
A BRAG Guide to HPC

Ethan Goan

Contents

Preface 3

1 Introduction and Preliminaries 5

1.1 Getting HPC Access . 5

1.1.1 Mac and Linux . 5

1.1.2 Windows . 6

1.2 Once Logged In . 6

1.3 Transferring Files to HPC . 7

2 Submitting Jobs 8

2.1 Interactive Jobs . 8

2.2 Modules . 9

2.3 Installing R Packages . 11

2.4 Submitting Batch Jobs . 11

2.4.1 Installing More Packages . 13

2.4.2 Quick Note on Python . 14

1

2

3 Examples 14

3.1 Multicore Processing - Let the OS do the Hard Work 14

3.1.1 Tips for bulk Submitting Jobs 17

3.2 Multicore Processing - The Hard Way 18

4 Quick Guide 19

5 Other Tips 20

CONTENTS 3

Preface

As the size of data sets increase and models become increasingly complex, the need

for High Performance Computing (HPC) systems becomes increasingly prominent.

The purpose of this document is to provide a gentle introduction to using the High

Performance Computing (HPC) cluster from a statistical perspective. Sample scripts

and examples are provided, and intended to serve as a basis for any future work people

may need. From these examples provided in this guide, you will be able to modify

them to your need to make submitting jobs to HPC as easy as possible. It is hoped

that this document can serve as a reference guide, a first port of call to those who might

not be familiar with HPC and want to benefit from the facilities. It is also important

to note that the scheduler used at QUT is used extensively at many universities and

research facilities, so knowledge of QUT’s HPC system will extend much past QUT.

This guide will start with a brief introduction to UNIX like systems, and how to

navigate a command line. The guide will also show how you can bypass much of the

command line use, to remove as much prerequisite knowledge of UNIX as possible.

The HPC scheduler is then introduced, along with modules currently installed on the

cluster and how to access them. Sample scripts are provided with instructions on how

to submit both batch and interactive jobs. Instructions on how to customise your

personal environment and install your own packages is also provided. This guide will

primarily focus on programs written in R, though instructions can be followed with

only slight modifications for other platforms and languages such as MATLAB, Python

and Mathematica.

Additional tips and tricks to help get the most out of the cluster are also provided.

The tips include suggestions on how to (hopefully) simplify your HPC experience. This

will be demonstrated through sample scripts that you can run yourself.

From my experience, others have often already encountered and solved many of the

problems. I have also noticed that more often than not, others with more experience

have developed far more elegant solutions to the same problems I have faced. It is for

this reason that I have decided to make this document, to impart some of the knowledge

4

that others with considerably more experience have passed on to me. In this spirit,

I am happy for this to be a living document that all can edit, to provide your own

tips and tricks to solve potential problems you think others might encounter. Through

collaboration, we can all benefit from each others work and streamline our development

process, by not needlessly addressing a problem others have already solved.

1 INTRODUCTION AND PRELIMINARIES 5

1 Introduction and Preliminaries

The QUT HPC facilities provide access to,

• 212 compute nodes

• 3780 Intel Xeon Cores

• Approx. 200G B RAM per Compute Nodes

• 34 TB of main storage

• 1800 TB additional storage in file store

• 24 Tesla GPUs

• Visualisations services and more

1.1 Getting HPC Access

Before accessing HPC, you will first need to apply for access. This can be done via

HiQ by following the instructions on this link here. Access will usually be granted in

a couple of days at the most.

Once access has been granted, you will need a program to access HPC. If you are

using a Linux or Mac, you won’t need to install anything, though if you are using

Windows, it is recommended to use the program PuTTY [1]. Instructions on logging

in to HPC for each OS are given here.

1.1.1 Mac and Linux

To log into HPC, we will be using the Secure SHell (SSH) protocol, which we can

access through the command line on Mac and Linux devices. To login, first open a

command line prompt (terminal) in your computer. To login, you will simply need to

type in,

ssh <your_qut_id >@lyra.qut.edu.au

https://qutvirtual4.qut.edu.au/group/research-students/doing-your-research/specialty-research-facilities/apply-for-a-hpc-account

6

where you will replace <your_qut_id> with your QUT username, ie.

