
www.machinelearningplus.com

Caret Package – A Practical Guide to Machine Learning in R
hk.saowen.com/a/e3de9c193942feb012101c3b3d0de210c7c6e5c68398f29ca66887e84a4c9501

Caret Package is a comprehensive framework for building machine learning models in R. In this tutorial, I explain
nearly all the core features of the caret package and walk you through the step-by-step process of building
predictive models. Be it a decision tree or xgboost, caret helps to find the optimal model in the shortest possible
time.

Caret Package – A Practical Guide to Machine Learning in R

Caret Package – A Practical Guide to Machine Learning in R

Caret Package – A Practical Guide to Machine Learning in R. Photo by Kate Tryst.

Contents
2. Initial Setup – load the package and dataset

3. Data Preparation and Preprocessing

3.1. How to split the dataset into training and validation?

3.2 Descriptive statistics

3.3 How to impute missing values using preProcess()?

3.4 How to create One-Hot Encoding (dummy variables)?

3.5 How to preprocess to transform the data?

4. How to visualize the importance of variables using `featurePlot()`

5. How to do feature selection using recursive feature elimination (`rfe`)?

6. Training and Tuning the model

6.1. How to `train()` the model and interpret the results?

6.2 How to compute variable importance?

6.3. Prepare the test dataset and predict

6.4. Predict on test data

6.5. Confusion Matrix

7. How to do hyperparameter tuning to optimize the model for better performance?

7.1. Setting up the `trainControl()`

7.2 Hyperparameter Tuning using `tuneLength`

7.3. Hyperparameter Tuning using `tuneGrid`

8. How to evaluate the performance of multiple machine learning algorithms?

8.1. Training Adaboost

8.2. Training Random Forest

8.3. Training xgBoost Dart

1/24

https://hk.saowen.com/a/e3de9c193942feb012101c3b3d0de210c7c6e5c68398f29ca66887e84a4c9501

8.5. Run resamples() to compare the models

9. Ensembling the predictions

9.1. How to ensemble predictions from multiple models using caretEnsemble?

9.2. How to combine the predictions of multiple models to form a final prediction
Caret nicely integrates all the activities associated with the model development in a streamlined workflow, for
nearly every major ML algorithm available in R.

Actually we will not just stop with the caret package but will also go a step ahead and see how to smartly
ensemble predictions from multiple best models and possibly produce an even better prediction using
caretEnsemble.

A lot of exciting stuff ahead, so to make it simpler, this tutorial is structured to cover the following 5 topics:

1. Data Preparation and Preprocessing
2. Visualize the importance of variables
3. Feature Selection using RFE
4. Training and Tuning the model
5. Ensembling the predictions

Let’s begin!

1. Introduction
Caret is short for C lassification A nd RE gression T raining.

With R having so many implementations of machine learning algorithms, spread across packages it may be
challenging to keep track of which algorithm resides in which package.

Sometimes the syntax and the way to implement the algorithm differ across packages combined with
preprocessing and looking at the help page for the hyperparameters (parameters that define how the algorithm
learns) can make building predictive models an involved task.

Well, thanks to caret because no matter which package the algorithm resides, caret will remember that for you
and may just prompt you to run install.package for that particular algorithm’s package, which by the way I am
quite happy to do.

Later in this tutorial I will show how to see all the available ML algorithms supported by caret (it’s a long list!) and
what hyperparameters can be tuned.

Now that you have a fair idea of what caret is about, let’s get started with the basics.

2. Initial Setup – load the package and dataset
For this tutorial, I am going to use a modified version of the Orange Juice Data , originaly made available in the
ISLR package.

The objective of this dataset is to predict which of the two brands of orange juices did the customers purchase.
The predictor variables are characteristics of the customer and the product itself.

It contains 1070 rows with 18 columns. The response variable is ‘Purchase’ which takes either the value
‘CH'(citrus hill) or ‘MM'(minute maid).

I have chosen a lightweight dataset so the focus is more on getting familiar with the usage of caret package
rather than having to spend much time on training the models.

Let’s import the dataset and see it’s structure and starting few rows.

2/24

https://hk.saowen.com/rd/aHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL3NlbHZhODYvZGF0YXNldHMvbWFzdGVyL29yYW5nZV9qdWljZV93aXRobWlzc2luZy5jc3Y=

install.packages(c('caret', 'skimr', 'RANN', 'randomForest', 'fastAdaboost', 'gbm', 'xgboost',

'caretEnsemble', 'C50', 'earth'))

Load the caret package

library(caret)

Import dataset

orange <-

read.csv('https://raw.githubusercontent.com/selva86/datasets/master/orange_juice_withmissing.csv')

Structure of the dataframe

str(orange)

See top 6 rows and 10 columns

head(orange[, 1:10])

Output

'data.frame': 1070 obs. of 18 variables:

 $ Purchase : Factor w/ 2 levels "CH","MM": 1 1 1 2 1 1 1 1 1 1 ...

 $ WeekofPurchase: int 237 239 245 227 228 230 232 234 235 238 ...

 $ StoreID : int 1 1 1 1 7 7 7 7 7 7 ...

 $ PriceCH : num 1.75 1.75 1.86 1.69 1.69 1.69 1.69 1.75 1.75 1.75 ...

 $ PriceMM : num 1.99 1.99 2.09 1.69 1.69 1.99 1.99 1.99 1.99 1.99 ...

 $ DiscCH : num 0 0 0.17 0 0 0 0 0 0 0 ...

 $ DiscMM : num 0 0.3 0 0 0 0 0.4 0.4 0.4 0.4 ...

 $ SpecialCH : int 0 0 0 0 0 0 1 1 0 0 ...

 $ SpecialMM : int 0 1 0 0 0 1 1 0 0 0 ...

 $ LoyalCH : num 0.5 0.6 0.68 0.4 0.957 ...

 $ SalePriceMM : num 1.99 1.69 2.09 1.69 1.69 1.99 1.59 1.59 1.59 1.59 ...

 $ SalePriceCH : num 1.75 1.75 1.69 1.69 1.69 1.69 1.69 1.75 1.75 1.75 ...

 $ PriceDiff : num 0.24 -0.06 0.4 0 0 0.3 -0.1 -0.16 -0.16 -0.16 ...

 $ Store7 : Factor w/ 2 levels "No","Yes": 1 1 1 1 2 2 2 2 2 2 ...

 $ PctDiscMM : num 0 0.151 0 0 0 ...

 $ PctDiscCH : num 0 0 0.0914 0 0 ...

 $ ListPriceDiff : num 0.24 0.24 0.23 0 0 0.3 0.3 0.24 0.24 0.24 ...

 $ STORE : int 1 1 1 1 0 0 0 0 0 0 ...

