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Wireless Local Area Networks (WLANs) are now commonplace on many academic and cor-
porate campuses. As ‘‘Wi-Fi” technology becomes ubiquitous, it is increasingly important
to understand trends in the usage of these networks. This paper analyzes an extensive net-
work trace from a mature 802.11 WLAN, including more than 550 access points and 7000
users over seventeen weeks. We employ several measurement techniques, including syslog
messages, telephone records, SNMP polling and tcpdump packet captures. This is the larg-
est WLAN study to date, and the first to look at a mature WLAN. We compare this trace to a
trace taken after the network’s initial deployment two years prior.

We found that the applications used on the WLAN changed dramatically, with significant
increases in peer-to-peer and streaming multimedia traffic. Despite the introduction of a
Voice over IP (VoIP) system that includes wireless handsets, our study indicates that VoIP
has been used little on the wireless network thus far, and most VoIP calls are made on the
wired network.

We saw greater heterogeneity in the types of clients used, with more embedded wireless
devices such as PDAs and mobile VoIP clients. We define a new metric for mobility, the
‘‘session diameter”. We use this metric to show that embedded devices have different
mobility characteristics than laptops, and travel further and roam to more access points.
Overall, users were surprisingly non-mobile, with half remaining close to home about
98% of the time.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Wireless Local Area Networks (WLANs) have become
commonplace, especially on university and corporate cam-
puses, and increasingly in public ‘‘Wi-Fi hotspots” as well.
Most modern laptops are equipped with an IEEE 802.11
wireless network adapter, but wireless devices are rapidly
diversifying to include PDAs, printers, audio players, and
more. These new devices lead to changes in the way that
. All rights reserved.
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WLANs are used. For instance, we might expect a wireless
PDA to have different usage patterns than a wireless prin-
ter; a PDA might be more mobile as its user traverses a
WLAN-enabled campus, whereas the printer may remain
in one place to serve wireless clients.

The growing popularity of WLANs encourages the devel-
opment of new applications, which may also exhibit new
usage characteristics. Real-time multimedia applications,
for example, have quality-of-service (QoS) requirements
that may be difficult to fulfill in a shared-medium WLAN.
Some of these new applications and devices may emerge
simultaneously; for instance many wireless PDAs are
equipped with streaming audio or video software. Under-
standing the usage, and trends in usage, of these new de-
vices and applications is important for providers who
deploy and manage WLANs, for designers who develop
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1 We assume that these cards represent dual-boot laptops. They could be
cards that have been inserted in different machines. This distinction,
however, does not affect our analysis.
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new high-throughput and multimedia-friendly wireless
networking standards, and for software developers who
create new wireless and location-aware applications.

In this paper, we study a large trace of network activity
in a mature production wireless LAN. At the time, Dart-
mouthCollege had 802.11b coverage for three years in
and around nearly every building on campus. We collected
extensive traces from the entire network throughout the
Fall and Winter terms of 2003/2004.

Our study extends previous work in two ways. First, this
is the largest study to date, with over 7000 unique wireless
cards observed over 17 weeks. Second, we examine trends
in behavior of a mature WLAN, and examine geographic
mobility within a large WLAN. We compare this 2003/
2004 trace to our earlier trace from Fall 2001, taken shortly
after the initial installation of our campus WLAN. We
found that the workload had changed significantly since
2001, and was significantly different than in other previous
studies. We saw new embedded wireless devices, and new
applications such as peer-to-peer file sharing and stream-
ing multimedia.

The main difference between this paper and the original
MobiCom conference version of this paper [12] is the addi-
tional data analysis in this version. In particular, we extend
our analysis of application usage by considering usage at
home and non-home locations in Section 6. We have also
improved our method for detecting peer-to-peer file shar-
ing applications, which has led to different results in Sec-
tion 5.

We next describe the environment of our study, and
then detail our methodology in Section 3. In Section 4,
we compare the most interesting characteristics of the
data to those taken from an earlier study. Section 5 exam-
ines three particular applications in detail: peer-to-peer
file sharing, streaming media, and voice over IP. In Section
6, we analyze some of the mobility characteristics of the
new devices and applications that we observed. Section 7
discusses related work, and Section 8 draws conclusions
and lists recommendations for WLAN developers and
deployers.

2. The test environment

The Dartmouth College campus has over 190 buildings
on 200 acres. In 2001, Dartmouth installed 476 Cisco
802.11b access points (APs) to cover most of the campus.
Since then, APs have been added to increase coverage
and to cover new construction, and at the time of this
study, there were 566 APs. The compact nature of the cam-
pus means that the range of indoor APs covers most out-
door areas.

All APs share the same SSID, allowing wireless clients to
roam seamlessly between APs. On the other hand, a build-
ing’s APs are connected to the building’s existing subnet.
The 188 buildings with wireless coverage span 115 sub-
nets, so roaming clients may be forced to obtain new IP ad-
dresses. (During our study, Dartmouth began to move its
WLAN to a small set of separate VLANs, reducing the num-
ber of subnets.)

Dartmouth College has about 5500 students and 1200
faculty, and during our study there were approximately
3300 undergraduates on campus. Students are required
to own a computer, and most purchase a computer
through the campus computer store. Wireless laptops
increasingly dominate those purchases, making up 45% of
the total in 2000, 70% in 2001, 88% in 2002, and 97% in
2003. Assuming that students obtaining computers else-
where choose laptops in the same proportion, we estimate
that over 75% of the undergraduates owned laptops at the
time of our study. In 2008, at the time of this writing, the
number is close to 100%.

2.1. Voice over IP

In the summer of 2003 Dartmouth began to migrate its
telephone system from a traditional analog Private Branch
Exchange (PBX) to a Voice over IP (VoIP) system. A new Cis-
co VoIP system included a ‘‘CallManager” call processing
server, which served to connect callers and callees, and
bridge to the PBX and the local telephone company. A sec-
ond, independent VoIP system by Vocera [28] served wear-
able voice-controlled Wi-Fi badges; its server connected
Vocera callers to other Vocera users, and bridged to the
PBX, CallManager, and telephone company. Note that only
our internal telephone network has migrated to IP; all off-
campus calls route to the telephone company and beyond,
and these other telephony providers may not use VoIP.

The VoIP roll-out was still underway during this study.
At the time of our study only approximately 500 licenses
(for Cisco’s SoftPhone) had been issued. Vocera devices
were available for rent at subsidized rates. Wired and wire-
less Cisco VoIP phones were also available, along with a
VoIP client for wireless PocketPCs.

2.2. Client devices

Since most students own laptops, we expected most of
the devices on our WLAN to be Windows or Macintosh lap-
tops. As the WLAN has matured and a larger variety of cli-
ent devices has become available, however, we also
expected to see more non-laptop devices on the network.

To determine the types of devices in use, we used the
OS fingerprinting tool p0f [21] on our tcpdump traces
(see Section 3 for details of our collection infrastructure)
to identify the operating systems used by a given device.
p0f uses differences in TCP/IP stacks and implementation
flaws (e.g., timestamp values, initial window sizes, ACK
values and TCP options), to derive an OS signature by scan-
ning packet traces, much as nmap [9] and TBIT [22] do. We
chose p0f for its extensive list of OS signatures.

