11+) of calculations are run in this process, a
low number of k points and RKMax values is ideal here. For Li2CO3, I used 16 kpoints and
an RKmax of 6. In the x “optimize” tab, choose what you want to optimize, the first option

6

(volume) works well, unless there are suspicions otherwise. Enter a range of values of test
volumes, see picture:

Also make sure to edit “optimize.job” to enable parallization by moving the “#” to after
the “-p” in the run lapw line:

You can then “run optimize.job” from w2web. This job is okay to run in the background,
which means the browser can be closed without the job stopping. When it is done, plot the
“Energy vs Volume,” which should look something like this:

In the case of Li2CO3 and the cif from materials project, quite a range of volume op-
tions were needed to locate the minimum. The graph indicates that a 3-4% increase should
correspond to the optimized structure. To use this structure, search the case directory
for all the struct files and rename the appropriate one to case.struct, for Li2CO3 this was
“Li2CO3 vol 3.0.struct→ Li2CO3.struct”. Alternatively, cut and paste the lattice param-

7

eters from this file into the w2web structgen tool. Finally, rerun init lapw and readjust
sphere sizes as necessary to account for the increase (or decrease) in cell size. It turns out
here, that running setrmt using the old method gives spheres of Li=1.77, C,O=1.18 which
does a good job of keeping leakage down while containing the Li core electrons.

3.2 K point and RKMax convergence

To converge these parameters, again start with very low values and then increase them,
checking the total energy to determine when they are converged. Generally k points are
easier to converge, so start with them and then move on to RKMax. The procedure for
converging both of these values is:

• set/increase kpoints or RKMax, either by re-running “x kgen” or editing case.in1 and
case.in1 st.

• Run the scf cycle using “run lapw -p -NI”, the NI flag means it will continue from
where the previous calculation left off which can save time. The final converged choice
should still be run from scratch though.

• Check the energy in case.scf. To do this, find it in “scf files” on w2web and use ctrl+f
in your browser to search the file for “:ene” , which should appear in a line that looks
like:

:ENE : ∗∗∗∗∗∗∗∗∗∗ TOTAL ENERGY IN Ry = −1116.50733157

There will be one of these lines for each scf cycle, so find the last one in the document
and note the energy.

• loop through the first 3 steps until the energy no longer changes significantly when you
increase the kpoints/RKMax. A table is useful here to track these effects eg:

kpoints RKMax Energy
8 7.0 -1116.5073
16 7.0 -1116.4971
32 7.0 -1116.4975
32 8.0 -1116.5038
32 9.0 -1116.5045

Depending on the case, the energy will only converge so far. For the above table, I would
choose 16 k points and RKMax of 8.0. there were only minimal changes (<0.001Ry) to the
energy beyond those.

8

4 TELNES3

Once the calculation is converged, ELNES can be calculated. There is a good deal of useful
information and a complete description of the input file in the wien2k userguide, which
should solve most issues. Again, there is a large list of parameters that must be set for in
order to obtain reasonable results. It is also worth converging Kpoints and RKMax against
the spectra as well.
The majority of the important parameters need to be set in the case.innes file, which is
easiest through w2web. Choose the right atom (in this case Li1) for the edge, and the right
atomic numbers:

Edge n l
K 1 0
L1 2 0
L23 2 1
M45 3 2

Next, set the edge onset, edge values can be found at http://www.kayelaby.npl.co.

uk/atomic_and_nuclear_physics/4_2/4_2_1.html as well as at a number of other loca-
tions. Set the beam energy to it’s correct value, same goes for the collection and convergence
angles, although TELNES is relatively robust to these: eg 5mrad produces very similar re-
sults to 1 mrad.

Set the energy grid to a large range of values, eg -20-50eV so you can see all of the
features that might appear. The defaults for the remaining values should be fine.

In addition to the case.innes parameters, increase the number of kpoints, to at least dou-
ble, or 10×, so that there is less doubt about this being converged, use x kgen for this.