Purchase WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH SpecialMM LoyalCH

CH 237 1 1.75 1.99 0.00 0.0 0 0 0.500000

CH 239 1 1.75 1.99 0.00 0.3 0 1 0.600000

CH 245 1 1.86 2.09 0.17 0.0 0 0 0.680000

MM 227 1 1.69 1.69 0.00 0.0 0 0 0.400000

CH 228 7 1.69 1.69 0.00 0.0 0 0 0.956535

CH 230 7 1.69 1.99 0.00 0.0 0 1 0.965228

3. Data Preparation and Preprocessing

3.1. How to split the dataset into training and validation?
The dataset is ready.

The first step is to split it into training(80%) and test(20%) datasets using caret’s createDataPartition function.

The advantage of using createDataPartition() over the traditional random sample() is, it preserves the
proportion of the categories in Y variable, that can possibly be disturbed if you sample randomly.

So why are we splitting the dataset into training and test data?

When building machine learning models, only the training dataset should be visible to the preprocessing and
model building steps. The algorithm learns the relationship between the X’s and Y from the training data and this
information is stored to form what is called a machine learning model.

3/24

That knowledge in the model, in turn, is used to predict the already known Y in test data.

Then the known and predicted values of Y (for test dataset) are compared to evaluate how well the models
performed.

Alright, let’s create the training and test datasets.

Create the training and test datasets

set.seed(100)

Step 1: Get row numbers for the training data

trainRowNumbers <- createDataPartition(orange$Purchase, p=0.8, list=FALSE)

Step 2: Create the training dataset

trainData <- orange[trainRowNumbers,]

Step 3: Create the test dataset

testData <- orange[-trainRowNumbers,]

Store X and Y for later use.

x = trainData[, 2:18]

y = trainData$Purchase

createDataPartition() takes as input the Y variable in the source dataset and the percentage data that
should go into training using the p argument. It returns the rownumbers of the dataset that should form the
training dataset.

Plus, you need to set list=F , to prevent returning the result as a list.

3.2 Descriptive statistics
Before moving to missing value imputation and feature preprocessing, let’s observe the descriptive statistics of
each column in the training dataset.

The skimr package provides a nice solution to show key descriptive stats for each column.

The skimr::skim_to_wide() produces a nice dataframe containing the descriptive stats of each of the
columns. The dataframe output includes a nice histogram drawn without any plotting help.

library(skimr)

skimmed <- skim_to_wide(trainData)

skimmed[, c(1:5, 9:11, 13, 15:16)]

type variable missing complete n mean sd p0 median p100 hist

factor Purchase 0 857 857 NA NA NA NA NA NA

numeric DiscCH 0 857 857 0.11 0.24 0 0 1 ▇▁▁▁▁▁▁▁

numeric DiscMM 0 857 857 0.15 0.26 0 0 1 ▇▁▁▂▁▁▁▁

numeric ListPriceDiff 0 857 857 0.49 0.25 0 0.55 1 ▂▂▂▂▇▆▁▁

numeric LoyalCH 0 857 857 0.56 0.31 0 0.6 1 ▅▂▃▃▆▃▅▇

numeric PctDiscCH 0 857 857 0.11 0.25 0 0 1 ▇▁▁▁▁▁▁▁

numeric PctDiscMM 0 857 857 0.14 0.25 0 0 1 ▇▁▁▂▁▁▁▁

numeric PriceCH 0 857 857 0.44 0.26 0 0.43 1 ▂▂▂▇▁▁▅▁

numeric PriceDiff 0 857 857 0.63 0.2 0 0.69 1 ▁▁▂▂▃▇▅▂

numeric PriceMM 0 857 857 0.66 0.23 0 0.67 1 ▁▁▁▃▁▇▃▂

numeric STORE 0 857 857 0.42 0.36 0 0.5 1 ▇▃▁▅▁▅▁▃

numeric SalePriceCH 0 857 857 0.6 0.21 0 0.67 1 ▁▁▁▂▆▇▅▁

numeric SalePriceMM 0 857 857 0.7 0.22 0 0.82 1 ▁▁▃▃▁▂▇▆

4/24

numeric SpecialCH 0 857 857 0.16 0.36 0 0 1 ▇▁▁▁▁▁▁▂

numeric SpecialMM 0 857 857 0.15 0.36 0 0 1 ▇▁▁▁▁▁▁▂

numeric Store7.No 0 857 857 0.67 0.47 0 1 1 ▃▁▁▁▁▁▁▇

numeric Store7.Yes 0 857 857 0.33 0.47 0 0 1 ▇▁▁▁▁▁▁▃

numeric StoreID 0 857 857 0.49 0.38 0 0.33 1 ▃▅▅▃▁▁▁▇

numeric WeekofPurchase 0 857 857 0.53 0.31 0 0.59 1 ▆▆▅▃▆▇▆▇

type variable missing complete n mean sd p0 median p100 hist

Notice the number of missing values for each feature, mean, median, proportion split of categories in the factor
variables, percentiles and the histogram in the last column.

We will examine how important each of these features are in predicting the response (Purchase) in the next
section, once I am done with the data preprocessing.

3.3 How to impute missing values using preProcess()?
We’ve seen that the dataset has few missing values across all columns, we may to do well to impute it. Impute,
means to fill it up with some meaningful values.

If the feature is a continuous variable, it is a common practice to replace the missing values with the mean of the
column. And if its a categorical variable, replace the missings with the most frequently occurring value, aka, the
mode.

But this is quite a basic and rather rudimentary approach.

Instead what can be done is, you can actually predict the missing values by considering the rest of the available
variables as predictors. A popular algorithm to do imputation is the k-Nearest Neighbors. This can be quickly and
easily be done using caret.

Because, caret offers a nice convenient preProcess function that can predict missing values besides other
preprocessing.

To predict the missing values with k-Nearest Neighbors using preProcess() :

1. You need to set the method=knnImpute for k-Nearest Neighbors and apply it on the training data. This
creates a preprocess model.

2. Then use predict() on the created preprocess model by setting the newdata argument on the same
training data.

Caret also provides bagImpute as an alternative imputation algorithm.

Create the knn imputation model on the training data

preProcess_missingdata_model <- preProcess(trainData, method='knnImpute')

preProcess_missingdata_model

Created from 828 samples and 18 variables

Pre-processing:

 - centered (16)

 - ignored (2)

 - 5 nearest neighbor imputation (16)

 - scaled (16)

The above output shows the various preprocessing steps done in the process of knn imputation.

That is, it has centered (subtract by mean) 16 variables, ignored 2, used k=5 (considered 5 nearest neighbors) to
predict the missing values and finally scaled (divide by standard deviation) 16 variables.

Let’s now use this model to predict the missing values in trainData .