For each card (MAC address) seen in our syslog and
SNMP traces, we ran p0f on all of its TCP flows recorded
by our sniffers. If all guesses for a card were the same OS
(ignoring version numbers), then we assigned that OS to
the card. If all guesses could run on the same CPU (e.g., Li-
nux and Windows both run on x86), then we assumed that
card was a dual-boot machine.1 We left the card as
‘‘unidentified” if p0f guessed OSes that ran on different CPUs,
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such as MacOS and Windows; these cards may have been
used in multiple devices, or been in a host emulating an-
other OS.

For cards that p0f could not identify, we looked at the
OUI (Organizationally Unique Identifier) of the MAC ad-
dress. We classified the card appropriate to the OUI if it
matched an ‘‘unambiguous” vendor, i.e., one that does
not sell standalone 802.11 cards that could be inserted into
multiple devices. For example, Vocera is an unambiguous
vendor, because the only devices with a Vocera OUI are
the Vocera badges.

Table 1 shows that, unsurprisingly, Windows machines
were most common, representing over 64% of the 5666
identified cards (the unknown entries include cards that
we did not see on our sniffers, or for which we obtained
conflicting guesses). We also saw a large number of MacOS
machines: 32% of our identifiable clients. Linux users made
up a tiny proportion of our population. There were approx-
imately 150 wireless PDAs and VoIP devices.

3. Trace collection

In this paper, we focus on data collected during the Fall
2003 and Winter 2004 terms, a 17-week period from 2
November 2003 to 28 February 2004, inclusive. We used
four techniques to trace WLAN usage: syslog events, SNMP
polls, network sniffers, and VoIP records.

3.1. Syslog

The APs were configured to send syslog messages to a
central server whenever clients authenticated, associated,
roamed, disassociated or deauthenticated. We have been
continuously collecting syslog messages since the installa-
tion of our WLAN in 2001. Unfortunately we have three
holes in our syslog data due to server failures. Two holes
are just under 4 h long, and the third is 43 h long.

3.2. SNMP

We used the Simple Network Management Protocol
(SNMP) to poll each AP every 5 min, querying AP and cli-
ent-specific counters. AP-specific variables included in/
outbound bytes, packets and errors. Client-specific vari-
ables included MAC and IP addresses, and signal strength.
Table 1
Devices seen on the wireless network

Guessed OS/device Number of MAC addresses

Windows 3627 50.8%
MacOS 1838 25.8%
Unidentified 1468 20.6%
Vocera 70 0.98%
PalmOS 41 0.57%
Cisco 7920 VoIP phone 27 0.38%
Linux 27 0.38%
Dualboot Windows/Linux 24 0.34%
PocketPC 11 0.15%
Dualboot MacOS/Linux 1 0.0014%

Total 7134 100.0%
We have two SNMP holes: one week over the Christmas
break, when we disabled our polls to aid network mainte-
nance, and one day in February, where network problems
caused many polls to fail (we ignore this day in our
analysis).

3.3. Ethernet sniffers

We used network ‘‘sniffers” to obtain detailed network-
level traces. Due to the volume of traffic on the WLAN, it
was impractical to capture all the traffic. Moreover, the
network topology, with several subnets, meant that there
was no convenient central point for capturing wireless
traffic. Instead, we installed 18 sniffers in 14 different
buildings; in some large buildings, we needed multiple
sniffers to monitor all of the building’s APs. The buildings
were among the most popular wireless locations in 2001,
and included libraries, dormitories, academic departments
and social areas. In total, the sniffers covered 121 APs.

Each sniffer was a Linux box with two Ethernet inter-
faces. One interface was used for remote access and to ob-
tain the data for analysis. The other interface was used for
collecting (‘‘sniffing”) data. In each of the 18 switchrooms
we attached the APs to a switch, and set another port on
the switch to ‘‘mirror” all of the traffic on that switch.
The sniffer’s second interface was attached to this mirrored
port. We used tcpdump to capture the first 200 bytes of
any Ethernet frame that came through these APs and their
wired interfaces. We missed any traffic between two cli-
ents associated with the same AP, as this would not be sent
via the AP’s wired interface, but we believe this was rare.
We logged the standard error messages from tcpdump
and do not believe that tcpdump dropped any frames.
We did observe some errors, however, as discussed in Sec-
tion 4.2.

3.4. VoIP CDR data

To record usage of our VoIP system, we configured the
Call Manager server to export the details of every VoIP call.
These Call Detail Records (CDR) include the time and dura-
tion of the call, the caller’s, callee’s and final numbers (the
latter represents the final reached number, e.g., if a call is
diverted to voice-mail), caller and/or callee IP addresses,
and reasons for call termination (e.g., a normal hang-up
or a diverted call). We have a nine-day hole at the start
of our trace due to delays in configuring the Call Manager.
We lack Vocera server logs, so we have no record of Vocera
calls, unless they involve a Cisco device and were logged by
the Call Manager.

For comparison, we also look at CDR data from our ana-
log PBX system. These data do not include on-campus calls,
as these internal calls are not billed for and are thus not
logged.

3.5. Definitions

One of our goals is to understand user behavior. We
imagine ‘‘sessions” where a user joins the network, uses
the network, possibly roams to other APs, and disconnects.
We use the following definitions:
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Card: A wireless NIC, identified by MAC address.2

Session: A session consists of an associate event, fol-
lowed by zero or more roam events, and ends with a
disassociate or deauthenticate event, or at the begin-
ning of one of the holes mentioned in Section 3.1.
Active card: A card that is involved in a session, during a
given time period or at a given place.
Active AP: An AP with which one or more cards are asso-
ciated, during a given time period.
Roam: A card switches APs within a session. Associate
or Reassociate messages occurring within 30 s after
any previous event for that card are considered roams
rather than the start of a new session. (Some cards only
ever associate. It is hard to identify which of these Asso-
ciate messages represent a new ‘‘session”, and which
are roams within the current session. In a preliminary
analysis of the data we found that 30 s was an appropri-
ate, though approximate, cut-off time to separate reas-
sociations from new sessions.)
Roaming session: A session containing roams.
Roamer card: A card involved in one or more roaming
sessions.

We use card-oriented definitions of ‘‘in” and ‘‘out”
[15,27]:

Inbound: Traffic sent by the AP to the card. 3

Outbound: Traffic sent by the card to the AP.

3.6. Defining mobility

We are interested in user mobility; how often, and how
far, a user moves during a session. We cannot directly mea-
sure physical mobility; we must infer it from roaming pat-
terns. Unfortunately, roaming does not imply physical
motion; we often saw cards ‘ping-pong’, associating and
reassociating with several APs many times in succession.
Although Kotz and Essien [15] define a ‘‘mobile session”
as one where a card visits APs in more than one building,
we found that stationary cards may ping-pong between
APs located in different buildings.

We define a mobile session to be one whose diameter is
larger than a minimum size D. The diameter of a session is
the maximum horizontal distance between any two APs
visited during the session.4 We used a map of the campus
to determine the position of each AP.5 Note that we consider
2 Our WLAN had no MAC- or IP-layer authentication. Any card can
associate with any AP, and obtain an IP address via DHCP. Thus we cannot
identify any of the clients in our traces. We have chosen to equate a MAC
address with a single user. Although some users may have multiple cards,
or some cards may be shared by multiple users, we believe that this is a
good approximation.

