
OPENSHIFT HANDS-ON
@Microsoft
Développer et déployer une application Cloud-Native

Guillaume Estrem & Laurent Broudoux
AppDev Solution Architect
21 Février 2019

OPENSHIFT HANDS-ON ON AZURE

PAUSE

Lab 1

Lab 2

Lab 3

Lab 4

Lab 5

Lab 6

Lab 7

Lab 8

Getting Started

Deploying containers from an image

Deploying containers from sources

Monitoring application health

Distributed Tracing Configuration

Getting Application Metrics

Azure Service Broker

Continuous Delivery

2

LAB
GUIDE

13h00

14h30

16h00

14h45

OPENSHIFT CONCEPTS
OVERVIEW

OPENSHIFT HANDS-ON ON AZURE4

A container is the smallest compute unit

CONTAINER

OPENSHIFT HANDS-ON ON AZURE5

Containers are created from
container images

CONTAINERCONTAINER
IMAGE

BINARY RUNTIME

OPENSHIFT HANDS-ON ON AZURE6

IMAGE REGISTRY

Container images are stored in
an image registry

CONTAINER

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

OPENSHIFT HANDS-ON ON AZURE

An image repository contains all versions of
an image in the image registry

7

IMAGE REGISTRY

frontend:latest
frontend:2.0
frontend:1.1
frontend:1.0

CONTAINER
IMAGE

mongo:latest
mongo:3.7
mongo:3.6
mongo:3.4

CONTAINER
IMAGE

myregistry/frontend myregistry/mongo

OPENSHIFT HANDS-ON ON AZURE

PODPOD

Containers are wrapped in pods which are
units of deployment and management

8

CONTAINER CONTAINERCONTAINER

IP: 10.1.0.11 IP: 10.1.0.55

OPENSHIFT HANDS-ON ON AZURE

Pods configuration is defined
in a deployment

9

image name
replicas
labels
cpu
memory
storage

POD

CONTAINER

POD

CONTAINER

POD

CONTAINER

DEPLOYMENT

OPENSHIFT HANDS-ON ON AZURE

POD

Services provide internal load-balancing and
service discovery across pods

10

CONTAINER

POD

CONTAINER

POD

CONTAINER

BACKEND SERVICE

POD

CONTAINER

role: backend

role: backendrole: backendrole: backendrole: frontend

OPENSHIFT HANDS-ON ON AZURE

POD

Apps can talk to each other via services

11

CONTAINER

POD

CONTAINER

POD

CONTAINER

BACKEND SERVICE

POD

CONTAINER

role: backend

role: backendrole: backendrole: backendrole: frontend

Invoke
Backend API

OPENSHIFT HANDS-ON ON AZURE

POD

Routes add services to the external load-balancer
and provide readable urls for the app

12

CONTAINER

POD

CONTAINER

POD

CONTAINER

BACKEND SERVICE

ROUTE
app-prod.mycompany.com

> curl http://app-prod.mycompany.com

OPENSHIFT HANDS-ON ON AZURE

Projects isolate apps across
environments, teams, groups and

departments

13

POD

C

POD

C

POD

C

PAYMENT DEV

POD

C

POD

C

POD

C

PAYMENT PROD

POD

C

POD

C

POD

C

CATALOG

POD

C

POD

C

POD

C

INVENTORY

❌

❌❌

LAB 1

Getting started

15

Pick your user ID

Go to http://bit.ly/ocp-on-azure and assign your name to a user
available. This user will be your identity during the workshop.

Don’t use your neighbour user ;)

http://bit.ly/ocp-on-azure

Connect via SSH to the bastion
The bastion contains all tools needed for the following workshop.

Open your terminal and execute the following command :

$ ssh userX@52.143.152.215

For Windows users, download and install Putty :
https://www.ssh.com/ssh/putty/windows/install

https://www.ssh.com/ssh/putty/windows/install

OPENSHIFT HANDS-ON ON AZURE17

● Make sure you have a userId (userX). Each attendee has its own environment on

OpenShift Container Platform

● Fork the GitHub repo https://github.com/lbroudoux/ocp-on-azure-workshop into your

own GitHub and clone it in your home directory /home/userX/ on the bastion

● Open a terminal and login into Openshift with the following credentials

Before starting...

