
Appendix A
Data collecting software
installation guide

No previous research described the experiment design in detail, to aid in research dissem-
ination this step-by-step guide covering how to install the data collecting system used in
this thesis was written. There are often many ways of installing and running software. The
steps described in this appendix are the ones that worked for the author, and hopefully,
they will work for the reader as well. Good Luck!

1. Set up the Plugwise system on a Windows machine to make sure the plugs and the
Plugwise Stick is working correctly.

2. Make a spreadsheet of the MAC-addresses and corresponding given plug numbers,
names, locations, type and a short version of the MAC A.1.

MAC Plug number Name Location Type Short MAC
000D6F0003BD6969 01 Electric heater Andre Bedroom Circle BD6969
000D6F0003BD8974 02 Water Heater Shed/Storeroom Circle BD8974
000D6F0002C0DDDB 03 Oven Kitchen Circle C0DDDB
000D6F000416DD83 04 TV Livingroom Circle 16DD83
000D6F0003BD5FE2 05 Coffee Maker Shed/Storeroom Circle BD5FE2
000D6F0003561FC7 06 Electric kettle Kitchen Circle 561FC7
000D6F0004B1EC41 07 Electric heater salong Livingroom Circle B1EC41
000D6F0002C0E746 08 Microwave oven Kitchen Circle C0E746
000D6F0000469B3E 09 Electric heater terrace Livingroom Circle+ 469B3E
000D6F0004B613A8 10 Dishwasher Kitchen Circle B613A8
000D6F0004A29FA3 11 Refrigerator Kitchen Circle A29FA3
000D6F0002C0EFF3 12 Washing machine Shed/Storeroom Circle C0EFF3

Table A.1: Smart Plug details in experiment.

3. Use a Raspberry Pi with a correct power supply to make sure it runs as it should. If
a power supply with lower power is used, the CPU will be throttled.

4. Use a high class SD card that will not throttle the Raspberry Pi’s performance.

71

5. Download an operating system for the Raspberry Pi. In my case i used the Raspian
Stretch Desktop (https://www.raspberrypi.org/downloads/raspbian/)

6. Flash the SD-card with the OS just downloaded using Etcher (https://www.balena.io/etcher/)

7. Plug the SD-card into the Raspberry Pi and connect a keyboard, mouse, Ethernet
internet or WiFi dongle and a display for initial setup.

8. In the desktop menu, open "Raspberry Pi Configuration". Under "Interfaces", enable
SSH and VNC for best remote access.You should also change the default password
to a more secure one.

9. Download and install RealVNC (https://www.realvnc.com/en/connect/
download/vnc/). Open RealVNC and configure a remote connection to the
Raspberry Pi. Since I have not configured a static IP-address I made a free account
and made the Raspberry Pi accessible through their cloud service.

10. To connect to the Raspberry Pi within your local network, go to terminal and type
one of the two commands:

$ ssh pi@<raspberry ip>
$ ssh pi@raspberrypi.local

Then log in with your password.

11. To enable file sharing on the Raspberry Pi, follow this guide (http://raspberrypituts.
com/access-raspberry-pi-files-in-your-os-x-finder/)

$ sudo apt-get install netatalk
$ ifconfig
$ open afp://192.168.0.10

12. Plugwise-2-py (https://github.com/SevenW/Plugwise-2-py)

13. Installing the software. To make it easier for yourself, install it in the /home/pi
folder.

$ sudo python get-pip.py
$ git clone https://github.com/SevenW/Plugwise-2-py.git
$ cd Plugwise-2-py
$ sudo pip install .

14. Moving the config-files. From Plugwise-2-py folder, copy the config-files to the
main folder:

$ cp -n config-default/pw-hostconfig.json config/
$ cp -n config-default/pw-control.json config/
$ cp -n config-default/pw-conf.json config/

15. Configuring pw-hostconfig.json:

72

https://www.realvnc.com/en/connect/download/vnc/
https://www.realvnc.com/en/connect/download/vnc/
http://raspberrypituts.com/access-raspberry-pi-files-in-your-os-x-finder/
http://raspberrypituts.com/access-raspberry-pi-files-in-your-os-x-finder/

• Open the config/pw-hostconfig.json and check if it has the correct paths.

