httr quickstart guide

The goal of this document is to get you up and running with httr as quickly as possible. httr
is designed to map closely to the underlying http protocol. I'll try and explain the basics in
this intro, but I'd also recommend “HTTP: The Protocol Every Web Developer Must Know”
or “HTTP made really easy’.

This vignette (and parts of the httr API) derived from the excellent “Requests quickstart
gquide” by Kenneth Reitz. Requests is a python library similar in spirit to httr.

There are two important parts to http: the request, the data sent to the server, and the
response, the data sent back from the server. In the first section, you'll learn about the
basics of constructing a requests and accessing the response. In the second and third
sections, you'll dive into more details of each.

httr basics

To make a request, first load httr, then call GET() with a url:

Tibrary(Chttr)
r <- GET("http://httpbin.org/get")

This gives you a response object. Printing a response object gives you some useful
information: the actual url used (after any redirects), the http status, the file (content) type,
the size, and if it's a text file, the first few lines of output.

r
#> Response [http://httpbin.org/get]

#> Date: 2016-01-27 15:46

#> Status: 200

#> Content-Type: application/json

#> Size: 298 B

#> No encoding supplied: defaulting to UTF-8.
#> {

#> "args": {},

#> "headers': {

> "Accept”: "application/json, text/xml, application/xml, */*",
#> "Accept-Encoding”: "gzip, deflate”,

#> "Host": "httpbin.org",

#> "User-Agent"”: "libcurl/7.43.0 r-curl/0.9.4 httr/1.1.0"

#> 4,

#> "origin": "64.196.190.2",
#> "url”: "http://httpbin.org/get"”
2

You can pull out important parts of the response with various helper methods, or dig directly
into the object:

http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://www.jmarshall.com/easy/http/
http://docs.python-requests.org/en/latest/user/quickstart/

status_code(r)

#>

[1] 200

headers(r)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Sserver
[1] "nginx"

Sdate
[1] "wed, 27 Jan 2016 15:46:45 eMT"

$ content-type’
[1] "application/json"

$ ‘content-Tlength "
[1] "298 ”

Sconnection
[1] "keep-alive”

$access-control-allow-origin’

[1] II;(_ n

§ access-control-allow-credentials
[1] "true”

ater(, "class")
[1] "insensitive” "list"”

str(content(r))

#>
#>
#>
#>
#>
#>
#>
#>
#>

List of 4
$ args : Named 17st()
§ headers:List of 4

.. ¥ Accept : chr "application/json,
chr "gzip, deflate”
..$ Host : chr "httpbin.org"”

.. % Accept-Encoding:

text/xml, application/

.. % User-Agent :chr "libcurl/7.43.0 r-curl/0.9.4 httr/1.1.0"

$ origin : chr "64.196.190.2"

S url : chr "http://httpbin.org/get"”

Il use httpbin.org throughout this introduction. It accepts many types of http request
and returns json that describes the data that it recieved. This makes it easy to see what httr
is doing.

As well as GET(), you can also use the HEAD(), POST(), PATCH(), PUT() and DELETE()
verbs. You're probably most familiar with GET() and POST(): GET() is used by your
browser when requesting a page, and POST() is (usually) used when submitting a form to
a server. PUT(), PATCH() and DELETE() are used most often by web APIs.

The response

The data sent back from the server consists of three parts: the status line, the headers and
the body. The most important part of the status line is the http status code: it tells you
whether or not the request was successful. I'll show you how to access that data, then how
to access the body and headers.

The status code

The status code is a three digit number that summarises whether or not the request was
succesful (as defined by the server that you're talking to). You can access the status code
along with a descriptive message using http_status():

r <- GET("http://httpbin.org/get")
Get an Tnformative description:
http_status(r)

#> $category

#> [1] "Success"”

#>
#> $reason
[1] "ok"
#>

#> $message
#> [1] "Success: (200) oK"

Or just access the raw code:
r$status_code
#> [1] 200

A succesful request always returns a status of 200. Common errors are 404 (file not found)
and 403 (permission denied). If you're talking to web APIs you might also see 500, which is
a generic failure code (and thus not very helpful). If you'd like to learn more, the most
memorable guides are the http status cats.

You can automatically throw a warning or raise an error if a request did not succeed:

warn_for_status(r)
stop_for_status(r)

| highly recommend using one of these functions whenever you're using httr inside a
function (i.e. not interactively) to make sure you find out about errors as soon as possible.

