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Chapter 1

Navigation of Key Results

The basic equations, simplified but not yet normalized:

Gyrokinetic equation: Eq. (3.37).

Maxwell equations: Eq. (3.76), (3.77) and (3.78)

Transport coefficients: Eq. (3.79), (3.80), (3.81) and (3.82)
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Chapter 2

Flux-surface Geometry

2.1 Introduction

The goal of this chapter is to present a self-contained derivation and cataloguing of all geometrical
quantities required for gyrokinetic or neoclassical simulation of plasmas with an arbitrary cross-
sectional shape. The method represents a refinement and generalization of a class of approaches
which fall under the category of local equilibrium techniques [ML74]. These have a long history of
application to ballooning mode analysis [GC81, BKC+84, MCG+98], and are described in historical
detail by Miller [MCG+98]. The unified method we propose can be consistently applied to either
a local or global equilibrium, and to flux-surfaces of model or general shape. A global equilibrium,
in this context, refers to a preexisting numerical solution of the Grad-Shafranov equation over
the entire plasma volume, whereas a local equilibrium refers to Grad-Shafranov force-balance at a
single surface only, without reference to adjacent surfaces. The latter scenario has proven to be a
powerful tool for understanding the effect of plasma shape [KWC07, BHD08] on transport.

The unified approach requires that the major radius R(Ψt, θ) and elevation Z(Ψt, θ) along a
given flux-surface contour are tabulated as functions of the poloidal angle θ (or, more generally,
any parameter that labels position on the flux surface at constant toroidal angle). In the local case,
the toroidal flux, Ψt, need not be specified, and geometrical quantities can be evaluated up to an
unknown constant (the so-called effective field, Bunit), with flux-surfaces labeled by the midplane
minor radius, r. Both Bunit and r will be precisely defined later. If a global plasma equilibrium
exists, such that the toroidal flux, Ψt, has been computed, then the functions r = r(Ψt) and Bunit(r)
can be uniquely determined for all r (i.e., on each flux-surface). A special case, in which R and
Z are approximated by up-down symmetric contours with finite ellipticity and triangularity (the
so-called Miller geometry method [MCG+98]), is treated by numerous codes worldwide [DJKR00,
CW03, CPC+03]. Unfortunately, the implementations of this method are not standardized, and
documentation is typically unavailable. For example, in certain cases, the model shape is assumed
but Grad-Shafranov force balance is not enforced. This gives rise to implementation differences
which significantly complicate code benchmarking exercises. The challenges are further amplified
for the consistent treatment of general (numerically-generated) flux-surface shape corresponding to
global plasma equilibria [XMJ+08]. Then, not only is there an even greater liklihood of significant
implementation difference, but the connections to the local limit and to the limit of model shape
are obscured. The present work is an attempt to define a standard approach which unifies the
treatment of local and global equilibria, as well as model and general flux-surface shape. By using
a general Fourier-series expansion for the flux-surface shape, we show how to estimate the error in
approximating a general closed contour with a model shape (often referred to as the Miller shape
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[MCG+98, WM99]). We also show how to consistently identify the local limit of a global equilibrium
on each flux surface. The results herein modify certain conventions in the local equilibrium theory
and, further, correct a variety of sign and typographical errors in an earlier paper by Waltz and
Miller [WM99].

In Sec. 2.2, we give the most general definitions of coordinates and associated flux functions. In
Sec. 2.3, we use the local equilibrium method to compute all geometrical quantities required for gy-
rokinetic or neoclassical simulation of plasmas, given (R,Z) coordinates and associated derivatives
on a flux-surface. We specialize these results, in Sec. 2.4, to the specific cases of model (Miller) and
general (Fourier series) flux-surface parameterizations, and provide error estimates for each method.
Finally, in the appendix, we give a large-aspect-ratio expansion of the geometry coefficients, useful
for purposes of code checking, and to make contact with the s-α model [CHT78].

2.2 Field-aligned coordinates and flux functions

2.2.1 Clebsch representation

In what follows we adopt the right-handed, field-aligned coordinate system (ψ, θ, α) together with
the Clebsch representation [KK58] for the magnetic field

B = ∇α×∇ψ such that B · ∇α = B · ∇ψ = 0 . (2.1)

The angle α is written in terms of the toroidal angle ϕ as

α
.
= ϕ+ ν(ψ, θ) . (2.2)

In Eqs. (2.1) and (2.2), ψ (as we will show) is poloidal flux divided by 2π, and θ refers simultaneously
to (a) an angle in the poloidal plane (at fixed ϕ), or (b) a parameterization of distance along a field
line (at fixed α). In these coordinates, the Jacobian is

Jψ .
=

1

∇ψ ×∇θ · ∇α =
1

∇ψ ×∇θ · ∇ϕ . (2.3)

Since the coordinates (ψ, θ, α) and (ψ, θ, ϕ) form right-handed systems, the Jacobian Jψ is positive-
definite. In the latter coordinates, the magnetic field becomes

B = ∇ϕ×∇ψ +
∂ν

∂θ
∇θ ×∇ψ (2.4)

Using the definition of the safety factor, q(ψ), we may deduce

q(ψ)
.
=

1

2π

∫ 2π

0

B · ∇ϕ
B · ∇θ dθ =

1

2π

∫ 2π

0

(
−∂ν
∂θ

)
dθ =

ν(ψ, 0)− ν(ψ, 2π)

2π
. (2.5)

For concreteness, we choose the following boundary conditions for ν:

ν(ψ, 2π) = − 2π q(ψ) , (2.6)

ν(ψ, 0) = 0 . (2.7)

By writing B in the standard form for up-down symmetric equilibria,

B = ∇ϕ×∇ψ + I(ψ)∇ϕ , (2.8)
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we can derive the following integral for ν:

ν(ψ, θ) = −I(ψ)

∫ θ

0
Jψ |∇ϕ|2 dθ . (2.9)

We remark that in the case of concentric (unshifted) circular flux surfaces, one will obtain the
approximate result ν(ψ, θ) ∼ −q(ψ)θ.

2.2.2 Periodicity constraints

The periodicity requirements for physical functions are a potential source of confusion. Consider a
physical function – for example, potential or density – represented by the (real) field z(ψ, θ, α). In
terms of the physical angle ϕ, we have

z(ψ, θ, α) = z (ψ, θ, ϕ+ ν[ψ, θ]) (2.10)

We impose the following topological requirements on the function z:

1. z is 2π/∆n-periodic in ϕ for fixed ψ and θ,

2. z is 2π-periodic in θ for fixed ψ and ϕ.

From this point onwards, we will refer to ψ and χt simply and the poloidal and toroidal fluxes,
respectively.

2.2.3 Toroidal and poloidal flux

We can start from the general forms of the toroidal and poloidal fluxes [DHCS91]

Ψt
.
=

∫∫
St

B · dS =
1

2π

∫∫∫
Vt

B · ∇ϕdV , (2.11)

Ψp
.
=

∫∫
Sp

B · dS =
1

2π

∫∫∫
Vp

B · ∇θ dV . (2.12)

Explicitly inserting the field-aligned coordinate system of the previous section, and differentiating
these with respect to ψ, gives

dΨt

dψ
=

1

2π

∫ 2π

0
dϕ

∫ 2π

0
dθ B · ∇ϕJψ , (2.13)

=
1

2π

∫ 2π

0
dϕ

∫ 2π

0
dθ

B · ∇ϕ
B · ∇θ , (2.14)

= 2π q(ψ) , (2.15)

dΨp

dψ
=

1

2π

∫ 2π

0
dϕ

∫ 2π

0
dθ B · ∇θJψ , (2.16)

=
1

2π

∫ 2π

0
dϕ

∫ 2π

0
dθ , (2.17)

= 2π . (2.18)
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Thus, ψ is the poloidal flux divided by 2π. For this reason, it is useful to also define the toroidal
flux divided by 2π:

χt
.
=

1

2π
Ψt . (2.19)

According to these conventions,

dΨt = q dΨp and dχt = q dψ . (2.20)

2.2.4 Flux-surface averaging and the divergence theorem

It is also convenient to define a related Jacobian

Jr =
1

∇r ×∇θ · ∇ϕ =
∂ψ

∂r
Jψ , (2.21)

where r is the midplane minor radius. The flux-surface average of a function f can be expressed as

F(f)
.
=

1

V ′

∮
dθ dϕJr f where V ′(r) =

∮
dθ dϕJr . (2.22)

The normalizing factor V ′ is evidently the derivative of the flux-surface volume with respect to
r. The element of flux-surface volume can be written as dV = dn dS = dr dθ dϕJr where dS is
the element of surface area on a flux-surface, and n is the length along the normal vector n. The
relation between n and r is given by dr = (∂r/∂n) dn = |∇r| dn. This allows one to write a form of
the divergence theorem useful for the derivation of transport equations. Integrating the divergence
of an arbitrary vector A over volume gives∫

dV ∇ ·A =

∮
dSA · n =

∮
dS

|∇r| A · ∇r = V ′(r)F (A · ∇r) , (2.23)

where we have used

F(f) =
1

V ′

∮
dS

|∇r| f and V ′(r) =

∮
dS

|∇r| . (2.24)

2.2.5 Additional flux functions

Recall that we have assumed that the coordinates (R,Z) of a each flux-surface are known via a one-
dimensional parameterization (the arc length, for example). As a robust measure of the flux-surface
elevation, we use the elevation of the centroid, defined as

Z0
.
=

∮
dZ RZ∮
dZ R

. (2.25)

In terms of the centroid elevation, the effective minor radius, r, is defined as the half-width of the
flux surface at the elevation, Z0:

r
.
=
R+ −R−

2
. (2.26)

The quantities R+ and R− are the points of intersection of the flux surface with the line Z = Z0,
as illustrated in Fig. 2.1. We further define the effective major radius, R0 = (R+ +R−)/2, and the
effective field strength, Bunit, as

Bunit
.
=

1

r

dχt
dr

=
q

r

dψ

dr
. (2.27)
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Figure 2.1: Illustration of the centroid elevation, Z0, the effective major radius, R0, and the effective
minor radius, r, for a near-separatrix flux surface in DIII-D. The orientation of the toroidal angle,
ϕ, is also indicated, such that (R,Z, ϕ) is a right-handed system.

The concept of an effective field was introduced by Waltz [WM99], and represents the equivalent
field that would be obtained if the flux surface was deformed to a circle with the penetrating flux
held fixed. It is emphasized that one must have access to a global equilibrium, not just the local
flux-surface shape, to determine Bunit. An important feature of the unified approach is that the
definitions of r and Bunit are the same in both cases; that is, for both the model Grad-Shafranov
(i.e., Miller) and general Grad-Shafranov equilibria to be defined shortly.

As an alternative to working with the toroidal flux directly, we introduce a function ρ, with
units of length, which parameterizes the toroidal flux:

χt =
1

2π

∫
B · dS =

1

2
Bref ρ(r)2 , (2.28)

In the expression above, Bref is some reference field. While this would normally be the vacuum
toroidal field, or something similar, it is important to keep in mind that the choice is ultimately
arbitrary, but by knowing Bref and ρ, one may calculate χt. In terms of ρ, the area enclosed by a
flux surface is approximately given by A ' πρ2 so long as Bref is approximately equal to the on-axis
toroidal field strength. In this sense, ρ is more intuitive, and so in certain cases more convenient,
than χt.

2.3 Local Grad-Shafranov equilibria

The aim of this section is to compute convenient, standardized expressions for the common differ-
ential and integral operators appearing in the drift-kinetic and gyrokinetic equations.
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2.3.1 Required operators

Below we collect, in coordinate-free form, the full set of differential and integral operators which
are to be evaluated. In what follows, Ωca = zaeB/(mac) is the gyroradius of species a and p =∑

a nakBTa is the total plasma pressure.

Perpendicular drift:

vd · ∇⊥ =
v2
‖ + v2

⊥/2

ΩcaB2
B×∇B · ∇⊥ +

4πv2
‖

ΩcaB2
b×∇p · ∇⊥ +

2v‖ω0

Ωca
b× s · ∇⊥ , (2.29)

Perpendicular Laplacian: ∇2
⊥ = (∇− bb · ∇)2 , (2.30)

Radial gradient of eikonal:
∇ψ
|∇ψ| · ∇α =

∇ψ · ∇ν
|∇ψ| , (2.31)

Binormal gradient of eikonal: b× ∇ψ|∇ψ| · ∇α = − B

|∇ψ| , (2.32)

Parallel gradient: b · ∇ =
1

JψB
∂

∂θ
, (2.33)

Flux-surface average: 〈f〉 =

(
dV

dψ

)−1 ∮
dθ dϕJψf . (2.34)

The perpendicular drift operator, Eq. (2.29), is a sum of curvature and grad-B terms. This par-
ticular form, which neglects the parallel part of the drift response (see, for example, Eq. (54) of
Ref. [HW06] or Eq. (12) of Ref. [BC08]), is sufficient to recover all standard results of gyrokinetic
and neoclassical theory. In Eq. (2.34), 〈f〉 denotes the flux-surface average of the function f , and

dV

dψ
=

∮
dθ dϕJψ , (2.35)

where V is the volume enclosed by the flux surface. In the drift velocity, s is the following dimen-
sionless vector

s =
1

JψB
∂R

∂θ
eϕ −

I

RB
∇R . (2.36)

which is discussed in more detail later.

2.3.2 Metric coefficients

Define a right-handed Cartesian coordinate system (x, y, z) via intermediate (R,Z, ϕ) coordinates
as

x = R(r, θ) cos(−ϕ) , (2.37)

y = R(r, θ) sin(−ϕ) , (2.38)

z = Z(r, θ) . (2.39)

In this geometry the covariant basis vectors are

êr
.
=
∂r

∂r
, êθ

.
=
∂r

∂θ
and êϕ

.
=
∂r

∂ϕ
, (2.40)
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where r = (x, y, z). The corresponding contravariant basis vectors are

êr
.
= ∇r , êθ

.
= ∇θ and êϕ

.
= ∇ϕ . (2.41)

With this information we can write the covariant and contravariant components of the metric tensor
g as gij = êi · êj and gij = êi · êj . It is illustrative to write this in matrix form as

gij =

 grr grθ 0
grθ gθθ 0
0 0 gϕϕ

 , (2.42)

where

grr =

(
∂R

∂r

)2

+

(
∂Z

∂r

)2

, (2.43)

grθ =
∂R

∂r

∂R

∂θ
+
∂Z

∂r

∂Z

∂θ
, (2.44)

gθθ =

(
∂R

∂θ

)2

+

(
∂Z

∂θ

)2

. (2.45)

gϕϕ = R2 (2.46)

Since we also know that gij · gij = I, where I is the identity matrix, we can easily determine the
contravariant counterpart by calculating the inverse of gij . This yields

gij =
1

J 2
r

 gθθgϕϕ −grθgϕϕ 0
−grθgϕϕ grrgϕϕ 0

0 0 grrgθθ − g2
rθ

 (2.47)

=

 (∇r)2 ∇r · ∇θ 0
∇r · ∇θ (∇θ)2 0

0 0 (∇ϕ)2

 . (2.48)

Here, the Jacobians are

Jr .
=
∂(x, y, z)

∂(r, θ, ϕ)
=
∂ψ

∂r
Jψ and Jψ .