Increase the upper energy limit in case.in1 from 1.5 to ∼ 2-3.5, see picture. This value
defines how many higher energy states are included in Ry (1 Ry ≈13.6 eV, 1.5Ry ≈ 20eV).
Therefore, to obtain the correct ELNES for features more than 20eV from the onset, this
should be increased to match.

x lapw1 -p, x qtl -telnes -p, and x telnes3 can then all be run in succession. These
are relatively slow commands, so to avoid waiting on them, run all three in sequence from

9

http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_2/4_2_1.html
http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_2/4_2_1.html

the command line: $ x lapw1 -p && x qtl -telnes -p && x telnes3.

Once telnes3 is finished, edit case.inb and play with the spectrometer broadening on
the last line, before clicking “x broadening” to generate the final spectra. To experiment
with different broadening values, just repeat these steps. Sometimes w2web gets stuck and
stops re-broadening the spectra, in which case, just delete the case.broadspec file and run
“x broadening” again. Plot the spectrum in a new tab (ctrl+click on “plot”) for easy com-
parison to new spectra without having to save it. Rerun all the TELNES steps, but with
a higher/lower number of kpoints to confirm that that is not effecting the spectra. At this
point you can also uncheck the “calculate and write DOS” checkboxes in case.innes, which
allow you to rerun telnes without needing to rerun lapw1 each time (unless you change the
k points/case.in1 file). If everything went well, the ELNES should look something like:

4.1 Monopole effects

Because the lithium 1S state is quite delocalized, it is susceptible to monopole effects. These
cause artifacts in the spectra resulting from non orthogonal states at the muffin tin bound-
ary. Fortunately, it is easy to check for them. Return to the case.innes file and change the
interaction order to 0.

10

Telnes now only calculates the monopole component, look in case.outputelnes to confirm
this. Compare the monopole contribution to the full spectra, it should be much smaller
(∼100×). If it is not, set the interaction order to 1 to enforce dipole selection and use that
for all future spectra.

5 Core Hole

To introduce a core hole, start an entirely new case, and copy only the struct file. Because of
the periodic boundary conditions, it is sometimes necessary to use a supercell to avoid core
holes interacting with themselves in neighbouring cells. This depends largely on the size of
the original unit cell, for a single atom case (metallic lithium) a 3×3×3 cell is required, for
large calcium phosphates, no cell is needed.

Li2CO3 is a mid sized cell. To verify that there is no interaction, the single cell case with
a core hole will be compared to a 2×1×1 supercell. If there is any significant variation in
results a 2×2×2 supercell will be necessary.

With all core holes, it is essential to remove the symmetry in the unit cell, so there is
only a single hole per cell:

11

To achieve this, the cell must be reduced to a P1 space group. This can be done in
VESTA. Import the struct file and “remove symmetry”, under “Edit → Edit Data → Unit
Cell.” The spacegroup should switch to P-1, then select “apply”

To save these changes select “File → Export data” and save the structure as a .cif.
Running Cif2struct name of cif.cif should then be able to generate a valid struct file,

which should be renamed as case.struct. For some reason, I am only able to do this with my
local install of wien2k/cif2struct, the remote version complains about “ Space group name
nor symmetry operations are not given!” I have attached the final struct file that I used to
the github directory. It might be necessary to install wien2k after all...

In the new struct file, add a “1” to the end of an atom (AND DELETE A SPACE). The
file should look like this:

Now run init lapw and accept all of the defaults proposed by nn, which may require

12

cycling through nn a couple times. sgroup should not have any suggestions here, if it does,
something has gone wrong and it is trying to restore all of the symmetry. At the end of
init lapw, make sure to double check that the struct file is still what it should be.

When the struct file is ready, initialize use the converged parameters (RMT, RKMax)
from the single cell case. After init lapw, insert a core hole into the cell by editing case.inc
and case.inm:

In case.inc, a hole is inserted by changing the occupancy of an orbital. Each set of lines
corresponds to the core states of each atom defined in the struct file. This is why it is
important to be able to treat the lithium states as core states, otherwise it would not be
possible to insert a hole. This is also why it is important to break the symmetry in the unit
cell as if not, this would insert holes into multiple atoms. In the case.inm file, the excited
electrons need to be added to the background charge:

The value is negative as this operation adds charge, not electron number. Once the back-
ground charge is added, execute run lapw -p and calculate the ELNES. If done correctly,
the ELNES should look something like this:

To make a supercell, run x supercell in the directory and make a 2×1×1. Then use the

13

same procedure to keep the symmetry broken: import to vesta, select P1 spacegroup, save
cif, cif2struct, relabel an atom with a number, and then run init lapw. Reduce K points
by a factor of 2 (the unit cell is now twice as big), and keep the RKMax from earlier. Insert
a hole in case.inc, case.inm and then run lapw. If everything goes well, this should give
something like this:

In this situation, this is sufficiently different (the peak locations change as well as their
relative intensities) to justify a full 2×2×2 supercell calculation.

6 Density Calculations

Density calculations can be done using either xcrysden (qualitative) or Critic2 (quantitative).

6.1 Xcrysden

Xcyrsden density rendering is well explained in the online wien2k tutorials to which the
reader is referred to. Depending on your particular setup, density rendering with xcrysden
may need to be performed locally, which will also require install wien2k locally.

6.2 Critic2

The documentation for critic, while very complete, is in a giant txt file. The code takes three
inputs: the case.struct file, the case.clmsum file, and an input parameters file “more.cri”. A
sample .cri file is below:

c r y s t a l . / Li2CO3 . s t r u c t
load . / Li2CO3 . clmsum . / Li2CO3 . s t r u c t
auto
i n t e g r a l s gauleg 50 50 cp 1 verbose
s p h e r e i n t e g r a l s gauleg 50 50 cp 1 R0 1d−1 REND 2.0

14

The first line inputs the crystal structure, and then tells the code where to find the clm-
sum/struct files in the second line.

The third line determines the location of all the critical points.

The 4th line calculates the electron population inside the atomic basin surrounding crit-
ical point 1. “Gauleg” is an integration option, look in the critic documentation for more
options. The two 50’s are sampling parameters, increase/decrease these for more/less accu-
rate calculations.

The 5th line calculates the electron population in spheres surrounding critical point 1.
“gualeg 50 50” mean the exact same as on the previous line, R0 is the starting radius, 1d-1
sets the radius step size, REND is the final radius (in bohr).

The program is run using $ critic2 < more.cri > case.cro in the command line in
the case directory. The final file (case.cro) is just where the output is stored and can be
called anything. To determine which critical points are needed for the integrals, look at the
complete cp list in the output file:

There are a number of similar lists which can be used to identify which atom is of interest.
The critical point should be a nuclear critical point (typ = n), and as a double check, the
coordinates should match up to those in the struct file. The name should also match, in this
case, the ncp 1 corresponds to “Li1.”

The electron populations are located towards the bottom of the document. The first case
looks like this:

15

The two values indicated by the arrows are the volume of the basin and how many elec-
trons are inside. The second population is calculated directly below this in a table:

By matching to the volume value, relatively comparable values should be attainable (2.10
vs 2.14), in the no hole case. The reason for performing two types of population calculation
is due to the fact that the atomic basins can become ill defined when a core hole is inserted.
This is revealed when the volume of the basin is dramatically larger (> 20%) than the no
hole case. In these situations, a comparison of the sphere integrals at the same volume (set
by the basin volume in the no hole case) is more appropriate.

In the case of Li2CO3, the no hole case had a population of 2.11 and the no hole case
had a population of 1.20 (and a smaller basin volume). This indicates that the core hole
is slightly screened and has an effective strength of (1.20 +1)-2.11 = 0.91. The +1 is to
account for the excited electron. To implement this effect, a third, final supercell calculation
is required, with a reduced hole inserted. case.inc would need an occupancy of 1.09 and
case.inm would need a background charge of -0.91. This can be rapidly set up by copying
the struct file from the full hole calculation and initializing from there.

7 Common Errors/Issues Encountered in Wien2k

7.1 Setting RMT/RKMax

The RKMax value is a little obscure and takes some getting used to. It is defined as the
Muffin Tin Radii × Maximum K point vector. The maximum k point corresponds to the
highest frequency plane wave used in the calculation. RKMax defines a cutoff for sampling

16

k space, based on the size of each atom. A visualization of this effect is depicted below:

Two case, both with 5 kpoints and different RKMax’s. The plot on the left depicts a smaller
RKMax relative to the one on the right.