#if you applied for HPC access with staff acount

ssh jane. doe@lyra .qut.edu.au

#if you applied for HPC access with student acount

ssh n12345678@lyra .qut.edu.au

1.1.2 Windows

To login on windows, first install PuTTY by following the instructions here. Once

downloaded, simply open the putty window and enter lyra.qut.edu.au into the bar

as shown in Figure 1. You will then have to enter your QUT username and password.

Figure 1: Example PuTTY window

1.2 Once Logged In

After following the previous commands you will be logged into the head node of the

Lyra HPC cluster. Though you will now be logged in, you have not been allocated

any computational resources yet. The head node is available to all users once logged

https://www.putty.org/

1 INTRODUCTION AND PRELIMINARIES 7

in, and is designed for performing only simple tasks, such as text editing or checking

on currently running jobs.

1.3 Transferring Files to HPC

Now that you have access to HPC, you will want to transfer some code over so you

can start running some jobs. There are a few ways to do this, though this guide will

cover the easier/most prominent ways to do this.

To get your code onto HPC, I would recommend simply using Git and cloning your

repo onto HPC. If you are unsure on how to use Git, I would strongly recommend

you take some time to learn some basics and start using it for your software pro-

jects. Knowledge of Git is not required for this guide, but it will make your software

development life significantly better, and allow you to distribute your research much

easier.

You can clone your repo to HPC via the terminal that is connected to HPC by

simply running the command,

change to the home directory

git clone <remote_url_for_your_repo >

It is also helpful to be able to transfer other files to and from HPC. The easiest way

to do this is to mount a network directory, so you can copy and paste files to and from

HPC just like you would on your desktop/laptop. Instructions on how to do this for

Windows, Mac and Linux using SSHFS is provided here. After you install the required

programs, you can mount the directory creating a folder on your desktop where you

want to mount your HPC files by running the following command,

#all of this in a single line/ command

sshfs -o allow_other <your_qut_username >@lyra.qut.edu.au

:/ home/< your_qut_username > <

path_to_mount_location_on_desktop >

https://www.digitalocean.com/community/tutorials/how-to-use-sshfs-to-mount-remote-file-systems-over-ssh

8

2 Submitting Jobs

Whilst it may seem like ample resources are available, they are finite and accessed by

many people, thus access to these services needs to be managed. Access to computing

resources is scheduled by the Portable Batch System (PBS). Before you run any soft-

ware, you must tell the PBS manager what resources you require and how long you

will need them for. This is done by submitting jobs.

There are two main types of jobs you can submit to HPC; interactive and batch

jobs. Interactive jobs provide you with an active terminal similar to what you will

currently use on your desktop. Interactive jobs are useful for debugging and ensuring

all of your code can run.

Interactive jobs are often convenient, though you need to have your interactive

session open for the job to continue. Batch jobs are intended for jobs that will need

to run for longer, or when multiple jobs need to be submitted. Unlike interactive

jobs, after you submit a batch job, you can close your connection to HPC altogether,

go get a coffee, put your feet up and relax while your job processes on HPC in the

background.

We will first start with interactive jobs, and then show how we can move our work

to batch jobs later on.

2.1 Interactive Jobs

To submit a job to HPC, we use the qsub command, along with a few arguments to tell

the scheduler what resources we require, and how long we need them for. To submit

an interactive job, run the following command,

2 SUBMITTING JOBS 9

submit an interactive job to HPC

replace the HH:MM:SS with the amount of time you

expect your job to run

Replace XXX with the amount of RAM you need

Replace YYY with the number of CPUS you need

Replace ZZZ with the name of your job

#you can call it whatever you like :)

qsub -I -S /bin/bash -l walltime =HH:MM:SS ,mem=XXXg ,ncpus=

YYY -N ZZZ

Change the variables supplied here with the time and resources required for your work.

After running this command, you will have to wait for your requested resources to be

allocated to you. The time taken for your job to be accepted will depend on the

amount of resources you requested. If you asked for 8 GB of RAM, 2 CPUs for only

a couple hours, your job should be accepted within a minute or so. If you request 100

GB, 20 CPUs for 12 days, expect to wait a very long time for your interactive job to

be accepted1

2.2 Modules

Now that you have transferred your code across over to HPC and have been allocated

resources for a job, you can start loading and installing the required packages you

need. HPC has many programs already installed, though they aren’t initially loaded

when you log in. These pre-installed programs are stored as modules that need to be

first loaded before you can use them. To see the modules currently installed on HPC,

run the command,

#see what modules are available

module avail

1You can request these resources, but will need to submit a batch job.