3 If a sniffer sees a frame with a wireless source and destination, we
counted it as ‘‘inbound,” rather than double-counting it as inbound and
outbound. In the SNMP data, we believe the AP counted such traffic twice.
In practice, such frames were rare.

4 We ignore the APs’ altitude; our campus is relatively flat.
5 Some APs were located off the map, e.g., off-campus student housing.

We ignored the few (5%) sessions that visit these APs when calculating
mobility.
all pairs of APs, not simply the first and last AP, because a
session may wander far, only to loop back to the start by
the end of the session. We cannot only consider the distance
of each roam in the session, since a user may walk across
campus, making short hops from AP to AP. Nor do we con-
sider the sum of the distances of each roam in the session,
because a stationary user can ping-pong between nearby
APs many times. Fig. 1 shows a session where a user starts
at a, visits b and c, and ends the session associated to d. Even
if ab, bc, cd and da are all shorter than D, this session is mo-
bile if ac or bd are longer than D. Intuitively, the session
diameter indicates the size of the area in which the user
traveled during that session. We refer to a card that is in-
volved in a mobile session over a given time period as a mo-
bile card.

The specifications for our APs state that indoor and out-
door range at 11 Mbps is 39.6 m and 244 m, respectively.
Most APs are located indoors, although they may cover
outdoor areas, so an appropriate D would be slightly great-
er than the indoor range. Moreover, AP range can vary, gi-
ven obstacles and mobile users or other sources of
interference. We studied data from clients that we knew
to be non-mobile, and chose D ¼ 50 m.

4. Changes

Our data collection resulted in an extremely large data-
set, and it is impossible to present all of the interesting
characteristics in this paper. Over the 17 weeks of our trace
we saw 7134 unique cards (Table 2). We received
32,742,757 syslog messages, conducted 16,868,747 SNMP
polls and sniffed 4.6 TB of traffic.

In this section, we present some general aspects of our
dataset and compare this to our Fall 2001 trace. For each
figure or table, we identify the source as one or more of
[syslog], [SNMP], [tcpdump] or [CDR]. We classify APs by
the type of building in which they are located: 221 residen-
tial, 147 academic, 72 administrative, 59 library, 45 social
and 22 athletic. Residences include dormitories, fraterni-
ties, and faculty housing. Social buildings include dining
areas, an arts center and a museum. Athletic facilities in-
c

ab

a

START

ac

da

bc

b

cd
bd

Fig. 1. A mobile session’s maximum inter-AP distance (‘‘session diame-
ter”) exceeds a threshold D.



Table 2
Overall client observations

Total cards 7134
Peak simultaneous cards 2146
Peak simultaneous cards on an AP 91
Peak simultaneous cards in a building 193
Peak simultaneous active APs 429
Peak simultaneous active buildings 145
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clude skating rinks, football fields, boathouses and a ski
lodge.

4.1. Clients

We are interested in understanding changes in the
number of users on our WLAN. Has the population grown?
Have usage patterns changed? Where do users visit?

The user population increased. Fig. 2 shows the number
of unique cards that have associated with an AP on our
WLAN each week, since the installation of the network in
April 2001. As each new incoming class of students arrives
equipped with wireless laptops, and the outgoing non-
wireless classes leave, the number of clients has grown
steadily. The short dips represent Christmas and Spring
breaks, while the longer dips are summer terms, when
fewer students were on campus.

Fig. 3 shows our two trace periods in further detail. The
late November dip in Fig. 3.1 indicates Thanksgiving, and
the dip in late December indicates Christmas, when most
students and faculty were not on campus. We can again
see that the population has increased dramatically. In
2001, the WLAN was still new, and consequently, the pop-
ulation grew over time, from around 800 cards per day to
1000 cards by December 2001. In the 2003/2004 trace,
we saw 3000–3500 cards every weekday. There were
slightly fewer cards in the Winter term (January–February
2004), which may reflect the smaller student population
that term. In both traces, about half of the population
was active on a given day.
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Fig. 2. [syslog] Number of active cards per week. Note that this graph is derive
most of this paper we only discuss two traces from Fall 2001 and 2003/2004. T
Roaming increased. The proportion of mobile and roam-
ing cards (Fig. 3) increased from approximately one-third
in 2001, to one-half of the cards in 2003/2004. This plot
also shows that most cards that roamed were also involved
in a mobile session, that is, at least one session that day
had diameter over 50 m.

Usage remained diurnal. As might be expected from an
academic campus where most students and some staff live
on campus, we see diurnal usage patterns in Fig. 4, but
usage does not drop to zero during the night. These diurnal
patterns have not changed significantly: we see usage
peaking in the afternoon, and usage dropping from mid-
night to 0600. The proportion of cards that remain active
overnight has risen, most likely due to devices left on
overnight.

The proportion of heavy users remained static. Fig. 5
shows the distribution of the average time spent per day
by a card on the network. This distribution is almost linear.
Surprisingly, the distribution hardly changed between
2001 and 2003/2004. This is confirmed by looking at a
quantile–quantile plot (Fig. 6). Although our user popula-
tion grew significantly, the proportion of heavy users
(those who spend a long time on the network each day) re-
mained constant. Similarly, the distribution of the average
number of active days per week per card shows little
change (Fig. 7).

AP utilization increased. In Fig. 8, we examine the num-
ber of APs that see a user association each day. Our net-
work has grown from 476 APs in 2001 to 566 APs in
2003/2004 (Fig. 8.2 includes data from only 430 APs that
reported syslog records). The average percentage of active
APs has risen from 66.4% to 76.4%, despite the quiet Christ-
mas break in our 2003/2004 trace. Interestingly, the num-
ber of active APs during the Christmas break does not
decrease by the same proportion as the number of active
cards (Fig. 3.1). Many of the cards that we see during the
break may have been devices that are always left turned
on, and it appears that these are widely distributed across
campus. The fact that the proportion of active APs has
t02 Feb03 Jun03 Sep03 Jan04 May04

Date

2003/4
trace

d from ongoing continuous data monitoring from April 2001, whereas in
he vertical grid lines indicate our two trace periods.
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increased may indicate that the 136 new APs have been
added to locations that not only lacked coverage, but loca-
tions where potential wireless users existed. Despite the
increase in APs, there was a larger increase in the popula-
tion of wireless users; thus, we saw a rise in the density of
users on each AP: Fig. 9 shows the average cards per AP in
our two traces. It can be seen that the number of clients on
each AP has increased markedly, and peak density in our
2001 trace is comparable to the off-peak (vacation) density
in 2003/2004.

The busiest types of building remained the same. Fig. 10
illustrates the most popular locations on campus. The AP
and building names have been sanitized with a name that
indicates the type of that building, e.g., ‘‘ResBldg1” is a



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

Fall 2001 (hours)

F
al

l/W
in

te
r 

20
03

/4
 (

ho
ur

s)

0 12 15 18 21 24

0
12

15
18

21
24

3 6 9

3
6

9

Fig. 6. Quantile–quantile plot, average time per day per user.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

Days

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

1 2 3 4 5 6 7

Days

Fig. 7. [syslog] Average active days per week per user, distribution across users.