=
∂(x, y, z)

∂(ψ, θ, ϕ)
, (2.49)

where explicitly

Jr = det gij = R

(
∂R

∂r

∂Z

∂θ
− ∂R

∂θ

∂Z

∂r

)
> 0 . (2.50)

Metric coefficients can then be computed straightforwardly. For example,

|∇r| = g
1/2
θθ

[
∂R

∂r

∂Z

∂θ
− ∂R

∂θ

∂Z

∂r

]−1

. (2.51)

2.3.3 Mercier-Luc coordinates

Consider a reference flux surface ψ = ψs and the corresponding one-dimensional curve x(`) =
(Rs, Zs) defined by the intersection of that surface and the plane ϕ = 0. If we choose ` to be the
arc length along x, then the tangent vector

t
.
=
dx

d`
=

(
dRs(`)

d`
,
dZs(`)

d`

)
(2.52)
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Z

R

(Rs, Zs)

(R,Z)
̺

ℓ

u

Figure 2.2: Mercier-Luc coordinate system.

is a unit vector. We can further define the unit tangent and unit (inward) normal vectors in terms
of a frame angle u [Gug77] as

t
.
= (− sinu, cosu) and n

.
= (− cosu,− sinu) . (2.53)

This definition of the frame angle is different than that used in Ref. [MCG+98] and [WM99]. We
believe the present convention is the natural choice, since in the circular limit we have u = θ and
` = rθ. The radius of curvature, rc, satisfies the equation

dt

d`
=

n

rc
so that

1

rc(`)
=
du

d`
. (2.54)

Some algebra shows that the curvature can be written as

rc(θ) = g
3/2
θθ

(
∂R

∂θ

∂2Z

∂θ2
− ∂Z

∂θ

∂2R

∂θ2

)−1

. (2.55)

Following Mercier and Luc [ML74], we introduce a right-handed, orthogonal coordinate system
(%, `, ϕ) which is defined in relation to the reference flux surface ψ = ψs through

R(r, θ) = Rs(`) + % cosu , (2.56)

Z(r, θ) = Zs(`) + % sinu . (2.57)

The orientations of ` and u are shown in Fig. 2.2. The metric tensor in this case is diagonal, with

g%% = 1 , (2.58)

g`` =

(
1 +

%

rc

)2

, (2.59)

gϕϕ = R2 . (2.60)

The Jacobian is

J% =
∂(x, y, z)

∂(%, `, ϕ)
=

1

∇%×∇` · ∇ϕ = R

(
1 +

%

rc

)
> 0 . (2.61)
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By differentiating Eqs. (2.56) and (2.57) with respect to r, and evaluating the result at % = 0, we
obtain the following identities valid on the surface ψ = ψs:

∂ρ

∂r

∣∣∣∣
ψ=ψs

= cosu
∂R

∂r
+ sinu

∂Z

∂r
, (2.62)

∂`

∂r

∣∣∣∣
ψ=ψs

= cosu
∂Z

∂r
− sinu

∂R

∂r
. (2.63)

Differentiation with respect to θ yields

∂ρ

∂θ

∣∣∣∣
ψ=ψs

= 0 , (2.64)

∂`

∂θ

∣∣∣∣
ψ=ψs

=

√(
∂Z

∂θ

)2

+

(
∂R

∂θ

)2

=
√
gθθ . (2.65)

On the surface, the Jacobian is equal to

Jr =
R

|∇r|
∂`

∂θ
. (2.66)

2.3.4 Solution of the Grad-Shafranov equation

The solution of Grad-Shafranov equation determines the poloidal flux, ψ, as a function of sources
f and p:

R2∇ ·
(∇ψ
R2

)
= −4πR2p′(ψ)− II ′(ψ) . (2.67)

The lefthand side can be written as

R2∇ ·
(∇ψ
R2

)
= ∇2ψ − 2

R
∇R · ∇ψ . (2.68)

We wish to obtain a solution valid in a neighborhood of % = 0 and so expand

ψ = ψs + ψ1(`) %+ ψ2(`) %2 + · · · . (2.69)

The required operators can then be evaluated to leading order in % as

∇R =
1

h%

∂R

∂%
ê% +

1

h`

∂R

∂`
ê` ∼ ê% cosu− ê` sinu+O(%) , (2.70)

∇ψ =
1

h%

∂ψ

∂%
ê% +

1

h`

∂ψ

∂`
ê` ∼ ψ1 ê% +O(%) , (2.71)

∇2ψ =
1

h%h`hϕ

[
∂

∂%

(
h`hϕ
h%

∂ψ

∂%

)
+

∂

∂`

(
h%hϕ
h`

∂ψ

∂%

)]
, (2.72)

∼ ∂2ψ

∂%2
+
∂ψ

∂%

1

h`hϕ

∂

∂ρ
(h`hϕ) +O(%) , (2.73)

where hi
.
=
√
gii. Combining these results gives

R2∇ ·
(∇ψ
R2

)
∼ ψ1

rc
− ψ1

Rs
cosu+ 2ψ2 +O(%) . (2.74)
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The solution for ψ1 is obtained from

B2
p = |∇ϕ|2 |∇ψ|2 ∼ 1

R2
s

(
∂ψ

∂ρ

)2

+O(%) , (2.75)

from which it is evident that
ψ1 = RsBps , (2.76)

where Bps = Bp(ψs). The solution of the Grad-Shafranov equation then gives an explicit expression
for ψ2:

ψ2 =
1

2

(
Bp cosu− BpR

rc
− 4πR2p′ − II ′

)
ψ=ψs

. (2.77)

2.3.5 Magnetic field derivatives

We can start with the exact expressions

B2
p =

1

R2

[(
∂ψ

∂%

)2

+

(
1

h`

∂ψ

∂`

)2
]
, (2.78)

B2
t =

(
I(ψ)

R

)2

. (2.79)

Expanding the poloidal flux gives

R2B2
t ∼ I2

s + 2%ψ1IsI
′
s +O(%2) , (2.80)

R2B2
p ∼ ψ2

1 + 4%ψ1ψ2 +O(%2) , (2.81)

where Is = I(ψs). Expanding R and taking derivatives gives

∂

∂%
B2
t ∼

1

R2
s

(
−2

I2
s

Rs
cosu+ 2IsI

′
sψ1

)
, (2.82)

∂

∂%
B2
p ∼

1

R2
s

(
−2

ψ2
1

Rs
cosu+ 4ψ1ψ2

)
. (2.83)

Adding these contributions together gives, finally:

∂

∂%
B2 ∼

(
−2

I2

R3
cosu− 2

B2
p

rc
− 8πRBpp

′
)
ψ=ψs

. (2.84)

2.3.6 Calculation of the eikonal function

In order to compute radial derivatives required for the evaluation of the drift and Laplacian, we
need to determine the radial dependence of ν. Using the expansion, Eq. (2.69), for the poloidal
flux, together with the eikonal expansion

ν = νs + ν1(`) %+ · · · , (2.85)

we solve the equation
∇ν ×∇ψ = f∇ϕ (2.86)
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order-by-order in %. First, an expansion of the gradients yields

∇ψ ∼ (ψ1 + 2%ψ2)∇%+ %
∂ψ1

∂`
∇`+O(%2) , (2.87)

∇ν ∼ ν1∇%+

(
∂νs
∂`

+ %
∂ν1

∂`

)
∇`+O(%2) . (2.88)

Replacing these formulae into Eq. (2.86) and dotting with ∇ϕ yields

− ∂νs
∂`

ψ1 + %

(
ν1
∂ψ1

∂`
− ∂ν1

∂`
ψ1 − 2

∂νs
∂`

ψ2

)
∼ Is + %I ′sψ1

Rs + % cosu

(
1 +

%

rc

)
. (2.89)

At each order in %, we have

O(1) : − ∂νs
∂`

ψ1 =
Is
Rs

, (2.90)

O(%) : − ψ1
∂

∂`

(
ν1

ψ1

)
= 2

∂νs
∂`

ψ2

ψ1
+
I ′s
Rs

+
Is

Rsrcψ1
− Is cosu

R2
sψ1

. (2.91)

Thus, the solution for νs is

νs(`) = −
∫ `

0

d`′

R2
sBps

Is . (2.92)

Some additional algebra shows that

ν1(`) = Rs(`)Bps(`)
[
D0(`) +D1(`) II ′ +D2(`) p′

]
, (2.93)

where the Di integrals are:

D0 = −
∫ `

0

d`′

R2
sBps

(
2

rcRsBps
− 2 cosu

R2
sBps

)
Is (2.94)

D1 = −
∫ `

0

d`′

R2
sBps

(
B2

B2
ps

)
1

Is
, (2.95)

D2 = −
∫ `

0

d`′

R2
sBps

(
4π

B2
ps

)
Is . (2.96)

We want to eliminate II ′ in favour of q′. Writing `(2π)
.
= L, and expanding Eq. (2.6), we find

− 2π(qs + q′s%ψ1) ∼ νs(L) + %ν1(L) +O(%2) . (2.97)

Therefore, we have the connection

− 2π q′s = D0(L) +D1(L) II ′ +D2(L) p′ . (2.98)

2.3.7 Gyrokinetic drift velocity in Mercier-Luc coordinates

In this case, we work out the dominant part of the drift operator acting on a function f(ψ, θ, α).
This limit is appropriate for standard gyrokinetics. We proceed by simplifying Eq. (2.29) in the
Miller equilibrium case by beginning from the Mercier-Luc representation. On the surface ψ = ψs
we have

Bs = Bps∇`+ Is∇ϕ . (2.99)
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Note that Eq. (2.99) cannot be used to obtain ∂B/∂ψ because the limit % → 0 has already been
taken. To evaluate ∇B, we must write

∇B =
∂B

∂%
∇%+

∂B

∂`
∇` , (2.100)

and then make use of Eq. (2.84). Taking the cross product of the above two quantities gives

Bs ×∇B = −Bps
∂B

∂%
∇%×∇`+ Is

∂B

∂%
∇ϕ×∇%+ Is

∂B

∂`
∇ϕ×∇` . (2.101)

Then, the perpendicular gradient operator, accurate to O(%), can be written as

∇⊥ ∼ ∇%
∂

∂%
+

(
∇ϕ+

∂νs
∂`
∇`+ ν1∇%+O(%)

)
∂

∂α
. (2.102)

The final result, valid on the surface ψ = ψs, is

B×∇B · ∇ = −IsBps
∂B

∂`

∂

∂ψ
+

(
− B2

RsBps

∂B

∂%
− Isν1

Rs

∂B

∂`

)
∂

∂α
. (2.103)

2.3.8 Perpendicular Laplacian in Mercier-Luc coordinates

To evaluate the perpendicular Laplacian, we square Eq. (2.102) and simplify, where it is sufficiently
accurate to ignore variation of coefficients

∇2
⊥ ∼

∂2

∂%2
+ 2ν1

∂

∂%

∂

∂α
+

[
1

R2
+ ν2

1 +

(
∂ν0

∂`

)2
]
∂2

∂α2
. (2.104)

2.3.9 Coriolis drift terms

Some algebra show that

b× s · ∇⊥ = − sinu
∂

∂ρ
+

(
I

R2Bp
cosu− ν1 sinu

)
∂

∂α
, (2.105)

where we have used the relation

sinu = −∂R
∂θ

(
∂`

∂θ

)−1

. (2.106)

2.3.10 Detailed catalogue of shape functions

For convenience, we give a complete summary of the equations needed to compute all the relevant
shape functions. In the expressions below, R and Z are taken to be functions of r and θ, and the
subscript s can be safely omitted.

∂`

∂θ
=

√(
∂R

∂θ

)2

+

(
∂Z

∂θ

)2

, (2.107)

Jr = R

(
∂R

∂r

∂Z

∂θ
− ∂R

∂θ

∂Z

∂r

)
, (2.108)
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|∇r| = R

Jr
∂`

∂θ
, (2.109)

rc(θ) =

(
∂`

∂θ

)3(∂R
∂θ

∂2Z

∂θ2
− ∂Z

∂θ

∂2R

∂θ2

)−1

, (2.110)

I(r)

Bunit
= 2π r

(∫ L

0

d`′

R|∇r|

)−1

, (2.111)

Bt(r, θ)

Bunit(r)
=

I

RBunit
, (2.112)

Bp(r, θ)

Bunit(r)
=

r

R

|∇r|
q

, (2.113)

B(r, θ)

Bunit(r)
= sgn(Bunit)

√(
Bp
Bunit

)2

+

(
Bt
Bunit

)2

, (2.114)

gsin(r, θ)
.
=
Bt
B

(
R0

B

∂B

∂`

)
, (2.115)

gcos(r, θ)
.
= −R0

B

∂B

∂%
= gcos1 + gcos2 , (2.116)

gcos1(r, θ) =
B2
t

B2

R0

R
cosu+

B2
p

B2

R0

rc
, (2.117)

gcos2(r, θ) = −1

2

B2
unit

B2
R0 |∇r|β∗ , (2.118)

usin(r, θ) = sinu , (2.119)

ucos(r, θ) =
Bt
B

cosu , (2.120)

E1(r, θ) = 2

∫ `(θ)

0

d`′

R|∇r|
Bt
Bp

(
r

rc
− r

R
cosu

)
(2.121)

E2(r, θ) =

∫ `(θ)

0

d`′

R|∇r|

(
B2

B2
p

)
, (2.122)

E3(r, θ) =
1

2

∫ `(θ)

0

d`′

R

Bt
Bp

(
B2

unit

B2
p

)
, (2.123)

f∗(r) =
1

E2(r, 2π)

[
2π
qs

r
− 1

r
E1(r, 2π) + β∗E3(r, 2π)

]
(2.124)

Θ(r, θ)
.
= −

(
RBp
B

)
ν1 =

RBp
B
|∇r|

(
1

r
E1 + f∗E2 − β∗E3

)
(2.125)

Gq(r, θ)
.
=

1

q

(
rB

RBp

)
, (2.126)

Gθ(r, θ)
.
=
JψB
qR0

=
B

Bunit

R

R0

1

r|∇r|
∂`

∂θ
. (2.127)
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2.3.11 Required operators in terms of shape functions

Perpendicular drift:

vd · ∇⊥ = −ikθGq
(
v2
‖ + µB

ΩcaR0

)
[gcos1 + gcos2 + Θ gsin]

+ikθGq

(
v2
‖

ΩcaR0

)
gcos2 −

(
v2
‖ + µB

ΩcaR0

)
|∇r| gsin

∂

∂r
,

−ikθGq
(

2v‖ω0R0

ΩcaR0

)
[ucos + Θ usin]−

(
2v‖ω0R0

ΩcaR0

)
|∇r|usin

∂

∂r
, (2.128)

Perpendicular Laplacian:

∇2
⊥ = |∇r|2 ∂2

∂r2
+ 2iΘkθGq |∇r|

∂

∂r
− k2

θG
2
q

(
1 + Θ2

)
, (2.129)

Radial gradient of eikonal: n
∇ψ
|∇ψ| · ∇α = −kθGqΘ , (2.130)

Binormal gradient of eikonal: nb× ∇ψ|∇ψ| · ∇α = −kθGq , (2.131)

Parallel gradient: b · ∇ =
1

Gθ

1

qR0

∂

∂θ
, (2.132)

Flux-surface average: 〈f〉 =

∫ 2π

0
dθ
Gθ
B
f(θ)∫ 2π

0
dθ
Gθ
B

. (2.133)

Above, we have introduced the binormal wavenumber, kθ = i(q/r)∂/∂α.

2.3.12 Pressure-gradient effects in the drift velocity

In cases where compressional magnetic perturbations are neglected, one may also wish to ignore
finite-pressure effects in the drift velocity [WM99]. This is done by setting gcos2 = 0 in Eq. (2.128).
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2.4 Specification of the plasma shape

It is assumed throughout that we have access to a global equilibrium for which the poloidal and
toroidal fluxes are known over the entire range of r. Then, we consider two general ways in which
to specify the plasma shape via a closed contour in the (R,Z) plane: (1) a model parameterization,
and (2) a general Fourier expansion.

In addition to the plasma shape, we also need to know the plasma pressure gradient, which we
will define via the effective inverse beta-gradient scale length:

β∗(r) .
= − 8π

B2
unit

∂p

∂r
> 0 . (2.134)

The safety factor q = dψ/dχt and the magnetic shear s = (r/q)dq/dr can be obtained directly via
numerical differentiation.

2.4.1 Model flux-surface shape

A popular model for the flux-surface shape in (R,Z) coordinates was introduced by Miller [MCG+98].
We generalize that model to include the effects of elevation and squareness. In particular, finite
elevation is required very close to r = 0, where the flux surface may lie entirely above the midplane
at Z = 0. Specifically, let

R(r, θ) = R0(r) + r cos(θ + arcsin δ sin θ) , (2.135)

Z(r, θ) = Z0(r) + κ(r)r sin(θ + ζ sin 2θ) , (2.136)

where κ is the elongation, δ is the triangularity, ζ is the squareness and Z0 is the elevation
[TLLM+99]. In order to evaluate the required quantities ∂R/∂r and ∂Z/∂r, we also need to
know the radial derivatives of R0, Z0, δ, κ and ζ. To this end, we define the associated shape
functions

sκ
.
=
r

κ

∂κ

∂r
, sδ

.
= r

∂δ

∂r
, sζ

.
= r

∂ζ

∂r
. (2.137)

Note that this definition of sδ differs slightly from Refs. [MCG+98] and [WM99]. Thus, to compute
the shape functions for the flux-surface at r according to this model, we require the 10 parameters{

R0,
dR0

dr
, Z0,

dZ0

dr
, κ, sκ, δ, sδ, ζ, sζ

}
. (2.138)

2.4.2 General flux-surface shape

In this case the flux-surface shape is an expansion of the form

R(r, θ) =
1

2
aR0 (r) +

N∑
n=1

[
aRn (r) cos(nθ) + bRn (r) sin(nθ)

]
, (2.139)

Z(r, θ) =
1

2
aZ0 (r) +

N∑
n=1

[
aZn (r) cos(nθ) + bZn (r) sin(nθ)

]
. (2.140)

Here, N is an integer which evidently controls the accuracy of the expansion, and is in principle
arbitrary. If (R,Z) are known as functions of arc length, then one can simply set θ = 2π`/L. To
compute the shape functions for the flux-surface at r, we require the 8(N + 1) parameters{

aRn , b
R
n , a

Z
n , b

Z
n ,
daRn
dr

,
dbRn
dr

,
daZn
dr

,
dbZn
dr

}
. (2.141)
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2.4.3 A measure of the error

It is beyond the scope of the present paper to give a detailed assessement of the error in neoclassical
or turbulent transport calculations caused by errors in the flux-surface shape. Nevertheless, we can
define the error in the flux-surface approximation of the discrete data {Ri, Zi}ndi=1 as

ε
.
=

1

nd r

nd∑
i=1

min
θ

√
[R(θ)−Ri]2 + [Z(θ)− Zi]2 . (2.142)

Figure 2.3 shows the flux-surface fitting error for DIII-D discharge 132010. This discharge is part
of a series of experiments designed to accurately measure profiles across the entire confined plasma,
including the edge barrier region. Discharge 132010 is a standard DIII-D H-mode plasma, with
typical values of the magnetic field (Bt = 2.1T ), current (Ip = 1.2MA), elongation (κ = 1.8)
and triangularity (δ = 0.3). The width of the edge barrier (∼ 3% in r/a), height of the edge
barrier (∼ 11kPa), and global pressure (βN ∼ 2) are all fairly typical of DIII-D H-Modes. The
Grad-Shafranov equillbrium was computed by EFIT using a 129× 129 mesh, and then mapped to
very-high-resolution (R,Z)-contours (400 flux surfaces, each with 512 points equally-spaced in arc
length along the surface) using the ELITE code. The Miller-type model equilibrium is seen to be
significantly less accurate, according to the metric defined in Eq. 2.142, at all radii than even the
N = 4 Fourier expansion (red curve). The N = 8 (solid black curve) and N = 12 (green curve)
results are also shown. In the region r/a < 0.4, the accuracy of the Fourier expansion probably
exceeds the accuracy of the original equilibrium solution, and is therefore limited by it. This result
shows that N > 12 is probably a good default choice for N . A further comparison of actual flux
surface shapes at r/a = 0.99 (i.e., very close to the separatrix) is shown in Fig. 2.4.