5/24

Use the imputation model to predict the values of missing data points

library(RANN) # required for knnInpute

trainData <- predict(preProcess_missingdata_model, newdata = trainData)

summary(trainData)

Purchase WeekofPurchase StoreID PriceCH

 CH:523 Min. :-1.7421 Min. :-1.289930 Min. :-1.7298073

 MM:334 1st Qu.:-0.9726 1st Qu.:-0.853322 1st Qu.:-0.7504984

 Median : 0.1818 Median :-0.416715 Median :-0.0649822

 Mean : 0.0000 Mean : 0.001552 Mean :-0.0003044

 3rd Qu.: 0.8872 3rd Qu.: 1.329714 3rd Qu.: 1.2081194

 Max. : 1.5285 Max. : 1.329714 Max. : 2.1874283

 PriceMM DiscCH DiscMM

 Min. :-2.898005 Min. :-0.452088 Min. :-0.581825

 1st Qu.:-0.687640 1st Qu.:-0.452088 1st Qu.:-0.581825

 Median : 0.049148 Median :-0.452088 Median :-0.581825

 Mean : 0.001674 Mean :-0.001055 Mean : 0.000476

 3rd Qu.: 0.712257 3rd Qu.:-0.452088 3rd Qu.: 0.417892

 Max. : 1.522724 Max. : 3.727573 Max. : 3.263242

 SpecialCH SpecialMM LoyalCH

 Min. :-0.4289465 Min. :-0.419934 Min. :-1.805115

 1st Qu.:-0.4289465 1st Qu.:-0.419934 1st Qu.:-0.781052

 Median :-0.4289465 Median :-0.419934 Median : 0.099673

 Mean :-0.0003575 Mean :-0.001307 Mean :-0.001538

 3rd Qu.:-0.4289465 3rd Qu.:-0.419934 3rd Qu.: 0.923736

 Max. : 2.3285666 Max. : 2.378534 Max. : 1.394946

 SalePriceMM SalePriceCH PriceDiff Store7

 Min. :-3.124984 Min. :-2.9093788 Min. :-3.0855333 No :576

 1st Qu.:-1.101466 1st Qu.:-0.4310667 1st Qu.:-0.5630612 Yes:281

 Median : 0.517348 Median : 0.3261953 Median : 0.3028620

 Mean : 0.001055 Mean : 0.0003806 Mean : 0.0007488

 3rd Qu.: 0.679229 3rd Qu.: 0.5327213 3rd Qu.: 0.6417015

 Max. : 1.326755 Max. : 1.9095613 Max. : 1.8464643

 PctDiscMM PctDiscCH ListPriceDiff STORE

 Min. :-0.588312 Min. :-0.448216 Min. :-1.9876 Min. :-1.150229

 1st Qu.:-0.588312 1st Qu.:-0.448216 1st Qu.:-0.7966 1st Qu.:-1.150229

 Median :-0.588312 Median :-0.448216 Median : 0.2112 Median : 0.235882

 Mean : 0.000883 Mean :-0.000123 Mean : 0.0000 Mean : 0.002168

 3rd Qu.: 0.552391 3rd Qu.:-0.448216 3rd Qu.: 0.7610 3rd Qu.: 0.928938

 Max. : 3.481536 Max. : 3.531412 Max. : 2.0436 Max. : 1.621994

If you look at the summary all the missing values are successfully imputed.

3.4 How to create One-Hot Encoding (dummy variables)?
Let me first explain what is one-hot encoding and why it is required.

Suppose if you have a categorical column as one of the features, it needs to be converted to numeric in order for
it to be used by the machine learning algorithms.

Just replacing the categories with a number may not be meaningful especially if there is no intrinsic ordering
amongst the categories.

So what you can do instead is to convert the categorical variable with as many binary (1 or 0) variables as there
are categories.

An important aspect you should be careful about here is, in real-world environments, you might get new values of
categorical variables in the new scoring data. So, you should ensure the dummyVars model is built on the training
data alone and that model is in turn used to create the dummy vars on the test data.

Caret Package – A Practical Guide to Machine Learning in R

One Hot Encoding

In caret, one-hot-encodings can be created using dummyVars() . Just pass in all the features to dummyVars()
as the training data and all the factor columns will automatically be converted to one-hot-encodings.

6/24

One-Hot Encoding

Creating dummy variables is converting a categorical variable to as many binary variables as here are

categories.

dummies_model <- dummyVars(Purchase ~ ., data=trainData)

Create the dummy variables using predict. The Y variable (Purchase) will not be present in

trainData_mat.

trainData_mat <- predict(dummies_model, newdata = trainData)

Convert to dataframe

trainData <- data.frame(trainData_mat)

See the structure of the new dataset

str(trainData)

'data.frame': 857 obs. of 18 variables:

 $ WeekofPurchase: num -1.1 -1.74 -1.68 -1.29 -1.04 ...

 $ StoreID : num -1.29 -1.29 1.33 1.33 1.33 ...

 $ PriceCH : num -1.14 -1.73 -1.73 -1.14 -1.14 ...

 $ PriceMM : num -0.688 -2.898 -2.898 -0.688 -0.688 ...

 $ DiscCH : num -0.452 -0.452 -0.452 -0.452 -0.452 ...

 $ DiscMM : num -0.582 -0.582 -0.582 1.341 1.341 ...

 $ SpecialCH : num -0.429 -0.429 -0.429 2.329 -0.429 ...

 $ SpecialMM : num -0.42 -0.42 -0.42 -0.42 -0.42 ...

 $ LoyalCH : num -0.205 -0.525 1.256 1.324 1.35 ...

 $ SalePriceMM : num 0.113 -1.101 -1.101 -1.506 -1.506 ...

 $ SalePriceCH : num -0.431 -0.844 -0.844 -0.431 -0.431 ...

 $ PriceDiff : num 0.341 -0.563 -0.563 -1.165 -1.165 ...

 $ Store7.No : num 1 1 0 0 0 0 0 0 0 1 ...

 $ Store7.Yes : num 0 0 1 1 1 1 1 1 1 0 ...

 $ PctDiscMM : num -0.588 -0.588 -0.588 1.447 1.447 ...

 $ PctDiscCH : num -0.448 -0.448 -0.448 -0.448 -0.448 ...

 $ ListPriceDiff : num 0.211 -1.988 -1.988 0.211 0.211 ...

 $ STORE : num -0.457 -0.457 -1.15 -1.15 -1.15 ...

In above case, we had one categorical variable, Store7 with 2 categories. It was one-hot-encoded to produce
two new columns – Store7.No and Store7.Yes .

3.5 How to preprocess to transform the data?
With the missing values handled and the factors one-hot-encoded, our training dataset is now ready to undergo
variable transformations if required.

So what type of preprocessing are available in caret?

1. range: Normalize values so it ranges between 0 and 1
2. center: Subtract Mean
3. scale: Divide by standard deviation
4. BoxCox: Remove skewness leading to normality. Values must be > 0
5. YeoJohnson: Like BoxCox, but works for negative values.
6. expoTrans: Exponential transformation, works for negative values.
7. pca: Replace with principal components
8. ica: Replace with independent components
9. spatialSign: Project the data to a unit circle

For our problem, let’s convert all the numeric variables to range between 0 and 1, by setting method=range in
preProcess() .

preProcess_range_model <- preProcess(trainData, method='range')

trainData <- predict(preProcess_range_model, newdata = trainData)

Append the Y variable

trainData$Purchase <- y

apply(trainData[, 1:10], 2, FUN=function(x){c('min'=min(x), 'max'=max(x))})

7/24

WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH SpecialMM LoyalCH SalePriceMM

min 0 0 0 0 0 0 0 0 0 0

max 1 1 1 1 1 1 1 1 1 1

All the predictor now range between 0 and 1.