Increasing RKMax allows for higher frequency (more precise) plane waves to be used in
the basis set. These high frequency terms are however more computationally costly (CPU
requirements scale as RKMax3) and less essential for describing large features. This is why
the RKMax includes the Muffin Tin radius: large atoms only require lower frequency plane
waves. Each atom has an effective RKMax which is relative to the ratio of its radius and
that of the smallest atom. Choosing very different muffin tin radii for different elements
leads to issues as it becomes more difficult to align the surface features of each atom.

Increasing RKMax arbitrarily does not solve the problem either, as: 1. “approximate
numerical linear dependency” occurs at large RKMax values and 2. Calculations become
prohibitively expensive. RKMax should at most be between 9-10.

7.2 Ghostbands

Ghostbands are an inevitable consequence of investigating lithium with Wien2k. They man-
ifest as an LAPW2 qtl error during the scf cycles, typically during the first cycle, but
sometimes later as well. They are recorded the lapw2(n).error files as:

’ l2main ’ − QTL−B.GT. 1 5 . , Ghostbands , check s c f f i l e s

Ghostbands are arise in a number of situations, each of which requires a different solution.
Some of these are described below:

• Muffin Tins badly chosen: These appear when the muffin tins are too different, or
if you ignore everything that setrmt does. Solution: Diagnose this by running the
calculation with the setrmt values (might need to remove the core hole) or make the
muffin tins more reasonable (might need to allow core leakage).

17

• Local Orbitals need better initial guess: Sometimes the starting points for local
orbitals are not close enough to the converged values resulting in divergence. Solu-
tions: Figure out which orbitals are causing the issue by looking in case.scf2(n). The
last lines of these files should have a line like this:

:WARN : QTL−B value eq . 99 .95 in Band o f energy −0.12674 ATOM=
2 L= 0

This message also tells us to look in case.in1(st) and that the problem is with atom 2
and the L=0 orbital. In case.in1(st), every independent atom is listed, eg:

To handle ghostbands, either delete the relevant local orbital line (lines that match
the atom and orbital number with energy guesses that are not 0.30) and reduce the
number of orbitals for that atom correspondingly. A more refined option is to adjust
the initial guesses to another value, and rerunning run lapw.

7.3 NN in Optimization

Crashes the first scf cycle almost immediately, due to overlapping muffin tins resulting from
a decreased cell size. Solution: decrease all muffin tin sizes before running “x optimize”.

7.4 NR and NT

Before considering a spectra as final, it is important to verify that it is converged with respect
to the Q mesh as well. The Q mesh defines which changes in momentum are collectable by
the detector. More information on exactly how the mesh is determined can be found in the
Telnes section of the userguide. To test convergence, increase these values from NR=5, and

18

NT=2 to larger values, (eg. 7,3), rerun telnes(qtl and telnes3) and make sure that the fine
structure does not change.

7.5 GMax Value less than Gmin

Occurs in dstart, fix is to bump up the Gmax value in case.in2 from 12.00 to 14.00 or 16.00.

7.6 Ordering

If a calculation run apparently unchanged, a possible reason is that all the edits were over-
written by init lapw. The order of a calculation should be:

• Make edits to case.struct file, ie. Muffin Tin Radius

• run init lapw

• Edit .in files. eg. setting RKMax, dealing with ghostbands, inserting core hole, in-
creasing k points...

• run lapw

• Increase Kpoints, run case specific calculations, and/or loop back to and run forwards
from there (ie increasing k points/RKMax does not require rerunning init lapw, but
changing muffin tin radii does).

19

	Tools
	Setup
	Convergence
	Cell parameters:
	K point and RKMax convergence

	TELNES3
	Monopole effects

	Core Hole
	Density Calculations
	Xcrysden
	Critic2

	Common Errors/Issues Encountered in Wien2k
	Setting RMT/RKMax
	Ghostbands
	NN in Optimization
	NR and NT
	GMax Value less than Gmin
	Ordering