0

 100

 200

 300

 400

 500

Nov 02 Nov 16 Nov 30 Dec 14 Dec 28 Jan 11 Jan 25 Feb 08 Feb 22
0

 25

 50

 75

 100

A
ct

iv
e 

A
P

s 
(t

ot
al

 n
um

be
r 

of
 A

P
s 

=
 5

66
)

P
er

ce
nt

ag
e 

of
 to

ta
l A

P
s

Date (every other Sunday labeled)

0

 50

 100

 150

 200

 250

 300

 350

 400

Sep 30 Oct 14 Oct 28 Nov 11 Nov 25 Dec 09
0

 25

 50

 75

 100

A
ct

iv
e 

A
P

s 
(t

ot
al

 n
um

be
r 

of
 A

P
s 

=
 4

30
)

P
er

ce
nt

ag
e 

of
 to

ta
l A

P
s

Date (every other Sunday labeled)

Fig. 8. [syslog] Number of active APs per day. The y-axis range is from 0 to the total number of APs.
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residential building. We see that academic buildings and li-
braries continued to see the largest number of cards. This is
not surprising, given that these are communal areas visited
by many, if not most, students. The peak population was
much larger in 2003/2004, due to the larger population
of wireless cards.
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4.2. Traffic

In this section, we look at traffic changes on our WLAN.
Overall traffic increased. Unsurprisingly, given the in-

creased population, we saw an increase in the daily
amount of traffic, with peaks of over 400 GB in 2003/
2004, compared to 150–250 GB in 2001 (Fig. 11). Nonethe-
less, the average daily traffic per active card rose from
27.0 MB in 2001 to 71.2 MB in 2003/2004. Today’s wireless
users are far more active on the network than before.
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We now consider the applications used on the WLAN.
To identify applications, we categorize each TCP and UDP
packet by source–destination flow-pair. We then compare
the TCP or UDP port number to a customized ‘‘services” file,
based on the official IANA list, but with several changes to
include well-known applications that lack assigned num-
bers, such as games, peer-to-peer (P2P) applications and
malware.

To identify Cisco VoIP traffic, which uses randomly-
assigned port numbers, we identify and parse SCCP
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of its tick-mark. Gaps in the plot represent holes in our data.



Table 3
Classification of applications

Category Applications

Bulk FTP, backup
Database Oracle, PostgreSQL, SQLnet
Interactive IRC, AIM, iChat, klogin, rlogin, ssh, telnet
Mail POP, SMTP, IMAP, NNTP, BlitzMail
P2P DirectConnect, Gnutella, Kazaa, BitTorrent, eDonkey,

Napster
Services X11, DNS, finger, ident, DND, Kerberos, LDAP, NTP, printer,

BOOTP, Rendezvous/ZeroConfig, BGP, portmapper, Service
Location

filesystem SMB/CIFS, NetBIOS, AppleShare, NFS, AFS
Streaming RealAudio, QuickTime, ShoutCast, RTSP, Windows Media
VoIP Cisco CallManager, SCCP, SIP, Vocera
WWW HTTP, HTTPS
Other All named ports that do not fit into the above categories
Unknown All unnamed and unidentified ports
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call-setup packets directed to and from the Call Manager
servers to determine addresses and ports for each call.
We classify all UDP traffic within the Vocera port range
of 5300–5400 sent to and from the central Vocera server
as Vocera VoIP.

Classifying applications by port number is insufficient,
since applications may use randomly-assigned port num-
bers, or applications may masquerade behind different
port numbers (e.g., a P2P application may operate on port
80). In the earlier version of this paper we observed a large
amount of P2P traffic. Thus we chose to explicitly look fur-
ther for specific P2P applications. Since we captured the
first 200 bytes of each packet, this includes some TCP or
UDP payload. We parse this payload to look for packets
belonging to four popular P2P applications: BitTorrent,
DirectConnect, Gnutella and Kazaa. To save processing
time, we only examine the first 10 packets of each TCP or
UDP flow-pair. If a flow-pair cannot be identified as a P2P
application in the first ten packets in either direction, we
use the services file to identify the flow-pair by port num-
ber. If we are unable to identify the flow-pair, we consider
it ‘‘unknown”.

We further filter our flow-pairs by ignoring any TCP
flow that does not contain at least one ACK segment. In
an earlier analysis of this dataset [12], we observed a sur-
prising level of filesystem traffic. We suspected that a large
proportion of this traffic comes from worms such as Wel-
chia or Nachi, which conduct scans on the Windows file
sharing ports. We do not consider these scans to be filesys-
tem traffic, and so by removing unacknowledged TCP SYN
segments, we ignore these scans in this study. In practice
these unacknowledged flows did not account for much of
the total filesystem traffic in 2003/2004: 1.5% by byte-
count, and 3.0% by packetcount (the 2001 figures are
8.2% and 20.6%, but these numbers are inflated as ex-
plained below).

In ignoring these TCP flows without any ACK segments,
we discovered an anomaly in our 2001 dataset. We discov-
ered a large number of TCP flows containing no ACKs.
Many of these flows were long-lived and included many
hundreds of megabytes of data, and the destination MAC
address was often set to 00:00:00:00:00:00. We suspect
that a malfunctioning switch, upstream of one of our snif-
fers, was flooding all its interfaces with these frames. We
have removed all of these unacknowledged flows, which
accounted for 70.2% of the 2001 traffic by bytecount
(76.1% by packetcount). 0.2% of the 2003/2004 data were
unacknowledged flows by bytecount (0.6% by
packetcount).

The port numbers that we saw represented thousands
of applications. To summarize the traffic, we grouped the
applications by type. We based our groupings on the SLAC
monitoring project [17], but with changes to reflect some
of the most popular applications on campus (Table 3).
Two applications are Dartmouth-specific: DND (Dart-
mouth Name Directory) is a directory service, and BlitzMail
is a popular e-mail and news client.

For those comparing this paper to our earlier study [15],
note that this application classification differs from the
more specific view of the data presented there. Further-
more, please note that the flow-analysis method used in
this paper means that our results differ from the MobiCom
version of this study [12].

The applications used on the network changed signifi-
cantly. Fig. 12 shows the total amount of traffic observed
to (inbound) and from (outbound) hosts on the WLAN.
Note that both plots show only the traffic observed at
our sniffers, which covered 121 out of 566 APs in 2003/
2004, and 22 out of 476 APs in 2001. Also note that
Fig. 12.2 does not contain a bar for VoIP, since this dataset
predates the installation of the VoIP system. The propor-
tion of web traffic (marked www) decreased significantly,
from 54.3% of the traffic in 2001, to 18.8% in 2003/2004.
Of particular interest are the increases in P2P file sharing
(from 4.1% in 2001 to 37.6% in 2003/2004), filesystem traf-
fic (from 6.4% to 14.4%) and streaming audio/video (from
1.0% to 3.0%). 0.1% (5.16 GB) of the total traffic was VoIP.

Traffic destinations remained the same. Fig. 13 shows the
proportion of near (on-campus) traffic to far (off-campus)
traffic. In 2001, on-campus traffic made up 74.2% of the to-
tal wireless traffic. In 2003/2004 this situation remained
similar, with on-campus traffic comprising 66.9% of the
traffic. Note that in a previous version of this paper [12],
we stated that off-campus traffic exceeded on-campus
traffic in our 2001 trace. We now believe this to be incor-
rect, having removed the unacknowledged flows as men-
tioned above.