4. How to visualize the importance of variables using featurePlot()
Now that the preprocessing is complete, let’s visually examine how the predictors influence the Y (Purchase).

In this problem, the X variables are numeric whereas the Y is categorical.

So how to gauge if a given X is an important predictor of Y?

A simple common sense approach is, if you group the X variable by the categories of Y, a significant mean shift
amongst the X’s groups is a strong indicator (if not the only indicator) that X will have a significant role to help
predict Y.

It is possible to watch this shift visually using box plots and density plots.

In fact, caret’s featurePlot() function makes it so convenient.

Simply set the X and Y parameters and set plot='box' . You can additionally adjust the label font size (using
strip) and the scales to be free as I have done in the below plot.

featurePlot(x = trainData[, 1:18],

 y = trainData$Purchase,

 plot = "box",

 strip=strip.custom(par.strip.text=list(cex=.7)),

 scales = list(x = list(relation="free"),

 y = list(relation="free")))

Caret Package – A Practical Guide to Machine Learning in R

Caret Package – A Practical Guide to Machine Learning in R

featurePlot Output – Boxplot

Let me quickly refresh how to interpret a boxplot.

Each subplot in the above figure has two boxplots (in blue) inside it, one each for each of the Y categories, CH
and MM . The top of the box represents the 25th %ile and the bottom of the box represents the 75th %ile. The
black dot inside the box is the mean.

The blue box represents the region where most of the regular data point lie.

The subplots also show many blue dots lying outside the top and bottom dashed lines called whiskers. These
dots are formally considered as extreme values.

So, What did you observe in the above figure?

Consider for example, LoyalCH s subplot, which measures the loyalty score of the customer to the CH brand.
The mean and the placement of the two boxes are glaringly different.

Just by seeing that, I am pretty sure, LoyalCH is going to be a significant predictor of Y.

What other predictors do you notice have significant mean differences?

Let’s do a similar exercise with density plots.

In this case, For a variable to be important, I would expect the density curves to be significantly different for the 2
classes, both in terms of the height (kurtosis) and placement (skewness).

8/24

Take a look at the density curves of the two categories for ‘LoyalCH’, ‘STORE’, ‘StoreID’, ‘WeekofPurchase’. Are
they different?

featurePlot(x = trainData[, 1:18],

 y = trainData$Purchase,

 plot = "density",

 strip=strip.custom(par.strip.text=list(cex=.7)),

 scales = list(x = list(relation="free"),

 y = list(relation="free")))

Caret Package – A Practical Guide to Machine Learning in R

Caret Package – A Practical Guide to Machine Learning in R

featurePlot Output – Density

Having visualised the relationships between X and Y, We can only say which variables are likely to be important
to predict Y. It may not be wise to conclude which variables are NOT important.

Because sometimes, variables with uninteresting pattern can help explain certain aspects of Y that the visually
important variables may not.

So to be safe, let’s not arrive at conclusions about excluding variables prematurely.

5. How to do feature selection using recursive feature elimination (rfe)?
Most machine learning algorithms are able to determine what features are important to predict the Y. But in some
scenarios, you might be need to be careful to include only variables that may be significantly important and
makes strong business sense.

This is quite common in banking, economics and financial institutions.

Or you might just be doing an exploratory analysis to determine important predictors and report it as a metric in
your analytics dashboard.

Or if you are using a traditional algorithm like like linear or logistic regression, determining what variable to feed
to the model is in the hands of the practitioner.

Given such requirements, you might need a rigorous way to determine the important variables first before feeding
them to the ML algorithm.

A good choice of selecting the important features is the recursive feature elimination (RFE).

So how does recursive feature elimination work?

RFE works in 3 broad steps:

Step 1: Build a ML model on a training dataset and estimate the feature importances on the test dataset.

Step 2: Keeping priority to the most important variables, iterate through by building models of given sizes.
Ranking of the predictors is recalculated in each iteration.

Step 3: The model performances are compared across different subset sizes to arrive at the optimal number and
list of final predictors.

It can be implemented using the rfe() function and you have the flexibility to control what algorithm rfe uses
and how it cross validates by defining the rfeControl() .

9/24

set.seed(100)

options(warn=-1)

subsets <- c(1:5, 10, 15, 18)

ctrl <- rfeControl(functions = rfFuncs,

 method = "repeatedcv",

 repeats = 5,

 verbose = FALSE)

lmProfile <- rfe(x=trainData[, 1:18], y=trainData$Purchase,

 sizes = subsets,

 rfeControl = ctrl)

lmProfile

Recursive feature selection

Outer resampling method: Cross-Validated (10 fold, repeated 5 times)

Resampling performance over subset size:

 Variables Accuracy Kappa AccuracySD KappaSD Selected

 1 0.7433 0.4554 0.04107 0.08692

 2 0.8143 0.6063 0.04037 0.08559

 3 0.8187 0.6147 0.04194 0.08896 *

 4 0.8058 0.5904 0.04253 0.08750

 5 0.7988 0.5743 0.04379 0.09258

 10 0.8024 0.5810 0.04464 0.09557

 15 0.8070 0.5879 0.04215 0.09079

 18 0.8065 0.5879 0.03882 0.08297

The top 3 variables (out of 3):

 LoyalCH, PriceDiff, StoreID

In the above code, we call the rfe() which implements the recursive feature elimination.

Apart from the x and y datasets, RFE also takes two important parameters.

1. sizes

2. rfeControl

The sizes determines what all model sizes (the number of most important features) the rfe should consider.
In above case, it iterates models of size 1 to 5, 10, 15 and 18.

The rfeControl parameter on the other hand receives the output of the rfeControl() as values. If you look
at the call to rfeControl() we set what type of algorithm and what cross validation method should be used.

In above case, the cross validation method is repeatedcv which implements k-Fold cross validation repeated 5
times, which is rigorous enough for our case.

Once rfe() is run, the output shows the accuracy and kappa (and their standard deviation) for the different
model sizes we provided. The final selected model subset size is marked with a * in the rightmost Selected
column.

From the above output, a model size of 3 with LoyalCH, PriceDiff and StoreID seems to achieve the optimal
accuracy.

That means, out of 18 other features, a model with just 3 features outperformed many other larger model.
Interesting isn’t it! Can you explain why?

However, it is not a mandate that only including these 3 variables will always give high accuracy over larger sized
models.

Thats because, the rfe() we just implemented is particular to random forest based rfFuncs

10/24

Since ML algorithms have their own way of learning the relationship between the x and y, it is not wise to neglect
the other predictors, especially when there is evidence that there is information contained in rest of the variables
to explain the relationship between x and y.

Plus also, since the training dataset isn’t large enough, the other predictors may not have had the chance to show
its worth.

In the next step, we will build the actual randomForest model on trainData .

6. Training and Tuning the model

6.1. How to train() the model and interpret the results?
Now comes the important stage where you actually build the machine learning model.