$ oc login https://masterdnscbmvtdzhvuqye.francecentral.cloudapp.azure.com/ -u userX -p
mypassword

Login successful.
You have access to the following projects and can switch between them with 'oc
project <projectname>':

https://github.com/lbroudoux/ocp-on-azure-workshop

APPLICATION ARCHITECTURE
OVERVIEW

OPENSHIFT HANDS-ON ON AZURE19

INVENTO
RY CATALOG

Grocery Store on OpenShift

LAB 2

Deploy containers from an image

OPENSHIFT HANDS-ON ON AZURE

Create your development environment

Let’s go the Web Console

● Via the web console :
https://masterdnscbmvtdzhvuqye.francecentral.cloudapp.azure.com

○ Login with the same credentials
○ Create a Project with the following informations

■ Name : fruits-grocery-dev-userX
■ Display Name: UserX - Fruits Grocery - Dev

https://masterdnscbmvtdzhvuqye.francecentral.cloudapp.azure.com

OPENSHIFT HANDS-ON ON AZURE

Deploy MongoDB database via the catalog
● Browse the service catalog and search for MongoDB

● Set MongoDb Database Name
○ Name : fruitsdb

● Save and label the deployment config with the
command below

$ oc label dc/mongodb app=fruits-catalog

OPENSHIFT HANDS-ON ON AZURE

One Pod is running. Explore the objects created by OpenShift : image used, TCP port opened
and service created

Check MongoDB deployment

OPENSHIFT HANDS-ON ON AZURE

Deploy Redis via the CLI

Let’s do the deployment of Redis through the CLI rather than the Web console

$ oc new-app redis-persistent --name=redis -p DATABASE_SERVICE_NAME=redis -l app=fruits-inventory -n

fruits-grocery-dev-userX

Quick overview of the command line

● “redis-persistent” is the template we use from the catalog
● We specify also a label (app=fruits-inventory) to select easily all resources

related to fruits-inventory in our environment
● DATABASE_SERVICE_NAME is the service to reach all pods related to Redis

OPENSHIFT HANDS-ON ON AZURE

Check Redis deployment

One Pod is running. Explore the objects created by OpenShift : image used, TCP port
opened and service created

OPENSHIFT HANDS-ON ON AZURE26

INVENTO
RY CATALOG

Grocery Store on OpenShift

LAB 3

Deploy containers from source

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog with s2i strategy

Git
RepositoryBUILD APP

(OpenShift)
Developer

code

Source-to-Image
(S2I)

Builder
Image

Image
Registry

BUILD IMAGE
(OpenShift)

DEPLOY
(OpenShift)

deployApplication
Container

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog
Our application is developed with Spring Boot. A powerful Java framework to build next-gen
application and leverage Openshift capabilities.

Let’s use the official Red Hat
OpenJDK 8 image Builder to
create our container Image
from the source code.

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog

Let’s explore Advanced options to specify
environment variables and extras things!

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog
Complete source code informations to build the SpringBoot app in Openshift

● Name :
fruits-catalog

● Context Dir :
 /fruits-catalog

● Your Git repo URL

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog
Set environment variables for database credentials and URI

● MONGODB_USER - pick the right secret
● MONGODB_PASSWORD - pick the right secret
● SPRING_DATA_MONGODB_URI :

mongodb://${MONGODB_USER}:${MONGODB_PASSWORD}@mongodb:27017/frui
tsdb

MongoDB credentials are located in a secret named mongodb

OPENSHIFT HANDS-ON ON AZURE

Click on the blue circle to explore the pod instance

Deploy the fruits catalog
Explore the application resources deployed

Container Image,
Build used, ports,
routes ...

