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Deep learning1, a subfield of machine learning (ML), has seen 
a dramatic resurgence in the past 6 years, largely driven by 
increases in computational power and the availability of mas-

sive new datasets. The field has witnessed striking advances in the 
ability of machines to understand and manipulate data, including 
images2, language3, and speech4. Healthcare and medicine stand to 
benefit immensely from deep learning because of the sheer volume 
of data being generated (150 exabytes or 1018 bytes in United States 
alone, growing 48% annually5) as well as the increasing proliferation 
of medical devices and digital record systems.

ML is distinct from other types of computer programming in 
that it transforms the inputs of an algorithm into outputs using 
statistical, data-driven rules that are automatically derived from 
a large set of examples, rather than being explicitly specified by 
humans. Historically, constructing a ML system required domain 
expertise and human engineering to design feature extractors that 
transformed raw data into suitable representations from which a 
learning algorithm could detect patterns. In contrast, deep learn-
ing is a form of representation learning—in which a machine is 
fed with raw data and develops its own representations needed for 
pattern recognition—that is composed of multiple layers of rep-
resentations. These layers are typically arranged sequentially and 
composed of a large number of primitive, nonlinear operations, 
such that the representation of one layer (beginning with the raw 
data input) is fed into the next layer and transformed into a more 
abstract representation1. As data flows through the layers of the sys-
tem, the input space becomes iteratively warped until data points 
become distinguishable (Fig. 1a). In this manner, highly complex 
functions can be learned.

Deep-learning models scale to large datasets—in part owing 
to their ability to run on specialized computing hardware—and 
continue to improve with more data, enabling them to outper-
form many classical ML approaches. Deep-learning systems can 
accept multiple data types as input—an aspect of particular rel-
evance for heterogeneous healthcare data (Fig. 1b). The most 
common models are trained using supervised learning, in which 
datasets are composed of input data points (e.g., skin lesion 
images) and corresponding output data labels (e.g., ‘benign’ or 
‘malignant’). Reinforcement learning (RL), in which computa-
tional agents learn by trial and error or by expert demonstration, 
has progressed with the adoption of deep learning, achieving 
remarkable feats in areas such as game playing (e.g., Go6). RL 
can be useful in healthcare whenever learning requires physician 
demonstration, for instance in learning to suture wounds for 
robotic-assisted surgery7.

Computer vision
Some of the greatest successes of deep learning have been in the field 
of computer vision (CV)2. CV focuses on image and video under-
standing, and deals with tasks such as object classification, detec-
tion, and segmentation—which are useful in determining whether a 
patient’s radiograph contains malignant tumors. Convolutional neu-
ral networks (CNNs)1,2, a type of deep-learning algorithm designed 
to process data that exhibits natural spatial invariance (e.g., images, 
whose meanings do not change under translation), have grown to 
be central in this field.

Medical imaging, for instance, can greatly benefit from recent 
advances in image classification and object detection2,8. Many stud-
ies have demonstrated promising results in complex diagnostics 
spanning dermatology9,10, radiology11–14, ophthalmology15–17, and 
pathology18–21 (Fig. 2). Deep-learning systems could aid physi-
cians by offering second opinions and flagging concerning areas 
in images.

Image-level diagnostics have been quite successful at employing 
CNN-based methods (Fig. 2). This is largely due to the fact that 
CNNs have achieved human-level performance in object-classifica-
tion tasks2, in which a CNN learns to classify the object contained 
in an image. These same networks have demonstrated strong per-
formance in transfer learning22, in which a CNN initially trained 
on a massive dataset that is unrelated to the task of interest (e.g., 
ImageNet2, a dataset of millions of common everyday objects) is 
further fine-tuned on a much smaller dataset related to the task 
of interest (e.g., medical images). In the first step, the algorithm 
leverages large amounts of data to learn of the natural statistics in 
images—straight lines, curves, colorations, etc.—and in the second 
step, the higher-level layers of the algorithm are retrained to dis-
tinguish between diagnostic cases. Similarly, object detection and 
segmentation algorithms identify specific parts of an image that 
correspond to particular objects. CNN methods take image data as 
input and iteratively warp it through a series of convolutional and 
nonlinear operations until the original raw data matrix is trans-
formed into a probability distribution over potential image classes 
(e.g., medical diagnostic cases) (Fig. 2).