Residences and libraries continued to generate the most
traffic. Fig. 14 shows the average daily traffic levels on each
AP. It can be seen that the increase in traffic was not due to
additional wireless coverage; as increased user population
and traffic per user increased, the traffic per AP increased.
We also see that residential and library buildings remained
the most active. Libraries have become increasingly popu-
lar, whereas in 2001 residences saw more traffic. The
ordering of the less popular categories changed, but the
majority of wireless network traffic continued to occur in
residential, academic and library buildings.

Fig. 15 shows the maximum amount of traffic seen at an
AP over the course of our trace. Per AP traffic levels have
risen considerably. The busiest AP in 2001 saw 17.7 GB in
one day, whereas in 2003/2004 the busiest AP saw
120.4 GB. We again see that libraries have become more
popular; while residences still make up most of the busiest
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APs, the three busiest APs in 2003/2004 are located in a li-
brary. One of these library APs saw almost only outbound
traffic on one of its busiest days; we are unclear as to the
reasons for this result.

5. Specific applications

In Section 4, we note significant increases in the amount
of peer-to-peer and streaming multimedia traffic. In this
section we analyze these applications in more detail. We
begin with a look at VoIP usage.

5.1. VoIP

Our VoIP usage data came from CDR records, which in-
cluded data for both wired and wireless users. Since a Soft-
Phone user could be wired or wireless, depending on the
user’s network connection at the time of the call, we used
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Table 4
VoIP devices

Device Count

Wired Cisco VoIP telephone 80
Wireless Cisco VoIP telephone 20
Cisco SoftPhone 86
Telesym PocketPC SoftPhone 6
Vocera VoIP badge 70

Total 262
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our SNMP data to determine whether a given call was
made on the WLAN. If either IP address in a record was
seen in an SNMP poll during the period of the call, we con-
sider the call to be wireless.

Table 4 lists the number of devices that made a call dur-
ing our trace period. Some devices, while active on the net-
work, made no calls at all during the trace period, and so
there are discrepancies with Table 1.

VoIP usage mirrors general network usage. Fig. 16 shows
the number of calls made each day over our monitoring
period. We again see two dips for Thanksgiving and Christ-
mas break. VoIP usage shows diurnal patterns (Fig. 17), and
these are similar to those for overall WLAN usage (Fig. 4).

VoIP population was static. The number of regular VoIP
users shows little growth over the course of our trace (fig-
ure omitted for brevity). We again had two dips for
Thanksgiving and Christmas break. The total number of
calls made each day also showed similar static levels.

VoIP users made short calls. We found that the median
call duration was 41 s (Fig. 18). For calls from wired de-
vices, the median duration was 42 s, whereas for wireless
devices, the median duration was 31 s. A Kolmogorov–
Smirnov test indicates that the difference in distributions
is insignificant; VoIP calls tended to be short.

The VoIP calls are much shorter than the non-VoIP calls
from our analog PBX. The median duration of the off-cam-
pus VoIP calls6 was 63 s, whereas the median duration for
off-campus non-VoIP calls was 103 s. A K–S test indicates
that non-VoIP calls are significantly longer. It is not clear
6 Our non-VoIP data only include off-campus calls.
why VoIP calls, both wired and wireless, would be shorter
than PBX phone calls; the PBX population is much larger
and more diverse. We hope to collect more VoIP data once
the bulk of the PBX population shifts to VoIP and then we
can examine this issue more deeply.

Wireless users made fewer calls. During our trace, wired
devices tended to make more calls than wireless devices
(Fig. 19). Many wireless devices were only used once or
twice, or not at all. Unfortunately, we lack QoS data, but
this low usage may be due to the difficulty of delivering
VoIP in 802.11b networks.

VoIP calls were long-distance. Just over half of our VoIP
calls, both wired and wireless, were made to long-distance
destinations (Table 5). Campus and local calls were the
next most popular destinations. This skew may be due to
a recent decision by our network administrators to make
all domestic calls free to the end-user. We also saw a high
proportion of long-distance traffic in the non-VoIP calls,
with 72.5% of off-campus non-VoIP calls made to long-dis-
tance destinations (the corresponding figure for VoIP calls
was 75.6%).

5.2. Peer-to-peer applications

Peer-to-peer (P2P) traffic increased from 4.1% of the to-
tal traffic in 2001 to 37.6% in 2003/2004. The absolute in-
crease was from 5.2 GB to 1723.6 GB, although we had
fewer sniffers installed for our 2001 trace. In this section,
we analyze the P2P file sharing that we observed on our
WLAN. Note that we only consider the applications listed
as ‘‘P2P” in Table 3, and not filesystems such as SMB/CIFS.

Wireless P2P users both downloaded and uploaded files.
Fig. 20 shows that by far the most popular P2P application
on our WLAN was ‘‘DirectConnect”. This P2P application
differs from many others in that it enforces sharing: to con-
nect to a DirectConnect ‘‘hub”, a client has to be willing to
offer a hub-specific amount of files to share with other
users. Thus we did not see the general free-riding behavior
seen in other P2P populations, where most users download
files and only a few users share and upload [1]. Surpris-
ingly, with another P2P application, Kazaa, which does
not enforce sharing, we saw more outbound than inbound
traffic. The reasons for this result are unclear, but it may be
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Table 5
VoIP calls, by destination

Destination Total Wired Wireless

Campus 2385 (17.6%) 2122 (16.9%) 263 (26.4%)
Local 1574 (11.6%) 1461 (11.6%) 113 (11.3%)
Regional 844 (6.2%) 759 (6.0%) 85 (8.5%)
Long-distance 7515 (55.4%) 7003 (55.7%) 512 (51.3%)
Non-geographic (411, 911) 7 (0.1%) 7 (0.1%) 0 (0.0%)
Voice-mail 1242 (9.2%) 1217 (9.7%) 25 (2.5%)

Total 13,567 (100.0%) 12,569 (100.0%) 998 (100.0%)
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Fig. 20. [tcpdump] Total P2P traffic (GB), by application. Napster and eDonkey were non-zero but negligible.
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the presence of a packet shaper on our border router. This
packet shaper limited the bandwidth for applications on
certain ports, and it may have been configured to only limit
Kazaa downloaders (inbound traffic).

Peer-to-peer traffic was predominantly internal. 82.5% of
the P2P traffic was between on-campus hosts. This may
be due to our packet shaper. Our campus, however, is
not atypical in its use of such a shaper; the Campus Com-
puting Project [6] reports that over two-thirds of universi-
ties have some policy for limiting file transfers of audio
and video files. We thus expect that this P2P behavior
would be observed in many academic campus environ-
ments. The outbound remote traffic that we do see is
mainly Kazaa traffic.
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A few users were responsible for most of the P2P through-
put. The extremes of Fig. 21 show that a small number of
cards send and receive a large amount of P2P data. Of the
945 cards that saw more than 1 MB of P2P traffic, a mere
30 cards (3.2% of the population) were responsible for over
50% (873.39 GB) of the traffic. This behavior has been ob-
served on another campus, where 4% of the population
was responsible for 50% of Kazaa traffic [24].

5.3. Streaming media

The proportion of wireless streaming audio/video traffic
increased by 192% between 2001 and 2003/2004, and we
saw 136.9 GB of streaming traffic in our 2003/2004 trace.