To know what models caret supports, run the following:

See available algorithms in caret

modelnames <- paste(names(getModelInfo()), collapse=', ')

modelnames

'ada, AdaBag, AdaBoost.M1, adaboost, amdai, ANFIS, avNNet, awnb, awtan, bag, bagEarth,

bagEarthGCV, bagFDA, bagFDAGCV, bam, bartMachine, bayesglm, binda, blackboost, blasso,

blassoAveraged, bridge, brnn, BstLm, bstSm, bstTree, C5.0, C5.0Cost, C5.0Rules, C5.0Tree,

cforest, chaid, CSimca, ctree, ctree2, cubist, dda, deepboost, DENFIS, dnn, dwdLinear,

dwdPoly, dwdRadial, earth, elm, enet, evtree, extraTrees, fda, FH.GBML, FIR.DM, foba,

FRBCS.CHI, FRBCS.W, FS.HGD, gam, gamboost, gamLoess, gamSpline, gaussprLinear, gaussprPoly,

gaussprRadial, gbmh2o, gbm, gcvEarth, GFS.FR.MOGUL, GFS.LT.RS, GFS.THRIFT, glm.nb, glm,

glmboost, glmneth2o, glmnet, glmStepAIC, gpls, hda, hdda, hdrda, HYFIS, icr, J48, JRip,

kernelpls, kknn, knn, krlsPoly, krlsRadial, lars, lars2, lasso, lda, lda2, leapBackward,

leapForward, leapSeq, Linda, lm, lmStepAIC, LMT, loclda, logicBag, LogitBoost, logreg,

lssvmLinear, lssvmPoly, lssvmRadial, lvq, M5, M5Rules, manb, mda, Mlda, mlp, mlpKerasDecay,

mlpKerasDecayCost, mlpKerasDropout, mlpKerasDropoutCost, mlpML, mlpSGD, mlpWeightDecay,

mlpWeightDecayML, monmlp, msaenet, multinom, mxnet, mxnetAdam, naive_bayes, nb, nbDiscrete,

nbSearch, neuralnet, nnet, nnls, nodeHarvest, null, OneR, ordinalNet, ORFlog, ORFpls,

ORFridge, ORFsvm, ownn, pam, parRF, PART, partDSA, pcaNNet, pcr, pda, pda2, penalized,

PenalizedLDA, plr, pls, plsRglm, polr, ppr, PRIM, protoclass, pythonKnnReg, qda, QdaCov, qrf,

qrnn, randomGLM, ranger, rbf, rbfDDA, Rborist, rda, regLogistic, relaxo, rf, rFerns, RFlda,

rfRules, ridge, rlda, rlm, rmda, rocc, rotationForest, rotationForestCp, rpart, rpart1SE,

rpart2, rpartCost, rpartScore, rqlasso, rqnc, RRF, RRFglobal, rrlda, RSimca, rvmLinear,

rvmPoly, rvmRadial, SBC, sda, sdwd, simpls, SLAVE, slda, smda, snn, sparseLDA, spikeslab,

spls, stepLDA, stepQDA, superpc, svmBoundrangeString, svmExpoString, svmLinear, svmLinear2,

svmLinear3, svmLinearWeights, svmLinearWeights2, svmPoly, svmRadial, svmRadialCost,

svmRadialSigma, svmRadialWeights, svmSpectrumString, tan, tanSearch, treebag, vbmpRadial,

vglmAdjCat, vglmContRatio, vglmCumulative, widekernelpls, WM, wsrf, xgbDART, xgbLinear, xgbTree,

xyf'

Each of those is a machine learning algorithm caret supports.

Yes, it’s a huge list!

And if you want to know more details like the hyperparameters and if it can be used of regression or classification
problem, then do a modelLookup(algo) .

Once you have chosen an algorithm, building the model is fairly easy using the train() function.

Let’s train a Multivariate Adaptive Regression Splines (MARS) model by setting the method='earth' .

The MARS algorithm was named as ‘earth’ in R because of a possible trademark conflict with Salford Systems.
May be a rumor. Or not.

modelLookup('earth')

11/24

model parameter label forReg forClass probModel

earth nprune #Terms TRUE TRUE TRUE

earth degree Product Degree TRUE TRUE TRUE

Set the seed for reproducibility

set.seed(100)

Train the model using randomForest and predict on the training data itself.

model_mars = train(Purchase ~ ., data=trainData, method='earth')

fitted <- predict(model_mars)

But you may ask how is using train() different from using the algorithm’s function directly?

The difference is, besides building the model train() does multiple other things like:

1. Cross validating the model
2. Tune the hyper parameters for optimal model performance
3. Choose the optimal model based on a given evaluation metric
4. Preprocess the predictors (what we did so far using preProcess())

The train function also accepts the arguments used by the algorithm specified in the method argument.

Now let’s see what the train() has generated.

model_mars

Multivariate Adaptive Regression Spline

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 857, 857, 857, 857, 857, 857, ...

Resampling results across tuning parameters:

 nprune Accuracy Kappa

 2 0.8013184 0.5746285

 10 0.8102610 0.5987447

 19 0.8103685 0.5986923

Tuning parameter 'degree' was held constant at a value of 1

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were nprune = 19 and degree = 1.

You can see what is the Accuracy and Kappa for various combinations of the hyper parameters –
interaction.depth and n.trees . And it says ‘Resampling: Bootstrapped (25 reps)’ with a summary of

sample sizes.

Looks like train() has already done a basic cross validation and hyper parameter tuning. And that is the
default behaviour.

The chosen model and its parameters is reported in the last 2 lines of the output.

When we used model_mars to predict the Y, this final model was automatically used by predict() to compute
the predictions.

Plotting the model shows how the various iterations of hyperparameter search performed.

plot(model_mars, main="Model Accuracies with MARS")

Caret Package – A Practical Guide to Machine Learning in R

Model Accuracy – MARS

12/24

6.2 How to compute variable importance?
Excellent, since MARS supports computing variable importances, let’s extract the variable importances using
varImp() to understand which variables came out to be useful.

varimp_mars <- varImp(model_mars)

plot(varimp_mars, main="Variable Importance with MARS")

Caret Package – A Practical Guide to Machine Learning in R

Feature Importance MARS

As suspected, LoyalCH was the most used variable, followed by PriceDiff and StoreID .

6.3. Prepare the test dataset and predict
A default MARS model has been selected.

Now in order to use the model to predict on new data, the data has to be preprocessed and transformed just the
way we did on the training data.

Thanks to caret, all the information required for pre-processing is stored in the respective preProcess model and
dummyVar model.