For core plasma parameters, our limited experience is that the difference, with respect to linear
growth rates, between general and model flux-surfaces is insignificant in moderately-shaped DIII-D
plasmas (roughly 5% at r/a = 0.9, and less than that deeper in the core). However, this relies on
the accuracy of the fitting procedure used to obtain the model parameters κ, δ, etc. If the model
flux-surface shape is poorly calculated, the absolute error can be significant.
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Figure 2.3: Error, ε, in the flux-surface fits for DIII-D discharge 132010. The Miller-type model
equilibrium is seen to be significantly less accurate at all radii than even theN = 4 Fourier expansion
(red curve). The N = 8 (solid black curve) and N = 12 (green curve) results are also shown. In
the region r/a < 0.4, the accuracy of the Fourier expansion probably exceeds the accuracy of the
original equilibrium solution, and is therefore limited by it.
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Figure 2.4: Comparison of exact flux-surface (dashed curve) to parameterized (left) and general
Fourier expansion (right) at r/a = 0.99.
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Appendix A: Large-aspect-ratio expansion

Consider a shifted-circle (Shafranov) flux-surface shape:

R(r, θ) = R0 + ∆(r) + r cos θ , (2.143)

Z(r, θ) = r sin θ . (2.144)

Let ∆(r) = ar2/(2R0) be the Shafranov shift, with a an O(1) constant, so that ∂∆/∂r = a (r/R0).
It is instructive to calculate the shape functions as Taylor series in the small parameter r/R0. To
first order in r/R0, we find

|∇r| ∼ 1− a r

R0
cos θ , (2.145)

Bt(r, θ)

Bunit(r)
∼ 1− r

R0
cos θ , (2.146)

Bp(r, θ)

Bunit(r)
∼ r

qR0

[
1− (a+ 1)

r

R0
cos θ

]
, (2.147)

B(r, θ)

Bunit(r)
∼ 1− r

R0
cos θ , (2.148)

gsin(r, θ) ∼ sin θ

[
1− r

R0
cos θ

]
, (2.149)

gcos1(r, θ) ∼ cos θ − r

R0

(
cos2 θ − 1

q2

)
, (2.150)

Θ(r, θ) ∼ sθ − q2R0β
∗ sin θ + Θ1

r

R0
, (2.151)

Gq(r, θ) ∼ 1 + (a− 1)
r

R0
cos θ , (2.152)

Gθ(r, θ) ∼ 1 + a
r

R0
cos θ . (2.153)

Here, Θ1 is the function

Θ1 = (1− 2a)sθ sin θ + sin θ

[
(3a− 1)s− 2(1 + a) +

1

2
(a− 3)q2R0β

∗ cos θ

]
. (2.154)

Since the formulae do not represent an exact Grad-Shafranov equilibrium, but rather an equilibrium
accurate only first order in r/R0, they should not be used for simulation purposes. However, they
can be used to provide a convenient asymptotic check of the numerical routines used to compute
the shape functions in the general case.

Finally, for completeness, we can make contact with the popular s-α equilibrium model [CHT78].
First, recall that

αMHD
.
= q2R0β

∗ = −q2R0
8π

B2
unit

dp

dr
. (2.155)

To recover the usual s-α formulae, we must take the limit r/R0 → 0 in all the expressions above,
except for B, which is taken to be B/Bunit = R0/R. Evidently, the result is not a Grad-Shafranov
equilibrium (not even to first order in r/R0). In practice, simulation results obtained using a
model circular equilibrium (sometimes called a “Miller circle”) can differ significantly from the
corresponding s-α result. For example, Kinsey [KWC07] has shown that the nonlinear electron
energy flux increases by more than a factor of 1.5 when using a Miller circle instead of s-α geometry.
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Appendix B: Translation to GS2 Geometry Variables

The normalizing magnetic field in GS2, BT0, is defined as

I(ψ) = RBt
.
= RGEOBT0 , (2.156)

where RGEO is a reference radius (input). For simplicity, let’s assume that RGEO = R0 (this appears
to be a typical choice), in which case we can then relate BT0 to Bunit according to

Bunit

BT0
= R0

(
I

Bunit

)−1

, (2.157)

where I/Bunit is given by Eq. (2.111). Explicitly, we can write this as

Bunit

BT0
=

R0

2πr

∫ 2π

0

dθ

R

(
∂R

∂r

∂Z

∂θ
− ∂R

∂θ

∂Z

∂r

)
, (2.158)

' κ

(
1 +

sκ
2
− 1

2

dR0

dr

r

R0

)
. (2.159)

Whereas Eq. (2.158) is exact, Eq. (2.159) is approximate and is given here only as an intuitive aid.
In practice the required integral is computed to high accuracy by GYRO and the result available
in the normalized GEO interface variable GEO f. Specifically,

Bunit

BT0
=
R0

a

1

GEO f
. (2.160)
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Chapter 3

The Gyrokinetic Model

3.1 Foundations and Notation

The definitive works in terms of the complete derivation of the gyrokinetic-Maxwell equations for
evolution of fluctuations, and the neoclassical equations for evaluation of collisional transport, are
due to Sugama and coworkers [SH97, SH98]. For historical reasons, the notation and presentation
here differ in some respects from these papers. Nevertheless, what is documented here should be
completely consistent with the formulae given in Ref. [SH98]. We prefer when applicable to use
Gaussian CGS units1. Roughly speaking, the gyrokinetic approach [AL80, CTB81, FC82] is based
on the assumption that equilibrium quantities are slowly varying, while perturbations are smaller
but more rapidly varying in space. To describe this ordering, it is convenient to introduce the
parameters

cs =

√
Te
mi

ion-sound speed (3.1)

ρs =
cs
Ωci

ion-sound gyroradius (3.2)

where Ωci is the ion cyclotron frequency. The derivation of the gyrokinetic equation proceeds by
expanding the primitive Fokker-Planck equation in the small parameter, ρ∗

.
= ρs/a, where a is the

plasma minor radius.

3.2 Reduction of the Fokker-Planck Equation

The details of the derivation of the gyrokinetic (and neoclassical) equations is beyond the scope of
this manual. Still, we attempt to sketch the essential details. The Fokker-Planck equation provides
the fundamental theory for plasma equilibrium, fluctuations, transport. In this section, we use
Sugama’s notation. The FP equations is written as[

∂

∂t
+ v · ∇+

ea
ma

(
(E + Ê) +

v

c
× (B + B̂)

)
· ∂
∂v

]
(fa + f̂a) = Ca(fa + f̂a) + Sa (3.3)

where fa is the ensemble-averaged distribution, f̂a is the fluctuating distribution, Sa are sources
(beams, RF, etc), and

Ca =
∑
b

Cab(fa + f̂a, fb + f̂b) (3.4)

1 See http://wwwppd.nrl.navy.mil/nrlformulary/NRL FORMULARY 06.pdf

21



is the nonlinear collision operator. The general approach is to separate the FP equation into
ensemble-averaged, A, and fluctuating, F , components:

A =
d

dt

∣∣∣∣
ens

fa − 〈Ca〉ens −Da − Sa , (3.5)

F =
d

dt

∣∣∣∣
ens

f̂a +
ea
ma

(
Ê +

v

c
× B̂

)
· ∂
∂v

(fa + f̂a)− Ca + 〈Ca〉ens +Da , (3.6)

where
d

dt

∣∣∣∣
ens

.
=

∂

∂t
+ v · ∇+

ea
ma

(
E +

v

c
×B

)
· ∂
∂v

, (3.7)

Da
.
= − ea

ma

〈(
Ê +

v

c
× B̂

)
· ∂f̂a
∂v

〉
ens

. (3.8)

such that Da is the fluctuation-particle interaction operator. Ensemble averages are expanded in
powers of ρ∗ as

fa = fa0 + fa1 + fa2 + . . . , (3.9)

Sa = Sa2 + . . . (transport ordering), (3.10)

E = E0 + E1 + E2 + . . . , (3.11)

B = B0 . (3.12)

Fluctuations are also expanded in powers of ρ∗ as

f̂a = f̂a1 + f̂a2 + . . . , (3.13)

Ê = Ê1 + Ê2 + . . . , (3.14)

B̂ = B̂1 + B̂2 + . . . . (3.15)

3.2.1 Lowest-order constraints

The lowest-order ensemble-averaged equation gives the constraints

A−1 = 0 : E0 +
1

c
V0 ×B = 0 and

∂fa0

∂ξ
= 0 (3.16)

where ξ is the gyroangle. The only zeroth-order flow (i.e., sonic) flow that persists on the fluctuation
timescale is a purely toroidal flow [HW85], which we write as

V0 = V0eϕ = Rω0(ψ)eϕ where ω0
.
= −c∂φ−1

∂ψ
. (3.17)

The first-order flow V1 contains both toroidal and poloidal components which are self-consistenly
calculated by as moments of the ensemble averaged first-order distribution, fa1 (that is, they are
computed within the context of neoclassical theory).
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3.2.2 Equilibrium equation and solution

The gyrophase average of the zeroth order ensemble-averaged equation gives the collisional equi-
librium equation: ∫ 2π

0

dξ

2π
A0 = 0 :

(
V0 + v′‖b

)
· ∇fa0 = Ca(fa0) (3.18)

where v′ = v −V0 is the deviation from the mean flow velocity. The exact solution for fa0 is a
Maxwellian in the rotating frame, such that the centrifugal force causes the density to vary on the
flux surface:

fa0 =
na(ψ, θ)

(2πTa/ma)3/2
exp

(
−ma(v

′)2

2Ta

)
= naFMa . (3.19)

It is important to note here that to account for sonic rotation in the equilibrium, we do not
use the shifted Maxwellian approach [WSCH07]. Although the use of a shifted Maxwellian gives
rise to errors which are probably not significant for typical operating parameters, the approach is
conceptually incorrect. Instead, we work in the shifted velocity frame v′ = v − V0. The latter
approach was first used in the context of neoclassical transport by Hinton and Wong [HW85].

Beyond this point, we limit our attention to the moderate flow regime, such that ρ∗ � V0/cs � 1.
Operationally, this means that we will ignore terms quadratic in V0/cs, whilst retaining all terms
which are linear in V0/cs. Physically, this approach will not capture centrifugal effects like the
poloidal variation of density, since

na(ψ, θ) ∼ na(ψ) +O(V 2
0 /c

2
s) , (3.20)

but will correctly retain the symmetry-breaking effects of radial electric field shear, rotation shear
drive, and the Coriolis drift.

3.2.3 The drift-kinetic equation

Taking a gyroaverage of the first-order ensemble-averaged component A1 gives expressions for the
gyroangle-dependent and independent distributions, f̃a1 and f̄a1:∫ 2π

0

dξ

2π
A1 = 0 : fa1 = f̃a1 + f̄a1 , f̃a1 =

1

Ωa

∫ ξ

dξ L̃fa0 (3.21)

The function f̄a1 is determined by the solution of the drift kinetic equation.

3.2.4 The gyro-kinetic equation

The gyroaverage of first-order F1 gives an expression for first-order fluctuating distribution, f̂a1, in
terms of the distribution of the gyrocenters, Ha(R):∫ 2π

0

dξ

2π
F1 = 0 : f̂a1(x) = −eaδφ(x)

Ta
fa0 +Ha(R) , (3.22)

where x = R+ρ is the particle position, ρ = b×v′/Ωca is the gyroradius vector, Ωca = eaB/(mac)
is the cyclotron frequency, and R (X in Ref. [SH98]) is the guiding-center position. The function
Ha(R) (ha(R) in Ref. [SH98]) is determined by solution of the nonlinear gyrokinetic equation. Also
note that the perturbed potential δφ appears as φ̂ in Ref. [SH98].
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3.3 The Gyrokinetic Equation in Detail

In what follows, we will drop the prime notation in reference to the velocity coor-
dinates. To bring the gyrokinetic equation into a form convenient for numerical integration, we
introduce the function ha(R):

Ha(R) =
eafa0

Ta
Ψa(R) + ha(R) (3.23)

where Ψa (ψ̂a in Ref. [SH98]) is the following gyrophase average (or, more simply, gyroaverage) at
fixed R:

Ψa(R)
.
=

〈
δφ(R + ρ)− 1

c
(V0 + v) · δA(R + ρ)

〉
R

. (3.24)

The gyroaverage can be defined formally as

〈z(R, ξ)〉R
.
=

∮
dξ

2π
z(R, ξ) , (3.25)

for any function, z. Also, we note the following identities

b · ∇V0 = ω0s (3.26)

b · ∇V0 +∇V0 · b =
I

B
∇ω0 , (3.27)

where s is the dimensionless vector

s =
1

JψB
∂R

∂θ
eϕ −

I

RB
∇R . (3.28)

We use a form of the gyrokinetic equation which can be obtained, after some rearrangement, from
Eq. (46) of Ref. [SH98].

∂ha
∂t

+
(
v‖b + vd

)
· ∇Ha + vE0 · ∇ha+ δva · ∇ha

+ δva ·
(
∇fa0 +

mav‖fa0

Ta

I

B
∇ω0

)
= CGLa [Ha] . (3.29)

The velocities are

vd
.
=
v2
‖ + µB

ΩcaB
b×∇B +

2v‖ω0

Ωca
b× s +

4πv2
‖

ΩcaB2
b×∇p (3.30)

vE0
.
=

c

B
b×∇φ−1 , (3.31)

δva
.
=

c

B
b×∇Ψa . (3.32)

In this result, s is a dimensionless vector which is not exactly in the grad-B direction. The correct
form of s cannot be obtained using the shifted Maxwellian model. This form of the drift matches
Brizard’s result, and the resulting expression for vd · ∇ψ matches the familiar result from Hinton
and Wong [HW85]. By setting ω0 = 0, we recover the usual diamagnetic rotation ordering. For
normalization purposes it is useful to note that∫

d3v FMa = 1 . (3.33)
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Various terms can be simplified without refering to the geometry model. Within the accuracy of
the gyrokinetic ordering, we have

vE0 · ∇ha =
c

B
b×∇φ−1 · ∇ha ∼ ω0

∂ha
∂α

, (3.34)

δva · ∇fa0 =
c

B
b×∇Ψa · ∇fa0 ∼ c

∂fa0

∂ψ

∂Ψa

∂α
, (3.35)

δva · ∇ha =
c

B
b×∇Ψa · ∇ha ∼ c

∂ha
∂ψ

∂Ψa

∂α
− c ∂ha

∂α

∂Ψa

∂ψ
. (3.36)

Using these expression, we find

∂ha
∂t

+
v‖
JψB

∂Ha

∂θ
+ vd · ∇Ha+ ω0

∂ha
∂α

+ c [ha,Ψa]ψ,α

+ c

(
∂fa0

∂ψ
+
mav‖
Ta

I

B

∂ω0

∂ψ
fa0

)
∂Ψa

∂α
= CGLa [Ha] . (3.37)

The expansion and simplification of the remaining operators has been treated in Chap. 2.

3.3.1 Ordering

We remark that the gyrokinetic ordering requires that

eaΨa

Ta
∼ ha
fa0
∼ ω − k⊥ ·V0

Ωca
∼ k‖ρs ∼ ρ∗ . (3.38)

3.3.2 Rotation and rotation shear parameters

Recalling the definition of the rotation frequency:

ω0
.
= −c∂φ−1

∂ψ
, (3.39)

we define the Mach number, the Er shearing rate and the rotation shearing rate respectively as

M
.
=
ω0R0

cs
, (3.40)

γE
.
= − r

q

∂ω0

∂r
, (3.41)

γp
.
= −R0

∂ω0

∂r
. (3.42)

These parameters are defined in this way for legacy reasons and are not independent; rather, we
have the constraint

γp =
R0

qr
γE . (3.43)

3.3.3 Comment on the Hahm-Burrell shearing rate

Note that the shearing rate defined in Eq. (3.41) is not in general equal to the familiar Hahm-Burrell
shearing rate [Bur97]

γHB
E

.
=

(RBp)
2

B

∂

∂ψ

(
Er
RBp

)
, (3.44)
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where Er is the radial electric field

Er
.
= −êr · ∇φ−1 = −|∇r| ∂φ−1

∂r
. (3.45)

In terms of the Miller geometry coefficients, γHB
E can be written as

γHB
E =

|∇r|
Gq

r

q

∂

∂r

(
c

Bunit

q

r

∂φ−1

∂r

)
=
|∇r|
Gq

γE . (3.46)

3.4 Maxwell equations

Defining the scalar electromagnetic fields δA‖
.
= b · δA and δB‖

.
= b · ∇ × δA, we can write an

equation for each of the fields (δφ, δA‖, δB‖) (see Appendix A, [SH98]). In each case, the species
summation runs over all species a (ions and electrons).

Poisson equation

−∇2
⊥δφ(x) = 4π

∑
a

eza δna = 4π
∑
a

ea

∫
d3v f̂a1(x) . (3.47)

Parallel Ampère’s Law

−∇2
⊥δA‖(x) =

4π

c

∑
a

δj‖,a =
4π

c

∑
a

ea

∫
d3v v‖ f̂a1(x) . (3.48)

Perpendicular Ampère’s Law

∇⊥δB‖(x)× b =
4π

c

∑
a

δj⊥,a =
4π

c

∑
a

ea

∫
d3v v⊥f̂a1(x) (3.49)

The righthand sides can be written in terms of Ha according to∫
d3v f̂a1(x) = − naea

Ta
δφ(x) +

∫
d3v Ha(x− ρ) , (3.50)∫

d3v v‖ f̂a1(x) =

∫
d3v v‖Ha(x− ρ) (3.51)∫

d3v v⊥ f̂a1(x) =

∫
d3v v⊥Ha(x− ρ) (3.52)
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3.5 Transport Fluxes and Heating

For each species separately, we define a particle flux, a toroidal angular momentum flux, an energy
flux, and an exchange power density:

Γa(r) = F
∫
d3v H∗a(R) δva · ∇r , (3.53)

Qa(r) = F
∫
d3v H∗a(R) δva · ∇r

1

2
mav

2 , (3.54)

Πa(r) = F
∫
d3v H∗a(R)〈

[maR(V0 + v) · eϕ]
c

B
b×∇

[
δφ(x)− 1

c
(V0 + v) · δA(x)

]
· ∇r

〉
R

(3.55)

Sa(r) = F
∫
d3v H∗a(R) ea

〈(
∂

∂t
+ V0(x) · ∂

∂x

)[
δφ(x)− 1

c
(V0 + v) · δA(x)

]〉
R

(3.56)

3.5.1 Ambipolarity and Exchange Symmetries

By summing the particle fluxes over species and using the Maxwell equations, one can prove the
exact ambipolarity property ∑

a

eaΓ̄a = 0 , (3.57)

where an overbar denotes a perpendicular spatial and time average taken in the flux-tube limit.
Similarly, summing the exchange power density over species and using the Maxwell equations, one
can prove the net heating is zero: ∑

a

S̄a = 0 . (3.58)

Note that the time-average is only required to prove the exchange property, not the ambipolarity
property. Both these conditions are in general violated if profile variation is allowed.