Remarkably, deep-learning models have achieved physician-level 
accuracy at a broad variety of diagnostic tasks, including identifying 
moles from melanomas9,10, diabetic retinopathy, cardiovascular risk, 
and referrals from fundus15,16 and optical coherence tomography 
(OCT)17 images of the eye, breast lesion detection in mammograms13, 
and spinal analysis with magnetic resonance imaging23. A single 
deep-learning model has even been shown to be effective at diagno-
sis across medical modalities (e.g., radiology and ophthalmology)24.  
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However, a key limitation across studies that compare human to 
algorithmic performance has been a lack of clinical context—they 
constrain the diagnosis to be performed using just the images at 
hand. This often increases the difficulty of the diagnostic task for the 
human reader, who in real-world clinical settings has access to both 
the medical imagery and supplemental data, including the patient 
history and health record, additional tests, patient testimony, etc.

Clinics are beginning to employ object detection and segmenta-
tion in images for urgent and easily missed cases, such as flagging 
large-artery occlusion in the brain using radiological images14, dur-
ing which patients have a limited amount of time (a few minutes) 
before permanent brain damage occurs. Further, cancer histopa-
thology reads, which require human experts to laboriously scan 
and diagnose gigapixel images (or equivalently large physical slides) 
can be supplemented with CNNs trained to detect mitotic cells18 
or tumor regions19. They can be trained to quantify the amount of 
PD-L1 present in a histopathology image20—a task important in 
determining which type of immuno-oncology drug a patient would 
be receptive to. Combined with pixel-level analyses, CNNs have 

even been used to discover biological features of tissue associated 
with survival probability21.

The primary limitation to building a supervised deep-learning 
system for a new medical imaging task is access to a sufficiently 
large, labeled dataset. Small and labeled datasets for specific tasks 
are easier to collect, but result in algorithms that tend to perform 
poorly on new data. In these cases, techniques for heavy data 
augmentation have been shown to be effective at helping algo-
rithms generalize25. Similarly, large but unlabeled datasets are 
also easier to collect, but will require a shift towards improved 
semisupervised and unsupervised techniques, such as generative 
adversarial networks26.

Natural language processing
Natural language processing (NLP) focuses on analyzing text and 
speech to infer meaning from words. Recurrent neural networks 
(RNNs)—deep learning algorithms effective at processing sequen-
tial inputs such as language, speech, and time-series data27—play 
an important role in this field. Notable successes of NLP include 
machine translation28, text generation29, and image captioning30. 
In healthcare, sequential deep learning and language technolo-
gies power applications within domains such as electronic health 
records (EHRs).

EHRs are rapidly becoming ubiquitous31. The EHR of a large 
medical organization can capture the medical transactions of over 
10 million patients throughout the course of a decade. A single 
hospitalization alone typically generates ∼​150,000 pieces of data. 
The potential benefits derived from this data are significant. In 
aggregate, an EHR of this scale represents 200,000 years of doctor 
wisdom and 100 million years of patient outcome data, covering a 
plethora of rare conditions and maladies. As such, applyication of 
deep-learning methods to EHR data is a rapidly expanding area32,33.

Figure 3 outlines the technical steps in building deep-learning 
systems for EHRs. Raw data are first aggregated across across 
institutions in order to ensure that a generalizable system is built. 
The data are then standardized and parsed temporally and across 
patients, which makes them suitable for deep-learning training. 
From this, we can then infer answers to high-level medical ques-
tions, such as ‘What past history is relevant to the patient’s current 
diagnosis?’, ‘What is the patient’s current problem list?’, and ‘What 
opportunities are there to intervene?’