Most, but not all, streaming media was inbound. Fig. 22
shows that this traffic was made up mainly of two applica-
tions: RealAudio and iTunes. Most streaming traffic was in-
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bound: applications such as RealAudio and Windows
Media (ms-streaming) are intended for large streaming
media operators such as news websites, and so there tend
to be a few servers, and these are rarely wireless laptops.
The exception is iTunes, which allows users to easily
stream music to each other. Thus we see some wireless
cards sharing their iTunes music with other users, and
55.9% of the iTunes traffic was outbound (see Fig. 22).

Most streaming traffic was within campus. Most (65.1%)
of the streaming traffic was to or from hosts on campus.
This may be surprising given the number of mainstream
off-campus websites that offer streaming audio and video.
Within our campus, however, streaming media is used
heavily for teaching, e.g., in language courses. Some of
these teaching files were large (300–400 MB), and this con-
tent may account for much of the on-campus traffic. An-
other contributing factor is that by default, iTunes will
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only stream music to users on the same subnet, and hence
almost all of the iTunes outbound traffic is on campus.
6. Mobility

In this section, we analyze the mobility of the users in
our trace. We used only the syslog records for mobility
analysis, as they contain the most detailed and compre-
hensive record of user location.

Users spent almost all their time in their home location.
Fig. 23 indicates the amount of time that a user spent at
their ‘‘home location”. We base our definition of home
location on that of Balazinska and Castro [4], who choose
the AP at which a client spent more than 50% of their total
time on the network. We modify this definition, however,
to account for our 50 m session diameter. For each card,
we find all the APs with which they associated over the
course of our trace. Using our syslog data, we take the AP
where they spend the most time associated, and consider
all APs within a 50 m diameter of that AP to represent
the card’s home location. Like Balazinska and Castro, we
do not consider users who spent less than 50% of their time
at their home, due to the difficulty of accurately determin-
ing a ‘‘home” for such users. We note this fact on the left
half of Fig. 23, simply projecting each curve to the y-axis.
The y-intercept thus indicates the fraction of users, in each
case, who had no well-defined home location.

We have dramatically different results than Balazinska
and Castro, who found that 50% of their users spent 60%
of the time in their home location. Our population is far
less mobile: 95.1% of our users have a home location, and
50% of those users spend 98.7% of their time there. This
striking difference was only partly due to our redefinition
of ‘‘home location”. If we follow Balazinska and choose just
one AP as a home location, we still found that 50% of our
users spend 74.0% of their time associated with a single
AP. This result seems surprising, as Balazinska and Castro
study a corporate campus, and one might expect higher
mobility on an academic campus, with students traveling
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Fig. 23. [syslog] Fraction of time that users spend at their hom
between classes. On the other hand, our trace covers resi-
dential users, who spend more time in their home location,
especially if devices are left switched on overnight. Fig. 23
shows that those users with a home location in a social or
library building spent less time there than those with
home locations in residential, academic or administrative
buildings. If we remove the overnight period (0000–
0600) from our data, then we find that 50% of our users
spend 69.2% of their time associated with a single AP,
which is much closer to the 60% seen by Balazinska and
Castro [4].

Another possible reason for the low observed mobility
was the presence of ‘‘visitors”; users that visited our cam-
pus for one or two days, used the WLAN intermittently in
one place, and then left, to be never seen again. We exam-
ined this hypothesis by removing any cards that were only
ever observed for two days or less. Of the remaining cards,
we found that 50% of the cards spent 71.6% of their time
associated with a single AP, or 97.9% in a home location.
Even regular users of the WLAN are immobile.

Our results may also differ from the corporate data be-
cause we use syslog records, with a 1-s timestamp resolu-
tion, whereas Balazinska and Castro use SNMP with a
5-min poll period. Their longer intervals led them to over-
estimate the time spent at a location (missing all short-
term stays), and thus the two sets of results differ further.

Prevalence indicates the time that a user spends on a gi-
ven AP, as a fraction of the total amount of time that they
spend on the network [4]. Fig. 24 again shows that our
users were less mobile (had lower prevalence) than corpo-
rate users: the dashed line represents the line of best fit for
the corporate data [4]. (Although the figure informally
compares a fit curve from one study with a histogram from
another study, it is visually evident that the two are quite
different.) Note that we cannot be sure about the absolute
difference in prevalence between these two datasets as the
SNMP-collected corporate data missed short visits to APs.
If users tended to visit APs for short periods of time and
then return (e.g., ‘‘ping-ponging”), then the SNMP data
would overestimate prevalence. On the other hand, if users
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tended to visit many APs quickly in succession, the SNMP
data would underestimate prevalence.

Users persisted at a single location for longer. Another
metric for demonstrating mobility is user persistence:
the amount of time that a user stays associated with an
AP before moving on to the next AP or leaving the net-
work [4]. We again consider persistence using our 50 m
session diameter. We keep a list of all the APs that a user
visits; whenever a user visits a new AP, we calculate the
session diameter of this list of APs, and if the diameter
is greater than 50 m, we output a persistence value and
clear the list.

The line in Fig. 25 marked 0:92=x is the line of best fit
from Balazinska and Castro [4]. It is clear that our data
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Fig. 25. [syslog] log–log distribution of user persistence values. We show values
basis for comparison. All locations (by AP) is the leftmost curve.
are different, and that users tended to remain in a single
location for longer. This difference may be due, however,
to our redefinition of ‘‘location” to match our notion of a
session diameter. Thus, in Fig. 25 we have also calculated
persistence as originally defined (the line marked ‘‘All loca-
tions (by AP)”). These values are lower, as they include
roams within a 50 m diameter that may not be due to
physical mobility. Nonetheless, they are still far higher
than the values for corporate users; our users move less of-
ten. Moreover, since the SNMP approach tends to overesti-
mate persistence, the fact that we saw longer persistence
in our data is not an artifact of the two measurement tech-
niques; if anything, the difference is stronger than it
appears.
100 1000 10000 100000

e duration (min)

All locations
All locations (by AP)

calculated using our session diameter metric and persistence on a per AP
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Different devices traveled more widely. Fig. 26 shows the
total number of APs visited by a device. The median num-
ber of visited APs has risen from 9 in 2001 to 12 in 2003/
2004. VoIP devices visited the largest number of APs, be-
cause these devices are ‘‘always-on” and ready to receive
a call. Thus a VoIP device is likely to associate with almost
every AP that its owner passes, whereas a laptop will only
associate with those APs where a user stops, opens their
laptop and connects. A similar effect can be seen in
Fig. 27, which shows the session diameter for different de-
vice types. The always-on VoIP devices tend to travel fur-
ther than laptops and PDAs.

If we consider the distance traveled by a device over a
longer timescale, however, the differences between de-
vices diminish. Fig. 28 shows the ‘‘daily session diameter”,
that is, the maximum inter-AP distance traveled in a day by
a given device. We see that VoIP devices and laptops trav-
eled similar amounts over the course of a day. This may be
because laptops are used nomadically, and so a session-
centric metric underestimates their mobility. A user travel-
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ing from point A to point B carrying both a VoIP device and
a laptop might use the VoIP device en route to B, thus cre-
ating high session mobility, but only use the laptop at
points A and B, in separate sessions. When considering
the daily diameter, both devices have visited A and B in
the same day, and so their daily diameters are equivalent.