3.6 Entropy production

The balance equation for entropy production is given by

σa −F
∫
d3v

H∗a
fa0

∂Ha

∂t
+ F

∫
d3v

H∗a
fa0

CGLa + F
∫
d3v

H∗a
fa0

Dτ + F
∫
d3v

H∗a
fa0

Dr → 0 , (3.59)

where Dτ and Dr represent the (artificial) upwind dissipation terms added in the numerical dis-
cretization. The function σa is

σa
.
=

(
1

Lna
− 3

2

1

LTa

)
Γa +

1

LTa

Qa
Ta

+
∂ω0

∂r

Πa

Ta
+ Sa

1

Ta
. (3.60)

On taking a radial average, and the time-average over sufficiently long times, the sum of terms
should approach zero.
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3.7 Simplified fluxes and field equations with operator notation

3.7.1 Operator notation

It is useful at this point to discuss the general spectral representation of fields and operators. First,
expanding an arbitrary field in a spectral (Fourier) basis gives

z(R)
.
=
∑
k⊥

eiS(R) z̃(k⊥) , (3.61)

where k⊥ = ∇⊥S. In this case, the gyrophase dependence in Fourier space is harmonic

z(R + ρ) =
∑
k⊥

eiS(R)eik⊥·ρ z̃(k⊥) , (3.62)

and the gyroaverage becomes

〈z(R + ρ)〉R =
∑
k⊥

eiS(R)J0(k⊥ρa) z̃(k⊥) , (3.63)

where ρa
.
= v⊥/Ωca. Thus, in real space, the gyroaverage can be represented as a linear operator

G0a whose spectral representation is J0(k⊥ρa).
Now, we can write the field defined in Eq. 3.24 using operator notation. Moreover, we also

define a new field which is useful for calculation of momentum transport coefficients. These are

Ψa(R)
.
= G0a

[
δφ(R)−

v‖
c
δA‖(R)

]
+

v2
⊥

Ωcac
G1a δB‖(R) , (3.64)

Xa(R)
.
= G2a

[
δφ(R)−

v‖
c
δA‖(R)

]
+

v2
⊥

Ωcac
G3aδB‖(R) . (3.65)

Although we will construct explicit discrete approximations to the operators G0a, G1a and G2a in
the next chapter, it can be shown that they have the following spectral representations:

G0a → J0(γa) , (3.66)

G1a →
1

2
[J0(γa) + J2(γa)] , (3.67)

G2a → − ikxρa
2

[J0(γa) + J2(γa)] , (3.68)

G3a → i
kxρa
γ2
a

[J0(γa)− J1(γa)/γa] , (3.69)

where γa
.
= k⊥ρa, and kx is defined explicitly in Sec. 5.3. The expressions above are adapted

directly from Sugama [SH98]. However, to make use of Sugama’s results, we use the following
identities, where ϕ = eϕ:

k⊥k⊥ : (Rϕ̂)(∇ψ) = [k⊥ · (Rϕ̂)] [k⊥ · ∇ψ] , (3.70)

k⊥ · ∇ψ = − iRBp
(
|∇r| ∂

∂r
− q

r
GqΘ

∂

∂α

)
= RBpkx , (3.71)

k⊥ · (Rϕ̂) = − i ∂
∂α

, (3.72)

where Eq. (2.102) has been used to expand ∇⊥.
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3.7.2 Maxwell equations: Ha-form

The Maxwell equations are simplest when written in terms of Ha:

Poisson equation

− 1

4π
∇2
⊥δφ =

∑
a

ea

[−naea
Ta

δφ+

∫
d3v G0aHa

]
(3.73)

Parallel Ampère’s Law

− 1

4π
∇2
⊥δA‖ =

∑
a

ea

∫
d3v

v‖
c
G0aHa (3.74)

Perpendicular Ampère’s Law

− 1

4π
δB‖ =

∑
a

ea

∫
d3v

v2
⊥

Ωcac
G1aHa (3.75)

3.7.3 Maxwell equations: ha-form

For time-integration purposes, we will need to write the field equations in terms of ha:

Poisson equation

− 1

4π
∇2
⊥δφ+

∑
a

na
e2
a

Ta

∫
d3v FMa (1− G2

0a)δφ

−
∑
a

na
e2
a

Ta

∫
d3v FMaG0aG1a

v2
⊥

Ωcac
δB‖ =

∑
a

ea

∫
d3v G0aha (3.76)

Parallel Ampère’s Law

− 1

4π
∇2
⊥δA‖ +

∑
a

na
e2
a

Ta

∫
d3v

v2
‖
c2
FMaG2

0aδA‖ =
∑
a

ea

∫
d3v

v‖
c
G0aha (3.77)

Perpendicular Ampère’s Law

1

4π
δB‖ +

∑
a

na
e2
a

Ta

∫
d3v FMa

(
v2
⊥

Ωcac
G1a

)2

δB‖

+
∑
a

na
e2
a

Ta

∫
d3v FMa

v2
⊥

Ωcac
G1aG0aδφ = −

∑
a

ea

∫
d3v G1a

v2
⊥

Ωcac
ha (3.78)

3.7.4 Transport coefficients

Some algebra yields the simplifications:

Γa(r) =
c

ψ′
F
∫
d3v H∗a(R)

∂Ψa

∂α
, (3.79)

Qa(r) =
c

ψ′
F
∫
d3v H∗a(R)

1

2
mav

2 ∂Ψa

∂α
, (3.80)

Πa(r) =
c

ψ′
F
∫
d3v H∗a(R)maR

[(
V0 + v‖

Bt
B

)
∂Ψa

∂α
+ v⊥

Bp
B

∂Xa
∂α

]
, (3.81)

Sa(r) =
c

ψ′
F
∫
d3v H∗a(R) ea

(
∂

∂t
+ ω0

∂

∂α

)
Ψa . (3.82)
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Chapter 4

Normalization of Fields and Equations

4.1 Dimensionless fields and profiles

For consistency, we will use an overbar to denote reference quantities; that is, quantities which are
evaluated at the reference radius, r̄. Explicitly,

T̄e = Te(r̄) (4.1)

n̄e = ne(r̄) (4.2)

c̄s =

√
T̄e
mi

(4.3)

Here, mi is the mass of the main ion species (in practice, this will often be deuterium). Next, we
introduce the normalized fields

ĥa
.
=

ha
n̄e FMa(r)

(4.4)

δφ̂
.
=
eδφ

T̄e
(4.5)

δÂ‖
.
=
c̄s
c

eδA‖
T̄e

, (4.6)

δB̂‖
.
=

δB‖
Bunit(r)

, (4.7)

and the normalized profiles

n̂a(r)
.
=
na(r)

n̄e
, (4.8)

T̂a(r)
.
=
Ta(r)

T̄e
, (4.9)

ω̂0(r)
.
=

a

c̄s
ω0(r) , (4.10)

γ̂E(r)
.
=

a

c̄s
γE(r) , (4.11)

γ̂p(r)
.
=

a

c̄s
γp(r) . (4.12)
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We also have the additional normalized quantities

B̂
.
=

B(r, θ)

Bunit(r)
(4.13)

v̂‖a
.
=
v‖
c̄s

(4.14)

For quantities which depend on the magnetic field strength, it is necessary to define unit quan-
tities:

ρs,unit(r) =
c̄s

eBunit(r)/(mic)
, (4.15)

βe,unit(r) =
8πneTe
B2

unit

. (4.16)

At the reference radius, these are written as ρ̄s,unit and β̄e,unit. To measure the radial variation of
Bunit, we introduce the parameter

Gr(r) =
Bunit(r)

Bunit(r̄)
. (4.17)

4.2 Velocity space normalization

4.2.1 Velocity variables

We also use the normalized velocity-space coordinates (ε, λ, ς), defined as

ε =
mav

2

2Ta
, (4.18)

λ =
v2
⊥

v2 B̂
, (4.19)

ς = sgn(v̂‖a) . (4.20)

Let us also note the identities

v2
‖ = v2

(
1− λB̂

)
, (4.21)

v2
⊥ = v2λB̂ = 2µB . (4.22)

The pair (ε, λ) are unperturbed constants of motion. The sign of the parallel velocity, ς, is required
to separate two populations of trapped particles for each value of λ. With these definitions, the
normalized parallel velocity becomes

v̂‖a = ±
√
mi

ma

√
2εT̂a(1− λB̂) . (4.23)

4.2.2 Dimensionless velocity-space integration

At this point, we must introduce the dimensionless velocity-space integration operator V [·]

V [z]
.
=
∑
ς=±1

1

2
√
π

∫ ∞
0

dε e−ε
√
ε

∫ 1

0

d(λB̂)√
1− λB̂

z(R, λ, ε, ς) , (4.24)

where ς = sgn (v̂‖a) = ±1. It can be verified that V [1] = 1. In writing Eq. (4.24), we explicitly rule
out consideration of non-Maxwellian particle distributions.
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4.3 Dimensionless equations

4.3.1 Normalized gyrokinetic equation

The normalized gyrokinetic equation is

∂ĥa

∂t̂
+

v̂‖a
Gθq(R0/a)

∂Ĥa

∂θ
+

vd
c̄s
· ∇̂Ĥa + ω̂0

∂ĥa
∂α

+
qρ̄s,unit

rGr
a[ĥa, Ψ̂a]r,α

− n̂a
qρ̄s,unit

rGr

[
a

Lna
+ (ε− 3/2)

a

LTa
+
mav̂‖a
miT̂a

BtR

BR0
γ̂p

]
∂Ψ̂a

∂α
= ĈGLa

[
Ĥa

]
, (4.25)

where

Ĥa = ĥa + zaαaΨ̂a , (4.26)

Ψ̂a = G0a

(
δφ̂− v̂‖aδÂ‖

)
+

2ελT̂a
za
G1aδB̂‖ , (4.27)

αa = n̂a/T̂a , (4.28)

and ea = eza. The inverse gradient scale lengths are defined as

1

Lna
= − 1

na

∂na
∂r

, (4.29)

1

LTa
= − 1

Ta

∂Ta
∂r

. (4.30)

4.3.2 Normalized Maxwell equations

Poisson equation:

− λ̄2
D∇2
⊥δφ̂+

∑
a

αaz
2
aV
[(

1− G2
0a

)
δφ̂
]
− 2

∑
a

zan̂aV
[
G0aG1aελδB̂‖

]
=
∑
a

zaV [G0aĥa] . (4.31)

Above, λ̄D is the Debye length at the reference radius

λ̄D =

(
T̄e

4πn̄ee2

)1/2

. (4.32)

Parallel Ampère’s Law

−
2ρ̄2

s,unit

β̄e,unit
∇2
⊥δÂ‖ +

∑
a

αaz
2
a V [v̂2

‖aG2
0aδÂ‖] =

∑
a

zaV [v̂‖aG0aĥa] . (4.33)

We remind the reader that the Ampère cancellation problem [CW03] will occur if one attempts to
set V [v̂2

‖a] = 1 rather than evaluate it numerically.

Perperdicular Ampère’s Law

G2
r

δB̂‖
β̄e,unit

+ 2
∑
a

n̂aT̂aV
[
G2

1aε
2λ2δB̂‖

]
+
∑
a

zan̂aV
[
G1aG0aελδφ̂

]
= −

∑
a

T̂aV
[
G1aελĥa

]
. (4.34)
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4.3.3 Normalized Transport Fluxes

The normalized particle flux is

Γ̂a(r) =
Γa
n̄ec̄s

=
qρ̄s,unit

r Gr
FV

[
Ĥ∗a

∂Ψ̂a

∂α

]
. (4.35)

The normalized energy flux is

Q̂a(r) =
Qa

n̄eT̄ec̄s
= T̂a

qρ̄s,unit

r Gr
FV

[
Ĥ∗a

∂Ψ̂a

∂α
ε

]
. (4.36)

The normalized toroidal momentum flux is

Π̂a(r) =
Πa

n̄emic̄2
sa

, (4.37)

=
ma

mi

qρ̄s,unit

r Gr
FV

[
Ĥ∗a

R

a

{(
V0

c̄s
+ v̂‖a

Bt
B

)
∂Ψ̂a

∂α
+ v̂⊥

Bp
B

∂X̂a
∂α

}]
(4.38)

Finally, the normalized anomalous energy exchange is

Ŝa(r) =
Sa

n̄eT̄ec̄s/a
= za

1

Gr

qρ̄s,unit

r Gr
FV

[
Ĥ∗a

(
∂

∂t̂
+ ω̂0

∂

∂α

)
Ψ̂a

]
. (4.39)

Above, FV represents the flux-surface average of the dimensionless velocity-space integration op-
erator. The discrete respresentation of the product FV will be described in detail in the next
chapter.

4.3.4 Diffusivities

In terms of the fluxes, we further define a particle diffusivity Da according to

Γa = −Da
∂na
∂r

, (4.40)

and an energy diffusivity χa according to

Qa = −naχa
∂Ta
∂r

. (4.41)

4.3.5 GyroBohm normalization

In GYRO, the output fluxes and diffusivites also carry the so-called gyroBohm normalization. That
is, for output, we use

Γa
ΓGB

where ΓGB
.
= n̄ec̄s(ρ̄s,unit/a)2 , (4.42)

Πa

ΠGB
where ΠGB

.
= n̄eaT̄e(ρ̄s,unit/a)2 , (4.43)

Qa
QGB

where QGB
.
= n̄ec̄sT̄e(ρ̄s,unit/a)2 , (4.44)

Sa
SGB

where SGB
.
= n̄e(c̄s/a)T̄e(ρ̄s,unit/a)2 , (4.45)

χa
χGB

,
Da

χGB
where χGB,

.
= ρ̄2

s,unitc̄s/a . (4.46)
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Chapter 5

Spatial Discretization

5.1 Foreword

The original explicit version of GYRO has been partially documented in a previous article [CW03].
This report supercedes that document in all respects. Among many other changes and improve-
ments over [CW03], the current version of GYRO includes

1. the option to treat the fast electron parallel motion implicitly,

2. an improved and simplified treatment of boundary conditions,

3. a fully Arakawa-like nonlinear discretization scheme,

4. a generalization to an arbitrary number of kinetic impurities.

For an exhaustive, chronological list of changes, always refer to the CHANGES file with each
GYRO release.

5.2 Spectral Decomposition in Toroidal Direction

5.2.1 Expansion of fields

We expand the perturbed quantities (δφ̂, δÂ‖, δB̂‖, ĥa) as Fourier series in α. For example, the
potential is written as

δφ̂(r, θ, α) =

Nn−1∑
j=−Nn+1

δφn(r, θ) e−inαeinω0t where n = j∆n . (5.1)

In GYRO,

Nn → TOROIDAL GRID

∆n→ TOROIDAL SEP

The hat is omitted on n-space quantities for brevity. Here, ω0 is a suitably-averaged rotation
frequency. In GYRO, this is taken to be the rotation frequency at the domain center. The θ-
periodicity condition (see condition 2, Sec. 2.2.2) requires that

δφ̂ (r, 0, ϕ+ ν[ψ, 0]) = δφ̂ (r, 2π, ϕ+ ν[ψ, 2π]) . (5.2)
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So, although the physical field, δφ̂, is 2π-periodic in θ, the Fourier representation has the implication
that the coefficients, δφn, are nonperiodic, and satisfy the phase condition

δφn(r, 0) = e2πinq(r)δφn(r, 2π) . (5.3)

Since δφ̂ is real, the Fourier coefficients satisfy the relation δφ∗n = δφ−n. The spectral form given in
Eq. (5.1) is

1. (2π/∆n)-periodic in α at fixed (r, θ)

2. (2π/∆n)-periodic in ϕ at fixed (r, θ).