When making predictions, most work to date uses supervised 
learning on limited sets of structured data, including lab results, 
vitals, diagnostic codes, and demographics. To account for the 
structured and unstructured data contained in EHRs, researchers 
are beginning to employ unsupervised learning approaches, such as 
auto-encoders—in which networks are first trained to learn useful 
representations by compressing and then reconstructing unlabeled 
data—to predict specific diagnoses34. Recent uses of deep learning 
model the temporal sequence of structured events that occurred 
in a patient’s record with convolutional and recurrent neural net-
works in order to predict future medical incidents35–38. Much of this 
work focuses on the Medical Information Mart for Intensive Care 
(MIMIC) dataset39 (e.g., for the prediction of sepsis40), which con-
tains intensive care unit (ICU) patients from a single center. While 
ICU patients generate more EHR data than non-ICU patients, they 
are significantly outnumbered by non-ICU patients. As such, it is 
still uncertain how well techniques derived from this data will gen-
eralize to broader populations.

The next generation of automatic speech recognition32 and infor-
mation extraction models will likely develop clinical voice assistants 
to accurately transcribe patient visits. Doctors easily spend 6 hours 
in an 11-hour workday working on documentation in the EHR, 
which leads to burnout and reduces time with patients31. Automated 
transcription will alleviate this and facilitate more affordable 
scribing services. Consider RNN-based language translation27,  
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Fig. 1 | Deep learning. a, A simple, multilayer deep neural network takes 
two classes of data, denoted by the different colors, and makes them 
linearly separable by iteratively distorting the data as it flows from layer 
to layer. The final output layer serves as a classifier by outputting the 
probability of either one of the classes. This example illustrates the basic 
concept used by large scale networks. Conceptual illustration adapted 
with permission from http://colah.github.io/. b, Example large-scale 
network that accepts as input a variety of data types (images, time-series, 
etc.), and for each data type learns a useful featurization in its lower-
level towers. The data from each tower is then merged and flows through 
higher levels, allowing the DNN to perform inference across data types—a 
capability that is increasingly important in healthcare.
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which uses an end-to-end technique to translate directly from 
speech in one language to text in another. Adapted to EHRs, this 
technique could translate a patient–provider conversation directly 
into a transcribed text record. The key challenge lies in classifying 
the attributes and status of each medical entity from the conversa-
tion while accurately summarizing the dialogue. Though promising 
in early human–computer interaction experiments, these tech-
niques have yet to be widely deployed in medical practice.

Future work will likely focus on developing algorithms to bet-
ter leverage some of the information-rich yet unstructured data in 
EHRs. Clinical notes, for instance, are often omitted or redacted 
when developing predictive systems. Here, large-scale RNNs are 
beginning to demonstrate impressive predictive results by combin-
ing structured and unstructured data in a semisupervised way33. 
This data combination allows them to learn from broader popu-
lations across more diverse data types, outperforming other tech-
niques across tasks including mortality, readmission, length of stay, 
and diagnosis predictions.

Reinforcement learning
Reinforcement learning (RL) refers to a class of techniques designed 
to train computational agents to successfully interact with their 
environment, typically to achieve specific goals. This learning can 
happen through trial and error, through demonstration, or through 
a hybrid approach. As an agent takes actions within its environ-
ment, an iterative feedback loop of reward and consequence trains 
the agent to better accomplish the goals at hand. Learning from 
expert demonstration is accomplished either by learning to predict 
the expert’s actions directly via supervised learning (i.e., imitation 
learning) or by inferring the expert’s objective (i.e., inverse RL).  
To successfully train an agent, it is critical to have a model function 
that can take as input sensory signals from the environment and 
output the next actions for the agent to take. Deep RL, in which a 
deep-learning model serves as the model function, shows promise.