• If Plugwise-2-py was installed in the /home/pi the file should be contain the
right path:

{"permanent_path":"/home/pi/datalog","tmp_path":"/tmp","log_path":"/home/pi/pwlog",
"serial":"/dev/ttyUSB0","log_format":"epoch","mqtt_ip":"127.0.0.1","mqtt_port":"1883"}

Note that:

• "Serial" might not point to the Plugwise stick in all cases. Check therefore if
this is correct for you.

• To enable MQTT messaging later the "log_format", "mqtt_ip" and "mqtt_port"
is added.

• Editing JSON files is error-prone. Use a JSON Validator such as http://jsonlint.com/
to check the config files.

16. Configuring pw-conf.json:

• Here you add the plugs values created in step 1.

• Be sure to use the JSON Validator!

• Example data:

{"static": [
{"mac":"000D6F0003BD5FE2","category":"Coffee-maker","name":"Coffee-maker",
"loginterval":"60","always_on":"False","production":"False","location":"Shed/Storeroom"},
{"mac":"000D6F0004B613A8","category":"Dishwasher","name":"Dishwasher",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0003BD6969","category":"Electric heater","name":"Electric heater Andre",
"loginterval":"60","always_on":"False","production":"False","location":"Bedroom Andre"},
{"mac":"000D6F0004B1EC41","category":"Electric heater","name":"Electric heater salong",
"loginterval":"60","always_on":"False","production":"False","location":"Living room"},
{"mac":"000D6F0000469B3E","category":"Electric heater","name":"Electric heater terrace",
"loginterval":"60","always_on":"False","production":"False","location":"Living room"},
{"mac":"000D6F0003561FC7","category":"Electric kettle","name":"Electric kettle",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0002C0E746","category":"Microwave oven","name":"Microwave oven",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0002C0DDDB","category":"Oven", "name":"Oven",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0004A29FA3","category":"Refrigerator","name":"Refrigerator",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F000416DD83","category":"TV","name":"TV",
"loginterval":"60","always_on":"False","production":"False","location":"Living room"},
{"mac":"000D6F0002C0EFF3","category":"Washing machine","name":"Washing machine",
"loginterval":"60","always_on":"False","production":"False","location":"Shed/Storeroom"},
{"mac":"000D6F0003BD8974","category":"Water heater vessel","name":"Water heater vessel",
"loginterval":"60","always_on":"False","production":"False","location":"Shed/Storeroom"}
]}

17. Configuring pw-control.json: - Here you also plug in values from step 1. - Be sure
to use the JSON Validator! - Example data:

{"dynamic": [
{"mac": "000D6F0003BD5FE2", "switch_state": "on", "name":"Coffee-maker",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0004B613A8", "switch_state": "on", "name":"Dishwasher",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},

73

{"mac": "000D6F0003BD6969", "switch_state": "on", "name":"Electric heater Andre",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0004B1EC41", "switch_state": "on", "name":"Electric heater salong",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0000469B3E", "switch_state": "on", "name":"Electric heater terrace",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0003561FC7", "switch_state": "on", "name":"Electric kettle",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0002C0E746", "switch_state": "on", "name":"Microwave oven",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0002C0DDDB", "switch_state": "on", "name":"Oven",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0004A29FA3", "switch_state": "on", "name":"Refrigerator",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F000416DD83", "switch_state": "on", "name":"TV",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0002C0EFF3", "switch_state": "on", "name":"Washing machine",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0003BD8974", "switch_state": "on", "name":"Water heater vessel",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"}
], "log_level": "info", "log_comm": "no"}

18. Running plugwise-2-py: - To run, type the following in terminal (Plugwise-2-py
main directory):

$ sudo python Plugwise-2.py

- The first time it runs it collects the buffered data from the plugs. This might take
minutes, or hours. You can watch the progress by tailing the log:

$ tail -f /home/pi/pwlog/pw-logger.log

or look at the files updating in the Plugwise-2-py folder.