5.2.2 Poloidal wavenumber

We choose to define the poloidal wavenumber so that it is a proper flux-surface function:

kθ =
nq(r)

r
. (5.4)

5.3 Operator Discretization Methods

5.3.1 Finite-difference operators for derivatives

The differential band width in the radial direction is denoted by the parameter id. First and second
derivatives can be discretized using nd-point centered differences, where nd

.
= 2id + 1. These are

Dii′1 (nd,∆x)f i
′

=
1

∆x

id∑
ν=−id

c1νf
i+ν , (5.5)

Dii′2 (nd,∆x)f i
′

=
1

(∆x)2

id∑
ν=−id

c2νf
i+ν , (5.6)

where

c1ν =
∑
p6=ν

1

ν − p
∏
j 6=ν,p

(−j)
ν − j , (5.7)

c2ν =
∑
p6=ν

1

ν − p
∑
q 6=ν,p

1

ν − q
∏

j 6=ν,q,p

(−j)
ν − j . (5.8)

The argument nd in the operators refers to the number of points in the stencil, not the order or
accuracy of the stencil. The formal truncation error for both D1 and D2 is O

[
(∆x)nd−1

]
; in other

words, these stencils are said to be order-(nd − 1) accuracte. A typical case would be nd = 5; that
is, 5-point, 4th-order

5.3.2 Upwind schemes

To construct an arbitrary-order upwind scheme, we begin by writing the centered (nd−1)th deriva-
tive as

Dii′∗ (nd,∆x)f i
′

= − 1

(∆x)nd−1

id∑
ν=−id

(−1)ν
(
nd − 1

ν + id

)
f i+ν . (5.9)
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The (nd−2)th-order upwind discretization (we will lose one order in accuracy because of the added
dissipation) of an advective derivative is then written as

v
∂

∂x
→ vDii′1 (nd,∆x)− γ|v|Dii′∗ (nd,∆x) where γ

.
= |c1id | (∆r)nd−2 . (5.10)

The choice above for the dissipation, γ, recovers the usual first, third and higher-order upwind
schemes. For a more complete discussion of the discretization given in Eq. (5.10), see [CW03]. So,
we define a smoothing stencil

Sii′(nd,∆x)
.
= |c1id | (∆r)nd−2Dii′∗ (nd,∆x) . (5.11)

In GYRO, we add an adjustable parameter c to the upwind scheme:

v
∂

∂x
→ vDii′1 (nd,∆x)− c|v|Sii′(nd,∆x) , (5.12)

such that c = 1 gives the standard 1st-order and 3rd-order upwind schemes in the case nd = 3 and
nd = 5, respectively.

5.3.3 Banded pseudospectral gyro-orbit integral operators

In this section, we derive explicit forms for the gyroaverage and associated operators which were
introduced in Sec. 3.7.1. The gyroaverage of a function z(x) is defined as

G0az(R) =

∫ 2π

0

dξ

2π
z [R + ρa(ξ)] . (5.13)

To perform the loop integral, we write the velocity and gyrovector as

ρa =
v⊥
Ωca

(ex cos ξ + ey sin ξ) (5.14)

v⊥ = v⊥ (ex sin ξ − ey cos ξ) (5.15)

where ex = ∇r/|∇r| and ey = b× ex. Then, we write z in spectral form

z(R) =
∑
n

nr/2−1∑
p=−nr/2

znp(θ)e
2πipr/Le−inα , (5.16)

z(R + ρa) =
∑
n

nr/2−1∑
p=−nr/2

znp(θ)e
2πipr/Le−inαe2πipρa·∇r/Le−inρa·∇α . (5.17)

We have neglected the θ-variation of the integrand, consistent with the gyrokinetic ordering (i.e.,
low parallel wavenumber). Some algebra shows

ρa · ∇r =
v⊥
Ωca
|∇r| cos ξ , (5.18)

ρa · ∇α =
v⊥
Ωca

(ex · ∇α cos ξ + ey · ∇α sin ξ) . (5.19)

In terms of local equilibrium functions, we have

ex · ∇α = − q

r
GqΘ , (5.20)

ey · ∇α = − q

r
Gq . (5.21)
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So, if we define

kx = 2πp
|∇r|
L

+
nq

r
GqΘ , (5.22)

ky =
nq

r
Gq (5.23)

with ρa = v⊥/Ωca, then the gyroaveraged potential for a single harmonic becomes

G0a,nzn =

nr/2−1∑
p=−nr/2

znp(θ)e
2πipr/Le−inα

∫ 2π

0

dξ

2π
ei(kxρa cos ξ+kyρa sin ξ) , (5.24)

=

nr/2−1∑
p=−nr/2

znp(θ)e
2πipr/Le−inαJ0(k⊥ρa) , (5.25)

where k⊥ =
√
k2
x + k2

y. To evaluate the gyroaverage explicitly, we assume that z is known on a

uniform mesh rj = j∆r:

(zn)j =
J−1∑
p=−J

znp e
2πiprj/L , (5.26)

where L is the radial domain size. The radial domain and boundary conditions are described in
more detail in Sec. 7.1. The Fourier decomposition is easily inverted to yield

znp =
1

nr

nr/2−1∑
j=−nr/2

(zn)j e−2πiprj/L , (5.27)

so that

Gjj′0a,nz
j′
n =

J−1∑
p=−J

e2πiprj/LJ0 (k⊥ρa)r=rj znp , (5.28)

where J0 is a Bessel function of the first kind, and

k⊥ =
√

(2πp|∇r|/L+ kθGqΘ)2 + (kθGq)2 . (5.29)

The result gives the pseudospectral forms of the gyroaverage operator:

Gjj′0a,n =
1

nr

nr/2−1∑
p=−nr/2

wj−j
′

p J0 (k⊥ρa)r=rj , (5.30)

where indices {j, j′} run from −nr/2 to nr/2− 1, and

wp
.
= exp(2πip/nr) . (5.31)

In terms of normalized quantities,

ρa = ρ̄s,unit

√
ma

mi

√
2εT̂aλB̂

zaB̂Gr
(5.32)
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Additional required operators are

(G2)jj
′

0a,n =
1

nr

nr/2−1∑
p=−nr/2

wj−j
′

p J2
0 (k⊥ρa) , (5.33)

Gjj′1a,n =
1

nr

nr/2−1∑
p=−nr/2

wj−j
′

p

1

2
[J0 (k⊥ρa) + J2 (k⊥ρa)] , (5.34)

Gjj′2a,n =
1

nr

nr/2−1∑
p=−nr/2

wj−j
′

p

i

2
kxρa [J0 (k⊥ρa) + J2 (k⊥ρa)] , (5.35)

5.3.4 Banded Approximations

The matrix Gjj′0a,n is diagonally-dominant, such that elements {j, j′} for which |j − j′| > jg, where
jg is some sufficiently large integer, can be neglected. Thus, to convert the operators in Eqs. (5.30)
to banded form, it is enough to set

Ĝjj′0a,n =

{
Gjj′0a,n if |j − j′| ≤ jg
0 if |j − j′| > jg

(5.36)

For n = 0, an additional correction is required. One must ensure that the long-wavelength limit is
asymptotically correct:

G0a,0 · 1 = 1 . (5.37)

This is accomplished by making a small correction to the diagonal term

Ĝjj0a,0 → Ĝjj0a,0 + 1−
j+jg∑

j′=j−jg
Gjj′0a,0 (5.38)

The size of this correction (the sum above) decreases rapidly as ig is increased. We have observed
excellent results using these banded approximations for the various averaging operators, even when
the radial domain is nonperiodic. Physically, the validity of this method relies on the observation
that the numerical contribution to the averages decays rapidly at distances beyond a few gyroradii
from the gyrocenter. For linear benchmarks, when the radial domain is only one period of the
ballooning mode, we generally use full pseudospectral representations.

5.4 Discretization of the gyrokinetic equation

Upon spectral decomposition, the gyrokinetic equation finally takes the form which is solved in
GYRO. We write this symbolically as

∂ha,n

∂t̂
− iω̂θHa,n − iω̂dHa,n − iω̂Eha,n − iω̂∗Ψa,n +

qρ̄s,unit

rGr
a{ĥa, Ψ̂a} = ĈGLa [Ha,n] , (5.39)

where the various toroidal harmonics are given by

Ha,n = ha,n + zaαaΨa,n , (5.40)

Ψa,n = G0a,n

(
δφn − v̂‖aδA‖n

)
+

2ελT̂a
za
G1a,nδB‖n . (5.41)

The Poisson bracket {·, ·} is defined in Eq. (5.60) of Sec. 5.4.5, the geometry functions Gθ, Gq, gsin,
gcos and Θ are defined in Sec. 2.3.10, and the profile function Gr is defined in Eq. (4.17).
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5.4.1 Parallel motion on an orbit-time grid

The parallel advection term is written

− iω̂θHa,n =
v̂‖a

Gθq(R0/a)

Ha,n

∂θ
. (5.42)

The presence of field quantities in the definition of Ha,n complicates the matter of poloidal dis-
cretization as we will discuss shortly. Equation (5.42) is subject to short-wavelength instability in
regions where the variation of v̂‖a(θ) is sufficiently strong. This property is well-known [Dur99],
and time-explicit schemes must normally include dissipative smoothing if a solution is sought on an
equally-spaced θ-grid. Moreover, at bounce points θb, where v‖(θb) = 0, the distribution function
may develop cusps, bringing into question the accuracy of any finite-difference scheme on such a
grid.

This leads us to the observation that the poloidal angle, θ, is a potentially poor variable for
numerical solution of the GK equation. The obvious solution is to remove these cusps analytically
using the normalized orbit time for discretization in the poloidal direction. To this end, define

τ0(λ, θ)
.
=



∫ θ

−θb

Gθ(θ) dθ
′√

1− λB̂(θ′)
if λ ≤ 1

B̂(π)
(trapped) ,

∫ θ

−π

Gθ(θ) dθ
′√

1− λB̂(θ′)
if λ >

1

B̂(π)
(passing) ,

(5.43)

where θb is the solution of B̂(θb) = 1/λ. τ0(λ, θ) must be computed numerically for general plasma
equilibria — a tedious but straightforward exercise in numerical analysis. Note that in Eq. (5.43),
and in the rest of this section, we suppress the radial dependence of τ0(λ, r, θ), B̂(r, θ) and Gθ(r, θ)
for brevity.

Next, we introduce a normalized orbit time, τ , which runs from 0 to 2 for a given λ and
describes both signs of velocity. In this way τ parameterizes the solution on both Riemann sheets
by subsuming the two signs of velocity:

τ(λ, θ)
.
=

{
τ0(λ, θ)/τ̄ for 0 ≤ τ ≤ 1 (ς = 1) ,

2− τ0(λ, θ)/τ̄ for 1 < τ ≤ 2 (ς = −1) ,
(5.44)

where τ̄ = τ0(λ, θb) for trapped particles, and τ̄ = τ0(λ, π) for passing particles. The parallel
advection operator is reduced to one with constant velocity

v̂‖a
Gθq(R0/a)

Ha,n

∂θ
= Ωa(ε, λ)

∂Ha,n

∂τ
, where Ωa(ε, λ)

.
=

√
mi

ma

1

q(R0/a)

√
2T̂aε

τ̄
. (5.45)

High-accuracy numerical discretization schemes for this form of the equation are well-documented.
Boundary conditions on physical distributions can be stated very simply:

• trapped are periodic on the interval [0, 2);

• co-passing are periodic on [0, 1);

• counter-passing are periodic on [1, 2).
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However, the Fourier representation of Eq. (5.3)] requires that the functions h describing the passing
population are not periodic, but subject to phase conditions: h(1) = P h(0) for co-passing, and
h(2) = P h(1) for counter-passing. The important result is that as a function of τ , the trapped
distribution will be not only continuous, but also smooth, across bounce points no matter what
order difference scheme is used. The obvious physical interpretation of the location of orbit-time
gridpoints is that they are equally spaced in time, not space, along an orbit. In particular, because
they are highly stagnant near θ = ±π, particles close to the trapped-passing boundary benefit from
equal-time spacing.

For finite-n modes, we write the continuous derivative as the sum of a centered 4th-order 1st
derivative plus a 4th derivative smoother:(

Ωa
∂Ha,n

∂τ

)
j

= ΩaDjj
′

1 (5,∆τ)Hj′
a,n − c|Ωa|Sjj

′
(5,∆τ)hj

′
a,n . (5.46)

The grid spacing for the parallel motion is taken to be ∆τ
.
= 2/nτ , and c is a parameter which

measures the amount of numerical disipation. When c = 1 (and Ψa,n = 0) we are left with the
usual third-order upwind method. We have shown previously that in this scheme finite dissipation
is required to give proper Landau damping of n = 0 GAMs [CW03]. Conversely, dissipation-free
schemes suffer from recurrence problems. Note that the dissipation, above, acts on ha,n but not
Ha,n. In fact, attempting to add upwind diffusion to Ha,n (that is, also to fields) will generate
numerical modes with growth rate proportional to the square of the radial box size. The difference
scheme given in Eq. (5.46) is applied only if the species is to be integrated in time explicitly. When
implicit integration is used, we set c = 0.

5.4.2 Er shear

Since we have already shifted to a frame rotating with the mean frequency ω̄0, the remaining
shearing term is

− iω̂Eha,n = −in [ω0(r)− ω0]ha,n . (5.47)

In a simulation with fixed shearing rate, this can be approximated as

− iω̂Eha,n → −in
∂ω0

∂r
(r − r̄)ha,n = ikθγE(r − r̄)ha,n . (5.48)

5.4.3 Drift motion

Using the geometry formulae presented in Sec. 2.3.11, we write the drift operator as

−iω̂dHa,n = − iGqkθ(R‖ +R⊥) (gcos1 + gcos2 + Θgsin)Ha,n (5.49)

+ iGqkθR‖gcos2Ha,n (5.50)

− iGqkθRc (ucos + Θusin)Ha,n (5.51)

− |∇r|(R‖ +R⊥)gsin
∂Ha,n

∂r
(5.52)

− |∇r|Rcusin
∂Ha,n

∂r
, (5.53)
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where the dimensionless quantities R‖/a, R⊥/a and Rc/a are defined as

R‖
a

.
=

v2
‖

c̄aΩcaR0
=
ρ̄s,unit

R0

2εT̂a

zaGrB̂

(
1− λB̂

)
, (5.54)

R⊥
a

.
=

µB

c̄aΩcaR0
=
ρ̄s,unit

R0

2εT̂a

zaGrB̂

(
λB̂

2

)
, (5.55)

Rc
a

.
=

2v‖ω0R0

c̄aΩcaR0
=
ρ̄s,unit

R0

ma

mi

2v̂‖a(ω0R0/c̄s)

zaGrB̂
. (5.56)

The derivative operator is discretized according to:(
gsin a

∂Ha,n

∂r

)
i

= gsinDii′1 (nd,∆r/a)H i′
a,n − c|gsin|Sii′(nd,∆r/a)hi

′
a,n , (5.57)

where
nd = 2× RADIAL DERIVATIVE BAND + 1 (5.58)

5.4.4 Diamagnetic effects

The spectral form of the diamagnetic term is simply

− iω̂∗Ψa,n = in̂a
kθρ̄s,unit

Gr

[
a

Lna
+ (ε− 3/2)

a

LTa
+
mav̂‖a
miT̂a

BtR

BR0
γ̂p

]
Ψa,n . (5.59)

5.4.5 Poisson bracket nonlinearity

Numerical discretizations of the nonlinear E×B motion (including electrstatic, flutter and com-
pressional components) are subject to short-wavelength instabilities. A numerical scheme which
preserves continuous conservation laws for domain-integrated number, energy and enstrophy (and
thereby prevents both instability and a cascade to short wavelengths) was proposed by Arakawa in
1966 [Ara66]. We adapt this scheme to a semi-spectral variant suitable for use with GYRO. First,
let us begin by writing the continuous form of the bracket appearing in the gyrokinetic equation:

{F,G} =
∂F

∂α

∂G

∂r
− ∂G

∂α

∂F

∂r
. (5.60)

Eq. (5.60) can be recast into the following alternative but equivalent forms

{F,G} =
∂

∂α

(
F
∂G

∂r

)
− ∂

∂r

(
F
∂G

∂α

)
, (5.61)

and

{F,G} = − ∂

∂α

(
G
∂F

∂r

)
+

∂

∂r

(
G
∂F

∂α

)
. (5.62)

The trick, first proposed by Arakawa, is to sum these and divide by 3 to yield

{F,G} =
1

3

[
∂

∂α

(
F
∂G

∂r
−G ∂F

∂r

)
+

∂

∂r

(
G
∂F

∂α
− F ∂G

∂α

)
+
∂F

∂α

∂G

∂r
− ∂G

∂α

∂F

∂r

]
. (5.63)
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Using the spectral decomposition of the bracket together with the discrete form of the derivative
operator, Dii′N (∆r/a), gives the final discrete form

{F,G}in =
1

3

∑
n′

(n+ n′)
(
F in′ Dii

′
1 G

i′
n−n′ −Gin′ Dii

′
1 F

i′
n−n′

)
+

1

3

∑
n′

n′Dii′1

(
Gi
′
n−n′F

i′
n′ − F i

′
n−n′G

i′
n′

)
. (5.64)

This is the expression used in GYRO. Now, let us assume, in what follows, that the radial domain
is periodic. Deviations from the results below will as a consequence be solely limited to boundary
effects.

Lowest order invariant

The lowest integral invariant, which measures the rate of change of the distribution along the
nonlinear flow, is ∫

dα

∫
dr {F,G} =

∑
i

{F,G}i0 = 0 . (5.65)

Using Eq. (5.64), the sum above vanishes for all DN which satisfy
∑

iDii
′

N a
i′ = 0 for all vectors a.

Centered-difference formulae of all orders for DN will satsify this condition.

Higher-order invariants

Some algebra shows that the additional quantities vanish:∫
dα

∫
dr G {F,G} =

∑
n

∑
i

Gin {F,G}i−n = 0 , (5.66)

∫
dα

∫
dr F {F,G} =

∑
n

∑
i

F in {F,G}i−n = 0 . (5.67)

5.5 Blending-function expansion for fields

Since the distribution function ha,n is computed at a different set of points {θj} for each discrete
value of λ, there is no natural way to solve the Maxwell equations using finite-difference methods
on a fixed poloidal grid. Instead, we adopt a function-space approach, and expand the fields
(δφn, δA‖n, δB‖n) in series of uniform polynomial blending functions. We will show that basis
functions which incorporate the complex phase conditions [see Eq. (5.3)] at −π and π can be
constructed from pairs of these blending functions. Equations for the expansion coefficients are
then obtained using the well-known Galerkin method.