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog
Explore the pod configuration

● Check Environment variables

● Access to the terminal

● Explore application logs

● Visualize metrics

OPENSHIFT HANDS-ON ON AZURE

Deploy the fruits catalog
Test the fruits catalog

Insert fruits in your catalog microservices via the fruits-catalog API

$ curl `oc get route/fruits-catalog -o template --template={{.spec.host}}`/api/fruits
-XPOST -H "Content-Type: application/json" -d '{"name":"Orange", "origin":"Spain"}'

$ curl `oc get route/fruits-catalog -o template --template={{.spec.host}}`/api/fruits
-XPOST -H "Content-Type: application/json" -d '{"name":"Apple", "origin":"France"}'

Get all fruits from the fruits-catalog

$ curl `oc get route/fruits-catalog -o template --template={{.spec.host}}`/api/fruits -v

OPENSHIFT HANDS-ON ON AZURE

Deploy the Fruits inventory
We use the same s2i strategy to build and deploy the app from source code

Choose the Node.JS image
builder from the catalog

OPENSHIFT HANDS-ON ON AZURE

Deploy the Fruits inventory

● Name :
fruits-inventory

● Context Dir :
 /fruits-inventory

● Your Git Repo URL

OPENSHIFT HANDS-ON ON AZURE

Deploy the Fruits inventory
Set environment variables to access Redis Cache component already containerized

● REDIS_HOST - redis
● REDIS_PASSWORD - pick the right secret
● FRUITS_CATALOG_HOST - fruits-catalog

Set environment variables as described

OPENSHIFT HANDS-ON ON AZURE

Deploy the Fruits inventory
Check that the component works properly with Redis cache

Let’s get all fruits in the Grocery Store with their quantity

$ curl `oc get route/fruits-inventory -o template --template={{.spec.host}}`/api/fruits

[{"id":"5c641f4d18909600016320d0","name":"Orange","origin":"Spain","quantity":"1230"},{"id":"

5c64225818909600016320d1","name":"Apple","origin":"France","quantity":"356"}]

You can also explore the deployment and the pod resources

LAB 4

Monitoring application health

OPENSHIFT HANDS-ON ON AZURE41

● Review Health endpoints in services

● Add health probes to inventory-service

● Add health probes to shop-ui front-end

● Explore pod metrics

LAB 4: Monitoring Application Health

OPENSHIFT HANDS-ON ON AZURE42

HEALTH PROBES

CONTAINERCONTAINERCONTAINER

PROBE TYPES
Is it ready?
Is it alive?

PROBE CHECKS
HTTP
Shell Command
TCP Port

OPENSHIFT HANDS-ON ON AZURE43

Health probes
There are two type of health probes available in OpenShift: liveness probes and readiness probes.
Liveness probes are to know when to restart a container and readiness probes to know when a
Container is ready to start accepting traffic.

Health probes also provide crucial benefits when automating deployments with practices like
rolling updates in order to remove downtime during deployments. A readiness health probe would
signal OpenShift when to switch traffic from the old version of the container to the new version so
that the users don’t get affected during deployments.

https://docs.openshift.com/container-platform/3.7/dev_guide/application_health.html#container-health-checks-using-probes

OPENSHIFT HANDS-ON ON AZURE

We use business and technical endpoints provided natively by the actuator Spring Boot
library. This library will be used in others labs ;)

Add Health check to fruits catalog
We can do it through the web console or the CLI

Set HTTP request to check
readiness. An endpoint is
already defined in the fruits
catalog.

OPENSHIFT HANDS-ON ON AZURE

Add health check to Fruits catalog
Add the liveness probe

Is the app still running ?
We use the same
endpoint as the
readiness for this
example.

OPENSHIFT HANDS-ON ON AZURE46

Save and check rolling upgrade strategy
Click Save and then click the
Overview button in the left
navigation.

You will notice that
fruits-catalog pod is
getting restarted and it stays
light blue for a while. This is a
sign that the pod(s) have not
yet passed their readiness
checks and it turns blue when
it’s ready!