19. To run the web interface, type in terminal (Plugwise-2-py main directory):

$ sudo python Plugwise-2-web.py

- You can access the web interface at http://localhost:8000/pw2py.html.
I got the web interface running, but at this point it didn’t update the values. The val-
ues showed up after implementing the MQTT service. - Beacuase of the changes
in sockets, the smart plug values might not show up in Safari web browser until the
protocol version in modified in swutil/HTTPWebSocketsHandler.py: After the line
with

"_opcode_pong = 0xa"

add

"protocol_version = 'HTTP/1.1'"

and restart Plugwise-2-web.py

20. Check the log-files to see if you receive data - If you receive data and the system is
initialized correctly the following log files should be updated:

• /home/pi/datalog/2018/pwact/pwact-2018-10-25-000D6F0003BD6969.log (One
file per plug per day)

74

http://localhost:8000/pw2py.html

• /home/pi/datalog/2018/pwlog/pw-000D6F0002C0E746.log (One file per de-
vice)

• /home/pi/datalog/pwlastlog.log (Contains the last values for each device)

• /home/pi/pwlog/pw-logger.log (Logs the logging, should say save log for each
device)

• /home/pi/pwlog/pw-web.log (Logs the web-interface, should be filled with
MQTT-messages after step XX)

21. Installing mosquitto

• The terminal line below did not work for me and I installed using this guide:
http://mosquitto.org/blog/2013/01/mosquitto-debian-repository/

$ sudo apt-get install mosquitto

22. Installing Domoticz is not necessary to collect the smart meter data. The Do-
motics installation was a source to great frustration because the message handling in
Plugwise-2-py. At the time of writing the thesis, none of the Domoticz versions 4.X
worked and it is therefore necessary to Install a 3.X version of the software. The
easiest way to find a previous version is to compile and make it yourself from their
github repo https://github.com/domoticz/domoticz. You might also
be able to find an installation file online at https://egregius.be/2018/
previous-domoticz-versions/. When installed and running, Domoticz
can be reached at: http://127.0.0.1:8080

23. Node-RED To send the values to Domoticz, you have to use Node-RED to relay the
messages from Plugwise-2-py.

(a) Install node.js
https://www.instructables.com/id/Install-Nodejs-and-Npm-on-Raspberry-Pi/

(b) Install Node-RED (urlhttps://nodered.org/docs/getting-started/installation)

(c) Run Node-RED in terminal:

$ node-red

(d) Access at http://<Raspberrypiip>:1880

(e) Configure the flow by going to the top right corner and choose "Import".
The standard flow is found in /home/pi/Plugwise-2-py/domoticz/plugwise2py-
domoticz.nodered. The modified version also saves to file is found here: https:
//github.com/powermundsen/thesis.

(f) Deploy! You should now see the messages being sent in the terminal. To
double check you can download a more graphical version like https://
mqttfx.jensd.de.

(g) To make Node-RED start at boot, do the following (https://nodered.
org/docs/hardware/raspberrypi)

75

http://mosquitto.org/blog/2013/01/mosquitto-debian-repository/
https://github.com/domoticz/domoticz
https://egregius.be/2018/previous-domoticz-versions/
https://egregius.be/2018/previous-domoticz-versions/
https://www.instructables.com/id/Install-Nodejs-and-Npm-on-Raspberry-Pi/
https://github.com/powermundsen/thesis
https://github.com/powermundsen/thesis
https://mqttfx.jensd.de
https://mqttfx.jensd.de
https://nodered.org/docs/hardware/raspberrypi
https://nodered.org/docs/hardware/raspberrypi

NOTE: Node-RED warns about errors when you try to deploy, these disappeared
when I clicked on the nodes and changed the server address. However, this is not a
problem because when set up correctly it will work either way.