If you recall, we did the pre-processing in the following sequence:

Missing Value imputation –> One-Hot Encoding –> Range Normalization

You need to pass the testData through these models in the same sequence:

preProcess_missingdata_model –> dummies_model –> preProcess_range_model

Step 1: Impute missing values

testData2 <- predict(preProcess_missingdata_model, testData)

Step 2: Create one-hot encodings (dummy variables)

testData3 <- predict(dummies_model, testData2)

Step 3: Transform the features to range between 0 and 1

testData4 <- predict(preProcess_range_model, testData3)

View

head(testData4[, 1:10])

WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH SpecialMM LoyalCH SalePriceMM

2 0.23529412 0 0.150 0.5000000 0.00 0.375 0 1 0.6000352 0.4545455

3 0.35294118 0 0.425 0.6666667 0.34 0.000 0 0 0.6800414 0.8181818

6 0.05882353 1 0.000 0.5000000 0.00 0.000 0 1 0.9652913 0.7272727

7 0.09803922 1 0.000 0.5000000 0.00 0.500 1 1 0.9722459 0.3636364

9 0.15686275 1 0.150 0.5000000 0.00 0.500 0 0 0.9822616 0.3636364

13 0.96078431 1 0.750 0.7333333 0.00 0.675 0 1 0.9927734 0.3636364

6.4. Predict on testData
The test dataset is prepared. Let’s predict the Y.

Predict on testData

predicted <- predict(model_mars, testData4)

head(predicted)

1. CH

13/24

2. CH
3. CH
4. CH
5. CH
6. MM

6.5. Confusion Matrix
The confusion matrix is a tabular representation to compare the predictions (data) vs the actuals (reference
). By setting mode='everything' pretty much most classification evaluation metrics are computed.

Compute the confusion matrix

confusionMatrix(reference = testData$Purchase, data = predicted, mode='everything', positive='MM')

Confusion Matrix and Statistics

 Reference

Prediction CH MM

 CH 113 21

 MM 17 62

 Accuracy : 0.8216

 95% CI : (0.7635, 0.8705)

 No Information Rate : 0.6103

 P-Value [Acc > NIR] : 2.139e-11

 Kappa : 0.6216

 Mcnemar's Test P-Value : 0.6265

 Sensitivity : 0.7470

 Specificity : 0.8692

 Pos Pred Value : 0.7848

 Neg Pred Value : 0.8433

 Precision : 0.7848

 Recall : 0.7470

 F1 : 0.7654

 Prevalence : 0.3897

 Detection Rate : 0.2911

 Detection Prevalence : 0.3709

 Balanced Accuracy : 0.8081

 'Positive' Class : MM

You have an overall accuracy of 80.28%.

7. How to do hyperparameter tuning to optimize the model for better
performance?
There are two main ways to do hyper parameter tuning using the train() :

1. Set the tuneLength
2. Define and set the tuneGrid

tuneLength corresponds to the number of unique values for the tuning parameters caret will consider while
forming the hyper parameter combinations.

Caret will automatically determine the values each parameter should take.

Alternately, if you want to explicitly control what values should be considered for each parameter, then, you can
define the tuneGrid and pass it to train() .

Let’s see an example of both these approaches but first let’s setup the trainControl() .

7.1. Setting up the trainControl()
14/24

https://hk.saowen.com/rd/aHR0cHM6Ly93d3cubWFjaGluZWxlYXJuaW5ncGx1cy5jb20vZXZhbHVhdGlvbi1tZXRyaWNzLWNsYXNzaWZpY2F0aW9uLW1vZGVscy1yLw==

The train() function takes a trControl argument that accepts the output of trainControl() .

Inside trainControl() you can control how the train() will:

1. Cross validation method to use.
2. How the results should be summarised using a summary function

Cross validation method can be one amongst:

‘boot’: Bootstrap sampling
‘boot632’: Bootstrap sampling with 63.2% bias correction applied
‘optimism_boot’: The optimism bootstrap estimator
‘boot_all’: All boot methods.
‘cv’: k-Fold cross validation
‘repeatedcv’: Repeated k-Fold cross validation
‘oob’: Out of Bag cross validation
‘LOOCV’: Leave one out cross validation
‘LGOCV’: Leave group out cross validation

The summaryFunction can be twoClassSummary if Y is binary class or multiClassSummary if the Y has more
than 2 categories.

By settiung the classProbs=T the probability scores are generated instead of directly predicting the class based
on a predetermined cutoff of 0.5.

Define the training control

fitControl <- trainControl(

 method = 'cv', # k-fold cross validation

 number = 5, # number of folds

 savePredictions = 'final', # saves predictions for optimal tuning parameter

 classProbs = T, # should class probabilities be returned

 summaryFunction=twoClassSummary # results summary function

)

7.2 Hyper Parameter Tuning using tuneLength
Let’s take the train() function we used before, plus, additionally set the tuneLength , trControl and
metric .

Step 1: Tune hyper parameters by setting tuneLength

set.seed(100)

model_mars2 = train(Purchase ~ ., data=trainData, method='earth', tuneLength = 5, metric='ROC',

trControl = fitControl)

model_mars2

Step 2: Predict on testData and Compute the confusion matrix

predicted2 <- predict(model_mars2, testData4)

confusionMatrix(reference = testData$Purchase, data = predicted2, mode='everything', positive='MM')

15/24

Multivariate Adaptive Regression Spline

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 685, 685, 687, 686, 685

Resampling results across tuning parameters:

 nprune ROC Sens Spec

 2 0.8745398 0.8700916 0.7006784

 6 0.8912361 0.8719414 0.7334238

 10 0.8879988 0.8623626 0.7423790

 14 0.8879988 0.8623626 0.7423790

 19 0.8879846 0.8661722 0.7483492

Tuning parameter 'degree' was held constant at a value of 1

ROC was used to select the optimal model using the largest value.

The final values used for the model were nprune = 6 and degree = 1.

7.3. Hyper Parameter Tuning using tuneGrid
Alternately, you can set the tuneGrid instead of tuneLength .

Step 1: Define the tuneGrid

marsGrid <- expand.grid(nprune = c(2, 4, 6, 8, 10),

 degree = c(1, 2, 3))

Step 2: Tune hyper parameters by setting tuneGrid

set.seed(100)

model_mars3 = train(Purchase ~ ., data=trainData, method='earth', metric='ROC', tuneGrid = marsGrid,

trControl = fitControl)

model_mars3

Step 3: Predict on testData and Compute the confusion matrix

predicted3 <- predict(model_mars3, testData4)

confusionMatrix(reference = testData$Purchase, data = predicted3, mode='everything', positive='MM')

16/24

Multivariate Adaptive Regression Spline

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 685, 685, 687, 686, 685

Resampling results across tuning parameters:

 degree nprune ROC Sens Spec

 1 2 0.8745398 0.8700916 0.7006784

 1 4 0.8924657 0.8662454 0.7394844

 1 6 0.8912361 0.8719414 0.7334238

 1 8 0.8886974 0.8661722 0.7334238

 1 10 0.8879988 0.8623626 0.7423790

 2 2 0.8745398 0.8700916 0.7006784

 2 4 0.8953757 0.8739377 0.7454998

 2 6 0.8917824 0.8681868 0.7515152

 2 8 0.8904559 0.8624359 0.7574401

 2 10 0.8932377 0.8547436 0.7784261

 3 2 0.8582783 0.8777106 0.6618725

 3 4 0.8914544 0.8662454 0.7544550

 3 6 0.8910605 0.8586264 0.7665310

 3 8 0.8838647 0.8452015 0.7456355

 3 10 0.8827056 0.8471062 0.7426504

ROC was used to select the optimal model using the largest value.