OPENSHIFT HANDS-ON ON AZURE

Add health checks with the CLI

We set an HTTP Request for both health checks

$ oc set probe dc/fruits-inventory --liveness --get-url=http://:8080/api/health/liveness
--initial-delay-seconds=60 --period-seconds=30

$ oc set probe dc/fruits-inventory --readiness
--get-url=http://:8080/api/health/readiness

OPENSHIFT HANDS-ON ON AZURE48

Monitoring pod metrics
Metrics are another important aspect of monitoring applications which is required in order to gain
visibility into how the application behaves and particularly in identifying issues.

OpenShift provides container metrics out-of-the-box and displays how much memory, cpu and
network each container has been consuming over time. In the project overview, you can see three
charts near each pod that shows the resource consumption by that pod.

OPENSHIFT HANDS-ON ON AZURE49

Monitoring pod metrics

LAB 5

Distributed tracing configuration

OPENSHIFT HANDS-ON ON AZURE51

● Externalize and manage application configuration

● Add Jaeger configuration to fruits-catalog

● Explore distributed traces

LAB 5: Distributed tracing configuration

OPENSHIFT HANDS-ON ON AZURE52

What is distributed tracing ?

Spans

Relationships

OpenTracing
instrumentation

OPENSHIFT HANDS-ON ON AZURE53

Distributed tracing

Jaeger is an OpenTracing
implementation and is available
in the Cockpit environment.

OPENSHIFT HANDS-ON ON AZURE

Before setting Jaeger in the fruits-catalog application, we have to add a specific role to the
current project to view particular objects, especially ConfigMap ...

$ oc policy add-role-to-user view -n $(oc project -q) -z default

Add Jaeger configuration to fruits-catalog

OPENSHIFT HANDS-ON ON AZURE55

ConfigMap in OpenShift

● Config maps inject config data into containers

● Config maps can hold
○ Properties (key-value pairs)
○ Files (JSON, XML, etc)

● Containers see config maps as
○ Files on the filesystem
○ Environment variables

● Secrets are like config maps for sensitive data
○ Credentials, certificates, SSH keys, etc

OPENSHIFT HANDS-ON ON AZURE56

Mounted on
filesystem
in read-only

Pod

Volume

Pod

Volume

Pod

RUNTIME

CONFIGURATION
FOO=foo
BAR=bar

application.properties
 com.svc=http://svc
 …
 …

mykey.p12
databasecredentials.properties

VARIABLES
D’ENVIRONNEMENT CONFIGMAPS SECRETS

Injected in
container
memory

De-cyphered
and mounted
on filesystem
in read-only

Configuration management

http://svc

OPENSHIFT HANDS-ON ON AZURE57

Add Jaeger configuration to fruits-catalog

Create a configMap with the CLI

Edit ConfigMap (Actions > Edit Yaml) created and
set Jaeger host as :
 jaeger-agent.cockpit.svc.cluster.local

Click Add to Application
Now pod is redeploying

$ cd fruits-catalog
$ oc create configmap fruits-catalog-config --from-file=application.yml

OPENSHIFT HANDS-ON ON AZURE58

Add Jaeger host to fruits-inventory

$ oc set env dc/fruits-inventory JAEGER_HOST=jaeger-agent.cockpit.svc.cluster.local

A new deployment is created.

Get all fruits with their stock through the fruits-inventory API and jump to Jaeger to see
the detailed trace

$ curl `oc get route/fruits-catalog -o template --template={{.spec.host}}`/api/fruits -v

A Jaeger tracer is already set for all invocations in fruits-inventory.
We set the Jaeger host as environment variable

OPENSHIFT HANDS-ON ON AZURE59

Explore Distributed Traces with Jaeger

Go to Jaeger console via
https://bit.ly/2BKWuTN

Jaeger is deployed on Openshift in
an other project name cockpit .

https://bit.ly/2BKWuTN

OPENSHIFT HANDS-ON ON AZURE

Filter the right Jaeger trace
As we use a mutual Jaeger, you need to filter on your pod fruits-catalog hostname