In computing the poloidal dependence of the fields, there are a number of separate discretization
effects to consider. Since the fields are sums (integrals in the continuum limit) of distribution
functions, low velocity-space resolution will lead to poor poloidal accuracy — even if the there are
no other sources of discretization error. Conversely, even when a very large number of velocity-space
grids are used, discretization error in the orbit-time integration of ha,n will lead to poor poloidal
accuracy — even if the function-space method of the present section was exact. Thus, achieving an
absolute level of accuracy in the θ-dependence of the fields requires sufficient convergence in both
velocity-space and in orbit-time.
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Examples of blending functions

A finite number of blending functions, Nm(s), are used to provide a basis for the field expansion.
An important feature of the Nm, however, is that they are all translates of a single function N(s),
such that N(s − m) = Nm(s). In practise, we use one of the following three types of blending
functions:

Piecewise linear:

N (2)(s)
.
=

{
s if 0 ≤ s ≤ 1 ,

2− s if 1 ≤ s ≤ 2 .
(5.68)

Piecewise quadratic:

N (3)(s)
.
=


s2/2 if 0 ≤ s ≤ 1 ,

−(3/2) + 3s− s2 if 1 ≤ s ≤ 2 ,

(3− s)2/2 if 2 ≤ s ≤ 3 .

(5.69)

Piecewise cubic:

N (4)(s)
.
=


(1/6)s3 if 0 ≤ s ≤ 1 ,

(2/3)− 2s+ 2s2 − (1/2)s3 if 1 ≤ s ≤ 2 ,

−(22/3) + 10s− 4s2 + (1/2)s3 if 2 ≤ s ≤ 3 ,

(1/6)(4− s)3 if 3 ≤ s ≤ 4 .

(5.70)

Representation of a quasi-periodic function

It remains to construct meaningful set of basis vectors from the prototype blending functions given
above. Let us begin by considering a function z(θ) which is not periodic in θ, but satisfies a phase
condition z(θ + 2π) = Pz(θ). On the infinite domain (−∞,∞) we can write

z(θ) =

∞∑
m=−∞

cmNm(θ/∆θ) , (5.71)

=

nblend∑
m=1

[· · ·+ cm−nblend
Nm−nblend

+ cmNm + cm+nblend
Nm+nblend

+ · · · ] , (5.72)

where Nm(θ/∆θ) = N(θ/∆θ − m), ∆θ
.
= 2π/nblend, and nblend is the number of basis functions

used to represent one 2π-segment of the function z. The phase condition in θ translates into an
equivalent phase condition for the blending coefficients themselves; namely cm+nblend

= P cm. The
function z is therefore completely described by the coefficients {c1, . . . , cnblend

} and basis functions
{F1, . . . , Fnblend

} according to

z(θ) =

nblend∑
m=1

cmFm(θ) where Fm(θ) = N(θ/∆θ −m) + PN(θ/∆θ −m− nblend) . (5.73)

In choosing a value of the parameter nblend, one is constrained by the number of points used in
the orbit time discretization, nτ . Given that a passing particle is described by nτ/2 orbit points,
choosing values of nblend larger than nτ/2 will lead to a breakdown of the method since there will
be less than one orbit point per blending function segment. For the simulations presented in this
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Figure 5.1: Quadratic basis functions, Fm(θ), for nblend = 6 and phase P = −1.

paper, we have found that nblend = 6 and nτ = 20 are efficient choices. However, we expect that
the simulation of plasmas with strong equilibrium shaping, will require a simultaneous increase of
both nblend and nτ .

Figure 5.1 shows the nblend = 6 quadratic basis functions {F1, . . . , F6} for P = −1. We remark
that since P is generally a complex number, and is a function of radius, the basis functions are also
complex and functions of radius. Knowing this, we can write the expansion of fields in terms of
the basis functions, with explicit radial dependence indicated, as

δφn(ri, θ) =

nb∑
m=1

φ̃imF
i
m(θ) (5.74)

δA‖n(ri, θ) =

nb∑
m=1

ÃimF
i
m(θ) (5.75)

δB‖n(ri, θ) =

nb∑
m=1

B̃i
mF

i
m(θ) (5.76)

Although the blending expansion coefficients φ̃ and Ã depend on the toroidal mode number n, we
supress this dependence for brevity. A few well-known but important observations concerning the
approximation properties of the linear, quadratic and cubic functions should be stated. In a region
of extremely rapid field variation, the cubic approximation is the least robust — suffering from
overshoot/undershoot oscillations. Conversely, as the fields become progressively smoother, the
linear approximation will give the poorest interpolation accuracy. A further undesireable property
of the linear approximation is its discontinuous first derivative. Although there is no general rule or
obviously best interpolation order for all situations, we find that the piecewise quadratic functions
are sufficiently accurate and robust for all cases studied to date.

General Atomics Report GA-A26818 44



5.6 Velocity-Space Discretization

To solve the Maxwell equations, and to compute the transport fluxes, we will need to develop a
discrete representation of the operator FV . In the present section, we discuss quadrature methods
for evaluation of these operators. Since the techniques which follow apply independently to all
species, we omit species indices for brevity.

5.6.1 Decomposition of FV
Since V [1] = 1, it follows automatically that FV [1] = 1. An equivalent statement of this result is
embodied in the identity

1

2
√
π

∫ ∞
0

dε e−ε
√
ε

∫ λ∗

0
dλ τ̄

∮
dτ = J0 , (5.77)

with λ∗ = 1/B̂(r, 0) the maximum possible value of λ, and J0 defined in Sec. 2.2.4. Above, we have
used the integral identity

∑
σ

∫ π

−π
dθ Gθ(r, θ)

∫ 1/B̂(r,θ)

0

dλ√
1− λB̂(r, θ)

=

∫ λ∗

0
dλ τ̄

∮
dτ . (5.78)

Since the numerical evaluation of integrals of this type will involve separate integration weights in
each of the variables ε, λ and τ , it is useful to make the decomposition

FV = Vε × Vλ × Vτ , (5.79)

with factors

Vε[h]
.
=

2√
π

∫ ∞
0

dε e−ε
√
ε h , (5.80)

Vλ[h]
.
=

1

2J0

∫ λ∗

0
dλ τ̄ h , (5.81)

Vτ [h]
.
=

1

2

∮
dτ h . (5.82)

These are normalized so that Vε[1] = Vλ[1] = Vτ [1] = 1. The task at hand, now, is the construction
of discrete forms of these operators, and therefore of FV .

5.6.2 Energy Integration

To develop a quadrature method for the energy integral, we split the interval of integration in Vε
— defined in Eq. (5.80) — into two regions: [0, ε∗) and [ε∗,∞), where ε∗ is the maximum energy
gridpoint (input). Integration over the first interval is done by changing variables according to

x(ε)
.
=

2√
π

∫ ε

0
dε e−ε

√
ε . (5.83)

We let x0
.
= x(ε∗), and evaluate the integral using Gauss-Legendre integration [BF85] over nε − 1

points: ∫ x0

0
dxh[ε(x)] '

nε−1∑
i=1

wi h[ε(xi)] . (5.84)
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nε = 4, ε∗ = 3.0 nε = 6, ε∗ = 4.0

i εi wi εi wi

1 0.2924572707 0.2467749375 0.1625303849 0.1130127375
2 1.0404041729 0.3948399000 0.5442466206 0.2283030745
3 2.2531263847 0.2467749375 1.1228428641 0.2713566704
4 3.0000000000 0.1116102251 1.9784353093 0.2283030745
5 3.2361246631 0.1130127375
6 4.0000000000 0.0460117057

Table 5.1: Sample energy abscissae and weights

The abscissae and weights (xi, wi) are the usual Gauss-Legendre ones. Note that we must solve the
nonlinear equations xi = x(εi) for εi to obtain the energy gridpoints. With the dominant part of
the energy integration done, we evaluate the remaining, infinite integral according to

2√
π

∫ ∞
ε∗

dε e−ε
√
ε h(ε) ' h(ε∗)

2√
π

∫ ∞
ε∗

dε e−ε
√
ε = (1− x0)h(ε∗) . (5.85)

This gives the final weight 1−x0 at the energy gridpoint ε∗, for a total of nε gridpoints. We remark
that this method has the desireable property

nε∑
i=1

wi = 1 such that ∀i, wi > 0 . (5.86)

Some sample abscissae and weights are given in Table 5.1 to limited precision (10 significant
digits). Note that it is straightforward to generate these, and thus to enforce the sum in Eq. (5.86),
to machine precision. The abcissae and weights are unique for a given nε and ε∗. Outside of this

section, to avoid ambiguity, we will use index iε and weight w
(ε)
iε

to refer to energy integration.

5.6.3 λ Integration

The λ integration follows essentially the same strategy as the energy integration, with only minor
differences. First, introduce the integration variable

x(λ)
.
=

1

J0

∫ λ

0
dλ′τ̄(λ′) . (5.87)

Then, then Vλ can be expressed as

Vλ[h] =

∫ 1

0
dxh[x(λ)] . (5.88)

Because h is rapidly-varying across the trapped-passing boundary at xt = x(λt), where λt = 1/B(π),
it is wise to split the previous integral into two regions:∫ 1

0
dxh[x(λ)] =

∫ xt

0
dxh[x(λ)] +

∫ 1

xt

dxh[x(λ)] . (5.89)

Gauss-Legendre rules are then applied to each integral separately to determine abscissae and weights
(xi, wi). Then, as before, the equations xi = x(λi) must be inverted numerically to obtain the
gridpoints λi.
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i xi λi wi

1 0.0701916516 0.1353809983 0.1730025988
2 0.3114046777 0.5237287429 0.2768041580
3 0.5526177038 0.7871934230 0.1730025988
4 0.6653193692 0.8581589333 0.1047751790
5 0.8114046777 0.9778736670 0.1676402866
6 0.9574899862 1.1217887702 0.1047751790

Table 5.2: Sample λ weights for npass = ntrap = 3.

We emphasize that there is no assumption of continuity across the trapped passing boundary.
In fact, in the collisionless limit, we do not expect the distribution to be continuous there. With
weak collisions, we expect the formation of of a boundary layer around x = xt. In the latter case,
we expect good layer resolution because the Gauss-Legendre scheme puts integration abcissae very
close to (but not on) xt. When combined with the orbit-time grid, the λ integration abcissae
provide the (θ, v‖/v) gridpoint distribution shown in Fig. 8.1.

Sample values of abscissae and weights are given in Table 3 for a circular equilibrium with

r/R0 = 1/6. Outside of this section, to avoid ambiguity, we will use index iλ and weight w
(λ)
iλ

to
refer to pitch-angle integration.

5.6.4 Discretization Summary

Our methods for solution of the Maxwell equations have the implication that it is not V but FV for
which a discrete form is required. But we have already done enough to show that the discretization
takes the form

FV [h]→
nε∑
iε=1

w
(ε)
iε

nλ∑
iλ=1

w
(λ)
iλ

nτ∑
iτ=1

w
(τ)
iτ
hiεiλiτ , (5.90)

where, so far, no radial discretization has been employed. The τ -weights are simply w
(τ)
iτ

=
(1/2)∆τ = 1/nτ . The numerical representation of the weights is such that when h = 1, the
sum in Eq. (5.90) is unity to machine precision.

5.7 Connection to Ballooning Modes

In what follows, we limit our discussion to s− α geometry. Recall the form of a toroidal harmonic
when expanded in a radial Fourier series

δφn(r, θ)e−inα = e−in[ϕ−q(r)θ]∑
p

e2πipr/Lδφnp(θ) (5.91)

where L, the radial domain size, is written as a multiple, M , of the natural quantization length,
1/(nq′0), of the ballooning mode:

L
.
= M

1

nq′0
= M

r0

nq0s0
. (5.92)
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So we can write

δφn(r, θ)e−inα = e−in[ϕ−q(r)θ]∑
p

e2πipr(nq′0/M) δφnp(θ) , (5.93)

= e−in[ϕ−q(r)θ]∑
p

e2πip(nq/M) Φ`
B(θ + 2πp′) . (5.94)

where we have introduced the ballooning potential Φ`
B via

δφnp(θ) = Φ`
B(θ + 2πp′)e2πinq0p/M . (5.95)

This transformation is motivated by the fact that the function δφn(r, θ) is not periodic but instead
satisfies the phase condition in Eq. (5.3). The meanings of p′ and ` are not yet specified. Writing
p = Mp′ + `, and breaking the sum into parts yields

δφn(r, θ)e−inα = e−in[ϕ−q(r)θ]
M−1∑
`=0

∑
p′

einq(θ
`
B+2πp′) Φ`

B(θ + 2πp′) , (5.96)

= e−inϕ
M−1∑
`=0

∑
p′

einq(θ+θ
`
B+2πp′) Φ`

B(θ + 2πp′) , (5.97)

where the function Φ`
B(θ) is continuous and bounded over the domain −∞ < θ < ∞. The usual

equation for Φ`
B can be obtained by substituting Eq. (5.97) into the gyrokinetic equation, and then

solving for Φ`
B for a given value of ` on the infinite θ-domain. Here, θ`B = 2π(`/M) is the ballooning

angle. In GYRO, we have
M = BOX MULTIPLIER . (5.98)

On a discrete grid, the indices have the following ranges of variation:

p = − nr
2
, . . . ,

nr
2
− 1 , (5.99)

p′ = − nr
2M

, . . . ,
nr

2M
− 1 , (5.100)

` = 0, . . . ,M − 1 . (5.101)

such that the discrete Fourier transform of the potential is

δφnp(θ) =
1

nr

nr/2−1∑
j=−nr/2

δφn(rj , θ)e
−2πipj/nr . (5.102)

In conclusion, over the interval

− π
(nr
M

+ 1
)
≤ θ < π

(nr
M
− 1
)
, (5.103)

we have the reconstruction algorithm

` = 0 : Φ0
B(θ + 2πp′) = δφn,Mp′(θ)e

−2πinq0p′ , (5.104)

` = 1 : Φ1
B(θ + 2πp′) = δφn,Mp′+1(θ)e−2πinq0p′e−2πinq0(1/M) , (5.105)

` = 2 : Φ2
B(θ + 2πp′) = δφn,Mp′+2(θ)e−2πinq0p′e−2πinq0(2/M) , (5.106)

... (5.107)

` = M − 1 : ΦM−1
B (θ + 2πp′) = δφn,Mp′+M−1(θ)e−2πinq0p′e−2πinq0(M−1)/M . (5.108)
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Chapter 6

Temporal Discretization

The gyrokinetic treatment of electrons is problematic in simulations because of the emergence of
a host of numerical instabilities connected with the discretization of the electron parallel motion.
The presence of the electrostatic and magnetic potentials in the advection term,

∂ĥa

∂t̂
+

v̂‖a
Gθq(R0/a)

∂

∂θ

(
ĥa + zaαaΨ̂a

)
+ · · · (6.1)

for a = e give rise to stability considerations much more troublesome than the simple electron
parallel Courant limit. Physically, the parallel term gives rise to the high-frequency electrostatic
Alfvén wave [LLHL01] at β = 0. In the slab limit, one can show

ωH =
k‖
kr

√
mi

me
Ωci . (6.2)

This mode is physically pathological, because the frequency increases indefinitely as me decreases,
and also as kr decreases – that is, as the radial box size grows. While nonzero β provides a
cutoff, the stable numerical treatment of this term is nontrivial.1 To overcome this severe and
intrinsic simulation difficulty, we were persuaded to treat the electron advection implicitly. We
experimented with a variety of implicit-explicit (IMEX) Runge-Kutta (RK) schemes that were
popular in the period 2001-2003 [ARW95, ARS97, PR00, PR02, KC03], settling on an IMEX-SSP
scheme of Pareschi and Russo [PR02].

6.0.1 Reduction to canonical form

For brevity, we suppress the toroidal harmonic index and abbreviate ha,n as ha. With all spatial
operators discretized, the GKM system has the form

ḣa = H̃a({ha}, he) , a = 1, . . . , nion (6.3)

ḣe = H̃e({ha}, he) +He({ĥa}, he) , (6.4)

where {ha} = h1, . . . , hnion . In Eqs. (6.3) and (6.4), the use of a tilde on the RHS represents a
nonstiff term, while the absence of a tilde indicates a stiff term. The IMEX-RK schemes are written
for equations in the canonical form

ẏ = Ỹ (y) + Y (y) , (6.5)

1The ability of Eulerian codes to treat this term both accurately and stably has been a major contributor to the
relative success of Eulerian solvers in comparison to their PIC counterparts.
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with Ỹ the explicit RHS and Y the implicit RHS. Thus, we have the connection

y =

[
{ĥa}
he

]
Ỹ =

[
{H̃a}
H̃e

]
Y =

[
0
He

]
. (6.6)

Now, there is some hidden complexity in how we have written the GKM equations, as the functions
H depend on the distribution function h both directly, and indirectly through the fields. We
emphasize that it is only the fast electron advection term, He, which we wish to (or are able to)
treat implicitly:

He
.
= − v̂‖e(r, θ, ε)

a

qR0Gθ

∂

∂θ

[
ĥe − αe

(
δφ̂− v̂‖eδÂ‖ − ελT̂eδB̂‖

)]
(6.7)

= − Ω(r, θ, ε)∂τ

[
ĥe − αe

(
δφ̂− v̂‖eδÂ‖ − ελT̂eδB̂‖

)]
, (6.8)

where from this point forward we suggest that the reader consider the object ∂τ as a matrix.