The body

There are three ways to access the body of the request, all using content():

e content(r, "text") accesses the body as a character vector:

https://www.flickr.com/photos/girliemac/sets/72157628409467125

r <- GET("http://httpbin.org/get")

content(r,

"teXt")

#> No encoding supplied: defaulting to UTF-8.

#>

[17 "{\n

\"args\": {},

\n

\ "headers\":

{\n

\ "Accept\": |\

n

httr will automatically decode content from the server using the encoding supplied in
the content-type HTTP header. Unfortunately you can't always trust what the
server tells you, so you can override encoding if needed:

content(r, "text", encoding = "IS0-8859-1")

If you're having problems figuring out what the correct encoding should be, try
stringi::stri_enc_detect(content(r, "raw")).

e For non-text requests, you can access the body of the request as a raw vector:

content(r,

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[1] 7b
[24] 64 65
[47] 22 61
[70] 2F 78
[93] 2a

[116] 64 69
[139] 20 Oa
[162] 6f 72
[185] 3a 20

Oa

[208] 6c 2f 30 Ze

[231] 2c
[254] 31
[277] 3a

20
39

2f 2a

2f 2f 68

mn |"aW")

22
22
6c

20 20
72 73
70 70
6d 6c 2c
22 2c
67 22
20
2c
69
39
20
32
74

be
20 20
67 22
22 6¢

Oa 20
30 Ze

61
3a
69
20
20
3a
20
20
62
2e
22
22
74

72
20
63
61
Oa
20
22
Oa
63
34

67
7b
61
70
20
22
48
20
75
20

61 72

2Cc
70

20
62

22
20
69

73
Oa
74
70 6¢
20 20
67 7a
6f 73
20 20
72 6¢c
68 74
69
Oa
69

20

3a 20
20 20
6f 6e
69 63
20 22
69 70

20 22
2f 6a
61 74
41 63
2c 20
74 22 3a 20
20 22 55 73
2f 37 2e 34
74 72 2f 31

67 69 6e 22 3a

20 22 75 72

7b 7d 2c

41
73
69
63
64
22
65
33
2e
20
6c

20
63

61 be
61 be

65
65
68
72
2e
31
22
22

6e 2e 6f 72 67 2f 67

Oa
63

20
65
2c

70 74
66 6¢c
74 74
2d 41
30 20
2e 30
36 34
3a 20
65 74

20
70
20

2f 78

2d
61
70
67
72
22
2e

»

a

N N N NN NN\

N,

o~

22 ¢
22 (

This is exactly the sequence of bytes that the web server sent, so this is the highest
fidelity way of saving files to disk:

bin <- content(r,
writeBin(bin, "myfile.txt")

n r‘anl)

 httr provides a number of default parsers for common file types:

JSON automatically parsed into named 1ist
str(content(r, "parsed"))
#> List of 4

#> $ args : Named Tist()

#> § headers:List of 4

.. 5 Accept : chr "application/json, text/xml, applicat
#> .. % Accept-Encoding: chr "gzip, deflate”

#> ..$§ Host : chr "httpbin.org”

#> .. % User-Agent :chr "libcurl/7.43.0 r-curl/0.9.4 httr/1.1]
#> §$ origin @ chr "64.196.190.2"

#> $ url : chr "http://httpbin.org/get”

See ?content for a complete list.

These are convenient for interactive usage, but if you're writing an APl wrapper, it's
best to parse the text or raw content yourself and check it is as you expect. See the
APl wrappers vignette for more details.

The headers

Access response headers with headers():

headers(r)

#> $server

[1] "nginx"

#>

#> $date

[1] "wed, 27 Jan 2016 15:46:45 GMT"
#>

#> § content-type "

#> [1] "application/json”

#>

#> § content-length

[1] "298"

#>

#> $connection

[1] "keep-alive”

#>

#> $ access-control-allow-origin’
[1] "*"

#>

#> $ access-control-allow-credentials
[1] "true"

#>

attr(, "class”)

#>

[1] "insensitive"” "]ist"”

This is basically a named list, but because http headers are case insensitive, indexing this
object ignores case:

headers(r)$date
[1] "wed, 27 Jan 2016 15:46:45 amT"
headers(r) $DATE
[1] "wed, 27 Jan 2016 15:46:45 amMT"

Cookies

You can access cookies in a similar way:

r <- GET("http://httpbin.org/cookies/set", query = list(a = 1))
cookies(r)

#> domain flag path secure expiration name value

#> 1 httpbin.org FALSE / FALSE <NA> a 1

Cookies are automatically persisted between requests to the same domain:

r <- GET("http://httpbin.org/cookies/set", query = list(b = 1))
cookies(r)

> domain flag path secure expiration name value
#> 1 httpbin.org FALSE / FALSE <NA> a 1
#> 2 httpbin.org FALSE /. FALSE <NA> b 1

The request

Like the response, the request consists of three pieces: a status line, headers and a body.
The status line defines the http method (GET, POST, DELETE, etc) and the url. You can
send additional data to the server in the url (with the query string), in the headers (including
cookies) and in the body of POST(), PUT() and PATCH() requests.