$ oc get pods -l app=fruits-catalog
NAME READY STATUS RESTARTS AGE
fruits-catalog-4-4phqn 1/1 Running 0 40m

Following filter criterias are :

● Services : fruits-inventory
● Operation: /
● Tags: hostname=fruits-catalog-4-4phqn

Click on Find Traces

OPENSHIFT HANDS-ON ON AZURE

Explore the Jaeger trace

LAB 6

Getting application metrics

OPENSHIFT HANDS-ON ON AZURE63

● Update Prometheus configuration

● Add Prometheus datasource in Grafana

LAB 6: GETTING APPLICATION METRICS

OPENSHIFT HANDS-ON ON AZURE64

Prometheus monitoring

OpenShift now provides Prometheus templates for automated deployment. One instance is
available into a cockpit project. A Grafana instance on same project.

OPENSHIFT HANDS-ON ON AZURE65

Prometheus monitoring

For a quick run, we’ll use JMX Exporter Prometheus Agent that expose JMX metrics as Prometheus
endpoints. This is already configured into fruits-catalog thanks to actuator library.
A middleware Prometheus is added in fruits-inventory

OPENSHIFT HANDS-ON ON AZURE

Access to the pod terminal with oc rsh command

Check Prometheus metrics in deployed pods

$ oc rsh dc/fruits-catalog # Now logging in fruits-catalog pod
$ curl http://localhost:8080/actuator/prometheus
 … # TYPE jvm_buffer_total_capacity_bytes gauge
jvm_buffer_total_capacity_bytes{id="direct",} 82807.0
jvm_buffer_total_capacity_bytes{id="mapped",} 0.0
…

$ curl http://localhost:8080/actuator/metrics # display metrics available
{"names":["jvm.memory.max","jvm.threads.states","process.files.max",
"jvm.gc.memory.promoted" ...

http://localhost:8080/actuator/prometheus
http://localhost:8080/actuator/metrics

OPENSHIFT HANDS-ON ON AZURE

Go to Prometheus console : https://prometheus-cockpit.52.143.158.219.nip.io/ in the target menu

Nothing is sent by fruits-catalog and fruits-inventory Prometheus console !

Prometheus scraps by default /metrics endpoint on port 9900. Our 2 back-ends expose a different
Prometheus endpoint.

We need to annotate our application Kubernetes services to be discovered by Prometheus

Check Prometheus console now ...

$ oc annotate service/fruits-catalog prometheus.io/scrape=true

prometheus.io/path=/actuator/prometheus prometheus.io/port=8080

$ oc annotate service/fruits-inventory prometheus.io/scrape=true prometheus.io/port=8080

https://prometheus-cockpit.52.143.158.219.nip.io/

OPENSHIFT HANDS-ON ON AZURE

Grafana URL : https://grafana-cockpit.52.143.158.219.nip.io/

Click on New Dashboard and Import Dashboard

Copy and paste the following json:
https://raw.githubusercontent.com/lbroudoux/ocp-on-azure-workshop/master/grafana-d
ashboard-user0.json

Import Grafana Dashboard

https://grafana-cockpit.52.143.158.219.nip.io/
https://raw.githubusercontent.com/lbroudoux/ocp-on-azure-workshop/master/grafana-dashboard-user0.json
https://raw.githubusercontent.com/lbroudoux/ocp-on-azure-workshop/master/grafana-dashboard-user0.json

OPENSHIFT HANDS-ON ON AZURE

Change Dashboard name with your user ID

Import Grafana Dashboard

OPENSHIFT HANDS-ON ON AZURE70

Grafana Dashboard example

LAB 7

Azure Service Broker

OPENSHIFT TECHNICAL OVERVIEW72

Why a service broker ?