6.0.2 IMEX-RK-SSP schemes of Pareschi and Russo

The second-order IMEX schemes we consider can be summarized in Butcher tableau form as
Explicit

0
ã21 0
ã31 ã32 0

w̃1 w̃2 w̃3

Implicit

a11

a21 a22

a31 a32 a33

w1 w2 w3

This notation corresponds to the following explicit evolution equations:

y1 = y + ∆t a11Y1 (6.9)

y2 = y + ∆t(ã21Ỹ1 + a21Y1) + ∆t a22Y2 (6.10)

y3 = y + ∆t(ã31Ỹ1 + ã32Ỹ2 + a31Y1 + a32Y2) + ∆t a33Y3 (6.11)

ȳ = y + ∆t

3∑
k=1

w̃kỸk + ∆t

3∑
k=1

wkYk . (6.12)

Above, y is the old field vector (time t) and ȳ is the new field vector (time t+ ∆t). In GYRO, we
currently use the SSP2(3,2,2) scheme:

SSP2(3,2,2)

Explicit

0
0 0
0 1 0

0 1/2 1/2

Implicit

1/2
−1/2 1/2

0 1/2 1/2

0 1/2 1/2

Since the diagonal coefficients of the implicit stages are equal, we need to solve the same implicit
system at each stage. It would be good at some point to implement the SSP2(3,3,2) scheme, which
requires the solution of two different implicit problems, but has half the advective Courant limit in
explicit part.

SSP2(3,3,2)

Explicit

0
1/2 0
1/2 1/2 0

1/3 1/3 1/3

Implicit

1/4
0 1/4

1/3 1/3 1/3

1/3 1/3 1/3
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6.0.3 Implementation in GYRO

The complication which arisese when applying these methods to GYRO are connected with the
field solve. For all the so-called SDIRK methods, the implicit equations at each stage have a generic
form. In the present case, at each integrator stage (k = 1, 2, 3), we are faced with:

(ha)k = ha + ∆t
∑
p<k

ãkp(H̃a)p , (6.13)

(he)k = he + ∆t
∑
p<k

ãkp(H̃e)p + ∆t
∑
p<k

akp(He)p + ∆t akk(He)k . (6.14)

Because He depends on the fields, we must advance the Maxwell equations at each stage before
determining the (he)k. However, we can compute all (ha)k for a = 1, . . . , nion before solving the
implicit problem. First, solve formally for (he)k:

(he)k = (δhe)k + αe
c0∆tΩ ∂τ

1 + c0∆tΩ ∂τ

(
δφ̂− v̂‖eδÂ‖ − ελT̂eδB̂‖

)
k

(6.15)

where (δhe)k is the explicitly-known quantity

(δhe)k =
1

1 + c0∆tΩ ∂τ

he + ∆t
∑
p<k

ãkp(H̃e)k + ∆t
∑
p<k

akp(He)k

 . (6.16)

Now, substitute the analytic expression for (he)k into the Maxwell equations. This substitution
gives a version of the Maxwell equations that looks like the standard explicit forms, but with added
field terms arising from the second term on the RHS of Eq. (6.15). If we multiply the Maxwell
equations by F ∗im (θ), and operate with the bounce-velocity summation operator FV (noting that
V V = V ), we obtain ∆t-coupled Poisson-Ampère equations.

(MPP )ii
′

mm′ φ̃
i′
m′ + (MPB)ii

′
mm′B̃

i′
m′ = (SP )im + (IPP)imm′ φ̃

i
m′ + (IPA)imm′Ã

i
m′ + (IPB)imm′B̃

i
m′ (6.17)

(MAA)ii
′

mm′Ã
i′
m′ = (SA)im + (IAP)imm′ φ̃

i
m′ + (IAA)imm′Ã

i
m′ + (IAB)imm′B̃

i
m′ (6.18)

(MBP )ii
′

mm′ φ̃
i′
m′ + (MBB)ii

′
mm′B̃

i′
m′ = (SB)im + (IBP)imm′ φ̃

i
m′ + (IBA)imm′Ã

i
m′ + (IBB)imm′B̃

i
m′ (6.19)

Here the field matrices are:

(MPP )ii′mm′ = FV
[
F ∗im (θ(τq))Lii′PP (θ(τq))F

i′
m′(θ(τq))

]
(6.20)

(MPB)ii′mm′ = FV
[
F ∗im (θ(τq))Lii′PB(θ(τq))F

i′
m′(θ(τq))

]
(6.21)

(MAA)ii′mm′ = FV
[
F ∗im (θ(τq))Lii′AA(θ(τq))F

i′
m′(θ(τq))

]
(6.22)

(MBB)ii′mm′ = FV
[
F ∗im (θ(τq))Lii′BB(θ(τq))F

i′
m′(θ(τq))

]
(6.23)

(MBP )ii′mm′ = FV
[
F ∗im (θ(τq))Lii′BP (θ(τq))F

i′
m′(θ(τq))

]
(6.24)
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where

LPP = λ̄2
D∇2
⊥ + αe +

nion∑
a=1

αaz
2
aV
[
1− G2

0a

]
(6.25)

LPB =

nion∑
a=1

−2zan̂aV [ελG0aG1a] (6.26)

LAA =
−2ρ̄2

s,unit

β̄e,unit
∇2
⊥ +

nion∑
a=1

αaz
2
aV [v̂2

‖G2
0a] (6.27)

LBB =
1

β̄e,unit
+

nion∑
a=1

2n̂aT̂aV [λ2G2
1aε

2] (6.28)

LBP =

nion∑
a=1

zan̂aV [ελG1aG0a] . (6.29)

The advection matrices are:

(IPP )imm′ = αieFV
[
F ∗im (θ(τq))Oiqq′F im′(θ(τq′))

]
(6.30)

(IPA)imm′ = −αieFV
[
F ∗im (θ(τq))Oiqq′F im′(θ(τq′))v̂‖e(θ(τq′))

]
(6.31)

(IPB)imm′ = −αieT̂ ieFV
[
F ∗im (θ(τq))Oiqq′F im′(θ(τq′))ελ

]
(6.32)

(IAP )imm′ = αieFV
[
v̂‖e(θ(τq))F

∗i
m (θ(τq))Oiqq′F im′(θ(τq′))

]
(6.33)

(IAA)imm′ = −αieFV
[
v̂‖e(θ(τq))F

∗i
m (θ(τq))Oiqq′F im′(θ(τq′))v̂‖e(θ(τq′))

]
(6.34)

(IAB)imm′ = −αieT̂ ieFV
[
v̂‖e(θ(τq))F

∗i
m (θ(τq))Oiqq′F im′(θ(τq′))ελ

]
(6.35)

(IBP )imm′ =
1

2
αieT̂

i
eFV

[
F ∗im (θ(τq))Oiqq′F im′(θ(τq′))ελ

]
(6.36)

(IBA)imm′ = −1

2
αieT̂

i
eFV

[
F ∗im (θ(τq))Oiqq′F im′(θ(τq′))v̂‖e(θ(τq′))ελ

]
(6.37)

(IBB)imm′ = −1

2
αie(T̂

i
e)

2FV
[
F ∗im (θ(τq))Oiqq′F im′(θ(τq′))ε2λ2

]
(6.38)

Next, the source matrices are

(SP )im = FV
[
F ∗im (θ(τq))H

i
P (θ(τq))

]
−FV

[
F ∗im (θ(τq))δĥ

i
e(θ(τq))

]
(6.39)

(SA)im = FV
[
F ∗im (θ(τq))H

i
A(θ(τq))

]
−FV

[
v̂‖e(θ(τq))F

∗i
m (θ(τq))δĥ

i
e(θ(τq))

]
(6.40)

(SB)im = FV
[
F ∗im (θ(τq))H

i
B(θ(τq))

]
− 1

2
T̂eFV

[
ελF ∗im (θ(τq))δĥ

i
e(θ(τq))

]
(6.41)

where

HP
.
=

nion∑
a=1

zaG′aĥa (6.42)

HA
.
=

nion∑
a=1

zav̂‖G′aĥa (6.43)

HB
.
=

nion∑
a=1

−T̂aG∞aĥaελ . (6.44)
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In the preceeding expressions, we have omitted the stage number, k, for brevity. The advection
matrix Oqq′ is defined as

Oqq′(r, λ, ε) .
=

(
1

1 + c0∆tΩ ∂τ

)
qq′
. (6.45)

We reorganize the equations into a single partitioned system suitable for solution with a direct
sparse solver (the current implementation uses UMFPACK). Solve the system with UMFPACK
(SP , SA and SB need to be computed at each step). MPP 0 MPB

0 MAA 0
MBP 0 MBB

 φ̃

Ã

B̃

 =

 SP
SA
SB

+

 IPP IPA IPB
IAP IAA IAB
IBP IBA IBB

 φ̃

Ã

B̃

 (6.46)

6.0.4 Procedural summary

Having precomputed the matrices M and I, for k = 1, . . . , 3:

1. Evaluate (ha)k using Eq. (6.13).

2. Evaluate (δhe)k using Eq. (6.16).

3. Evaluate SP , SA and SB using Eqs. (6.39) through (6.41), respectively.

4. Solve Eq. (6.46) for φ̃, Ã and B̃.

5. Evaluate (he)k using Eq. (6.15).

With all stage values, k = 1, 2, 3, computed, evaluate ȳ = ({h̄a}, h̄e)T using Eq. (6.12). Then,
synchronize the fields using an explicit field update.

6.0.5 Time-Integration Considerations

Ad-hoc semi-implicit schemes (for example, first order splitting) are normally a mixed-blessing,
offering improved stability of stiff terms at the expense of accuracy and/or stability loss for the
explicit terms. Higher order splittings can be constructed but are susceptible to a severe accuracy
loss in the stiff limit. The IMEX schemes we describe herein [PR00] are:

• Asymptotic Preserving: the difference scheme is asymptotically correct in the stiff limit.

• Asymptotically Accurate: the explicit integrator retains its order for the limiting differential-
algebraic system in the stiff limit.

• Strong-Stability-Preserving: we recover an SSP-ERK [GST] scheme in the stiff limit.
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Chapter 7

Source and Boundary Conditions

7.1 Radial Domain and Boundary Conditions

GYRO has the option of treating periodic (variously called flux-tube, or local) or nonperiodic
(global) boundary conditions on (δφn, δA‖n, hσ,n).

ri = r̄ − L

2
+ ∆r(i− 1) for i = 1, . . . , nr . (7.1)

where

∆r
.
=

{
L/nr periodic; BOUNDARY METHOD=1 ,

L/(nr − 1) nonperiodic; BOUNDARY METHOD=2 .
(7.2)

The central radius, r̄, is specified by the INPUT parameter RADIUS.

7.1.1 Periodic

Flux-tube boundary conditions effectively eliminate the inner and outer radial boundaries by mak-
ing the quantities periodic in r. For example,

δφn(r1, θ) = δφn(rnr , θ) . (7.3)

Use of this boundary condition is very useful for local linear analyses (all the linear results presented
in this report use flux-tubes) and computationally efficient for restricted nonlinear studies. However,
the flux-tube mode of operation is incompatible with variation of the equilibrium profiles.

7.1.2 Nonperiodic

In order to study physical effects associated with profile variation and rotation shear, it is necessary
to abandon flux-tubes and use some type of nonperiodic radial boundary condition. In the design
of nonperiodic end conditions, we have attempted to minimize as much as possible the effect of the
boundaries on the interior dynamics. To this extent, our goal was to construct “benign” rather
than physical end conditions. First, to make the notation less cumbersome, let us write

ra → r1 , (7.4)

rbuffer
a → rp , (7.5)

rbuffer
b → rnr−p+1 , (7.6)

rb → rnr , (7.7)
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h

ra rbuffera rbufferb rb
r

Figure 7.1: Illustration of placement of boundary buffer regions.

where the width of the buffer region, p, is set by the input parameter EXPLICIT DAMP GRID. Ex-
perience shows that this number (which is an integer number of gridpoints) should be no smaller
than about 8ρi. GYRO has a diagnostic to warn the user if this condition is not satisfied.

First, at the extreme edges of the computational domain, r = ra and r = rb, we impose Dirichlet
boundary conditions on all toroidal harmonics.

ha,n(ra, θ) = δφn(ra, θ) = 0 , (7.8)

ha,n(rb, θ) = δφn(rb, θ) = 0 . (7.9)

Experience shows that these boundary conditions, in the absence of any other tricks, will give
rise to strong oscillations at the boundaries. The effect of these oscillations will be felt well into
the interior of the computational domain and so various techniques were explored in an effort to
mitigate the corruption of the interior solution. One solution that works well is the imposition of
a “buffer” region; that is, a region near the boundary where we impose an explicit damping on
the n = 0 evolution equation. Generally speaking, we modify the normalized gyrokinetic equation,
Eq. (5.39), according to

∂hσ,0

∂t̂
= RHS0 −

aνσ(r)

c̄s
Hσ,0 , (7.10)

where

νσ(r)
.
=


νbuffer
σ if ra ≤ r ≤ rbuffer

a ,

0 if rbuffer
a < r < rbuffer

b ,

νbuffer
σ if rbuffer

b ≤ r ≤ rb .
(7.11)

An illustration of the effect of this technique on computed fields is given in Fig. 7.1. In GYRO, the
strength of the damping in the buffer is controlled by the following INPUT parameters

EXPLICIT DAMP→ aνbuffer
i

c̄s
, (7.12)

EXPLICIT DAMP ELECTRON→ aνbuffer
e

c̄s
. (7.13)
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7.2 Long-wavelength Source

One dramatic benefit of flux-tube simulations is that no special techniques are required to keep
the equilibrium from evolving. In this case, the equilibrium is analytically separable from the
fluctuations and there is no coupling between them. In a global simulation there is no such pos-
sibility for separability and short-wavelength radial fluctuations are coupled to long-wavelength
equilibrium-scale dynamics. In this note we propose a method to partially decouple equilibrium
from fluctuations so as to keep the equilibrium profiles from changing.

7.2.1 Formulation of the problem

As in the previous section, we write the n = 0 component of the gyrokinetic equation for fluctuations
as

∂hσ,0

∂t̂
= RHS0(r) . (7.14)

If the system were periodic in r, we could write the Fourier space expression

∂h̃p

∂t̂
= R̃HSp , (7.15)

where
hσ,0(r) =

∑
p

h̃p e
−2πipr/L . (7.16)

Then, in a flux-tube simulation, we would simply set h̃0 = 0, which corresponds to zero radial
average of the n = 0 fluctuations. Since the p = 0 equations decouples from the rest of the problem
(the p = 0 component of the E×B nonlinearity is identically zero), this is allowed. However, in a
global simulation, there is no way to cleanly separate the equilibrium from the fluctuations, because
there is no exact analogue of h̃0.

7.2.2 Solution by damping

Instead of ignoring p = 0 as in a flux-tube simulation, we can instead damp the long-wavelength
components. This will drain, in a nonconservative fashion, any pumping that the equilibrium-
scale distribution receives from nonlinear coupling. In real space, then, we modify the gyrokinetic
equation according to

∂hσ,0

∂t̂
= RHS0 −

aνsource

c̄s
〈hσ,0〉 , (7.17)

where the angle brackets denote a projection onto long wavelengths only. For example,

〈hσ,0(r)〉 =

N SOURCE+4∑
p=1

cpFp(r) . (7.18)

The expansion coefficients satisfy Mpp′cp′ = Sp where

Mpp′ =

∫ rb

ra

dr Fp(r)Fp′(r) and Sp =

∫ rb

ra

dr hσ,0(r)Fp(r) . (7.19)

In GYRO, we take the Fp to be quadratic finite elements. These are defined as scaled translates of
the function N (3) given in Eq. (5.69). We also include partial elements in order to satisfy general
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ra rb
r

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

Figure 7.2: Illustration of quadratic finite-element basis for N SOURCE=2. Note that p = 1, 2 and
p = 5, 6 are partial elements.

nonperiodic boundary conditions, rather than Dirichlet boundary conditions. The reason for doing
this is to most gracefully accomodate the rapid variation of h in the buffer regions. The choice of
N SOURCE is somewhat arbitrary but should be small enough to hold only the longest wavelengths
fixed (i.e., between 1 and 3).

Note that if the time rate of change is slow, ∂t → 0, and the steady-state solution for the
long-wavelength component is

〈hσ,0(r)〉 = 〈RHS0〉/νsource , (7.20)

which can be made arbitrarily small by increasing νsource. In GYRO, the strength of the source is
controlled by

NU SOURCE→ aνsource

c̄s
. (7.21)

General Atomics Report GA-A26818 57



Chapter 8

Collisions

8.1 Pitch-angle Scattering Operator

The treatment of collisions in gyrokinetic simulations is not as intricate as that required in neo-
classical simulations. In the former case, the dominant effect of collisions is pitch-angle scattering
in the electron equation. Below we outline the implementation of this effect, and of the associated
ion pitch-angle scattering operators.

Treating the collision operator Ĉ by operator splitting leaves us with the following evolution
equation

∂ha,n

∂t̂
= Ĉ

[
ha,n − zaαav̂‖aGaδA‖,n

]
. (8.1)

This has the alternative form

∂fa,n

∂t̂
+ zaαav̂‖aGaδȦ‖,n = Ĉ [fa,n] , (8.2)

where
fa,n = ha,n − zaαav̂‖aGaδA‖,n . (8.3)

We must take care to avoid the Ampère cancellation problem when solving this equation. Fur-
thermore, due to the viscous Courant limit on the timestep imposed by the operator Ĉ near the
trapped-passing boundary, we use an implicit technique. For typical time steps and 8-point pitch-
angle grids, it appears that we are probably very close to the explicit stability limit at νei ∼ cs/a.
Multiplying Eq. (8.1) by zav̂‖a, summing over species and integrating gives

−
2ρ̄2

s,unit

β̄e,unit
∇2
⊥δȦ‖,n +

∑
a

αaz
2
a V [v̂2

‖aG2
aδȦ‖,n] =

∑
a

zaV
[
v̂‖aĈ [Gafa,n]

]
. (8.4)

It is sufficiently accurate to take Ĉ to be the pitch-angle scattering operator

Ĉ = ν̂a
∂

∂ξ
(1− ξ2)

∂

∂ξ
, (8.5)

with the corresponding identity

V
[
ξĈf

]
= −2ν̂a V [ξf ] . (8.6)

For ions, it is convenient, and probably more realistic physically, to assume that Ĉ also conserves
momentum, so that

V [ξĈf ] = 0 . (8.7)
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We can write the following equation for ˙δA‖ = ∂δA‖/∂t:

LAδȦ‖,n = V
[
2v̂‖,eν̂efe,n

]
. (8.8)

Then, we solve Eq. (8.2) with a semi-implicit advance(
1− Ĉ∆t

)
f̄a,n = fa,n − zaαav̂‖aGaδȦ‖,n∆t , (8.9)

= ha,n − zaαav̂‖aGa(δA‖,n + δȦ‖,n∆t) . (8.10)

Currently, in GYRO, we set Ga = 1 in the final equation, since the ion collisional effects are weak
and already rather approximate.