One healthcare domain that can benefit from deep RL is 
robotic-assisted surgery (RAS). Currently, RAS largely depends 
on a surgeon guiding a robot’s instruments in a teleoperated fash-
ion. Deep learning can enhance the robustness and adaptability 
of RAS by using computer vision models (e.g., CNNs) to perceive 
surgical environments and RL methods to learn from a surgeons  
physical motions41,42.

These techniques support the automation and speed of highly 
repetitive and time-sensitive surgical tasks, such as suturing and 

knot-tying7. For instance, computer vision techniques (e.g., CNNs 
for object detection/segmentation and stereovision) can reconstruct 
the landscape of an open wound from image data, and a suturing or 
knot-tying trajectory can be generated by solving a path optimization 
problem that attempts to find an optimal trajectory while account-
ing for external constraints, such as joint limits and obstacles43.  
Similarly, image-trained RNNs can learn to tie knots autonomously 
by learning sequences of events, in this case physical maneuvers, 
from surgeons44.

These techniques are particularly advantageous for fully auton-
omous robotic surgery or minimally invasive surgery. Consider 
modern laparoscopic surgery (MLS)—in which several small inci-
sions are used to insert a number of instruments into the body, 
including cameras and surgical tools, which surgeons then teleop-
erate. Deep imitation learning, RNNs, and trajectory transfer algo-
rithms can fully automate certain teleoperated manipulation tasks 
of the surgical procedure7. In MLS, the automation of repetitive 
tasks is even more time-critical than in open surgery. For instance, 
it may take 3 minutes to tie a knot in MLS instead of a few seconds, 
as in open surgery.

One of the main challenges during semiautonomous teleopera-
tion is correctly localizing an instrument’s position and orientation 
in the vicinity of surgical scenes. Here, recent pixel-wise instrument 
segmentation techniques45, developed using an improved U-Net 
architecture CNN25,46, begin to show promise. Another challenge for 
the progression of deep learning in surgical robotics is data collec-
tion. Deep imitation learning requires large training datasets with 
many examples per surgical action. Given that many surgeries are 
nuanced and unique, it remains difficult to collect sufficient data for 
more general surgical tasks. Further, it remains difficult for auton-
omous systems to adapt to completely unknown and unobserved 
situations highly dissimilar from anything previously seen, such as 
an anomalous surgical accident.

Generalized deep learning
Beyond CV, NLP, and RL tasks, deep learning is adaptable to 
domains in which input data is nuanced and requires specialized 
treatment. For illustrative purposes, here we consider genomics, an 
example domain in which deep learning has been adapted beyond 
conventional (e.g., CNN- or RNN-based) approaches to work with 
unique (e.g., nonimage, nontemporal) data representations.

Modern genomic technologies collect a wide variety of mea-
surements, from an individual’s DNA sequence to the quantity of 
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Fig. 2 | Medical Imaging. CNNs can be trained on a variety of medical imagery, including radiology, pathology, dermatology, and ophthalmology. 
Information flows left to right. CNNs take input images and sequentially transform them, using simple operations such as convolutional, pooling, and fully 
connected layers, into flattened vectors. The elements of the output vector (softmax layer) represent the probabilities of the presence of disease. During 
the training process, the internal parameters of the network layers are iteratively adjusted to improve accuracy. Typically, lower layers (left) learn simple 
image features—edges and basic shapes—which influence the high-level representations (right). Prediction tasks include both classification of the images 
(i.e., cancerous versus benign) as well as localization of medical features such as tumors.
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various proteins in their blood. There are many opportunities for 
deep learning to improve the methods used to analyze these mea-
surements, which will ultimately help clinicians provide more accu-
rate treatments and diagnoses. The typical pipeline for building a 