10

From the output of this, you may begin to appreciate why not all of the packages are

loaded on startup, there is an awful lot of them. You can search through the output

to find any modules you are interested in. Once you have found the module you are

interested in, you can load it with the module load command. An example of common

modules that might be helpful are listed here.

#load in R

module load atg/R/3.4.1 - foss -2016a

#load MATLAB

#many different versions available

#only need to load one you need

module load matlab /2016a

module load matlab /2016b

module load matlab /2017b

#load mathematica

module load mathematica /11.2.0 - linux - x86_64

#load Python

#again many different versions available

module load python /2.7.13 - foss -2017a-foss

module load python /3.5.1 - foss -2016a

python /3.6.4 - intel -2017a

For this guide, we will use R as an example, though you can adapt it for other program-

ming languages with only small modification. So first we load in the R module with

module load atg/R/3.4.1-foss-2016a. Once loaded, you can start R by simply

typing R into the terminal.

2 SUBMITTING JOBS 11

2.3 Installing R Packages

If you try and run an R script now, you will likely find that it will throw an error saying

that a package isn’t available. The module we loaded before was the base R module,

and unfortunately there aren’t many R packages pre-installed on the Lyra cluster.

This isn’t a major limitation, we just need to install them ourselves. An pre-made R

script has already been made, install_r_packages.R, which will install many of the

common packages you will need. After you have cloned the example repository listed

earlier, you can run the script to install all of the base packages with these commands,

change to home directory

cd ~

git clone https :// github .com/ ethangoan / hpc_guide

change directory to the repo

cd hpc_guide

#now run the install script

Rscript install_r_packages .R

This will take a while to run (a few hours I think), so you can either leave your

terminal open and let the program run, or you can use the instructions in the next

section, where we will learn to submit a batch job that will install all of the packages

for you.

2.4 Submitting Batch Jobs

In the previous example, we saw how to submit an interactive job, load in R modules

and install some base packages in an interactive session. We can achieve this same

result by submitting a batch job, which will run on HPC without us having to intervene

and leave the terminal open. Batch jobs are useful for programs that require a long

time to run, since we can simply submit them and then forget about them (while they

running at least).

Like submitting an interactive job, we need to specify the time and computational

resources we require. Unlike interactive jobs, we specify these requirements through

12

a configuration file. In the guide repository, an example batch configurations script

called batch_jobs/install_packages_batch.sh is supplied. This is a Bash script

that is interpreted by the PBS scheduler, and specifies our requirements and which

program we want to run. Computational requirements are listed at the top of the file

in the commented out section. These are called the PBS directives.

#!/ usr/bin/env bash

#PBS -N install_packages

#PBS -l ncpus =1

#PBS -l mem =2GB

#PBS -l walltime =20:00:00

#PBS -o install_packages_stdout .out

#PBS -e install_packagesstderr .out

The main differences here is the first line which is called the Shebang. This MUST

be there in any batch configuration script, you will never need to change it. The

other differences is the last two lines, which specifies where standard output and error

messages will be written to.

Further down in the script you will see helper functions that will load all of the

modules we need (for this example we only need the R module) and a function which

invokes the R script to install the packages we need. These helper functions are called

at the end of the script when the job has been submitted and accepted by the scheduler.

We can submit this job using the following command,

2 SUBMITTING JOBS 13

#clone the guide repo into your home directory

#if you haven ’t already

cd ~

git clone https :// github .com/ ethangoan / hpc_guide

change into repo directory

cd ~/ hpc_guide

change to the directory where the config file is

cd ./ batch_jobs

submit the batch job with qsub

qsub install_packages_batch .sh

Once you have submitted the job, you can track all of your submitted jobs using the

command,

watch -n 1 qstat <your_QUT_username >

This will give you information on all the jobs you have submitted. You will be able to

see whether they have commenced running, or if they are still running and how long

they have been running for. Once the program has finished running, you can view the

output of the installation script with the cat command.