8.1.1 The Radial Basis Function (RBF) Method

We are interested in developing a method of function approximation suitable for evaluating differ-
ential and integral operators on an irregular mesh in the (θ, ξ) plane. The mesh itself is determined
by features of the collisionless dynamics and cannot be altered to suit the evaluation of the collision
operator. We will formulate the problem such that the θ-dependence is periodic on the interval
−π ≤ θ < π. In the ξ domain, there are no boundary conditions (only regularity of the solution)
on the interval −1 ≤ ξ ≤ 1.

−π −π/2 0 π/2 π
θ

-1.0

-0.5

0.0

0.5

1.0

ξ

Figure 8.1: Irregular mesh in the (θ, ξ)-plane.

In reality the functions to be approximated is not in general a periodic function of θ, but rather
satisfied a phase condition of the type f(θ + 2π) = f(θ)e2πiα. Since it is highly desireable to
approximate a periodic function to eliminate boundary-related headaches, one can instead consider
the associated function g(θ) = f(θ)e−iαθ, which is periodic.
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8.1.2 Basic RBF expansion

We start by briefly describing the basic RBF approximation. Given a function φ(r), r ≥ 0, centers
x1, . . . ,xN , and data fi = f(xi), the basic form of the RBF approximation is

F (x) =

N∑
i=1

ciφ(|x− xi|) , (8.11)

where | · | is a positive-definite norm on the vector space of interest. The ci are then chosen so that
F (xi) = fi. Typical RBF choices are

Table 8.1: Typical basis functions

φ(r) name smoothness

r3 cubic RBF piecewise smooth
r5 quintic RBF piecewise smooth

r2 log r thin-plate spline piecewise smooth√
1 + (εr)2 multiquadric infinitely smooth

e−(εr)2 Gaussian infinitely smooth

In practice, the infinitely smooth RBFs are difficult to use because the associated coefficient
matrices Aij = φ(|xj−xi|) are notoriously ill-conditioned in the limit ε→ 0, although theoretically
they are capable of spectral convergence and thus remarkably accurate approximation in this limit.
Testing, nevertheless indicates that the cubic and quintic RBFs are much more robust and therefore
appropriate for the mesh sizes of interest in the collision problem. In one dimension, there is a
simple relationship between cubic and quntic RBFs and cubic and quintic B-splines. Thus, the
remedy for boundary inaccuracy is one that is already known from the theory of spline interpolation.

8.1.3 Influence of boundaries

It is well-known that near boundaries, the accuracy of RBF approximation – like all function
approximation near boundaries – can suffer a significant loss of accuracy, and can lead to stability
problems when used for operator discretization in time-dependent problems. We have indeed
verified that accuracy loss at the boundary is a serious issue in the ξ direction.

Curing the boundary instability problem first requires generalizing somewhat the RBF expan-
sion in Eq. (8.11). We need to allow the locations of the centers to deviate in some cases from the
locations of the fixed mesh points – even allowing them to move outside the simulation domain
−1 ≤ ξ ≤ 1. So, we write

F (x) =

N∑
i=1

ciφ(|x− x̂i|) , (8.12)

where as before the ci are chosen so that F (xi) = fi. Mesh points xi near the boundaries at ξ = ±1
are moved outside the boundary in an analog of the Super Not-a-Knot (SNaK) approach.

8.1.4 The method in detail

The domain of interest is topologically equivalent to the surface of a cylinder, so there is a natural
the distance function

ri = |x− x̂i| =
√

2− 2 cos(θ − θi) + (ξ − ξ̂i)2 (8.13)
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For s = 3, 5, . . ., we write
φ(ri) = rsi

.
= R0(θ − θi, ξ − ξ̂i; s) (8.14)

∂

∂ξ
φ(ri) = srs−2

i (ξ − ξ̂i) .
= R1(ξ − ξ̂i, θ − θi; s) (8.15)

∂2

∂ξ2
φ(ri) = rs−4

i

[
s(s− 2)(ξ − ξ̂i)2 + sr2

i

]
.
= R2(ξ − ξ̂i, θ − θi; s) (8.16)

Lf =
∂

∂ξ
(1− ξ2)

∂

∂ξ
f(θ, ξ) (8.17)

= (1− ξ2)
∑
i

ciR1(ξ − ξ̂i, θ − θi; s)− 2ξ
∑
i

ciR2(ξ − ξ̂i, θ − θi; s) (8.18)

.
=
∑
i

ciL(θ, ξ, θi, ξ̂i) (8.19)

Thus, in matrix notation, we can write

(Lf)i = Lijcj = Lij(R
−1
0 )jkfk

.
= Dikfk (8.20)

The matrices are

Lij = L(θi, ξi, θj , ξ̂j) (8.21)

(R0)ij = R0(θi − θj , ξi − ξ̂j ; s) (8.22)

Implementation of the Crank-Nicholson scheme for the equation

∂f

∂t
= νLf (8.23)

is then written as

fi(t+ ∆t) =

(
1− ν∆t

2
D

)−1

ij

(
1 +

ν∆t

2
D

)
jk

fk(t) (8.24)

.
= Mikfk(t) (8.25)

In GYRO, we compute and store the matrix M at start-up, reducing the collision step to a matrix-
vector multiply. The drawback of course is the storage, which is significant for a matrix of this
type.

8.1.5 Additional comments

For a fixed number of meshpoints, the condition number of the matrix (R0)ij grows rapidly. So,
although the method is mathematically correct for s = 3, 5, 7, . . ., in practice the scheme is probably
limited to s = 3 and 5.
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8.2 Conservative Krook Operator

The operator is an annhiliation term −νf plus a restoring term δC.

Cf = −νf + δC (8.26)

number: FV [F ∗m(θ)δC] = FV [F ∗m(θ)νf ]
.
= S(1)

m (8.27)

momentum: FV
[
F ∗m(θ)v‖δC

]
= FV

[
F ∗m(θ)v‖νf

] .
= S(2)

m (8.28)

energy: FV [F ∗m(θ)εδC] = FV [F ∗m(θ)ενf ]
.
= S(3)

m (8.29)

To determine the restoring term, expand

δC =
∑
m

c1
mFm(θ) + v‖(θ)

∑
m

c2
mFm(θ) + ε

∑
m

c3
mFm(θ) (8.30)

Now we must determine each cm as a function of the Sm.

A11
mm′c

1
m′ +A13

mm′c
3
m′ = S(1)

m (8.31)

A22
mm′c

2
m′ = S(2)

m (8.32)

A31
mm′c

1
m′ +A33

mm′c
3
m′ = S(3)

m (8.33)

where

A11
mm′ = FV

[
F ∗mF

′
m

]
(8.34)

A13
mm′ = FV

[
F ∗mεF

′
m

]
(8.35)

A31
mm′ = FV

[
F ∗mεF

′
m

]
= A13

mm′ (8.36)

A33
mm′ = FV

[
F ∗mε

2F ′m
]

(8.37)

A22
mm′ = FV

[
F ∗mv

2
‖F
′
m

]
(8.38)
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Chapter 9

Maxwell Dispersion Matrix
Eigenvalue Solver

9.1 Motivation and Related Work

In high-beta, strongly shaped plasmas like in the National Spherical Torus Experiment (NSTX)
[OKP+00], numerous branches of closely-spaced unstable eigenmodes exist. In our experience,
when modes are closely spaced, it is difficult and time-consuming to resolve the most unstable
mode using the linear initial-value approach. To overcome these and other difficulties encountered
in simulating NSTX plasmas, we have developed a new, more efficient method to compute unsta-
ble linear eigenvalues and eigenvectors. The method is valid for tokamak plasmas with arbitrary
shape, and can retain both the compressional and transverse components of the magnetic pertur-
bation. The new method is a simple extension of the GYRO code [CW03], and reuses the existing
discretization schemes in both real and velocity space. Existing methods for solving the linear gy-
rokinetic eigenvalue problem fall into two general categories: gyrokinetic eigenvalue solvers, which
use an iterative approach to compute eigenvalues of the relatively large gyrokinetic response matrix
[KMJ08, Bas09], and field dispersion-relation solvers, which compute the zeros of the much smaller
dielectric matrix using a direct method. The former solvers are too expensive for routine linear
analysis and are not discussed further. On the other hand, there are numerous examples in the
literature of the latter method, the earliest and still one of the most capable being due to Rewoldt
[RTC82]. Certain solvers distinguish themselves with a particular capability: for example, global
capability [FVV03] or the ability to compute stable eigenmodes [Sug99]. The present solver is
unique in that all the linear physics capabilities of GYRO can be retained, including pitch-angle
collisions (although at significantly increased computational expense), global effects (since the bal-
looning transform is not used), finite plasma rotation, general plasma shape and compressional
magnetic perturbations. The solver is also parallelized, with all costly matrix operations (LU de-
composition, inverse, matrix-matrix multiply) implemented fully in BLAS and LAPACK. A typical
collisionless electromagnetic eigenvalue and eigenvector can be computed at standard resolution in
about 5 seconds on a single 2.66GHz core.
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9.2 The Linearized Gyrokinetic Equation

Just as in the initial-value formulation of the nonlinear gyrokinetic equation, here we expand
fluctuating quantities in Fourier series, for example

Ψa =
∑
n

e−inαΨa,n . (9.1)

We remark that because of the symmetry properties of the equations, it is natural to label toroidal
eigenmodes with kθρs rather than n, where kθ

.
= nq/r. For a single toroidal harmonic, the gyroki-

netic equation is written symbolically as

∂ha,n
∂t
− i(ωθ + ωd + ωC)Ha,n − iω∗(

eaf0a

Ta
Ψa,n) = 0 (9.2)

where ωθ, ωd and ωC are differential operators:

−iωθ = v‖(b · ∇θ)
∂

∂θ
, (9.3)

−iωd = −in(vd · ∇α) + (vd · ∇r)
∂

∂r
, (9.4)

−iωC = −νa
2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ

, (9.5)

−iω∗ = i
vta
a
kθρa

[
a

Lna
+

(
v2

2v2
ta

− 3

2

)
a

LTa

]
. (9.6)

9.3 Construction of the Dispersion Matrix

The Laplace transform [Zay96] of a function f(t), which we assume to be differentiable on (0,∞),
is

f̃(s)
.
= Lf =

∫ ∞
0

f(t)e−stdt (9.7)

whenever the integral exists for at least one value of s. In the present case, the integral will converge
for s > s0, where s0 is the maximum linear growth rate. The inversion formula is given by the
Bromwich integral

f(t)
.
= L−1f̃ =

1

2πi

∫ c+i∞

c−i∞
f̃(s)estds , 0 < t <∞ . (9.8)

It will be convenient to use the variable ω = is in subsequent formulae. Now, it is then easy to
show that

H̃a(ω) = LHa,n =
1

ω + ωθ + ωd + ωC
iha(0) +

ω − ω∗
ω + ωθ + ωd + ωC

(
eaf0a

Ta
Ψ̃a

)
, (9.9)

where Ψ̃a = LΨa,n. Upon substitution into the Laplace transform of the Maxwell equations, we
are left with a system of the form

Mσσ′(ω)Φσ′(ω) = Sσ(ω) (9.10)
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where σ and σ′ are field indices which run from 1 to 3. The field matrix and source are given by

Mσσ′(ω) = δσσ′L
σ −

∑
a

e2
a

Ta

∫
d3v f0aG

σa ω − ω∗
ω + ωθ + ωd + ωC

Gσ
′a , (9.11)

Sσ(ω) =
∑
a

ea

∫
d3v Gσa

1

ω + ωθ + ωd + ωC
iha(0) . (9.12)

We have defined the additional 3-index vectors:(
Φ1,Φ2,Φ3

) .
=
(
δ̃φ, δ̃A‖, δ̃B‖

)
, (9.13)

(
L1, L2, L3

) .
=

(
− 1

4π
∇2
⊥ +

∑
a

e2
a

Ta

∫
d3v f0a,

1

4π
∇2
⊥, −

1

4π

)
, (9.14)

(
G1a, G2a, G3a

)
=

(
G0a, −

v‖
c
G0a,

v2
⊥

Ωcac
G1a

)
. (9.15)

In what follows, we will refer toM(ω) as the Maxwell dispersion matrix. The roots of the equation
detM(ω) = 0 correspond to the normal modes of the system. When the velocity integrals are
taken along the real velocity axes, the integrals used to computeM define a function of s analytic
in region s > 0, which corresponds to the upper-half ω-plane. This means that unstable modes can
be readily computed using the same (real) velocity discretization as in the initial-value problem.
Calculation of stable normal modes, on the other hand, would require analytic continuation of
M(ω) into the lower half-plane, Im(s) ≤ 0, by deformation of the contour in velocity space, or
perhaps by numerical analytic continuation.

The numerical implementation of the eigenvalue solver, which employs the existing GYRO
spatial discretization methods, is described in detail in the Appendix. Here, we remark that the
size of the final matrix problem is small, with rank(M) = nσnrnb, with nσ the number of fields,
nr the number of radial gridpoints, and nb the number of poloidal finite elements. For a basic
electrostatic case, this can be as small as rank(M) = 24. The dominant cost is therefore not
computing detM(ω), but rather computing the inverse P−1, where P is the matrix representation
of the propagator P = ω + ωθ + ωd + ωC .

9.4 Discretization and Implementation in LAPACK

The spatial discretization of the differential operators required for construction of the Maxwell field
matrix follows precisely the same approach as for the GYRO initial-value solver, with the various
stencils and quadrature methods discussed in detail in Ref. [CW03]. The velocity-space variables
in GYRO are

λ
.
=
Bunit

v2
⊥
Bv2 and ε

.
=
mav

2

2Ta
(9.16)

Fluctuating quantities are evaluated on a species-independent mesh with radial nodes {ri}nri=1,
pitch-angle nodes {λk}nλk=1, energy nodes {εµ}nεµ=1 and orbit-time nodes {τm}nτm=1. The gyroaverage

of the effective potential Ψ̃a, for species a, has the discrete representation

(Ψ̃a)
µ
ikm =

∑
i′σ

Gσaµii′kmΦσ
i′km , (9.17)

General Atomics Report GA-A26818 65



where the three-potential Φσ at the same point in configuration space is given by the complex
Galerkin representation

Φσ
ikm =

∑
j

cσijFij(θkm) . (9.18)

Here, cσij are the so-called blending coefficients, and Fij the basis functions defined in Sections 5.2
and 5.3 of Ref. [CW03]. The propagator has the matrix form

P aµii′kk′mm′ = ωδii′kk′mm′ + (ωθ)
aµ
ikmm′δii′kk′ + (ωd)

aµ
ii′kmδmm′kk′ + (ωC)aµikk′mm′δii′ . (9.19)

We can write the nonadiabatic distribution H̃a in terms of the inverse of the propagator as(
H̃a

fMa

)aµ
ikm

=
eana
Ta

(P−1)aµii′kk′mm′(ω − ω
aµ
∗i′k′m′)

∑
σ

Gσaµi′i′′k′m′

∑
j

cσi′′jFi′′j(θk′m′) . (9.20)

Constructing the Galerkin projections of all three Maxwell equations, using the technique described
in Section 5.3 of Ref. [CW03], yields the matrix equation

Mσσ′
ii′jj′c

σ′
i′j′ =

[
Aσii′jj′δσσ′ −Bσσ′

ii′jj′(ω)
]
cσ
′
i′j′ = 0 , (9.21)

where
Aσii′jj′ =

∑
km

F ∗ijkmL
σ
ii′kmF

∗
i′j′km (9.22)

and

Bσσ′
ii′jj′(ω) =

∑
aµ

∑
i′′′km

∑
i′′k′m′

e2
ana
Ta

wµkmF
∗
ijkmG

σaµ
ii′′′km(P−1)aµi′′′i′′kk′mm′(ω − ω

aµ
∗i′′k′m′)G

σ′aµ
i′′i′k′m′Fi′j′k′m′

(9.23)

=
∑
aµ

∑
p,p′

Uaµqp (P−1)aµpp′V
aµ
p′q′ (9.24)

= Bσσ′
qq′ . (9.25)

Here, the weights wµkm are the products of the energy, pitch-angle and orbit-time weights defined
in Eq. (72) of Ref. [CW03]. In terms of these weights, the flux-surface average of the velocity-space
integration is written as

F
∫
d3vfMaΨa →

∑
kmµ

wµkm(Ψa)
µ
ikm with

∑
kmµ

wµkm = 1 . (9.26)

In addition, we have defined the lumped indices p = (i′′′, k,m), p′ = (i′′, k′m′), q = (i, j, σ) and
q′ = (i′, j′, σ′). High performance is achieved by computing the inverse P−1 using the LAPACK
routines ZGETRF (LU decomposition) followed by ZGETRI (inverse), with the subsequent matrix
triple-product UP−1V evaluated using two sequential calls to the BLAS ZGEMM kernel. Finally,
det(M) is computed by the formula

det(M) = ±
∏
q

Lqq (9.27)

where L is the lower-triangular matrix returned by the ZGETRF factorization. The upper (lower)
sign is taken if an even (odd) number of row permutations were made in the factorization.
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