The final values used for the model were nprune = 4 and degree = 2.

8. How to evaluate performance of multiple machine learning algorithms?
Caret provides the resamples() function where you can provide multiple machine learning models and
collectively evaluate them.

Let’s first train some more algorithms.

8.1. Training Adaboost

set.seed(100)

Train the model using adaboost

model_adaboost = train(Purchase ~ ., data=trainData, method='adaboost', tuneLength=2, trControl =

fitControl)

model_adaboost

AdaBoost Classification Trees

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 685, 685, 687, 686, 685

Resampling results across tuning parameters:

 nIter method ROC Sens Spec

 50 Adaboost.M1 0.8657598 0.8070330 0.7635007

 50 Real adaboost 0.6884169 0.8356410 0.7275441

 100 Adaboost.M1 0.8638731 0.8127839 0.7515604

 100 Real adaboost 0.6572239 0.8432784 0.7305292

ROC was used to select the optimal model using the largest value.

The final values used for the model were nIter = 50 and method = Adaboost.M1.

17/24

8.2. Training Random Forest

set.seed(100)

Train the model using rf

model_rf = train(Purchase ~ ., data=trainData, method='rf', tuneLength=5, trControl = fitControl)

model_rf

Random Forest

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 685, 685, 687, 686, 685

Resampling results across tuning parameters:

 mtry ROC Sens Spec

 2 0.8677768 0.8853297 0.6526006

 6 0.8783062 0.8643407 0.7335595

 10 0.8763244 0.8528755 0.7335595

 14 0.8764471 0.8509707 0.7394844

 18 0.8756972 0.8432784 0.7515604

ROC was used to select the optimal model using the largest value.

The final value used for the model was mtry = 6.

8.3. Training xgBoost Dart

set.seed(100)

Train the model using MARS

model_xgbDART = train(Purchase ~ ., data=trainData, method='xgbDART', tuneLength=5, trControl =

fitControl, verbose=F)

model_xgbDART

18/24

eXtreme Gradient Boosting

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 685, 685, 687, 686, 685

Resampling results across tuning parameters:

 max_depth eta rate_drop skip_drop subsample colsample_bytree nrounds

 1 0.3 0.01 0.05 0.500 0.6 50

 1 0.3 0.01 0.05 0.500 0.6 100

 1 0.3 0.01 0.05 0.500 0.6 150

 1 0.3 0.01 0.05 0.500 0.6 200

 1 0.3 0.01 0.05 0.500 0.6 250

 1 0.3 0.01 0.05 0.500 0.8 50

 1 0.3 0.01 0.05 0.500 0.8 100

 1 0.3 0.01 0.05 0.500 0.8 150

 1 0.3 0.01 0.05 0.500 0.8 200

 1 0.3 0.01 0.05 0.500 0.8 250

 1 0.3 0.01 0.05 0.625 0.6 50

 (..truncated..)

Tuning parameter 'gamma' was held constant at a value of 0

Tuning

 parameter 'min_child_weight' was held constant at a value of 1

ROC was used to select the optimal model using the largest value.

The final values used for the model were nrounds = 200, max_depth = 2, eta

 = 0.3, gamma = 0, subsample = 1, colsample_bytree = 0.6, rate_drop =

 0.5, skip_drop = 0.05 and min_child_weight = 1.

8.4. Training SVM

set.seed(100)

Train the model using MARS

model_svmRadial = train(Purchase ~ ., data=trainData, method='svmRadial', tuneLength=15, trControl =

fitControl)

model_svmRadial

19/24

Support Vector Machines with Radial Basis Function Kernel

857 samples

 18 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 685, 685, 687, 686, 685

Resampling results across tuning parameters:

 C ROC Sens Spec

 0.25 0.8858137 0.8775824 0.7213930

 0.50 0.8907736 0.8814469 0.7363636

 1.00 0.8888077 0.8852930 0.7333786

 2.00 0.8864533 0.8680952 0.7305292

 4.00 0.8832598 0.8719048 0.7335142

 8.00 0.8773941 0.8681502 0.7275441

 16.00 0.8719099 0.8623626 0.7245138

 32.00 0.8684735 0.8661905 0.6886929

 64.00 0.8583358 0.8700366 0.6946630

 128.00 0.8481861 0.8681136 0.6856174

 256.00 0.8365898 0.8719414 0.6647218

 512.00 0.8246331 0.8719414 0.6436906

 1024.00 0.8174809 0.8757326 0.6228856

 2048.00 0.8147110 0.8949084 0.5629579

 4096.00 0.8113213 0.9043956 0.5418363

Tuning parameter 'sigma' was held constant at a value of 0.06414448

ROC was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.06414448 and C = 0.5.

8.5. Run resamples() to compare the models

Compare model performances using resample()

models_compare <- resamples(list(ADABOOST=model_adaboost, RF=model_rf, XGBDART=model_xgbDART,

MARS=model_mars3, SVM=model_svmRadial))

Summary of the models performances

summary(models_compare)

20/24

Call:

summary.resamples(object = models_compare)

Models: ADABOOST, RF, XGBDART, MARS, SVM

Number of resamples: 5

ROC

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

ADABOOST 0.8126510 0.8462687 0.8682549 0.8657598 0.8868515 0.9147727 0

RF 0.8203269 0.8584932 0.8894948 0.8783062 0.9061123 0.9171037 0

XGBDART 0.8618337 0.8656716 0.9142509 0.8980115 0.9169580 0.9313433 0

MARS 0.8520967 0.8660981 0.9091561 0.8953757 0.9118590 0.9376688 0

SVM 0.8537313 0.8728500 0.8903559 0.8907736 0.9053030 0.9316276 0

Sens

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

ADABOOST 0.7619048 0.7904762 0.7904762 0.8070330 0.8076923 0.8846154 0

RF 0.8285714 0.8380952 0.8557692 0.8643407 0.8761905 0.9230769 0

XGBDART 0.8190476 0.8476190 0.8571429 0.8586081 0.8653846 0.9038462 0

MARS 0.8190476 0.8476190 0.8857143 0.8739377 0.8942308 0.9230769 0

SVM 0.8653846 0.8761905 0.8857143 0.8814469 0.8857143 0.8942308 0

Spec

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

ADABOOST 0.7014925 0.7462687 0.7727273 0.7635007 0.7761194 0.8208955 0

RF 0.6417910 0.7313433 0.7313433 0.7335595 0.7424242 0.8208955 0

XGBDART 0.6417910 0.7313433 0.7462687 0.7515604 0.7727273 0.8656716 0

MARS 0.6567164 0.7164179 0.7313433 0.7454998 0.7424242 0.8805970 0

SVM 0.6417910 0.6818182 0.7313433 0.7363636 0.7462687 0.8805970 0

Let’s plot the resamples summary output.