deep-learning system in genomics involves taking raw data (e.g., 
gene expression data), converting this raw data into input data ten-
sors, and feeding these tensors through neural networks which then 
power specific biomedical applications (Fig. 4).
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Fig. 3 | Making predictions using EHRs. a, Unstructured EHR data. Medical records are stored in idiosyncratic data structures and formats such that 
models built on a given hospital’s record do not necessarily work with data from a different hospital. b, Data standardization. By mapping data from 
multiple sites to a single format based on FHIR, data are standardized into a homogeneous format. c, Sequencing. By temporally sequencing all data into a 
patient timeline, time-based deep-learning techniques can be applied on the entirety of EHR datasets for making predictions about single patients.
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Fig. 4 | ML in genomics. a, Input data. Genomic data consists of experimental measurements from which certain properties or outcomes of interest  
may be predicted. This data is often diverse and may include sequencing, gene expression, and functional data as well as other forms of molecular data.  
b Example data tensors. Raw experimental measurements need to be transformed into a form that is suitable for consumption by deep-learning 
algorithms, which take as input multidimensional data tensors and associated target labels. c, DNN. Labeled tensors are used to train DNNs to predict 
the label from the input data tensor. d, Biomedical applications. Trained DNNs can be used in biomedical applications, such as in predicting labels 
for previously unseen data tensors or examining the relationship between input data and output labels. Example applications include interpreting 
experimental data (e.g., inferring DNA sequences from the output of a sequencing instrument or inferring the effects of DNA mutations on gene splicing) 
and molecular diagnostics (e.g., predicting the effects of genetic mutations on disease risk or drug response), among many others.
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One set of opportunities centers on genome-wide association 
(GWA) studies—large case-control studies that seek to discover 
causal genetic mutations affecting specific traits. Analyzing GWA 
studies requires algorithms that scale to very large patient cohorts 
and that deal with latent confounders. These challenges can be 
addressed via optimization tools and techniques developed for 
deep learning—including stochastic optimization and other mod-
ern algorithms47 combined with software frameworks for scaling 
computation in parallel48—as well as through modeling techniques 
that handle unseen confounders49. In the near future, models that 
integrate external modalities and additional sources of biological 
data into GWA studies—e.g., medical images or measurements of 
splicing and other intermediary molecular phenotypes—may also 
benefit from deep learning to more accurately identify disease-asso-
ciated causal mutations50.

Understanding the genetics of disease allows clinicians to recom-
mend treatments and provide more accurate diagnoses. A key chal-
lenge for physicians is determining if novel variants in a patient’s 
genome are medically relevant. In part, this decision relies on pre-
dicting the pathogenicity of mutations; a task which already uses 
features like protein structure and evolutionary conservation to 
train learning algorithms51. Given their greater power and ability to 
effectively integrate disparate data types, deep-learning techniques 
are likely to provide more accurate pathogenicity predictions than 
are possible today52.

Machine learning also plays a role in phenotype prediction 
from genetic data, including complex traits such as height as well 
as disease risk. Deep learning can further enhance such models 
by integrating additional modalities such as medical images, clini-
cal history, and wearable device data53. A particularly promising 
approach to phenotype prediction is to predict intermediate molec-
ular phenotypes—e.g., gene expression or gene splicing—which 
then feed into downstream disease predictors54. Intermediate 
molecular states can be easier to predict than human traits because 
of larger, more proximal signals and more extensive training data. 
These two features make the problem a good fit for deep learning, 
which has shown success at predicting splicing55 and transcription 
factor binding56.

Genomic data can also directly serve as a biomarker for the 
onset and progression of disease. For example, blood contains small 
fragments of cell-free DNA released from cells present elsewhere 
in the body. These fragments are noninvasive indicators of organ 
rejection (i.e., the immune system attacking graft cells57), bacterial 
infection58, and early-stage cancer59. Cell-free DNA is successfully 
used in prenatal diagnostics: fetal DNA present in the mother’s 
blood indicates chromosomal aberrations and can reveal the whole 
genome of the fetus60. Biomarker data are often noisy and requires 
sophisticated analysis (e.g., to determine whether cell-free DNA is 
indicative of cancer); deep-learning systems can enhance the quality 
of biomarker assays targeting DNA sequences61, methylation62, gene 
expression63, chromatin64 profiles, and many other measurements.
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