Fig. 28 also shows that PDAs traveled far further in a
day than other devices. This may be due to the small sam-
ple size of PDA users, who may tend to be early adopters
and thus have different usage characteristics to the
more-general laptop population. On the other hand, one
might expect PDAs to exhibit high mobility as their small
size means that they can be carried anywhere on campus,
and accessed more quickly than a laptop. This might lead
PDAs to be used in more locations over the course of a day.

Different devices had different session characteristics.
Some of the mobility differences between devices can be
attributed to the different session types for different de-
vices. Fig. 29 shows the distribution of session durations
for different device types. As many sessions lasted almost
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the length of our trace period (stationary devices that were
never switched off), the plot shows those durations of less
than 1 h for clarity. All of the device types have a short
median session duration, less than 10 min. The short med-
ian, consistent with our earlier results, is detectable in the
syslog data but would be difficult to observe with a longer
SNMP polling interval. PDAs, shown in the leftmost curve,
have much shorter durations than other types of devices.
These short sessions are due to the way a PDA is used: kept
in a pocket until needed, and switched on sporadically for
short periods of time to access information.

Different applications had different mobility characteris-
tics. In Section 5, we focus on three of the newest wireless
applications: VoIP, P2P, and streaming media. In Fig. 30, we
look at the distance traveled during a VoIP, P2P, or stream-
ing session. We classify a session as containing a given
application if, during that session, a host was seen by one
of our sniffers, and was seen to send or receive traffic of
that application category. We again see that VoIP sessions
tend to travel further. Streaming sessions were less mobile
than P2P sessions, perhaps because a streaming audio or
video application tends to involve active user participation,
and so mobility is impeded by the need to continuously
look at or access a device. A P2P application, however,
can run in the background; a user could easily share files
while moving, perhaps with a laptop left in a bag while
connected to the network.

Different applications were used in different locations. We
consider application usage in different locations by exam-
ining the applications used by a device when the device
was situated in its home location (as defined above), and
when the device was situated elsewhere (the ‘‘non-home
location”).

As our sniffers only covered a subset of the campus, we
could not examine the behavior of every device, since some
devices’ home locations lay outside our sniffer coverage
area. Instead, we only consider those devices that have
home locations covered by our sniffers. In addition, we
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only consider laptops, since single-purpose VoIP devices
would have identical application behavior in both home
and non-home locations, as they can only use one applica-
tion. From those laptops with home locations covered by
our sniffers, we selected the 100 most ‘mobile’ clients, in
terms of the amount of time spent in a home location.
We chose those clients who spent the largest amount of
time away from home, to prevent non-home application
usage being skewed by devices that were seldom used in
non-home locations.

Figs. 31 and 32 show the application mix for home and
non-home locations, using the same methodology as Sec-
tion 4. We see that P2P applications are used both in home
and non-home locations. This is surprising, since P2P file
transfers might require a long amount of time on the net-
work, which may not be convenient when a user is mobile
or at a non-home location. We observe that there is more
outbound P2P activity in non-home locations, which may
indicate that users are unknowingly sharing files when
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away from home, for instance by leaving their P2P client
active. Streaming media is used in a greater proportion in
non-home locations than at home, and non-home stream-
ing traffic exceeds web traffic. One explanation is that a
user not at home might not have access to their usual mu-
sic collection, and so choose to stream audio from other
sources (e.g., iTunes users in their current subnet).

Compared to the overall application mix (Fig. 12.1), the
amount of filesystem traffic is much lower in our 100 most
mobile laptops. We speculate that highly-mobile users
might be less likely to rely on remote filesystem mounts,
since these do not cope well with high levels of mobility.
It appears that less-mobile users do generate more filesys-
tem traffic than these highly-mobile users. From the syslog
data we extracted a list of cards that only ever appeared at
a single location, but who also appeared on more than two
days (to remove ‘‘visitors”). We then filtered this list to
only include laptops that were covered by our sniffers. This
resulted in a list of 717 cards. The application mix for these
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cards (Fig. 33) shows that the proportion of filesystem traf-
fic is similar to the overall application mix.
7. Related work

Our study is the largest characterization of WLAN users
to date. One of the earliest analyses of WLAN usage was by
Tang and Baker, who used tcpdump and SNMP to trace 74
users in the Stanford CS Department over a 12-week period
in 2000 [27]. While this study is similar to our own, our
population is much larger and more diverse. Their top five
applications (http, NetBIOS, FTP, unknown, ssh + telnet),
vary from ours, and indicate both a CS workload, and one
that predates the popularity of P2P file sharing.

Balachandran et al. [3] traced 195 wireless users during
the ACM SIGCOMM 2001 conference. They use SNMP to
poll each of their four APs every minute. Such a small
interval would have been impractical in our scenario, as
it took about 90 s to receive SNMP responses from all of
our APs. Since they study a conference, user behavior is
homogeneous, with clients following the conference sche-
dule. Most sessions were short (<10 min). About 46% of the
TCP traffic was http, and 18% ssh, again indicating a CS
workload.

Hutchins and Zegura used sniffers, SNMP and Kerberos
authentication logs to trace 444 clients over a subset of the
Georgia Tech WLAN, totaling 109 APs spread across 18
buildings, for two months in 2001 [13]. Authentication
data means that they can more accurately identify ses-
sions. As they only examine non-residential areas of cam-
pus, they find stronger diurnal usage patterns. One-third
of their users do not move, although their measurements
are less precise than ours due to a 15-min poll interval.

Saroiu et al. [24] traced HTTP and P2P traffic at the Uni-
versity of Washington border routers for nine days in 2002.
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P2P dominates, accounting for 43% of the traffic, compared
to 14% for HTTP. This result is similar to our observations
(38% P2P and 19% HTTP), even though we examined traffic
within the campus and they examined the border.

McNett and Voelker [19] installed a tool on wireless
PDAs, and used this tool to collect mobility and session-le-
vel data for 272 residential users over an 11-week period
on the University of California San Diego WLAN. This ap-
proach was impractical for our study, given the variety of
devices on our WLAN. They found similar session behavior
to our study: mostly short sessions. As with our embedded
device users, their PDA users associated with many APs.

Schwab and Bunt study the University of Saskatchewan
campus WLAN [25]. This WLAN uses a central RADIUS
authentication server, allowing for accurate session deter-
mination. Their trace is significantly smaller than ours (136
users on 18 APs over one week), and their WLAN does not
cover residential areas, so their diurnal usage patterns dif-
fer from ours. The largest identified protocol was HTTP, at
28% of packets. They were unable to identify 35% of TCP
packets, which is probably due to P2P applications (the fact
that they identified only Gnutella, at 1.5%, indicates that
they likely did not search for other major P2P protocols).

Chinchilla et al. analyzed WWW users on the University
of North Carolina campus WLAN [8]. They tracked syslog
from 222 APs and 7694 users over a 11-week period. As
in our study, student residences saw the most wireless
associations. Clients had fewer roams between APs, but
this may have been due to lower AP density, and thus a
smaller likelihood of overlapping AP coverage. In later
work [23], Papadopouli et al. find that session durations
on the UNC WLAN can be modeled by a BiPareto
distribution.