Draw box plots to compare models

scales <- list(x=list(relation="free"), y=list(relation="free"))

bwplot(models_compare, scales=scales)

Caret Package – A Practical Guide to Machine Learning in R

Caret Package – A Practical Guide to Machine Learning in R

In the above output you can see clearly how the algorithms performed in terms of ROC, Specificity and Sensitivity
and how consistent has it been.

The xgbDART model appears to be the be best performing model overall because of the high ROC. But if you
need a model that predicts the positives better, you might want to consider MARS, given its high sensitivity.

Either way, you can now make an informed decision on which model to pick.

9. Ensembling the predictions

9.1. How to ensemble predictions from multiple models using
caretEnsemble?
So we have predictions from multiple individual models. To do this we had to run the train() function once for
each model, store the models and pass it to the res

The caretEnsemble package lets you do just that.

All you have to do is put the names of all the algorithms you want to run in a vector and pass it to
caretEnsemble::caretList() instead of caret::train() .

21/24

library(caretEnsemble)

Stacking Algorithms - Run multiple algos in one call.

trainControl <- trainControl(method="repeatedcv",

 number=10,

 repeats=3,

 savePredictions=TRUE,

 classProbs=TRUE)

algorithmList <- c('rf', 'adaboost', 'earth', 'xgbDART', 'svmRadial')

set.seed(100)

models <- caretList(Purchase ~ ., data=trainData, trControl=trainControl, methodList=algorithmList)

results <- resamples(models)

summary(results)

Call:

summary.resamples(object = results)

Models: rf, adaboost, earth, xgbDART, svmRadial

Number of resamples: 30

Accuracy

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

rf 0.7126437 0.7764706 0.7965116 0.7990467 0.8235294 0.9058824 0

adaboost 0.6823529 0.7674419 0.7906977 0.7966532 0.8328659 0.8941176 0

earth 0.7209302 0.7906977 0.8187415 0.8164175 0.8367305 0.8604651 0

xgbDART 0.7441860 0.8023256 0.8303694 0.8316063 0.8575581 0.8953488 0

svmRadial 0.7764706 0.8028936 0.8362517 0.8308446 0.8604651 0.8941176 0

Kappa

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

rf 0.3733794 0.5051521 0.5504351 0.5639658 0.6253768 0.8040346 0

adaboost 0.3349754 0.5046620 0.5686668 0.5711983 0.6423870 0.7831018 0

earth 0.4102857 0.5609657 0.6148850 0.6095470 0.6580869 0.7147595 0

xgbDART 0.4703247 0.5796222 0.6451845 0.6437736 0.7025532 0.7777140 0

svmRadial 0.5134008 0.5817176 0.6464787 0.6388747 0.7026175 0.7758570 0

Plot the resamples output to compare the models.

Box plots to compare models

scales <- list(x=list(relation="free"), y=list(relation="free"))

bwplot(results, scales=scales)

Caret Package – A Practical Guide to Machine Learning in R

Caret Package – A Practical Guide to Machine Learning in R

Excellent! It is possible for further tune the model within caretList in a customised way.

9.2. How to combine the predictions of multiple models to form a final
prediction
That one function simplified a whole lot of work in one line of code.

Here is another thought: Is it possible to combine these predicted values from multiple models somehow and
make a new ensemble that predicts better?

Turns out this can be done too, using the caretStack() . You just need to make sure you don’t use the same
trainControl you used to build the models .

22/24

https://hk.saowen.com/rd/aHR0cHM6Ly9jcmFuLnItcHJvamVjdC5vcmcvd2ViL3BhY2thZ2VzL2NhcmV0RW5zZW1ibGUvdmlnbmV0dGVzL2NhcmV0RW5zZW1ibGUtaW50cm8uaHRtbA==

Create the trainControl

set.seed(101)

stackControl <- trainControl(method="repeatedcv",

 number=10,

 repeats=3,

 savePredictions=TRUE,

 classProbs=TRUE)

Ensemble the predictions of `models` to form a new combined prediction based on glm

stack.glm <- caretStack(models, method="glm", metric="Accuracy", trControl=stackControl)

print(stack.glm)

A glm ensemble of 2 base models: rf, adaboost, earth, xgbDART, svmRadial

Ensemble results:

Generalized Linear Model

2571 samples

 5 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 3 times)

Summary of sample sizes: 2314, 2314, 2314, 2314, 2313, 2313, ...

Resampling results:

 Accuracy Kappa

 0.8310751 0.6405773

A point to consider: The ensembles tend to perform better if the predictions are less correlated with each other.

So you may want to try passing different types of models, both high and low performing rather than just stick to
passing high accuracy models to the caretStack.

print(stack.glm)

A glm ensemble of 2 base models: rf, adaboost, earth, xgbDART, svmRadial

Ensemble results:

Generalized Linear Model

2571 samples

 5 predictor

 2 classes: 'CH', 'MM'

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 3 times)

Summary of sample sizes: 2314, 2314, 2314, 2314, 2313, 2313, ...

Resampling results:

 Accuracy Kappa

 0.8310751 0.6405773

Predict on testData

stack_predicteds <- predict(stack.glm, newdata=testData4)

head(stack_predicteds)

1. CH
2. CH
3. CH
4. CH
5. CH
6. MM

10. Conclusion

23/24

The purpose of this post was to cover the core pieces of the caret package and how you can effectively use it to
build machine learning models.

This information should serve as a reference and also as a template you can use to build a standardised machine
learning workflow, so you can develop it further from there.

24/24

	Caret Package – A Practical Guide to Machine Learning in R
	Contents
	1. Introduction
	2. Initial Setup – load the package and dataset
	3. Data Preparation and Preprocessing
	3.1. How to split the dataset into training and validation?
	3.2 Descriptive statistics
	3.3 How to impute missing values using preProcess()?
	3.4 How to create One-Hot Encoding (dummy variables)?
	3.5 How to preprocess to transform the data?
	4. How to visualize the importance of variables using featurePlot()
	5. How to do feature selection using recursive feature elimination (rfe)?
	6. Training and Tuning the model
	6.1. How to train() the model and interpret the results?
	6.2 How to compute variable importance?
	6.3. Prepare the test dataset and predict
	Missing Value imputation –> One-Hot Encoding –> Range Normalization

	6.4. Predict on testData
	6.5. Confusion Matrix
	7. How to do hyperparameter tuning to optimize the model for better performance?
	7.1. Setting up the trainControl()
	7.2 Hyper Parameter Tuning using tuneLength
	7.3. Hyper Parameter Tuning using tuneGrid
	8. How to evaluate performance of multiple machine learning algorithms?
	8.1. Training Adaboost
	8.2. Training Random Forest
	8.3. Training xgBoost Dart
	8.4. Training SVM
	8.5. Run resamples() to compare the models
	9. Ensembling the predictions
	9.1. How to ensemble predictions from multiple models using caretEnsemble?
	9.2. How to combine the predictions of multiple models to form a final prediction
	10. Conclusion