The url query string

A common way of sending simple key-value pairs to the server is the query string: e.g.
http://httpbin.org/get?key=val. httr allows you to provide these arguments as a
named list with the query argument. For example, if you wanted to pass keyl=valuel
and key2=value?2 to http://httpbin.org/get you could do:

r <- GET("http://httpbin.org/get",
query = list(keyl = "valuel", key2 = "value2")
)
content(r)$args
#> $keyl
[1] "valuel”
#>
#> Skey?2
[1] "valuel?"

Any NULL elements are automatically dropped from the list, and both keys and values are
escaped automatically.

r <- GET("http://httpbin.org/get",
query = list(keyl = "value 1", "key 2" = "value2", key2 = NULL))
content(r)$args
#> § key 2°
[1] "valuel?"
#>
#> $keyl
[1] "value 1"

Custom headers

You can add custom headers to a request with add_headers():

r <- GET("http://httpbin.org/get", add_headers(Name = "Hadley"))
str(content(r)$headers)

#> List of 6

#> § Accept : chr "application/json, text/xml, application/xm]
#> § Accept-Encoding: chr "gzip, deflate”

#> § Cookie ; chr "a=1; b=1"

#> § Host : chr "httpbin.org”
#> § Name : chr "Hadley"
#> § User-Agent :chr "libcurl/7.43.0 r-curl/0.9.4 httr/1.1.0"

(Note that content (r) $header retrieves the headers that httpbin received. headers(r)
gives the headers that it sent back in its response.)

Cookies

Cookies are simple key-value pairs like the query string, but they persist across multiple
requests in a session (because they're sent back and forth every time). To send your own
cookies to the server, use set_cookies():

r <- GET("http://httpbin.org/cookies", set_cookies('"Mewant" = "cookies"
content(r)$cookies

#> $Mewant

#> [1] "cookies"
#>

Sa

[1] "1"

#>

$b

[1] "1"

»

Note that this response includes the a and b cookies that were added by the server earlier.

Request body

When POST () ing, you can include data in the body of the request. httr allows you to supply
this in a number of different ways. The most common way is a named list:

r <- POST("http://httpbin.org/post", body = list(a =1, b = 2, c = 3))
You can use the encode argument to determine how this data is sent to the server:

url <- "http://httpbin.org/post"
body <- Tist(a =1, b =2, c = 3)

Form encoded
r <- POST(url, body = body, encode
Multipart encoded
r <- POST(url, body
JSON encoded

r <- POST(url, body

"form™)

body, encode "multipart")

body, encode "json")

To see exactly what's being sent to the server, use verbose () . Unfortunately due to the
way that verbose () works, knitr can't capture the messages, so you'll need to run these
from an interactive console to see what's going on.

POST(url, body = body, encode
POST(url, body = body, encode
POST(url, body = body, encode

"multipart"”, verbose()) # the default
"form", verbose())
"json", verbose())

PUT() and PATCH() can also have request bodies, and they identically to POST().

You can also send files off disk:

POST(url, body
POST(url, body

upload_file("mypath.txt"))
Tist(x = upload_file("mypath.txt")))

(upload_file() will guess the mime-type from the extension - using the type argument
to override/supply yourself.)

These uploads stream the data to the server: the data will be loaded in R in chunks then
sent to the remote server. This means that you can upload files that are larger than
memory.

See PoST() for more details on the other types of thing that you can send: no body, empty
body, and character and raw vectors.

Built with

sessionInfo()

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

R version 3.2.2 (2015-08-14)

Platform: x86_64-apple-darwinl3.4.0 (64-bit)

Running under: 0S X 10.11.2 (E] capitan)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_uUS.UTF-8

attached base packages:
[1] stats graphics grbevices utils

other attached packages:
[1] httr_1.1.0

loaded via a namespace (and not attached):

[1] R6_2.1.1 magrittr_1.5

[4] markdown_0.7.7 tools_3.2.2

[7] stringi_1.0-1 knitr_1.12
[10] stringr_1.0.0.9000 evaluate_0.8

datasets methods

formatrR_1.2.1
curl_0.9.4
Jjsonlite_0.9.19

base