SERVICE
CONSUMER

SERVICE
PROVIDER

☑ Open ticket
☑ Wait for allocation
☑ Receive credentials
☑ Add to app
☑ Deploy app

Manual, Time-consuming and Inconsistent

OPENSHIFT TECHNICAL OVERVIEW73

A multi-vendor project to
standardize how services
are consumed on
cloud-native platforms
across service providers

OPENSHIFT TECHNICAL OVERVIEW74

What is a service broker ?

SERVICE
CONSUMER

SERVICE
PROVIDER

SERVICE
CATALOG

SERVICE
BROKER

Automated, Standard and Consistent

OPENSHIFT TECHNICAL OVERVIEW75

OpenShift service catalog

OPENSHIFT SERVICE CATALOG

OpenShift
Ansible
Broker

OpenShift
Template
Broker

AWS
Service
Broker

Other
Service
Brokers

ANSIBLE

OPENSHIFT

AWS

OTHER COMPATIBLE SERVICES

Ansible
Playbook
Bundles

OpenShift
Templates

AWS
Services

Other
Services

Azure

Service Broker

76

OPEN SERVICE BROKER AZURE

Supported services

● Azure Container Instances
● Azure CosmosDB
● Azure Database for MySQL
● Azure Database for PostgreSQL
● Azure Event Hubs
● Azure Key Vault
● Azure Redis Cache
● Azure SQL Database
● Azure Search
● Azure Service Bus
● Azure Storage

https://github.com/Azure/open-service-broker-azure

https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/aci.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/cosmosdb.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/mysql.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/postgresql.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/eventhubs.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/keyvault.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/rediscache.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/mssql.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/search.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/servicebus.md
https://github.com/Azure/open-service-broker-azure/blob/master/docs/modules/storage.md
https://github.com/Azure/open-service-broker-azure

OPENSHIFT HANDS-ON ON AZURE77

INVENTO
RY

CATALO
G

Grocery Store on OpenShift and Azure

Open Service Broker Azure

OpenShift

Azure

OPENSHIFT HANDS-ON ON AZURE

Create your production environment

Let’s go the Web Console

● Via the web console :
https://masterdnscbmvtdzhvuqye.francecentral.cloudapp.azure.com

○ Login with the same credentials
○ Create a Project with the following informations

■ Name : fruits-grocery-prod-userX
■ Display Name: UserX - Fruits Grocery - Prod

https://masterdnscbmvtdzhvuqye.francecentral.cloudapp.azure.com

79

Deploy a Redis Cache instance with Open Service Broker Azure

OPENSHIFT HANDS-ON ON AZURE

Deploy Redis Cache DB with OSBA
Complete the following settings

● Select a Plan
○ Basic Tier

● Configuration
○ location : eastus
○ resourceGroup : osba

● Bindings
○ Don’t bind to secrets. We will do it

Manually :)

OPENSHIFT HANDS-ON ON AZURE

Let’s go to the backstage
A Redis Cache instance has been provisioned in Azure through the Azure Service Broker

82

Deploy a Cosmo DB instance with OSBA

● defaultConsistencyLevel = Session
● allowedIPRanges = 0.0.0.0/0 . Then click Add and then click the X
● Location : eastus
● resourceGroup : osba

Binds:
● Add secrets bindings
● Service Broker will retrieve credentials CosmoDB instance from Azure

Deploy a Cosmo DB with OSBA

Complete the following settings

Configuration

Our two services provisioned !

Redis and CosmoDB are
provisioned asynchronously in
Azure via the Open Service
Broker.

You can consume both services
through OpenShift via the
binding mechanism.

*Due to OSBA implementation
Redis stays in Pending status.