All of these studies, including our own, are located on
the wired side of the wireless network. That is, these stud-
ies all look at infrastructure 802.11 networks, and the
monitoring takes place on the wired Ethernet into which
the wireless APs have been connected. Mahajan et al. look
at wireless MAC-layer behavior at the 2004 SIGCOMM con-
ference [18] and present techniques for merging traces
from multiple sniffers. They find that the wireless medium
is used inefficiently, with nodes often backing off unneces-
sarily. The Jigsaw project looks at wireless-side traffic in
the UCSD CSE department [7], and also offers methods
for merging traces. The CSE building is busy, with 1026 un-
ique MAC addresses observed in a single day, and with
similar diurnal patterns to our academic buildings.

All of the above studies look at academic users. We have
already mentioned Balazinska and Castro [4], who traced
1366 corporate users over four weeks, and developed
two metrics for mobility, prevalence and user persistence.
Blinn et al. [5] look at users on a commercial hotspot net-
work, and find diurnal usage patterns similar to our own.
8. Conclusions and recommendations

This paper presents the results of the largest WLAN
trace to date, and the first analysis of a large, mature WLAN
to measure geographic mobility as well as network mobil-
ity. Most importantly, this is the first study that revisits a
WLAN. We consider the changes in usage of the WLAN
since its initial deployment, by re-examining usage after
the WLAN had matured, and as the userbase grew beyond
the early adopters. We found dramatic increases in usage,
and changes in the applications and devices used on the
network. Our study has several implications for wireless
network designers, network modelers, and software
developers.

Although roaming increased from our previous study,
our users were not very mobile, and tended to stay, or per-
sist, at one home location for most of the time. This behav-
ior can be exploited by network designers, for instance in
the use of network caches, or prediction-based mobility
schemes [26].

Although most users stayed predominantly in one loca-
tion, different devices and applications had different
mobility characteristics. In particular, always-on VoIP de-
vices associated with more APs and had longer-lived and
farther-ranging sessions. Always-on devices are becoming
more popular, and as a result WLANs may see increased
numbers of devices associated with individual APs, even
though each device may not be sending or receiving large
quantities of data. Designers should be conscious of this
behavior, for instance, when allocating memory for associ-
ation tables. Application developers may wish to consider
higher levels of mobility, as it may be some time before
standards such as Mobile IP are widely deployed.

The higher mobility of always-on devices over laptops
suggests that different devices may benefit from different
policies. For example, a WLAN designer might choose to
place VoIP phones and PDAs on a separate VLAN. This
VLAN might be Mobile IP-enabled, or comprise one subnet
that spanned an entire campus, whereas laptops could re-
side on building-specific subnets, on the assumption that
they tend not to move around as much. This setup might
also be preferable for non-mobility reasons, such as secu-
rity, since many embedded wireless devices lack support
for newer security standards like 802.11i.

There was a large increase in the amount of P2P traffic
on our WLAN, despite the presence of a high-speed wired
Ethernet network throughout our campus. Evidently the
convenience of a wireless solution outweighs the limited
bandwidth of an 802.11b network. As 802.11 is a shared-
medium, large P2P file transfers may impact other users
in different ways to the wired network, and wireless-spe-
cific traffic management may be desirable. WLAN design-
ers cannot assume that the WLAN will only be used
when users are on the move, away from their home loca-
tion. Instead, the WLAN has replaced the wired LAN as
the primary means of network connectivity for many
users.

Wireless VoIP appeared and is likely to become much
more common. The wireless VoIP calls that we saw were
short, with a median duration of 31 s, significantly shorter
than calls on the old non-VoIP phone network. If such short
calls are representative of wireless VoIP usage, this may
impact protocol design: it may not be cost-effective to
implement complex reservation schemes for such short
calls.

The short VoIP calls could be a result of the difficulties
of provisioning for VoIP in an 802.11b WLAN; if users lack
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the required QoS, they may be hanging up calls in frustra-
tion. The short calls, however, were observed on both the
wireless and wired network, and one would expect that
our wired network is capable of handling VoIP traffic.

As well as highlighting changes between our two traces,
it is important to look at those usage aspects that did not
change. We found that the proportion of heavy users on
our WLAN remained static, despite the shift from early
adopters to a more-general population. The number of
hours that each client spent on the network each day
was also similar between the two trace periods. This infor-
mation could be useful for provisioning a WLAN. Usage re-
mained diurnal, although given our residential campus, the
diurnal variations were lower than those observed else-
where. Residences continued to be the largest WLAN users.

Although our study is large, our results must be inter-
preted in context. We highlight differences in mobility be-
tween our users and previous studies of corporate users,
and our academic population may not reflect activity in
other venues. We believe that academic campuses are
important WLAN venues, however. WLANs have been de-
ployed at many academic institutions [6], and business
surveys have started to examine academic wireless usage
in addition to public usage [14]. Indeed, a university cam-
pus contains elements of an enterprise, a residential com-
munity, public hotspots (libraries and restaurants),
research labs, and educational workloads.

Another caveat to be considered is that our results only
look at the wireless portion of our LAN. Some of the
changes that we have observed, for example, the increase
in P2P usage, may have occurred on the wired LAN as well.
Unfortunately it was impractical for us to measure the
wired LAN due to the structure of the wired network and
the quantities of data that would need to be monitored.

8.1. Future work

Our monitoring efforts are ongoing. Since the time of
this study, Dartmouth College has upgraded the WLAN to
a 802.11/a/b/g network with over 1600 APs, added authen-
tication, and migrated the campus CATV network to an IP-
based streaming video platform. Hand-held Wi-Fi devices
are now more commonly-available, including hybrid and
UMA cellphones, VoIP phones, media players and games
consoles. As a result, we expect to see higher mobility
and more streaming media usage on the WLAN, in partic-
ular higher-bandwidth video on the 802.11a network that
is difficult to provide over 802.11b.

Our existing measurement infrastructure only looks at
the wired side of our wireless APs. We are extending our
sniffing capability to include wireless sniffers, to monitor
the 802.11 MAC layer. Whilst some researchers have taken
802.11 wireless measurements [10,20,29,18,7], these have
typically taken place in laboratory or small-scale condi-
tions, and there is little wireless monitoring of a large cam-
pus WLAN. As the quantity of data collected by wireless
sniffing is much greater than for wired sniffing, we again
intend to only monitor the most popular parts of campus.
We expect, however, that these data will provide further
insights into WLAN usage, and the effects of new applica-
tions on the network.
We are also interested in understanding why we have
seen the changes in network behavior that we have pre-
sented in this paper. We have collaborated with a sociolo-
gist to ask our wireless network users why they are using
particular applications, or exhibiting particular behavior
[2,11].

Due to the large amount of data that was collected, we
have only shown selected characteristics of the wireless
traffic in this paper. There remain many questions that re-
quire further analysis of our traces. For instance, we ob-
served high numbers of small SMB/CIFS packets involving
many hosts; these are likely to be worm and virus traffic,
and further study would be valuable. We saw large
amounts of P2P traffic, but limited to a small fraction of
users; further analysis of this distribution could be useful
in developing AP-load-balancing algorithms that balance
users according to their bandwidth requirements.

We welcome other researchers to make use of our data,
and sanitized versions of both our 2001 and 2003/2004
traces, and even newer data, are publicly available through
CRAWDAD [16]. Moreover, if other researchers choose to
collect similar data at other networks, such as corporate
or public networks, this could aid in conducting cross-val-
idation studies to determine the generality of our
conclusions.
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