#check the output of the program

cat install_packages_stdout .out

#check the error log to see if anything went wrong

cat install_packages_stderr .out

2.4.1 Installing More Packages

While running this installation script will install many of the most common packages,

it is unlikely that it will install everything you require. To install more packages,

I would suggest modifying the instal_r_packages.R script to include packages to

want to install. There is a slight difference to installing packages when compared with

14

a typical desktop machine you own. Since you won’t have root/administrator access

on HPC, you will need to install the packages locally. The install_r_packages.R

installs the packages locally and sets the relevant path variables so that R can find the

packages we installed. To install more packages, simply edit the packages vector in

that script and resubmit the batch job using the same commands as before.

2.4.2 Quick Note on Python

While there aren’t many pre-installed packages for R on HPC, there is many for

Python. Popular packages such as Numpy, Matplotlib, Scipy, Sklearn etc. are already

installed and have their own module. To find these modules, simply run the module

avail command and search for the module you require. Then load the module using

the same module load command used previously.

3 Examples

Now we are set up on HPC and have installed some of the packaged we need, we will

go through some examples on how to get the most out of HPC.

3.1 Multicore Processing - Let the OS do the Hard Work

Many times when we want to process a large data set, we want to do a single task

to each element in the data set, and sometimes this individual operation can be com-

putationally expensive. An example is preprocessing all images in a large data set

to remove certain artefacts, convert to a more convenient format etc.. It would be

beneficial to process many of these items in the many available CPU cores on HPC.

One method is to write a multi-threaded/multi-process script (not a simple task in R)

to process the data. Another and far easier way to handle this is to create a script that

processes a single item in the data set, and submit this job many times to the HPC

cluster with a different observation from the data set as an input example. The idea

is to let the OS and the scheduler do the hard part of organising multicore processing.

3 EXAMPLES 15

Another scenario when this type of processing is helpful is for model validation.

Consider a case where you are commencing work on a new project, with a new type

of data set and you want to run some experiments to bench mark the performance of

different models with different parameters. For example, say you are fitting a mixture

model, and you want to investigate the performance of the model for different number

of mixtures, or a boosted regression tree, where you want to see how the accuracy

of your predictions change when altering the parameters of the model. This type of

experimentation can greatly benefit from this type of parallel processing, where you

want to run several independent experiments with varying parameters. An example

of how to do this is supplied in the bt_examples directory of the repo for this guide,

where we will fit many different boosted regression tree models to try and predict the

presence of breast cancer based on biopsy information [2].

When looking at the contents of the bt_examples directory, you will find a single

R script breast_cancer_bt.R and ten batch scripts batch_bt_XXXX.sh. Each of

these batch scripts will invoke the breast_cancer_bt.R script, though each script

will supply a different command line argument to specify the number of trees we want

to use in the model. We can sumbit batch jobs for all of these scripts using the following

commands,

Change to the bt_examples directory

cd ~/ hpc_guide / bt_examples /

#now lets send all the batch scripts to qsub

#so we can submit jobs for them

#

#We can use a for loop to submit all scripts

#that end in .sh

for sub in $(ls ./*. sh); do qsub $sub; done

After running this command, you will see that ten independent jobs have been sub-

mitted. You can track the progress of these jobs by again running the command,

watch -n 1 qstat -u <your_QUT_username >

16

Once all of the jobs are completed, you will see a number of log files have been created,

a standard output and a standard error file for each job submitted. You can view the

output of these files using the cat command.

#view the output of a single job

cat bt_10000_stdout .out

cat bt_10000_stderr .out

#if the output file is long , you can display it

#in a slightly nicer format where you can scroll through

#using enter or the space bar

cat bt_10000_stdout .out | more

After running these jobs, you may want to remove the current stash of output files.

You can do this using the rm command, though this should be used with caution.

This command will remove files for good, and unlike your desktop system, after you

remove a file in a UNIX like system, it is gone for good! This is another reason why

you should use version control systems such as Git with remote back ups. If you

accidentally delete all of your source files and you haven’t backed them up using Git

or something similar, they will be gone forever and you will have to start again from

scratch!.

I stress the importance/danger associated with using the rm command to hopefully

help you avoid disaster. In saying that, if used properly it is a simple and extremely

useful command.