LAB 8

Continuous delivery

OPENSHIFT HANDS-ON ON AZURE

● Prepare a Production environment

● Explore the deployment configurations

● Promote images to production

● Create an OpenShift Jenkins Pipeline

● Add a Webhook to run the pipeline on every code change

● Change some code and review

86

LAB 8: Automating Deployments Using Tags and
Pipelines

OPENSHIFT HANDS-ON ON AZURE87

Deployment pipeline

source
repository

CI/CD
engine

dev container

physical

virtual

private cloud

public cloud

OPENSHIFT HANDS-ON ON AZURE88

DEV INT QA PROD

Orchestrateur

Rolling Upgrades
Blue/Green Deployments

A/B Testing

Image build process

CI/CD with OpenShift

OPENSHIFT HANDS-ON ON AZURE89

● CI/CD workflow via Jenkins

● Pipelines are started, monitored,
and managed similar to other builds

● Auto-provisioning of Jenkins server

● On-demand Jenkins slaves

● Embedded Jenkinsfile or in Git repo

OpenShift Pipelines
pipeline {
 agent {
 label 'maven'
 }
 stages {
 stage('build app') {
 steps {
 git url: 'https://git/app.git'
 sh "mvn package"
 }
 }
 stage('build image') {
 steps {
 script {
 openshift.withCluster() {
 openshift.startBuild("...")
 }
 }
 }
 }
 }
}

OPENSHIFT HANDS-ON ON AZURE

Create Redis Cache secrets
● Go back to the spreadsheet : https://bit.ly/2TWsI5D

● Update REDIS_HOST and REDIS_PASSWORD environment variables from
prepare_prod.sh file with the values from the spreadsheet

$ vi /home/userX/prepare-prod.sh

https://bit.ly/2TWsI5D

OPENSHIFT HANDS-ON ON AZURE91

Prepare a Production environment

A wrap-up script has been prepared for you. It will contains all resources created previously in the
Development project.

$./prepare-prod.sh

OPENSHIFT HANDS-ON ON AZURE92

Explore the deployment configurations

From overview on web console,
check the deployment
configuration All deployment are
cancelled.

OPENSHIFT HANDS-ON ON AZURE93

Explore the deployment configurations

Clicking on a deployment
configuration, you should see that
there’s no automatic trigger
defined for deployment.

You shall also notice that the
image used for deployment is
coming from your development
project !

OPENSHIFT HANDS-ON ON AZURE94

Explore the deployment configurations

Access detailed configuration by
choosing Edit in Actions menu.

Check that the image referenced
into your dev project has the
:promoteToProd tag.

Because this tag does not exists,
deployment will fail !

OPENSHIFT HANDS-ON ON AZURE95

Promote images to production

$. /home/userX/deploy-prod.sh

Tag fruits-grocery-dev-user0/fruits-catalog:promoteToProd set to
fruits-grocery-dev-user0/fruits-catalog@sha256:5eeb089a5df9aa55b4e80c581014a674c1e2f7e902c92a3f5c48e0df4155e95
7.
Tag fruits-grocery-dev-user0/fruits-inventory:promoteToProd set to
fruits-grocery-dev-user0/fruits-inventory@sha256:29a17627c330a5568f6a956ffddc5f7c3e17ab4839e22085899b7eb0328
9705a.
deploymentconfig "fruits-catalog" rolled out
deploymentconfig "fruits-inventory" rolled out

The wrap-up script can be used again here through a new command. The command will tag all
images from development streams and rollout all the deployments.

OPENSHIFT HANDS-ON ON AZURE96

Promote images to production

Check deployment are successful !

But wait … we have also created a
pipeline. Just go to your
development project.

OPENSHIFT HANDS-ON ON AZURE97

Create an OpenShift Jenkins Pipeline

In your development project within
the Builds section, Pipelines
subsection, check that
inventory-service-pipeline has
been created.

Triggers with webhooks provide a
full developer experience to
automate its deployment from a
local env to production
environment

OPENSHIFT HANDS-ON ON AZURE

Check Jenkins pipeline job logs via the Jenkins console. Click on “View Log”

Start your Jenkins pipeline
We deploy the fruits-inventory application from Dev to Prod with complex tests ...

CONTAINERS & CLOUD-NATIVE ROADSHOW99

CONGRATULATIONS !

YOU’RE A CLOUD-NATIVE APPS

DEVELOPER.

OPENSHIFT HANDS-ON @ Société Générale100

LEARN.OPENSHIFT.COM

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