NOTE 2: It became clear at a later point that the best way to log the consumption
is not in Domoticz, but directly in Node-RED. I expanded the flow above to do this
and it is saved as a new flow in the "Master" folder (scripts for) .

24. Connecting Domoticz and Node-RED

(a) Follow the guide in /home/pi/Plugwise-2-py/domoticz/README.md

(b) I have not yet gotten this connection to work but I can see that the messages
are being sent out on the network.

• To change the sampling time, change the following line in /home/pi/Plugwise-2-
py/Plugwise-2.py to the time you want:

proceed_at = ref + timedelta(seconds=(2 - ref.second%2), microseconds=-ref.microsecond)

NOTE: Even though the polling frequency was changed to 1 second, the values
received was usually between 2-3 seconds apart. I think this is because Plugwise-2-
py filters out duplicate messages.

• Make a backup of the Raspberry Pi disk:

1. Check disk utility to see which disk the Raspberry Pi SD card has

2. In terminal:

$ mkdir raspberry_backup
$ cd raspberry_backup/
$ sudo dd if=/dev/disk3 of=~/Desktop/raspberrypi.dmg

• Congratulations, the system should now be functional! When starting up, run the
following commands (in separate terminal windows):

$ sudo python /home/pi/Plugwise-2-py/Plugwise-2.py
$ sudo python /home/pi/Plugwise-2-py/Plugwise-2-web.py
$ node-red
$./domoticz_3.8153_linux_armv7l/domoticz

Note: In this experiment, the Raspberry Pi rebooted itself periodically. This was
circumvented by executing the commands on the Pi itself through VNC.

76

	Problem Description
	Acknowledgment
	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Previous Work
	Problem formulation
	Objectives
	Norwegian Smart Meters

	Outline

	Non-Intrusive Load Monitoring
	History of NILM
	The Essentials of NILM
	Evolution of NILM

	The Main Steps
	Device Signatures
	Advances in the Field
	Appliance Categories

	Evaluation framework and Disaggregation Algorithms
	Weiss' Algorithm
	Parson's Algorithm
	Baranski's Algorithm

	Accuracy Metrics

	Experimental Design
	Norwegian Household Experiment
	Initial Thoughts
	Choosing a Norwegian Household
	Choosing appliances

	Data
	Collecting Data

	Hardware
	Kaifa Smart Meter
	Plugwise System
	Hark Technologies EcoMonitor
	Raspberry Pi b+ 1.2v with microSD cars, WiFi USB dongle and power supply

	Software
	Plugwise Source
	Raspberian Jessie
	Plugwise-2-py
	Node-RED
	Matlab
	Data formatting to fit NILM-Eval

	Implementation
	Kaifa Smart Meter and EcoMonitor
	Plugwise
	Source
	Pictures of Installation

	Raspberry Pi
	Raspberian Jessie
	Plugwise-2-py
	Node-RED

	Data Formatting
	NILM-Eval

	Results
	Evaluation of the experiment
	Usability of the Weiss algorithm
	Finding the Signatures
	Fridge and TV
	Parameter Sensitivity
	Overall Performance

	Baranski and Voss
	Parameter Sensitivity
	Overall Performance

	Parson
	Fridge
	Water Heater
	Microwave oven
	Electric Heater Terrace
	Parameter Sensitivity
	Overall Performance

	Discussion
	Evaluating the Experiment as a whole
	Three phases and type of electric distribution to households
	Zero volts measured on phase 2 voltage
	Separating phase current loads

	Weiss
	Baranski
	Parson
	Training

	Tuning

	Conclusion
	Conclusions

	Bibliography
	Appendix A : Data collecting software installation guide
	Data collecting software installation guide
	Appendix B : Data formatting
	Data formatting
	Matlab Script for Data Formatting