If you have named output files in the standard I have used throughout my examples

(output scripts ending with stdout.out and stderr.out), then you can delete all of

these files with the following commands,

delete any files that end with stdout .out

rm ./* stdout .out

delete any files that end with stderr .out

rm ./* stderr .out

3 EXAMPLES 17

3.1.1 Tips for bulk Submitting Jobs

Bulk submitting jobs in this way relies on you designing your original code to handle

command line arguments. Adopting this type of program design is extremely helpful

during experimentation, and is a part of general good coding practices. Don’t hard-

code anything you think may even have the slightest possibility of ever changing.

Command line arguments are a great way to develop software that is highly modular,

and generally easy to use (as long as you document what you have done!).

For bulk submitting jobs in this way, I would recommend using the bash scripts

I have provided as a template, and simply modifying them to suit your needs. The

components that you will need to modify include the PBS directives at the top that

define your computational requirements. Another important component to change is

the output location where the standard output and standard error files will be saved. If

every script uses the same name for these output files, they will simply be overwritten

whenever a new job is executed.

Depending on the number of jobs you are planning to submit, it can also be helpful

to write a small program that actually generated the qsub bash scripts for you. An

easy way to do this is to start with a base file that has almost all the information you

need, excluding the names of the output text files and the different input arguments

you want to supply. Then you can write a small script that simply fills these areas

with the information you require. If you want some examples on how I do this, just

let me know and I can send you some examples.

HPC will let you run roughly 100 different jobs simultaneously, though you are able

to submit many many more jobs than that. A max of 10000 job submissions would

be a reasonable limit, depending on the resources you require. If you do submit more

than 100 jobs, excess jobs will simply join the cue and commence running after some

of your other jobs have finished.

18

3.2 Multicore Processing - The Hard Way

Whilst the previous section described how to efficiently and easily parallelise your

work, the bulk submission method is only suitable when individual tasks can be run

independently. For many cases, this type of parallelisation is not possible. For these

scenarios, parallelisation may still be feasible, as a few packages support multicore

processing. In general, this a much more involved and arduous task, and one that

I don’t believe R handles nicely when compared to other programming languages

such as Python2. Given the increased complexity associated with implementing many

multiprocessing programs directly whithin R, it will not be covered in this guide, as

it is assummed that if you have the programming proficiency to implement such a

system, you should have little dramas migrating it to the HPC environment.

2Although it can also be a pain to implement multithreaded programs in Python!

4 QUICK GUIDE 19

4 Quick Guide

Command Description/Example
cat Display contents of a file

cat <path_to_file>

cd Change Directory
cd ∼ #change to home directory
cd .. #move up one directory

cp Copy file
cp <path_original_file> <path_new_file>

ls
List files in current directy

man Manual for a command
man ls

module avail
List all of the available modules

module load Load a specific module
module load atg/R/3.4.1-foss-2016a

module purge Remove all loaded modules

mv Move a file
mv <path_original_file> <path_new_file>

rm Remove a file permanently
rm <path_to_file>

qdel Delete a specific job that was submitted to the queue
qdel <job_id_number> #find number with qstat

qstat View Running jobs
qstat -u <your_QUT_usernamer>

qsub Submit a job to the queue
Interactive Job
qsub -I -S /bin/bash -l
walltime=HH:MM:SS,mem=XXXg,ncpus=YYY -N ZZZ
batch job
qsub <path_to_batch_script>

20

5 Other Tips

This section will be updated every now and then with anything new I find. If you find

an interesting tip, trick or some package specific information that you think others

might benefit from, let me know and we can add it.

REFERENCES 21

References

[1] S. Tatham. (2018). Putty, [Online]. Available: https://www.putty.org/.

[2] W. Wolber. (1992). Breast cancer wisconsin data set, UCI, [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Original).

https://www.putty.org/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

	Preface
	Introduction and Preliminaries
	Getting HPC Access
	Mac and Linux
	Windows

	Once Logged In
	Transferring Files to HPC

	Submitting Jobs
	Interactive Jobs
	Modules
	Installing R Packages
	Submitting Batch Jobs
	Installing More Packages
	Quick Note on Python

	Examples
	Multicore Processing - Let the OS do the Hard Work
	Tips for bulk Submitting Jobs

	Multicore Processing - The Hard Way

	Quick Guide
	Other Tips

